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Abstract: In this paper we discuss modelling and control of discrete-event systems using max-
min-plus-scaling systems. We analyse how the basic operations max, min, plus, and scaling
occur in the modelling phase and we discuss some general forms for the system. Because of the
different/deviating character of the signals in a discrete-event MMPS model, we will discuss
concepts such as time-invariance and steady-state behavior. In the design of a model predictive
controller for MMPS systems we have to revisit the cost functions in light of the discrete-event
nature of the signals. We finalize this paper with the an intuitive case study on an urban railway
line, performing both modelling and control.
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1. INTRODUCTION

Discrete-event systems form a large class of dynamic sys-
tems in which the evolution of the system is driven by the
occurrence of certain discrete events. This in contrast to
discrete-time systems where the evolution depends on a
clock.
Discrete-event systems with only synchronization and no
concurrency can be modeled by a max-plus-linear model
(Baccelli et al., 1992; Heidergott et al., 2006). This is a
model in which the system equations consist of max and
plus operations (e.g. paper flow in a printer or scheduling
for container terminals). When competition plays a role
(e.g. first-come-first-serve mechanisms) we obtain a max-
min-plus system (Olsder, 1994; Gunawardena, 1994; Jean-
Marie and Olsder, 1996). This is a model in which the
system equations consist of max, min, and plus operations
(e.g. product flow in a production system with competi-
tion). In some occasions a scaling operation will occur. It
can happen when the processing times in the system will
depend on external parameters or on previous values of the
state and input. Such a system can be written as a max-
min-plus-scaling (MMPS) system (e.g. traffic management
on an urban railway line, see Section 7). MMPS systems
also occur when we consider the closed-loop configuration
of a max-plus linear systems with a residuation controller
or a model predictive controller (Necoara et al., 2008b;
Bemporad et al., 2002). Finally, perturbed max-plus linear
systems can often be written as max-plus-scaling systems
(van den Boom and De Schutter, 2002, 2004).
In Section 2 and 3 of the paper we introduce signals opera-
tions and max-min-plus-scaling systems in a discrete-event
framework. Because of the deviated nature of the signals
we will study time-invarancy in Section 4 and steady-
state behavior in Section 5. In Section 6 we elaborate on

the cost-function in model predictive control. Finally in
Section 7 we consider the modelling and model predictve
control of a urban railway line.

2. SIGNAL OPERATIONS

A dynamic MMPS system in a discrete-event framework
will always have states that represent the starting and
ending times of the operations for the event cycle k. In the
general framework of discrete-event MMPS systems the
state may also represent to quantities, such as the number
of goods in a production system or the number of people
in a train. Also in this case the basic operations will be
maximization, minimization, addition, and scaling. In this
paper the state of the MMPS system will be

x(k) =

[

xt(k)
xq(k)

]

where [xt(k)]i gives the time instant at which event i will
occur for the kth time, and [xq]j(k) will represent the value
of the jth quantity at event step k. We will now discuss
how the basic four operations (max,min,plus,scaling) ap-
pear in the system equations.

Addition I: Processing

x1(k)

τ

x2(k)

Let the arrow in the figure represent an operation
with processing time τ and let x1(k) and x2(k) be
the starting and finishing time, respectively, for event
cycle k. The relation between x1(k) and x2(k) can be
represented by the plus-operation x2(k) = x1(k) + τ .
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framework. Because of the deviated nature of the signals
we will study time-invarancy in Section 4 and steady-
state behavior in Section 5. In Section 6 we elaborate on

the cost-function in model predictive control. Finally in
Section 7 we consider the modelling and model predictve
control of a urban railway line.

2. SIGNAL OPERATIONS

A dynamic MMPS system in a discrete-event framework
will always have states that represent the starting and
ending times of the operations for the event cycle k. In the
general framework of discrete-event MMPS systems the
state may also represent to quantities, such as the number
of goods in a production system or the number of people
in a train. Also in this case the basic operations will be
maximization, minimization, addition, and scaling. In this
paper the state of the MMPS system will be

x(k) =

[

xt(k)
xq(k)

]

where [xt(k)]i gives the time instant at which event i will
occur for the kth time, and [xq]j(k) will represent the value
of the jth quantity at event step k. We will now discuss
how the basic four operations (max,min,plus,scaling) ap-
pear in the system equations.

Addition I: Processing
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Let the arrow in the figure represent an operation
with processing time τ and let x1(k) and x2(k) be
the starting and finishing time, respectively, for event
cycle k. The relation between x1(k) and x2(k) can be
represented by the plus-operation x2(k) = x1(k) + τ .

Max-Min-Plus-Scaling Systems in a

Discrete-Event Framework with an

Application in Urban Railway

Ton van den Boom ∗ Abhimanyu Gupta ∗ Bart De Schutter ∗

Ruby Beek ∗

∗ Delft Center for Systems and Control (DCSC), TU Delft, The
Netherlands, (e-mail: {a.j.j.vandenboom,a.gupta-3,

b.deschutter}@tudelft.nl,)

Abstract: In this paper we discuss modelling and control of discrete-event systems using max-
min-plus-scaling systems. We analyse how the basic operations max, min, plus, and scaling
occur in the modelling phase and we discuss some general forms for the system. Because of the
different/deviating character of the signals in a discrete-event MMPS model, we will discuss
concepts such as time-invariance and steady-state behavior. In the design of a model predictive
controller for MMPS systems we have to revisit the cost functions in light of the discrete-event
nature of the signals. We finalize this paper with the an intuitive case study on an urban railway
line, performing both modelling and control.

Keywords: Discrete event system, max-min-plus-scaling systems, modeling and control

1. INTRODUCTION

Discrete-event systems form a large class of dynamic sys-
tems in which the evolution of the system is driven by the
occurrence of certain discrete events. This in contrast to
discrete-time systems where the evolution depends on a
clock.
Discrete-event systems with only synchronization and no
concurrency can be modeled by a max-plus-linear model
(Baccelli et al., 1992; Heidergott et al., 2006). This is a
model in which the system equations consist of max and
plus operations (e.g. paper flow in a printer or scheduling
for container terminals). When competition plays a role
(e.g. first-come-first-serve mechanisms) we obtain a max-
min-plus system (Olsder, 1994; Gunawardena, 1994; Jean-
Marie and Olsder, 1996). This is a model in which the
system equations consist of max, min, and plus operations
(e.g. product flow in a production system with competi-
tion). In some occasions a scaling operation will occur. It
can happen when the processing times in the system will
depend on external parameters or on previous values of the
state and input. Such a system can be written as a max-
min-plus-scaling (MMPS) system (e.g. traffic management
on an urban railway line, see Section 7). MMPS systems
also occur when we consider the closed-loop configuration
of a max-plus linear systems with a residuation controller
or a model predictive controller (Necoara et al., 2008b;
Bemporad et al., 2002). Finally, perturbed max-plus linear
systems can often be written as max-plus-scaling systems
(van den Boom and De Schutter, 2002, 2004).
In Section 2 and 3 of the paper we introduce signals opera-
tions and max-min-plus-scaling systems in a discrete-event
framework. Because of the deviated nature of the signals
we will study time-invarancy in Section 4 and steady-
state behavior in Section 5. In Section 6 we elaborate on

the cost-function in model predictive control. Finally in
Section 7 we consider the modelling and model predictve
control of a urban railway line.

2. SIGNAL OPERATIONS

A dynamic MMPS system in a discrete-event framework
will always have states that represent the starting and
ending times of the operations for the event cycle k. In the
general framework of discrete-event MMPS systems the
state may also represent to quantities, such as the number
of goods in a production system or the number of people
in a train. Also in this case the basic operations will be
maximization, minimization, addition, and scaling. In this
paper the state of the MMPS system will be

x(k) =

[

xt(k)
xq(k)

]

where [xt(k)]i gives the time instant at which event i will
occur for the kth time, and [xq]j(k) will represent the value
of the jth quantity at event step k. We will now discuss
how the basic four operations (max,min,plus,scaling) ap-
pear in the system equations.

Addition I: Processing

x1(k)

τ

x2(k)

Let the arrow in the figure represent an operation
with processing time τ and let x1(k) and x2(k) be
the starting and finishing time, respectively, for event
cycle k. The relation between x1(k) and x2(k) can be
represented by the plus-operation x2(k) = x1(k) + τ .

Max-Min-Plus-Scaling Systems in a

Discrete-Event Framework with an

Application in Urban Railway

Ton van den Boom ∗ Abhimanyu Gupta ∗ Bart De Schutter ∗

Ruby Beek ∗

∗ Delft Center for Systems and Control (DCSC), TU Delft, The
Netherlands, (e-mail: {a.j.j.vandenboom,a.gupta-3,

b.deschutter}@tudelft.nl,)

Abstract: In this paper we discuss modelling and control of discrete-event systems using max-
min-plus-scaling systems. We analyse how the basic operations max, min, plus, and scaling
occur in the modelling phase and we discuss some general forms for the system. Because of the
different/deviating character of the signals in a discrete-event MMPS model, we will discuss
concepts such as time-invariance and steady-state behavior. In the design of a model predictive
controller for MMPS systems we have to revisit the cost functions in light of the discrete-event
nature of the signals. We finalize this paper with the an intuitive case study on an urban railway
line, performing both modelling and control.

Keywords: Discrete event system, max-min-plus-scaling systems, modeling and control

1. INTRODUCTION

Discrete-event systems form a large class of dynamic sys-
tems in which the evolution of the system is driven by the
occurrence of certain discrete events. This in contrast to
discrete-time systems where the evolution depends on a
clock.
Discrete-event systems with only synchronization and no
concurrency can be modeled by a max-plus-linear model
(Baccelli et al., 1992; Heidergott et al., 2006). This is a
model in which the system equations consist of max and
plus operations (e.g. paper flow in a printer or scheduling
for container terminals). When competition plays a role
(e.g. first-come-first-serve mechanisms) we obtain a max-
min-plus system (Olsder, 1994; Gunawardena, 1994; Jean-
Marie and Olsder, 1996). This is a model in which the
system equations consist of max, min, and plus operations
(e.g. product flow in a production system with competi-
tion). In some occasions a scaling operation will occur. It
can happen when the processing times in the system will
depend on external parameters or on previous values of the
state and input. Such a system can be written as a max-
min-plus-scaling (MMPS) system (e.g. traffic management
on an urban railway line, see Section 7). MMPS systems
also occur when we consider the closed-loop configuration
of a max-plus linear systems with a residuation controller
or a model predictive controller (Necoara et al., 2008b;
Bemporad et al., 2002). Finally, perturbed max-plus linear
systems can often be written as max-plus-scaling systems
(van den Boom and De Schutter, 2002, 2004).
In Section 2 and 3 of the paper we introduce signals opera-
tions and max-min-plus-scaling systems in a discrete-event
framework. Because of the deviated nature of the signals
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state may also represent to quantities, such as the number
of goods in a production system or the number of people
in a train. Also in this case the basic operations will be
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x(k) =
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where [xt(k)]i gives the time instant at which event i will
occur for the kth time, and [xq]j(k) will represent the value
of the jth quantity at event step k. We will now discuss
how the basic four operations (max,min,plus,scaling) ap-
pear in the system equations.

Addition I: Processing

x1(k)

τ

x2(k)

Let the arrow in the figure represent an operation
with processing time τ and let x1(k) and x2(k) be
the starting and finishing time, respectively, for event
cycle k. The relation between x1(k) and x2(k) can be
represented by the plus-operation x2(k) = x1(k) + τ .

Maximization I: Sequential processing (No concurrency)

x1(k)
x1(k + 1)

τ

x2(k)

Consider two subsequent operations on the same re-
source in which operation k needs to be finished before
operation k + 1 can take place (no concurrency).

Let u1(k + 1) be the earliest possible starting time of
x1 for cycle k + 1, then the starting time x1(k + 1) is
given by the max-operation x1(k + 1) = max(x1(k) +
τ, u1(k + 1)).

Maximization II: Synchronization

x1(k)

x2(k)

τ1

τ2τ2 x3(k)

τ3

Consider an operation 3 with starting time x3(k) that
will start when both operations 1 and 2 are finished.
The starting time x3(k) is now given by the max-
operation: x3(k) = max( x1(k) + τ1 , x2(k) + τ2 ).

Minimization: Competition

x1(k)

x2(k)

τ1

τ2τ2 x3(k)

τ3

Consider an operation 3 with starting time x3(k) that
will start as soon as either operations A or operation B
is finished. The starting time x3(k) is now given by a
min-operation: x3(k) = min(x1(k)+τ1 , x2(k)+τ2 ).

Scaling I: State-dependent processing time

x1(k)

τ(k)

x2(k)

Consider an operation where the processing time τ is
an affine function of the state x, so τ(k) = α+ βTx(k)
where α ∈ R+ and β ∈ R

n
+ where n is the dimension of

the state. The relation between starting time x1(k) and
x2(k) is now include a scaling-operation: x2(k) =
x1(k) + α+ βT x(k).

Scaling II: Splitting quantities

x2(k)

x3(k)

η

1 − ηx1(k)

Consider an operation that splits the quantity state
x1(k) into two new quantity states x2(k) and x3(k)
with ratio η and (1 − η) respectively, then the quan-
tities are given by a scaling-operation: x2(k) =
η x1(k) , x3(k) = (1− η)x1(k).

3. MAX-MIN-PLUS-SCALING SYSTEMS

Define ⊤ = ∞, ε = −∞, R⊤ = R∪{∞}, Rε = R∪{−∞},
and Rc = R ∪ {∞} ∪ {−∞}. Further we introduce the
conventions 0 · ε = 0 and 0 · ⊤ = 0 and ⊤ + ε = 0. Often
we use the set R, which can be either R, Rε, R⊤, or Rc.

Definition 1. (De Schutter and van den Boom, 2004)
Max-min-plus-scaling functions. A max-min-plus-scaling
(MMPS) function f : Rm → R of the variables
p1, . . . , pm ∈ R is defined by the grammar for i ∈ m

f := pi|α|max(fk, fl)|min(fk, fl)|fk + fl|β · fk, ,

α ∈ R, β ∈ R, and fk, fl are again MMPS functions over
the set R. The symbol | stands for “or”. The definition
is recursive. For vector-valued MMPS functions the above
statements hold componentwise.

Definition 2. A max-min-plus-scaling function f : Rm →
Rn is well-defined if the following holds:

p ∈ Rm =⇒ f(p) ∈ Rn

for R is R, Rε, R⊤, or Rc.

Definition 3. Max-min-plus-scaling system. Consider the

vector p(k) =
[

xT (k), xT (k−1), uT (k)
]T
, where p ∈ P ⊆

Rnp , x ∈ Rn is the state, u ∈ Rp is the control input,
and w ∈ Rz is an external signal. A max-min-plus-scaling
(MMPS) system is described by a state-space model of the
form

x(k) = f(p(k)),

where f is a vector-valued MMPS function in the variables
p.

If the MMPS function f depends on the present state x(k)
the system is an implicit MMPS system.

Definition 4. (Bemporad et al., 2002)Piecewise affine func-
tion A piecewise affine function fPWA : P → R is defined
by

fPWA(p) = aTi p+ ci, p ∈ Ωi

where Ωi, i = 1, . . . , nΩ are convex polyhedra (i.e. given
by a finite number of linear inequalities in p), with non-
overlapping interiors and

⋃nΩ

i=1 Ωi = P and ai ∈ R
np ,

ci ∈ R, i = 1, . . . , nΩ. For a vector-valued or matrix-
valued piecewise affine function the above statements hold
componentwise.

A continuous piecewise affine (C-PWA) system is de-
scribed by a state-space model of the form

x(k) = fPWA(p(k)),

where fPWA is a continuous vector-valued PWA function
in the variables p.

Lemma 5. (De Schutter and van den Boom, 2004) A C-
PWA system is equivalent to an MMPS system.

We already discussed that we can divide the state x(k)
in two substates, namely xt denoting states related to the
timing of discrete events, and xq denoting quantities. In a
similar way we can split p(k) into pt(k) and pq(k), so we
obtain

x(k) =

[

xt(k)
xq(k)

]

and p(k) =

[

pt(k)
pq(k)

]

with

pt(k)=
[

xT
t (k), x

T
t (k−1), uT

t (k)
]T
,

pq(k)=
[

xT
q (k), x

T
q (k−1), uT

q (k)
]T
,

with pt ∈ Pt and pq ∈ Pq. With these definitions we can
rewrite the MMPS system as

xt(k) = ft(pt(k), pq(k))

xq(k) = fq(pt(k), pq(k))
(1)
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in the variables p.
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4. TIME INVARIANCE

Consider an MMPS system

x(k) = f(p(k))

To discuss time invariancy we start with introducing the
property of partly homogeneous systems:

Definition 6. Partly additive homogeneous system
Consider an MMPS system with time signal pt and quan-
tity signal pq such that the system is given by 1. The
MMPS system is partly additive homogeneous if

ft(pt + λ, pq) = ft(pt, pq) + λ

fq(pt + λ, pq) = fq(pt, pq)
(2)

for any λ ∈ R.

The intuition of the additive homogeneity can be found in
the concept of time invariance. Consider a MMPS system
with only time-signals xt(k), given by

xt(k) = ft(pt(k))

Time invariancy for the system ft means that if we shift
the signal pt in time (pt(k) −→ pt(k) + τ) then the state
xt will shift in time as well (xt(k) −→ xt(k) + τ). This
means that system ft will be time-invariant if it is additive
homogeneous.

Time invariancy for an MMPS system (1) with both time-
signals and quantity signals means that if (xt(k), xq(k),
pt(k), pq(k)) will be a valid trajectory of the MMPS system
f , then (xt(k)+τ, xq(k), pt(k)+τ, pq(k)) will also be a valid
trajectory of f . In other words the system is time-invariant
if it is partly additive homogeneous.

5. STEADY-STATE BEHAVIOR

Consider the time-invariant MMPS system

xt(k) = ft(pt(k), pq(k))

xq(k) = fq(pt(k), pq(k))
(3)

A first observation is that the two signals xt and xq have
different nature, and that their steady-state behavior will
therefore be different. The time signal will usually be non-
decreasing and so in general the time signal will not reach
an equilibrium. Instead we consider steady-state behavior
for the time signal and study stationary regimes which
means that the growth of xt becomes constant.

For (xt, pt) a steady-state is reached if for a certain kss the
growth of xt and pt becomes constant, so

pt(k) = pt(k − 1) + τt,ss , for k ≥ kss

where τt,ss is a scalar constant. For the quantity variables
an steady-state or equilibrium means that pq becomes
constant, so

pt(k) = pq(k − 1) , for k ≥ kss

We obtain the steady-state conditions
[

pt(k)
pq(k)

]

=

[

pss,t + k τss,t
pss,q

]

, for k ≥ kss

Since (3) is a time-invariant system we have
[

ft(pt + λ, pq)
fq(pt + λ, pq)

]

=

[

ft(pt, pq) + λ
fq(pt, pq)

]

(4)

Note that ft and fq are MMPS functions and also be
written as C-PWA functions. This means we can find

matrices Ei,tt, Ei,tq, Ei,qt, Ei,qq, and vectors ei (all with
the appropriate dimensions), and non-overlapping convex
polyhedra Si, i = 1, . . . , nS such that for p(k) ∈ Si we
have

[

ft(pt, pq)
fq(pt, pq)

]

=

[

Ei,tt

Ei,qt

]

pt +

[

Ei,tq

Ei,qq

]

pq +

[

ei,t
ei,q

]

We assume the system to be time-invariant, so it must
satisfy condition (4). Therefore we derive for all i =
1, . . . , nS :

∑

ℓ,j

[Ei,tt]ℓ,j = 1, ∀ℓ,
∑

ℓ,j

[Ei,qt]ℓ,j = 0, ∀ℓ

This means that if there exist values (xss,t, xss,q, pss,t, pss,q,
τss,t) such that

xss,t = ft(pss,t, pss,q)

xss,q = fq(pss,t, pss,q)

then (xs,t, xss,q, pss,t, pss,q, τss,t) is a steady-state with

xss,t + k τss,t = ft(pss,t + k τss,t, pss,q)

xss,q = fq(pss,t + k τss,t, pss,q)

This result can be summarized in the following lemma:

Proposition 7. Consider a time-invariant MMPS system.
If there is an index i ∈ {1, . . . , ns} such that there are
values (xss,t, xss,q, pss,t, pss,q, τss,t) satifying
[

xss,t + τss,t
xss,q

]

=

[

Ei,tt

Ei,qt

]

pss,t +

[

Ei,tq

Ei,qq

]

pss,q +

[

ei,t
ei,q

]

for

[

pss,t
pss,q

]

∈ Si, then (xss,t, xss,q, pss,t, pss,q, τss) is a

steady-state.

6. MODEL PREDICTIVE CONTROL

This section shortly discusses the Model Predictive Con-
trol (MPC) technique for MMPS systems in a discrete-
event framework. MPC is a control strategy that makes
use of a receding horizon N (De Schutter and van den
Boom, 2004; Necoara et al., 2008a). At each event step
k the controller predicts the optimal control inputs by
minimizing a cost function over the finite horizon N :
ū(k) = {u(k), u(k + 1), . . ., u(k + N − 1)}. The inputs
related to the time signals will be denoted by ut and inputs
related to the quantity signals will be denoted by uq.

Similar to the observation we made in the computation of
a steady-state we have to take into account that the two
state signals xt and xq and their input signals ut and uq

have different natures, and so we use different measures
in the cost-function. The measure in the cost function
related to the time signals xt and ut are usually associated
with the buffer levels, which are defined as the time delay
between the occurrences of different events in either the
same event cycle k or the consecutive ones (De Schutter
and van den Boom, 2001). Examples of state cost functions
are

Regime : Jx,1(k, ũ)=

N
∑

j=1

� xt(k+j)�P

Makespan : Jx,2(k, ũ)=� xt,i(k +N)�∞

Tracking : Jx,3(k, ũ)=

N
∑

j=1

� xq(k+j)−rq(k+j)�1

Tardiness : Jx,4(k, ũ)=

N
∑

j

nt
∑

i=1

max(xt,i(k+j)−rt,i(k+j), 0)

where �z�P = maxi∈{1,...,n} zi−minj∈{1,...,n} zj is the max-
plus Hilbert projective norm (Heidergott et al., 2006).
In tardiness criterion Js,1 the state xt(k) is to follow a
due date reference signal rt(k), in Js,2 the makespan is
minimized, and in Js,3 we aim for a steady regime. The
last criterion Js,4 aims at the quantity state xq to track
a reference quantity rq. Likewise we can define input cost
functions:

Regime : Ju,2(k)=

N
∑

j=1

� uq�1

Just− in− time : Ju,1(k)=

N
∑

j=1

nt
∑

i=1

rt,i(k+j)−ut,i(k+j)

The input criterion Ju,1 maximixes the input ut leading to
just-in-time operation. The last input criterion measures
the cost of the quantity input.

The final cost function in MPC is chosen as follows:

Jtot(k, ũ)=

4
∑

j=1

λjJx,j +

2
∑

ℓ=1

µℓJu,ℓ (5)

where λj ∈ [0, 1] and µℓ ∈ [0, 1] are trade-off parameters.
This total cost function Jtot represents a trade-off between
the different cost. distance of the state from the origin and
the cost of the control input. By choosing the parameters
λi and µi, we can balance the rate of performance with
the cost of the control.

The optimization problem now becomes

min
ū(k)

Jtot(k, ũ)

subj. to

Atxt(k) +Aqxq(k) +Btut(k) +Bquq(k) ≤ M

where Atxt(k)+Aqxq(k)+Btut(k)+Bquq(k) ≤ M reflect
general linear inequality constraints on the inputs and
states of the system. We now apply the first input u(k)
to the system and shifts the horizon one event step, such
that it now runs from k + 1 to k +N + 1.

7. APPLICATION: AN URBAN RAILWAY LINE

Consider an urban railway line as given in Figure 1 with J
station and K trains. We assume there is no timetable, but

Fig. 1. Urban railway line

trains k = 1, . . . , K depart from station 1 with a headway
interval τ0, they stop at each station j = 1, . . . , J , and they
depart if all passengers have disembarked and boarded the
train. We denote the arrival and departure time of train k
at station j by aj(k) and dj(k), respectively. Denote the
number of passengers in the train k when leaving station j
by ρj(k), and denote the number of passengers at station
j when train k is leaving the station by σj(k). In the

example we assume every trains has a limited capacity
of ρmax passengers. Consider the running times τr,j from
station j − 1 to station j to be fixed. Let ej denote the
number of passengers entering the platform at station j
per second. Let b be the number of passengers that can
board the train per time unit and let f denote the number
of passengers that can disembark the train per time unit.
(We assume b > ej for all j.) We assume that the number
of passengers leaving train k at a particular station j is a
fixed fraction βj of the number of the passengers in train
k when entering station j.

The arrival time of train k at station j is the maximum
of the departure time of train k at station j − 1 plus the
running time, and the departure time of train k − 1 at
station j plus the headway time, so

aj(k) = max
(

dj−1(k) + τr,j , dj(k − 1) + τH

)

The dwell time at each station is the sum of the time for
disembarking (τd,j(k)) and boarding the train (τb,j(k)). If
we assume there is no additional waiting time the train
will depart at

dj(k) = aj(k) + τd,j(k) + τb,j(k)

The number of passengers in train k when leaving station
j is equal to the number of passengers in the train when
leaving station j − 1 minus the passengers disembarking
the train at station j plus the passengers boarding the
train at station j, so

ρj(k) = ρj−1(k)− fτd,j(k) + bτb,j(k)

The number of passengers that are still on the platform
when train k leaves station j is equal to the number of
passengers that were still on the platform when train k−1
left station j plus the number of passengers that enter the
station between the departures of train j − 1 and train j
minus the passengers boarding the train at station j, so

σj(k) = σj(k − 1) + ej(dj(k)− dj(k − 1))− ejτb,j(k)

(We assume that the passengers that disembark the train
immediately leave the station).

The disembark time τd,j(k) is proportional to the number
of passengers that disembark, or

τd,j(k) =
βj

f
ρj−1(k)

Next we consider the boarding time τb,j(k) = dj(k) −

aj(k)−τd,j(k) = dj(k)−aj(k)−
βj

f
ρj−1(k). The departure

time dj(k) depends on the number of passengers who want
to board the train. However if the number of passengers in
the train reaches its maximum ρmax, some passengers will
be left on the platform.

Now we consider two cases. In the first case the number
of passengers that want to board the train fits in the
train (so ρj(k) ≤ ρmax). In the second case there are too
many passengers who want to enter the train and we get
ρj(k) = ρmax.

In the first case the number of passengers that actually

board train k at station j (so b(dj(k)−aj(k)−
βj

f
ρj−1(k)))

is equal to the number of passengers that want to board
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Tardiness : Jx,4(k, ũ)=

N
∑

j

nt
∑

i=1

max(xt,i(k+j)−rt,i(k+j), 0)

where �z�P = maxi∈{1,...,n} zi−minj∈{1,...,n} zj is the max-
plus Hilbert projective norm (Heidergott et al., 2006).
In tardiness criterion Js,1 the state xt(k) is to follow a
due date reference signal rt(k), in Js,2 the makespan is
minimized, and in Js,3 we aim for a steady regime. The
last criterion Js,4 aims at the quantity state xq to track
a reference quantity rq. Likewise we can define input cost
functions:

Regime : Ju,2(k)=

N
∑

j=1

� uq�1

Just− in− time : Ju,1(k)=

N
∑

j=1

nt
∑

i=1

rt,i(k+j)−ut,i(k+j)

The input criterion Ju,1 maximixes the input ut leading to
just-in-time operation. The last input criterion measures
the cost of the quantity input.

The final cost function in MPC is chosen as follows:

Jtot(k, ũ)=

4
∑

j=1

λjJx,j +

2
∑

ℓ=1

µℓJu,ℓ (5)

where λj ∈ [0, 1] and µℓ ∈ [0, 1] are trade-off parameters.
This total cost function Jtot represents a trade-off between
the different cost. distance of the state from the origin and
the cost of the control input. By choosing the parameters
λi and µi, we can balance the rate of performance with
the cost of the control.

The optimization problem now becomes

min
ū(k)

Jtot(k, ũ)

subj. to

Atxt(k) +Aqxq(k) +Btut(k) +Bquq(k) ≤ M

where Atxt(k)+Aqxq(k)+Btut(k)+Bquq(k) ≤ M reflect
general linear inequality constraints on the inputs and
states of the system. We now apply the first input u(k)
to the system and shifts the horizon one event step, such
that it now runs from k + 1 to k +N + 1.

7. APPLICATION: AN URBAN RAILWAY LINE

Consider an urban railway line as given in Figure 1 with J
station and K trains. We assume there is no timetable, but

Fig. 1. Urban railway line

trains k = 1, . . . , K depart from station 1 with a headway
interval τ0, they stop at each station j = 1, . . . , J , and they
depart if all passengers have disembarked and boarded the
train. We denote the arrival and departure time of train k
at station j by aj(k) and dj(k), respectively. Denote the
number of passengers in the train k when leaving station j
by ρj(k), and denote the number of passengers at station
j when train k is leaving the station by σj(k). In the

example we assume every trains has a limited capacity
of ρmax passengers. Consider the running times τr,j from
station j − 1 to station j to be fixed. Let ej denote the
number of passengers entering the platform at station j
per second. Let b be the number of passengers that can
board the train per time unit and let f denote the number
of passengers that can disembark the train per time unit.
(We assume b > ej for all j.) We assume that the number
of passengers leaving train k at a particular station j is a
fixed fraction βj of the number of the passengers in train
k when entering station j.

The arrival time of train k at station j is the maximum
of the departure time of train k at station j − 1 plus the
running time, and the departure time of train k − 1 at
station j plus the headway time, so

aj(k) = max
(

dj−1(k) + τr,j , dj(k − 1) + τH

)

The dwell time at each station is the sum of the time for
disembarking (τd,j(k)) and boarding the train (τb,j(k)). If
we assume there is no additional waiting time the train
will depart at

dj(k) = aj(k) + τd,j(k) + τb,j(k)

The number of passengers in train k when leaving station
j is equal to the number of passengers in the train when
leaving station j − 1 minus the passengers disembarking
the train at station j plus the passengers boarding the
train at station j, so

ρj(k) = ρj−1(k)− fτd,j(k) + bτb,j(k)

The number of passengers that are still on the platform
when train k leaves station j is equal to the number of
passengers that were still on the platform when train k−1
left station j plus the number of passengers that enter the
station between the departures of train j − 1 and train j
minus the passengers boarding the train at station j, so

σj(k) = σj(k − 1) + ej(dj(k)− dj(k − 1))− ejτb,j(k)

(We assume that the passengers that disembark the train
immediately leave the station).

The disembark time τd,j(k) is proportional to the number
of passengers that disembark, or

τd,j(k) =
βj

f
ρj−1(k)

Next we consider the boarding time τb,j(k) = dj(k) −

aj(k)−τd,j(k) = dj(k)−aj(k)−
βj

f
ρj−1(k). The departure

time dj(k) depends on the number of passengers who want
to board the train. However if the number of passengers in
the train reaches its maximum ρmax, some passengers will
be left on the platform.

Now we consider two cases. In the first case the number
of passengers that want to board the train fits in the
train (so ρj(k) ≤ ρmax). In the second case there are too
many passengers who want to enter the train and we get
ρj(k) = ρmax.

In the first case the number of passengers that actually

board train k at station j (so b(dj(k)−aj(k)−
βj

f
ρj−1(k)))

is equal to the number of passengers that want to board
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train k at station j (so σj(k − 1) + ej(dj(k)− dj(k − 1))),
or

b(dj(k)− aj(k)−
βj

f
ρj−1(k))

= σj(k − 1) + ej(dj(k)− dj(k − 1))

so in case 1 we derive departure time

dj(k) = µ1aj(k) + µ2ρj−1(k)

+ µ3σj(k − 1) + (1− µ1)dj(k − 1)

where µ1 =
b

b− ej
, µ2 =

b

b− ej

βj

f
, and µ3 =

1

b− ej
.

In the second case the train leaves station k as soon as the
train is full, so the number of passengers in train k after
disembarking at station j plus the number of passengers
boarding train k at station j is equal to the maximum
capacity of the train:

(1− βj)ρj−1(k) + b(dj(k)− aj(k)−
βj

f
ρj−1(k)) = ρmax

so in case 2 we derive the departure time

dj(k) = γ1 + aj(k) + γ2ρj−1(k)

where γ1 =
1

b
ρmax and γ2 =

βj

f
−

1− βj

b
.

Combining case 1 and case 2 gives actual departure time
dj(k) which is the minimum of the values computed in case
1 and case 2:

dj(k) = min
�

µ1aj(k) + µ2ρj−1(k) + µ3σj(k − 1)

+ (1− µ1)dj(k − 1) , γ1 + aj(k) + γ2ρj−1(k)
�

Now the final system equations can be derived. For j > 1
and k > 0 we obtain the following MMPS model:

aj(k) = max
�

dj−1(k) + τr,j , dj(k − 1) + τH

�

dj(k) = min
�

µ1aj(k) + µ2ρj−1(k) + µ3σj(k − 1)

+(1− µ1)dj(k − 1) , γ1 + aj(k) + γ2ρj−1(k)
�

ρj(k) = (1−βj)ρj−1(k) + b(dj(k)− aj(k)−
βj

f
ρj(k−1))

σj(k) = σj(k − 1) + ej(dj(k)− dj(k − 1))

−b(dj(k)− aj(k)−
βj

f
ρj−1(k)))

(6)

We initialize

For k = 0 : ρj(0) = ρ̄j , σj(0) = 0, dj(0) = d̄j , ∀j

For j = 1 : d1(k) = d̄1 + k τ̄ , ρ1(k) = ρ̄1, ∀k
(7)

Time-invariancy in the urban railway line model The
states of the system are now recognized as

x(k) =







x1(k)
...

xJ(k)






, xt,j(k) =

�

aj(k)
dj(k)

�

, xq,j(k) =

�

ρj(k)
σj(k)

�

pt(k) =

�

xt(k)
xt(k − 1)

�

, pq(k) =

�

xq(k)
xq(k − 1)

�

To check time-invariancy we compute ft,j(pt + λ, pq) for
all j and find:

[ft,j(pt + λ, pq)]1 =

= max
�

dj−1(k) + λ+ τr,j , dj(k − 1) + λ+ τH

�

= max
�

dj−1(k) + τr,j , dj(k − 1) + τH

�

+ λ

= [ft,j(pt, pq)]1 + λ

= [ft,j(pt, pq)]2 + λ

Simililarly we compute

[ft,j(pt + λ, pq)]2 = [ft,j(pt, pq)]2 + λ

[fq,j(pt + λ, pq)]1 = [fq,j(pt, pq)]1
[fq,j(pt + λ, pq)]2 = [fq,j(pt, pq)]2

We see that the system equations satisfy the time-
invariancy condition, therefore the urban railway line
model is time-invariant.

Steady-state for the urban railway line model Now we
want a steady-state for the model such that the trains are
never completely full (so no people are left on the platform,
or σj(k) = 0), and that there is always enough headway
between the trains, so de,j−1 + τr,j ≥ de,j + τH . This leads
to the piecewise-linear train equations in the equilibrium
(for σj(k) = 0):

aj(k) = dj−1(k) + τr,j
dj(k) = µ1aj(k) + µ2ρj−1(k)

ρj(k) = (1−βj)ρj−1(k) + b(dj(k)− aj(k)−
βj

f
ρj(k−1))

σj(k) = 0

Consider the steady-state (ae,j, de,j, ρe,j, σe,j, τe) with

ae,j + τe = de,j−1 + τe + τr,j
de,j + τe = µ1(ae,j + τe) + µ2ρe,j−1

ρe,j = (1−βj)ρe,j−1 + b(de,j + τe − (ae,j + τe)−
βj

f
ρe,j−1

σj(k) = σe,j = 0

Starting with the initial conditions (7) we derive

ae,j = de,j−1 + τr,j
de,j + τe = µ1(de,j−1 + τr,j + τe) + µ2ρe,j−1

ρe,j = (1−βj)ρe,j−1 + b(de,j + τe − (ae,j + τe)−
βj

f
ρe,j−1

σj(k) = σe,j = 0

Consider the model of (6) with the following parameters:
τr = 180 s, τH = 30 s, ρmax = 150 passengers, b =
fj = 2 passengers/s, ej = 0.5 passengers/s, βj = 0.5 ∀j.
The intitial conditions ar given by (7) with τ̄ = 120 sec,
ρ̄j = 120passengers, d̄j = (j−1)120s, ∀j. From Proposition
7 we find that (ae,j, de,j, ρe,j, σe,j, τe) is indeed a steady-
state.

Model predictive control of the urban railway line (Beek,
2022). A control input uj(k), j = 2, . . . , N is introduced
to increase or descrease the running time (additional to
the nominal running time) of a train running from station
j − 1 to station j and so

aj(k) = max
�

dj−1(k) + τr,j + uj(k) , dj(k − 1) + τH

�

We define the performance signal pwait
j (k) = ej(aj(k) −

dj(k − 1)) + σj(k − 1), which respresents the number of
people waiting on train k at station j at the moment of
arrival of train k and define the cost function

Passengers waiting - disturbed - no control

Fig. 2. Number of passengers waiting of the disturbed
urban railway line.

J(k) =

N−1
∑

i=0

M
∑

i=1

|pwait
j (k + i)− pwait

ref |+ λ |uj(k + i)|

where λ = 0.1 is a trade-off weight and pwait
ref = 30 is a

reference value. We introduce the constraint

−20 ≤ uj(k) ≤ 70

If there is no disturbance or model error in the system the
trains will all run with a perfect interval of 120 seconds.
The number of passengers on the platform at the time
of a train arriving is constant at 30. If we introduce a
disturbance in the form of a decrease in the number of
people entering the station, i.e. the parameter e changes
from 0.5 passengers/s to 0.3 passengers/s for the 5th train
at station 5.The boarding time of fifth train is decreased
and so it will slowly catch with the fourth train, while the
sixth train will be delayed. The number of passengers on
the platforms will increase for later trains, see Figure 2.
If we use MPC we see that the trains run regular again
and the disturbance in the number of passengers on the
platforms is limited to the fifth train on station 5, as can
been seen in Figure 3.

8. DISCUSSION

In this paper max-min-plus-scaling systems are discussed
in a discrete-event framework for the first time. We ob-
served that the state will consist of time signals and possi-
bly also of quantity signals. We studied time-invariancy
for the discrete-event MMPS systems, and derived an
expression for an equilibrium. An urban railway line has
been studied and we derived a model predictive controller
that can stabilize this system in the case of disturbances.
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