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Efficient preconditioned least-squares wave-equation migration

Siamak Abolhassani1 and Dirk Jacob Verschuur1

ABSTRACT

Since the appearance of wave-equation migration (WEM),
many have tried to improve the resolution and effectiveness of
this technology. Least-squares wave-equation migration is
one of those attempts that try to fill the gap between migration
assumptions and reality in an iterative manner. However,
these iterations do not come cheap. A proven solution to limit
the number of least-squares iterations is to correct the gradient
direction within each iteration via the action of a precondi-
tioner that approximates the inverse Hessian. However,
the Hessian computation, or even the Hessian approximation
computation, in large-scale seismic imaging problems in-
volves an expensive computational bottleneck, making it
unfeasible. Therefore, we develop an efficient computation of
the Hessian approximation operator in the context of one-way
WEM in the space-frequency domain. We build the Hessian
approximation operator depth by depth, considerably reduc-
ing the operator size each time it is calculated. We prove the
validity of our method with two numerical examples. We then
extend our proposal to the framework of full-wavefield migra-
tion, which is based on WEM principles but includes interbed
multiples. Finally, this efficient preconditioned least-squares
full-wavefield migration is successfully applied to a data set
with strong interbed multiple scattering.

INTRODUCTION

Seismic migration, also called seismic imaging, has been an im-
perative tool in characterizing the earth’s subsurface geologic struc-
tures in the search for subsurface resources over the past 50 years.
Numerous research efforts have been attempted to contribute to the
theoretical developments of modern seismic migration, being one- or
two-way wave-equation migration (WEM), notable among which are

Claerbout (1971) and Claerbout and Doherty (1972) for introducing
finite-difference migration, Stolt (1978) and Gazdag (1978) for
inventing and developing migration in the wavenumber-frequency
domain, Berkhout and Wulfften (1979) for introducing migration
as a spatial deconvolution in the space-frequency domain, and also
Baysal et al. (1983), Whitmore (1983), and McMechan (1983) for
pioneering the use of reverse-time migration (RTM).
Most WEM algorithms share the same imaging mechanism. They

first propagate the source wavefield forward into the medium while
also propagating the receiver wavefield backward into the medium.
They then construct the subsurface image by applying an imaging
condition (Jones, 2014) to the forward and backward propagated
wavefields at every trial image point. Note that WEM can also
be interpreted and implemented as a generalized diffraction stack
migration (Schuster, 2002; Zhan et al., 2014).
Despite the similarities, WEM algorithms differ in a couple of as-

pects, among which are the dimension — either time or depth —
along which they propagate the wavefields and the scalar Helmholtz
equation — either one-way or two-way — they solve to propagate
the wavefields. Generally speaking, the most popular WEM algo-
rithms can be split into two main kinds: one-way WEM and RTM
(Etgen et al., 2009; Jones, 2014). Although RTM propagates wave-
fields along the time axis through the numerical solution of the two-
way Helmholtz equation via direct methods such as finite-difference,
spectral-element, and finite-element modeling, WEM propagates
wavefields along the depth axis through the numerical solution of
the one-way Helmholtz equation. WEM algorithms, to avoid the
well-known computational overhead of direct solutions to the Helm-
holtz equation, are mostly built on the solution of an approximation to
the square root of the Helmholtz operator, which is cheap, specifically
for 3D cases (Mulder and Plessix, 2004). Although RTM outperforms
WEM in addressing large propagation angles (greater than ±90°),
therefore delivering superior images in complex subsurface regions,
it is a more computationally intensive and memory-demanding oper-
ation. Hence, WEM is still a frequently used migration technique in
the industry for high-frequency imaging or large-scale data sets
(Mehta et al., 2017) if steep reflecting structures are not expected.
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In addition, WEM principles may be used in so-called full-wavefield
modeling (FWMod) (Berkhout, 2014b) to generate multiple scattering
to apply full-wavefield migration (Berkhout, 2014a). From another
perspective, however, it may be argued that interpreting such compar-
ative statements between WEM and RTM as the outright dismissal of
one over the other is a misconception. In fact, the preference for one
over the other could be significantly affected by various factors, par-
ticularly the geologic complexity of the medium, the current stage of
the project — whether it is in the early stage or full production mode
— and, more importantly, efficient project resource allocation.
The WEM and RTM algorithms have proven effective on their

own, provided that a few fundamental migration assumptions are sat-
isfied: (a) their input data set is regularly sampled, (b) their input data
set is free of multiples if the first-order Born approximation is fol-
lowed, (c) there is no amplitude problem in their input data set
due to the source energy variation/dissipation, (d) there is an accurate
migration velocity model, (e) there is a broadband source function,
and (f) there is an accurate migration operator. Otherwise, their output
would not be an ideal representation of the subsurface reflectivity
model, as they suffer from migration artifacts (Jones, 2018).
To resolve better images and close the gap between the migration

assumptions and reality, the iterative least-squares migration (LSM)
concept was introduced and leveled up any standard migration algo-
rithm into a local minimization problem (e.g., Cole and Karrenbach,
1992; Chavent and Plessix, 1999; Duquet andMarfurt, 1999; Nemeth
et al., 1999). While the number of iterations increases, any LSM tech-
nique can effectively suppress the part of the migration artifacts that
appear due to irregular acquisition geometry, a band-limited source
function, and geometric spreading (Huang et al., 2014). This iterative
process, however, comes with high computational costs, so keeping
the number of iterations to a minimum is crucial.
To reduce the number of least-squares iterations, one remedy is to

precondition the gradient vector in each iteration with an approxi-
mation to the reciprocal of the Hessian matrix-operator (Pratt et al.,
1998). As a result, the model perturbation vector Δm reads

HaΔm ¼ −g; (1)

in which g and Ha denote the gradient and Hessian approximation,
respectively, and are given by

g ¼ J†Δd; (2)

Ha ¼ J†J; (3)

where Δd is the data error vector, † denotes the adjoint, and J is the
forward (Born) modeling operator, or Jacobian matrix-operator,
each column of which represents the wavefield scattered by a small
perturbation of the model parametermi (i denotes the location of the
model parameter here), while all the other model parameters are
kept fixed. It mathematically follows that although the diagonal
Hessian elements carry the scattered wavefield autocorrelations,
the off-diagonal Hessian elements carry the scattered wavefield
crosscorrelations of the neighboring model parameters in the
medium (Operto et al., 2013). Although it is expected that the scat-
tered wavefields exhibit only autocorrelations (i.e., only the on-
diagonal coefficients inHa have values), this is not the case. Indeed,
due to the limited bandwidth of seismic sources and the proximity
of model parameters in space, they are also partially cross-corre-

lated (i.e., both the on-diagonal and off-diagonal coefficients in
Ha have values). It follows that the Hessian approximation matrix
has a diagonally dominant structure rather than a pure diagonal one,
as noted by Pratt et al. (1998).
As is clear from equation 1, each element of the gradient vector is

a weighted sum of all the model perturbations. This clarifies how
blurred a migrated image will be using a forward-modeling operator
with nonunitary columns (i.e., Ha is not an identity matrix) and, at
the same time, explains why LSM, after the action of the inverse
Hessian approximation on the gradient, converges faster (Aoki
and Schuster, 2009). However, for large-scale seismic imaging
problems, even such an approximation to the Hessian operator has
a considerable computational burden — if it is rebuilt/updated in
each iteration — as it requires each iteration to construct, invert,
andmultiply amatrix of size: number ofmodel parameters× number
of model parameters.
To make the computation of the Hessian operator feasible, some

have replaced it with a diagonal approximation (e.g., Beydoun and
Mendes, 1989; Chavent and Plessix, 1999; Shin et al., 2001), and
others have approximated the entire set of coefficients with a man-
ageable computational burden. Unlike the reciprocal of the diagonal
coefficients, which only corrects the migration image for amplitude-
related artifacts, the reciprocal of the entire set of coefficients can
correct the migration image for bandwidth- and amplitude-related
artifacts. Therefore, to gain a better image resolution, there have
been many proposals to approximate the entire Hessian matrix, ei-
ther in the data domain or image domain, among which the most
remarkable are as follows. Hu et al. (2001) approximate the inverse
Hessian matrix by a migration deconvolution filter constructed
based on a single reference acoustic velocity profile vðzÞ, leaving
laterally invariant deconvolution filters. For a layered medium with
lateral velocity variations, Yu et al. (2006) construct a set of differ-
ent deconvolution filters based on multiple acoustic velocity pro-
files to apply to different parts of the migrated image. Guitton
(2004) approximates the inverse Hessian matrix by designing a
matching convolution filter for each point in the image space to lo-
cally match a reference image to its corresponding migrated image
in a least-squares sense. For a target-oriented imaging problem,
Valenciano et al. (2006) compute a sparse-structure Hessian matrix
explicitly through the crosscorrelation of the source and receiver
Green’s functions within the target area. Lecomte (2008) and
Fletcher et al. (2016) calculate the Hessian approximation matrix
using point spread functions (PSFs), in which each PSF measures
the scattered wavefield for every point in the image space. Metivier
et al. (2014) estimate the product of the Hessian approximation ma-
trix and any vector that lies within the subsurface model space
through the second-order adjoint-state method and then solve equa-
tion 1 using conjugate-gradient iterations. Assis and Schleicher
(2021) use the same technique as Metivier et al. (2014) but in
the context of one-way reflection waveform inversion (RWI). Lu
et al. (2018), in the context of viscoacoustic anisotropic WEM,
compute J and J† implicitly and then solve equation 1 using an
iterative sparse solver of the least-squares QR factorization family.
In their recent study, Yang et al. (2021) approximate the inverse
Hessian by comparing the S-transform spectra of two images of
the subsurface: one obtained through Born migration and the other
obtained by remodeling the Born image and then remigrating it.
Over the past few years, there have also been significant studies

in transforming the migration operator from an adjoint to a
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pseudoinverse under the high-frequency assumption, commonly
known as a “true-amplitude migration operator,” mostly taking into
account the geometric spreading loss. In such a context, Zhang et al.
(2007) achieve a true-amplitude WEM by introducing the high-fre-
quency approximation of the true-amplitude downgoing (forward)
and upgoing (backward) wavefields at every trial image point.
Kiyashchenko et al. (2007) propose a true-amplitude correlation-
based imaging condition applicable to a finite-difference solution
of the one-way wave equation, mathematically equivalent to the
high-frequency approximation of the LSM solution (Bleistein
et al., 2001). There exist alternative true-amplitude migration
schemes that explicitly take into account the transmission effect
as well (e.g., Deng and McMechan, 2007). Ten Kroode (2012) de-
rives a pseudoinverse to the subsurface extended scale-separated
Kirchhoff modeling operator, and Hou and Symes (2015) obtain
a pseudoinverse to the subsurface extended Born modeling opera-
tor. In the same spirit as Hou and Symes (2015), Chauris and
Cocher (2017) construct a pseudoinverse to the subsurface extended
Born modeling operator after linearizing the phase of the Born op-
erator, thereby promoting shorter offsets, smaller dips, and vertical
rays in practice. A pseudoinverse operator, more importantly, can be
advantageous in a least-squares framework also, as it can be applied
to the residual data to speed up the convergence rate of the least-
squares inversion scheme that relies merely on the steepest descent
update direction (e.g., Hou and Symes, 2016).
This paper aims to present a cost-friendly Hessian approximation

operator in the context of the space-frequency domain least-squares
one-way wave-equation migration (LS-WEM) relying on angle-in-
dependent reflection/transmission coefficients (Berkhout, 1982,
2014a). To this purpose, we build the Hessian approximation oper-
ator depth by depth, significantly reducing the operator size each
time it is calculated (Abolhassani and Verschuur, 2022). We also
rebuild/update the Hessian approximation operator within each
iteration, taking into account the updated transmission effects. This
paper is organized as follows: First, we present our preconditioned
LS-WEM theory (forward and inverse problems), in which the
reciprocal of our proposed depth-based Hessian approximation
operator preconditions the gradient direction. This is followed by
two numerical examples for two synthetic data sets, including only
primary reflections, one from a velocity model with a lens-shaped
inclusion and the other from the SEG/EAGE overthrust velocity
model. In addition, we evaluate the effectiveness of our proposed
approach within the context of full-wavefield migration (Berkhout,
2014a) with a numerical example for a synthetic data set including
strong interbed multiples. We finish with a final discussion and
conclusion.

PRECONDITIONED LEAST-SQUARES ONE-WAY
WAVE-EQUATION MIGRATION

The theoretical and algorithmic aspects of the preconditioned
least-squares one-way wave-equation migration (PLS-WEM) are
presented here.

Forward problem

The Kirchhoff integral for homogeneous fluids describes how to
model the pressure wavefield at an arbitrary point inside a closed
surface S when the pressure wavefield and the normal component
of the particle velocity everywhere on S are known. The Kirchhoff

integral can be simplified by choosing a plane surface for S and
absorbing boundary conditions for the one-way Green’s function
(see, e.g., Berkhout and Wapenaar, 1989). The resultant integral
is then represented as the Rayleigh II integral, which is the basis
here for the one-way forward and adjoint wavefield extrapolations
in a 2D inhomogeneous acoustic medium.
With an extrapolation step bounded by origin and destination

depth levels, the 2D forward extrapolated wavefield, in which
the wavefields existing at all lateral positions located at the origin
depth level (zl) are extrapolated in the +z direction toward a lateral
position located at the destination depth level (zlþ1) (Figure 1), is
defined as (known as the Rayleigh II integral)

pþðxj; zlþ1;ωfÞ

¼ 1

2π

Z þ∞

−∞
~pþðkx; zl;ωfÞe

−i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ωf
vj

�
2

−k2x

r �
jΔzj

e−ikxxjdkx;

(4)

where vj is the acoustic velocity at the position ðxj; zlþ1Þ, ωf de-
notes a given angular frequency component, kx is the horizontal
wavenumber, Δz denotes the laterally constant extrapolation step
(the vertical distance between the origin and destination depth lev-
els) and is assumed small enough to be considered homogeneous
vertically, and pþðxj; zlþ1;ωfÞ and ~pþðkx; zl;ωfÞ are the mono-
chromatic downgoing acoustic wavefields that read the following
forward and inverse Fourier conventions:

~pðkxjÞ ¼
Z þ∞

−∞
pðxÞeikxj xdx; (5)

pðxjÞ ¼
1

2π

Z þ∞

−∞
~pðkxÞe−ikxxjdkx: (6)

Inserting equation 5 into equation 4 gives a convolution integral
along the x-axis:

pþðxj;zlþ1;ωfÞ

¼ 1

2π

Z þ∞

−∞
pþðx;zl;ωfÞ

0
B@
Z þ∞

−∞
e
−i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ωf
vj

�
2

−k2x

r �
jΔzj

e−ikxðxj−xÞdkx

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{wþ∶extrapolationkernel 1
CAdx

¼ 1

2π

Z þ∞

−∞
pþðx;zl;ωfÞwþ

zlþ1;zl ðxj−x;ωfÞdx; (7)

Figure 1. Extrapolation from all existing lateral positions located at
the origin depth level toward a lateral position located at the desti-
nation depth level. Note that Δz denotes the extrapolation step.
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in which the downward wavefield extrapolation is marked by wþ,
and xj denotes the convolution lag. Rewriting equation 7 into the
vector-matrix form gives the following equations (Berkhout, 1982):

pþðzlþ1;ωfÞ ¼ Wþ
zlþ1;zlp

þðzl;ωfÞ; (8)

p−ðzl;ωfÞ ¼ W−
zl;zlþ1

p−ðzlþ1;ωfÞ; (9)

where p−ðzl;ωfÞ is the monochromatic upgoing acoustic wavefield
at zl, pþðzl;ωfÞ is the monochromatic downgoing acoustic wave-
field at zl, pþðzlþ1;ωfÞ is the monochromatic downgoing acoustic
wavefield at zlþ1, p−ðzlþ1;ωfÞ is the monochromatic
upgoing acoustic wavefield at zlþ1, Wþ

zlþ1;zl is the downward
(zl → zlþ1) wavefield extrapolation matrix-operator, and W−

zl;zlþ1

is the upward (zlþ1 → zl) wavefield extrapolation matrix-operator.
With an extrapolation step without lateral velocity variations

(vj ¼ v everywhere at the destination depth level), W becomes a
Toeplitz matrix-operator, i.e., each row vector-operator ofW comes
with a finite length of nx and contains the same elements as others
but is moved by one element to the right compared with its preced-
ing row. However, with an extrapolation step including lateral
velocity variations (a different vj for every xj at the destination
depth level), W turns into a space-variant convolution matrix-oper-
ator, i.e., each row vector-operator of W is defined based on a
locally averaged velocity, so it comes with a short spatial extent
of L such that L ≪ nx (Berkhout, 1982; Thorbecke et al., 2004).
To model the monochromatic angle-independent primary reflec-

tion data at the earth’s surface (traditional surface seismic data ex-
cluding horizontally propagating waves) for a given shot location,
the following equations, extrapolating the seismic source signature
downward from z0 (the earth’s surface) to zN and then upward from
zN to z0, are solved in the space-frequency domain:

p−modðz0;ωfÞ ¼
X1
m¼N

U−
z0;zmðr∪ðzmÞ ∘ pþmodðzm;ωfÞÞ; (10)

pþmodðzm;ωfÞ ¼ Uþ
zm;z0s

þðz0;ωfÞ; (11)

Uþ
zm;z0 ¼

� Y1
n¼m−1

Wþ
znþ1;znT

þðznÞ
	
Wþ

z1;z0 ; (12)

U−
z0;zm ¼

�Ym−1

n¼1

W−
zn−1;znT

−ðznÞ
	
W−

zm−1;zm ; (13)

in which p−modðz0;ωfÞ denotes the monochromatic upgoing wave-
field received at the depth level z0, pþmodðzm;ωfÞ indicates the
monochromatic downgoing wavefield received at the depth level
zm, r∪ðzmÞ represents the angle-independent upward reflectivity
vector-operator at zm, TþðznÞ is the downward transmission diago-
nal operator and reads Tþ ¼ Iþ diagðr∪Þ, T− is the upward trans-
mission diagonal operator and reads T− ¼ I − diagðr∪Þ, Uþ

zm;z0 is
called the total downward extrapolator and contains all the down-
ward extrapolation operators (Wþ) coupled with the downward
transmission operators required to reach from z0 to zm, U−

z0;zm is
called the total upward extrapolator and contains all the upward
extrapolation operators (W−) coupled with the upward transmission
operators required to reach from zm to z0, sþðz0;ωfÞ indicates the
monochromatic downgoing physical source at z0, N is the total
number of the depth levels; and finally the symbol ∘ means the Ha-
damard product (Figure 2). Henceforward, we refer to the previ-
ously described primary wavefield modeling approach as PWMod.
As is clear from equations 10–13, PWMod calculates the earth’s

primary two-way response via a recursive summation (equation 10)
in depth by including the reflection and transmission effects. The
recursive summation, indeed, includes the multiplication of the total
upward extrapolator and the upward scattered wavefield at each
depth level.

Inverse problem

LS-WEM is a seismic depth migration technology based on a
data-fitting process that seeks the earth’s reflectivity model. LS-
WEM iteratively minimizes a data error functional in a least-squares
sense (Schuster, 2017). To minimize the data error functional, LS-
WEM follows a migration-demigration cycle, as depicted in Fig-
ure 3. The LS-WEM cycle starts with an accurate migration velocity
model fixed in the cycle and a zero-reflectivity model variable in the
cycle. The modeled data are then generated via PWMod, and the
data error is calculated and back-projected into the reflectivity
model to build/update the reflectors via a steepest descent algo-
rithm. The cycle iterates until the data error almost vanishes.
To introduce preconditioning in the LS-WEM algorithm, we seek

the least-squares solution of the linear system (Lines and Treitel,
1984; Tarantola, 1984)

Δd− ¼ JΔr∪; (14)

where Δd− represents the error between the observed and modeled
data at z0, Δr∪ denotes the total upward reflectivity perturbation,
and J is given by

J ¼ ∂p−modðz0Þ
∂r∪

: (15)

Therefore, to solve equation 14, we minimize the following error
functional (Shin et al., 2001; Jang et al., 2009; Oh andMin, 2013) as

Figure 2. Wavefield updating in PWMod with angle-independent re-
flections at a given depth level, where pþ is the downgoing wavefield,
p− is the upgoing wavefield, r∪ represents the upward reflectivity, and
tþ and t− denote the downward and upward transmission.
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a quadratic function of Δr∪ðωfÞ:

C ¼ 1

2

XNf

f¼1

XNs

s¼1

kΔd−s ðωfÞ − JsðωfÞΔr∪ðωfÞk22; (16)

in which

Δd−s ðωfÞ ¼ p−obs;sðz0;ωfÞ − p−mod;sðz0;ωf; r∪Þ; (17)

and p−obs;sðz0;ωfÞ is the monochromatic multiple-free observed data
recorded at the earth’s surface for shot s, p−mod;sðz0;ωf; r∪Þ repre-
sents the monochromatic modeled primary data at the earth’s sur-
face for shot s, Δd−s ðωfÞ is the monochromatic residual data for
shot s, ωf represents an angular frequency component, Ns is the
total number of shot locations, Nf indicates the total number of fre-
quency components, and r∪ is ordered as

r∪ ¼

2
6664
r∪ðz0Þ
r∪ðz1Þ

..

.

r∪ðzNÞ

3
7775: (18)

Minimizing equation 16 with respect to Δr∪ðωfÞ gives the
descent direction

Δr∪ ¼ −
XNf

f¼1

Δr∪ðωfÞ; (19)

in which

Δr∪ðωfÞ¼R


�XNs

s¼1

J†sðωfÞJsðωfÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Ha

sðωfÞ ��
−1
R


XNs

s¼1

J†sðωfÞΔd−s ðωfÞ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{gsðωfÞ �

;

(20)

and, to link the linearized and nonlinear inverse problems, g and Ha

are referred to as the gradient and Hessian approximation (also
known as the Gauss-Newton Hessian approximation). The intro-
duced frequency-dependent preconditioning operation here exhibits
certain parallels with the deconvolution imaging condition intro-
duced by Valenciano and Biondi (2003) that accounts for the source
deconvolution.
Using equation 20, the reflectivity model can be updated itera-

tively via

r∪kþ1 ¼ r∪k þ αkΔr∪k ; (21)

where α denotes the minimization step length, and k denotes the
current iteration. Because with PWMod, the acoustic wavefield
is accessible depth by depth, the gradient vector in equation 20
can be rewritten as

gsðωfÞ ¼

2
6664
gsðz0;ωfÞ

..

.

gsðzN;ωfÞ

3
7775

¼
�∂p−mod;sðz0;ωfÞ

∂r∪ðz0Þ
· · ·

∂p−mod;sðz0;ωfÞ
∂r∪ðzNÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{total Jacobian 	
†

Δd−s ðωfÞ; (22)

in which each element of g is a vector representing the gradient
associated with the model parameters located at a given depth level,
and each column of the total Jacobian denotes the partial derivative
of the upgoing modeled wavefield at the receiver locations with re-
spect to the model parameters located at a given depth level. What is
important to note here is that equation 22 allows us to construct not
only the gradient vector depth by depth but also the Jacobian matrix,
paving the way for constructing the Hessian approximation matrix
with a reduced number of elements at each depth level.
Each column of the total Jacobian matrix, after calculating the

corresponding partial derivatives, is simplified to

∂p−mod;sðz0;ωfÞ
∂r∪ðzmÞ

¼

2
66664U−

z0;zm

0
BBB@

pþ
1mod;s

ðzm;ωfÞ
0

..

.

0

1
CCCAU−

z0;zm

0
BBB@

0

pþ
2mod;s

ðzm;ωfÞ
..
.

0

1
CCCA

: : :U−
z0;zm

0
BBB@

0

0

..

.

pþ
nxmod;s

ðzm;ωfÞ

1
CCCA

3
77775; (23)

Figure 3. The LS-WEM cycle: LS-WEM starts with an accurate
migration velocity model (fixed in the cycle) and a zero-reflectivity
model (variable in the cycle). Then, using PWMod, the modeled
data are generated and contrasted with the multiple-free observed
data using a data error functional. The data error is then back-pro-
jected into the reflectivity model to build/update the reflectors
through a scaled steepest descent algorithm. The cycle repeats itself
until the data error almost disappears.
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where nx denotes the number of grid points at zm (the inversion and
modeling grids are similar), and pþ

jmod;s
ðzm;ωfÞ is a complex number

representing the downgoing modeled wavefield at the jth grid point
of zm. As the vectors multiplied by U−

z0;zm in equation 23 each have
only one active element, the multiplications can be simplified to

∂p−mod;sðzm;ωfÞ
∂r∪ðzmÞ

¼ ½pþ
1mod;s

ðzm;ωfÞU−
�;1z0;zm pþ

2mod;s
ðzm;ωfÞU−

�;2z0;zm

: : : pþ
nxmod;s

ðzm;ωfÞU−�;nxz0;zm �; (24)

in which U−
�;jz0;zm denotes the jth column of U−

z0;zm .
According to equation 3, the Hessian approximation matrix for

each pair of source and frequency is expressed as

Ha
sðωfÞ ¼

�∂p−mod;sðz0;ωfÞ
∂r∪

	
†
�∂p−mod;sðz0;ωfÞ

∂r∪

	
; (25)

and as can be seen, it shows a square and symmetric structure with
the massive dimension of nm × nm, where nm represents the total
number of model parameters in the whole medium. As an alterna-
tive to constructing one massive, computationally unfeasible
Hessian approximation operator all at once, where it is required
to perform the crosscorrelation between the partial derivative wave-
fields associated with the model parameters located at all depth
levels (the whole medium), we split up the massive Hessian
approximation operator into several smaller operators, each calcu-
lated for the model parameters located at a different depth level
(nx model parameters are located at each depth level). To do so,
it suffices to write

Ha
sðzm;ωfÞ ¼

�∂p−mod;sðz0;ωfÞ
∂r∪ðzmÞ

	
†
�∂p−mod;sðz0;ωfÞ

∂r∪ðzmÞ
	
; (26)

where the reciprocal of Ha
sðzm;ωfÞ compensates for the geometric

spreading and spatial correlations of the neighboring model param-
eters while also conducting source deconvolution.

Therefore, to precondition every depth-level gradient, we calcu-
late an individual tiny Hessian operator with the dimension of
nx × nx, where nx ¼ nm=N (Figure 4), reducing the number of
model parameters by a factor of N whenever the Hessian operator
is calculated. This is feasible because equation 24 enables us to con-
struct ∂p−mod;sðz0;ωfÞ=∂r∪ for each depth level in the medium. This
obviously allows us to decompose the Hessian approximation op-
erator into several small operators, each of which only carries the
correlation of the partial derivative wavefields associated with a sin-
gle depth level. These minimal operators are computationally cheap
to build, store, and invert in each iteration, enabling us to precon-
dition the gradient vector efficiently. Figure 5 represents the struc-
ture of such an approximate Hessian.

NUMERICAL EXAMPLES OF PLS-WEM

To investigate the effect of the suggested approximate Hessian
while solving equation 19 in each iteration, we contrast PLS-
WEM with a scaled version of LS-WEM. In this scaled version,
the LS-WEM gradient vector is scaled by the diagonal components
of an inverse approximate Hessian (see Plessix and Mulder, 2004,
equation 27), where the Hessian operator itself is given by

H ¼ ∂2C 0

∂r∪2
¼ ∂2

∂r∪2

�
1

2

XNf

f¼1

XNs

s¼1

kΔd−s ðωfÞk22
�
; (27)

and the approximate Hessian operator is derived by neglecting the
terms in the aforementioned derivative that depend on the residual
data, as discussed in Cova and Innanen (2013).
Both the PLS-WEM and LS-WEM methods are tested here on

two synthetic data sets associated with a lens-shaped inclusion
model and the SEG/EAGE overthrust model.

Lens-shaped inclusion model

In this example, our true model is a homogeneous model with a
lens-shaped anomaly in the middle (Figure 6). The true model is

Figure 4. Decomposing the massive Hessian approximation oper-
ator into several small operators, each related to a depth level.

Figure 5. Proposed small Hessian approximation operators assembled
into one big operator. Each block is a matrix of nx × nx related to a
depth level, where nx ¼ nm=N and N ¼ 11.
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represented by 201 × 173 grid points in the horizontal and vertical
directions. The horizontal and vertical grid sizes are 15 and 7 m,
respectively. Forty-one shotpoints with 75 m spacing are laid out
on top of the model, and 201 receivers with 15 m spacing are used
per shot to record the reflection data (fixed-spread acquisition). The
source function used in this example is a Ricker wavelet with a
dominant frequency of 10 Hz. Our forward-modeling tool for gen-
erating the observed data set (only primaries) is PWMod, which is
applied to the true model, the so-called inverse crime. The recording
time is 1.4 s, and the largest offset used in the migration process is
3 km. Using an accurate migration velocity model with sharp re-
flectors, we apply LS-WEM and PLS-WEM in such a setup to
evaluate the action of the reciprocal of the suggested depth-based
Hessian approximation operator. Figure 7 depicts the results. Fig-
ure 7a, 7c, and 7e shows the LS-WEM results after 1, 3, and 5 iter-
ations, respectively. Figure 7b, 7d, and 7f shows the PLS-WEM
results after 1, 3, and 5 iterations, respectively.
The results show that the reciprocal of the suggested depth-based

Hessian approximation operator significantly impacts the gradient
vector from very early iterations. The image deconvolution and pre-
served amplitudes are clearly the most noticeable impacts of using
the suggested preconditioner. Therefore, the PLS-WEM images
demonstrate superior focusing compared with the LS-WEM im-
ages. As seen in Figure 7e and 7f, even after 5 least-squares iter-
ations, the LS-WEM image quality does not reach the image quality
of PLS-WEM after its first iteration.
To compare the convergence characteristics of LS-WEM and PLS-

WEM, their normalized data error values in each iteration in the log
scale are plotted in Figure 8a. As is evident, the PLS-WEM method
shows a faster convergence ratio and also reaches smaller data errors,
which means its estimated image fits the observed data better.

SEG/EAGE overthrust model

In the next example, our true model is one ver-
tical slice of the 3D SEG/EAGE overthrust
model (Figure 9) (Aminzadeh et al., 1994). The
selected model contains 501 × 151 grid points in
the horizontal and vertical directions, respec-
tively, with a grid interval of 24 m. One hundred
and one shotpoints with an interval of 120 m are
used on top of the model, and 501 receivers per
shot with an interval of 24 m collect the reflec-
tion data (fixed-spread acquisition). PWMod is
used to generate the observed reflection data
(only primaries) using a Ricker wavelet with a
dominant frequency of 10 Hz as the source func-
tion, the so-called inverse crime. The trace length
is 2.6 s, and the largest offset used in the migra-
tion process is 4 km. With the aid of an accurate
migration velocity model including sharp reflec-
tors, both LS-WEM and PLS-WEM are tested in
such a setup to examine the action of the recip-
rocal of the suggested depth-based Hessian
approximation operator on the gradient. The re-
sults are shown in Figure 10. Figure 10a, 10c,
and 10e shows the LS-WEM results after 1, 3,
and 5 iterations, respectively. Figure 10b, 10d,
and 10f shows the PLS-WEM results after 1,
3, and 5 iterations, respectively.

The results confirm the effectiveness of the action of the suggested
preconditioner on the gradient. From the first iteration, balanced-am-
plitude reflectors and image deconvolution are again the most visible
outcomes of applying the depth-based Hessian approximation inverse
on the gradient vector. Although LS-WEM, in its early iterations,
leaves us with an image affected by the limited bandwidth of the
seismic data, PLS-WEM mitigates such an unfavorable effect and
estimates a high-resolution image from early iterations. As demon-
strated in Figure 10e and 10f, even after 5 iterations, the unfocused
reflection energies are visible in the LS-WEM image, but the PLS-
WEM image appears to be focused clearly.
In Figure 11, a specific region of the estimated images after 5

iterations, specified by the dashed yellow rectangles in Figure 10e
and 10f, is presented to obtain the magnified sections for deeper
investigation. Although in Figure 11b (PLS-WEM), the faults and
curvatures are accurately imaged together with focused, stronger,
and accurate reflectors, in Figure 11a (LS-WEM), the faults and
curvatures are mapped inaccurately together with unfocused weaker
reflectors. Figure 12 also compares the 1D vertical reflectivity pro-
files estimated by LS-WEM and PLS-WEM with the true profile at
the lateral location of 6 km.
The convergence properties of LS-WEM and PLS-WEM are

compared in Figure 8b by plotting their data error values for each

Figure 6. True lens-shaped inclusion reflectivity model.

Figure 7. Estimated reflectivity models using the LS-WEM and PLS-WEMmethods after
1, 3, and 5 iterations associated with the true lens-shaped inclusion model shown in Fig-
ure 6. (a, c, and e) Estimated reflectivity models by LS-WEM after 1, 3, and 5 iterations,
respectively. (b, d, and f) Estimated reflectivity models by PLS-WEM after 1, 3, and 5
iterations, respectively.
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iteration. As expected, the PLS-WEM method shows a higher
convergence ratio and achieves smaller data errors, which means
that its estimated image is more in line with the observed data.
Figure 13 represents the initial and final residual data, confirming
the convergence properties.

APPLICATION TO LEAST-SQUARES
FULL-WAVEFIELD MIGRATION

In the preceding examples, we ignored multiple scattering while
modeling the seismic data. As a result, to avoid matching data events
with different scattering orders, known as cross-talk noise or multiple
imprints, the observed data events caused by multiple scattering were
required to be detected and eliminated prior to the migration process
using a multiple elimination algorithm (Berkhout and Verschuur,
1997, 2005; Weglein et al., 1997, 2003; van Groenestijn and
Verschuur, 2009; Ypma and Verschuur, 2013; Slob et al., 2014;
Siahkoohi et al., 2019; Zhang and Slob, 2020; Thorbecke et al.,
2021). Although eliminating multiple scattering offers benefits, it
can also be a challenging task or exceed the budgetary limits in some
seismic applications. Therefore, from this perspective, it would be

ideal if a migration algorithm could effectively manage multiple
scattering together with first-order scattering waves.
Some studies have shown that when a migration algorithm effec-

tively manages multiple scattering, it can enhance illumination, es-
pecially in areas where primary imaging fails to provide adequate
illumination due to missing/masked-by-multiple primary reflections
in the observed data (Berkhout and Verschuur, 2016; Davydenko
and Verschuur, 2017; Lu et al., 2018; Slob et al., 2021). Moreover,
when reflectors are better focused from early iterations through an
effective gradient preconditioning, multiple scattering modeling
will be more accurate, which should result in a better reduction
of the cross-talk noise on the final stacked image. This is indeed
expected as the outcome of a clearer distinction between the pri-
mary and multiple reflections during data matching, especially
when they overlap.
Taking into account interbed multiples in modeling, the follow-

ing example first examines the successful application (enhanced
resolution and stronger reflectivities) and subsequently investigates
the expected improvement (better cross-talk noise reduction), if any,
of the suggested depth-based preconditioner within the context of
the least-squares full-wavefield migration (LS-FWM) algorithm,
which was first introduced by Berkhout (2014a).
LS-FWM is a nonlinear least-squares one-way wave-equation

migration technique that uses the full (primary and multiples)
two-way earth’s response by incorporating multiple scattering
(via iterative modeling) into the forward-modeling theory already
presented in the forward problem section. LS-FWM and LS-WEM
share the same inversion cycle (Figure 3), with the difference being
that LS-FWM uses FWMod (Berkhout, 1982, 2014b) rather than
PWMod. The LS-FWM gradient vector, similar to the LS-WEM
gradient vector, in each iteration is scaled by the diagonal compo-
nents of the inverse approximate Hessian derived by the linear part
of equation 27.
Angle-independent FWMod models the angle-independent

primary reflections at the earth’s surface by extrapolating the
seismic source signature first downward from z0 to zN and then
upward from zN to z0 by accounting for reflection and transmission
effects, which is called one roundtrip/iteration. Subsequent FWMod
roundtrips contribute to new orders of multiple scattering while
still explaining the reflection and transmission effects. Compared
with PWMod, FWMod takes into account the multiple scattering
by replacing equation 11 with

pþmodðzm;ωfÞ ¼
XN
m¼1

Uþ
zm;z0ðsþðz0;ωfÞ þ r∩ðzmÞ

∘ p−modðzm;ωfÞÞ; (28)

where r∩ðzmÞ represents the angle-independent downward
reflectivity vector-operator at zm, and r∩ ¼ −r∪ (acoustic medium
assumption) (Figure 14).
As is clear, FWMod, in its first roundtrip, calculates the earth’s

two-way response (primary reflections) via a recursive summation
in depth by including the reflection and transmission effects.
FWMod has control over multiple scattering, and each roundtrip
(other than the first roundtrip) adds an order of scattering to the
primaries. As a result, with FWMod, modeling the primary
reflections, surface-related multiples, interbed multiples, and total
reflection wavefields are easily accessible.

Figure 8. Convergence curves: (a) the lens-shaped inclusion model
and (b) the SEG/EAGE overthrust model.

Figure 9. True SEG/EAGE overthrust reflectivity model.
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PLS-FWM minimizes the same error func-
tional as PLS-WEM, i.e., equation 16, with the
difference that p−obs and p−mod in the equation
are now the full (primaries and multiples) ob-
served and modeled data at the earth’s surface.
Other details of the method can be found in
Berkhout (2014a). As a result, for deriving the
suggested preconditioned model update in the
PLS-FWM framework, nothing mathematically
changes from what is already derived for PLS-
WEM, as FWMod can be seen as an iterative
PWMod, where the upgoing/downgoing wave-
fields stored at different depth levels in former
roundtrips are used as the input wavefields for
the subsequent roundtrips. Therefore, the same
theory is used here to build the preconditioned
model update for PLS-FWM in each iteration.

NUMERICAL EXAMPLE OF PLS-FWM

To evaluate the application and impact of the suggested depth-
based preconditioner within the framework of least-squares full-
wavefield migration, we use a multireflector wedge model placed
between two horizontal reflectors, in which each reflector is only
due to the density contrast, as we use a homogeneous velocity of
2000 m/s to build the reflectivity model. This extreme example
yields alternating local reflection coefficients of r ¼ 1=5 and
r ¼ −1=5 in the model, causing medium-strength interbed multi-
ples in the data compared with the reflection coefficients used in
Slob et al. (2021). Figure 15 shows the true resonant wedge density
model in kg=m3. To add the resonant feature to the model, the

Figure 10. Estimated reflectivity models using the LS-WEM and PLS-WEM methods after 1, 3, and 5 iterations associated with the true
SEG/EAGE overthrust reflectivity model shown in Figure 9. (a, c, and e) Estimated reflectivity models by LS-WEM after 1, 3, and 5 iterations,
respectively. (b, d, and f) Estimated reflectivity models by PLS-WEM after 1, 3, and 5 iterations, respectively.

Figure 11. Magnified sections of the estimated SEG/EAGE overthrust reflectivity
models by LS-WEM and PLS-WEM after 5 iterations, shown in Figure 10e and 10f.
(a) Magnified section of the estimated reflectivity model by LS-WEM and (b) magnified
section of the estimated model by PLS-WEM.

Figure 12. Estimated 1D reflectivity profiles using the LS-FWM
and PLS-FWM methods after 5 iterations associated with the
SEG/EAGE overthrust model. The profiles are taken from the esti-
mated reflectivity models shown in Figure 10e and 10f and re-
present the lateral location of 6 km.
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dipping layers in the wedge part all have the same thickness. Besides,
whereas each layer on the left side has a thickness of 100 m, the
thickness approaches zero on the right. An acoustic finite-difference
modeling scheme with a grid size of 1 m generates the observed re-
flection data. A 15 Hz Ricker wavelet is used as a source wavelet.
Thirty-one shots with a 120 m shot spacing are deployed on top of the
model, such that the first shot is placed at 200 m and the last shot at
3800 m. Each observed shot gather includes 401 traces with 10 m
trace spacing (fixed-spread acquisition), and the length of the traces
is 2.92 s. With the same source-receiver setup and the true homo-
geneous velocity model, FWMod, with a horizontal grid size of
10 m and a vertical grid size of 4 m, generates the modeled reflection
data in every iteration. The maximum frequency used in the migra-
tion is 40 Hz, and the largest offset used in the migration is 4 km.
Note that in Slob et al. (2021) it is already shown that such a model
can be viewed as an extreme scenario when interbed multiples mask
primaries. With this experimental setup, LS-FWM and PLS-FWM
are used here to assess the extent of the achievement of the reciprocal
of the suggested depth-based Hessian approximation operator in pre-
conditioning the gradient direction within the context of full-wave-
field migration. Figure 16 shows the results.
Figure 16a and 16b shows the LS-FWM and PLS-FWM output

images after 5 iterations, respectively. For the purpose of analysis,
the output images can be laterally split into three main regions: the
first 1000 m of the lateral distance of the image (the left-edge re-
gion), from 1000 to 3000 m of the lateral distance of the image (the
middle region), and the last 1000 m of the lateral distance of the
image (the right-edge region). For the left-edge region as deep
as the dipping layers, LS-FWM delivers an alternating sequence
of positive and negative amplitudes. Consequently, it is challenging
to determine which ones represent the real dipping reflectors. In
contrast, by removing the source signature and balancing the reflec-
tor amplitudes, PLS-FWM delivers a clean view of the real dipping
reflectors there. For the middle region as deep as the dipping layers,
we observe that PLS-FWM, compared with LS-FWM, effectively
performs better and maps the reflectors with less blurriness. For the
right-edge region as deep as the dipping layers, where the resolution
limit is reached, we notice that for recovering the fifth dipping re-
flector (the yellow arrow), whereas PLS-FWM does not stably func-
tion, LS-FWM functions slightly more stably.
We can also see that after 5 iterations, both images exhibit a

common characteristic, that is, the cross-talk noise, or equally ghost
reflectors, generated in the image owing to the presence of interbed

multiples in the data. As a result, the last real dipping reflector is not
retrieved as strongly as the others, as denoted by the green arrow in
Figure 16b, and several ghost reflectors are also built, as indicated
by the blue arrows in Figure 16b.
Figure 16c and 16d shows the LS-FWM and PLS-FWM results

after 15 iterations, respectively. Comparing the images reveals that
the ghost reflectors existing in the fifth-iteration images are now
attenuated after 15 iterations, as shown by the blue arrows in
Figure 16d. In addition, we observe that the weak real dipping re-
flector in the fifth-iteration images is now recovered much stronger
after addressing both primaries and interbed multiples (see also

Figure 13. Residual data associated with the SEG/EAGE overthrust model. (a) Initial residual data, (b) final residual data with LS-WEM
(iteration 5), and (c) final residual data with PLS-WEM (iteration 5).

Figure 14. Wavefield updating in FWMod with angle-independent
reflections at a given depth level, where pþ is the downgoing wave-
field, p− is the upgoing wavefield, r∪ represents the upward reflec-
tivity, r∩ shows the downward reflectivity, and tþ and t− denote the
downward and upward transmission, respectively.

Figure 15. Variations in the true resonant wedge density model in
kg=m3. The change in density between the layers is 50%, and the
dipping layers all have identical thicknesses.
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Slob et al., 2021), as denoted by the green arrows in Figure 16d, but
still not as strong as the other real dipping reflectors. We also
notice that the ghost reflectors are marginally better reduced by
PLS-WEM, as denoted by the red arrows in Figure 16c (see also
the “Discussion” section).
Figure 17 compares the 1D reflectivity profiles corresponding to

the LS-FWM and PLS-FWM images in iteration 15, depicted in
Figure 16c and 16d, at the lateral location of 2150 m. It clearly
proves the accuracy of the PLS-FWM image in comparison to the
LS-FWM image in terms of the resolved resolution, reflectivity
magnitudes, and the reduction of multiple cross talk (the red
arrows). Therefore, we can state that PLS-FWM outperforms
LS-FWM in terms of image quality.

DISCUSSION

Despite the limitations outlined in the “Introduction” section, the
industry has continued to embrace the practice of mapping primary
energies back into the image space using LS-WEM due to its
notable advantage of lower computational cost when compared with
LS-RTM. Although LS-WEM has proven itself quite effective in
recovering decent images, we observed that our newly developed
PLS-WEM algorithm outperforms LS-WEM. It shows faster

convergence and superior resolution. Moreover, it is efficient in
computation when compared with an alternative solution that com-
putes a huge Hessian approximation operator for the entire medium.
Although feasible, it still remains expensive in terms of time
compared with LS-WEM, with the current implementation and
contemporary computing resources. However, based on our internal

Figure 17. Estimated 1D reflectivity profiles using the LS-FWM
and PLS-FWM methods after 15 iterations associated with the
resonant wedge model. The profiles are taken from the estimated
reflectivity models shown in Figure 10e and 10f and represent
the lateral location of 2150 m.

Figure 16. Estimated reflectivity models using the LS-FWM and PLS-FWM methods after 5 and 15 iterations associated with the true resonant
wedge density model shown in Figure 15. (a and c) Estimated reflectivity models by LS-WEM after 5 and 15 iterations, respectively. (b and
d) Estimated reflectivity models by PLS-WEM after 5 and 15 iterations, respectively.
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investigations, PLS-WEM with source subsampling in the compu-
tation of the Hessian approximation operators (Matharu and Sacchi,
2019) — one source out of three — can generate similar high-
resolution images, comparable to this study in half the iterations of
the LS-WEM, although its wall time for each iteration is observed to
be double to triple of LS-WEM.
It is important to acknowledge that both the LS-WEM and PLS-

WEM algorithms presented in this paper may underperform due to
flaws in the multiple elimination stage, poor wavelet estimation, the
angle-independent reflection coefficient assumption, steep reflec-
tors, and an inaccurate migration velocity model.
In the case of the full-wavefield migration example, although we

expected better resolution and stronger reflection coefficients from
PLS-FWM compared with LS-FWM, we also hoped for more
reduction of cross-talk noise. According to the resonant wedge ex-
ample results, even though PLS-FWM achieves greater resolution
and stronger reflectivities, the cross-talk noise is not better reduced.
As previously stated, better-focused reflectors are expected to end in
more accurate modeling of multiple scattering and, hence, better
attenuation of multiple imprints. However, this doesn’t seem to
work as well as we thought it would, although it gave slight im-
provements in reducing the cross-talk noise (see the red arrows in
Figures 16c and 17). This capacity may be partially underused due
to the double-edged nature of preconditioning; the preconditioner
does its function on both real and ghost reflectors in each iteration,
giving high-resolution ghost and real reflectors for modeling,
leading to a conflict between the real and fake reflections in the
corresponding data minimization problem, still ending up in a local
minimum. From another perspective, the underperformance could
also be attributed to the highly nonlinear nature of the resonant
wedge experiment. Lastly, the underperformance might be linked
to the FWMod convergence issue with spatially inhomogeneous
media (McMaken, 1986). To ascertain the main cause, further
investigation must be conducted.
Typically, the convergence of LSM exhibits a faster rate in the

initial iterations and a slower rate in the subsequent iterations. In
Figure 12a and 12b, it can be observed that the data error between
the second and third iterations remains almost identical, indicating
a minimal change in the image update. The observed phenomenon
can be attributed to the nonlinear dynamics introduced into the
modeling process by the implicit accounting for the transmission
effects in the modeled data, as shown by the factor
ð1þ r∪Þð1 − r∪Þ ¼ 1 − ðr∪Þ2. In the first iteration of LSM, there
is no information about the reflection coefficients. This lack of
information may lead to an overcorrection of the transmission co-
efficients with the nonlinear factor, resulting in modeled data that
are not amplitude-consistent with the observed data. To correct this,
the next iteration of LSM performs data amplitude balancing, result-
ing in a relatively similar data error when compared with the pre-
vious iteration. With each subsequent iteration, this issue gradually
irons itself out, bringing the modeled data into close alignment with
the observed data.
Superior imaging can also help build high-resolution and strong

tomographic updates in RWI. RWI is described as a method for
constructing a low-wavenumber velocity model via confining the
full-waveform inversion sensitivity kernel along the transmission-
after-reflection wavepaths. RWI sequentially solves a multipara-
meter primary reflection data-driven inverse problem with velocity
and reflectivity as the model parameters. In RWI, reflectors are first

mapped using a migration technology, and then the tomographic
update is built based on the mapped reflectors. As a result, in such
a flow, a higher-resolution image with stronger amplitudes may lead
to a more consistent and stronger tomographic update, something
that our proposed PLS-WEM can facilitate.

CONCLUSION

We mathematically showed how the Hessian approximation op-
erator and its reciprocal as the gradient preconditioner could be ef-
ficiently built for LS-WEM in a depth marching regime. We showed
that our proposed cost-friendly PLS-WEM algorithm, thanks to
PWMod, comes with a minimal computational effort in each iter-
ation in comparison to its alternatives that compute a massive Hes-
sian approximation for the entire medium. Using two numerical
examples, we verified how the proposed preconditioner effectively
cuts the migration artifacts generated by the band-limited nature of
seismic data and preserves the reflectivity amplitudes. We also con-
firmed that the improvement in migration images results in a faster
convergence ratio and a better data fit for PLS-WEM. We also used
the proposed preconditioner in the context of full-wavefield migra-
tion. With an extreme scenario generating strong interbed multiples,
we showed that PLS-FWM outperforms LS-FWM in the same two
ways that PLS-WEM outperforms LS-WEM. That is, PLS-FWM
removes the source signature from the image quickly and recovers
stronger and more accurate reflectivities than LS-FWM. We also
observed that PLS-FWM only provided limited improvement in
minimizing the cross-talk noise, contrary to our expectations.
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