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Abstract

This thesis investigates several kinds of models of describing multi-commodity dynamical 
ow. Three mod-
els have been developed for a spatial logistic network, on which packages are delivered by vehicles and another
model was developed to describe interactions between the customers, the stores and the deliverers, which does
not explicitly take delivery time into account like before. The former three models consist of an agent-based
model (ABM), and two di�erent (di�erential) equation-based models (EBMs). One of the EBMs is built from
the bottom up, and was created by averaging the randomness in the ABM. The other EBM was built top-down
and involved optimizing a general model with respect to some parameters, such that its solution resembles the
ABM solution as closely as possible.

The agent-based model is computationally intensive as it relies on a multitude of simulations to yield rep-
resentative solutions. On the 
ipside, it is easy to use and naturally leads to variances in package amount and
transportation time, which is not taken into account in the EBM, as it is by construction averaged out already.
Contrary to the ABMs, though, it is hard to incorporate congestion into the EBM, but a steady state can be
analytically described and it can be found numerically easily and quickly using Picard’s �xed point method. An
EBM with congestion is achievable, but integrating it numerically proves to be unstable, even for very small time
steps. Moreover, the needed memory is in the order of 20 GB and the integration takes 27 hours to perform.
Hence it can be concluded that the method, while demonstrating that creating a suitable EBM is possible, does
not work well enough yet. The considered models go through a start-up process, after which a steady state is
relatively quickly attained. It turns out that the EBMs do their job badly in this start-up phase, when applied
on networks with very secluded nodes. The EBM with congestion displays this behaviour too, but provides
accurate start-up processes for regular networks without secluded nodes, up to the steady state, after which it
diverges. This is promising, as Picard’s method gives an accurate steady state solution and the EBM gives an
accurate start-up process. Together they thence cover the entire solution.

When omitting congestion, the results of both models match up to a discretization error, which can be
remedied by re�ning the amount of time steps in both the ABM and EBM. This indicates that the models de-
scribe the same situation similarly and well. For larger networks, approximately beyond 40 nodes, the ABM
simulations begin to require processing power in the order of days and time step re�nement is not a feasible
tool anymore, so the congestionless EBM becomes more desirable. Hence, the di�erent models �nd their use
in di�erent cases and there is, except for exceedingly large networks, always an alternative to choose from. It is
furthermore useful to know that both models give similar results in relatively simple situations, as the models
might be adapted to work similarly in harder situations too.

Frustrated by the failure to produce a realistically functional EBM with congestion, the next attempt was
to try and create the EBM with the optimization approach. This turned out to be a fruitful exercise, as the
resulting EBM proved to be a reasonably good approximation. In the congestionless case, the start-up process
in the ABM contained too many discontinuities in the derivative resulting in an abrupt change from start-up
to steady state. This did not translate well to the EBM, but that is something that can possibly be improved
upon by tinkering a bit at the chosen shapes of functions and their parameters. With congestion, however, the
found EBM excels and almost completely overlaps with the ABM solution. This demonstrates that the chosen
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approach has a lot of potential and could possibly be used to create a better understanding of EBMs that de-
scribe ABMs and how to make them.

In the second part of the thesis, the focus shifted to a generalized model (GM) approach of underlying in-
teractions on multi-commodity dynamical 
ow networks; especially the dynamics describing order placement,
scheduling and delivery. Such a network is cyclic and contains a feedback loop, where customers are less likely
to order more products if they were recently delivered. This can range from someone not needing to purchase a
car if they just bought a brand new one to one not needing to order dinner when they just did so. Such networks
are in general described by four kinds of elasticities in this thesis, namely the elasticities to stock, inventory level,
saturation, and co-production. These in
uence di�erent parts in the network. For example, the negative elastic-
ities to inventory level model that high inventory levels inhibit more inventory production, to prevent build-up,
and low inventory levels allow for larger inventory production, to prevent drainage. The other elasticities ful�l
similar roles.

It turns out that, when only looking at a single motive, with one customer, one store, and one deliverer,
the network behaves predictably according to the explanations of the elasticities. In addition, it turns out that
increasing the elasticity to saturation brings a lot of instability, while making it strongly negative also destabilizes
the network. Increasing the elasticity to stock and decreasing the elasticity to inventory level both stabilize the
network, and decreasing the elasticity to co-production destabilizes the network in general. This is intuitive,
and has been veri�ed using the generalized models.

Using a bifurcation analysis enables the creation of precise stability regions in simpli�ed circumstances, by
taking all elasticities of the same kind uniform, which still give a somewhat representative idea of the network.
On the other hand, the networks have been investigated using the complementary statistical ensemble method.
This yields similar results to the bifurcation analysis, but allows for all parameters to be varied and can hence
lead to identi�cation of the most sensitive and in
uential parts. These sensitivities and in
uences are quanti�ed
and displayed, which portrays the relative importance of parts in the network.

Our performed analyses yield physically interesting results. For instance, by starting with a single motive
and building up to a larger network, it becomes clear that the overall shape of most bifurcation surfaces does
not change, only their size; adding more interactions leads to more bifurcation surfaces. This suggests that be-
haviour for smaller networks is inherited by larger networks with the smaller network as a sub-motive. At the
same time, an individual ensemble can sometimes yield signi�cantly di�erent results from the bifurcation anal-
ysis.

Another interesting result tells that blindly discriminating between customers in a network doubles the in-
stability in a network with one store and two customers. Another discussed example implies that having one
entity perform the same role in its multiple connected sub-networks destabilizes the network slightly. When
complicating the networks more, it turns out that adding more customers and, thereby, introducing the elas-
ticity to co-production, harshly destabilizes the network. This occurs even more so when stock is not assumed
in�nite. On the other hand, when considering two stores, this e�ect does not come up, as the co-production
takes place on other parts in the network, which are not directly a�ected by stock, and hence the simultaneous
introduction of both co-production and �nite stock can be identi�ed as strongly destabilizing.

Of course, these notions can be translated to other settings in other problems as well, and this is the beauty
of the generalized models. Without knowing any interactions speci�cally, it is possible to make non-trivial useful
statements about the stability of the network and how to improve it. This is then another complementary way
to analyze networks, next to ABMs and EBMs, adopted in this case to capture the complex network dynamics
in supply and transport systems.
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Introduction

Multi-commodity dynamical 
ow networks span a lot of ground, especially nowadays with the abundance of
network structures in everyday lives. In general, such networks can be employed in a variety of situations, with
a variety of interactions on those networks. Multi-commodity 
ow phenomena are omnipresent in virtually
everyone’s everyday life, ranging from for instance package delivery services to internet tra�c [7, 8] and signals
or particles sent between cells in any living being. All these examples can, to some extent, be modelled like multi-
commodity dynamical 
ow networks. In this thesis, two situations in particular will be under consideration.
1. Package 
ow on a logistic network, using agent-based and equation-based models, referred to as ABMs and
EBMs respectively. 2. Package delivery with explicitly taking order placement and order processing into account
using so-called generalized models. We next brie
y discuss both models.

The �rst considered problem is package 
ow in a logistic network. Conventionally, there are two ways to
model these phenomena. Agent-based models (ABMs), in which so-called agents act on predetermined deci-
sion rules, are being employed increasingly over the years, as computing power is more readily available. On
the other hand, equation-based models (EBMs), which refers to the collective of transport di�erential equa-
tions, have been studied extensively as they yield a deeper understanding of underlying interactions in such a
model. These dynamical 
ow problems have been treated before in for instance [9, 10, 11], however using dif-
ferent models. In this thesis, these two modelling approaches are investigated and compared speci�cally with a
package delivery context in mind, and hence the equations are tailored to satisfy such a setting.

In the ABM, every package delivery truck is a so-called agent, which may drive around the network picking
up and delivering packages, based on a certain set of decision rules. These decision rules basically constitute the
management policy, or scheduling entity of the delivery company. The ABM is then solved using simulations,
and the results are presented as averages over those simulations. Running su�ciently many simulations, often
takes longer than numerically solving di�erential equations.
On the 
ipside, the EBM is an attempt at creating a solution that looks most like the ABM, without the need for
simulations. This is tackled by averaging over the randomness in the ABM and deriving a di�erential equation
based on the decision rules.
In these models, each node generally generates its own commodities, which are demanded by the other nodes.
Thence these models constitute multi-commodity 
ow. For concepts such as package build-up and vehicle con-
gestion, the speci�c commodities and vehicles do not matter. Therefore, most of the analysis does not explicitly
distinguish between the di�erent commodities, while they need to be present to satisfy heterogeneous demands.
It is then of interest to investigate the accuracy of both models, their similarities and their runtimes to see how
well both models do and whether they can be employed at all. Such comparisons have been done before [12, 13],
a typical example of which is the SIR epidemic model treated in chapter 5 of [14]. However, it has mostly been
done for simple ABMs, whereas treating more complex ABMs and comparing those to their EBM counterparts
could possibly give some insight in whether this can readily be done for general ABMs.

After looking at the previous problem, the interest shifted to a di�erent kind of modelling altogether; Gen-
eralized modelling (GM). This method of modelling is suitable for networks on which the shape of the inter-
actions is unknown. This can be used to incorporate an analogon of the decision rules in the ABM. However,
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Introduction 4

in the ABMs considered in this thesis, these rules are generally not very complicated and depend linearly on the
demand and the available supply.
Because of that, and inspired by [1, 2], the package delivery problem is expanded such that it includes the social
interactions leading to order placement, the handling of these orders by a store entity, and moreover, customers
and delivery companies are split into separate nodes this time around, which takes away from the abstraction
in the ABM, but adds meaningful complexity to the GM. The nodes are thence no longer considered as ac-
tual physical locations, and this yields entirely di�erent network dynamics. This constitutes the second consid-
ered problem. The extended problem can then be analyzed by bifurcation analysis and the statistical ensemble
method. Gross et al. (2) discussed what happens for line and triadic motives. The network under consideration
in this thesis gives rise to a cyclic triangle motive, which to my knowledge has not yet been considered in the
literature. This makes the topic novel and opens up new kinds of interactions to be investigated.

The main use of GMs is however not to yield an explicit solution, but rather to investigate stability proper-
ties of the system, which is often of paramount importance in dynamical 
ow networks. As the precise shape of
interactions in the system is unknown, this is usually done for systems with a sizeable set of parameters. Think,
for instance, of Black Friday or Christmas sales and the strain these days put on stock and delivery in package

ow networks. It is hard to predict how much strain will be exercised on both of these entities, but one can
be sure that this strain is present and increased, when compared to the remainder of the year. GMs hence yield
results that complement ABMs, and are a counterpart to EBMs, as the interactions are necessarily known to be
able to solve ABMs and EBMs.

The main objective of this work is to compare these di�erent models, namely agent-based, equation-based,
and generalized models, for transport on networks.
The sections in this thesis are organized as follows: chapter 1 formally introduces the notations and less known
methods, like the GM analysis, used in this thesis. Thereafter, chapters 2 to 5 closely follow the structure of
my submitted paper [23], with more examples and discussion. Chapter 2 explains the ABM for the logistic
package tra�c network, along with a general algorithm and more speci�c choices and simpli�cations made in
this speci�c situation. In chapter 3, the equations describing the EBM counterpart of the ABM are developed,
with some earlier attempts presented in appendix A. Congestion is treated separately, as it introduces a plethora
of problems that have to be dealt with and which increase the complexity a lot. Having established this basis,
the applicability of these models is demonstrated on a line network in section 4, in which the solutions can still
be determined by hand. Consecutively, these models are also applied to larger networks, which allow for a more
meaningful assessment of their e�ectiveness. Chapter 6 concludes the EBM by attempting to reverse engineer
the equations starting from the ABM solutions, using optimization packages to solve for the parameters in a
chosen general model. Lastly, chapter 7 constitutes an extensive investigation of package delivery networks,
by parametrizing the entire system. The equations are then analysed in two ways: with a bifurcation analysis
to determine their stability regions and with a statistical ensemble method to determine the overall stability
without simplifying the parameter sets. The results of these models are concluded in chapter 8.



Chapter 1: Theory

Let us start o� by establishing some basic notation and some central non-trivial concepts used in this thesis, the
�rst of which being some necessary notation on graphs, which will mostly be used in chapter 3. The second
section contains a little bit of background on generalized models, which will be used in chapter 7.

1.1 Notation & Graphs

In general, we will be looking at package transport on (logistic) networks, which are represented by directed
graphs. In general, each node will produce its own commodity or commodities, which are demanded by other
nodes. Let us denote V as the set of nodes, labelled from 0 toN−1, whereN is the size of the network. Without
loss of generality, these indices both denote the location of the respective node and the commodities originat-
ing from this node (although a node can produce multiple commodities, but that extension is straight-forward).
Furthermore, E denotes the set of directed edges in the network graph, containing all e = (i, j), with i the out-
going node and j the ingoing node. Let Ni be the set of neighbouring nodes of i: Ni = {j : (i, j) ∈ E } ⊂ E ,
and N i = Ni ∪ {i}.
P denotes the set of available paths in the graph, with Pij ⊂P being the subset of available paths from node
i to node j, which is assumed to be non-empty, i.e. the graph is connected. Each such path is denoted by pijk,
where i, j ∈ V and the subscript k labels the chosen path between nodes i and j. pijk consists of an ordered
set of edges. `(i, j) denotes the weight of, or needed time to travel over, edge (i, j). Moreover, `(pijk) denotes
the length of path pijk; it is the sum of all the edges contained in pijk. Lastly, xij is the amount of packages
originating from node j, on node i, while xi is the amount of packages, summed over all commodities, i.e.
xi =

∑
j∈V xij , and Fij is the outgoing 
ow from node i to node j.

1.2 Generalized models

The discussion of generalized models (GMs) will be strongly based on a paper by Demirel et al. [1], and a paper
by Gross and Feudel [1, 3], whence the inspiration came to incorporate GMs in this thesis. The explanation of
GMs mostly follows the supplement of that paper, in order to illustrate how its analyses are performed.

Conventionally, dynamical 
ow systems, and, more precisely, supply systems, are modelled by agent-based
models (ABMs), control theory and discrete-event simulation. Borne out of ecology, however, GMs have re-
cently been adopted in supply networks to determine the stability of the network. The use of GMs brings the
advantage of not needing a lot of information on the relations in the network, and how variables depend on
each other. Hence, these models can be employed by only knowing the network structure itself. Additionally,
these models are relatively e�cient and light-weight, such that they can be feasibly run on larger networks.

A dynamical 
ow network can be modelled withN di�erential equations, such that we write

ẋ = G(x)− L(x), Jij(x) =
∂

∂xj
(Gi(x)− Li(x)) (1)

5



Chapter 1. Theory 6

x being the vector of variables. G(x) is some gain function and L(x) is some loss function, which corre-
sponds with production/delivery and consumption/out
ow of parts (partial products). A steady state of this
system occurs atG(x) = L(x). Conventionally, analysis around a steady state yields the stability of that steady
state. If the leading (largest) eigenvalue of the Jacobian of the system is negative, when evaluated at the steady
state, the system is stable. Otherwise, the system is unstable, with exception of 0 being the largest eigenvalue,
which is a special case, and in general requires further analysis.

As we generally do not explicitly knowG(x) andL(x), we cannot explicitly construct its Jacobian matrix,
J . However, one might for instance know that higher supply leads to higher 
ow, and hence ranges for the non-
zero matrix entries of J can be inferred, by general knowledge of the system dynamics. This yields a qualitative
description of the partial derivatives in equation 1. This can in general be done for all variables, xj , and all gain
and loss functions. One can take samples from these ranges and create a mesh, on each point of which one can
test for stability. These can then be averaged out to �nd an average stabilility for di�erent values of each variable.
This allows one to infer stability properties, but also sensitivity and in
uence properties of nodes and variables
in a network.

Concretely, in the context of supply networks, the variables in this thesis will be referred to as P , which
denote the parts that traverse the network. Additionally, G and L denote the 
ow of parts, which constitutes
the transformation into other parts. Let therefore, P ,G andL be scaled as follows;

p =
P

P ∗
, g(p) =

G(P )

G∗
, l(p) =

L(P )

L∗
. (2)

with P ∗, G∗, and L∗ the steady state values of P , G, and L respectively. This gives rise to the entries of the
Jacobian, around the stady state;

Jij = α(g
pj
i − l

pj
i ); g

pj
i =

∂gi
∂pj

, l
pj
i =

∂li
∂pj

(3)

in which α = G∗

P ∗ = L∗

P ∗ , which necessarily have to be equal in steady state.

In the remainder of this thesis, Gi and Li will simply be denoted by Fj for some indexing j. The stability
of the system, around a steady state p = 1, can hence be completely described by the elasticity parameters
f
pj
i . Moreover, using this framework, a concept of sensitivity and in
uence can be introduced. That is, if a

perturbation of a certain variable Pi results in a large disruption in the remainder of the network, this variable
is said to be in
uent. Similarly, if a variable is susceptible to perturbations in other variables, this variable is said
to be sensitive. Let v be the set of right eigenvectors of J , and w be the set of left eigenvectors of J . Then the
in
uences and sensitivities are de�ned by

Ini = ln

(∑
k

|w(k)
i |

Re(λk)

)
, Sei = ln

(∑
k

|v(k)
i |

Re(λk)

)
, (4)

as given in the supplement of Demirel et al. [1], which is a slight variation of the de�nition in Aufderheide
et al [4]. w(k) and v(k) here denote the eigenvectors pertaining to eigenvalue λk. These de�nitions are only
applicable just next to a bifurcation surface (i.e. with leading eigenvalue 0 < Re(λ) < 0.01, for instance), to
ensure that the ln won’t have a negative argument. However, there could in rare cases be an additional negative
eigenvalue such that−0.01 < Re(λ) < 0, which might still make the ln negative. These have to be discarded,
as the ln yields complex values otherwise. Regardless, the resulting in
uence and sensitivity should still be rep-
resentative.

In the paper by Aufderheide [4], it is argued that the right eigenvectors correspond to parts that react to a
given perturbation, and how strongly they do, whereas left eigenvectors correspond to the kind of perturbation



7 1.2. Generalized models

that can lead to a given response. The respective eigenvaluesλk then correspond with the strength of the reaction
to the perturbations. Therefore, the impact of a perturbation is introduced by

I = J−1K =
∑
k

v(k)w(k) ·K
λk

, (5)

in whichK is some perturbation vector. This sum is basically an expansion of the Jacobian into its eigenvectors.
Taking an average over possible perturbationsK yields equation 4, after taking the logarithm to keep numbers
manageable.

Using this framework, there are two possible directions in which to perform an analysis; a bifurcation anal-
ysis, or an analysis of the system using a statistical ensemble, both of which are elaborated upon in the following
sections.

1.2.1 Bifurcation Analysis

This route is concerned with exploring the bifurcation surfaces in the parameter space. That is, the parameter
space is divided into regions where the behaviour of the investigated steady state is either stable or unstable.
These regions are separated by bifurcation surfaces, on which the sign of an eigenvalue changes, which in turn
may change the stability of the system. Assuming a steady state at p = 1, the Jacobian of the system is de-
termined by the so-called elasticities, which are de�ned as the gpji and lpji from equation 3. However, as an
N -dimensional system may containN2 elasticities in the worst case, such a system cannot meaningfully be rep-
resented in a two or three dimensional space, as the dimensions have to be reduced a lot.

These elasticities can generally however be grouped together and still give meaningful insight into the prob-
lem. For instance, in the example of a supply network, when the arrival of incoming parts increases, the produc-
tion may increase. Conversely, when the demand of parts increases, the production is allowed to increase too, as
the parts can be conveyed. If such interactions happen often in a network, it is plausible to assume that similar
management policies, which are the physical equivalent of said elasticities, are employed at di�erent entities in
such a network.

Bifurcations arise in two di�erent ways; either the leading eigenvalue becomes zero, or a pair of complex
conjugate eigenvalues pass through the imaginary axis. In the former case, a saddle-node type bifurcation oc-
curs (i.e. a saddle-node, transcritical or pitchfork bifurcation). In the latter case, a Hopf bifurcation occurs,
which leads to local periodic solutions around the steady state.

Saddle-node type bifurcations can be found by solving Det(J) = 0, as the determinant of J is only zero
when an eigenvalue is zero. Hopf bifurcations can be found by solving Res(J) = 0, which denotes that the
so-called resultant of a matrix needs to be zero. The resultant of the Jacobian matrix is created by assuming that
there exists an eigenvalue pair λ− = −λ+. In the case of a Hopf bifurcation, these λ are purely imaginary.
Consequently, the characteristic polynomial of J should be determined, and in general it equals

P(λ) =
N∑
n=0

cnλ
n, (6)

in whichN is the size of the Jacobian matrix, or the system.
Evaluating P at both λ+ and λ− gives two equations, in which the even powered terms are the same, but the
odd powered terms di�er by a−-sign:

N∑
n=0

cnλ
n
+ = 0,

N∑
n=0

cn(−1)nλn+ = 0, (7)
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adding and subtracting both of which yields∑
0≤2m≤N

c2mλ
2m
+ = 0,

∑
0≤2m+1≤N

c2m+1λ
2m+1
+ = 0. (8)

Assuming λ+ 6= 0, the latter can be divided by λ+ and λ2
+ can be set to χ, which is the de�nition of the Hopf

number. Two symmetrical eigenvalues hence exist if∑
0≤2m≤N

c2mχ
m = 0,

∑
0≤2m+1≤N

c2m+1χ
m = 0, (9)

where χ < 0 if both eigenvalues are imaginary and, by extension, a Hopf bifurcation occurs. If χ > 0, a
real Hopf situation occurs, in which a homoclinic orbit is created, as there is a negative eigenvalue that induces
an attraction that is balanced by the repulsion from its symmetric positive eigenvalue. Lastly, when χ = 0, a
Bogdanov-Takens bifurcation occurs, and whenχ is unde�ned, the situation should be treated with more care,
as a more exotic bifurcation takes place.

Hence, an order N polynomial equation has been reduced to two order N2 polynomial equations. Equa-
tions (9) can further be reformulated to �nally create the resultant, in the following way; Let us denote the odd
equation byQ(χ) and the even equation by S(χ). For some χ0 satisfyingQ(χ0) = S(χ0) = 0, it holds that

Q(χ) = (χ− χ0)q(χ), S(χ) = (χ− χ0)s(χ), (10)

with the degree of q being less than the degree Q and the degree of s being less than the degree of S. This can
be written as

Q(χ)s(χ)−S(χ)q(χ) = 0. (11)

This equation only has non-trivial solutions for speci�c q and s. Rewriting q and s into the polynomial basis
changes 11 to a matrix equation, which can be formulated as follows:

Rz =



c1 c0 0 . . . 0
c3 c2 c1 . . . 0
...

...
... . . . ...

cN cN−1 cN−2 . . . c0

0 0 cN . . . c2

0 0 0 . . . c4
...

...
... . . . ...

0 0 0 . . . cN−1


z = 0, (12)

which only has non-trivial solutions ifRes(J) ≡ Det(R) = 0. This resultant is zero, when both polynomials
have an equal root. z is then a representation of q and s in the polynomial basis.

This matrix R is constructed by setting the R11 = c1. Let in general Ri,j = ck, then Ri+1,j = ck+2

and Ri,j+1 = ck−1. The elements with an invalid index of c (i.e. larger thanN or smaller than 0), are simply
set to zero.

There is a simple algorithm for generating χ. Let A be the matrix created when removing the last two
columns and the last row from R. LetB be the matrix created by removing the �rst row fromA andC be be
the matrix created by removing the second row fromA. Then

χ = −|B|
|C|

. (13)
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In fact, A may created by removing any row j and C by removing any row j + 1. In practice, though, it is
often easier to just determine the nature of the bifurcation surfaces by testing the eigenvalues there, or by using
numerical continuation software like Matcont [18] or AUTO [19].

To recap, saddle-node type bifurcation surfaces can be found by solvingDet(J) = 0 and Hopf-type bifur-
cations can be found by solvingRes(J) = 0. However, it is often not necessary to �nd all bifurcation surfaces,
as di�erent bifurcation surfaces generally pertain to di�erent eigenvalues traversing zero. As a result, a lot of
network information is contained in the stability regions alone. These can be simultaneously determined with
symbolic computation software, such as Maple [20], by solving the following equation

max
k

Re(λk) = 0. (14)

1.2.2 Statistical Ensemble

Sometimes, a bifurcation analysis is not necessary, too hard or one just wants a more concrete measure for sta-
bility in the network. In such a scenario, the statistical ensemble (SE) method is probably the right way to go.
Following this method, the parameter space is sampled in some way. The network stability can be determined
for each such sample, by determining the eigenvalues of the Jacobian.
Subsequently, when varying over the values for a single parameter, their results can be averaged over the remain-
der of the parameter space to yield an average stability as a function of that single parameter. Accordingly, when
only considering the samples with a small positive leading eigenvalue, an average in
uence and sensitivity can
also be calculated.

The boon of this method is that it is relatively lightweight and easy to use, compared to generating 3D bifur-
cation surfaces. It is also often more readily intelligible, when the bifurcation surfaces can be quite complicated,
making interpretation not always straightforward. However, for a large array of parameters, the SE method
might prove to lack a proper spread of samples and is hence not very accurate. The accuracy gain due to a larger
sample size is directly limited by computing power, and might hence not be feasible for a network with many
parameters, such as the elasticities mentioned above.





Chapter 2: The Agent-based model

The contents of this chapter present the agent-based model (ABM) used to describe package 
ow on a logistic
network. Opposed to equation-based models (EBMs), ABMs do not explicitly describe a system with equa-
tions. Rather the model manifests itself in so-called agents, which make decisions and perform actions based
on certain (decision) rules. The only way to realize these models is by simulation, as decisions generally do not
translate well to equations.

In the researched context of package transport in logistic networks, both customers (which coincide with
nodes in this case, and should hence rather be considered as a collective of customers) and trucks act as agents,
although the latter is a more obvious choice and more explicitly follows decision rules. The rules governing
the vehicles determine how the vehicle drives through the network and how the path is chosen. The rules gov-
erning the customers determine the generation of demand to be satis�ed by delivered packages. The latter of
these is considered to be simple in this thesis, and hence does not express decision-like properties, but the model
presented in this section could handily be adapted to include more sophisticated customer behaviour. In the
general case where each node produces some commodity, and supplies that commodity according to demand
of that commodity on other nodes, the ABM is formulated as follows:

1. At every time step, some random amount of demand for each commodity is generated on each node. 2.
Each node has its own (possibly in�nite) amount of trucks. A truck with a package on its home node will depart
to its destination using some path through the graph, to satisfy the positive demand. 1 3. Once a truck arrives at
its destination, it can again eventually detruck, after which it is sent back to its origin node. 4. When the truck
is back at its origin, it is free to accept subsequent cargo again. 5. All trucks that have not arrived at their origin
or destination, will move one unit forward over their current edge, or onto the next edge, in case they arrived
on an intermediate node.
6. At the end of every time step (after all truck movements have been performed) all probabilities of choosing
paths need to be updated according to the change in the amount of trucks on edges. 7. The resulting e�ective
edge length will be updated as well. This allows for the modelling of congestion.
Taking T to be the amount of time steps over which the simulations take place, and N to be the size of the
network, algorithm 1 gives a general pseudo-code of an ABM simulation. Of course, somewhere along the way,
one has to keep track of the amount of available trucks and packages pertaining to nodes.

2.1 Choices and simpli�cations

Many choices are necessary in order to fully establish this model. As mentioned before, each node generally
produces its own commodity, which is generally desired by all the other nodes, and hence each node has its own
supply and demand. For simplicity, supply is assumed such that the demand is exactly balanced at all times.
This can practically be understood as if items are in stock. The demand is assumed to be Poissonian distributed,
with a mean that is constant in time. This corresponds with the simple customer decision rule.

1Before such a truck actually leaves its home node, it possibly still needs to load the cargo for some time steps, such that it not yet
driving, but is occupied.

11
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Algorithm 1: The algorithm for a general multi-commodity package delivery ABM simulation.
for t ≤ T do

for all nodes do
Generate supply & demand

for all nodes do
while trucks and supply are available do

Choose destination for truck
Start loading the truck

for all non-idle trucks do
if truck is done loading then

Send the truck on the path to its destination
else if truck is back at its origin then

Retire the truck
else if truck is at its destination then

De-truck
else if truck is done detrucking then

Send the truck back to its origin
else if truck is at its next node then

Send the truck on the way to its subsequent node
Count the package and truck transport

for all origin-destination pairs do
Update choosing probabilities and path lengths, based on amount of trucks on the edges

To ensure that the simulations do not last unnecessarily long, the available paths for every pair of nodes i
and j have been determined using Yen’s k shortest path algorithm [6]. Here the amount of considered paths, k,
has been chosen relatively small to ensure that unnecessary detours will not be considered. However, it should
still be chosen su�ciently large to make sure that relevant paths are not omitted. The probability of a path being
chosen is assumed to read

Pijk = P (p = pijk) =
e−`(pijk)/ωij∑
k e
−`(pijk)/ωij

, (15)

in which ωij is a weight which determines how likely longer paths are to be chosen. In particular, as ωij → 0,
only the shortest path will be considered. Similarly, asωij →∞, all paths will be chosen with equal probability.
In this thesis, ωij is constant over all pairs i, j.

Nodes having more unanswered demand will have a higher priority of supply being sent to them, when
choosing the destination for a truck. However, if available trucks are abundant, this should not be relevant.
The capacity of a truck has been arbitrarily set to 1 for computational convenience. Consequently, supply is
only generated in integers and hence trucks are always either full or empty.

All trucks have identical properties: they have the same maximum velocity, capacity, load times and de-
truck times. When trucks are deployed, they stay some time at the origin to load the packages and when they
arrive at their destination, they remain there to detruck the packages; for instance, the packages might have to
be delivered at the door, which takes some time. A package is assumed to be delivered at the beginning of the
detrucking process, and that is the moment of consumption. Trucks always have to move back to their ori-
gin and �nish their shift there. When returning, the truck chooses a new return path, which may di�er from
the initial path, as tra�c 
ow may have changed at a later time, or the driver simply feels like taking another road.

If a package has to be delivered at the same node as its origin, the delivery time has been chosen to equal
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loading time.
Every truck on a road adds an increment to the roads respective congestion, which is linearly dependent on the
amount of trucks on that road. In general, these could be chosen individually over all edges, making the amount
of congestion parameters 26. This could represent di�erent amounts of lanes on roads. In this thesis, they are
chosen constant over all edges.
As packages move between nodes, they are assigned to both nodes, proportional to how close they are to those
nodes, i.e. when a package is midway between two nodes, it belongs half to both. This is updated each time step
for every truck.

2.2 Remarks

The chosen congestion model is admittedly not realistic in general. This choice has purely been made for com-
putational convenience and veri�ability. It does this job well, as it illustrates the in
uence of congestion on 
ow
in general, while it is easy to implement and verify. A more realistic approach might be v ∝ 1

ρ , but makes the
system a bit harder to analyze.

Setting the capacity of a truck to 1, gives freedom for choosing its unit. One can then arti�cially tune the

ow based on how large such a unit is supposed to be. By the same token, load and detruck times are arbitrary
concepts. When thinking of these, it is important to keep the above mentioned de�nition of delivery, which
has been chosen to take place at the beginning of the detrucking process, in mind. Likewise, the way to de�ne

ow is not straight forward. One could argue that packages are only transferred, when they arrive at their des-
tination, as opposed to considering a constant continuous 
ow, which is weighed by the e�ective edge length.
In any way, the 
ow should average to the same value. Worst case, the amount of packages on a node would be
shifted slightly in time, as arrival times would not coincide with the de�nitions here any more, but otherwise
this choice is arbitrary and does not impact the solution of the ABM substantially.

It is useful to notice how the de�nition of package unit and truck amount are linked. E�ectively, n trucks,
containing 1 unit each, bear the same physical meaning as one truck containing n units (apart from the truck
amount, of course), with a congestion weight n times as high. A poor man’s way to scale up simulations, can
then be achieved by letting trucks arti�cially contain more cargo this way. However, of course it will take more
simulations to average this out well, so in the end this does not make much of a change.
Necessarily, the required amount of available trucks, which is a valid variable in real life logistic networks, is
bounded by the outgoing path lengths for a node and is hence in general dependent on the node and the supply
rate. A necessary amount of trucks hence becomes a node-dependent network property.

This concludes the exposition of the considered ABM. In the following chapter, EBMs are developed to
model the same situation as the ABMs from this chapter.





Chapter 3: EBM description of the ABM

At the start, the primary focus of this thesis was to investigate whether this logistic 
ow problem can be modelled
in more e�ective ways, whether similar results can be achieved. Later on though, this research question evolved
into investigating which kind of model would yield which kind of results; which model could capture which
kind of behaviour and which model would be useful to employ in which kind of situation. The main goal of
this chapter is to state a basis for the comparison between agent-based and equation-based model solutions, and
hence to explain how to develop EBMs for this cause.

3.1 First Approach

As a �rst attempt, the assumed di�erential equation model was chosen as

ẋi = ui +
∑
j

(Fji − Fij)− wi, (16)

with the assumption Fij = αijxi, which is at �rst not a obvious choice, as there is no reason to believe 
ows
to be linearly dependent on package amounts. However, this system is linear and by extension easy to analyze.
As a result, succesfully being able to cast the model in this form would be favourable.

However, there is no natural way to cleverly determine these αij beforehand. As a result, they have to be
determined by comparing to ABM simulations. E�ectively, the task is then to �nd a matrix A, containing all
αij as elements, such that

ẋ = (AT − diag(A · 1))x+ u− w, (17)

where 1 here denotes the all one vector and diag(z) is the matrix with the vector elements of z on its diagonal.

This set of equations led to the analysis presented in appendix A, and it did not turn out to work as desired.
It was hence necessary to tackle the problem in another way.

3.2 Second Approach

The equations are henceforth constructed by averaging over the randomness in the ABM, and are hence ex-
pected to yield the same results. However, by nature, di�erential equations are continuous in time, contrary to
the ABM, which clearly requires time discretization to trigger events. A numerical approximation of the di�er-
ential equation, with appropriate time steps, could be considered as an analogon to the average realization of
the ABM, and the di�erential equation should hence be thought of as the continuum limit of said ABM.

After averaging over the random demand in the ABM, the EBM simply reads:

ẋi = si(t)− ci(t) +
∑
j∈Ni

(Fji(t)− Fij(t)). (18)

15
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Here, the dot denotes the time derivative as usual, xi denotes the (summed amount of) packages on node i and
si, ci respectively denote the generated supply and consumption rates.
One should read Fij(t) as “the 
ow, going from node i to node j, that (temporarily) arrives in node j at time
t”. Keep in mind that j can equal i, although that is strictly speaking not a 
ow. These 
owsFij are in turn de-
termined by iterating over all possible origin-destination pairs and taking the relevant paths (with probabilities)
that pass through (i, j).

Two cases are distinguished in this thesis. The �rst of which does not take congestion into account; the
phenomenon by which cars slow down on a road due to a higher density of cars, eventually resulting in tra�c
jams. The second case does include congestion, which makes the situation quite a bit more complicated, as now
path lengths are not constant. Let us �rst consider a congestionless model, as some notions carry over to the
model with congestion.

3.3 Without congestion

In the absence of congestion, hence for �xed distances between the nodes, explicit expressions for ci and Fij
can easily be found.

ci =
N∑
j=0

sji
∑
k

Pjiku(`(pjik)+tl)(t), (19)

where uτ (t) denotes the Heaviside step-function with shift τ and tl denotes the loading time of the truck. sij
is the supply balanced by the demand on node j of commodity i. sij is then the average generated supply, and
hence the parameter used in the chosen Poisson distribution when performing the ABM simulations, for each
origin-destination pair. For convenience, sij have been assumed to be equal over all i and j. Equation 18 is then
derived by using that the average of the package generation is constant and that packages have a certain constant
arrival time. In general, each of the di�erent commodities can arrive at i, using di�erent paths with probability
Pjik. In each of these paths a package sent at t = 0 fully belongs to its destination node at t = `(pjik) + tl
and is consumed at that time. Hence, this is the time shift in the Heaviside step-function. The resulting ci is
thence a summation over all possible origins and the possible paths taken from those origins to node i, of the
individual consumptions of the packages that took these paths.
By considering the arrivals at previous and subsequent nodes, Fij can be written as

Fij(t) =
∑

l,m∈V 2

slm
∑

(i,j)∈plmk

Pijku(τlmk,i+tl)(t), (20)

where τlmk,i denotes the amount of time needed to arrive at node i, when taking path k between nodes l and
m. A concrete example will be given in the next chapter. Knowing the ci and Fij completely determines x, as
the equation can now be simply integrated; note that ẋ does not depend on x.

As all path properties remain constant in this situation, the equation is quickly made. However, this proves
to be more challenging once congestion is introduced.

3.4 With congestion

When adding congestion, the equations become much harder to solve, as the travel time becomes dependent
on the amount of trucks that linger on the roads. One has to bear in mind that, without congestion, the steady
state amount of trucks on an edge is (on average) twice the amount of packages, as trucks have to travel back to
their origin in the used model. A steady state can then be established with Picard’s �xed point method [22], by
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Figure 3.1: The extended line network used as an illustration for the de�nition of τ , and θ.

iterating as follows: starting from a congestionless steady state, travel times and probabilitiesPijk are updated by
recursively solving the congestionless equation, until convergence to the congested steady state is reached. This
approach is simple, yet relatively e�cient. Its implementation will be demonstrated in the next two chapters.

It is also possible to develop equation 18, when congestion is included. It is however a tougher problem to
solve, as path lengths are no longer constant. As a result, ci and Fij are more complicated. si is still assumed
constant, though. Let us �rst and foremost establish some notation, to facilitate the explanation of this equa-
tion; in a similar fashion to before, τji(t) denotes the time at which a package would arrive at node i, coming
from node j, i.e.:

t0 + `((i, j), t0) = t1 =⇒ τij(t1) = t0, (21)

where `(·, t) is now a function of time as well. However, the time-dependence is implicit, and `((i, j)) really is
a function of the amount of trucks on edge (i, j). For instance, in the assumed simple case of linear congestion,
`(·) would read

`((i, j), t) = `((i, j), 0) + wcTij(t), (22)

in which Tij(t) denotes the amount of trucks on edge (i, j) at time t andwc denotes the congestion weight.

Consequently, we necessarily require two more de�nitions, which deal with whether a package has been
able to reach a certain node in its path. The �rst of the two is θijk,l(t), which denotes the time required to reach
node l, somewhere in path pijk. This θijk,l(t) is built from all respective τmn, where edges (m,n) lead up to
node l, with accordingly shifted times. As a simple illustrative example, let us consider i = 0, j = 2 and l = 2,
with pijk = {(0, 1), (1, 2)}; a path between nodes 0 and 2, with one intermediate node 1, as shown in �gure
3.1. To compute θ02k,2(t) in this case, a delivery truck necessarily has to pass (1, 2) before arriving at node 2,
such that the truck passed node 1 at τ12(t). Subsequently, that delivery truck necessarily has passed (0, 1) just
before, such that the truck left node 0 at t = τ01(τ12(t)). This demonstrates that this process is recursive. In
total, we �nd here that θ02k,2(t) = t − τ01(τ12(t)), which is the total length necessary to traverse the path.
When considering larger networks in general, such sums become increasingly di�cult to compute and explicitly
obtain.

The second de�nition is merely an extension of the previous one. By construction of the model, trucks
have to return to their origin, and the EBM somehow has to keep track of that too. Let therefore ϑijk,l,m(t)
be the necessary time to reach node l in path pijk on the way back. There are a �nite amount of initial paths
pjim and in general all have di�erent lengths. This ϑijk,l,m is constructed very much the same as θijk,l, with
the addition of also containing the length of the initial path pjim, constructed in the same way, with the τ s, and
also containing the detruck time, td.

One has to keep in mind, though, that as one introduces discontinuities when numerically integrating this,
τij(t) is not guaranteed to exist any more, because `((i, j), t) makes jumps at every time step. An edge length
can increase just enough to create gaps in the continuity of truck 
ow. This e�ect is relatively small. Hence a
valid option is to omit this e�ect, and assume no gaps. A more thorough approach involves keeping track of
the gaps and not letting trucks arrive at nodes when τij(t) does not exist, which has been opted for here. This
makes the functions less pretty to integrate, as they contain more step functions, but in the continuum limit
they should yield the same result.
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Taking si constant and hence known, these θ andϑ cover how to �nd ci(t) andFij(t) in the following way:

ci(t) =
∑
j∈V

sji
∑
k

Pjik(t− θjik,i(t))u(θjik,i(t)+tl)(t), (23)

where Pijk has explicitly been made time dependent, and ux(t) is the Heaviside step-function with shift x.

This equation is formed by summing over all paths that reach node i, weighed with Pjik, evaluated on
θjik,i(t), as as that is the time at which the paths were chosen, with the probability distribution at that time.
The Heaviside step-function ensures that these paths are counted when they actually have had time to reach
node i.

Ḟij(t) =

∑
l,m∈V 2 slm

∑
plmk3(i,j) Plmk(t− θlmk,i(t))u(θlmk,i(t)+tl)(t)

`((i, j), t)
− Ḟij(τij(t)), (24)

Equation 24 consists of two terms. Similar to equation 23, the numerator of the �rst term is simply a sum
over all paths that pass through (i, j). The denominator, `((i, j), t) exists, as the 
ow continuously adds to the
next node, over the course of the entire edge. The second term, Ḟij(τij(t)) takes the 
ow into account that has
already reached node j by now, and hence does not contribute to the transport on edge (i, j) anymore.

As functions for ci(t) and Fij(t) have been created, equation 18 is integrable. However, one should bear
in mind how neither ci(t), nor Fij(t) are easily determined beforehand, and require knowledge of the evolu-
tions of the Pijk(t), `((i, j), t) and Tij(t). It is however known that Pijk(t) is a predetermined function of
`((i, j), t), which in turn is a predetermined function of Tij(t). This Tij(t) is thence the last variable to re-
quire an equation, in order for the problem to be solvable. It should be stressed that the only di�erence with
the congestionless equation is that `((i, j), t) now depends on Tij(t), which makes the equation increasingly
complex, as a lot more time steps have to be taken into consideration.

Using the de�nitions of θijk,l(t) and ϑijk,l,m, Tij(t) can be described as well:

Ṫij(t) =
∑

l,m∈V 2

slm
∑

plmk3(i,j)

Plmk(t− θlmk,i(t))u(θlmk,i(t)+tl)(t)

+
∑

l,m∈V 2

slm
∑

plmk3(i,j)

Plmk(t− θlmk,i(t))
∑
n

Pmln(t− ϑmln,i,n(t))u(ϑlmk,i,n(t)+tl)(t)− Ṫij(τij(t))

(25)

The �rst term here is simply a sum over all initial paths going through (i, j). The second term is a sum over
all initial paths going to node l and returning from node l back to node m, while passing through edge (i, j).
This is where ϑ comes in, which keeps track of the return paths. Lastly, the �nal term removes the trucks that
have arrived at the next node and hence no longer contribute to the amount of trucks on the edge.

This chapter has extensively covered how to build the EBM counterpart of the originally considered ABM,
along with a brief mention of a �rst failed attempt to do so. The next step is to investigate how this solution
holds up in both accuracy and e�ciency to the ABM, which will be done in the following chapters.



Chapter 4: A simple example

Let us �rst discuss a simple example to illustrate the di�erent concepts and demonstrate the discussed models.
This serves as a way to get acquainted with the models and to check whether they work well, as this example is
su�ciently simple to be computed manually.

Figure 4.1: A simple line network, with edge length a.

The simple network consists of two nodes labelled 0 and 1, connected by a bidirectional edge, with length
a, see �gure 4.1. Let us furthermore also assume that both nodes possess su�ciently many trucks and that they
generate demand for both commodities at an average rate of 1

2 per time step, such that the total demand on each
node is 1 on each time step.

4.1 Without congestion

In the situation without congestion,

si = 1, ci =
1

2

(
u(a+tl)(t) + utl(t)

)
. (26)

Both si equal 1, as each node supplies enough to satisfy demand on both nodes, which equal 1
2 . As supply is

generated, trucks will begin to �ll and leave their origin node. After the loading time, they deliver to their origin
node, whence the utl(t) comes from, and hence those packages can be consumed. The packages that are meant
for the other node, �rst also need to traverse the edge. They are then ready to be consumed after tl + a time
steps, whence the other Heaviside step-function originates. Furthermore, for completeness:

∑
j∈Ni

Fij =
∑
j∈Ni

Fji =


0, for t < tl
t−tl
2a + 1

2 , for tl ≤ t ≤ a+ tl
1, for t > a+ tl

. (27)

By symmetry of the network, it is evident that
∑
Fij and

∑
Fji cancel at any time here. They also do not

depend on i, as the network is symmetrical and very simple. In general, neither of these statements hold, though,
until a steady state is reached, where the 
ows have to cancel of course. The di�erential equation in this case
then simply reads

ẋi = 1− 1

2

(
u(a+tl)(t) + utl(t)

)
(28)

Hence, a steady state should be expected for t > tl + a, after which ẋi = 0. Both xi then equal a2 + tl.
Note that these derivations only work when the amount of available trucks is abundant. Otherwise, surely the
solution will diverge, but this behaviour is harder to accomplish using an EBM. Integrating equation 28 yields:
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Figure 4.2: Time evolution of x0, without congestion, for the line network. There is an abundance of (10000 available)
trucks per node. The edge length a is 5 units and the amount of time steps is 144. The load and detruck times are 1
timestep. The demand generation for both commodities on both nodes is 1

2 per timestep. The �rst time step lies at t = 1,
and hence x does not start at 0.

xi =


t, for t ≤ tl
tl + 1

2(t− tl), for tl ≤ t ≤ tl + a

tl + a
2 , for t ≥ tl + a

(29)

The EBM for this line network without congestion is not very complicated, and the solution is readily
available. However, to demonstrate how easily this equation integrates numerically, it has been done so using
Euler forward.

Figure 4.2 shows 40000 ABM simulations in blue and the numerically integrated EBM solution in dashed
red, which leaves the impression that the ABM and EBM give similar results. Whether this generally holds for
more complex networks is hard to accurately predict. However, this is at worst an indication that ABMs and
EBMs can sometimes yield similar and complementary solutions. Choosing tl and a integer, allows the ABM
to be implemented more easily. Coincidentally, if the time steps for numerical integration divide these ABM
time steps, the shift in the Heaviside functions are also divided perfectly, which results in an equal numerical
and analytical solution reading

xi =


t, for t ≤ 1

1 + 1
2(t− 1), for 1 ≤ t ≤ 6

7
2 , for t ≥ 6

(30)

This simple equation for xi constitutes the solution to the congestionless equation.

4.2 With congestion

Next, the equations from section 3.4 are used to elicit the solution to the di�erential equation with added linear
congestion. Again, si = 1, but ci and the Fij di�er from equations 26 and 27. By symmetry, the 
ows still
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cancel though.

Following equation 23, we have:

ci(t) =
∑
j∈V

1

2
· uθji1,i(t)+tl(t), (31)

where the summation over the paths has been omitted, as there only exists one path (labeled 1), which is chosen
with probability 1. For this network, ci(t) is independent of i, like in the congestionless case, and as such, the
analysis can be restricted to node 0:

c0(t) =
1

2
·
(
utl(t) + uθ101,0(t)(t)

)
(32)

Furthermore, when restricting to edge 01, equations 24 and 25 become:

Ḟ01(t) =
1
2 · utl(t)
`((0, 1), t)

− Ḟ01(τ01(t)) =
1

2

utl(t)

`((0, 1), 0) + wcT01(t)
− Ḟ01(τ01(t)) (33)

Ṫ01 =
1

2

(
utl(t) + uϑ011,0,1(t)+tl(t)

)
− Ṫ01(τ01(t)), (34)

which, like equation 32, has already been summed over all possible paths k and n (again labeled with 1, as
there is only one). By construction of τ , θ and ϑ, the following relations also hold: θ101,0(t) = τ10(t) and
ϑ011,0,1(t) = θ101,0(t− td) + td. The problem hence reduces to �nding θ101,0(t), after which the equations
can readily be integrated.

In this simple example, this can be achieved by looking at the steady state amount of packages. This method
is however not easily extendible to general networks, as it assumes all packages will be self-consumed or trans-
ported to the only other node, and hence the considered node has degree 1. A general network can clearly not
satisfy this.

Let x01 denote the amount of packages on edge (0, 1). This edge can, again, be considered alone, as the
problem is symmetrical. The following equality holds:

x01 =
x0 + x1

2
− 2stl = s ·

(
a+ 2wc

(
x0 + x1

2
− 2stl

))
, (35)

where s = s01 = s10 = s00 = s11, which are all assumed equal here, and wc is again the congestion weight.
The �rst equality holds, by how the 
ow is constructed; packages closer to a node belong more to the closer
node. On average, some random package on edge (0, 1) will hence belong half to node 0 and half to node 1.
Similarly, half of the packages, that are not loading anymore, belonging to node 0 will be on edge (0, 1) and half
will be on edge (1, 0). As x0 = x1, x0+x1

2 can simply be rewritten to x0. Each time step, s00 + s01 = 2s pack-
ages are generated on node 0, which results in 2stl packages residing in node 0 until they have been consumed,
or have left. Hence, the amount of packages on edge (0, 1) equals half the amount of packages belonging to
both nodes, minus the packages that are actually still located on the node; the �rst equality.

The second equality requires a bit of prior knowledge; in steady state, the entire edge will be �lled with 
ow.
The average base amount of packages on that edge equals sa, because the base edge length is a and the amount
of package 
ow on an edge is dictated by the supply, s. The edge increases in length by wc times the amount
of trucks on a node. This amount of trucks, necessarily has to be twice the amount of packages, which has just
been determined in the previous paragraph, since trucks also have to return to their origin node, and returning
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Figure 4.3: Time evolution of x0 with congestion, for the line network. The congestion weight is 1
4 per truck. The other

parameters are the same as in Figure 4.2, re�ning by a factor 8, and hence some parameters are scaled accordingly.

trucks too count towards congestion. This second term hence deals with the congestion on edges, whereas the
�rst equality is only concerned with the amount of packages on nodes. Solving equation 35 yields:

x0 =
sa

1− 2swc
+ 2stl =

13

3
, (36)

when taking s and a as in �gure 4.2, andwc = 1
4 , as used in �gure 4.3.

Figure 4.3 again depicts 40000 ABM simulations in blue, whereas the dashed red line shows Picard’s �xed
point method, used on equations 32 to 34, which coincides perfectly with equation 36. In the �rst iteration of
Picard’s method, congestion was assumed zero, which yields some steady state. In the second iteration, conges-
tion is added, based on said steady state, and the edge lengths are updated, after which the steady state is again
sought without congestion. This is done until convergence to the desired edge lengths. In this case, the edge
lengths become 20

3 , namely 5 + 2
4 · (

13
3 − 1), which is stems from the second equality in equation 35.

To somewhat diminish the discretization errors in the ABM solution, the amount of time steps has been
re�ned 8 times. Of course, as it only determines the steady state, Picard’s method does not convey the start-up
process, which the ABM displays.

The EBM can be integrated too, but now instead of only having to consider the xi andFij , theTij , τij and
θijk,l have to be considered as well. This makes the equation much slower to integrate, which however does not
yet really come through in this simple example.

Figure 4.4 shows the di�erence between the same 40000 ABM simulations as in �gure 4.3 in blue, and the
numerically integrated EBM solution in dashed red. The EBM here also includes the start-up process, where
the Heaviside functions re
ect their behaviour, asx0 grows from approximately 3.5 to the previously calculated
13
3 . The �rst bend happens due to the packages arriving at the nodes. After that, the function does not reach a

steady state immediately, but the trucks necessarily have to return to their origin, which slowly adds congestion
to the edges, which in turn increases x0 until a steady state has �nally been reached. It should however be noted
that there is a small error between both solutions at steady state.
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Figure 4.4: Time evolution of x0 with congestion. All parameters are the same as in �gure 4.3. The ABMs have been run
with time step re�nement 5, while the EBMs have been numerically integrated with re�nement 1000.

Besides �nding the steady states and the analytical solution, it is also interesting to look at behaviour when
changing parameters in the model. For instance, ifwc and s grow, there will again be a point when congestion
grows out of control. Clearly, by equation 36, 2swc cannot reach 1, as by then on each time step trucks increase
the edge length by one. Taking s = 1

2 and varying with respect to wc gives �gure 4.5. This has been generated
by repeatedly performing the Picard iterations for di�erent values ofwc and �nding their respective steady state
x. The same procedure can be used to �nd a bifurcation point, for which the system commences to diverge.

This �gure gives the expected behaviour; forwc = 0, steady state x0 equals 7
2 , which is in accordance with

the results in section 4.1, while on the other hand, x0 diverges for wc → 1. 2swc = wc = 1 then constitutes
the bifurcation point, at which the system starts to diverge. It consequently also turns out that for increasing
wc, the results contain a larger error (not shown), which happens due to the edge lengths receiving larger jolts
of length increase each time a truck arrives on the edges. The size of those jolts directly cause a larger variance
and hence error.

This chapter has covered all possible analysis on the simple line network, which consists of solving the equa-
tions and running ABM simulations with and without congestion, and determining for which congestion con-
stant the system inevitably diverges. This analysis indicates that the models work well and complement each
other and that the results are conceivable. The next chapter performs the same analyses for larger networks,
which more clearly shows how useful both models are in a more general situation.
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Figure 4.5: Steady state x0 for di�erent congestion weights. s has been chosen 1
2 .



Chapter 5: Larger networks

While it is illustrative to see how the EBM and ABM give similar results for a simple network, where everything
is calculable anyway, the real usefulness comes through in larger networks. Hence, to verify whether the models
are extendible and scalable for more complex situations, both have been ran for networks ranging in size from
10 to 80 nodes. As the network size increases, it becomes increasingly hard to �nd the functions in the EBM,
and hence also its explicit solution.

In particular, the main focus has been on a custom-made 10 node graph (�gure 5.1a), and on a map-like 40
node graph, where each node has maximum degree 3 (�gure 5.1b), meaning each node connects to at most three
other nodes. The 10 node graph has the bene�t of being tailored such that it has one rather decentralized node,
namely node 5, while it also contains two hubs, nodes 4 and 6. By being not a very large network, individual
node e�ects can be ruled out more clearly. On the other hand, the larger network allows to explore whether
the models are able to perform well for larger networks. In addition, this particular network brings a stronger
contrast between centralized and decentralized nodes, such as the ones on the very left and on the very right.

(a) The custom-made network. (b) The map-like network.

Figure 5.1: The mentioned tested networks: 5.1a shows the custom-made 10 node graph, with edge lengths added in the
middle of the edges. 5.1b depicts the 40 node graph, where nodes have maximum degree 3. Travel times, or equivalently,
the length of the links between two nodes are Poisson distributed with average 7 on top of a �xed travel time of 3 units.
Hence, the total travel time is on average 10. One has to bear in mind that direction and scale do not have any meaning in
these images.

In addition to this, some other graphs were regarded, albeit not to the same extent. Their respective struc-
tures and results are presented in section 5.3.
Of course, as a network does not generally wield a symmetric or simple structure, all nodes behave di�erently
now. Centralities and degrees of nodes di�er and become an important factor that determine the node dynam-
ics, along with the outgoing and ingoing edge lengths. More central nodes will in general experience more tra�c,
and hence contain more packages and send more outgoing 
ow. This will be touched upon in the coming sec-
tions.

25
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(a) The package average. (b) The percentual variance per simulation.

Figure 5.2: The package average and percentual variance per simulation for all nodes, with and without congestion, for
the custom-made 10 node network. The variance is the squared error of a single ABM simulation relative to the analytical
steady state. The simulations were run for 144 timesteps, re�ned �ve times in the simulations with congestion. The steady
states have been chosen as t > 20 and t > 250 time steps respectively, as by then no signi�cant grow seemed to occur.
There is an abundant amount of trucks (10000) and there is on average 0.05 demand for every commodity on every node
on every time step. 40000 simulations were run, with tl = td = 1. In the simulations with congestion, the congestion
weight was chosen to be 1

4 .

5.1 The custom-made network

Let us �rst turn attention to the custom-made network depicted in �gure 5.1a. Unlike with the line network,
a plot of the amount of package on a single node will not contain enough information anymore. However,
showcasing the package amounts for all the nodes is not illustrative either, as it either contains multiple �gures,
which are tedious to process, or too much happens in a single visualisation. Rather, the behaviour will be de-
picted by showing the average and variance in steady state for all nodes and for all time steps, when compared
to the results obtained with Picard’s iteration method. The average and variance are only taken over the steady
state as the Picard iterations only yields the steady state solution. To keep things consistent between the results
with and without congestion, the analysis will be done based on the steady state for both. The comparison to
the EBM is performed later in this section.

Let us turn to the distribution of packages among the di�erent nodes. Figures 5.2a and 5.2b depict the
steady state average and variance between the models, for the custom-made network. One can see that node 5
has the highest variance, followed by node 0, 2, 3, 7 and 9, while nodes 1, 4, 6 and 8 have the lowest variance.
Conversely, the opposite is true for the averages on those nodes. The nodes with the highest percentual vari-
ance contain the lowest amount of packages. This is partly due to their centrality in the network; as there are
more paths going through the central nodes, more trucks pass through those nodes and hence the amount of
trucks averages out better. Moreover, it seems like, besides closeness and betweenness centralities, the degree
and non-shortest outgoing path lengths contribute to the di�erences in the variances. One should bear in mind
that, as a rule of thumb, when nodes are less central, they will contain fewer trucks and less tra�c. As a result,
the percentual variance on them will become larger.

We also see in Figure 5.2 that adding congestion basically scales the averages and variances. This can be ex-
plained by realizing that the amount of trucks in transit will increase once congestion is added. If the congestion
is su�ciently large, enhanced spreading of the packages will occur, and simple scaling is no longer valid.
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(a) Node 4, without congestion. (b) Node 4, with congestion.

(c) Node 5, without congestion. (d) Node 5, with congestion.

Figure 5.3: A visualization of the ABM and EBM solutions without congestion for nodes 4 and 5 in the custom-made
network, and a visualization of the ABM solution, for the models with congestion, with its respective steady state Picard
method. The simulations with congestion were run with a time step re�nement factor 10.

The di�erential equation approach closely follows the simulations from the initial value to the steady state.
The di�erence between the two results is small for the most connected nodes, whereas there is, more so at the
beginning, some discrepancy for the less connected nodes. Figure 5.3 shows that the ABM simulations without
congestion agree with the EBM and that the simulations with congestion give the same steady state as with Pi-
card iteration, used on the analytical equations; these show examples of individual nodes and mirror what can
be seen in �gure 5.2 in a di�erent way. This gives a strong indication that this ABM can be modelled well with
the EBM without congestion and that the steady state solution can also be found rather accurately.

Figure 5.3 identi�es a di�erence in behaviour between the ABM and EBM on di�erent nodes. For node 4,
the ABM and EBM solutions practically overlap, whereas the Picard iteration method also pretty much overlaps
with the steady state of the congestion-included ABM. Node 5 has a much higher variance overall, which is in ac-
cordance with the results from �gure 5.2 and the start-up does not completely overlap in the congestionless case.

The customized network runs its simulations for 144 time steps with and without congestion in about 13.5
and 56 (roughly four times as much) minutes respectively. Above treated simulations with congestion and 5
times re�nement took about 3 hours (rougly three times as much time). These have all been run on an AWS
server, using all 8 2.3 GHz cores to run parallel simulations. The congestionless EBM and Picard’s method for
the EBM with congestion take seconds to solve instead.
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(a) Node 0.

(b) Node 7. (c) Node 9.

Figure 5.4: A comparison of an average over 40000 ABM simulations and numerically integrated EBM solutions with
congestion, performed for several nodes. To demonstrate the in
uence of the time step re�nement, the EBM solutions
have been presented for dt = 10−3 (dash-dotted green) and dt = 2 · 10−4 (dashed red).

Furthermore, when actually integrating the EBM with congestion, it is evident that they do not entirely
overlap, as the EBM solution diverges, as can be seen in �gure 5.4. There might be a couple of reasons as to why
this instability occurs. The culprit might be the non-existense of the τ , θ and ϑ for some times, or the many
included Heaviside functions, with shifts that aren’t divided by the integration time steps. It could also be a
lacklustre implementation, although it has been checked multiple times, and I found no mistakes. The error
usually appears to reduce for smaller time steps, though. This time, the numerical integration takes about 27
hours for 144 time steps, which has been re�ned todt = 0.0002 time steps. The required memory is enormous,
in the order of 20 GB, as so many things have to be kept track of, the worst of which is the large list of possible
paths between nodes and their probabilities, for all time steps. While there is plenty of room for optimizations
in the implementation, it will probably not provide an e�cient means to achieve the desired solution, more so
as it currently does not properly converge for this 10-node network. It will thenceforth become increasingly
challenging to �nd converging solutions for larger networks. For this reasf10on, and because it takes a lot of
resources, this equation won’t be solved numerically for other networks in later sections.

Figure 5.4 depicts a comparison of the ABM simulation results and the EBM integration results for di�erent
nodes in the network. They have been elaborately chosen such that they show di�erent behaviours; for x0, the
EBM solution becomes better as dt is lowered. Forx7, the numerical approximation becomes a bit worse as dt is
lowered, and forx9 both solutions are already pretty good, but lowering dt improves the accuracy a towards the
later time steps. All three nodes have one thing in common, though: the solutions for earlier time steps, where
the network is still in its start-up process, pretty much overlap. The solutions for other nodes, with exception
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Figure 5.5: The di�erent steady state xi for all nodes in the custom-made network, as a function ofwc. The �gure stops
atwc = 0.6299, as just beyond that point the system diverges.

of node 5, show similar behaviour as node x0. For node 5, the behaviour does not improve upon decreasing dt.

Discretization errors should be resolved with smaller time steps. Reducing the size of the time steps here,
usually yields signi�cantly better results, which indicates no error in the implementation. In each case, as men-
tioned, the numerical solution, closely follows the ABM results up to the initial bend, which constitutes the
start-up process. A low e�ort option to improve the accuracy could then be to consider two time scales; the
start-up time scale and the steady state time scale. At some point, the steady state solution is reached after the
start-up. The steady state Picard solution could then be glued to the EBM-obtained start-up solution, which
makes the EBM implementation cheaper, as much less time steps have to be considered, while preserving accu-
racy on the steady state, on which the solution loses accuracy.

Lastly, just like in �gure 4.5 of the previous chapter, a bifurcationwc can be found with the same procedure.
This yields �gure 5.5.

In contrast to the diagram for the line network, the individual xi curves do not diverge here, but reach
some threshold value. Because there are multiple paths available to be chosen, and their probabilities of being
chosen depend on the lengths of other paths, they create more of a bu�er, that can accommodate the increase
in packages on nodes. As a result, the increase of steady state package amount does not gradually grow until
in�nity, but rather reaches some value for each node, after which it abruptly jumps to in�nity, such that the
system suddenly becomes unstable. This value seems to lie between 0.62993485 ≤ wc ≤ 0.62993535.

The custom-made network has been analyzed, and the analysis shows that the EBM is insu�ciently accu-
rate, when congestion is added to the problem. The other results seem consistent with expectations, though.
In the next section, the analysis is extended to a larger network, to see how the models scale.

5.2 The large map-like network

An obvious way to pursue the comparison between ABMs and EBMs is to extend the research to larger net-
works. Hence, let us move on to the map-like 40 node network and investigate the performance of both models
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here.

(a) The package average. (b) The percentual variance per simulation.

Figure 5.6: The package average (5.6a) and percentual variance (5.6b) per simulation for all nodes, with and without
congestion, for all the nodes in the network from Figure 5.1b. The simulations were run for 288 timesteps and were
depicted for respectively t > 100 and t > 200 time steps. There is again an abundance of trucks (10000) and there is
on average 0.02 demand for every commodity on every node on every time step. This time, only 20000 simulations were
run, with tl = td = 1. In the simulations with congestion, the congestion weight was chosen to be 0.05.

It is clear here, when comparing Figure 5.6 to Figure 5.1b that both with and without congestion, the less
central nodes have a remarkable amount of variance in the packages. Also, the variance grows signi�cantly, when
adding congestion. Mostly, this is in accordance with the smaller network. This implies that the simulations
work well for di�erent kinds of networks and larger networks, which means that the earlier discussed ideas might
scale up to larger networks.

It has to be mentioned, though, that some nodes present slightly di�erent behaviour from the conclusion
in section 5.1; it is not true that congestion always increases the package average here. It however always decreases
the percentual variance. This might be evidence of paths being rerouted by ongoing tra�c, which leads to less
usage of certain edges, which in turn doesn’t increase the package average on the connected nodes.

A strange thing stands out when looking at solutions for x, for di�erent nodes, as given in �gure 5.7. With-
out congestion, the solutions for node 14 overlap well. However, for node 39 the ABM solution starts o�
signi�cantly lower than the EBM solution. What’s weird, though, is that the solutions both end up at the same
steady state. One can also immediately see that the ABM simulations for node 39 are way more jagged than the
solutions for node 14. That is no coincidence, as they have been chosen to represent central and secluded nodes.
Node 39 is only connected to its sole neighbour 36, which is already at the outside of the network. Node 14
is, of course, only connected to three other nodes, but those are all also connected to three other nodes, which
makes node 14 much more central than node 39. The discrepancy present for node 39 implies that the EBM
lacks certain interaction, which a�ects the start-up process for the least central nodes. This probably also ex-
plains the behaviour of node 5 in the custom-made network, presented in the previous section. However, the
error does not persist in the steady state, such that the model somehow corrects itself along the way.

The larger network simulations, with 40 nodes, took about 6 hours and 21 hours, with and without con-
gestion, respectively. This means that as the amount of nodes increases past 40, the runtime of the simulations
dwindles until this model eventually is not feasible to run anymore, until some optimizations are added. As the
network size increases, the ABM simulations will take much more time to run than solving the congestionless
di�erential equations. There’s also a big di�erence in time between simulations with and without congestion,
as updating the travel times takes a lot of processing power. However, the bene�t of simulations is that they give
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(a) Node 14, without congestion. (b) Node 14, with congestion.

(c) Node 39, without congestion. (d) Node 39, with congestion.

Figure 5.7: ABM and EBM solutions for nodes 14 and 39 in the larger map-like network, having used the same parameters
as in �gure 5.6.

insight on the individual interactions and generate a variance for the amount of packages, like demonstrated,
given that the parameters are chosen realistically. Evidently, the EBM with added congestion is left out, as it did
not perform well enough in the 10 node network, and surely won’t perform better for 40 nodes.

5.3 Other networks

In addition to the custom-made and maximum degree 3 networks, several random graphs have been regarded,
along with smaller networks such as a circular ladder graph, a wheel graph, lattice graphs and a particular kind
of random graph; the Dorogovtsev-Goltsev-Mendes (or DGM) graph, as depicted in �gure 5.8. Most of these
networks have been considered as they represent part of some real world network structure, with exception of
the random networks, which have been taken to test whether the equations work for arbitrary large networks.
For instance, the wheel graph models a giant hub, while the lattice graph is a good approximation of cities such
as new york. Many paths in such a graph are favourable and the middle nodes are also very central. The circular
ladder graph represents a situation where another parallel path to the destination exists. The DGM graph is a
kind of small world network, where the node degrees follow a power law. Each network thus captures some
speci�c behaviour and allows for study of this behaviour alone.

Of these, the wheel, 2D lattice and DGM graphs are the most interesting to treat separately. The circular
ladder graph does not give any striking results, and the larger 2D lattice graph is just a more elaborate version of
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(a) A random graph with 40 nodes. (b) A random graph with 80 nodes.

(c) A circular ladder graph. (d) A wheel graph.

(e) A 2D lattice graph with 9 nodes. (f ) A 2D lattice graph with 25 nodes.

(g) A DGM graph with 15 nodes.

Figure 5.8: Graphs for the additional networks under consideration, but for which no extensive analysis was performed.
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(a) The package average. (b) The percentual variance per simulation.

Figure 5.9: The package average and percentual variance per simulation for all nodes, with and without congestion, for
the wheel network. The simulations were run for 144 timesteps, re�ned ten times in the simulations with congestion.
The steady states have been chosen as t > 20 and t > 40 time steps respectivelyr. There is an abundant amount of trucks
(10000) and there is on average 0.05 demand for every commodity on every node on every time step. 40000 simulations
were run, with tl = td = 1. In the simulations with congestion, the congestion weight was chosen to be 1

4 .

the smaller one, but just a bit more chaotic due to the additional 16 nodes. These will thenceforth be omitted.
The remainder of this section will mostly be structured in a way such that the interesting results from each
treated network are presented and afterwards brie
y discussed.

The Wheel network

The �rst network under consideration is the wheel network. In this particular case, the edge lengths of the net-
work have been generated with length 1+ Poisson(5) for the spokes, and 1+ Poisson(1) for the periphery. In
this case, the package averages and variances are given in �gure 5.9.

This �gure shows that node 0, which is the center of the wheel, always contains the most packages, albeit
not by a lot. As the spokes are relatively long, that is not strange. For smaller spokes, this average is predicted
to increase. When congestion is present, though, the amount of tra�c through the hub increases, as the edge
lengths on the periphery proportionally increase a lot. One should expect that when the spokes are long, they
become relatively more favourable when congestion is added, but when the spokes are short, they become rel-
atively less favourable when congestion is added. As seen in the previous networks, the variance increases as
package average decreases.

It however appears that no node in this network presents particularly interesting behaviour, except nodes 3,
6 and 7 exhibiting a slight discrepancy between the congestionless solutions, just like in �gure 5.3c. Moreover, the
variance in node 2 is disproportionally high, but that probably has to do with a lacklustre re�nement. However,
these two mentions do not need a �gure on their own, as their results are nothing special.

The 2D Lattice network

Up next is the 2D lattice network. Figure 5.10 shows the package averages and variances, as usual, and �gure 5.11
shows the behaviours of di�erent nodes in the network. This time around, all edge lengths have been generated
1+ Poisson(5).

The familiar result that central nodes have a high average and lower percentual variances is yet again veri�ed
here. Of course, there is often little reason for packages to pass through the corner nodes 0, 2, 6, and 9, while



Chapter 5. Larger networks 34

(a) The package average. (b) The percentual variance per simulation.

Figure 5.10: The package average and percentual variance per simulation for all nodes, with and without congestion, for
the 2D lattice network. The simulations were run for 144 timesteps, re�ned ten times in the simulations with congestion.
The steady states have been chosen as t > 30 and t > 80 time steps respectivelyr. There is an abundant amount of trucks
(10000) and there is on average 0.05 demand for every commodity on every node on every time step. 40000 simulations
were run, with tl = td = 1. In the simulations with congestion, the congestion weight was chosen to be 1

4 .

packages often have more reason to pass through the periphery of the wheel graph for instance.

For nodes 0 and 4, we observe a small di�erence in the start-up process. The time evolution of node 4 has
an almost continuous line, with very little variance, whereas for node 0 there is a small dent just before reaching
steady state, occurring for most non-central nodes in some way. This dent originates from the network topol-
ogy, in which edges traversed in a path is often constant for a origin-destination pair. For instance, when going
from 8 to 0, one has to move both left and up twice. However, these may be arranged in any way, but they
necessarily pass four edges (unless the edge lengths are very weirdly generated).

In general, this behaviour can be extrapolated to larger lattice networks. When considering the network
from �gure 5.8f, this dented behaviour can be expected for nodes 0, 4, 20, and 24 and to a lesser extent for the
remaining boundary nodes. The centre of the graph, consisting of node 12, but also its surrounding nodes,
should also generally experience more tra�c than the outside. One should, just as visible in �gure 5.10a, expect
that the package average decreases as the amount of edges needed to reach the centre increases.

The DGM network

Last up is the DGM network, which is some way of generating a small world network. This is a network that
often describes social networks, in which some in
uential hubs are much more connected than the other nodes,
but this can be extended to, for instance, tra�c on websites as well. Figure 5.12 shows the usual package averages
and variances for the nodes in the DGM network, in which the edge lengths have been generated 1+ Poisson(5).

The way a DGM graph is generated, is by connecting new nodes to two existing nodes, with higher proba-
bility of them being connected to a more central node. As a result, the newest nodes (which are the ones with
largest index) are the least central, and have degree 2. This holds for nodes 6 all the way through 14. This is also
clear when looking at �gure 5.12a, in which this distinction can be inferred by looking at the package average.
The most central nodes 0 to 2 have a much larger average than nodes 3 to 5, which also have a signi�cantly larger
average than the remaining nodes. Node 8 is an outlier, but that happens due to an unfavourable generation of
its outgoing edge lengths, and by extension its unpopularity.

Again, time evolution of the amounts of package at the nodes is not very interesting, except that nodes 6
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(a) Node 0 without congestion. (b) Node 0 with congestion.

(c) Node 4 without congestion. (d) Node 4 with congestion.

Figure 5.11: The time evolution of nodes 0 and 4 in the 2D lattice network.

(a) The package average. (b) The percentual variance per simulation.

Figure 5.12: The package average and percentual variance per simulation for all nodes, with and without congestion, for
the DGM network. The simulations were run for 144 timesteps, re�ned ten times in the simulations with congestion.
The steady states have been chosen as t > 30 and t > 70 time steps respectively. There is an abundant amount of trucks
(10000) and there is on average 0.05 demand for every commodity on every node on every time step. 40000 simulations
were run, with tl = td = 1. In the simulations with congestion, the congestion weight was chosen to be 1

4 .
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through 14 show the familiar discrepancy in the start-up process between the congestionless ABM and EBM
solutions. Beyond that, the time evolutions only mirror what can already be seen from �gure 5.12.



Chapter 6: An optimization approach

In the preceding chapters, the agent-based model and di�erential equation model were both developed and
tested. The congestionless EBM described the ABM well. The performance of the EBM with congestion was
lacklustre, though. At the very beginning of the development of the EBM, equations 16 and 17 did not seem to
yield the desired results on their own. After developing the EBM and �nding out that creating the EBM from
the bottom up cost way too much performance, there were two options. Either, the EBM was to be repaired,
which is a hard thing to do when the error is not obvious, or at least an equation can be created, which is made
to approximately yield the averaged ABM solution as its solution. The paper by Cencetti et al. [15] sparked this
idea, as it considered equations with a very similar form as equation 16 in a similar setting, and hence maintains
the desired simplicity of the equations.

In said paper, the authors entertain the situation where commodity is placed on a network and attracted
in some way to sinks, in which they will be trapped forever. Their commodity is denoted by p. In one time
step, these commodities can hop to a neighbouring node, the odds of which are encompassed by matrixM [i,j],
where i and j are the trapping sinks. Taking the continuum limit, this gives a continuous equation. In their
notation, said equation generally reads:

ṗk(t) =
∑
l

M
[i,j]
kl pl(t)−

∑
l

M
[i,j]
lk pk(t) =

∑
l

L
[i,j]
kl pl(t), (37)

whereL[i,j]
kl = M

[i,j]
kl −δkl. This is true, as it is assumed that

∑
lM

[i,j]
lk = 1, which means that all the available

commodity moves, and nothing remains on the current node. However, even if a proportion of some commod-
ity l remains on the node, this could be incorporated by lettingM [i,j]

ll 6= 0.

This model is very similar to the model in section 3.1. Mainly, the Fij terms there, with the assumption
Fij(t) = αijxi(t), correspond perfectly well to the

∑
lM

[i,j]
lk pk(t) term. There are two di�erences though;

for instance, there are no clear sinks in the model presented in chapter 3.1. This is not necessary for the analysis
presented in the paper to work either, and as such it can in general be disregarded. Moreover, the paper does
not consider supply and demand terms. The supply is generated beforehand, and is included in the initial con-
dition; pk(0) = p0. The demand is unde�ned as it does not especially matter how many packages reach the
sinks, as long as everything is drained from the remainder of the network in the end.

In the treatment of this problem in this current chapter, sink nodes are omitted, while they are surely still
allowed to exist (think of a package distribution centre in a supply network, for example). Supply and consump-
tion terms are added instead. The di�erence is that when a commodity is consumed, it is not necessarily trapped
at the node.

The following equation is thence obtained:

ṗi =
∑
j

Mjipj −
∑
j

Mijpi + si − ci, (38)

37
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whereMij is equivalent to the formerαij and denotes the fraction of packages 
owing out of node i to node j.
si and ci are the supply and consumption terms on nodes. In the case a sink exists on node i,Mij = 0 ∀j 6= i,
which ensures that no packages leave the sink. If a source exists on node i, Mji = 0 ∀j 6= i, which ensures
that no packages are transported into the source.

The only constraint on this equation reads∑
i

(si − ci)
t→∞−→ 0, (39)

which makes sure that there is no divergent behaviour.

This generalization of equation 37 does not allow for it to be rewritten to a simple ṗi =
∑

j Lijpj , as the
inhomogeneous terms, si and ci, do not permit that. 38 can be written in a tidier form:

ṗ = (M − I)p+ s− c = Ap+ s− c (40)

The homogeneous part of this equation has the solution

ph(t) = eAtp0, (41)

which can further be rewritten as

ph(t) =
∑
n

m(λn)∑
k

Ankt
m(λn)p0e

λnt, (42)

in which λn are the eigenvalues ofA and m(λn) is the multiplicity of said eigenvalue. Ank are matrices, deter-
mined by the system of equations

Am =
dm

dtm

∑
n

m(λn)∑
k=0

Ankt
keλnt

∣∣∣∣∣∣
t=0

, 0 ≤ m ≤ N − 1, (43)

in whichN is the size ofA.

However, equation 38 is inhomogeneous. IfA is constant, its solution is given by

p(t) = eAt
(
p0 +

∫
e−Atb(t)dt

)
, (44)

which can numerically be integrated using

p(t+ δt) = eAδtp(t) + δt
b(t+ δt) + b(t))

2
. (45)

The derivations are given in appendix B.

6.1 The optimization approach

Let in general ṗ = A(t)p+b(t). The question this time around is how to chooseA and b such that p resembles
the ABM simulations, or the EBM, in order to generate an easier solvable EBM.
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Let to that end bi(t) = βifi(t, ωi) and Aij = αij − δij , in which the δij exists to make sure that all the
packages are transported away from a node, and potentially retained by the αij . Hence, the αij , βi and ωi are
in general the parameters over which the model is to be optimized. Let p be the amount of packages obtained
with the ABM, or whichever comparison model, the goal is then to minimize the following objective function:

Σp =
T∑
t=0

(p(t)− p(t))2 (46)

constrained by ∑
j

αij = 1, ∀i αij ≥ 0, ∀(i, j) ∈ E , αij = 0, ∀(i, j) /∈ E , (47)

and, additionally, if we assume fi(t, ωi) = e−t/ωi , ωi > 0 ∀i, which corresponds with a situation similar to
the assumptions made in the ABMs. fi(t, ωi) hence starts o� at 1, which means that only supply is present. It
decreases to 0, which means that the consumption caught up with the provided supply. Of course, it will not
reach zero in �nite time, but that is no problem as it will get close enough at around t = 5ωi.

Applying this optimization problem to the custom-made network from �gure 5.1a, there are 36αij and 10
ωi, which is already quite a considerable amount of parameters. The supply is assumed to start o� at some βi,
which we take 1

2 for all i. This is in accordance with the choice made in section 5.1, which will be the reference
material for this section. Choosing the βi beforehand is done to reduce the amount of necessary parameters by
10. Eventually, one could even assumeAij = αijgij(t, χij), which generally increases the amount of parame-
ters.

While performing a couple of time optimizations of the implementation, a compromise had to be made.
The analytical result from equation 65 could be taken, which is expensive to �nd due to the re-evaluations of eAt
on each time step, and in which the integral would internally be numerically integrated by Matlab [21]anyway.
The other option is to use equation 66, which iteratively determines the solution on the next time step, based
on the solution on the previous time step. This method has the boon of not having to determine matrix expo-
nentials each time step, and is hence much more e�cient. Even though the relative numerical accuracy is only
10−3, this is su�cient as the ABM data is noisy anyway. This method is not as easily usable for time depen-
dent matricesA(t), though, in which case a simple Euler forward implementation works anyway. Higher order
numerical methods are not necessary, as Euler forward turns out to be su�ciently accurate and still quick to
implement.

Using a constant A gave surprisingly accurate results, an example of which can be seen in �gure 6.1a. This
being already so accurate, and frankly more accurate than hoped or expected, prompted the motivation to make
A time-dependent in hopes of creating an even more accurate result, instead of improving the current result
with a constantA. The chosen way to build up the matrixA is

aij = (αij − δij)
(

1− e−
t
ωij

)
, bi(t) = s0e

− t
ωi , (48)

in which δij is the Kronecker delta. Figure 6.1b shows an optimization attempt in which the ωij are all taken
equal to theωi used in the bi, to reduce the amount of parameters considerably, and because the amount of con-
sumption should approximately follow the same shape as the amount of leaving packages. Figure 6.1c shows an
attempt in which allωij are equal when varying j, but they are not equal to theωi used in the bi. This increases
the required amount of parameters by 10. One could go further and allow for all ωij do be di�erent, but that
changes the amount of ωij from 10 to 36, and as the results are already pretty good, this has been skipped.

Figure 6.1d shows the same procedure as �gure 6.1c, except that the comparison has been performed with
respect to the EBM solution instead of the ABM solution. As the start-up process ends abruptly, the exponen-
tials cannot describe that well, but it is possible to choose other functions gij(t, χij) and fi(t, ωi) with more
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(a) Comparison w.r.t the ABM solution without congestion and a
constant A.

(b) Comparison w.r.t. the ABM solution without congestion, with
uniform ωi.

(c) Comparison w.r.t. the ABM solution without congestion. (d) Comparison w.r.t. the EBM solution without congestion.

(e) Comparison w.r.t. the ABM solution with congestion.

Figure 6.1: The result for x0 of the optimization procedure for the custom-made network, using a constant matrix A
(6.1a) and a time-dependent matrix A in the other sub�gures, with parameters αij , ωi and ωij . The optimization was
performed with respect to the results from section 5.1.
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Figure 6.2: The result forx9 of the optimization procedure for the custom-made network, using a time-dependent matrix
A, when comparing to the ABM with congestion.

discrete and jumpy natures. It is notable that the steady state is very well approximated, but it should be noted
that, as a long section of the solution is steady state, it is bound to weigh heavier in the optimization process.

Last, but not least, �gure 6.1e shows a realization of the optimization approach used on the ABM with con-
gestion. In this attempt, the obtained EBM solution overlaps pretty well with the ABM solution, but in the
start-up process and in the steady state. This is due to the start-up being more stretched out by the in
uence of
congestion and making more of a curve than a bend in the solution. Figure 6.2 shows an even better example of
this for node 9 in the custom-made network, which pretty much completely overlaps.

One thing that should be clari�ed is the worsening of the optimized EBM solution between �gures 6.1a and
6.1b. This happens because the EBM is optimized for all 10 nodes at once and it just so happens that a worse
result for node 0 is favourable for the other nodes on average.

The same has also been done for the random 40 node network, to investigate whether optimization itera-
tions for a larger network would converge much slower and whether they would be as accurate. We remark that
the 40 node network leads to an optimization over 280 parameters. The numerical solution of this problem
proved to be about as fast as running the ABM simulations, and is certainly faster than generating the EBM
with congestion. More derivatives have to be determined due to the amount of parameters, while due to the
amount of solutions to �t, the optimum is harder to reach; even moreso when comparing to the ABM results,
as opposed to comparing to the EBM results. For multiple reasons, iterations take longer to process, but they
still only take approximately a day or so, which is by far better than the EBM, as that took one day to solve
with signi�cant error for the 10 node network. The optimization attempts for the custom-made network took
about 7 hours for the most intensive one, and about 2 to 3 for the one with a constant matrixA. This could be
further reduced by reducing the ωij back and reducing the amount of time steps taken into account, as well as
sacri�cing accuracy for a larger time step used in the numerical integration of the EBM solution.

We conclude from this section that �nding an EBM with optimization solvers is surprisingly well doable.
The start-up process in the congestionless equations is not approximated very well, but for non-secluded nodes,
the EBM from chapter 3 does its job well and quickly anyway. The steady states are pretty much always followed
pretty closely, as they are taken into account for more time steps in the least squares �t. The real power of this
approach is �nding an equation that approximates the ABM solution with congestion reasonably well in a lot
less time than the previously explored EBM approach.
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After attempting to optimize the model parameters, it is clear that choosing the shapes ofA(t) and b(t) rather
became a task of arbitrary guessing, as the way to elicit them is not obvious.

Let us thence take a look at a di�erent way of modelling altogether; Generalized Models (GMs) is an evident
way to remedy this 
aw. Let us consider, for continuity sake, the custom-made network from �gure 5.1a. This
network has always been thought of as a network of cities containing distribution centres. As an extension of
this, we might consider customers, or rather postal zones, ordering products from some (online) store, in which
turn a delivery service delivers those orders, scheduled by the store. Rather than the previously studied physical
package transport, a more abstracted supply network containing the entire package delivery network is consid-
ered. This time, the interactions between nodes will be regarded as management policies and social in
uences.
These then correspond to decision rules in ABMs. However, contrary to ABMs, they are not explicitly de�ned.

Let P be the vector of parts, i.e. orders, which are assumed to exist on edges in the network, tailored such
that Pi > 0 for all i. From customer to store, this means a placed order, while from store to delivery centre,
this means a scheduled order. From delivery centre to customer, this denotes an actual order being delivered.
Additionally, two extra parts can be de�ned as entering and leaving the network; ”supplied” and ”consumed”
orders, or rather the social in
uence which leads to orders being posted and the consumption of said orders.
These are represented by the customer being connected to a reservoir, and the interactions taking place between
the customer and the reservoir. Moreover, let F be the vector of 
ows, or productions, in the network, where,
again,Fi > 0 for all i. Contrary to intuition, these take place at the nodes and at the reservoir; at the source they
might denote some kind of social in
uence, while at the customer this translates to an actual order placement.
At the store, this denotes the act of scheduling an order, and at the delivery centre this denotes that an order is
loaded into a truck. Furthermore, letP ∗ andF ∗ denote a steady state of P andF , assuming at least one exists.

Let the customers be denoted by Ci, let the stores be denoted by Si and let the delivery centre nodes be
denoted byDi. Let lastly the external reservoir be denoted byR; di�erent reservoirs are not labelled di�erently.

7.1 One store and two customers

Let us here look at a fairly simple, non-trivial example in which two customer-delivery centre pairs are present,
and only one store. In general, though, one delivery centre might be connected to two customer zones, and
multiple stores might deliver through the same delivery service. The focus here is on how to develop the equa-
tions, though, such that an extension including said behaviours would be clear.

Several expansions and variations of the same problem are covered in the current and following sections.
An extensive bifurcation analysis is conducted in each case, followed by an comprehensive comparison with the
statistical ensemble method. Additionally, for each section after the current one, there is a table in appendix
D, representing the part sensitivities and in
uences. The most important results are recapped at the end of the
chapter.

43
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Figure 7.1: A simple example graph to illustrate the structure of the network. The single motive has been given with the
respective parts on the edges, along with the reservoir they, if applicable, 
ow into or out from. This network consists of
a cyclic triangle motive, with a customer, a store, a delivery company, and an external reservoir.

Figure 7.1 shows the initial toy graph, considered in this section. In this case there are �veP ’s. The equations
read: 

Ṗ0 = F0(P0)− F1(P0, P1, P3)

Ṗ1 = F1(P0, P1, P3)− F2(P1, P2)

Ṗ2 = F2(P1, P2)− F3(P2, P3)

Ṗ3 = F3(P2, P3)− F4(P3, P4)

Ṗ4 = F4(P3, P4)− F5(P4).

(49)

In this equation, each F corresponds to some production or transformation of parts in the network. For in-
stance, F0 describes the creation of parts and F5 describes the consumption of parts. Likewise, F1, F2 and F3

describe the transformation of parts into other parts. In general, the transformations of P1 into P2, could de-
pend on the strain of the remainder of the network on the store and the transformation of P2 into P3 could
depend on the strain on the delivery centres. As we only consider one motive here however, this is not relevant
yet.
Moreover, the external production of P0 and the consumption of P4 could in general depend on more than
just themselves. However, these e�ects are not included here.

These equations need to be scaled with respect to their steady state, such that p = P
P ∗ and f = F

F ∗ and for
instance:

ṗ0 =
F ∗0
P ∗0

f0(p0)− F ∗1
P ∗0

f1(p0, p1, p3). (50)

Doing this for all p, the Jacobian can be created as follows:

J = ΛΘp
f , Λij =

F ∗j
P ∗i

Nij , (51)

in whichN is a matrix indicating which 
ows take part in which equation. Θp
f is constructed by simply taking
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the derivatives of each 
ow term, with respect to each p.

N =


1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

 , Θp
f =



fp00 0 0 0 0
fp01 fp11 0 fp31 0
0 fp12 fp22 0 0
0 0 fp23 fp33 0
0 0 0 fp34 fp44

0 0 0 0 fp45

 (52)

These fpji are the mentioned elasticities, that parametrize the generalized model. They are meant to denote
the derivative of the scaled fi with respect to scaled part pj at the steady state. These don’t necessarily need to
be known for the entire range of the fi, because only the stability of p = 1 is of interest here.
Moreover, as in steady state the Ṗi are necessarily zero, it must hold that F ∗i = F ∗, ∀i, for some constant F ∗,
which simpli�es the equations further.

Next, the di�erent elasticities need to be categorized, in order to su�ciently simplify the model for analysis.
Let us therefore, like in [1, 2], distinguish three di�erent elasticities; elasticity to supply, elasticity to inventory
level and elasticity to co-production, denoted by fS , fI and fC respectively.

As there are no multiple parts produced on one node, because only one structure is considered here, there
exists no elasticity to co-production. If, however, multiple cyclical structures were to intersect at some point,
either in the S node and/or someD nodes, this elasticity to co-production could be included.

Most elasticities in Θp
f can therefore be categorized into either fS or fI . The elasticities to inventory level

are fp00 , fp11 , fp22 , fp33 and fp44 . The elasticity to supply parameters are fp01 , fp12 , fp23 , fp34 and fp45 .

Lastly, fp31 remains. This one can not easily be captured by the above-mentioned elasticity descriptions.
Rather, it consists of the degree of saturation or novelty of the products. That is, if a new product enters the
market, a lot of people might want to order it, as it is novel. Later on, when everyone possesses said product,
less orders will come in. On the other hand, someone might not order food multiple consecutive days; such
a scenario could also be described by this saturation. The so called elasticity to saturation is hence fp31 , which
is denoted by fσ . This should not be confused with fp11 , which means that less orders will be placed, when
orders are recently placed, although they are similar. For this initial analysis, these conclude all the considered
parameters and interactions in this section.

With these three elasticities, the Jacobian can be evaluated, along with its bifurcation points. Let us for
simplicity assume that all fS and fI are identical, along with all P ∗. Physically, the elasticities should satisfy
fI ≤ 0, fS ≥ 0 and fσ can bear any sign. More speci�cally, they are generally varied in the ranges 0 ≤ fS ≤ 1,
−1 ≤ fI ≤ 0, and 0 ≤ fσ ≤ 2 in this thesis. fI should be negative, corresponding to less orders being
placed if a lot of orders were already placed and less orders being able to be delivered, if a lot of delivery trucks
are already on their way. fS should be positive, which means that social in
uence leads to orders being placed,
more orders being delivered if more orders are handled by the store, and more products being consumed if
more products are delivered. A positive fσ indicates that receiving a product increases its demand. This is for
instance the case when customers exhibit compulsive behaviour, or are addicted to a product. If a customer
node is interpreted as a postal area, a positive fσ could be considered as a new product entering the market,
which is picked up by more and more people. Usually, though, fσ is more likely to be negative, which means
that customers become saturated and demand decreases as customers receive their products. This corresponds
with phenomena like novelties already being purchased by a majority of the public. As everyone starts to possess
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this novelty, its demand decreases. The Jacobian then explicitly reads

J =
F ∗

P ∗


fp00 − f

p0
1 −fp11 0 −fp31 0

fp01 fp11 − f
p1
2 −fp22 fp31 0

0 fp12 fp22 − f
p2
3 −fp33 0

0 0 fp23 fp33 − f
p3
4 −fp44

0 0 0 fp34 fp44 − f
p4
5

 , (53)

and its determinant reads

∆J =

(
F ∗

P ∗

)5

(fI − fS)
(
f4
I + f2

I f
2
S + fIf

2
Sfσ + f4

S

)
, (54)

whence it is clear that varying P ∗ has no e�ect on the sign of the determinant. Likewise, as P ∗ and F ∗ appear
as factors in front of J , they will neither a�ect the stability. Moreover, when this determinant equals zero, J
has a zero eigenvalue, and a saddle-node bifurcation occurs. Hopf bifurcations occur when the resultant of J
is zero, while the Hopf number, χ, is negative [2, 3], as explained in section 1.2.1.

The determinant evaluates to zero when f4
I + f2

I f
2
S + fIf

2
Sfσ + f4

S = 0, or when, trivially, fI = fS ,
which means that both are trivially 0, as fI ≤ 0 and fS ≥ 0. In the �rst case, the �rst, second and last term
are necessarily positive, such that all negativity should come from the third term, i.e. an additional saddle-node
type bifurcation exists when fσ = f∗σ , if

f∗σ = −
f4
I + f2

I f
2
S + f4

S

fIf2
S

. (55)

For f∗σ > 0 equation 55 de�nes a cone-like surface, visible in Figure 7.2, which is denoted by SN here.

Moreover, as discussed in [3], using the Resultant method, additional bifurcations can be found at the
surfaces where the for completeness explicitly given Resultant,

R5 = −1024F 10

P 10
·
(
f4
S −

(
3fI +

fσ
16

)
f3
S +

(
67f2

I

16
+
fIfσ

8

)
f2
S − 3fSf

3
I + f4

I

)2

·(
f6
S −

(
4fI +

fσ
4

)
f5
S +

(
29f2

I

4
+
fIfσ

2
− f2

σ

64

)
f4
S −

(
17f3

I

2
+
f2
I fσ
4

)
f3
S +

29f2
Sf

4
I

4
− 4fSf

5
I + f6

I

)2

,

(56)

vanishes. Clearly, again, P has no in
uence on the bifurcation locations.

Each of these factors can become zero, which only noticeably happens for relatively large fσ compared to fI
and fS . It is also more challenging to deal with them, as a sixth degree equation can not be solved analytically.
The large factor (on the second row of equation 56), contains two branches, one for positive fσ and one for
negative fσ , shown in �gure 7.2, coloured blue and red respectively. However, at the intersection of the former
with the SN surface, this branch changes from a Hopf bifurcation, denotedH1, to a real Hopf situation, de-
noted RH1. On the RH1 part, the symmetric eigenvalues are coincidentally also the eigenvalues closest to 0,
and hence constitute saddle index 1. The latter always has two purely imaginary complex conjugate eigenvalues,
corresponding with a Hopf bifurcation, denoted byH2.

The last factor of the Resultant, has two symmetric real eigenvalues, of which none have the smallest real
part. This surface also intersects with the cone, shown in yellow in �gure 7.2. As there are two symmetric real
eigenvalues, it is a real Hopf situation, denoted byRH2.
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Figure 7.2: A 3D visualisation of the bifurcation surfacess. The green cone-like surface constitutes the SN bifurcation.
It appears to stop above the yellow surface due to the amount of points used, but it should persist connecting to itself at
fS = fI = 0. The blue surface constitutes bothH1 andRH1, and the yellow surface constitutesRH2. Lastly, the red
surface constitutesH2.
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RH1 and RH2 do not have an e�ect on he stability of the network, as they are not really bifurcations.
However, on their surface, there exists a homoclinic orbit, as explained in [17].

Lastly, when SN andH1 intersect, a Bogdanov-Takens, orBT for short, bifurcation occurs, as two bifur-
cation surfaces meet there and brie
y, two zero eigenvalues exist. This also happens at fS = fi = fσ = 0,
which corresponds with the creation of interactions on the network.

Figure 7.2 shows the bifurcation diagram for the current investigated network, whereas �gure 7.3 shows
two-dimensional projections of this bifurcation diagram. Evaluating the eigenvalues (not shown) in di�erent
regions of the parameter space reveals their stability. Following �gure 7.2, the inside of the cone-like surface is
unstable, and the area between the blue surface and the fI = 0 plane is also unstable. Likewise, the region be-
tween the red Hopf bifurcation surface for negative fσ , and the fI = 0 plane is also unstable. In the remainder
of te parameter space, the steady state p = 1 is stable. This is illustrated in �gure 7.4.

A similar analysis can be performed using the statistical ensemble method, henceforth referred to as SE
method. In this method, the parameter space is sampled uniformly and on all these samples, the stability of the
system is determined, by calculating all eigenvalues of the system, and determining whether the leading eigen-
value is positive. Such an analysis gives a representation similar to �gures 7.2 and 7.3. However, rather than
explicitly showing the stability regions, the stability of the system is demonstrated by a percentage of stable net-
works, which is commonly referred to as PSW (Proportion of Stable Webs) in the literature [1]. The PSW is
plotted as a function of fI , fS and fσ in �gure 7.5.

In this �gure, 108 samples were taken in both ensembles. In the ensemble of identical paremeters, all fI
are taken equal, as are all fS , just like in the bifurcation analysis. In the ensemble of individual parameters, all
fI and fS are sampled independently. The �gure is then made by dividing the investigated parameter into in-
tervals, and considering the proportion of stable networks in said intervals. When sampling independently, the
intervals are de�ned for the average of the di�erent fI and fS . A keen-eyed reader can notice that the individual
parameter ensemble plots do not completely reach the sides and squiggle a little. This is due to there existing
�ve di�erent fI and fS , and hence their average has a very low chance of reaching the boundaries. This also
explains the jagged edges, as only a few samples �t in those intervals.

To emphasize the di�culty of obtaining precise information using this method, and the importance of
keeping the parameter ranges in mind, results taking 0 ≤ fσ ≤ 1, instead of the usual 0 ≤ fσ ≤ 2, have been
added in �gure 7.6.

For instance, as a smaller range of fσ is considered there, the projection of the cone in �gure 7.2, as given in
�gure 7.3c, shrinks. This e�ect is re
ected in the larger PSW for all fσ , but is also re
ected in a PSW that is
1 over a larger portion of fI and a larger portion of fS . This leaves the impression that fI and fS more vehe-
mently impact the stability of the network, whereas this e�ect entirely comes forth from considering a smaller
range for fσ , and the proper explanation is that an increasing fσ brings more instability.

As it turns out, the ensemble with individual parameters yields networks that are unstable in a larger part
of the parameter space, with exception of low fS (approximately < 0.2), for which the ensemble with identi-
cal parameters is less stable. This can be understood in the following way. Of course, the bifurcation diagram
di�ers when considering each elasticity individually. However, their bifurcation surfaces should have some re-
semblance to �gure 7.2, albeit being higher dimensional. Stability is lost by having just one positive eigenvalue.
When multiple elasticities are varied, the odds rise of at least one of them being sampled such that the system
is unstable. This is a drawback of the SE method; multiple elasticities may cause instability, but this cannot be
distinguished well in a curve averaged over all similar elasticities.
Therefore, an average over all similar elasticities does still not illustrate particularly well which parts impact sta-
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(a) Parameter space projection on fI = − 1
10

. (b) Parameter space projection no fS = 1
2

.

(c) Parameter space projection on fσ = 2. (d) Parameter space projection on fσ = −2.

Figure 7.3: Four projections of �gure 7.2. SN is depicted in green, whereasH1 andH2 are given in blue and red respec-
tively. Lastly,RH1 andRH2 are respectively depicted in dashed blue and yellow. Keep in mind that the fσ = −2 �gure
has entirely di�erent axes compared to the fσ = 2 �gure.
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Figure 7.4: The stability regions of �gure 7.3c. While eigenvalues become zero on the remainder of the blue curve, they
do not a�ect stability, and hence are not relevant for stability purposes. Region I is stable, whereas region II is unstable.
The blue blue curve on the right isH1 and the green curve on the left is part of SN .

(a)

(b) (c)

Figure 7.5: Results of the SE method performed on equation49, with an ensemble of identical parameters in blue and
an ensemble of individual parameters in green. In these ensembles, 108 samples were taken, which were divided over 100
intervals.
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(a)

(b) (c)

Figure 7.6: Results of the SE method performed on equation49, with an ensemble of identical parameters in blue and an
ensemble of individual parameters in green. Again, 108 samples were taken, which were divided over 100 intervals. This
�gure is the same as �gure 7.5, with the exception of 0 ≤ fσ ≤ 1, instead of 0 ≤ fσ ≤ 2.
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(a) (b)

Figure 7.7: Results of the SE method performed on equation49, with an ensemble of individual parameters, in which the
PSW s have been determined for each individual elasticity. 108 samples were taken again, which were divided over 100
intervals. The second subscript denotes the considered part. For instance, fS,0 = fp01 . The fσ �gure has not been added,
as it is the same as the green curve in �gure 7.5c, which has been made for the individual parameter ensemble, of course.

bility the most. On top of the SE with averaged intervals, it is thence illustrative to also look at an ensemble in
which the PSW is visualized for distinct elasticities. Its results are given in �gure 7.7.

This �gure contains three features that immediately stand out. Firstly, elasticities of the same kind are not
necessarily monotonous in the same direction. Moreover, the elasticities that behave di�erently, do not pertain
to the same nodes for fI and fS . Lastly, they seem to cross each other at approximately the same point for each
elasticity type, except the ones node 4; at about fI = −0.4 and fS = 0.4.

The results in �gure 7.7 are easily interpreted, but not always intuitively understood. We restrict the dis-
cussion to �gure 7.7b, as explaining the results for �gure 7.7a is very similar. For instance, an example of taking
fS,4 = 0 is when one orders food regularly, but somehow needs to satisfy a certain constant trash output, such
that they have to keep ordering food to that end. Obviously, if the orders do not balance the required trash
quota, the network drains or parts accumulate somewhere. A similar argument can be held for fS,3 and fS,0;
takingfS,3 = 0 corresponds with a consumption that does not depend on the incoming deliveries andfS,0 = 0
corresponds with a constant social in
uence making customers want to order at a constant rate. When actually
considering the stock of these parts, the system stability increases.
For parts 1 and 2, though, taking their fS = 0 represents a network in which placed orders do not a�ect
placed scheduled and placed schedules do not a�ect delivering packages respectively. They are not realistic as
the amount of placed orders, for instance, is in reality not the same every day. Nonintuitively, the lack of these
interactions makes the network always stable, as it is much simpler, but less e�cient in real life. Hence, such
models rely on only the other parameters to correct perturbations and trade o� e�ciency for simplicity. It
should therefore be clear that the results for the individual ensemble, presented in this way, do not always yield
physically relevant optima, and are also not always intuitively understood.

This result does immediately illustrates the advantage of the SE method pretty well, though; a bifurcation
analysis can easily be employed for systems with 3 varying parameters, and can still be used with 5 or so varying
parameters. Introducing more parameters in a generalized model really hampers the possibility to make useful
statements about the entire parameter space, when using bifurcation analysis, without only considering projec-
tions, which may take away a lot of generality. With the SE method, quite a lot of parameters can be introduced
and varied. Generally, most parameters are varied pretty well and represent quite a sizeable part of the parameter
space, depending on the amount of taken samples. It should however be noted that for networks of increasing
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P0 P1 P2 P3 P4

Sei 4.164 5.204 4.873 4.461 3.771
Ini 3.828 4.511 4.940 5.260 4.270

C S D

Se 17.600 10.077 9.334
In 17.869 9.451 10.200

(a)
P0 P1 P2 P3 P4

Sei 3.160 4.846 4.804 4.331 3.250
Ini 3.710 4.554 4.934 5.183 4.454

C S D

Se 15.587 9.650 9.135
In 17.901 9.488 10.117

(b)

Table 7.1: The Sensitivities and In
uences of each part and each node in the one motive network from �gure 7.1, when
sampling identically (top) and individually (bottom). These have been determined with 106 samples.

size, varying a lot of parameters hampers e�ciency a lot, while making the results less intelligible as a lot of in-
formation has to be dealt with. If averaging over them to generate the �gures, a lot of information is lost, but it
can be tricky to sensibly visualize the results if the parameters are not averaged. Such a visualization, in which
the parameters are not averaged, is as far as I know not ordinarily made in statistical ensembles, while it adds a
tremendous amount of information. However, statistical ensemble methods are often employed in cases with a
very large amount of parameters, in which extracting information becomes increasingly harder to do manually.
Moreover, as thePSW is an average over all other parameters, this does not paint the clearest picture of the sit-
uation. For example, averaging over elasticities, a potential set for all fI having fI,0 = 0 would yield an average
over fI of−0.4. This intuitively corresponds to aPSW of approximately 0.8. This does however not generally
hold and �xing a speci�c fI may alter thePSW distribution signi�cantly. Analogously, if the fI parameter set
is taken to be {−0.5,−0.5,−0.5,−0.5,−0.5}, which clearly averages out to−0.4, the PSW , averaged over
the remaining fS and fσ is not necessarily about 0.8. It is therefore hard to gain precise information with the SE
method, but overall stabilities are for sure more easily compared in the SE method, compared to the bifurcation
analysis method.

On top of the PSW s, the sensitivity and in
uence of all parts has also been determined for all network
parts, as de�ned by equations 4. By extension, the sensitivity and in
uence of each node have also been de-
termined, as the sum of the sensitivities and in
uences of the connected parts. These have been given in table
7.1. Even when only considering barely unstable parameter sets, some seep through where the ln has a negative
argument. These have been omitted, but the found values should still remain representative. For this one node
network, the amount of omitted parameter sets amounts to up to 1%, depending on the considered sensitivity.

It turns out that 106 already gives a one decimal accurate result. This is su�ciently accurate, when the goal
is to know the relative importance of all nodes. This is relevant, as 108 samples for thePSW �gures eliminates
a lot of variance, but determining the sensitivities and in
uences costs a lot more processing power.

From table 7.1 it is clear that the sensitivities are generally quite close to each other. Moreover, when sam-
pling identically, it looks like the sensitivities earlier in the network correspond with in
uences later in the net-
work. That is, Se0 ≈ In4 and so on. One has to keep in mind, though, that they have been scaled logarithmi-
cally. It is also worth mentioning how sensitivities and in
uences do not have a meaning on their own, but only
relative to others. Hence, P3 has the highest impact on the network, as it controls the feedback to P1. Further-
more,P0 has a lower impact on the network than the other parts. This can be understood in the following way;
bothP0 andP4 are only connected to one node, and hence are expected to have a lower impact on the network.
However,P0 
ows at the beginning of the network and establishes and a�ectsP1. On the contrary,P4 impacts
P3 backwards, which a�ects the feedback of P3 to P1. As P3 impacts the network a lot, P4 implicitly does so
as well. As a result, P0 in
uences the network a bit less strongly. P1 is the most sensitive part, as it is directly
a�ected by the most other parts.
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Figure 7.8: A network consisting of two merged simple motives, shown in �gure 7.1, connected at theS node. Again, the
parts have been added.

Additionally, it is also clear that the nodes with the highest degree are the most in
uential and sensitive in
the network. It is however harder to justify the sensitivities and in
uences when sampling independently. Simi-
lar results hold as with an identical ensemble, but the in
uences and sensitivities are mostly weaker. This is most
strongly visible forP0 andP4, which now have similar sensitivities, but a larger di�erence in in
uence. One can
hence conclude that results for identical ensembles translate well to independent ensembles, but still have to be
taken with a grain of salt.

As 108 samples in the single motive network took about 5 hours to process, a boundary for practical use lies
at about 109 samples, computing parallel, which could easily be implemented, over 8 cores. This could then be
run overnight. For larger networks, which take more time due to a larger Jacobian matrix, the ensembles might
take signi�cantly longer to run, as eigenvalue �nding algorithms have a complexity ofO(N3). Comparing this
to solving the equations numerically for T time steps, gives a complexity ofO(TN2), which is generally larger,
and can only easily be done for a chosen set of parameters.

This analysis illustrates the e�ect of di�erent elasticities on the stability of the network. increasing fS and
decreasing fI has a stabilizing e�ect, whereas increasing positive fσ and decreasing negative fσ has a destabiliz-
ing e�ect. Physically, these can be explained as follows; an increasing fσ indicates, as stated before, for instance
a novelty or addiction. Orders receiving at the customer triggering an increase in placed orders is a positive feed-
back loop, which is prone to spiralling out of control. On the contrary, an excessively low fσ indicates that the
customers are quickly saturated and hence no orders will be placed, which drains the system of its parts and
disrupts the system further. Moreover, increasing fS indicates that supply of parts more prominently causes
the parts to transform. This reduces build-up of parts (or orders) and corresponds to a faster handling of orders
in a real life equivalent. Lastly, decreasing fI indicates that out
ow of parts negatively impacts further produc-
tion of these parts. This corresponds with a shortage of products or delivery vehicles. Knowing the stability
properties of a single motive sets a precedent for more elaborated networks.

7.1.1 Two Motives

Let us move on to a network where two motives are merged at their common S node, which corresponds to
multiple customers or postal zones placing orders. This network is shown in �gure 7.8.
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(a) Parameter space projection on fσ = 2. (b) Parameter space projection on fσ = −2.

Figure 7.9: Two-dimensional projections on fσ = 2 and fσ = −2 of the bifurcation surfaces in the network containing
two motives joined at node S. Between the red Hopf curve and the fS axis, the system is unstable, whereas on the other
side of the curve, the system is stable.

When joining both of these at the S node, the system of equations become

Ṗ0 = F0(P0)− F1(P0, P1, P3)

Ṗ1 = F1(P0, P1, P3)− F2(P1, P2, P6, P7)

Ṗ2 = F2(P1, P2, P6, P7)− F3(P2, P3)

Ṗ3 = F3(P2, P3)− F4(P3, P4)

Ṗ4 = F4(P3, P4)− F5(P4)

Ṗ5 = F6(P5)− F7(P5, P6, P8)

Ṗ6 = F7(P5, P6, P8)− F8(P1, P2, P6, P7)

Ṗ7 = F8(P1, P2, P6, P7)− F9(P7, P8)

Ṗ8 = F9(P7, P8)− F10(P8, P9)

Ṗ9 = F10(P8, P9)− F11(P9)

, (57)

in which the same elasticities will be taken as before. The Jacobian is not given here, as it is large and does not
illustrate the problem much further, but it is constructed in a similar way as in equation 53. A three-dimensional
bifurcation diagram becomes quite crowded when merging two motives. As a result of this, it is perhaps easier
to keep the shapes of the previous bifurcation diagram in mind, and only consider a two-dimensional projection
of such a diagram now. Such a projection is displayed in �gure 7.9.

These projections, when compared to �gure 7.3c, have some resemblance, but also contain some noticeably
di�erent striking features. For fσ = 2, the same surfaces return, albeit in a slightly di�erent size. The saddle-
node cone-like surface is present, as are the Hopf surface and Real Hopf surfaces. In addition, there are two
new cones, with additional small branches close to the fS axis. These all turn out to be Real Hopf situations as
well. The �gure containing real Hopf surfaces becomes rather crowded and hence unclear. Henceforth, as the
situations will only become more complicated, only the stability surfaces are given, to allow for a more compre-
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Figure 7.10: The stability regions present at fσ = 2 for equation57. This �gure is generated analogously to �gure 7.4,
with the minor di�erence that both the Hopf branch and the cone-like surface are a bit larger. Region I is stable, whereas
region II is unstable. The blue curve on the right is again a Hopf bifurcation and the green curve is part of a saddle-node
type bifurcation.

hensible picture of the situation. Doing that here yields �gure 7.10.

The same regions as before are unstable. Upon taking a closer look at the actual bifurcations in these two
situations, it appears that the cone-like surface has its highest point for a largerfS after adding the additional mo-
tive. Likewise, the Hopf surface intersects the fS axis at a slightly higher point this time around. This indicates
that connecting multiple motives by node S decreases stability slightly. This suggests that multiple customers
put more strain on the system, which reduces stability on the system. The fS = 0 and fI = 0 planes are also
saddle-node type bifurcations surface now. At the intersection of the Hopf curve with fI = 0, there is one zero
eigenvalue and two purely imaginary eigenvalues. This corresponds to a Gavrilov-Guckenheimer, also known
as Fold-Hopf, bifurcation. The similarity between �gures 7.10 and 7.4 gives rise to proposition 1:

Proposition 1 Stability behaviour for the small cyclic network is inherited by larger networks containing the small
network as a sub-motive.

The SE method results have been given in �gure 7.11. An additional curve has been given, compared to 7.5.
This time, F2 and F8 take place at node S and are both impacted by both incoming and outgoing parts. The
green curve represents the situation in which all parts have distinct elasticities. For instance, this implies that
fp28 still equals fp22 (see equation 57). The red curve represents a situation in which all interactions have dis-
tinct elasticities. This introduces four new elasticities (two fS and two fI ). It is clear from the �gure that this
rather small change (splitting four elasticities into eight elasticities, compared to splitting three elasticities into
22 elasticities) severely enhances the instability in this system. That is, when the out
ow of di�erent parts and,
by extension, orders of di�erent customers are treated di�erently by the store, then the system becomes much
more unstable. There is even more di�erence between the red and green curve than between the blue and green
curve. As this di�erence is so huge, it is worthwhile to reiterate this result in the shape of a proposition:

Proposition 2 Arbitrarily treating di�erent customers di�erently, significantly decreases the overall stability of
the networks in multi-customer feedback flow networks.
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(a)

(b) (c)

Figure 7.11: Results of the SE method performed on the network from �gure 7.12 and its equations, with an ensemble
of identical parameters in blue, an ensemble of individual parameters in green, in which each part has its own elasticities,
and lastly an ensemble of individual parameters in red, in which each interaction has its own elasticity. 108 samples were
taken, divided over 100 intervals.
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Figure 7.12: A network consisting of two simple motives, as shown in �gure 7.1, merged at both the S andD node, with
parts added on the edges.

From now on, in the following sections, only the latter way of independently sampling will be considered.

7.1.2 Equal D nodes

After connecting the motives at nodeS, making the system symmetrical seemed to be an obvious way to change
the situation. This situation corresponds to the customers being closer to each other in reality, meaning that
they are nearby neighbourhoods or postal zones, and that products can thence be delivered by the same distri-
bution centre. On the other side, nodeD could also be more broadly regarded as a single postal company, which
necessarily deals with all the deliveries of the store. These di�erent ways to consider theD nodes lead to di�erent
interpretations of the elasticities, but should ultimately result in similar behaviour. To keep the situation easily
visualizable, the former concept is kept in this thesis. This network is given in �gure 7.12.

This time around, the motives are connected at both theS andD nodes, which changes equation 57 slightly
in the following way:

Ṗ2 = F2(P1, P2, P6, P7)− F3(P2, P3, P7, P8), Ṗ7 = F8(P1, P2, P6, P7)− F9(P2, P3, P7, P8)

Ṗ3 = F3(P2, P3, P7, P8)− F4(P3, P4), Ṗ8 = F9(P2, P3, P7, P8)− F10(P8, P9)
(58)

This hence includes the consideration of the orders by both customers and the schedules for both of these or-
ders in the creation of these schedules. Moreover, it also includes the consideration of both schedules and both
deliveries for the manifestation of these deliveries.

As it turns out, a zero eigenvalue exists in the entire parameter space, which causes the determinant to be
zero everywhere. Consequently, saddle-node type bifurcations cannot be found by solving Det(J) = 0 any-
more. The constant term in the characteristic polynomial of J is always zero. To actually �nd the bifurcation
surfaces this time around, the coe�cient of the linear term in the characteristic polynomial has to be equal to
zero, as then the system contains two zero eigenvalues on a bifurcation surface now.

However, as a zero eigenvalue is present in the entire parameter space, stability cannot be determined as
easily as in previous sections. This zero eigenvalue is related to the symmetry in the system of di�erential equa-
tions, and hence to a conserved quantity. By making bothP2 andP7 dependent on the sameP ’s, with the same
elasticities, Ṗ2 and Ṗ7 become locally identical around the steady state. Hence, they are linked and when one
of them is known, another is as well. This observation does however not help determining the stability of the
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steady state.

Let us therefore consider a toy problem, in which theFi are simply chosen to be a power of all its arguments,
to attempt to determine the stability. For instance;

Ṗ0 = P fI1 − P
fS
0 P fI1 P fσ3 ,

Ṗ2 = Ṗ7 = P fS1 P fI2 P fS6 P fI7 − P
fS
2 P fI3 P fS7 P fI8 ,

(59)

and the other Ṗi are de�ned analogously.

Letting Maple determine the general steady states in such a situation yields

Pi = 1, ∀i 6= 2, 7, P7 =
1

P2
, (60)

in which P2 is free, and another steady state in which Pi are alternating positive and negative. As we require
Pi > 0, this latter steady state won’t be regarded. Equation 60 thence gives a steady state line, corresponding
with the eigenvector belonging to the global zero eigenvalue.

Arbitrarily taking Pi(0) = 2, ∀i and letting Maple integrate the equation yields images like in �gure 7.13.
For fσ = 2, (fI , fS) = (−1, 1) is located outside the cone and hence there are only non-positive eigenvalues
(of which one is of course zero). This corresponds with �gure 7.13a, in which P0 quickly drains to about 0.8
and P1 increases to about 2.6 after which P1 decreases to 1, along with P0 increasing a bit to 1. For all Pi the
time evolutions are stable and move towards their steady states, typically 1, with exception ofP2 andP7, which
move to each others inverse, which might incidentally be 1. Moreover, (fI , fS) = (−1

2 ,
1
2) is located inside

the cone and thence there is at least one positive eigenvalue. Here, P0 quickly drains to almost 0, after which
P1 completely diverges. This behaviour has been given in �gure 7.13b. This has been tested for various initial
conditions and seems to hold quite generally, which indicates that the stability regions keep their stability prop-
erties from previous sections. This also makes sense, as otherwise the entire parameter space would suddenly
become unstable, even for very weak elasticities.
In �gure 7.14, two extra time evolutions have been given for parameter values just next to the blue Hopf surface,
visible in �gure 7.15. 7.14a gives a time evolution just to the left of the blue Hopf surface, and 7.14b gives a time
evolution just to the right of the blue Hopf surface, in which a stable limit cycle can be seen around the steady
state, and hence the system does not converge to the steady state.

Due to the size of the system, the non-linearities present, and the connectedness of all parts it is however
hard to formally prove this result in this case, let alone in general, and hence it is only demonstrated in this way.

The changes applied in this section lead to the bifurcation diagram in �gure 7.15. This diagram is similar to
that of �gure 7.9 and retains the same surfaces. One of the cone-like real Hopf surfaces (not shown) has shrunk,
but overall the remainder retains a similar shape as before. However, the large saddle-node bifurcation cone has
increased in size again, as has the Hopf surface, which yet again indicates that connecting the motives by both
nodes S andD destabilizes the network further, giving rise to proposition 3:

Proposition 3 Having one node in a network perform the same role in multiple sub-networks decreases network
stability.

Due to the global zero eigenvalue, and 
oating point precision, approximately half of the eigenvalue sets
will contain a positive eigenvalue. This can be remedied by only counting the unstable eigenvalue as valid when
it is larger than some ε, which has to be chosen somewhere between 10−15 and 10−8 depending on the size
and complexity of the network. Usually, larger networks, and networks with more interactions, require a larger
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(a) fI = −1 and fS = 1. (b) fI = − 1
2

and fS = 1
2

Figure 7.13: Time evolutions of P0 and P1 for fσ = 2 and di�erent values for fI and fS , which place them in di�erent
stability regions. Sub�gure a demonstrates a stable equilibrium, whereas sub�gure b shows an unstable equilibrium. The
initial conditions are in both cases Pi(0) = 2 ∀i.

(a) fI = − 1
10

and fS = 7
10

. (b) fI = − 9
100

and fS = 6
10

.

Figure 7.14: Time evolutions of P0 and P1 for fσ = 2 on both sides of the Hopf surface. The initial conditions are in
both cases again Pi(0) = 2, ∀i.
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(a) Stability region projection on fσ = 2. (b) Stability region projection on fσ = −2.

Figure 7.15: The two-dimensional projections on fσ = 2 and fσ = −2 of the bifurcation surfaces in the network from
�gure 7.12, containing two motives joined at nodesS andD. The same stability regions are present as in �gure 7.10; region
I is stable and region II is unstable. To the left of the red Hopf curve, the system is unstable and to the right the system is
stable. In �gure a, the blue curve on the right is a Hopf bifurcation and the green curve on the left is part of a saddle-node
type bifurcation. The red curve in �gure b is a Hopf bifurcation.

choice of this ε. When increasing the size of the network even further, one has to be even more careful, as 10−8

might not be small enough, but eigenvalues other than the global zero one might become small as well and
wrongfully omitted. This is however no issue when sampling individually, as there are no global zero eigenval-
ues present in those cases.

By extension, the sensitivities and in
uences cannot be calculated with the de�nition if a global zero eigen-
value is present. Those terms are thence chosen not to be included in the sum in the ln, as they do not contribute
to changes in the network anyway. They rather pertain to the line of steady states, and hence do not impact the
remainder of the network.

Lastly, the results of the SE method, given in �gure 7.16 re
ect those of �gure 7.11. The change in stability
for the identical samples is marginal, but present, whereas the change in stability for the individual samples is
larger. Their curves have a signi�cantly smaller slope at the boundaries; the fσ and fI �gures are much 
atter,
while the fS �gure curves much less at both sides.
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(a)

(b) (c)

Figure 7.16: Results of the SE method performed on the network from �gure 7.12 and its equations, with an ensemble of
identical parameters in blue and an ensemble of individual parameters in green, with 108 taken samples, divided over 100
intervals.
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7.1.3 Extending the model; adding elasticity to co-production, fC
This set of equations can be further enhanced, with a similar treatment as in [1, 2]. P2 andP7, together withP3

and P8 are created in parallel. This gives rise to the before mentioned elasticity to co-production, fC , which,
like fI is varied for −1 ≤ fC ≤ 0. An example of a situation in which this elasticity is present and relevant
is for instance around holidays. Customers order products en masse. If the store has enough stock, the postal
services su�er, because suddenly a lot more orders need to be delivered. As a result, the orders take longer to
deliver. This corresponds with a negative fC ; this fC is basically a special kind of fI , which can be taken for fp72 ,
fp28 , fp83 and fp39 . However, the productions of P2 and P7 have not been assumed to compete for each other.
Rather, as no reservoir supplies store S with products, the stock of P2 and P7 have implicitly been assumed
in�nite.

As a result, only fp83 and fp39 are taken to equal fC here, as they can compete for the availability of deliv-
erers. The bifurcation diagram in this case is given by �gure 7.17. At this point, adding real Hopf curves makes
the image entirely unintelligible. They run rampant and squiggle all over the place inside the arc. Hence, only
the stability regions are given here. Just like when joining the network at both S andD, the determinant of the
Jacobian in this case is 0. However, by the same reasoning as before, the stable regions can be found by omitting
the global zero eigenvalue.

It turns out that the red arc in �gure 7.17 constitutes another saddle-node type bifurcation surface, which
is a cylinder-like surface with radius−fC around fS = fI = 0. The arc is not exactly circular; it is less concave
than a circle. However, as it still resembles a circle closely enough, it will be referred to as such, and as a cylin-
der, taking fσ as its axis. The inside of that cylinder is unstable. The inside of the recurring cone-like surface
remains unstable as before. The intersection of these curves gives rise to Bogdanov-Takens bifurcation, as does
the intersection of the cone-like surface with the Hopf surface, like before. Lastly, as shown in �gures 7.17c and
7.17d, the previously present Hopf surface may intersect with the arc. On this intersection, there exist two zero
eigenvalues (including the global zero eigenvalue), and two purely imaginary eigenvalues, which again consti-
tutes a Fold-Hopf bifurcation. It turns out that the bifurcation surface at fS = 0 is now no longer present,
but the fI = 0 plane is still a saddle-node type bifurcation. Its intersection with the blue Hopf curve is again a
Fold-Hopf bifurcation.

Lastly, when looking at �gures 7.17a and 7.17c, it turns out that the size of the cone reduces a bit when reduc-
ing fC . Conversely, the circle enlarges for decreasing fC , which more than cancels the shrinking cone. Overall,
the stability thence decreases for decreasing fC .

This can readily be seen in the SE method results again, given in �gure 7.18. This time around, there’s a
new �gure in which the PSW s are given as a function of fC . Again, the slopes are pretty tame, mostly when
sampling fσ and fC individually. On the 
ip-side, the fI �gure has more of a slope, but it also ends lower for
fI → 0. The ensembles with identical parameters curve more drastically, but this e�ect is smallest in �gure
7.18c. This can be understood as the only way fσ impacts the stability is with the cone, but the cone is often
included in the cylinder for small fσ .

One can intuitively understand this in the following way. fC can be interpreted as a special kind of fI .
Therefore, it ful�ls a similar role and the di�erence between fI and fC determines which part is produced most
as a result of a perturbation. Suppose somehow that a build-up of deliveries occurs, which perturbs the steady
state, such that, say, p3 is larger than 1 (this could have been p8 as well). This corresponds with, for instance,
some delivery driver being suddenly unavailable, and hence its packages are not delivered for the day. Immedi-
ately, the productions of both p3 and p8 lower to reduce strain on the delivery company. Therefore, p8 < 1
just after the perturbation occurs. Now, p3 > 1 and p8 < 1. If fC < fI , the system favours build-up of the
largest part and drainage of the smallest part. This drainage can persist for su�ciently small fS , and for larger
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(a) Stability region projection on fσ = 2 and fC = −1. (b) Stability region projection on fσ = −2 and fC = −1.

(c) Stability region projection on fσ = 2 and fC = − 1
2

. (d) Stability region projection on fσ = −2 and fC = − 1
20

.

Figure 7.17: The two-dimensional projections of the stability regions in the network containing two motives joined at
nodes S andD, with a newly considered elasticity fC , for several combinations of fσ and fC . The same stability regions
are de�ned as usual; region I is stable and region II is unstable. In �gures a and b, the blue and green curves are saddle-node
type bifurcations. In �gures c and d, both the green and red curves are saddle-node type bifurcations, whereas the blue
curve is a Hopf bifurcation.
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(a) (b)

(c) (d)

Figure 7.18: Results of the SE method performed on the network from �gure 7.12 and its equations, with an ensemble of
identical parameters in blue and an ensemble of individual parameters in green. fC was added in this ensemble and 108

samples were taken, divided over 100 intervals.

fS the system is robust enough to return to pi = 1, ∀i. Hence, if fS and fI are small compared to fC , the
perturbation is allowed to progress, draining and accumulating parts in the network. The arc in �gure 7.17 is
the representation of the region in which fS and fI cannot compensate for fC .
In brief, choosing fC < fI gives rise to behaviour that worsens build-up and drainage on the parts that are
co-produced. This behaviour can still be remedied by the impact of the fS in this network.

It is also striking that for decreasing fC , �gure 7.18d shows a maximum around fC = −0.2, below which
it rapidly decreases. This corresponds to the growing cylinder. For small fC , the decrease in size of the cone
brie
y outweighs the increase in size of the cylinder, but that balance does not hold on for long.

The most important lesson to be learnt here is that the parameters should be chosen much more carefully to
ensure a stable system. This translates to a more carefully crafted management policy employed by each company
in the network, to ensure more stable outcomes. It turns out that introducing fC brings a lot of instability, if
the fC are not chosen wisely with respect to the individual fI s.
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Figure 7.19: A network consisting of two simple motives, merged at both theS andD node, with an additional reservoir
connected to S node, with parts added on the edges.

7.1.4 Addition of a reservoir at S

As discussed previously, to have a notion of stock, there has to be a notion of supply to the store. The most
straightforward implementation of this supply is an external reservoir, added to �gure 7.12 as shown in �gure
7.19, which can be described by a new F12 which creates a new P10;

F2 → F2(P1, P2, P6, P7, P10), F8 → F8(P1, P2, P6, P7, P10),

Ṗ10 = F12(P10)− F2(P1, P2, P6, P7, P10)− F8(P1, P2, P6, P7, P10),
(61)

in which it is implicitly assumed that one order placement and one product are needed for the respective
store to be able to schedule an order. This change implies that F ∗12 = 2F , in which F is again F ∗i for all other
i. This change subsequently also implies that there exists a new co-production from the supply to the stores;
the orders shipped out from the store are now co-produced from the same resource P10. Hence, there are now
four elasticities to co-production; the two new elasticities being fp72 and fp28 .

Having assumed all of this, �gure 7.20 depicts the stability regions for this network. It turns out that
Det(J) = 0 can be factored into the familiar cone-like surface, the newly introduced line fI = fC and the fa-
miliar cylinder with radius−fC . If fC ≤ fI ≤ 0, the system is unstable; this region includes the cylinder at all
times, and it does not a�ect the stability, as crossing it changes the sign of another eigenvalue. This fI = fC line
is a saddle-node bifurcation. The cone remains a saddle-node bifurcation and the blue wedge-shaped surface is
a Hopf bifurcation as before. At their intersection in �gure 7.20a lies the familiar Bogdanov-Takens bifurcation
and at the intersection of the fI = fC surface with the Hopf surface is a Fold-Hopf bifurcation point. Lastly,
the intersection of the fI = fC surface with the cone-like surface (not visible, but present in region II) is an
additional Bogdanov-Takens bifurcation. The fI = 0 surface is now a Bogdanov-Takens bifurcation, as both
the determinant and resultant of J are zero there. The intersection of the Hopf surface with the fI = 0 surface
(also not visible) is therefore a co-dimension 3 bifurcation.

The system is, again, also unstable inside the cone-like surface, and hence the stability regions are easily
elicited. It turns out that the cone-like surface is quite a bit larger (even when compensating for the di�erence
in fC between �gure 7.20 and 7.17). It is hence clear that mostly fC determines the stability of the network this
time around; the remainder of the �gure is similar to 7.17, barring the signi�cant increase in instability. Other
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(a) Stability region projection on fσ = 2 and fC = − 3
100

. (b) Stability region projection on fσ = −2 and fC = − 1
100

.

Figure 7.20: The two-dimensional projections of the stability regions in the network containing two motives joined at
nodesS andD, with a reservoir atS, for fσ = 2 and fσ = −2. The same stability regions are de�ned as usual; region I is
stable and region II is unstable. The green and red curves are saddle-node type bifurcations, and the blue curve is a Hopf
bifurcation.

values of fC have been omitted, as they only shift the fI = fC and doing so does not add qualitative new
behaviour.

The fC = fI plane dividing the stability regions originates from the addition of co-production of parts
2 and 7, while they need stock to be produced. If the system is perturbed such that, say, p2 > 1 (or p6), then
brie
y p2 decreases and so does p6, such that it is slightly below 1. Like when adding fC in section 7.1.3, both
drainage and build-up are worsened over time if fC < fI . In contrast to section 7.1.3, fS cannot contain this
phenomenon. Because there is an excess of p2, the elasticity to co-production inhibits the production of p6.
p10 also builds up, as neither p2, nor p6 can be produced. Changing fS cannot solve this problem. Therefore,
the projection of the bifurcation diagram in the fI ,fS -plane shows that changing fS does not possibly change
stability right of the fI = fC line.
In brief, taking fC < fI again worsens the build-up and drainage of parts. However, this time, the stock for
the store, p10 also builds up and this cannot be remedied.

The SE results are given in �gure 7.21. For individually sampled parameters, it is striking how unstable the
network again is. Decreasing fI still hugely a�ects the stability of the network; fI → −1 increases the stability
by a lot, while fI → 0 makes the system have almost 0 PSW . However, fS and, even moreso fσ barely im-
pact the overall stability. This is due to the behaviour the network inherits from the stability properties of the
surface fI = fC in the bifurcation diagram, and hence in the identical ensemble. Lastly, fC → 0 also drasti-
cally reduces the number of unstable networks, of course, as the only instability is introduced by the inside of
the conic curve. fC → 0 appears to be more stable in �gure 7.21, compared to �gure 7.18, which di�ers from
the results found with the bifurcation analysis. This is an example of individual ensembles not matching well
with the simpli�ed bifurcation analysis. fC → −1 is less stable in this case, compared to �gure 7.18. This at
least partially holds due to the introduction of more fC s in �gure 7.21, and corresponds with the line fI = fC
dividing the stability regions in the bifurcation diagram.
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(a) (b)

(c) (d)

Figure 7.21: Results of the SE method performed on the network from �gure 7.12 and its equations, with an ensemble of
identical parameters in blue and an ensemble of individual parameters in green. fC was added in this ensemble and 108

samples were taken, divided over 100 intervals.
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Figure 7.22: A network consisting of two simple motives, merged at theC node, with parts added on the edges.

7.2 Competition: Two stores and one customer

Another interesing dynamic is the interaction when two stores compete with each other. A �rst attempt at
analyzing this includes one customer, two stores and two delivery companies as given in �gure 7.22:

Ṗ0 = F0(P0)− F1(P0, P1, P3, P4, P6)− F4(P0, P1, P3, P4, P6)

Ṗ1 = F1(P0, P1, P3, P4, P6)− F2(P1, P2)

Ṗ2 = F2(P1, P2)− F3(P2, P3)

Ṗ3 = F3(P2, P3)− F7(P3, P7)

Ṗ4 = F4(P0, P1, P3, P4, P6)− F5(P4, P5)

Ṗ5 = F5(P4, P5)− F6(P5, P6)

Ṗ6 = F6(P5, P6)− F8(P6, P8)

Ṗ7 = F7(P3, P7)− F9(P7)

Ṗ8 = F8(P6, P8)− F10(P8)

(62)

In this model, P0 again represents the social in
uence on the customer. P1 and P4 are orders placed on
both stores,P2 andP5 are schedules created by the stores andP3 andP6 are deliveries performed by the delivery
companies. Lastly, P7 and P8 are consumptions of P3 and P6. In steady state, we �nd that F ∗i = F, ∀i 6= 0,
F ∗0 = 2F . The corresponding Jacobian of this system reads, taking all P ∗i = P equal:

J =
F ∗

P ∗



2fI − 2fS −2fI 0 −2fσ −2fI 0 −2fσ 0 0
fS fI − fS −fI fσ fI 0 fσ 0 0
0 fS fI − fS −fI 0 0 0 0 0
0 0 fS fI − fS 0 0 0 −fI 0
fS fI 0 fσ fI − fS −fI fσ 0 0
0 0 0 0 fS fI − fS −fI 0 0
0 0 0 0 0 fS fI − fS 0 −fI
0 0 0 fS 0 0 0 fI − fS 0
0 0 0 0 0 0 fS 0 fI − fS


(63)
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(a) Stability region projection on fσ = 2. (b) Stability region projection on fσ = −2.

Figure 7.23: The two-dimensional projections of the stability regions in the network containing two stores and one cus-
tomer, shown in �gure 7.22, for fσ = 2 and fσ = −2 . As usual, region I is stable and region II is unstable. The green
curve is a saddle-node type bifurcation, and the blue and red curves are Hopf bifurcations.

It stands out that the cone-like surface is much taller than before. This is even without any extra interactions;
just the two stores and the one customer, without the addition of an fC or reservoirs at the S. This indicates
that fS has a much less stabilizing e�ect in this network. Compared to its counterpart network from �gure 7.8,
the instability regions �gure 7.23 are much larger. This can be concluded in proposition 4:

Proposition 4 Two stores competing for customers makes a network less stable than two customers ordering the
products from one store

The only qualitative di�erence, when compared to �gure 7.9, is that now only fS = 0 is a saddle-node type
bifurcation, and fI = 0 is not.

When comparing the SE method results, presented in �gure 7.24, one can �nd that the 
at region with
PSW = 1 in the identical ensemble is gone when plotting against fS and is signi�cantly smaller when plot-
ting against fI . Moreover, in the identical ensemble, increasing fσ brings more instability than before. When
sampling individually, the behaviour is very similar. This is again a prime example of te bene�t of the SE method,
compared to the bifurcation analysis.
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(a)

(b) (c)

Figure 7.24: Results of the SE method performed on the network from �gure 7.22 and its equations, with an ensemble
of identical parameters in blue and an ensemble of individual parameters in green. fC was added in this ensemble and 108

samples were taken, divided over 100 intervals.
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Figure 7.25: A network consisting of two simple motives, merged at theC node, with parts added on the edges.

7.2.1 Only one deliverer

If, additionally, only one deliverer exists, the equations are modi�ed slightly, such that

F3 → F3(P2, P3, P5, P6), F6 → F6(P2, P3, P5, P6) (64)

This network is given in �gure 7.25, and the projections of its bifurcation surfaces are given in �gure 7.26.
By the introduced symmetry, this system has a global zero eigenvalue, which should be kept in mind again, when
constructing the stability regions and performing the statistical ensemble.

These stability diagrams are similar to those in �gure 7.17. When comparing, the saddle-node and wedge-
like Hopf surfaces are much larger and hence decrease the overall stability. This also holds for the Hopf branch
for negative fσ (not shown). It reaches the fS axis at around fS = 0.12, which is greater than in �gure 7.17d.
The red arc surface is precisely the same as the one in section 7.1.3, and it exists here for the same reason. In this
network, there aren’t any boundary bifurcations on fI = 0 or fS = 0.

The SE method results are given in �gure 7.27, which are, again, comparable to �gure 7.16. However, the
stability for the identical ensemble is signi�cantly lower, especially in �gure 7.27c, which re
ects how the cone
is larger with two stores, than it is with two customers. The drop around fσ = 1.25 occurs due to the cone on
average touching the cylinder at that point, and hence bringing more instability. The remainder of the analysis
is analogous to that of section 7.1.3.
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(a) Stability region projection on fσ = 2 and fC = −1.

(b) Stability region projection on fσ = 2 and fC = − 1
2

.

Figure 7.26: The two-dimensional projections on fσ = 2 of the stability regions in the network containing two stores
and one customer joined at nodes S and D, as sown in �gure 7.25, with a newly considered elasticity fC . In this �gure,
the green and red curves are saddle-node type bifurcations, and the blue curve is a Hopf bifurcation.
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(a) (b)

(c) (d)

Figure 7.27: Results of the SE method performed on the network from �gure 7.12 and its equations, with an ensemble of
identical parameters in blue and an ensemble of individual parameters in green. fC was added in this ensemble and 108

samples were taken, divided over 100 intervals.
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Figure 7.28: A network consisting of two simple motives, merged at theC node, with parts added on the edges.

Figure 7.29: The two-dimensional projections on fσ = 2 of the stability regions in the network containing two motives
joined at nodes S andD, with reservoirs connected at the S nodes. The �gure is generated for fC = − 1

4 . The green and
red curves are again saddle-node type bifurcations, and the blue curve is a Hopf bifurcation.

7.2.2 Addition of reservoirs at the S nodes

Lastly, the impact of the addition of two reservoirs and, by extension, stock at the store nodes, is studied when
there are two stores. Its network is given in �gure 7.28.

The e�ect of these reservoirs is investigated by introducing two additional parts, P9 and P10, which add
two transformation terms: F11(P9) and F12(P10), and consequently Ṗ9 = F11 − F2, Ṗ10 = F12 − F5.
Moreover, F2 → F2(P1, P2, P9) and F5 → F5(P4, P5, P10).

Figure 7.29 shows the stability diagram for positive fσ only, as showing a more exhaustive set of images feels
redundant at this point. The familiar cone and cylinder are again saddle-node bifurcations, and the blue wedge-
like surface is again a Hopf-bifurcation. Their intersection is as usual a Bogdanov-Takens bifurcation. Where
the cylinder and cone meet, lies a Bogdanov-Takens bifurcation, and the intersection of the cone-like surface
and the Hopf surface constitutes a Fold-Hopf bifurcation. The fI = 0 plane is now again a Bogdanov-Takens
surface and its intersection with the blue Hopf curve is a co-dimension 3 bifurcation.
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(a) (b)

(c) (d)

Figure 7.30: Results of the SE method performed on the network from �gure 7.12 and its equations, with an ensemble of
identical parameters in blue and an ensemble of individual parameters in green. fC was added in this ensemble and 108

samples were taken, divided over 100 intervals.
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The results of the SE method are given in �gure 7.30 and con�rm what can also be seen from �gure 7.29;
compared to �gure 7.20, there is no fI = fC surface. This is due to the lack of additional co-production
introduced on the stores with external stock, which was the source of the additional instability in section 7.1.4.
This makes this network comparatively more stable than the network from �gure 7.19. For fC → −1, the
PSW does not go to 0 and fI does not increase as much for fI → −1. This result is formulated in the
proposition 5:

Proposition 5 Adding external stock supply to nodes that experience co-production interactions, heavily destabi-
lizes the network.

Hence, adding stock to multiple stores competing for a customer does not necessarily bring more instability,
unless the stores are competing for multiple customers, which probably necessarily happens in real life networks
of this kind.

7.3 Summary of the results for the GMs

In this chapter, we looked at several variations of a multi-commodity supply 
ow network. These networks
consisted of customer nodes, store nodes and deliverer nodes. When initialising the generalized model, it is im-
mediately clear that the de�nitions for these nodes are not necessarily precise. For instance, customers can be
seen as postal zones or individual persons. This immediately demonstrates the versatility of these generalized
models. As interactions are not speci�ed precisely, they can be taken quite general.

After the initialisation, we compared the results of the bifurcation analysis and statistical ensemble method
for all considered networks. Both methods yielded complementary results that helped complete the analysis
of the networks. Using only the bifurcation analysis requires a lot of simpli�cation, and still needs the use of
multiple projections of the parameter space to visualize what happens if more than two parameters are varied.
The SE method can only give a proportion of stable networks, which tells how stable a single parameter value is
on average, but information for entire parameter sets cannot easily be extracted. The sensitivities and in
uences
of each part were determined as well, which usually veri�ed that central nodes and its connected parts are the
most important.

This chapter extensively studied the networks containing the cyclical structures from �gure 7.1. Their results
manifest themselves in an understanding of how the system behaves for di�erent parameter sets. An example
of this is the cone-like bifurcation surface seen in �gure 7.2. The larger networks showed similar behaviour to
the single motive network, but often added new interactions and therefore bifurcation surfaces as well. The SE
method results show that more complex networks contain lowerPSW s and are hence less stable. This is gener-
ally expected, although certain added interactions may increase stability on a subset of the parameter space. This
can be seen when comparing �gures 7.18 and 7.21. Generally, though, decreasing fI and increasing fS increase
stability. Increasing fσ and decreasing fC decreases stability.

Additionally, the results obtained in the other sections gave rise to �ve propositions, which can be enumer-
ated as follows.
1. The general shape of bifurcation surfaces does not change, when adding interactions or nodes. Sometimes,
new surfaces arise, but old ones remain qualitatively the same shape. This indicates that behaviour for smaller
networks is inherited by larger networks containing the smaller network as a sub-motive.
2. It turns out that when a store node arbitrarily discriminates between two customers, the network doubles its
instability in the SE.
3. When merging two sub-motives at both the store and deliverer nodes, the network seems to destabilize slightly.
This indicates that when a node performs the same role in multiple sub-networks, the network is destabilized.
4. Two stores competing for customers has a larger unstable region when compared to two customers ordering
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products from one store.
5. When adding the elasticity to co-production, the network is less stable, because of the added interactions.
This is even clearer when stock is not assumed in�nite on the store nodes, and customers essentially compete
for products. However, when only �nite stock is added, and no elasticity to co-production, the network is more
stable, as happens with two stores and one customer. This means that the act of adding both a �nite stock and
co-production interactions on the same node heavily destabilize a network.

These propositions constitute the most important results from this chapter and have two functions. On
the one hand, they demonstrate what kind of in results can be obtained by using GMs, and on the other hand,
it presents an extensive view of the considered cyclic network motive.



Chapter 8: Conclusions & Future research

A couple of models were investigated in this thesis; agent-based models (ABMs), (di�erential) equation-based
models (EBMs), an optimization approach to obtain an easily integrable EBM, and generalized models (GMs).
The former three have been employed for use on logistic networks in which vehicles explicitly pick up packages,
after which they deliver these packages, and repeat the process. The latter model was used in a di�erent setting,
in which the spatial nature of delivering packages was not as explicitly taken into account, but rather the in-
teractions between delivery, scheduling and order placement on its own. These two topics essentially split the
thesis in two parts. Therefore, we discuss and draw conclusions for each part separately.

8.1 The spatial models; ABMs and EBMs

Following the structure of the thesis, �rst up are the ABMs and EBMs. The goal of these models was to inves-
tigate whether an EBM could be found, which describes the ABM solutions on average, and partly to examine
network dynamics in a multi-commodity 
ow setting on di�erent networks.

Starting with the former, a variety of networks were examined in chapter 5. The considered models always
exhibited some form of start-up process, in which the network was initiated emptily, as packages had to be as-
signed to vehicles, before they could be able to be sent o�, and both models dealt with this pretty well. Moreover,
in networks with secluded nodes, this start-up process is extended somewhat by the clearer distinction of two
kinds of network dynamics; local and global ones. This should be understood as an counterpart to clustering,
but rather on the edge of the network. Taking for instance the network in section 5.2, shown in �gure 5.1b, one
can identify branches that are mostly separated from the remainder of the network, except maybe one node con-
necting these two. In such situations, the amount of packages on the node evolves in a signi�cantly di�erent way
from central nodes. First, the packages are locally generated, and partly delivered from its only neighbouring
node. Next, they suddenly begin to trickle in from the remainder of the network, which creates a discontinuity
in the in
ow, and by extension a bend in the time evolution of the package amounts on the individual nodes.
This phenomenon applies to a variety of networks, assuming the network contains nodes that are somewhat
secluded. Another example of this phenomenon is the 2D-lattice graph, in which the central node is visited by
nearly all paths, but the corner nodes rarely. It appears that this phenomenon is poorly captured in the EBM,
and the reason for it has eluded me; the bend in the time evolutions happens at a higher point, and subsequently
converges to the correct steady state. With the overwhelming evidence showing that the start-up process for se-
cluded nodes is described in di�erent ways by the ABM and EBM, it is clear that something is not quite right.
Fortunately, the steady states are correct, but this would be the obvious thing to consider, if an eventual future
attempt to improve the EBM were to be attempted. Central nodes are well approximated, though, and generally
exhibit the expected behaviour, that is, that central nodes experience more tra�c, partially depending on their
outgoing edge length. These �ndings hold for both EBMs with and without congestion.

When congestion is added, though, the situation becomes decidedly more complex. The delays in delivery
are edge length dependent, which are in turn time-dependent. This brings with it, a plethora of problems to be

79
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dealt with, which are treated in section 3.4. When applying the congestion EBM to a simple line network, the
solutions perfectly match the ABM and expectations. However, when trying to apply this same EBM to the
most discussed custom-made graph from �gure 5.1a, it seems not to do its job properly. This time around, the
EBM almost perfectly follows the start-up process, up until the steady state is almost reached, and by then the
solution keeps diverging. Reducing the time steps seems to remedy this, but doing so is highly expensive in this
case. A lot of variables need tracking and this translates to an exorbitant amount of required memory. Moreover,
this EBM is costly to compute, and hence the required amount of time to integrate the EBM quickly becomes
unreasonable. This could possibly be repaired in a future attempt by using the EBM for the start-up process
and a Picard’s �xed point method implementation for the steady state, after which these are joined together in
a meaningful way at their point of intersection. This shows that the bene�t of using ABMs is the easiness of
extending the models and adding more complex interactions, which is harder to do for EBMs.

Overall, though, the congestionless EBMs and ABMs seem to reasonably agree with exception of the dis-
crepancy for secluded nodes, up to a certain error due to the discrete nature of the simulations. Using Picard’s
�xed point method to obtain a steady state gives results that agree well with the ABMs too. The ABMs them-
selves could in a potential future research be expanded upon by implementing a sophisticated scheduling al-
gorithm, and considering more realistic congestion models, such as making velocity scale inversely with vehi-
cle density. Another avenue for exploration could be some research into the behaviour resulting from time-
dependent demand, supply and travel time. Furthermore, a more concrete relation between the variance in the
amount of packages and their outgoing path lengths, centralities and degrees could be investigated, along with
testing these models on real world networks. One could additionally investigate variations in di�erent parame-
ters such as edge lengths and vehicles more extensively . It is possible to de�ne all variables and their derivatives
for the kind of ABM discussed in chapter 2. If, for instance, an ABM were considered in which the network is
temporal, such de�nitions would be tougher to achieve. For example, if the ABM allows for edges to be added
or removed, which in this case could mean present roadworks, this has to be included somehow in the EBM.

Lastly, after exploring the ABMs and EBMs, some attempts were to �nd an EBM that approximated the
ABM well, working back from the desired solution. This was realized by taking a pretty general equation and
estimating parameters with a least-squares optimization solver, in order to minimize the average di�erence for
all nodes and all time steps. These attempts yielded better results than expected and always reached the correct
steady state, whether the EBMs were constructed by comparing to the ABM solutions and to the congestionless
EBM solution. When comparing this method to the ABMs with congestion, the EBM approximation over-
lapped tremendously well, due to the start-up process stretching out and not ending so abruptly. Hence, this
way of obtaining an EBM with congestion truly trumps the method of chapter 3, as it does not display large er-
rors whatsoever and it runs an order of magnitude quicker. The only notable 
aw was that the start-up process
was not described very well for the congestionless equations, as it ends so abruptly, and that cannot be captured
well by continuous functions. This could in future research be improved by coming up with a cleverer way to
describe the time-dependencies. Another topic to investigate could to seek a relation between the decision rules
in the ABM and the parameters in the optimized EBM.

8.2 The generalized model

In the second topic of the thesis, in chapter 7, the generalized models were investigated in their own setting. The
main interest was to investigate what kind of other information this way of modelling could yield in addition
to ABMs, as ABMs necessarily assume the nature of interactions, whereas GMs keep these general. This goal
shifted to describing a logistic network in another way, which does not consider the spatial aspect of package
delivery, and hence essentially looks at longer time scales, in which packages are or aren’t available for delivery,
due to supply and other such interactions. This was done by considering three kinds of nodes, a customer (or a
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postal zone), a store, and a delivery company (or distribution center, if interpreted more locally), with an addi-
tional wild card node which deals with all external interactions, like social in
uence, stock and consumption of
wares, called the reservoir. These have then been cyclically connected such that the consumer receives feedback
in the shape of arriving products. These three kinds of nodes have then been arranged in two physically sensible
ways; one in which two stores compete for a customer and one in which two customers need products from
one store. These situations have been expanded to include increasingly complicated interactions, which yield
di�erent bifurcation diagrams and statistical ensemble results. Additionally, in each situation, the in
uence and
sensitivities were computed for all parts and nodes in the network, which gave more insight into the relative im-
portance and dependence of each part.

Starting with two customers and one store, there are three elasticities; the elasticity to supply, inventory level
and saturation. It appears that increasing the elasticity to saturation increases the instability region, whereas
increasing the elasticity to supply stabilizes the network, and decreasing the elasticity to inventory level also sta-
bilizes the network. For more complex networks, an additional �nal elasticity is introduced; the elasticity to
co-production. Decreasing this elasticity generally destabilizes the network signi�cantly.

In brief, both the bifurcation analysis and the statistical ensemble method show that increased network
complexity and heterogeneity of the interactions decrease stability substantially. This is mostly evident when
assessing the results of the statistical ensemble method with invididual samples. In the later sections of chapter
7, the PSW s begin to lie close to zero, and often around or close to 0.2 for a sizeable part of the parameter
space. Not only does it increase the instability, but the bifurcation surfaces become more complicated and con-
tain more interesting higher co-dimension bifurcations as well.

It has been demonstrated that the bifurcation and statistical ensemble methods complement each other.
The bifurcation analysis focusses more on the shape of the stability region, which is a more thorough break-
down of the problem. It however heavily relies on oversimpli�cation of the problem. The statistical ensemble
allows for this simpli�cation to be omitted, but loses a lot of information about speci�c locations of stability re-
gions and only gives a proportion of stability. These proportions for identical ensembles mirror the bifurcation
analysis, but their results may deviate from the latter, when looking at an individual ensemble. The sensitivity
and in
uence of parts and nodes in the network were determined along with the SE method. These portray
the relative importance of parts and nodes in the network. Using both methods together is the key to the most
complete picture of the problem.

Using the described model and solutions, a couple of propositions were made. These are given below, with
an eventual explanation.

Proposition 1 Stability behaviour for the small cyclic network is inherited by larger networks containing the small
network as a sub-motive.

Proposition 2 Arbitrarily treating di�erent customers di�erently, significantly decreases the overall stability of
the networks in multi-customer feedback flow networks.

This means, more concretely, that if customer orders are processed di�erently by the store, without any
careful way to chose this, the network easily becomes much more unstable.

Proposition 3 Having one node in a network perform the same role in multiple sub-networks decreases network
stability.

In other words, splitting responsibilities and tasks, and distributing them more locally improves the overall
stability of the network. In this case, if one distribution centre has to deliver products to two postal zones, the
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bifurcation diagram shows a small decrease in stability.

Proposition 4 Two stores competing for customers makes a network less stable than two customers ordering the
products from one store

Proposition 5 Adding external stock supply to nodes that experience co-production interactions, heavily destabi-
lizes the network.

This instability manifest itself in partitioning the parameter space in an unstable and stable part by a simple
line, in the simpli�cation made for the bifurcation analysis.

Using the two analysis methods, the stability of the system is then well described and yields non-trivial
interesting results for the considered networks. These results apply to rather small motives, and can hence be
expected to extrapolate in some way to larger networks containing these same smaller sub-motives. It is however
also clear when these two methods are lacking. As mentioned before, the bifurcation method is hardly usable
for networks with a lot of parameters, and the statistical ensemble method does not present information that
can be used to infer a lot for particular parameter sets on its own.

Also, for generalized models, many areas are not yet explored. An interesting question would be to inves-
tigate the e�ect of heterogeneity in the parameters on the system’s stability. For instance, one could explore
whether splitting the elasticity to co-production on one node into two separate elasticities signi�cantly changes
the bifurcation surfaces. Another option would be to consider networks of increasing size and verifying the
extent to which results for smaller networks can be extrapolated.



Appendix A: Results for the �rst EBM attempt

Because the results obtained with the method described in section 3.1 did not come out completely as desired,
they are presented in this separate appendix.

The approach turned out to generally not work, partially depending on the shapes of ui and wi, because
the 
ows did not seem to be linearly dependent on x in general.
In the early stage in which this model was under consideration, the ABM was not being run under the same
assumptions as now. For starters, the supply was �xed and decided uniformly at the start of the simulations. The
demand on the following time steps was balanced such that this supply was perfectly countered. This construc-
tion is hence contrary to the approach in chapter 2, where the supply was perfectly balanced by the demand, and
basically assumed an external reservoir. Also, in this ABM, consumption was not yet properly implemented, but
this was rather approached by assuming demand as a negative amount of packages. Lastly, the amount of trucks
was not super
uous, such that the delivery of packages was throttled, and the amount of leaving trucks could be
throttled each time step. Except for the addition of congestion, the remainder of the ABM is left pretty much
the same.

Typical behaviour for such simulations on the custom-made network from �gure 5.1a, is depicted in �gure
A.1. These simulations have been run 1000 times in this �gure. Moreover, it is clear that all nodes perform di�er-
ently under the same decision rules, due to their di�erent centralities and connected edge lengths. For instance,
nodes 4 and 6 show pretty varied and non-linear behaviour, due to them being pretty central in the network.
Similarly, node 5 shows little spread and is fairly well-behaved as not a lot happens on that node, due to it being
so secluded. The remainder of the nodes are chosen to show and represent the more mundane behaviours that
can occur on nodes that are neither central, nor remote.

All �gures start at zero , and quickly jump over discontinuously to another point, which happens due to
the time discretization. Soon after, they tend to jump over again to some other value for x, which indicates that
more 
ow is happening on the outgoing node, and hence to more time having passed. When a jump in Fij oc-
curs, trucks basically have had the time to traverse their initial edge(s) and move on to the next edge in their path.

Depending on the node, the blots indicate a steady state, such as in A.1c, A.1d and A.1e, or the lack of blots
indicate that the amount of packages generated in the network is not enough, or barely enough, for a steady
state to occur for x. However, a steady state appears to occur consistently for F . Afterwards, the steady state
drains away to zero again, as the packages have all been delivered. This seems to happen in a more continuous
fashion, due to the randomness in the total generated demand, and the large amount of states the system can be
in after a larger amount of time steps.

Figure A.2 shows what would happen to the central node 4 and more remote node 0 in the case when there
are too many packages to deliver in the available amount of time steps. This situation gives a clearer picture of
how the steady states are formed. For node 0 there’s a fairly large tail which originates from the start-up process,
where not all 
ows are present yet and the majority of paths still have to be passed. For node 4, as it is so central,
most paths passing through it already arrive quite early, such that the tail does not form.
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(a) ABM time evolution of node 0. (b) ABM time evolution of node 3.

(c) ABM time evolution of node 4. (d) ABM time evolution of node 5.

(e) ABM time evolution of node 6. (f ) ABM time evolution of node 8.

Figure A.1: Time evolutions of the package amount pertaining to a respective node from the network from �gure 5.1a,
plotted against the outgoing 
ows. Dots with higher opacity signify that these states occur earlier on in the simulations. n
denotes the amount of simulations, which is 1000 here. Additionally, the averageamount of packages generated per node
is 240, and the amount of time steps is 576. Only one vehicle can leave each time step.
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(a) ABM time evolution of node 0. (b) ABM time evolution of node 4.

Figure A.2: Simulations similar to the ones performed in �gure A.1, but now with an abundance of packages (600).

After doing this, and discovering that the relation betweenFij andxi could not be exploited, this particular
model was abandoned and the research moved on to the current form of the ABM treated in chapter 2.





Appendix B: Derivation of the general solution to
N -dimensional di�erential equations

Let pp = eAtq(t) be the particular solution, and s− c = b(t), such that

ṗp = Ap+ b =⇒ AeAtq(t) + eAtq̇(t) = AeAtq(t) + b(t)

=⇒ eAtq̇(t) = b(t) =⇒ q(t) = q0 +

∫
e−Atb(t)dt

=⇒ p(t) = eAt
(
p0 +

∫
e−Atb(t)dt

)
.

(65)

This can be integrated numerically in the following fashion:

p(t+ δt) = eA(t+δt)p0 +

∫ t+δt

0
eA(t+δt−t′)b(t′)dt′

= eAδt
(
eAtp0 +

∫ t

0
eA(t−t′)b(t′)dt′

)
+

∫ t+δt

t
eA(t+δt−t′)b(t′)dt′

= eAδtp(t) +

∫ t+δt

t
eA(t+δt−t′)b(t′)dt′

≈ eAδtp(t) + δt

(
b(t+ δt) + eAδtb(t)

)
2

≈ eAδtp(t) + δt
(b(t+ δt) + b(t))

2
,

(66)

making use of the trapezium approximation up to order δt.

If, however, in additionA = A(t), then we need to consider the time-ordered exponential: T
(
e
∫ t
0 A(t)dt

)
,

which is de�ned as

T
(
e
∫ t
0 A(t)dt

)
= lim

n→∞

n∏
i=1

eA(ti)∆t = lim
n→∞

eA(tn)∆t · eA(tn−1)∆t . . . , ∆t =
t

n
, (67)

having taken the left product.

To �nd the inverse of the time-ordered exponential, one has to look for a function such that

lim
n→∞

eA(tn)∆t · eA(tn−1)∆t . . .
[
T(e

∫ t
0 A(t)dt)

]−1
= I. (68)

As eA(ti)∆t obviously commutes with itself,

eA(ti)∆te−A(ti)∆t = eA(ti)∆t−A(ti)∆t = e0 = I.
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Necessarily, thence:

T−1(e
∫ t
0 A(t)dt) ≡

[
T(e

∫ t
0 A(t)dt)

]−1
= lim

n→∞

0∏
i=n

e−A(ti)∆t, (69)

in which the left product has been taken, as before. Hence, in a similar way;

p(t) = T
(
e
∫ t
0 A(t)dt

)(
p0 +

∫
T−1

(
e
∫ t
0 A(t)dt

)
b(t)dt

)
, (70)

which constitutes the solution of the inhomogeneous time-dependent problem ṗ = A(t)p+ b(t).



Appendix C: Derivation of the matrix exponential
derivative

When using the scipy.optimize package in Python, the solvers appreciate an analytical Jacobian. To that end,
an attempt was made to produce said Jacobian. To be able to do so, �rst of all, it is necessary to be able to create
d

dαij
eAt. Let dαij denote the matrix δαijEij , which is a matrix with a small increment on entry i, j.

d

dαij
eAt = lim

δαij→0

eA+δαijEij − eAt

δαij
(71)

The former exponential in the numerator can be expanded using the Baker-Campbell-Hausdor�’s equation:

e(A+dαij)t = eAtedαijte−
t2

2
[A,dαij ]e

t3

6
(2[dαij ,[A,dαij ]]+[A,[A,dαij ]])

· e−
t4

24
([[[A,dαij ],A],A]+3[[[A,dαij ],A],dαij ]+3[[[A,dαij ],dαij ],dαij ]+... ),

(72)

which is of no help, as the exponents still contain in�nitely many order δαij terms, and hence we would be
stuck with an in�nite product anyway.

Working out the exponent from its de�nition yields

e(A+dαij)t =
∞∑
n=0

(A+ dαij)
ntn

n!
= I + (A+ dαij)t+

(A+ dαij)
2t2

2
+ . . .

=⇒ d

dαij
eAt = lim

δαij→0

∑∞
n=0

(
(A+dαij)

ntn

n! − Antn

n!

)
δαij

=⇒ d

dαij
eAt = Eij +

AEij + EijA

2
+
A2Eij +AEijA+ EijA

2

6
+ . . . ,

(73)

which is still not a closed expression, but it is sure to converge due to the n! in the denominator. However, this
cannot readily be provided to python.

An e�cient poor man’s solution to numerically approximate the matrix exponential derivative is given by
Higham’s Complex Step Approximation 16:

d

dαij
eAt = lim

δαij→0
Im

(
eA+iδαijEij

δαij

)
, (74)

which can be practically used for small δαij , say δαij = 10−20, to yield a very accurate answer, with relatively
low cost. This method �lters out the derivative of the exponential up to orderh3, as the zeroth and second order
term in the Taylor expansion are real.

89





Appendix D: Sensitivity and In
uence

This appendixx contains the tables with sensitivities and in
uences for each network considered in chapter 7,
except the network with only one motive, as that table has been treated in in chapter 7.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Sei 3.850 4.506 4.549 4.168 3.499 3.850 4.506 4.549 4.168 3.499
Ini 3.459 4.162 4.312 4.700 3.723 3.459 4.162 4.312 4.700 3.723

C1 C2 S D1 D2

Se 16.023 16.023 18.109 8.717 8.717
In 16.045 16.045 16.949 9.012 9.012

(a)
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Sei 2.723 4.366 4.059 3.541 2.544 2.707 4.365 4.062 3.539 2.550
Ini 2.856 3.611 4.414 4.457 3.815 2.862 3.608 4.412 4.460 3.826

C1 C2 S D1 D2

Se 13.173 13.161 16.852 7.600 7.602
In 14.740 14.755 16.045 8.871 8.872

(b)
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Sei 3.632 4.339 4.437 3.841 3.035 3.616 4.328 4.434 3.841 3.027
Ini 3.410 4.179 4.451 4.504 3.722 3.403 4.170 4.437 4.504 3.721

C1 C2 S D1 D2

Se 14.847 14.812 16.852 8.278 8.275
In 15.815 15.799 17.238 8.956 8.941

(c)

Table D.1: The Sensitivities and In
uences of each part and each node in the two motive network from �gure 7.8, when
sampling identically (top), individually for each part (middle), and individually for all elasticities (bottom). These have
been determined with 106 samples.
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P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Sei 3.939 4.583 4.492 4.320 3.648 3.939 4.583 4.492 4.320 3.648
Ini 3.596 4.303 4.649 4.698 3.722 3.596 4.303 4.649 4.698 3.722

C1 C2 S D1 D2

Se 16.489 16.489 18.149 8.812 8.712
In 16.319 16.319 17.904 9.347 9.347

(a)
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Sei 3.779 4.335 4.603 4.090 3.319 3.798 4.337 4.593 4.096 3.315
Ini 3.472 4.256 4.569 4.609 3.767 3.493 4.257 4.570 4.608 3.764

C1 C2 S D

Se 15.523 15.545 17.868 17.382
In 16.104 16.123 17.651 18.356

(b)

Table D.2: The Sensitivities and In
uences of each part and each node in the two motive network, with the same deliverer,
like shown in �gure 7.12, when sampling identically (top) and individually (bottom). These have been determined with
106 samples.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Sei 3.844 4.369 4.727 4.035 3.175 3.844 4.369 4.727 4.035 3.175
Ini 3.649 4.351 4.642 4.824 3.978 3.649 4.351 4.642 4.824 3.978

C1 C2 S D1 D2

Se 15.523 15.423 18.191 8.762 8.762
In 16.802 16.802 17.985 9.466 9.466

(a)
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

Sei 3.752 4.309 4.577 4.056 3.270 3.774 4.304 4.574 4.067 3.301
Ini 3.458 4.230 4.531 4.585 3.739 3.471 4.239 4.541 4.585 3.747

C1 C2 S D1 D2

Se 15.387 15.445 17.764 8.633 8.641
In 16.012 16.042 17.541 9.116 9.126

(b)

Table D.3: The Sensitivities and In
uences of each part and each node in the two motive network, with the same deliverer,
like shown in �gure 7.12, with an additional introduced fC , when sampling identically (top) and individually (bottom).
These have been determined with 106 samples.



93

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Sei 3.701 4.449 4.675 3.859 2.962 3.701 4.449 4.675 3.859 2.962 3.809
Ini 3.516 4.218 4.678 4.837 3.997 3.516 4.218 4.678 4.837 3.997 2.659

C1 C2 S D1 D2

Se 14.971 14.971 22.056 8.534 8.534
In 16.569 16.569 20.452 9.516 9.516

(a)
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Sei 3.739 4.336 4.568 4.015 3.217 3.775 4.264 4.627 4.004 3.209 3.930
Ini 3.313 4.078 4.555 4.566 3.728 3.531 4.294 4.623 4.669 3.824 3.304

C1 C2 S D1 D2

Se 15.308 15.251 21.724 8.583 8.631
In 15.685 16.317 20.853 9.121 9.291

(b)

Table D.4: The Sensitivities and In
uences of each part and each node in the two motive network, with the same deliverer
and a reservoir connected toS, like shown in �gure 7.19, when sampling identically. These have been determined with 106

samples. In this ensemble, the omitted samples that yielded complex logarithms were approximately 11000 of the 18000
for the identical ensemble and 19000 of the 22000 for the individual ensemble.

P0 P1 P2 P3 P4 P5 P6 P7 P8

Sei 4.013 4.652 4.411 4.068 4.652 4.411 4.068 3.437 3.437
Ini 3.341 3.968 4.487 4.823 3.968 4.487 4.823 3.747 3.747

C S1 S2 D1 D2

Se 28.328 9.063 9.063 8.479 8.479
In 28.417 8.455 8.455 9.310 9.310

(a)
P0 P1 P2 P3 P4 P5 P6 P7 P8

Sei 3.307 4.588 4.251 3.639 4.600 4.262 3.640 2.864 2.867
Ini 3.292 4.095 4.451 4.774 4.091 4.451 4.774 3.914 3.923

C1 C2 S D1 D2

Se 25.505 8.839 7.890 8.862 7.901
In 28.863 8.546 9.225 8.542 9.225

(b)

Table D.5: The Sensitivities and In
uences of each part and each node in the two store network, as shown in �gure 7.22,
when sampling identically (top) and individually (bottom). These have been determined with 106 samples.
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P0 P1 P2 P3 P4 P5 P6 P7 P8

Sei 4.051 4.697 4.377 3.966 4.697 4.377 3.966 3.142 3.142
Ini 3.443 4.056 4.667 4.906 4.056 4.667 4.906 3.956 3.956

C S1 S2 D

Se 27.661 9.074 9.074 16.686
In 29.280 8.723 8.723 19.147

(a)
P0 P1 P2 P3 P4 P5 P6 P7 P8

Sei 3.851 4.723 4.488 4.001 4.751 4.522 4.061 3.248 3.312
Ini 3.284 4.209 4.614 4.847 4.306 4.655 4.868 3.944 3.952

C S1 S2 D

Se 27.946 9.211 9.273 17.072
In 29.410 8.823 8.961 18.984

(b)

Table D.6: The Sensitivities and In
uences of each part and each node in the two store network, with the same deliverer,
as shown in �gure 7.25, when sampling identically (top) and individually (bottom). These have been determined with 106

samples.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Sei 3.731 4.874 4.179 3.708 4.874 4.179 3.708 2.854 2.854 3.640 3.640
Ini 3.090 3.668 4.715 4.888 3.668 4.715 4.888 3.965 3.965 3.411 3.411

C S1 S2 D

Se 26.603 12.692 12.692 15.774
In 28.132 11.794 11.794 19.207

(a)
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Sei 3.699 4.699 4.390 3.780 4.754 4.423 3.833 3.008 3.059 3.407 3.442
Ini 2.937 3.879 4.560 4.720 4.022 4.635 4.769 3.854 3.891 3.341 3.303

C S1 S2 D

Se 26.832 12.496 12.619 16.427
In 28.073 11.780 11.960 18.684

(b)

Table D.7: The Sensitivities and In
uences of each part and each node in the two store network, with the same deliverer
and reservoirs connected to the stores, as shown in �gure 7.28, when sampling identically (top) and individually (bottom).
These have been determined with 106 samples. In the identical ensemble, about 12750 of the 20500 samples were omitted.
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