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Abstract

In this thesis, a model for air flow and temperature in urban areas is studied. In particular, the influ-
ence of vegetation in a street canyon is investigated. This includes the effect of vegetation on air flow
and the cooling property of vegetation to lower temperature in street canyons.
Computational Fluid Dynamics simulations with vegetation in a street canyon (green facades and trees)
are performed. To model this, the Reynolds Averaged Navier Stokes equations in 3D are closed using
the k-ε turbulence model with source and sink terms to account for the effects of vegetation on air flow.
In the thermal equation, the Simple Gradient Diffusion Hypothesis is used to close the equations and
a cooling power term is introduced to account for the transpirational cooling property of vegetation.
The results regarding the vertical velocities in the street canyon are compared with earlier simulations
by Gromke et al.

The simulations involving temperature showed significant effects of the vegetation in the street
canyon. At street level, the green facades yielded a stronger cooling effect than trees. However,
the cooling effect of trees is stronger halfway the canyon and just above the canyon in comparison
with green facades. An important note is that the temperature drop inside the tree canopy strongly
suggests that the cooling power in the simulation is modelled stronger than one would expect in reality.

Another part of this research is the implementation of a Higher Order Scheme. This is done with the
Van Leer limiter. The simulations with this new numerical method yielded very similar results compared
with the UDS simulations. One outlier is noticed in the velocity in the 𝑦-direction for the empty street
canyon. A possible explanation could be the sensitivity of the method near the ground.

The study of the effect of vegetation in a street canyon could be extended in the future by comparing
combinations of vegetation and adjusting the parameters of the green facades. Furthermore, the
Van Leer limiter could be extended to the temperature part of the simulations in the future, since
sharper gradients are expected here, so the improvement with respect to UDS and QUDS could be
more significant. Finally, also other flux limiters, such as the Koren scheme, could be tested.
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1
Introduction

In the summer of 2019 various heat records were broken in Europe. Although a part of humanity
enjoys these hot summers, it is confirmed by various studies how human-induced climate change has
altered the likelihood and intensity of heat waves during summer.[1] In Figure 1.1, the intensity of
high temperatures in 2019 is visualised. Extremely high temperatures have many negative effects on
the quality of human life. Especially in urban area, these high temperatures during summer urge for
changes in the blue print of urban environment to ensure quality of life.
The study of temperature distribution in the urban environment is often characterised using the concept
of Urban Heat Islands. An Urban Heat Island (UHI) is an urban area that is significantly warmer
than its surrounding rural area due to human activities. The UHI is defined as the difference in air
temperature between the urban canyon and the rural environment. [2] The UHI generally depends on
urban characteristics, such as street geometry and urban vegetation fraction.
Furthermore, the Urban Heat Island decreases air quality with the increasing concentration of pollutants
such as ozone, and decreases water quality.

Figure 1.1: Rank of annual maximum temperatures observed in Europe in 2019 compared to 1950 –2018. Source: [1]

One of the key suggestions for solving the problem of Urban Heat Islands is to integrate green zones
in the city. Vegetation decreases local temperature by shading and evapotranspiration, which results
in relieving the urban heat island effect. [3] Besides the cooling property of vegetation, green zones in
the city have many other benefits. Implementing green zones will improve the air quality, due to the
filtering capacity of the vegetation, which lowers the concentration of pollutants. Furthermore, carbon
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4 1. Introduction

dioxide is absorbed by the process of photosynthesis. Green zones decrease the chance of inundation,
reduces noise pollution and contributes to social cohesion. [4]

However, the problem of UHI is not simply solved by adding vegetation. The study of Gromke and
Blocken [5] showed that in a simple street canyon with buildings on both sides the concentration of
pollutants can increase due to the presence and specific configuration of vegetation. Such effects can
occur by the influence of the flow field on the dispersion of the heat and pollutant concentration. Thus,
vegetation can have a significant effect on the flow field. [6] So, when searching for a solution to the
UHI problem, specific configurations of the vegetation in the street canyon have to be carefully tested
to determine their effectiveness.

Figure 1.2: A park with green zones in the city is often a good place to cool down during heat summer days. Source: Wageningen
University.

In this thesis, a model for the analysis of air flow and temperature in urban area will be studied.
To arrive at this point, a turbulence model will be described. The obtained equations from this model
cannot be solved analytically. Using several numerical methods, a model is built which can compute
numerical solutions.

The goal of this study is to gain insight in the model of the air flow and temperature in street
canyons. This research aims to implement total variation diminishing in the numerical solving methods
to the already existing model to improve the accuracy of the solutions.

In order to reach this goal, several research questions are specified:

1. How to derive a model to solve the air flow in urban area?

2. How to derive a model to solve the temperature in urban area?

3. How can we use numerical methods to solve the differential equations from the derived model
for air flow and temperature?

4. How can we improve the existing RANS Solver with the implementation of a Higher Order Scheme
(Van Leer Limiter)?

https://www.wur.nl/nl/Onderzoek-Resultaten/Onderzoeksinstituten/Environmental-Research/Dossiers/5-Weetjes-over-Hitte-in-de-stad.htm
https://www.wur.nl/nl/Onderzoek-Resultaten/Onderzoeksinstituten/Environmental-Research/Dossiers/5-Weetjes-over-Hitte-in-de-stad.htm


2
Air Flow in Urban Area

To model air flow in urban area the behaviour of this physical phenomenon is studied. It is known that
to describe the fluid dynamics of flows the Navier Stokes equations need to be solved. These transport
equations are described in Section 2.1. These equations cannot be solved analytically. However, it
is possible to solve these equations numerically using Computational Fluid Dynamics (CFD). For the
purpose of this research, the Reynolds averaged Navier-Stokes (RANS) approach is used, which is
treated in Section 2.2. All turbulence scales are modelled and therefore the computational costs are
reduced enormously. A disadvantage of the approach is that it lacks the influence of smaller scale
motions. This chapter explains the transport equations and the RANS approach, and discusses a way
to implement sink/source terms in the equations due to vegetation.

2.1. Transport equations
A good starting point for this derivation is the Navier-Stokes equations [7] for the instantaneous velocity,
�̂�።:

𝜕�̂�።
𝜕𝑡⏟

acceleration

+ �̂�፣
𝜕�̂�።
𝜕𝑥፣⏝⎵⏟⎵⏝

convection

= − 1
𝜌
𝜕�̂�
𝜕𝑥።⏝⎵⏟⎵⏝

pressure gradient

+ 1𝜌
𝜕 ̂𝜏።፣
𝜕𝑥፣

+ �̂�፦,።
⏝⎵⎵⎵⏟⎵⎵⎵⏝

diffusion

(2.1)

The subscripts 𝑖 and 𝑗 denote the three dimensions, since modelling flow through urban area is
three dimensional problem. For the purpose of this research, air is assumed to be incompressible. This
means that the density 𝜌 is constant. �̂� is the instantaneous pressure, �̂�።፣ the shear stress and 𝑆፦,። is
the sink/source term. Finally, shear stress for stationary and incompressible fluids can be defined as
follows:

�̂�።፣ = 𝜌𝜈(
𝜕�̂�።
𝜕𝑥፣

+
𝜕�̂�፣
𝜕𝑥።

) (2.2)

In this equation, 𝜈 is the kinematic viscosity. [8]

2.2. Reynolds Averaged Navier-Stokes approach
Equation 2.1 cannot be solved analytically generally spoken, thus numerical simulations are used. The
first possibility is to use Direct Numerical Simulations (DNS). With this method, the velocity is directly
calculated from the Navier-Stokes equations. However, this method can only be useful, when the values
of the Reynolds number are smaller than 10ኾ. This depends among other things on the characteristics
of turbulent flow. Turbulent flow, especially in the atmospheric boundary layer, is heavily influenced by
coherent flow structures such as eddies. [9] An eddy is the swirling of a fluid and the reverse current
created of a fluid in a turbulent regime. To acquire reliable results the grid parameters Δ𝑥, Δ𝑦 and Δ𝑧
must be very small. These constraints result in time consuming calculations, which explains why this
method is only used for values of the Reynolds number smaller than 10ኾ. In an average urban area,
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6 2. Air Flow in Urban Area

the Reynolds number easily exceeds this value, so a different approach is needed to do computations.

Accordingly, a second possibility, the Reynolds averaged Navier-Stokes equations (RANS), is used to
calculate the velocity. These equations are often used in environmental engineering. To obtain these
equations, the property of turbulent flow structures is used in such a way that all variables, such as
velocity, pressure and temperature, continuously fluctuate in a stochastic way. This means that exact
values cannot be predicted, which also explains why turbulent flow is so difficult to model. By using
the environmental engineering approach, it is assumed that these small fluctuations are not needed.
Only the general behaviour of the flow structure is needed for the model. This general behaviour can
be calculated using the Reynolds averaged Navier-Stokes equations. [8]

In the RANS-model, an arbitrary instantaneous property �̂� (e.g. velocity or pressure) is written as
�̂� = �̄� + 𝑥ᖣ, where �̄� is the time averaged part and 𝑥ᖣ the fluctuating part. This is visualised in Figure
2.1.

Figure 2.1: An arbitrary instantaneous property with the averaged part in blue. Source: Filipovic [8].

Every instantaneous property can be split in these two parts, which yields the following equation
from the original equation 2.1:

𝜕𝑢።
𝜕𝑡 + 𝑢፣

𝜕𝑢።
𝜕𝑥፣

= −1𝜌
𝜕𝑃
𝜕𝑥።

+ 𝜕
𝜕𝑥፣

[𝜈(𝜕𝑢።𝜕𝑥፣
+
𝜕𝑢፣
𝜕𝑥።

) − 𝑢ᖣ።𝑢ᖣ፣] + 𝑆፦,። (2.3)

where 𝜈 is the viscosity and 𝑢ᖣ።𝑢ᖣ፣ are the Reynolds stresses.
A complete derivation of this equation can be found in literature, such as [8]. With this set of

equations, 𝑢። and 𝑢፣ for 𝑖, 𝑗 = 1, 2, 3 can be computed. Under the assumption of constant density, the
continuity equation gives the following:

∇ ⋅ u = 0 (2.4)

The term −𝑢ᖣ።𝑢ᖣ፣ is added in equation 2.3, compared to equation 2.1. This term is often called the
Reynolds stress and without this term, the solutions would always result in laminar flow. This nonlinear
term requires additional modelling to close the RANS equation in order to have a unique solution.
However, this is still less computationally expensive than solving the Navier-Stokes equations directly.
The Reynolds stress gives rise to a new problem, because the equations of 2.3 are not closed. Such a
problem is called a turbulence closure problem. [6]
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2.3. The k-ε turbulence model
Turbulence closure models are used to find a solution to the Navier-Stokes equations in the airflow
model. There are many turbulence closure models, but in this research the k-ε turbulence model of
Launder and Sharma is used, since in this field of study it is the mostly used model. Two new differential
equations are introduced in order to close the Reynolds averaged Navier-Stokes equations. The first
differential equation is for the turbulent kinetic energy (TKE), 𝑘. This is a measure of the turbulence
of the flow. The second differential equation is for the turbulent dissipation, 𝜖, which is a measure of
amount of turbulence that is dissipated due to viscous effects. [8] The Reynolds stresses, −𝑢ᖣ።𝑢ᖣ፣, can
now be defined in terms of these two variables. This approach of the k-ε turbulence model is commonly
used and in particular accurate for incompressible constant-density flows. Since air flow through urban
area also has these properties, the k-ε model is suitable for this research.

The k-ε model makes the following assumption:

𝑢ᖣ።𝑢ᖣ፣ =
2
3𝑘𝛿።፣ + 𝜈፭(

𝜕𝑢።
𝜕𝑥፣

+
𝜕𝑢፣
𝜕𝑥።

) (2.5)

In this equation, 𝛿።፣ is the Kronecker delta, 𝑘 the turbulent kinetic energy (often referred to as TKE)
and 𝜈፭ the turbulent viscosity. With this rewritten problem, a closed set of equations is obtained if 𝑘
and 𝜈፭ are known. For the eddy viscosity the following approximation is used:

𝜈፭ = 𝐶᎙
𝑘ኼ
𝜖 (2.6)

This expression follows from dimensional analysis. Quantity 𝑘ኼ/𝜖 is a unit of time and can be seen
as a time scale of the turbulence. 𝐶᎙ is a model constant.

k-equation
This model assumes that turbulence can be expressed by the turbulent kinetic energy 𝑘. This energy
is dependent on 𝑢ᖣ።𝑢ᖣ፣ for 𝑖, 𝑗 = 1, 2, 3, but it can be simplified using the following approximation (with
𝑖 = 1, 2, 3):

𝑘 = 1
2𝑢

ኼ
። (2.7)

However, 𝑘 is still unknown. By deriving a partial differential equation for 𝑘, 𝑘 can be solved. This
can be done by substituting 𝑥ᖣ = �̄� + 𝑥ᖣ for all instantaneous properties into equation 2.1 and then
subtracting equation 2.3 from this.

After some other operations, which are beyond the scope of this project, the following partial
differential equation is found for 𝑘:

𝜕𝑘
𝜕𝑡 + 𝑢፣

𝜕𝑘
𝜕𝑥፣

= 𝜕
𝜕𝑥፣

[(𝜈 + 𝜈፭
𝜎፤
) 𝜕𝑘𝜕𝑥፣

] + 𝑃፤ − 𝜖 + 𝑆፤ (2.8)

Often this equation is referred to as the k-equation. Some new variables and constants are intro-
duced in this equation. 𝑃፤ is the production of turbulent kinetic energy and 𝜎፤ another model constant
for the 𝑘-equation. 𝑆፤ is the production term of turbulent kinetic energy related to the effects of veg-
etation and 𝜖 is the dissipation of turbulent kinetic energy into heat due to viscosity. The production
term, 𝑃፤, is defined as following:

𝑃፤ = −𝑢ᖣ።𝑢ᖣ፣
𝜕𝑢።
𝜕𝑥፣

(2.9)

For now, the turbulent dissipation 𝜖, 𝑆፦,። and the production of turbulent kinetic energy resultant
from vegetation, 𝑃፯፤ , are unknown terms.
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ε-equation
Finally, an expression for the turbulent diffusion 𝜖 is derived. This is done by deriving a partial differential
equation for 𝜖. In the previous subsection 2.3 the turbulent diffusion is defined as follows:

𝜖 = 𝜈(𝜕𝑢
ᖣ
።

𝜕𝑥፣
)ኼ (2.10)

To obtain a partial differential equation for turbulent dissipation, the equation has to be differentiated

with respect to 𝑥፣, then multiplied by
Ꭷ፮ᖤᑚ
Ꭷ፱ᑛ

and lastly averaged. [8] Since this whole derivation is rather

complex, it is left out here. The final result is the following:

𝜕𝜖
𝜕𝑡 + 𝑢፣

𝜕𝜖
𝜕𝑥፣

= 𝜕
𝜕𝑥፣

[(𝜈 + 𝜈፭
𝜎Ꭸ
) 𝜕𝜖𝜕𝑥፣

] + 𝐶ኻᎨ𝑃፤
𝜖
𝑘 − 𝐶ኼᎨ

𝜖ኼ
𝑘 + 𝑆Ꭸ (2.11)

In this equation, 𝐶ኻᎨ, 𝐶ኼᎨ and 𝜎Ꭸ are model constants. 𝑆Ꭸ is the production of turbulent dissipation
related to vegetation effects. With this last equation, a closed model has been formulated, if there is
no vegetation. Some model constants have standard values in the 𝑘 − 𝜖 model, which are given in the
Table 2.1.

The effect of vegetation on the flow field is included by using the sink/source terms in the transport
equations (𝑆፦,።, 𝑆፤ and 𝑆Ꭸ). The vegetation acts on the flow through various interactions. These
interactions are discussed in more detail in the next section.

2.4. Vegetation effects
Until now, the approach in modelling air flow has been generally applicable. However, in this research
the influence of vegetation on air flow is studied in particular. In order to do so, a proper way to model
vegetation is examined. First, some properties of green zones are discussed.

Vegetation differs from most other solid objects, when looking at the interaction with air flow. Be-
fore air flow arrives at an object (e.g. a tree or building), it has a mean kinetic energy. Typically, at
such an obstruction the air encounters a lot of resistance, so a great part of the air is slowed down,
which results in shear stresses around the object. This leads to eddies with the same scale as the
object dimensions and is called shear. [10] If this happens, energy is converted in both situations
(vegetation or solid objects). The energy contained by this shear, is often referred to as shear kinetic
energy.

However, vegetation interacts in a very different way with the air, since the resistance of individual
leaves cannot be modelled as a solid object. The air is certainly slowed down, but the eddies are much
smaller, since the leaves have much smaller dimensions than the totality of the vegetation. This results
in many smaller eddies inside and behind the vegetation. These eddies as a whole are called the wake.
This leads to much smaller turbulence cascade, which results in reaching the dissipative state faster.
This process is unique to porous obstacles. [10]

The sink/source term in the moment equation is the form drag force. This force occurs when a leaf
is positioned perpendicular to the air flow. Because the pressure upwards is larger than the pressure
downwards on the leaf, a force is exerted on the leaf in the direction of the flow. Furthermore, there
is a viscous drag force present. This force occurs when a leaf is parallel positioned to the air flow. Due
to the no slip boundary, the air flow must have no velocity. This results in a shear force dependent on
the fluid viscosity. This shear force has a significant contribution for low Reynolds numbers, so it can
be neglected for now. This results in the following equation for the body forces 𝐹።:

𝐹። =
1
2𝐶ፃ𝑎|𝑢|𝑢። (2.12)

The sink/source terms of 𝑘 and 𝜖 depend on the shortcut of the cascade process and the generation
of large eddies due to the form drag. The eddies can be seen as the ’swirl’ in the turbulent flow behind
the object. The energy hold by this wake, is called the wake kinetic energy. So, mean flow motion is
converted into wake turbulence.
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The vegetation object itself generates eddies of the size of the obstacle itself due to shear. The
eddies generated by the leaves are dissipated more rapidly due to the shortcut of the energy cascade.
This shortcut of the cascade process scales with the product of the velocity and the turbulent kinetic
energy. The formula for turbulent kinetic energy source term is:

𝑆፤ =
1
2𝐶ፃ𝑎(𝛽፩|𝑢

ኽ| − 𝛽 |𝑢|𝑘) (2.13)

where 𝛽፩ and 𝛽 are model constants that express the significance of the processes. 𝛽፩ is a
production constant and 𝛽 is a destruction constant.[11] From this equation, the sink/source term of
𝜖 can be derived:

𝑆Ꭸ =
1
2𝐶ፃ𝑎(𝐶ኾᎨ𝛽፩|𝑢

ኽ| 𝜖𝑘 − 𝐶኿Ꭸ𝛽 |𝑢|𝜖) (2.14)

where ፤
Ꭸ is the characteristic time and 𝐶ኾᎨ and 𝐶኿Ꭸ are model constants.

The modelling of the velocity field depends strongly on the values of the introduced constants.
The model constants proposed by Katul are proved to have a good agreement with measured data,
according to earlier research by Kenjeres and Ter Kuile. [6]

Table 2.1: Model constants as proposed by Kenjeres and Ter Kuile [2013]

𝐶ፃ 𝛽፩ 𝛽 𝐶ኾᎨ 𝐶኿Ꭸ
0.3 1.0 5.1 0.9 0.9





3
Temperature distribution in Urban

Areas

The temperature in an environment is influenced by the presence of vegetation. Plants can cool the
environment by a process known as transpiration. When the atmosphere heats up, plants will release
excess water from their leaves into the air.

Figure 3.1: Water cycle of the Earth’s surface is showed, with the individual components of transpiration and evaporation that
make up evapotranspiration. Source: Wikipedia

By releasing this evaporated water, plants cool themselves and the surrounding environment. This
process is visualised in Figure 3.1. It is similar to sweating for animals: by sweating they cool their
skin. This cooling process can be seen as a temperature sink. In this Chapter, the equation of thermal
energy is discussed and is closed using the Simple Gradient Diffusion Hypothesis. Finally, the influence
of vegetation on the temperature distribution is described.

3.1. Equations for Thermal Energy
The equation for thermal energy is used to find the temperature distribution:

𝜕�̂�
𝜕𝑡 + ̂𝑢።

𝜕�̂�
𝜕𝑥።

= 𝜕
𝜕𝑥።

( 𝜈Pr
𝜕�̂�
𝜕𝑥።

) (3.1)

11

https://nl.wikipedia.org/wiki/Evapotranspiratie
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where �̂� is the instantaneous temperature, 𝜈 the kinematic viscosity and Pr the dimensionless Prandtl
number. The Prandtl number is defined as the ratio of momentum diffusivity to thermal diffusivity:

Pr = 𝜈
𝑎 (3.2)

where 𝑎 is the thermal diffusivity (𝑎 = ፤
᎞፜ᑡ
). In Equation 3.1, it is assumed that 𝜌 is constant and fur-

thermore, thermal buoyancy is neglected. As a result of this assumption, the temperature distribution
depends on the velocity field, but vice versa the velocity field does not depend on temperature.

For the Reynolds averaged temperature, the following equation is obtained:[8]

𝜕𝑇
𝜕𝑡 + 𝑢።

𝜕𝑇
𝜕𝑥።

= 𝜕
𝜕𝑥።

[ 𝜈Pr
𝜕𝑇
𝜕𝑥።

− 𝑇ᖣ𝑢ᖣ።] + 𝑆ፓ (3.3)

In this equation, 𝑇ᖣ𝑢ᖣ፣ are the thermal stresses and 𝑆ፓ is the production term that accounts for the
cooling effects of the transpiration from vegetation. The thermal stresses are unknown, so as with the
𝑘 − 𝜖-model, a model is needed to calculate these terms.

3.2. Closing the Reynolds averaged thermal energy equation
To close the Reynolds averaged thermal equation (3.3), one can choose between two models: the
generalised gradient diffusion hypothesis and the Simple Gradient Diffusion Hypothesis. In this thesis,
the latter is used. Both hypotheses are relatively easy to implement, since they do not introduce
additional transport equations. The Simple Gradient Diffusion Hypothesis states the following for the
thermal stresses:

𝑇ᖣ𝑢ᖣ፣ = −
𝜈፭
Pr፭

𝜕𝑇
𝜕𝑥፣

(3.4)

where Pr፭ is the turbulent Prandtl number, defined as the ratio between the momentum eddy
diffusivity and the heat transfer eddy diffusivity. In general, a turbulent Prandtl number between 0.7
and 0.9 is used. For this research, Pr፭ = 0.71 is used, in accordance with a paper of Manickathan et
al. [12].

A disadvantage of the Simple Gradient Diffusion Hypothesis is that it is less effective in simulations
with strong buoyancy effects. However, buoyancy is neglected in this thesis, so this will not effect the
performance of the simulations in this thesis.

3.3. Vegetation: sink and source terms
The temperature model is closed, if the sink and source terms from vegetation effects are ignored. In
the momentum equations, vegetation has effects through production terms for turbulent kinetic en-
ergy and turbulent dissipation. Vegetation also effects the thermal equations. In general, the presence
of vegetation can decrease temperature. This effect can be obtained by providing shade and tran-
spiration, as discussed earlier in this Chapter. Due to the vegetation, heat is absorbed to evaporate
moisture that is transpired through the leaves of the vegetation. Heat is extracted from the air and the
vegetation itself. Furthermore, heat is exchanged between the vegetation and the air.

From the argumentation above, it can be concluded that the thermal sink term 𝑆ፓ depends on the
leaf area density 𝑎. For a low value of the leaf area density, there is limited surface, where transpiration
can occur, so the cooling effect is less than for a larger leaf area density. The volumetric cooling power,
𝑃፜, is used to account for the leaf area density. 𝑃፜ represents the ability of vegetation to cool the
surrounding air per cubic meter. With the assumption that the volumetric cooling power 𝑃፜ is linearly
depended on the leaf area density 𝑎, the following relation is obtained:

𝑃፜ = 𝑃ኺ ⋅ 𝑎 (3.5)

where 𝑃ኺ is a measure of transpirational energy losses of the vegetation per unit leaf area density.
From the research of Filipovic [8], the value of 𝑃ኺ = 250𝑊/𝑚ኼ is used.
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The thermal sink term also depends on the temperature difference between the leaves and the air,
the heat capacity of the air 𝑐፩ and the velocity of the air flowing along the leaves.

Using the Buckingham Pi Theorem, dimensional analysis gives the following dependencies:

𝑆ፓ = 𝐾ፏ
𝑃፜
𝑐፩
(
𝑐፩(𝑇 − 𝑇፥፞ፚ፟)

|𝑈|ኼ
)ᎎ (3.6)

The scaling factor 𝛼 is often assumed to be 0, which means that the thermal heat sink of the
vegetation is simply an empirical constant. [10] 𝐾፩ is a model constant that will set to −1, since this
is a sink term. Using 𝛼 = 0 yields the following expression for the thermal sink term:

𝑆ፓ = −
𝑃፜
𝑐፩

(3.7)

In Table 3.1 the values for the model constants can be found.

Table 3.1: Model constants for the thermal energy equations

Pr Pr፭ 𝐾፩ 𝛼 𝑐፩ 𝑃ኺ
- - - - 𝑚ኼ/𝐾𝑠ኼ 𝑊/𝑚ኼ

0.71 0.9 −1 0 1005 250

This concludes the model of the temperature distribution. With the use of Reynolds averaging, the
simple gradient diffusion hypothesis and a description of the sink term caused by vegetation, a closed
model to describe temperature is derived.





4
Numerical Methods

To solve the transport and heat equations, numerical methods are used. In this research, the ge-
ometries and flows are too complex to solve the derived equations analytically. Therefore, numerical
methods are needed to solve the partial differential equations. A numerical solution is evaluated by
both the consistency and stability. First of all, the Finite Volume Method (FVM) is the most fundamental
technique that is pointed out and discussed in Section 4.1. When using the finite volume method, a
differencing scheme should be specified. The choice of a difference scheme can be delicate and in
Section 4.2 the most common schemes are treated.

4.1. Finite Volume Method
The transport equations are solved numerically by using the Finite Volume Method (FVM). This means
that the calculation of the full domain is divided into a finite number of so called control volumes or
grid cells. For each of these cells, discretised transport equations are integrated in time and space and
then solved.

4.1.1. Discretisation
First of all, the differential form of the transport equations is expressed as:

𝜕
𝜕𝑡 (𝜌𝜙)⏝⎵⏟⎵⏝
unsteady

+ 𝜕
𝜕𝑥፣

(𝜌𝑢፣𝜙)
⏝⎵⎵⏟⎵⎵⏝
convective

= 𝜕
𝜕𝑥፣

(ΓᎫ
𝜕𝜙
𝜕𝑥፣

)
⏝⎵⎵⎵⏟⎵⎵⎵⏝

diffusive

+ 𝑆Ꭻ⏟
source

(4.1)

where 𝜙 is the dependent variable and the meaning of the different terms is indicated by the
brackets. This equation needs to be integrated in space over the control volume, which gives a new
equation:

∫
ፕ

𝜕
𝜕𝑡 (𝜌𝜙)𝑑𝑉 + ∫ፕ

𝜕
𝜕𝑥፣

(𝜌𝑢፣𝜙)𝑑𝑉 = ∫
ፕ

𝜕
𝜕𝑥፣

(ΓᎫ
𝜕𝜙
𝜕𝑥፣

)𝑑𝑉 + ∫
ፕ
𝑆Ꭻ𝑑𝑉 (4.2)

If Gauss’ theorem 1 is applied, the convective and diffusive terms are transformed from a volume
to a surface integral, resulting in:

∫
ፕ

𝜕
𝜕𝑡 (𝜌𝜙)𝑑𝑉 + ∫ፒ

𝜌𝜙u ⋅ n𝑑𝑆 = ∫
ፒ
ΓᎫ∇𝜙 ⋅ n𝑑𝑆 + ∫

ፕ
𝑆Ꭻ𝑑𝑉 (4.3)

where 𝑆 is the surface surrounding control volume 𝑉 and n is the normal unit vector to this surface
𝑆. The unsteady and source terms are still volume integrals and can be approximated by replacing
the integral by the mean value of the variable multiplied with the volume of the control volume. The
mean value is estimated to be equal to the value in the centre of the control volume. This results in
the following approximation: [13]

1Gauss’ theorem states the following: ∫ᑊ ዋ ⋅ ዲ፝ፒ ዆ ∫ᑍ(∇ ⋅ ዋ)፝ፕ

15
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∫
ፕ
𝑞𝑑𝑉 = �̄�𝑉 ≈ 𝑞ፏ𝑉 (4.4)

where subscript 𝑃 denotes that the value is evaluated in the centre of the control volume.

4.1.2. Control Volume
In general, the cell control volume can have any shape and number of faces, but the most convenient
is the geometry with the hexahedral cells with six faces. Because the problems in this research are
three dimensional, each subdomain (a synonym for the control volume) has 6 direct neighbours, which
are distinguished using the following names: W (West), E (East), N (North), S (South), T (Top) and
B (Bottom). Capital letters denote the centre of a grid cell, while small letters denote the boundary
surface of the grid cell with the control volume 𝑃. A schematic overview if this situation, is shown in
figure 4.1. [14]

Figure 4.1: Two dimensional overview of a control volume P with its nearest neighbours.

4.2. Differencing Schemes
The next step in the process of numerical computation is the choice of a differencing scheme. This is
a delicate step, since one of the most important contributions to the total error in computational fluid
dynamics is the discretisation error. Reducing this error is done by applying the appropriate differencing
scheme and a sufficiently fine resolution. [15]

4.2.1. Central Difference Scheme
Using the central difference method (CDS) is the most straightforward, but this can be inconvenient in
situations with convection as dominating factor in the heat transfer, especially when the applied grids
are not fine enough. Symmetrical interpolation and relatively easy implementation are benefits of CDS.
The CDS can be formulated with the following equation:

𝜙፞ = 𝜙ፄ𝑓ኻፏ + 𝜙ፏ(1 − 𝑓ኻፏ) (4.5)

where the f represents the interpolation factor for a particular node: [15]

𝑓ኻፏ =
𝑃𝑒

𝑃𝑒 + 𝑒𝐸
(4.6)

In figure 4.2 a graphic representation of this differencing scheme is given.
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Figure 4.2: A graphic representation of the central differencing scheme.

4.2.2. Upwind Difference Scheme
The upwind difference scheme (UDS) is another possible method. The big advantage of UDS is that it
is unconditionally stable, i.e. it is guaranteed that the solutions are bounded. Unfortunately, the UDS
is only accurate up to first order and suffers from a phenomenon called ”false diffusion”. Since it is only
accurate up to first order, a very fine grid is needed. This upwind difference scheme can be written as
following:

𝜙፞ = {
𝜙ፏ if(v ⋅ n)፞ ≥ 0
𝜙ፄ if (v ⋅ n)፞ < 0

(4.7)

4.2.3. Linear Upwind Difference Scheme
Linear upwind difference scheme (LUDS) uses a linear extrapolation from the two closest upstream
neighbours, in stead of just one, which is the case for UDS. [15] This looks like:

𝜙፞ = {
𝜙ፏ + (𝜙ፏ − 𝜙ፖ)(1 − 𝜆፰) if(v ⋅ n)፞ ≥ 0
𝜙ፄ + (𝜙ፄ − 𝜙ፄ𝐸)𝜆፞ if(v ⋅ n)፞ < 0

(4.8)

where the 𝜆’s are interpolation factors for one particular note, with index and direction. For instance:

𝜆ፏ =
𝑥፞ − 𝑥፩

(𝑥፞ − 𝑥ፏ) + (𝑥ፄ − 𝑥፞)
(4.9)

LUDS is second order accurate, thus it gives better results than UDS. However, one should notice
that LUDS is not unconditionally bounded and could give oscillatory and nonphysical solutions.

4.2.4. Quadratic Upwind Difference Scheme
The last possibility is the quadratic upwind difference scheme (QUDS or QUICK), which logically uses
a quadratic extrapolation. This differencing scheme determines the value of a cell face with quadratic
interpolation using values of three cells. [10] One value downwind is used, the other two values are
from the other direction. For a flow direction from west to east for example this scheme evaluates the
value at the west cell face as:

𝜙፰ =
6
8𝜙ፖ +

3
8𝜙ፏ −

1
8𝜙ፖፖ (4.10)

𝜙፞ =
6
8𝜙ፏ +

3
8𝜙ፄ −

1
8𝜙ፖ (4.11)

In figure 4.3 a schematic overview of QUICK is given.
The QUICK scheme is still unbounded and has stability problems when taking time steps.



18 4. Numerical Methods

Figure 4.3: Schematic overview of the QUICK differencing scheme. Source: Zondag [16]

4.2.5. Time integration
For the unsteady term in the transport equations the backward Euler method is used: [6]

∫
፭ᑟᎼᎳ

፭ᑟ

𝑑𝜙(𝑡)
𝑑𝑡 = 𝜙፧ዄኻ − 𝜙፧ = ∫

፭ᑟᎼᎳ

፭ᑟ
𝑓(𝑡, 𝜙(𝑡))𝑑𝑡 (4.12)

4.2.6. Conclusions on the discussed Differencing Schemes
To wrap up the previous sections, some findings can be concluded. First of all, high order schemes
oscillate on coarse grids but converge faster to an accurate solution than low order scheme as the grid
is refined. Secondly, first-order UDS is inaccurate and should not be used in most cases. When using
this method, high accuracy cannot be obtained on affordable grids, since it gives a large diffusive error.
Lastly, CDS is the simplest scheme of second-order accuracy and offers a fairly good concession with
accuracy, simplicity and efficiency. [17]

4.2.7. Non-linear Schemes
Linear schemes are always vulnerable to nonphysical oscillations (so called wiggles) under some circum-
stances. This limitation is predicted in Godunov’s theorem which states that there no linear convection
scheme with greater than first-order truncation error can be monotonic.
A method is called monotonicity-preserving if [18]

𝜙፧። ≥ 𝜙፧።ዄኻfor all 𝑖
implies that

𝜙፧ዄኻ። ≥ 𝜙፧ዄኻ።ዄኻ for all 𝑖
To solve to this problem, the use of non-linear discretisations is introduced. These schemes adjust

themselves in correspondence with the local solution, to maintain bounded behaviour. One of the most
effective approaches to construct a non-linear scheme is proved to be the use of so called flux limiters.
Flux limiters are simple functions which define the convection scheme based on a ratio of local gradients
in the solution field. [19]

4.3. Total Variation Diminishing
By introducing correction terms, the method can be improved enormously. The idea with high-
resolution methods is to combine the best features of both methods. This means that second-order
accuracy is obtained where possible, but is not insisted in regions where the solution is not behaving
smoothly.

Second-order accurate methods such as the Lax-Wendroff or Beam-Warming give much better
accuracy on smooth solutions than the upwind method, but they both fail near discontinuities and
often oscillations appear. [18] Upwind methods have the advantage of keeping a solution monotonically
varying in regions where the solution should be monotone, even though the accuracy is not very high.
The term 𝜙፧። − 𝜙፧።ዅኻ can be modified in the relevant flux equations by applying a limiter that changes
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the magnitude of the actually used correction, depending on the behaviour of the solution. However,
this limiting process is complicated, since the solution to a hyperbolic problem typically consists of a
superposition of waves in different families. At a given point and time, some waves may be smooth
while others are not. [18] Using this fact, flux-limiter and slope-limiter methods can be obtained. In
this research, the scope is limited by slope-limiter methods. The question arises on how much the
slope should be limited. This can be fixed with a mathematical prescription. Before this can be done,
a measure for oscillations is needed. For a grid function 𝜙 the total variation is defined:

𝑇𝑉(𝜙) =
ጼ

∑
።዆ዅጼ

|𝜙። − 𝜙።ዅኻ| (4.13)

When the method gives oscillations, the total variation of 𝜙፧ is expected to increase with time.
The goal is to avoid oscillations by requiring that the method does not increase the total variation. A
two-level method is called total variation diminishing (TVD) if, for any set of data 𝜙፧, the values 𝜙፧ዄኻ
computed by the method satisfy 𝑇𝑉(𝜙፧ዄኻ) ≤ 𝑇𝑉(𝜙፧). The name is a bit confusing, since the total
variation does not actually need to diminish; it may remain constant in time. If a method is TVD, then
in particular data that are initially monotone 𝜙፧። ≥ 𝜙፧።ዄኻ (for all i) remains monotone in all next time
steps. Any TVD method preserves the monotonicity. [18]

The general expression for higher order differencing scheme can be rewritten (with the addition of
a limiter 𝜓(𝑟) as

Φ = Φ = 1
4[(1 + 𝛽)𝜓(𝑟)(Φፃ −Φፂ) + (1 − 𝛽)𝜓(

1
𝑟 )(Φፂ −Φፔ)] (4.14)

In order to provide the conditions for the total variation diminishing (TVD), the limiter should be
inside the specific area. By introducing nondimensional variables Φ̃ and 𝑟 defined by

Φ̃ = Φ −Φፔ
Φፃ −Φፔ

(4.15)

and the gradient ratio 𝑟 is defined as:

𝑟 = (𝜕𝜙𝜕𝑥 )፮/(
𝜕𝜙
𝜕𝑥 )፟ (4.16)

which reduces in the case of a uniform mesh to:

𝑟 = Φፂ −Φፔ
Φፃ −Φፂ

(4.17)

the value at the cell-face can be calculated as

Φ̃፟ = Φ̃ፂ +
1
4Φ̃ፂ[(1 + 𝛽)𝜓(𝑟)

1
𝑟 + (1 − 𝛽)𝜓(

1
𝑟 )] (4.18)

This expression can be further simplified using symmetry properties of the limiter functions. The
final form is

𝜓(𝑟) = 𝑟 ⋅ 𝜓 (1𝑟 ) (4.19)

Φ̃፟ = Φ̃ፂ +
𝜓(𝑟)
2 (1 − Φ̃ፂ) (4.20)

This form can be seen as a general formulation of the TVD scheme from which a number of specific
schemes known in literature can be extracted depending on the formulation of the limiter. There are
many different classes of limiters that ensure that the solution remains inside the stability region.
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4.3.1. Van Leer Limiter
In this research, the Van Leer limiter (also referred to as MUSCL limiter) is implemented in the CFD
code. This limiter function is defined as follows: [19]

𝜓(𝑟) = max[0,min(2𝑟, 𝑟 + 12 , 2] (4.21)

Van Leer proposed this scheme as a slope-limited form of another scheme (Fromm’s scheme).
This approach offers a combination of accuracy in smooth flow, good resolution of sharp gradients
and reasonable convergence characteristics. [19] Furthermore, this limiter is the only classical limiter
which does not introduce a local first-order term for smooth solutions. A plot with the Van Leer limiter
function overlaid on the TVD region is shown in Figure 4.4.

Figure 4.4: Van Leer limiter function overlaid on the second-order TVD region. Source: Nikola Mirkov.

4.4. Deferred Correction
As discussed, the convection diffusion equations from previous sections can be discretised using a finite
volume method. This discretisation process results in a system of algebraic equations. These equations
can be linear or non-linear, depending on the nature of the partial differential equations. There are
several methods for solving these equations, which can be divided in for example direct and iterative
methods. One specific approach, namely deferred correction, is discussed in this section.

If all terms with nodal values of the unknown variable are kept on the left hand side of the obtained
equations after the discretisation, the computational molecule can become very large. The size of the
computational molecule influences the storage capacity and the effort, which are needed to solve the
linear equation system. So it is preferred to keep this as small as possible. In order to do so only
the nearest neighbours of node 𝑃 are kept on the left hand sides of the equations. Nonetheless, ap-
proximations which produce such simple computational molecules are often not accurate enough. This
means it is needed to use approximations that refer to more nodes than just the nearest neighbours.
A solution to this problem is to leave only the terms containing the nearest neighbours on the left-hand
side of the discretised equations and bring all other terms to the right-hand side. This requires that
these terms are evaluated using values from the previous iteration. However, this can lead to the
divergence of iterations because the explicitly treated terms can be considerably large. [17]
A better method is to compute the terms that are approximated with a higher order approximation
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explicitly and put them on the right-hand side of the equation. Then a simpler approximation to these
terms (one that gives a small computational molecule) can be made and these values can be put on the
left-hand side of the equation (with unknown variable values) and on the right-hand side (computing it
with explicitly using existing values). The right-hand side is the difference between two approximations
of the same term, and is very likely to be small. Hence, it should cause no problems in the iterative solu-
tion procedure. If the iterations converge, the low order approximation terms vanish and the obtained
solution corresponds to the higher-order approximation. Since iterative methods are usually necessary
due to the non-linearity of the equations to be solved, adding a small term to the part treated explicitly
increases the computing effort by only a small bit. However, the memory and computing time required
are very much reduced when the size of the computational molecule in the part of the equation treated
implicitly is small.
This technique is used in the implementation of the Van Leer limiter in the FORTRAN code. In general,
it is used when treating higher-order approximations, grid non-orthogonality and corrections needed
to avoid undesired effects like oscillations in the solution. Because the right-hand side of the equation
can be regarded as a ”correction” this method is called deferred correction. [17] In short, deferred
correction is applied because it strengthens the diagonal dominance of a system matrix. This translates
to a faster and more stable convergence of the iterative solution process.

4.5. Under relaxation
A convergence criterion is introduced to determine whether the numerical solution is sufficient. For
each time step the numerical solution is compared to the numerical solution of the previous time step.
Since this is a very computationally expensive task to do for every grid point, a trick is used. The
comparison is done by using a large scale criterion and choosing specific control volumes to test. The
large scale criterion collects the information from all control volumes. For each variable, this so called
residual contains information on the convergence of the variable. If all residuals of the variables are
less than the criterion, then the convergence criterion is met. If one of the variables grows unlimited,
the simulation is said to be unstable. [8]

The stability of a simulation is determined by, amongst other things, the grid definition, the choice
of differencing scheme and the size of the domain. To increase the stability of the simulation, the
process of under relaxation parameters can be used. This process uses the following technique: the
value of a variable 𝜙፧ዄኻ of a certain time step depends on both the previous value and the predicted
value of this time step. If 𝜙፧ is the value of the 𝑛th time step and 𝜙፧ዄኻ the value of the next step,
then the under relaxation process defines the value for the next time step, 𝜙፧ዄኻ as follows:

𝜙፧ዄኻ = 𝜔𝜙፧ዄኻ + (1 − 𝜔)𝜙፧ (4.22)

where the under relaxation parameter 0 < 𝜔 ≤ 1 determines how much the next iteration depends
on the previous iteration. The process of under relaxation decreases the chances of divergence, but
the disadvantage is that it slows down the simulation.





5
Street Canyon Simulations

The model that is introduced in Chapters 2 and 3 about modelling airflow and temperature in urban
areas, can be solved numerically using a Computational Fluid Dynamics (CFD) code written and tested
by professor S. Kenjereš. In the last 10 years many improvements and additions have been made in
this code by bachelor and master students of the TU Delft. In this Chapter the most important sections
of this code is explained. Furthermore, the set up of the street canyon simulations is defined.

5.1. Boundary Conditions
The code in FORTRAN is flexible in the dimension sizes, but in this research all domains are box shaped
and formulated in the Cartesian coordinate system. In Figure 5.1 an example of a domain is shown. A
box shaped domain is bounded by six faces and boundary conditions are defined for each face.

Figure 5.1: Example of a domain. The inlet is by default the left face and the outlet is the right face of the domain.

Most boundary conditions are not complicated to define using some straightforward assumptions.
The bottom of the domain is the earth surface, so this is modelled as a wall. From the no slip condition
can be deduced that the velocity must be zero at the bottom. If buildings are placed inside the domain,
these is also modelled as walls. These walls can be modelled using standard wall functions. In the next
subsection these wall functions are discussed in more detail. At the left face of the box the air enters
the domain (inlet). For the velocity, turbulent kinetic energy (TKE) and the dissipation inlet profiles are
specified. This means that for the entire left boundary of the domain the values of these variables are
known explicitly. In the same way, at the right face of the box the air exits the domain; this is called
an outlet. The other 3 faces are neither walls, inlets or outlets and are modelled as symmetry faces.
Explicitly, this means that velocity must be parallel to these boundary faces. As a result of this fact,
the domain sizes must be chosen large enough; if one of the variables is still fluctuating at a symmetry
boundary its component perpendicular to the plane is set to zero, resulting in a loss of information. [8]
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5.2. Wall Functions
Wall functions are often used to describe a turbulent flow near a wall. To obtain a formula for these
walls, three different regions are considered; the viscous sub-layer, the logarithmic layer and the overlap
region. The viscous sublayer is close to the wall, where turbulent effects are no longer dominant. As
a result, the velocity in this region depends on viscosity. The logarithmic layer is assumed to be fully
turbulent, without viscous effects. The transition from viscous to a turbulent regime is described by
the overlap region. [10]
The gradient in the viscous sublayer is extremely large. To model this layer accurately, a fine grid is
needed. Using dimensional analysis, the generalised logarithmic wall function can be obtained:

𝑈ዄ = 1
𝜅 ln𝐸

𝑢∗𝑦
𝜈 (5.1)

where 𝜅 = 0.435 is the Von Kármán constant, 𝐸 = 8.432, 𝑦 is just the vertical coordinate and 𝜈 the
kinematic viscosity. The following equation is obtained for the wall shear stress: [10]

𝜏፭ = 𝜏፰ = 𝜌𝐶ኻ/ኾ᎙ 𝑘ኻ/ኼ፩
𝑈

ln 𝑦ዄ/𝜅 (5.2)

where the index 𝑃 indicates that the values are evaluated at the first cell next to the wall. With this
equation the velocity in the grid point closest to the wall can be calculated. An important remark is
that equations 5.1 and 5.2 are only valid for smooth walls. When modelling air flow around vegetation,
wall roughness will probably play a role. [6]

5.3. Initial Conditions
In general, a partial differential equation cannot be solved without initial conditions. However, if the
numerical scheme yields stable calculations, the solution will approach an equilibrium solution regard-
less of the initial conditions. This is not true in general, but for our purpose this can be assumed. Still,
if difficult initial conditions are chosen, the numerical solution will approach the equilibrium very slowly.
Thus, the initial conditions are chosen constant throughout the domain and within the range of the
inlet profiles.

5.4. Grid Definition
As discussed in Chapter 4, the domain must be divided into a finite number of control volumes. The
discretised domain is called a grid or a mesh. With the addition of buildings and vegetation (in general
called obstacles) in the domain, the division of the domain in control volumes is a delicate process. A
requirement of these obstacles is that the buildings and vegetation must be box shaped to limit the
difficulty. The distribution of these control volumes must satisfy certain resolution criteria. This means
that the grid should sufficiently resolve significant gradients of all variables. [14] The values of the
variables will vary to a greater extent around obstacles than farther away from these obstacles. Due
to this fact, the grid is much finer at the edge of these obstacles than at other places in the domain. In
this way, the fluctuations can be calculated more accurately. As a result, the control volumes are non
uniform. However, in this paper all control volumes are rectangular shape. Argued in the same way,
the grid becomes coarser when moving away from an obstacle. For this reason a cell expansion factor
is defined; this is the ratio of adjacent grid cells. If the size of the cells at the obstacles is known, then
the entire grid can be calculated. Doing this saves time and costs less storage memory. Furthermore,
a maximum cell size is defined. An example of a grid is given in Figure 5.2.
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Figure 5.2: Example of a grid. Source: Filipovic [8]

5.5. Vegetation in Street Canyon

To study the effect of vegetation in a street canyon on air flow, some wind tunnel experiments from a
study by Gromke [20] are simulated using Fortran code of professor Kenjeres. In Gromke’s simulation,
a scaled street canyon (1:150) with and without a porous body representing vegetation was used to
perform wind tunnel experiments. This set-up is shown in Figure 5.4

Figure 5.3: Set up for the wind tunnel experiments by Gromke [20]. Source: Gromke [5]

For the set up of the simulation, the domain sizes are the same as in Gromke’s experiments and
the height of the buildings is 𝐻 = 18𝑚. In Figure 5.4, the domain with 2
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Figure 5.4: Set up of the empty street canyon for the CFD simulations. Source: Marleen van Soest [11]

The vegetation is tested at 2 different locations: as trees in the middle of the two buildings and
as facade greening at the sides facing the street canyon. A third possibility is greening at the roof
of the buildings. However, this option is left out of this research. Of course, a street canyon without
vegetation is also part of the simulations as a status quo. The set up of these different vegetation
options is displayed in Figure 5.5

Figure 5.5: Set up of street canyon for different vegetation options: (a) a street canyon without vegetation, (b) trees in the
middle of the street canyon, (c) roof greening and (d) facade greening. The building height is ፇ ዆ ኻዂ፦. This image comes
from the thesis of Marleen van Soest. [11]

The leaf area density (LAD) of the vegetation is derived from the density of the porous material
used in Gromke’s experiment and the thickness of the leaves. From Gromke’s paper, it is known that
the material had a material volume fraction of 3.0% and the thickness of the leaves is estimated at
5𝑚𝑚. This results in a LAD of 60𝑚ዅኻ.

5.5.1. Boundary Conditions
For the inlet profile, the following profiles are used to match the wind tunnel experiments. The velocity
profile is described by:
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𝑢(𝑧) = 𝑢ref(
𝑧
𝐻)

ኺ.ኽ (5.3)

where 𝑢ref = 4.7𝑚/𝑠 and 𝐻 = 18𝑚. 𝑢 is the velocity in the 𝑥-direction, 𝑣 is the velocity in the
𝑦-direction and 𝑤 is the velocity in the 𝑧-direction.

The turbulent energy profile is given by:

𝑘(𝑧) = 𝑢ኼ∗
𝐶᎙
(1 − 𝑧

𝛿 ) (5.4)

where 𝑢∗ = 0.52𝑚/𝑠, 𝐶᎙ = 0.09 and 𝛿 = 8𝐻.
Finally, the dissipation profile is:

𝜖(𝑧) = 𝑢ኽ፟
(1 − 𝑧/𝛿)ኼ
𝜅(𝑧 + 𝑧ኺ)

1 + 5.75𝑧
𝑧ኺ

(5.5)

where 𝑢፟ = 0.15𝑚/𝑠 is the friction velocity, 𝛿 = 5𝑚, 𝑧ኺ = 0.033𝑚 and 𝜅 = 0.435 is the Von Kármán
constant.

The boundary roughness height at the ground is set at 𝑧ኺ = 0.033𝑚, which gives a roughness
parameter 𝑒 = 0.099𝑚

5.5.2. Computation
The grid settings are more or less copied from Gromke’s experiments. The smallest grid dimensions
are set to 0.9𝑚×0.9𝑚×0.9𝑚 and the largest grid dimensions to 3.0𝑚×3.0𝑚×3.0𝑚. This results in a
grid of about 2.3 million cells. All under-relaxation parameters are set to 0.1. In Table 2.1 the used tree
model coefficients are presented as proposed by earlier research by Katul and later verified by research
of Ter Kuile and Kenjeres. For the velocity simulations, the drag coefficient 𝐶ፃ is linearly increased from
0.0 to 0.30 with steps of 0.03 to ensure convergent results per 300 iterations. At 𝐶ፃ = 0.30, 15000
iterations are done to ensure that the convergence criterion is met.





6
Results

In this Chapter the results of the simulations are showed. The obtained results are compared with the
results of 2 papers of Gromke [20] [5]. For each vegetation option, the normalised vertical velocity
𝑤∗ = 𝑊/𝑢፫፞፟, the magnitude of the total velocity |𝑈| = √𝑢ኼ + 𝑣ኼ +𝑤ኼ, the turbulent kinetic energy and
temperature are displayed in contour plots. The contour plots show a cross section of the street canyon
exactly in the middle of the street canyon. The two white blocks, in for example Figure 6.1, represent
the two buildings. The flow direction is from left to right, as visualised in Figure 5.4. Furthermore,
the different vegetation options are compared to each other in profile plots of the magnitude of the
total velocity, the turbulent kinetic energy and the temperature. These profile plots are made for three
different heights:

1. Street level: 𝑧/𝐻 = 0.1

2. Halfway in the canyon: 𝑧/𝐻 = 0.5

3. Just above the buildings: 𝑧/𝐻 = 1.1

Thus these profile plots have a fixed 𝑦- and 𝑧-coordinate.

6.1. Vertical velocity
In Figures 6.1, 6.2 and 6.3 the contour plots of the normalised velocity in the 𝑧-direction in street
canyon are showed at 𝑦/𝐻 = 10.5. This vertical velocity is particular interesting to analyse, since it
contains information about the decrease (or increase) of the concentration of pollutants in the street
canyon.
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Figure 6.1: Contour plot of the velocity in the z-direction normalised by the reference velocity ፰∗ at ፲/ፇ ዆ ኻኺ.኿ from the street
canyon without vegetation.

Figure 6.2: Contour plot of the velocity in the z-direction normalised by the reference velocity ፰∗ at ፲/ፇ ዆ ኻኺ.኿ from the street
canyon with the green facades.
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Figure 6.3: Contour plot of the velocity in the z-direction normalised by the reference velocity ፰∗ at ፲/ፇ ዆ ኻኺ.኿ from the street
canyon with trees in the middle.

The impact of the different locations of vegetation on air flow can be assessed by comparing Figures
6.1, 6.2 and 6.3. It can be seen that the tree option has bigger influence on the vertical velocity than
the green facade. The tree option causes higher values of the vertical velocity close to the wall.

The behaviour of the velocity in the vertical direction in the street canyon without vegetation and
the street canyon with green facades is not as one would predict on beforehand. It is expected that
there are both positive and negative values, which results in circulation. However, in Figures 6.1 and
6.2 there are only positive values visible. This phenomenon is most likely caused by the fact that in the
chosen set up, only 1 street canyon is present. To obtain more realistic results, 10 sequential buildings
can be created in the set up. By extracting results from the last street canyon, the results should
probably behave more naturally.

The results plotted in the contour plots in Figures 6.1, 6.2 and 6.3 can be compared with contour
plots from earlier research by Gromke [20]. Gromke performed both wind tunnel experiments and
simulations using the k-ε model for an empty street canyon and a canyon with trees in the middle. The
contour plots of the experiments and simulations are displayed in Figure 6.4 and 6.5
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Figure 6.4: Contour plots from the measurement (left) and simulation (right) of Gromke [20]: normalised vertical velocities ፰∗
at ፲/ፇ ዆ ኻኺ.኿ in an empty street canyon.

Figure 6.5: Contour plots from the measurements (left) and simulations (right) of Gromke [20]: normalised vertical velocities
፰∗ at ፲/ፇ ዆ ኻኺ.኿ in a street canyon with trees.

First, the results of the empty street canyon can be compared. In Figure 6.4, it can be seen that the
measurement and simulation results of Gromke are qualitatively seen more or less the same. However,
the agreement with the contour plot in Figure 6.1 is poor. Most likely, one of the simulation settings of
this research is not in line with those of Gromke’s simulations. This simulation has been done earlier
by Marleen van Soest [11] and this yielded more similar results.
Secondly, the street canyon with trees in the middle is compared to the measurement and simulation
by Gromke et al. [20]. The contour plots of this research in Figure 6.3 and the contour plots of Gromke
in Figure 6.5 show good agreement. A difference is that the highest positive (on the left of the street
canyon) and negative values (on the right) are a bit higher situated in the street canyon. This difference
could be caused by the fact that the obstacle roughness was not specified in Gromke’s paper [20]. In
the simulation of this research the obstacle roughness was estimated to be 1.0 ⋅ 10ዅዀ𝑚.

6.2. Magnitude total velocity
Not only the vertical velocity component is analysed, also the magnitude of the total velocity is con-
tained in the analysis. In Figures 6.6, 6.7 and 6.8 the contour plots of the magnitude of the total
velocity in the street canyon are showed at 𝑦/𝐻 = 10.5 for the empty street canyon, the street canyon
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with green facades and the street canyon with trees.

Figure 6.6: Contour plot of the magnitude of the total velocity at ፲/ፇ ዆ ኻኺ.኿ from the empty street canyon.

Figure 6.7: Contour plot of the magnitude of the total velocity at ፲/ፇ ዆ ኻኺ.኿ from the street canyon with green facades
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Figure 6.8: Contour plot of the magnitude of the total velocity at ፲/ፇ ዆ ኻኺ.኿ from the street canyon with trees in the middle.

From the contour plots in Figures 6.6, 6.7 and 6.8 it can be seen that both green facades and trees
influence the magnitude of the total velocity. It seems that the green facades slows down the air flow,
whereas the air flow around the trees is much higher.

Furthermore, profile plots are made at street level (𝑧/𝐻 = 0.1), halfway in the canyon (𝑧/𝐻 = 0.5)
and just above the buildings (𝑧/𝐻 = 1.1). These plots only display the values inside the street canyon
(9 < 𝑥/𝐻 < 10).

(a) (b) (c)

Figure 6.9: Profile plots of the magnitude of the total velocity at street level, halfway the canyon and just above the canyon

From the profile plots in Figure 6.9 can be seen that the green facade and the trees influence the
magnitude of the total velocity on all three heights.

At street level the street canyon with trees has the highest velocity. This is probably due to the
circulation of the air under the canopy.
Halfway in the canyon 𝑧/𝐻 = 0.5, the green facade has little impact in terms of velocity |𝑢|. The green
facade causes a smaller velocity near the walls. For the trees, this intersection goes through the trees,
so logically the velocity inside the canopy is small with high peaks near the wall. These high peaks
indicate a circulation around the canopy.
Just above the street canyon 𝑧/𝐻 = 1.1, trees and green facades also influences the velocity. Both
vegetation options cause smaller values of the velocity.
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6.3. Turbulent Kinetic Energy

In Figures 6.10, 6.11 and 6.12 the contour plots of the turbulent kinetic energy in the street canyon
are showed at 𝑦/𝐻 = 10.5 for the empty street canyon, the street canyon with green facades and the
street canyon with trees. The turbulent kinetic energy is a measure of turbulence of the air flow.

Figure 6.10: Contour plot of the turbulent kinetic energy at ፲/ፇ ዆ ኻኺ.኿ from the street canyon without vegetation.

Figure 6.11: Contour plot of the turbulent kinetic energy at ፲/ፇ ዆ ኻኺ.኿ from the street canyon with the green facades.
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Figure 6.12: Contour plot of the turbulent kinetic energy at ፲/ፇ ዆ ኻኺ.኿ from the street canyon with trees in the middle.

From the contour plots of the TKE in Figure 6.10, 6.11 and 6.12 that the trees in the street canyon
influence the TKE much more than the green facades do. Especially, at the right of the street canyon,
the trees cause higher values of the TKE.

Profile plots are made at street level (𝑧/𝐻 = 0.1), halfway in the canyon (𝑧/𝐻 = 0.5) and just above
the buildings (𝑧/𝐻 = 1.1). These plots only display the values inside the street canyon (9 < 𝑥/𝐻 < 10).

(a) (b) (c)

Figure 6.13: Profile plots of the turbulent kinetic energy at street level, halfway the canyon and just above the canyon

From the profile plots in Figure 6.13 can be seen that the green facade and the trees influence the
turbulent kinetic energy on all three heights. At street level and halfway the canyon, the TKE of the
street canyon with trees is much higher than for the empty street canyon and the street canyon with
green facades. On the contrary, the TKE of the street canyon with trees is lower than the TKE of the
other two situations just above the street canyon.

6.4. Temperature
In Figures 6.14, 6.15 and 6.16 the contour plots of the temperature in the street canyon are showed at
𝑦/𝐻 = 10.5 for the empty street canyon, the street canyon with green facades and the street canyon
with trees.
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Figure 6.14: Contour plot of the temperature at ፲/ፇ ዆ ኻኺ.኿ from the street canyon without vegetation.

Figure 6.15: Contour plot of the temperature at ፲/ፇ ዆ ኻኺ.኿ from the street canyon with the green facades.
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Figure 6.16: Contour plot of the temperature at ፲/ፇ ዆ ኻኺ.኿ from the street canyon with trees in the middle.

The impact of the different locations of vegetation on air flow can be assessed by comparing Figures
6.14, 6.15 and 6.16. As expected, both the green facades and the trees display a difference in the
temperature distribution compared to the empty street canyon. In the empty street canyon, there is a
uniform distribution of 20∘𝐶 everywhere. The green facade obviously cools the volume near the facade
down the most. However, the temperature of the whole street canyon is lowered by the green facades.
The trees also cool down the street canyon. Inside the tree canopy the temperature is lowered enor-
mously. However, on the ground and on the right side of the street canyon the temperature drop is
very small.

To take a closer look at the differences between the effect of the green facades and the trees,
profile plots are made at street level (𝑧/𝐻 = 0.1), halfway in the canyon (𝑧/𝐻 = 0.5) and just above
the buildings (𝑧/𝐻 = 1.1). These plots only display the values inside the street canyon (9 < 𝑥/𝐻 < 10).

(a) (b) (c)

Figure 6.17: Profile plots of the temperature at street level, halfway the canyon and just above the canyon

From the profile plots in Figure 6.17 can be seen that the green facade and the trees influence the
temperature on all three heights.
However, as already concluded from the contour plots, the drop in temperature at street level for the
street canyon with green facades is significant. Especially close to the facades, the temperature is 4∘𝐶
lower than without vegetation and with trees in the street canyon. For the quality of life of citizens,
the temperature at street level is an important parameter.

Halfway the canyon, the temperature drop of the street canyon with trees is the highest. Inside
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the tree canopy the lowest probed temperature is 12.5∘𝐶. This temperature drop is as expected, since
at this height, the temperatures in the middle of the canyon are extracted from inside the tree canopy.
Although this drop is also expected in experiments, the specific strength of this drop in the simulation
is much stronger than that.

Not only the green facades cause temperature drops halfway the canyon, also the green facades
cause a temperature drop. Although, the drop is less than at the street level, the temperature dropped
at least 1∘𝐶.
Just above the canyon (𝑧/𝐻 = 1.1), the trees in the canyon and the green facades also generate a drop
in temperature. The drop is the highest for the street canyon with trees. For both the green facades
and the trees, the drop is the highest at the left side of the canyon. At the right side of the canyon
both temperature distributions approach the temperature of the empty street canyon.

Earlier research by Gromke et al. [5] reported different conclusions regarding the temperature
effects of these greening options. Their research noticed that the cooling effect of green facades on
temperature in the street canyon was bounded to only the near surroundings of the walls. However,
this research modelled the green facades differently. They took into account that the facades are only
partly available for greening. Because of windows, balconies and other openings in the facade, the
average leaf area indices of the facade are modelled lower. They assumed a coverage fraction of 50%,
where the set up of the simulations of this research assumed full coverage. They used a different
leaf area density of the green facades (leaf area indices between 0.25 and 1.5𝑚ኼ/𝑚ኼ ). Finally, the
research of Gromke [5] used a volumetric cooling power for the green facades of 187.5𝑊/𝑚ኽ (against
250𝑊/𝑚ኽ in this research). In conclusion, Gromke found a smaller cooling effect of the green facades
than in this research.
Gromke also simulated a set up with a avenue-tree row. Although, the set up differs, the results can
be compared roughly. Gromke et al. noticed a cooling effect due to the trees at the entire pedestrian
level.





7
Implementation of the Van Leer

limiter

From the theory from Chapter 2 about modelling airflow and Chapter 3 about temperature distributions
in urban areas and Chapter 4 about numerical methods, a model can be developed. However, building
such a model up from scratch is very complicated and time consuming. To gain insight in the discussed
concepts, a simplified case is studied and implemented in Python in this section.

7.1. Simple Advection Equation in Python
In the simplified case studied in this section, the behaviour of the Van Leer limiter can be analysed when
using a High Resolution method. To illustrate the behaviour of the limiter, first order upwind and the
Beam-Warming method are also implemented. Comparing these three yields more understanding of
the functioning of the limiter. The equations 2.3 and 3.3 can be reduced to a basic advection equation.
This simplified equation is the starting point:

𝜕𝑞
𝜕𝑡 + �̄�

𝜕𝑞
𝜕𝑥 = 0 with �̄� = 1 and initial condition 𝑞(𝑥, 0) = 𝑓(𝑥) (7.1)

For this problem we take periodic boundary conditions in space and 𝑥 ∈ [−5, 5]. Furthermore, we
have 𝑡 ∈ [0, 𝑇], where 𝑇 is chosen equal to 5 periods.

First order upwind is the simplest upwind scheme and is given by:

{
፮ᑟᎼᎳᑚ ዅ፮ᑟᑚ

ጂ፭ + �̄� ፮
ᑟ
ᑚ ዅ፮ᑟᑚᎽᎳ
ጂ፱ = 𝑓(𝑥) for �̄� > 0

፮ᑟᎼᎳᑚ ዅ፮ᑟᑚ
ጂ፭ + �̄� ፮

ᑟ
ᑚᎼᎳዅ፮ᑟᑚ
ጂ፱ = 𝑓(𝑥) for �̄� < 0

(7.2)

Beam-Warming is a second order method. The Beam-Warming second-order upwind method dis-
cretises the advection equation in the following way:

{
፮ᑟᎼᎳᑚ ዅ፮ᑟᑚ

ጂ፭ + �̄� ኽ፮
ᑟ
ᑚ ዅኾ፮ᑟᑚᎽᎳዄ፮ᑟᑚᎽᎴ

ኼጂ፱ = ፮̄Ꮄጂ፭
ኼ

፮ᑟᑚ ዅኼ፮ᑟᑚᎽᎳዄ፮ᑟᑚᎽᎴ
ጂ፱Ꮄ for �̄� > 0

፮ᑟᎼᎳᑚ ዅ፮ᑟᑚ
ጂ፭ − �̄� ኽ፮

ᑟ
ᑚ ዅኾ፮ᑟᑚᎼᎳዄ፮ᑟᑚᎼᎴ

ኼጂ፱ = ፮̄Ꮄጂ፭
ኼ

፮ᑟᑚ ዅኼ፮ᑟᑚᎼᎳዄ፮ᑟᑚᎼᎴ
ጂ፱Ꮄ for �̄� < 0

(7.3)

In the Appendix A the Python code is attached.
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(a) Upwind (b) Beam-Warming

(c) Van Leer (d) All methods

Figure 7.1: Results from different numerical methods solving a simple advection equation

In Figure 7.1 the results for the different high resolution methods are plotted. In Subfigure (d) all
different methods are plotted in one figure.

In Subfigure (a) it can be seen that the first order method does not give very accurate results.
Especially at the boundaries of the step functions, the difference between the exact solution is signif-
icant. In Subfigure (b), the Beam-Warming method already gives better results at the boundaries of
the step functions. However, the Van Leer limiter has the closest approach to the exact solution with
sharp gradients at the boundaries of the step function.

7.2. Implementing the Van Leer limiter in the FORTRAN code
In Chapter 4 Total Variation Diminishing was discussed. One of the main purposes of this research, is
adding the Van Leer limiter to the numerical methods. In order to do so, the subroutine CELLUVW is
modified in the FORTRAN code. In this subroutine the new cell face values of different parameters,
such as the velocity component in the x, y and z-direction, are calculated. The new part of this sub-
routine is appended in Appendix B.

In the research of Manickathan et al. [12] the Linear Upwind Difference Scheme is used to model
the convection terms in the RANS equations. However, since the LUDS scheme is highly numerically
diffusive, this could have an impact of the performance of our simulations. In the thesis of Espen Tiel-
rolff [10] the QUICK and CDS is implemented in the FORTRAN code. As expected, the used differencing
scheme had some effect on the obtained flow field.

With implementing a high resolution method in the FORTRAN, the goal is to achieve a better accu-
racy in smooth flow and better resolution of sharp gradients.

7.3. Results: Comparison UDS and Van Leer limiter
To analyse the implemented Van Leer limiter, both UDS and Van Leer limiter are used to calculate the
momentum terms. The same procedure is used as in Chapter 5 and Chapter 6 with the only difference
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that 100% Van Leer limiter is used in stead of UDS. This is done for the empty street canyon, the street
canyon with green facades and the street canyon with trees in the middle. The simulations yielded
good convergence of the residuals. To further extend the analysis, the simulations are also executed
using different percentages of QUDS. Unfortunately, these simulations yielded unstable results and the
residuals did not meet the convergence criterion.

The velocity profiles are extracted and displayed in Figure 7.2.

Empty: (a) Street level (b) Halfway (c) Just Above

Facade: (a) Street level (b) Halfway (c) Just Above

Tree: (a) Street level (b) Halfway (c) Just Above

Figure 7.2: Magnitude of the total velocity: Van Leer limiter and UDS results compared for the empty street canyon, the street
canyon with green facades and the street canyon with trees

The results for the empty canyon show that the Van Leer and UDS yield different numerical values.
Especially at street level (Figure 7.2: Empty (a)), the TVD and UDS simulations differ quite much. The
shape of the Van Leer and UDS lines are really distinct. This is discussed below in more detail.
On the other hand, the shape of the simulations of the halfway and just above figure for the empty
street canyon are qualitatively seen similar.

On the contrary, the Van Leer and UDS simulations with vegetation resemble each other much
better. The results of the green facade yields almost no differences between UDS and Van Leer. Lastly,
the results of the tree option give some small differences between the Van Leer limiter and Van Leer.
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Street level Empty: (a) U (b) V (c) W

Figure 7.3: Profile plots of the three velocity components at street level: Van Leer limiter and UDS results of the empty street
canyon

In Figure 7.3 the results of the Van Leer and UDS simulations of the three velocity components
are showed. 𝑈 is the velocity component in the 𝑥-direction, 𝑉 the component in the 𝑦-direction and
𝑊 the component in the 𝑧-direction. It is visible that the difference between Van Leer and UDS for 𝑉
contributes the most to the shape difference of the magnitude of the total velocity component in Figure
7.2. A possible explanation is that the method is very sensitive low to the ground.

The turbulent kinetic energy profiles are extracted and displayed in Figure 7.4.
In general, the differences between Van Leer and UDS for the turbulent kinetic energy are smaller

than in the velocity profiles. Just as with the velocity profiles, the profiles of empty street canyon differ
the most. The results of the street canyon with green facades are almost identical for Van Leer and
UDS. The results of the street canyon with trees show some minor differences.
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Empty: (a) Streetlevel (b) Halfway (c) Just Above

Facade: (a) Streetlevel (b) Halfway (c) Just Above

Tree: (a) Street level (b) Halfway (c) Just Above

Figure 7.4: Turbulent kinetic energy: Van Leer limiter and UDS results compared for the empty street canyon, the street canyon
with green facades and the street canyon with trees





8
Conclusions and Recommendations

8.1. Conclusions
Simulations are performed to obtain knowledge about the influence of vegetation in a street canyon
and to validate the implementation of numerical methods that are used to calculate the influence of
vegetation on the transport of heat. To this end, the wind tunnel experiments of Gromke [5] are
simulated.

The results regarding the velocities in the street canyon are in line with the expectations. From
the simulations, the conclusion can be drawn that trees in a street canyon have a bigger influence
on the vertical velocity than the green facade. The tree option causes higher values of the vertical
velocity close to the wall. In the results of the simulations of the street canyon with green facades
and the empty street canyon, some unexpected behaviour is detected: only positive values are seen
in the street canyon, whereas both positive and negative values are expected, which causes a natural
circulation flow. The latter is also seen in the experiments and simulation by Gromke [20]. A possible
explanation is that one of the simulation settings is not in line with Gromke’s research.

From the profile plots, it can be concluded that the street canyon with trees has the highest mag-
nitude velocity. This is probably due to the circulation of the air under the canopy of the trees. The
turbulent kinetic energy is also influenced by the vegetation. The green facades have little influence
on the TKE, whereas the integration of trees in the street canyon influence the TKE much more.

The simulations involving temperature showed significant effects of the vegetation in the street
canyon. At street level, the green facades yielded a stronger cooling in the canyon than trees. How-
ever, the cooling effect of trees is stronger halfway the canyon and just above the canyon in comparison
with green facades. The contour and profile plots of the street canyon with trees suggests that the
cooling power is stronger than one would expect in a real street canyon experiment. The defined sink
strength

Although this drop is also expected in experiments, the specific strength of this drop in the simulation
is much stronger than that.

The last research question concerned the implementation of a new numerical method to he Compu-
tational Fluid Dynamics model, written in FORTRAN: a Higher Order Scheme with the Van Leer limiter.
The simulations with this new numerical method yielded very similar results compared with the UDS
and QUDS simulations. One outlier is noticed in the velocity component of the vertical direction for
the empty street canyon. A possible explanation could be the sensitivity of the method near the ground.

8.2. Recommendations
On the basis of this research and conclusions some recommendations can be formulated for further
research.

First of all, it is suggested to improve the set up of the street canyon. By doing this, the behaviour
of the vertical velocity component is likely to behave more naturally. A suggestion to improve the set
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up is to expand the set up with a total of 10 sequential buildings. If the results in the last street canyon
are analysed, the situation is probably more in line with a real life scenario.

As discussed in Section 8.1, the cooling power of the trees is stronger than one would expect in
an experiment. Therefore, it is recommended to test different cooling powers of the vegetation. The
predefined sink-strength can be fine-tuned.

In the temperature simulations, the buildings are modelled as solid blocks. However, this model
assumption can be argued. In modern cities, buildings can be seen as a heat source term. For exam-
ple, air conditioners can raise the outside temperature.

The study of the effect of vegetation in a street canyon could be extended in the future by compar-
ing combinations of vegetation and adjusting the parameters of the green facades. In this research a
full coverage of the facades is treated, but a coverage of 50% is more reasonable.

The results in Chapter 7 are made with the first simulations of the implementation of the Van Leer
limiter. In the future, more simulations need to be made to test the implementation more thoroughly.
Based on the performed simulations in this research, several recommendations are made for further
research. A first suggestion is to extend this limiter, so that it can solve the temperature part. Now
only the momentum equations are solved. Because the temperature gives sharper gradients, the
differences between the Van Leer simulations and the UDS and QUDS simulations are presumably
larger. Furthermore, the numerical methods could be extended by adding another limiter. In Appendix
B, the Koren scheme is already added to the code. This scheme can be tested as well. Furthermore,
it is recommended to compare the results of the Van Leer limiter to the results using QUDS.
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A
Python code from Chapter 6

import sc i py . sparse
import sc i py as sc
import matp l o t l i b . pyp lo t as p l t
from sc i py . l i n a l g import norm
import numpy as np

�I n i t i a l i z a t i o n

f ancy_p lo t s = Fa l se

Nx = 200
dx = 10/Nx
xfaces = np . l i n space (−5 ,5 ,Nx+1)
xcen = np . zeros (Nx)

for i in range ( len ( x faces )−1):
xcen [ i ]=( xfaces [ i ]+xfaces [ i +1])/2

T = 15
Nt = 400
dt = T/ Nt
u = 1
CFL = u*dt / dx
�CFL i s the convergence cond i t i on by ––CourantFr iedr i chsLewy

print ( ”The␣CFL␣number␣ i s ␣equal␣ to␣%.3f . ” %CFL )

q_upw = np . zeros ( (Nx , Nt ) )
q_beam = np . zeros ( (Nx , Nt ) )
q_vanLeer = np . zeros ( (Nx , Nt ) )

s o l u t i o n = np . zeros ( (Nx , Nt ) )

for j in range ( Nt ) :
for i in range ( len ( xcen ) ) :

i f −3<=(xcen [ i ]−u*dt* j+5)%10−5<=−1:
s o l u t i o n [ i , j ]=(1−np . cos (np . p i *(( xcen [ i ]−u*dt* j +5)%10−5−1)))/2

e l i f 1<=(xcen [ i ]−u*dt* j+5)%10−5<=3:
so l u t i o n [ i , j ]=1
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else :
s o l u t i o n [ i , j ]=0

q_upw[: ,0]= so l u t i o n [ : , 0 ]
q_beam[: ,0]= so l u t i o n [ : , 0 ]
q_vanLeer [: ,0]= so l u t i o n [ : , 0 ]

� Upwind

def solut ionve_upw (q_upw , CFL ) :
i f CFL>0:

maind iag iona l=(1−CFL)*np . ones (Nx)
lowerd iagona l = CFL*np . ones (Nx)
A = sc . sparse . d iags ( [ maindiagonal , lowerd iagona l ] , [0 , −1] , format=” l i l ” )
A[0 ,Nx−1]=CFL

e l i f CFL<0:
maindiagonal = (1+CFL)*np . ones (Nx)
upperdiagonal = −CFL*np . ones (Nx)
A = sc . sparse . d iags ( [ maindiagnonal , upperdiagnonal ] , [0 , 1] , format=” l i l ” )
A[Nx−1,0]=−CFL

A = sc . sparse . cs r_mat r i x (A)

for j in range (1 , Nt ) :
q_upw [ : , j ]=A . dot (q_upw [ : , j −1])

return q_upw

q_upw = solut ionve_upw (q_upw , CFL )

num,= p l t . p l o t ( xcen , q_upw [ : , Nt−1] , l a b e l= ’ Upwind ’ )
exact , = p l t . p l o t ( xcen , s o l u t i o n [ : , Nt−1] , l a b e l= ’ Exact ’ )
p l t . x l a be l ( ’ x ’ , f o n t s i z e =15)
p l t . legend ( handles=[num, exact ] )
Error_upw=so l u t i o n [ : , Nt−1]−q_upw [ : , Nt−1]
normError_upw=norm( Error_upw )

�Beam−Warming

def solve_beam (q_beam , CFL ) :
i f CFL>0:

maindiagnonal = (1−CFL*3/2+(CFL**2)/2)*np . ones (Nx)
lowerd iagnona l = (2*CFL−CFL**2)*np . ones (Nx)
lowlowerd iagnonal = (−CFL/2+(CFL**2)/2)*np . ones (Nx)
A = sc . sparse . d iags ( [ maindiagnonal , lowerdiagnonal , lowlowerd iagnonal ] , [0 ,−1 ,−2] ,format=” l i l ” )
A[0 ,Nx−1]=2*CFL−CFL**2
A[0 ,Nx−2]=−CFL/2+(CFL**2)/2
A[1 ,Nx−1]=−CFL/2+(CFL**2)/2

e l i f CFL<0:
maindiagnonal = (1+CFL*3/2+(CFL**2)/2)*np . ones (Nx)
upperdiagnonal = (−2*CFL−CFL**2)*np . ones (Nx)
upupperdiagnonal = (CFL/2+(CFL**2)/2)*np . ones (Nx)
A = sc . sparse . d iags ( [ maindiagnonal , upperdiagnonal , upupperdiagnonal ] , [0 ,1 ,2 ] , format=” l i l ” )
A[Nx−1,0]=−2*CFL−CFL**2
A[Nx−1,1]=CFL/2+(CFL**2)/2
A[Nx−2,0]=CFL/2+(CFL**2)/2
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A = sc . sparse . cs r_mat r i x (A)
� This i s a Compressed Sparse Row matr ix

for j in range (1 , Nt ) :
q_beam [ : , j ]=A . dot (q_beam [ : , j −1])

return q_beam

q_beam = solve_beam (q_beam , CFL )
num,= p l t . p l o t ( xcen , q_beam [ : , Nt−1] , l a b e l= ’Beam−Warming ’ )
exact , = p l t . p l o t ( xcen , s o l u t i o n [ : , Nt−1] , l a b e l= ’ Exact ’ )
p l t . x l a be l ( ’ x ’ , f o n t s i z e =15)
p l t . legend ( handles=[num, exact ] )

Error_beam=so l u t i o n [ : , Nt−1]−q_beam[ : , Nt−1]
normError_beam = norm( Error_beam )

�Def ine High Order with van Leer l i m i t e r as a func t i on

def so lve_vanLeer ( q_vanLeer , CFL , u ) :
theta = −5.0*np . ones (Nx+1)
phi = −2000

def ev_theta (q , u ) :
i f u>0:

�boundary va lues at l e f t
i f (q[0]−q[Nx−1]) != 0:

theta [0]=(q[Nx−1]−q[Nx−2])/(q[0]−q[Nx−1])
else :

theta [0]=2000
i f (q[1]−q [0 ] ) != 0:

theta [1]=(q[0]−q[Nx−1])/(q[1]−q [0 ] )
else :

theta [1] = 2000
�i n t e r n a l va lues
for i in range (2 , len ( theta )−1):

i f (q [ i ]−q[ i −1]) != 0:
theta [ i ]=(q[ i −1]−q[ i −2])/(q [ i ]−q[ i −1])

else :
theta [ i ]=2000

�boundary va lues at r i g h t
theta [Nx]= theta [0]

else :
theta [Nx]=2000

e l i f u<0:
�boundary va lues at r i g h t
i f (q[0]−q[Nx−1]) != 0:

theta [Nx]=(q[1]−q [ 0 ] ) / ( q[0]−q[Nx−1])
else :

theta [Nx]=2000
i f (q [Nx−1]−q[Nx−2]) != 0:

theta [Nx−1]= (q[0]−q[Nx−1])/(q [Nx−1]−q[Nx−2])
else :

theta [Nx−1]=2000
�i n t e r n a l va lues
for i in range (1 , len ( theta )−3):
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i f (q [ i ]−q[ i −1]) != 0:
theta [ i ]=(q[ i +1]−q[ i ] ) / ( q [ i ]−q[ i −1])

else :
theta [ i ]=2000

theta [0]= theta [Nx]
else :

print ( ”PLEASE␣CHECK! ␣u=0?␣ I s ␣ tha t ␣ co r r e c t ? ” )
return theta

def ev_phi ( theta ) :
ph i=( theta+np . abso lu te ( theta ))/(1+np . abso lu te ( theta ) )
return phi

A = np . zeros ( (Nx ,Nx ) )

for j in range (1 , Nt ) :
theta = ev_theta ( q_vanLeer [ : , j −1] ,u )
�assemble c o e f f i c i e n t matr ix at each time step
i f u>0:

for ind in range (Nx ) :
A[ ind , ind]=1−CFL+0.5*CFL*(1−CFL )*( ev_phi ( theta [ ind+1])+ev_phi ( theta [ ind ] ) )
i f ind >0:

A[ ind , ind−1]=CFL−0.5*CFL*(1−CFL)*ev_phi ( theta [ ind ] )
i f ind<Nx−1:

A[ ind , ind+1]=−0.5*CFL*(1−CFL)*ev_phi ( theta [ ind +1])
A[0 ,Nx−1]=CFL−0.5*CFL*(1−CFL)*ev_phi ( theta [0 ] )
A[Nx−1,0]=−0.5*CFL*(1−CFL)*ev_phi ( theta [Nx ] )
As = sc . sparse . cs r_mat r i x (A)
q_vanLeer [ : , j ]=As . dot ( q_vanLeer [ : , j −1])

e l i f u<0:
for ind in range (Nx ) :

A[ ind , ind]=1+CFL−0.5*CFL(1+CFL )*( ev_phi ( theta [ ind+1])+ev_phi ( theta [ ind ] ) )
i f ind >0:

A[ ind , ind−1]=0.5*CFL*(1+CFL)*ev_phi ( theta [ ind ] )
i f ind<Nx−1:

A[ ind , ind+1]=−CFL+0.5*CFL*(1+CFL)*ev_phi ( theta [ ind +1])
A[0 ,Nx−1]= 0.5*CFL*(1+CFL)*ev_phi ( theta [0 ] )
A[Nx−1,0]=−CFL+0.5*CFL*(1+CFL)*ev_phi ( theta [Nx ] )
As = sc . sparse . cs r_mat r i x (A)
q_vanLeer [ : , j ]=As . dot ( q_vanLeer [ : , j −1])

else :
print ( ”PLEASE␣CHECK! ␣u=0?␣ I s ␣ tha t ␣ co r r e c t ? ” )

return q_vanLeer

q_vanLeer = solve_vanLeer ( q_vanLeer , CFL , u )

num,= p l t . p l o t ( xcen , q_vanLeer [ : , Nt−1] , l a b e l= ’ van␣Leer ’ )
exact , = p l t . p l o t ( xcen , s o l u t i o n [ : , Nt−1] , l a b e l= ’ Exact ’ )
p l t . x l a be l ( ’ x ’ , f o n t s i z e =15)
p l t . legend ( handles=[num, exact ] )

Error_vanLeer=so l u t i o n [ : , Nt−1]−q_vanLeer [ : , Nt−1]
normError_vanLeer = norm( Error_vanLeer )

� P l o t a l l methods i n one f i g u r e
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p l t . p l o t ( xcen , q_upw [ : , Nt−1])
p l t . p l o t ( xcen , q_beam[ : , Nt−1])
p l t . p l o t ( xcen , q_vanLeer [ : , Nt−1])
p l t . p l o t ( xcen , s o l u t i o n [ : , Nt−1])
p l t . legend ( ( ’ Upwind ’ , ”Beam−Warming” , ”Van␣Leer ” , ” Exact ” ) )





B
TVD implementation in Fortran

SUBROUTINE CELUVW(NIE , NJE ,NKE , IDEW, IDNS , IDTB , &
FIF , FIS , FIT , ACFE ,ACFW, FCF )

!�������������������������������������������������������

! In t e rpo l a t e v e l o c i t y from center of gr idbox to gr id−faces

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! I n i t i a l i z e subrout ine

! Open modules
use INC_PAR
use INC_BBB
use INC_BUOY
use INC_COEFB
use INC_GEO
use INC_INDEX
use INC_OBSTACLE
use INC_TIME
use INC_UVW
use INC_COEF

! Don ’ t a l low i m p l i c i t d e c l a r a t i on of v a r i a b l e s
impl ic it none

! Dec lare v a r i a b l e s used in t h i s subrout ine
integer : : NIE , NJE ,NKE
integer : : IDEW, IDNS , IDTB
real , dimension (NXYZA) : : FIF
real , dimension (NXYZA) : : FIS
real , dimension (NXYZA) : : FIT
real , dimension (NXYZA) : : ACFE
real , dimension (NXYZA) : : ACFW
real , dimension (NXYZA) : : FCF
real : : AE1
real : : ARE
real : : AW1
real : : CE ,CW
real : : CH2 ,CH3
real : : DE
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real : : FLCF
real : : FXE ,FXW, FYN , FYS , FZT , FZB
real : : g11 , g12 , g21 , g22
real : : GAM
real : : GAME
integer : : INB ,INT , INN , INS , INE ,INW
integer : : INBE , INTE , INNE , INSE , INEE , INWE
integer : : INBS , INTS , INNS , INSS , INES , INWS
integer : : INBW
integer : : INP
integer : : LIK
integer : : LKK
real : : SHIGH1 , SHIGH2 , SHIGH3
real : : SUEU , SUEV ,SUEW
real : : UB,UE ,UN,US ,UT
real : : VB , VE ,VN, VS , VT
real : : VOLE
real : : WB,WE,WN,WS,WT
real : : r1 , r2 , r3 , r4 , r5 , r6 ! TVD re l a t ed
real : : PSIE1 , PSIE2 , PSIE3 , PSIW1 , PSIW2 , PSIW3 !
real : : FUUDS, FVUDS ,FWUDS, FUHIGH , FVHIGH ,FWHIGH !
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
GAM=GDS( IU )

! . . . . . CALCULATE EAST ,TOP,NORTH CELL FACE
gr id_K : DO K=2,NKE
g r i d_ I : DO I=2,NIE
g r i d_J : DO J=2,NJE
INP=LK (K)+LI ( I )+J
INE=INP+IDEW
INW=INP−IDEW
INN=INP+IDNS
INS=INP−IDNS
INB=INP−IDTB
INT=INP+IDTB

INBS=INB−IDNS

INSE=INE−IDNS
INBE=INE−IDTB

INBW=INW−IDTB

INTE=INT+IDEW
INNE=INN+IDEW

! . . . . . INTERPOLATION FACTORS IN FIRST ,SECOND AND THIRD WAY
FXE=FIF ( INP )
FXW=1.−FXE
FYN=FIS ( INP )
FYS=1.−FYN
FZT=FIT ( INP )
FZB=1.−FZT

! . . . . . COMPONENTS OF THREE VECTORS
! . . . . . FIRST

DXKS=XC( INE)−XC( INP )
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DYKS=YC( INE)−YC( INP )
DZKS=ZC( INE)−ZC( INP )

! . . . . . SECOND
DXET=.5*(X( INP)−X( INS)+X( INB)−X( INBS ) )
DYET=.5*(Y( INP)−Y( INS)+Y( INB)−Y( INBS ) )
DZET=.5*(Z ( INP)−Z( INS)+Z( INB)−Z( INBS ) )

! . . . . . THIRD
DXZD=.5*(X( INP)−X( INB)+X( INS)−X( INBS ) )
DYZD=.5*(Y( INP)−Y( INB)+Y( INS)−Y( INBS ) )
DZZD=.5*(Z ( INP)−Z( INB)+Z( INS)−Z( INBS ) )

! . . . . . SECOND X THIRD DEFINE ALWAYS CF AREA
B11=DYET*DZZD−DYZD*DZET
B12=DXZD*DZET−DXET*DZZD
B13=DXET*DYZD−DYET*DXZD
B21=DZKS*DYZD−DZZD*DYKS
B22=DXKS*DZZD−DXZD*DZKS
B23=DXZD*DYKS−DXKS*DYZD
B31=DYKS*DZET−DYET*DZKS
B32=DZKS*DXET−DZET*DXKS
B33=DXKS*DYET−DXET*DYKS

ARE=B11**2+B12**2+B13**2

! . . . . . FIRST . ( SECOND X THIRD) = VOL
VOLE=DXKS*B11+DYKS*B12+DZKS*B13

! . . . . . CELL FACE
GAME=(VIS ( INP)*FXW+VIS ( INE)*FXE ) /VOLE

! . . . . . EXPLICIT PART OF DIFFUSION FLUXES
UE=U( INP)*FXW+U( INE)*FXE
VE=V( INP)*FXW+V( INE)*FXE
WE=W( INP)*FXW+W( INE)*FXE
UB=(U( INB)*FXW+U( INBE)*FXE)*(1.−FIT ( INB))+UE*FIT ( INB )
VB=(V( INB)*FXW+V( INBE)*FXE)*(1.−FIT ( INB))+VE*FIT ( INB )
WB=(W( INB)*FXW+W( INBE)*FXE)*(1.−FIT ( INB))+WE*FIT ( INB )
UT=(U(INT)*FXW+U( INTE)*FXE)*FZT+UE*FZB
VT=(V(INT)*FXW+V( INTE)*FXE)*FZT+VE*FZB
WT=(W(INT)*FXW+W( INTE)*FXE)*FZT+WE*FZB
US=(U( INS)*FXW+U( INSE)*FXE)*(1.− FIS ( INS))+UE*FIS ( INS )
VS=(V( INS)*FXW+V( INSE)*FXE)*(1.− FIS ( INS))+VE*FIS ( INS )
WS=(W( INS)*FXW+W( INSE)*FXE)*(1.− FIS ( INS))+WE*FIS ( INS )
UN=(U( INN)*FXW+U(INNE)*FXE)*FYN+UE*FYS
VN=(V( INN)*FXW+V( INNE)*FXE)*FYN+VE*FYS
WN=(W(INN)*FXW+W(INNE)*FXE)*FYN+WE*FYS

! . . . . . GRAD FI +(GRAD FI )* I ; I =1 ,2 ,3
! . . . . . HELP COEFICIENTS FOR ALL THREE VELOCITIES (GRAD FI IS THE SAME)

CH2=B11*B21+B12*B22+B13*B23
CH3=B31*B11+B32*B12+B33*B13

SUEU=GAME*(CH2*(UN−US)+ &
CH3*(UT−UB)+ &

(B11*(U( INE)−U( INP))+B21*(UN−US)+B31*(UT−UB))*B11+ &
(B11*(V( INE)−V( INP))+B21*(VN−VS)+B31*(VT−VB))*B12+ &
(B11*(W( INE)−W( INP))+B21*(WN−WS)+B31*(WT−WB))*B13)

SUEV=GAME*(CH2*(VN−VS)+ &
CH3*(VT−VB)+ &
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(B12*(U( INE)−U( INP))+B22*(UN−US)+B32*(UT−UB))*B11+ &
(B12*(V( INE)−V( INP))+B22*(VN−VS)+B32*(VT−VB))*B12+ &
(B12*(W( INE)−W( INP))+B22*(WN−WS)+B32*(WT−WB))*B13)

SUEW=GAME*(CH2*(WN−WS)+ &
CH3*(WT−WB)+ &

(B13*(U( INE)−U( INP))+B23*(UN−US)+B33*(UT−UB))*B11+ &
(B13*(V( INE)−V( INP))+B23*(VN−VS)+B33*(VT−VB))*B12+ &
(B13*(W( INE)−W( INP))+B23*(WN−WS)+B33*(WT−WB))*B13)

! . . . . . DIFUSION COEFFICIENT
! . . . . . CONVECTION FLUXES − UDS
! . . . . . EXPLICIT PART OF CONVECTION FLUXES − GAMA*(CDS−UDS)

DE=GAME*ARE
FLCF=FCF ( INP )
CE=MAX(−FLCF ,ZERO)
CW=MAX( FLCF ,ZERO)
ACFE( INP)=DE+CE
ACFW( INE)=DE+CW

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! [ CENTRAL DIFFERENCING SCHEME (CDS) ]
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

CDS : IF (LCDS .EQ. 1 ) THEN
AE1=−(CE+FLCF*FXE)*GAM
AW1=−(CW−FLCF*FXW)*GAM
SHIGH1=0.
SHIGH2=0.
SHIGH3=0.
END IF CDS

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! [ LINEAR UPWIND DIFFERENCING SCHEME (LUDS) ]
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

LUDS : IF (LLUDS .EQ. 1 ) THEN
SHIGH1=0.
SHIGH2=0.
SHIGH3=0.
AW1=0.
AE1=0.

IF (K .GT . 2 .AND. K .LT .NK−1.AND. &
J .GT . 2 .AND. J .LT . NJ−1.AND. &
I .GT . 2 .AND. I .LT . NI−1) THEN

!
! sasa ’ s f i x − l l u d s : 11.07.2016 / on ly f low in x−d i r e c t i o n
!
! IF (K .GT . 5 .AND.K . LT .NK−4.AND. &
! J .GT . 5 .AND. J . LT . NJ−4.AND. &
! I .GT . 5 .AND. I . LT . NI−4) THEN

AE1=−(CE−CE*(1+FIF ( INP+IDEW)))*GAM
AW1=−(CW−CW*(2−FIF ( INP−IDEW)))*GAM

SHIGH1=−GAM*(CE*U( INP+2*IDEW)*FIF ( INP+IDEW) &
−CW*U( INP−IDEW)*(1.− FIF ( INP−IDEW) ) )

SHIGH2=−GAM*(CE*V( INP+2*IDEW)*FIF ( INP+IDEW) &
−CW*V( INP−IDEW)*(1.− FIF ( INP−IDEW) ) )
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SHIGH3=−GAM*(CE*W( INP+2*IDEW)*FIF ( INP+IDEW) &
−CW*W(INP−IDEW)*(1.− FIF ( INP−IDEW) ) )

END IF
END IF LUDS

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! [ QUADRATIC UPWIND DIFFERENCING SCHEME (QUDS) ]
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

QUDS : IF (LQUDS.EQ. 1 ) THEN
SHIGH1=0.
SHIGH2=0.
SHIGH3=0.
AW1=0.
AE1=0.

IF (K .GT . 2 .AND. K .LT .NK−1.AND. &
J .GT . 2 .AND. J .LT . NJ−1.AND. &
I .GT . 2 .AND. I .LT . NI−1) THEN

g11=((2−FIF ( INP−IDEW))* FIF ( INP)**2)/ &
(1+FIF ( INP)−FIF ( INP−IDEW) )

g12=((1−FIF ( INP))*(1− FIF ( INP−IDEW))**2)/ &
(1+FIF ( INP)−FIF ( INP−IDEW) )

g21=((1+FIF ( INP+IDEW))*(1− FIF ( INP ))**2)/ &
(1+FIF ( INP+IDEW)−FIF ( INP ) )

g22=(FIF ( INP+IDEW)**2*FIF ( INP ) ) / &
(1+FIF ( INP+IDEW)−FIF ( INP ) )

AE1=−(CE+CW*g11−CE*(1−g21+g22))*GAM
AW1=−(CW+CE*g21−CW*(1−g11+g12))*GAM

SHIGH1=−GAM*(CE*g22*U( INP+2*IDEW)−CW*g12*U( INP−IDEW) )
SHIGH2=−GAM*(CE*g22*V( INP+2*IDEW)−CW*g12*V( INP−IDEW) )
SHIGH3=−GAM*(CE*g22*W( INP+2*IDEW)−CW*g12*W(INP−IDEW) )

END IF
END IF QUDS

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! [ TOTAL VARIATION DIMINISHING SCHEME (TVD) ]
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Here we implement BOUNDED HIGHER−ORDER CONVECTIVE SCHEMES .
! based on presen ta t i on i n the f o l l ow i ng re fe rence :
! Waterson & Deconinck Journa l of Computat ional Phys i cs 224 (2007) pp . 182−207
! There they g ive genera l i zed rep resen ta t i on of many bounded schemes in f l u x l i m i t e r
! form . Among those are a l so To ta l Va r i a t i o n D imin i sh ing Schemes (TVD) , TVD being the
! s t ronger cond i t i on then j u s t ’ bounded ’ . For scheme to be TVD necessary cond i t i on i s
! tha t the f l u x l i m i t e r f unc t i on i s enclosed w i th in a smal l reg ion of the Sweby diagram .
! Check out the paper f o r more d e t a i l s .

TVD : IF (LTVD .EQ. 1 ) THEN

!+++++Find ’ r ’ . Th is i s un i v e r s a l f o r a l l TVD schemes . ++++++
!
! NOTE: We assume NON−UNIFORM RECTILINEAR GRID .
! I f the g r i d i s uniform , express ions are the same but can be s imp l i f i e d .
! I f the g r i d i s NON−OTHOGONAL we need to change the code a b i t .
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!
! The ’ r ’ i s shorten f o r ’ r a t i o ’ and what i s meant i s r a t i o of g rad ien t s on two faces .
! These two faces are present one ’ e ’ ( tha t changes too , i f ID East−West i s IDEW=NJ ,
! then our face i s ’ e ’ , i n other cases i f IDEW=1, then present face i s North face ’ n ’ ,
! i f IDEW=NIJ , present face i s Top face ’ t ’ . But l e t s keep th ings s imple and exp l a i n on ly f o r ’ e ’ .
! i t doesn ’ t change fo r North and Top c e l l face .
!
! To understand t h i s l e t s study f l u i d f low trough con t r o l volumes :
! _______________________________________________________________
! _ _ _ _ _ _
! _ ww w e ee _
! _ o WW ===> o W ===> o P ===> o E ===> o EE _
! _ _ _ _ _ _
! _ _ _ _ _ _
! _ ___________ _ ____________ _ ____________ _ ____________ _ ____________ _
!
! Here d i r e c t i o n i s from present c e l l ’ P ’ to East c e l l ’ E ’ j u s t f o r c l a r i t y .
! ’ INP ’ means − the va lue IN c e l l center P ,
! ’ INE ’ means − the va lue IN c e l l center E .
! Grad ient of U in x−ax i s d i r e c t i on , at c e l l face center ’ e ’
! i s the value d i f f e r en ce (U( INE)−U( INP ) ) d i v ided by
! the d i s tance between c e l l centers (XC( INE)−XC( INP ) )
! S im i l a r i s f o r c e l l face center ’w’ between ’ P ’ and ’W’ c e l l s . .
! Th is a l l ows us to de f ine
! . . . . . I f f low goes from P to E , i . e . the upwind c e l l o f ’ e ’ i s P .

r1 = (U( INE)−U( INP ))* (XC( INP)−XC(INW) ) / ( (U( INP)−U(INW))* (XC( INE)−XC( INP ) ) )
r2 = (V( INE)−V( INP ))* (YC( INP)−YC(INW) ) / ( ( V( INP)−V(INW))* (YC( INE)−YC( INP ) ) )
r3 = (W( INE)−W( INP ))* (ZC( INP)−ZC(INW) ) / ( (W( INP)−W(INW))* (ZC( INE)−ZC( INP ) ) )

!
! We an t i c i p a t e a l so the s i t u a t i o n where f low goes from E to P ,
! and the upwind c e l l i s E , wh i le the upwind face i s ’ ee ’
! . . . . . I f f low goes from E to P , i . e . the upwind c e l l o f ’ e ’ i s E .

r4 = (U( INP)−U( INE ))* (XC( INE)−XC( INEE ) ) / ( (U( INE)−U( INEE ))* (XC( INP)−XC( INE ) ) )
r5 = (V( INP)−V( INE ))* (YC( INE)−YC( INEE ) ) / ( ( V( INE)−V( INEE ))* (YC( INP)−YC( INE ) ) )
r6 = (W( INP)−W( INE ))* (ZC( INE)−ZC( INEE ) ) / ( (W( INE)−W( INEE ))* (ZC( INP)−ZC( INE ) ) )

! Having the grad ien t r a t i o ’ r ’ between grad ien t s at present face ’ e ’
! and an upwind face ( e i t h e r ’w’ or ’ ee ’ depending on a f low d i r e c t i o n ) ,
! we can now def ine f l u x l i m i t e r f unc t i on Ps i = Ps i ( r ) .
! References :
! B . van Leer , Towards the u l t ima te conserva t i ve d i f f e r en ce scheme . IV . A new approach to numer ica l convect ion , J . Comput . Phys . 23 (1977) 276
! N. P . Waterson & H. Deconinck , Design p r i n c i p l e s f o r bounded higher−order convect ion schemes − a un i f i e d approach Journa l of Computat ional Phys i cs 224 (2007) pp . 182−207

! . . . . . PSI f o r MUSCL scheme :
! . . . . . I f f low goes from P to E

PSIW1 = max( 0 . , min(2.* r1 , 0.5* r1 +0.5 , 2 . ) )
PSIW2 = max( 0 . , min(2.* r2 , 0.5* r2 +0.5 , 2 . ) )
PSIW3 = max( 0 . , min(2.* r3 , 0.5* r3 +0.5 , 2 . ) )

! . . . . . I f f low goes from E to P
PSIE1 = max( 0 . , min(2.* r4 , 0.5* r4 +0.5 , 2 . ) )
PSIE2 = max( 0 . , min(2.* r5 , 0.5* r5 +0.5 , 2 . ) )
PSIE3 = max( 0 . , min(2.* r6 , 0.5* r6 +0.5 , 2 . ) )

! Koren scheme !
! References :
! B . Koren , Upwind d i s c r e t i z a t i o n of the steady –NavierStokes equat ions , In t . J . Numer . Methods F l u i d s 11 (1) (1990) 99.
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! B . Koren , A robust upwind d i s c r e t i z a t i o n method fo r advect ion , d i f f u s i o n and source terms , i n : Vreugdenhi l , Koren ( Eds . ) , Numerical Methods f o r –
Advec t i onD i f f u s i on Problems , Vieweg , Braunschweig , 1993 , p . 117.
! . . . . . PSI f o r Koren scheme :
! twoth i rds = 2 . / 3 .
! oneth i rd = 1 . / 3 .
! . . . . . I f f low goes from P to E
! PSIW1 = max(0 . , min (2.* r1 , twoth i rds*r1+oneth i rd , 2 . ) )
! PSIW2 = max(0 . , min (2.* r2 , twoth i rds*r2+oneth i rd , 2 . ) )
! PSIW3 = max(0 . , min (2.* r3 , twoth i rds*r3+oneth i rd , 2 . ) )
! . . . . . I f f low goes from E to P
! PSIE1 = max(0 . , min (2.* r4 , twoth i rds*r4+oneth i rd , 2 . ) )
! PSIE2 = max(0 . , min (2.* r5 , twoth i rds*r5+oneth i rd , 2 . ) )
! PSIE3 = max(0 . , min (2.* r6 , twoth i rds*r6+oneth i rd , 2 . ) )

! . . . . . EXPLICIT CONVECTIVE FLUXES FOR HIGH ORDER BOUNDED SCHEMES
! �Flux_high_order_scheme = mass_f low_rate_trough_ce l l_ face_e * Phi_e�
! Phi_e i s found by ex t r apo l a t i on from upwind nodes , see eq . (3 .29) i n Thes is p ro fesso r Kenjeres .
! Add i t i o na l mu l t i p l i c a t i o n with PSI i s a pp l i c a t i o n of f l u x l im i t e r s ,
! see eq . (10) i n Waterson&Deconinck paper .

FUHIGH = CW*(U( INP ) + FXW*PSIW1*(U( INE)−U( INP ) ) ) + &
−CE*(U( INE ) + FXE*PSIE1*(U( INP)−U( INE ) ) )

! mass f l u x _ bounded i n t e r p o l a t i o n of v e l o c i t y to face _

FVHIGH = CW*(V( INP ) + FXW*PSIW2*(V( INE)−V( INP ) ) ) + &
−CE*(V( INE ) + FXE*PSIE2*(V( INP)−V( INE ) ) )

FWHIGH = CW*(W( INP ) + FXW*PSIW3*(W( INE)−W( INP ) ) ) + &
−CE*(W( INE ) + FXE*PSIE3*(W( INP)−W( INE ) ) )

!
! . . . . . EXPLICIT CONVECTIVE FLUXES FOR UDS

FUUDS=CW*U( INP)−CE*U( INE )
FVUDS=CW*V( INP)−CE*V( INE )
FWUDS=CW*W( INP)−CE*W( INE )

!
! . . . . . UPDATE SOURCE VECTORS WITH EXPLICIT PART OF DIFFUSION FLUXES (SUEU , SUEV , SUEW)
! AND SOURCES DUE TO DEFFERED CORRECTION FOR TVD SCHEME.

! . . . . . To put every th ing i n t o e x i s t i n g s t r u c t u r e with SHIGH1 , SHIGH2 , SHIGH3 , AW1, AE1 , we ’ l l do the f o l l ow i ng :
AW1=0.0
AE1=0.0
SHIGH1 = GAM*(FUUDS−FUHIGH)
SHIGH2 = GAM*(FVUDS−FVHIGH)
SHIGH3 = GAM*(FWUDS−FWHIGH)

! Here we used def fe red co r r e c t i o n approach f o r e x p l i c i t par t of convect ion terms .
! DEFERRED CORRECTION: UDS par t i s t rea ted i m p l i c i t l y and d i f f e r en ce between UDS and HIGH ORDER f l u x e x p l i c i t l y .
! GAM i s gamma − a defer red co r r e c t i on parameter which con t r o l s how much of high order f l u x
! i s added to source . I f GAM=0, we don ’ t add any , and we have pure UDS scheme , even i f we chose TVD scheme
! i n the input f i l e .

!
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END IF TVD

!
! . . . . . EXPLICIT PART OF DIFFUSION FLUXES (SUEU , SUEV ,SUEW) AND SOURCES DUE TO DEFERRED CORRECTION (SHIGH1/2/3)
!

SU( INP)=SU( INP)+AE1*(U( INE)−U( INP))+SUEU+SHIGH1
SV( INP)=SV( INP)+AE1*(V( INE)−V( INP))+SUEV+SHIGH2
SW( INP)=SW( INP)+AE1*(W( INE)−W( INP))+SUEW+SHIGH3

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! . . . . . . [ V e c t o r i z a t i o n procedure : ]
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

BP( INE)=AW1*(U( INP)−U( INE))−SUEU−SHIGH1
BT( INE)=AW1*(V( INP)−V( INE))−SUEV−SHIGH2
BB( INE)=AW1*(W( INP)−W( INE))−SUEW−SHIGH3

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

END DO gr i d_J
END DO g r i d_ I

END DO gr id_K

DO K=2,NKE
LKK=LK (K)
DO I=2,NIE
LIK=LKK+LI ( I )
DO J=2,NJE
INP=LIK+J+IDEW

SU( INP)=SU( INP)+BP( INP )
SV( INP)=SV( INP)+BT( INP )
SW( INP)=SW( INP)+BB( INP )

END DO ! J−loop
END DO ! I−loop

END DO !K−loop

DO IJK=ICST , ICEN
BP( IJK )=0.
BT( IJK )=0.
BB( IJK )=0.

END DO

RETURN

END SUBROUTINE CELUVW
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