
Exploring distributive
justice in water
resource allocation
A rival framings approach on the
operationalization of equality in multi-objective
optimization models for water systems

Farley Rimon





Exploring distributive
justice in water resource

allocation

A rival framings approach on the operationalization of
equality in multi-objective optimization models for water

systems

Thesis report

by

Farley Rimon

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on August 28, 2023, at 13:00

Thesis committee:

Chair: Dr. J.H. Kwakkel

Supervisors: Dr. J.Z. Salazar & Dr. J.M. Duran

Place: Faculty of Technology, Policy & Management, Delft

Project Duration: January, 2023 - August, 2023

Student number: 4652827

The code associated to the work of this thesis can be found at https://github.com/farleynitro/MUSEH2O.

Faculty of Technology, Policy & Management · Delft University of Technology

https://github.com/farleynitro/MUSEH2O


Copyright © Farley Rimon, 2023

All rights reserved.



Preface

To this day I am happy my family believed in that I could make it further than they could with their full

support. After finishing my BSc. in Electrical Engineering, I felt a void. It became clear that efficiency

from innovations wasn’t enough – I yearned to ensure broader societal and ecological benefits from

technological advancements. Against doubts, I transitioned to an MSc. in Engineering and Policy Analysis

(EPA), aiming to tackle issues that impact all corners of society.

This thesis started as an idea that led to a different result. This subject, deeply connected to EPA,

is an exemplary case on how to consider justice in future decision-support models, as well as for future

situations I would like to solve in my own region. In hindsight, I gained from all the deviations I have had.

Benefitting from these deviations would not have been possible without my family. Especially my mom,

who always believed in me with the kind and simple words.Thank you dad for teaching me the value of

caring for others, and never for recognition. Thank you to my grandparents for always sharing messages

of love and moral foundation. Thank you to my childhood swimming coaches for teaching me the art of

discipline at all times of a journey. Thank you to my girlfriend for being the most supportive and empathetic

woman. Thank you my friends for the laughter, and truthful honesty that led to lots of self-reflection that

translates to my work, self-esteem, and perception of the world.

None of this would have been possible without Jazmin, Juan, Damla and Jan. Thank you Jazmin for

being the first person during my search for a supervisor to open her heart and mind to what I wanted to

research. At all times, I felt that you wanted the best for me, even when I was confused. Thank you for the

kind encouragement to believe in my research, and show great excitement on understanding the problem.

When all of this was still a messy ball of knowledge, we untangled it together. Together, we synthesized the

results into something that is understandable for a greater audience. Thank you Juan for being someone I

could always combine what felt like ’light-hearted’ conversations, with serious ’let-us-get-to-business’ key

decisions. You taught me how to structure myself, which permanently changed my work ethic where I

now combine rationality with a gut feeling, unmissable in dealing with complex problems like these. Thank

you Damla for showing me how much fun it can be to do research as a job. Your workflow for the PhD.

makes me want to pursue, whatever I do in life, with that same drive. Work, passion, and happiness can

be combined, and you are an example of this. It yielded me novel ideas, key directions to tackle justice,

and self-esteem to value my work. Whatever is in my thesis, is part of brainstorming sessions with you.

Thank you Jan for being someone straight-to-the-point with key concepts I needed to jump in. From the

beginning, you showed me how much you cared, which translated into direct and honest feedback, which

felt invaluable to realizing a thesis where I can reflect on what I am putting on paper. Researchers like you

make me reflect and think outside of the box. I believe only in doing so, we can make the advancements

we need in decision-support for reliable decision-making. I could have never asked for a better committee.

I realize the importance of research in justice. The problem of justice predates and will outlast me.

Farley Rimon

Delft, 2023

ii



Executive Summary

Water has a multi-faceted purpose - whether it serves the consumption of environmental flows to protect the

ecosystem, potable water for urban areas, energy production for communities, agricultural food production,

or recreational purposes - water is essential to our existence in this world. Hidden behind the veil of what is

visible, we are confronted with a stark reality of high water dependency amid an ever-increasing scarcity of

water resources. Potable water is a finite resource, and yet facing a growing demand for which long-term

sustainable water provision is in many regions not guaranteed. By 2030, the need for energy production,

foremostly from water, is expected to grow by 57 %. Additionally, growing trends indicate food production

to grow by 68% by 2050 (Marr, 2022). To deal with the uncertainty on the water demand satisfaction for

multiple objectives, in 2010 the UN adopted historical resolution acts to declare water to be a (human)

right. While such an act by the UN creates awareness of the right to water on a global scale, an important

aspect remains vaguely defined for situations on smaller geographical scales. Consequently, the right to

water, when a limited supply is distributed locally, is undefined. Hence, ’How must this notion be applied

in a context where water supply is limited, everyone has the right to water, and demand is unmet (and

dynamically changing) across several purposes?’ The issue of what is a right reaches in this sense a

deeper level of understanding. Inherently, water management faces a trade-off (among others) between

efficient, and equitable, use of water (Lévite & Sally, 2002; Wegerich, 2007). With growing stress for the

multi-faceted use of limited water supply, one of the biggest challenges facing policymakers is how they

can efficiently and equitably distribute water from existing reservoirs to ensure sustainable water use.

This thesis transcends the definition provided by the UN by creating a path for the inclusion of equity

when a reservoir is being used for multiple purposes, and thus for multiple actors. Decision-support

models for water systems that simultaneously optimize multiple objectives, also known as Multi-Objective

Optimization (MOO) models, are essential when society encounters complex situations where due to

a limited availability of water it is not possible to meet the multiple water objectives at all times. While

previous studies focus on using MOO to increase the efficiency of objectives, and in this manner maximize

the aggregated benefits, including objectives that ensure distributive justice on the management of water

resources are as important. Each study on the ’distributive justice’ of MOO implements this justice

distinctively, i.e. their notions for justice are different across studies, their (operationalization) formulations

of justice are different, and their implementation is different. Hence, the problem formulations are often

designed such that they fit the modelling approach, with little consideration of the implications drawn

solutions considered ’optimal’. This leads to one of the most difficult burdens a modeller has to deal with,

introducing normative bias into the model, leading to normative uncertainty in the implications drawn from

such decision-support model outcomes (Taebi et al., 2020).

This thesis is the first approach to understanding how the operationalization of distributive justice

shapes the implications drawn from the ’optimal’ outcomes of decision-support MOO-models.This approach

considers multiple high-level goals, from the traditional efficiency goal (of maximizing several objectives),

to a complementary distributive justice principle goal (of including a justice objective). A rival framings

approach acknowledges diversity in perspectives, for which it is suitable to contrast the operationalization

formulation of the same distributive justice principle. The rival framing focused on the inequality metric

and the aggregation method over time for this metric, both used for the formulation of inequality in the

objective formulation. The distributive justice principle that stayed fixed was egalitarianism, with the aim

to minimize the relative distance among objectives (Ciullo et al., 2020). Equality was studied in this

thesis by rival framing the operationalization of the inequality formulation calculated across objectives.

The Pareto front from MOO served as the reference to study the implications of the rival framings. By

determining how the Pareto front shifted, it was understood how the solution space shifts from a difference

in objective formulation. The research of this thesis is important because there are rising attempts to

include justice in optimization models, but in doing so make use of a pragmatic approach for the formulation.

Therefore, before studies continue this important journey to consider more (complex components of) justice

in decision-support models, light should be shed on the choices modellers make to include justice (Fletcher

et al., 2022). This leads us to the following research question:
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How do different operationalization formulations for inequality in existing multi-objective optimiza-

tion models shift the Pareto front?

Research Question : Main Question

In order to address the research question on inequality, the chosen case-study was the Lower Susque-

hanna River Basin, a subbasin of one of the oldest and largest rivers in the world which uses the Conowingo

Reservoir as a water management reservoir system. The Conowingo Reservoir serves multiple purposes

for which multiple stakeholders are involved with high interest. The management of the Conowingo is

a complex case due to its demand for truly diverging purposes such as hydropower revenue, atomic

power plant cooling, environmental flow requirements, and more. In this thesis, the simulation-based

Evolutionary Multi-Object Direct Policy Search (EMODPS)-model, designed by Giuliani et al. (2014) and

further improved by Zatarain-Salazar et al. (2016) was used. The model parametrized the operating

release decisions of the Conowingo using Radial Basis Functions and used Multi-Objective Evolutionary

Algorithms to optimize the operating policies. To the traditional six efficiency objectives, a seventh equality

objective that considered the minimization of inequality among the traditional six objectives was added. For

this inequality formulation, the inequality formulation is split in two components for rival framings. First, rival

framings focused on the inequality metric by changing the aggregated Gini-coefficient to the aggregated

Euclidean distance. Moreover, because of the lack in studies to defend the level of aggregation over time,

alternative aggregation methods were compared when measuring equality. The aggregation method over

time was alternated in three distinctive manners, namely the daily-based yearly mean, monthly-based

yearly standard deviation, and the ratio of the standard deviation and mean. Summarizing the main key

findings:

1. Equality is gained when complementing the traditional maximization formulation with the equality

objective. The more equality is gained, the larger the shift of the Pareto front.

2. The chosen inequality metric has a significant influence on shifting the trade-off across objectives.

The aggregation method has a weaker influence on the shift in trade-offs.

3. The Euclidean formulations yield smaller inequalities across objectives (and thus more equality) than

the Gini formulations because of its quadratic formulation as contrary to the Gini. Conversely, Gini

formulations lead to higher efficiency than the Euclidean formulations, while improving the equality

compared to the traditional formulation.

4. The mean aggregation shows the largest shift in efficiency and equality of objectives, the deviation

aggregation yields lower equality and forms exceptions depending on the indicator, and the ratio of

both does not improve equality nor efficiency.

5. There is a non-linear relationship between the chosen inequality metric or aggregation method and

the shift in the trade-off between efficiency and equality.

Modellers need to acknowledge the bias introduced by the choice of operationalization for equality.

I suggest looking at multiple points that create a broader understanding of justice in MOO and create

a deeper understanding of justice in MOO. First, it is time to consider relative (distribution) injustices

from a disaggregated perspective, i.e. choosing over which objectives inequality should be optimized.

Moreover, for future research, I suggest improving the methods to consider positive and negative variance.

In doing so, considering in which direction the inequality is moving, will improve the combined satisfaction of

efficiency and distributive justice. In terms of social implications, for reliable use of decision-support models,

models need justice while continuing with the extraction of advice from these models. Simulation-based

MOO-models such as the EMODPS-model used in this study are a way of dealing with the complexity of

our world. To have higher usefulness from MOO-justice-included models, society must further reflect what

their stance is on justice. For example, it needs to address how this justice formulation is related to risk

aversion. Only through the elaboration of justice formulations, a future is reachable where justice is not

only considered but reached. We need to collect views, unify views, and unify equitable distribution.
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1
Introduction

1.1. General introduction: Injustice in water distribution
Water, an essential resource for every human being on Earth, plays a fundamental role in the development

and social and economic growth of society. It fulfills a multi-faceted role in supplying and meeting the

diverse demands of various sectors. Notably, water is indispensable for irrigation purposes, industrial

processes, energy production, and urban water supply, as well as providing drinking water and supporting

agricultural food production. This makes water crucial for the existence and well-being of humankind.

Society heavily relies on water in these areas to ensure food security and energy production, under-

scoring the need for a reliable and sufficient water supply. To put this into perspective, the global annual

demand for water is approximately 4 trillion m3 (Our World in Data, 2023), with an average of 70% used

for agriculture, 19% for industrial purposes, and 11% for municipal consumption. All of these sectors are

interconnected and essential for societal functions (Quinn, Reed, & Keller, 2017). It is important to note

that this annual demand is a considerable fraction compared to the volume of water in the sea, which

is approximately 18 trillion m3 (US Geological Survey, 2023). This stark contrast not only underscores

society’s high dependency on water but also highlights the vulnerability and complexity of the water supply

system if any changes were to occur.

Hidden behind the veil of what is visible, we are confronted with a stark reality of high water dependency

amid an ever-increasing scarcity of water resources. Potable water being a finite resource, is facing a

growing demand, leading to uncertain long-term sustainable water provision for many regions. Climate

change is further increasing the vulnerability, as 2.3 billion people already live under water stress 1 (United

Nations Water, 2023), and more are to come due to population growth and exploitation of resources.

By 2050 the injustices of water stress will further be exacerbated as global demand will double, and with

this the amount of people under water stress (Cominelli et al., 2009). Some studies suggest that up to 75

% of the global population will need to cope with freshwater scarcity (Hightower & Pierce, 2008). Moreover,

water is crucial to satisfy the energy transition worldwide, as it nearly supplies 16% of our current energy

demand (Association, 2021). Considering there is an existing hydropower infrastructure, that would need

to be rebuilt and expanded, the International Energy Agency suggests an extra 850 GW hydropower to

meet climate targets and stay below 2 degrees ◦C (International Renewable Energy Agency, 2020). By

2030, the need for energy production from sustainable resources is expected to grow by 57 %. Hydropower

is in high demand to ensure this energy transition. Additionally, growing trends indicate food production to

grow by 68% by 2050 (Marr, 2022). Finding ways to solve the short- and long-term supply of water for a

multi-faceted use under a gradual increase in water scarcity, raises questions on how decision-makers

can ensure that society benefits from the distribution of water.

The UN responded to the water stress situation in 2010 where it adopted historical resolution acts

to declare water to be a human right 2.While such an act by the UN creates awareness of the right to

1Water stress is defined by the United Nations as when annual water availability drops below 1,700 cubic meters per person. This

ratio is used to determine the level of freshwater availability in a region or country compared to water demand. This categorization helps

identify areas that are experiencing water stress and require urgent intervention to ensure sustainable access to safe drinking water.
2The human right was declared, but not the environmental right to preserve the ecosystem that depends on a specific water body.

Nonetheless, many governments have implemented a type of environmental right in the decision-making process for water distribution.

2
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water on a global and general scale, an important aspect remains vaguely defined on smaller geographical

scales, namely the right to water when distributing water on a local scale. On a local scale, it remains

ambiguous how to distribute water over several objectives, or over several actors. A right for access to

clean water, but how must this notion be applied in a context where water supply is limited, several actors

have the right to water, and demand is unmet (and dynamically changing) across several purposes? Or

when the environment has rights allocated as well, forming additional criteria - that is equally important for

the human rights of water - to the water supply system? Or more generically, in a context where water

serves multiple purposes (drinking, food production, energy, environment, industry, etc.), all of which are

essential to the human, environment and industry, indicating multiple levels of right to its access?

Regardless of the collective efforts of governmental institutions and research, there is a lack of consent

on how to manage the multi-faceted use of water, specifically freshwater. Since each actor and usage has

a certain right, and the growing lack of consent on the distribution, nowadays, the conversation is shifting

areas with ‘water stress’ to areas with ‘water conflicts’, with over 800 official water conflicts globally since

2010 (World Water Council, 2023). The issue of what is a right reaches in this sense a deeper level of

understanding, namely on how these rights should be distributed.

In order to solve the issue of how to distribute water, another problem is faced when we must consider

that the distribution of water has multi-sectoral effects, and satisfies multiple purposes (Quinn, Reed,

Giuliani, et al., 2017). Moreover, the burdens of the challenges in water provision, and the benefits of the

same water provision, are not equally distributed among the affected population. Therefore, ’When is the

distribution of water just?’. It is a question with a non-trivial answer. In order to ensure the right to water is

equally distributed, the topics of equity 3, distributive justice, ethics, sustainability and efficiency need to be

included in a discussion regarding the management of water.

Inherently, water management also faces a trade-off between efficient, equitable, and sustainable

water use (Lévite & Sally, 2002; Wegerich, 2007). With growing stress for the multi-faceted use of water,

one of the biggest challenges facing policymakers is how to equitably and efficiently 4 distribute water from

existing reservoirs to ensure sustainable water use.

1.2. Thesis scope
This thesis transcends the definition provided by the UN by creating a path for the inclusion of equity when

a reservoir is being used for multiple purposes, and thus for multiple actors. To deal with the complexity

of reservoir management decision-support models are used, giving rise to ample research to provide

reliable decision-making recommendations. Therefore, the inclusion of equity is achieved through its

implementation in decision-support models.

The most popular method is the Cost-Benefit Analysis (CBA) method, widely adopted for any large

infrastructure project (Ciullo et al., 2020). Nevertheless, CBA’s focus is on maximizing the aggregated

benefits of resources such as water, neglecting the distribution among it, and therefore not ensuring

equitable access to this basic human right. Moreover, according to Fletcher et al. (2022) what communities

need is socially engaged water management, and yet, CBA’s purpose is solely justifying the economic

investment in a project when looking at the full spectrum of consequences.

In response to the limitations, another branch of research focuses on aiding decision-making through

optimization models with single-objective problem formulations, but this is not enough to solve the problem

of inequitable, or even inefficient, water allocation. As Zatarain-Salazar et al. (2016) debates such

formulations are at the risk of simplifying the complex problem this is. Current decision-support models

relying on a utilitarian perspective are therefore criticized (Fletcher et al., 2022). Under complex situations

where due to a limited availability of water it is not possible to meet the multiple objectives at all times.

This leads to a lack of consent on how to distribute water on a local level and causes balancing conflicts

between water actors (Quinn, Reed, & Keller, 2017). Water is a multi-faceted dynamic resource, with

multiple stakeholders, and should thus be explored accordingly. Decision-support models, with a focus on

optimization models, need to be improved.

3Equity is concerned with the idea of fairness and making sure that actors are treated equally in light of their particular needs,

circumstances, or contributions. Equity can be a goal in multi-objective optimization if the goal is to promote equal chances or lessen

discrepancies.
4Leaving sustainability out of the challenge since this concerns the future use of water.
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1.2.1. Knowledge gap
An improvement to previous models is theMulti-Objective Optimization (MOO)models which simultaneously

optimize multiple objectives. Previous studies shed light on how the problem for MOO needs to be

formulated to maximize the aggregated benefits. Less frequently, studies have investigated how to

implement distributive justice 5 in MOO for the management of water resources.

Nonetheless, the studies considering distributive justice in MOO were pragmatic at best. Each study

on the ’distributive justice’ of MOO implemented this justice distinctively, where their notion of justice was

different across studies, their operationalization of justice was different, and their implementation was

different. Hence, the problem formulations were often designed from the perspective of the modeller that

decided how it best fits the modelling approach, with little consideration of the consequences from which

solutions were considered ’optimal’.

This leads to one of the most difficult burdens a modeller has to deal with, introducing normative bias into

the model, leading to normative uncertainty in the implications stemming from such decision-support models

(Taebi et al., 2020). Therefore, to elicit the implications of using alternative distributive justice principles

as the goal of distribution for the model’s objective formulation, studies shed light through contrasting

ethical viewpoints. This leads to a significant adaptation of the problem formulation or model, incomparable

results across formulations, and does not address the normative uncertainty from the modelling choice for

a specific notion of distributive justice.

To deal with the latter problem, in this thesis focus lies on how the shape of distributive justice is

implemented in decision-support models. The shape determines what a just distribution for water is over

several actor objectives. Hence, it entails which notion is chosen for justice, how justice is operationalized,

and how it is evaluated.

Moreover, the shape of distributive justice can be studied in several ways. In the first method, ethical

principles that form a set of rules for the optimization can be implemented a-priori. Thereafter, the solutions

from the optimization with differing ethical principles are compared (Ciullo et al., 2020; Reddel, 2022). In

the second method, the formulation of inequality depends on the specifics of the case-study such as its

time horizon, for which its implementation and mathematical formulation can be investigated through a

series of frameworks on how justice should be applied in the models (Jafino et al., 2021; Xu et al., 2019).

Additionally, the formulation of inequality can be studied through the operationalization method of inequality

(often the Gini-coefficient with different variable inputs) (Hu, Chen, et al., 2016; Hu, Wei, Yao, Li, et al.,

2016). Lastly, studies also look if the operationalized inequality should be implemented in the model as a

constraint, or objective (Dong et al., 2022).

In the last method, ethical principles can be used to evaluate the inequality from the optimization as-is,

and hence, is used as a post-processing method of the model results. This post-processing can be done

by using decision-making game theory to investigate if actors find the solutions stable and fair (Alizadeh

et al., 2017; Farhadi et al., 2016; Fu et al., 2021; Naghdi et al., 2021; Rădulescu et al., 2020; Sarva,

2021). The problem with this approach is that while it is suitable to form consent among actors, it bases its

values on given weights for actor preferences. In many MOO-problems the actor preferences and weights

are unknown, making it better to not assume weights (Rădulescu et al., 2020). Hence, recent research

a-posteriori rank-ordered solutions according to the utility achieved from a specific ethical principle (Jafino

et al., 2022). This is extremely useful since similarities and differences in solution preferences can be

observed across contrasting and combined ethical principles.

While useful, this thesis supports the claim of Yang et al. (2023) where normative studies (on how

resources should be distributed), offer the only possibility to include both a-priori and a-posteriori of

decision-making. Subsequently, this is only possible if the ethical principle is implemented directly in the

objective formulation. Building on the statement of Yang et al., the suggested method for combining an

a-priori justice formulation and a-posteriori formulations is by adapting the objective formulation (Fletcher

et al., 2022; Jafino et al., 2022).

Foremostly, the operationalization of equity for water system models (specifically MOOmodels) remains

largely understudied compared to other analyses on the use of decision-support models. Especially,

5Distributive justice concerns the fair allocation of goods, benefits, or burdens within a society or system. It encompasses theories

and principles about what constitutes a just distribution. In MOO, distributive justice as an objective may involve optimizing solutions

that align with specific theories of justice, such as maximizing equality, rewarding merit, or prioritizing need. Hence, it does not look

at the background of actors beyond the distribution. This falls beyond the scope of distributive justice, and within the scope of equity.
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understudied fields are in a) the definition of justice, b) the mathematical formulation, and c) the performance

(inequality) metric. Without determining what the influence is of what is actually being optimized, there is a

lack of knowledge of the modeller’s influence on the shape of a distribution.

Investigating distributive justice principles for the optimization of water resources is crucial for ensuring

an equitable distribution (Fletcher et al., 2022). In this context, it is crucial to understand the shape of

justice by understanding the implications from which the metric is being used and how aggregating this

metric over time will shift the Pareto front. If it remains unknown how this Pareto front is shifting due to the

justice formulation implemented, I argue that it remains unknown what trade-off is being made between

efficiency and the distributive justice of a water system.

1.2.2. Research method: Rival framings approach
This thesis is the first approach to understanding how the operationalization of distributive justice shapes the

implications drawn from the ’optimal’ outcomes of decision-support MOO models. Rather than comparing

contrasting views, a step is taken back in this research field of justice. The thesis used a rival framings

approach to contrast the operationalization formulation of a chosen distributive justice principle, instead

of over multiple principles. Rival framings acknowledges diversity in perspectives, even at this smaller

formulation scale. Instead of seeking optimal solutions from one formulation chosen by the modeller for

justice, rival framings leverage the existence of multiple notions of that same principle to create a better

understanding of MOO.

A rival framings approach in itself is not new as Quinn, Reed, Giuliani, et al. (2017) attempted to

discover the implications of deeply uncertain scenario choices. Herman et al. (2015) attempted to discover

the implications of different problem formulations for decision-support models. However, to my knowledge,

a rival framings approach that attempts at discovering the implications of different objective formulations

where equity is included has not yet been done. Novelty is found in rival framing the distributive justice

principle’s operationalization. Consequently, the normative uncertainty resulting from the implementation

of distributive justice in existing MOO models is reduced.

Distributive justice was defined using the egalitarian principle and hence looked at the equality achieved

over objectives. Moreover, the core of the rival framings approach lies in the alternatives to operationalize

the inequality 6 across objectives in the objective formulation of a MOOmodel for a reservoir (water system).

Thereafter, the inequality across these objectives was minimized, aligning with definitions of previous

MOO studies (Ciullo et al., 2020).

The rival framings approach used multiple high-level goals, from the baseline (traditional) efficiency goal

(of maximizing utility) to a complementary distributive justice principle goal (of including a justice objective).

The baseline optimization maximized the utility of objectives and the rival optimizations maximized the

utility of objectives while the inequality across objectives was minimized. It is believed that this baseline

(without distributive justice) was the best reference for optimal outcomes across framings of distributive

justice since it does not create a dependence on the specific choice of operationalization for the chosen

distributive justice principle.

The implications from the rival framings outcomes were studied by analyzing the shifting of the Pareto-

optimal solutions, that together form the Pareto-front. Pareto-optimality is often used in multi-objective

optimization because it allows the identification of solutions that are efficient in terms of multiple objectives.

Regardless of whether distributive justice was considered, previous MOO studies used the Pareto-front -

either directly and indirectly - to study the implications from the optimization (Giuliani et al., 2014; Herman

et al., 2015; Quinn, Reed, & Keller, 2017). By determining how the Pareto front shifts, it was understood

how the solution set changes from a difference in operationalization.

The rival framings focused on the inequality operationalization, which consisted of two main components.

Consequently, the inequality metric and the aggregation method over time for this metric were alternated

over the optimization of rival framings. Moreover, justice in MOO studies will often adopt the a) Gini-

coefficient, a metric for inequality in distribution, which is here contrasted with the b) Euclidean distance, a

metric for relative distances across reference points (in this case objective values). Both metrics aim to

quantify the same, inequalities or relative distances across objective values, but stem from a different (not

6Inequality is operationalized because it acknowledges that objectives do not have the same starting point. Moreover, it is the

most direct, and quantifiable method for the striving of justice under the equality principle.
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contrasting) logic, making it a perfect example of how a subtle difference in logic can affect the implications.

Moreover, in order to reduce computational expenses in MOO, an aggregation method for the objective

formulation is chosen for the time horizon. McPhail et al. (2018) finds that this can significantly change the

findings from the model. Therefore, while a similar comparison research has been done for robustness

metrics, this was studied using the rival framing for the aggregation method over time of the inequality

metric by formulating it as a) the intra-timely standard deviation, b) aggregated mean over the time horizon,

and c) the ratio between the deviation and the mean.

Using the knowledge gap and the rival framings approach, it became possible to formulate what will

be contrasted in the rival framings to understand the effect of different operationalization methods on the

model outcomes. The rival framings focused on the rival framings operationalization when it is implemented

in the objective formulation of a MOO-problem. Equation 1.1 shows the components that are part of this

operationalization. Here Jequality is the objective formulation for inequality that needs to be minimized,

and measures the relative difference between the performance of objectives. Maximizing equality is the

high-level objective, that is measured through inequality, hence the name Jequality. f(Ji,j) represents the
chosen inequality metric to operationalize the relative difference between objectives Ji and Jj . Moreover,
the objective formulation can only have one objective that needs to be minimized at the end of each

model run. This is why f(Ji,j) needs to be aggregated over time. The aggregation method over time
influences what aspect of inequality is being minimized. For example, the aggregation method can measure

inequalities between objectives over smaller time steps that form the time horizon, or it can measure the

inequalities between objectives at the end of the time horizon. 4 represents the mathematical formulations

possible to aggregate inequality over time.

Jinequality = 4(f(Ji,j)) (1.1)

1.2.3. Motivation of contribution
As modellers, there is a moral responsibility to address inequalities in communities from water systems

(Fletcher et al., 2022). The responsibility, therefore, lies in:

• What to operationalize as distributive justice

• How to operationalize distributive justice

• How to evaluate distributive justice

The research of this thesis is important because there are rising attempts to include justice in optimization

models, but in doing so make use of a pragmatic formulation. Studies a) evaluate justice (and not optimize),

and b) highlight trade-offs for optimization systems without understanding if this trade-off is dependent on

their formulation for normative modelling choices. Using the Gini-coefficient highlights inequalities, but

there are ample other metrics to calculate inequality if its concept is changed instead to relative differences.

Hence, it is truly unknown if inequality is best measured by the Gini-coefficient, or other metric formulations.

Also, studies frequently title the ’trade-off between efficiency and equity ’ but fail to form a unified view

on how to implement equity in MOO-problems. Ciullo et al. (2020), Dong et al. (2022), Hu, Wei, Yao, Li,

et al. (2016), and Xu et al. (2019) are examples of studies with each their own approach to understanding

the trade-off. But which one is correct? I argue that the lack of a unified approach makes the trade-off

dependent on the formulation for equity (specifically the distributive justice principle).

Therefore, before studies continue this important journey to create more justice in decision-support

models, light should be shed on the choices modellers make to include justice (Fletcher et al., 2022).

Moreover, the trade-off across objectives changes based on the chosen inequality operationalization.

Subsequently, the trade-off between efficiency and equity will vary significantly, making the outcomes

less reliable. If we (as a society) want to benefit from justice in decision-support models in a reliable

manner, it is time to acknowledge that even the same justice principle will change our achieved trade-off

and justice implication. This thesis is a first step in assessing how important these changes (in the objective

formulation) are to the implications drawn from them.

1.3. Research question
Summarizing the knowledge gap of the Literature Review (Chapter 2), key components were found to

make up the Research Question:
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1. The existing objective formulation should be complemented with a justice principle (equality) for

water allocation. Doing so improves understanding of implementing distributive justice without further

adaptation of a model. The model keeps its original (efficiency-principle) purpose with an additional

water allocation principle.

2. The operationalization of equality is ambiguous as ample studies have their own distinctive formulation.

Specifically, ambiguity lies in the choice of inequality metric, and the aggregation method over time.

3. The Pareto front is used to evaluate the trade-offs between objectives from optimal solutions. Hence,

how the Pareto front shifts across operationalization formulations for inequality yields how trade-offs

change across these formulations. First, in the trade-off across the performance gained for objectives.

Second, in the trade-off between achieved aggregated (efficiency) performance of objectives and

the equality in performance gained across these objectives.

This leads us to the following research question:

How do different operationalization formulations for inequality in existing multi-objective optimiza-

tion models shift the Pareto front?

Research Question : Main Question

In order to deal with the spectrum of uncertainty from the choice of performance metrics, several

operationalization metrics were tested over the same case-study (McPhail et al., 2018). In this thesis,

performance referred to the level of equality gained. Using the Pareto front, it was possible to determine

how the trade-offs among objectives and among principles shift. Hence, the Pareto front determined the

implications of the model outcome.

While the Pareto front represents optimal aggregated outcomes, on a disaggregated actor-level, there

are situations where it is unable to find optimal solutions without causing conflicting water allocation. Hence,

the solutions are not optimal for all objectives. Hence, I argue that after introducing the equality objective,

the Pareto concept will assign higher importance to solutions that do not leverage aggregated optimality

over the large disadvantage of some actor objectives.

1.3.1. Sub research questions

How do varying formulations for inequality shift the existing (baseline) trade-offs across objec-

tives?

Research Question : Sub Question 1

The first sub question compares the trade-off among objectives, every time in reference to the existing

formulation which was used as the baseline for these comparisons. Using the Parallel Axes Plot, trade-offs

across solutions are compared. Since each MOO found a significant amount of Pareto-optimal solutions, it

became impossible to compare several solutions over several formulations. Therefore, it was decided

to use the solutions from the formulations with the equality objective that yield the lowest, highest, and

median values for equality. These solutions were compared to the lowest, highest, and median value of

the hydropower objective, since for the chosen case-study, this objective has the highest relevance for the

efficiency principle. Hence, by comparing equality with efficiency, it became clear how varying formulations

shift the trade-offs between the two.

What is the role of the inequality metrics on shifting the solution space of the Pareto front?

Research Question : Sub Question 2

In the second sub question, the distribution of objective values was studied for each formulation. This

led to an understanding of how varying formulations yield varying subsets in the objective space. The

objective space is the multi-dimensional space of n x 1, with n objectives, where objectives are able to

obtain any value between its pre-determined ranges. The solution space constraints this multi-dimensional
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space to objective values yielding Pareto-optimal solutions. Hence, rather than observing trade-offs,

the distribution indicated how varying formulations constrain the objective space distinctively. In terms

of implications, each formulation will tell a different story of how inequality can be minimized within the

pre-determined ranges of objectives.

This means that the solution space was constrained differently since the objective formulation decided

which subset of the objective space was feasible as solution space. Moreover, Reddel (2022) found

that using different ethical premises as principles for the objective formulation of Integrated Assessment

Models significantly shifted the Pareto front across changing principles. In changing such principles, the

formulation for justice was similarly to this thesis, adapted. Because of this, I expected that the distribution

of solutions differ across inequality formulations used for the equality justice objective. Determining the

shifting effect from the inequality metric is novel and relevant since similar studies indicate its importance

in finding the final Pareto front.

What is the role of the aggregation method over time on shifting the solution space of the Pareto

front?

Research Question : Sub Question 3

The third sub question looked at the aggregation method since previous studies found that the model

implications were most dependent on how results are aggregated (McPhail et al., 2018). Moreover, when

discussing alternatives to aggregate inequality it is found that minimizing inequality over time steps does

not guarantee inequality is minimized when aggregated over the entire time horizon. Hence, the level of

distributive justice achieved, aggregated and disaggregated, is sensitive to the time dimension (Jafino

et al., 2021). Thus, untangling its effects yielded an understanding of the sensitivity in the formulation for

cases of water allocation problems that require a specific goal of distributive justice over time.

1.4. Thesis organization
The next Chapters will structure themselves to answer the research question. Figure 1.1 shows how this

will take place from the Define phase, to the Structuring phase, and finally the Analyze phase. Chapter 2

delves into the literature to understand the context of equity in decision-support models. At the end of this

Chapter, the knowledge gaps are synthesized into precise concepts to be part of the studied core of the

rival framings approach. Chapter 3 explains the approach (using Figure 3.5) to study this gap. Chapter 4

makes clear how the experiments are set up. Chapter 5 will jump into the analysis of the results using

analysis for each objective and each formulation. Chapter 6 reflects on key findings and key limitations.

7 answers the research questions and draws the main implications for science and society. Moreover,

in Appendix B an elaboration can be found on the formulations of the existing objectives from the used

case-study, Appendix C includes supplementary figures and analyses that contribute to the main research

question.



1.4. Thesis organization 9

Figure 1.1: Structure of the thesis structured around the answering of the main research question.



2
Literature review

To contribute to the academic field, one must understand the advancements in research of equity incor-

porated into water models. It is essential to understand the entire spectrum of research. Therefore, the

literature review has a broader scope than the context of this thesis. For obvious reasons, the purpose of

this Literature review goes beyond water resources since many other common pool resources nowadays

face similar complex multi-objective injustices.

2.1. An introduction to equity
In the following, the main themes to understand how equity was operationalized and evaluated for decision-

support models were identified. In this thesis distributive justice is discussed (instead of equity), a smaller

notion of equity. Since the literature on equity in decision-support models often does not draw a distinction

between equity and distributive justice, it is important to highlight this before continuing.

2.1.1. Inherent trade-off of water distribution
Lévite and Sally (2002) underscored three principles that serve as constraints to the management of water

distribution: efficient (beneficial) use, equity, and sustainability. Nonetheless, equity can have different

notions, which is a reason why it is difficult to define equity for the distribution of water. In concrete terms,

equity solely refers to the notion applied to define a fair exchange of resources when several aspects of the

actor’s background are taken into account such as historical disadvantages. It may consider factors such

as socioeconomic status, abilities, or other relevant characteristics. Because of the diversity in factors

possible to consider, at the least, equity is ambiguous (Jafino et al., 2021; Syme et al., 1999; Wang et al.,

2015; Wegerich, 2007; Wolf, 1999; Young, 1994).

On the other hand, there is efficiency which is seen as the fairness-based implementation of utilitarianism
1 (M. D. Adler, 2019). Stemming from the utilitarian perspective, improving performance is equivalent to

attempting to produce higher benefits for everyone, and hence treating everyone equally. Nonetheless, it

does so by aggregating the benefits of actors, not caring how it is distributed among them. This results in

some actors gaining high benefits at the expense of low benefits for other actors, i.e. yielding an uneven

distribution of resources. This is why equity needs to be viewed as a separate concept that compensates

for inequalities caused by this aggregation.

In response to this, there has been a growing amount of literature considering equity from a perspective

setting emphasis on the equal concern for each actor’s benefits or costs (M. D. Adler, 2019). Shortly,

it encompasses theories and principles about what constitutes a just distribution. Hence, the goal to

satisfy the demand of actors must now be considered through the relative distribution (of water) (Driver,

2009), and therefore in a disaggregated manner to ensure each actor receives equal rights (to water

under fluctuating conditions). This branch of studies falls under the term of distributive justice principles.

Hence, the equity of actions is solely defined by the distribution, and not the actor’s background (to be

compensated). Therefore, distributive justice is a sub notion of equity. Furthermore, equity is in water

allocation problems defined as distributive justice which is further defined through the logic of an ethical

1Utilitarianism is an ethical principle where the goal is to maximize the aggregated benefits for all stakeholders. It does not look at

the relative distribution.

10
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Figure 2.1: Inherent trade-off between the two main notions of equity: efficiency and distributive justice.

principle. In this literature review equity refers to distributive justice, instead of equity, in all its references.

Such paradigm is shown in Figure 2.1. Also shown is the trade-off with the efficiency of a water system.

Such a distinction between efficiency and equity (i.e. distributive justice) leads to a trade-off in how

water is distributed. Trade-off analysis allows decision-makers to systematically examine the impacts of

different policy options by identifying and assessing the potential trade-offs between different objectives

or outcomes to inform decision-making. As mentioned previously, policymakers face a difficult trade-off

between equity, efficiency, and sustainability. Even when leaving out future (intergenerational) effects,

the trade-off remains in the present situation for the distribution of water, between equity and efficiency.

From the state-of-art analysis, there is the identification of three themes to further study this for models,

as shown below. Subsequently, in Section 2.3.5, with the insights gained from analyzing these themes,

the information is synthesized to determine what is most relevant to compare for the normative modelling

choices when operationalizing equity.

• Frameworks for equity in models (Section 2.2): What frameworks and guidelines have previously

been designed for the implementation of equity in models?

• Operationalization of equity in models (Section 2.3): How have previous studies in the water man-

agement literature, and environmental modelling literature operationalized equity after implementing

its formulation in the model?

2.2. Frameworks for equity in models
The goal of implementing distributive justice is to distribute benefits and risks in an equitable manner. As

per Jafino et al. (2021) distributive justice could be translated to models by building on the domains of justice

in decision-support models using the XLRM-framework, a model-based decision-support framework by

Lempert et al. (2003). The XLRM represents a methodology for evaluating MOO-problems that incorporates

exploratory modelling and robust decision-making. Hereby, this framework can be applied to any existing

problem making use of MOO-model. The model is encapsuled by this framework and explained in terms

of the four domains, X, L, R, and M. Hereby, ’X’ refers to exogenous uncertainties, ’L’ refers to levers, ’R’

refers to relationships in the system, and ’M’ refers to performance metrics. It is imperative to consider on

which domain utility 2 is being measured. Since this literature review is meant to understand the objective

formulation for distributive justice, the focus lies on the M, performance metrics indicators, or in other

words, the criteria for the MOO model.

Distributive justice studies can be further split into explorative studies, assessing how resources will

be distributed, and normative studies, assessing how resources should be distributed. As argued in

the Introduction, studies suggest adapting the objective formulation. Hereby, the objective formulation

determines how resources (may that be water) are distributed among actors. Therefore, studies assessed

are on how resources should be distributed, the normative studies.

Using the indicator to use the XLRM-framework to determine which domain to delve in to consider

distributive justice in MOO, and using the indicator to look at normative studies, a step is taken further in

2Utility is an abstract unit of measurement to determine the benefit or risk experienced.
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what subdomains can be explored for equity-based MOO-problems.

2.2.1. Normative studies: Steps of distributive justice
As was mentioned before, normative studies do research on how resource should be distributed. In this

branch, Jafino et al. (2021) draw out the main aspects for modelling distributive justice. First, are the steps

over which distributive justice is looked at, over the unit of justice, the unit to measure the distribution,

the scope of justice, the objectives over which to assess the distribution disaggregated, or the shape the

desired distribution that is used to determine the (just) performance of the distribution. Second, is over

which intertemporal aspect this distributive justice is determined. Third, is the formulation of distributive

justice that aims to form a measuring principle for the aforementioned aspects.

Unit and Scope

Unit of distribution In order to assess the distributive justice of water, one is required to have a collective

unit of measurement across several objectives. Having a comparable and collective unit of measurement

over actors is useful for understanding the allocation of resources. There are three ways of defining a

comparable unit of distribution: a) volumetric unit, b) utility, and c) social welfare.

Water is according to scientific literature measured when it is in motion, in volumetric unit per time

unit, or when it is being stored, in volumetric unit. In social sciences, there are other ways of measuring

water, since stakeholders may opt to measure the personal benefit being gained from water. Proven

to be useful for resource management, utility is quantified by the benefit gained or the costs generated

to each stakeholder (Fishburn, 1968; Von Winterfelt, 1975). The advantage of utility is its possibility to

apply stakeholder preferences, therefore bringing equal right of preferences. Therefore no actors will be

disadvantaged in the procedure to distribute resources in a just manner (Jafino et al., 2021). In addition

to utility, social welfare is another established method to measure the benefits gained or lost (Lombard,

2008). Social welfare measures the overall benefits and costs to society. Studies aggregate positive utility

(benefits) and negative utility (costs) together and aggregate over stakeholders.

Although utility and social welfare are both methods that improve the trade-off analysis over outcomes

for actors and between actors, they require more information on how the stakeholder values the resource.

Most case-studies do not have stakeholder-consulted weights for utility available. Moreover, choosing

the weights leads to a normative bias introduced in the model, making the implications drawn from the

model outcomes less objective (Rădulescu et al., 2020). Also, aggregating benefits and costs cover hidden

injustices of water allocation, leading to the problem of hidden consequences that are not show in model

outcomes as defined under Arrow’s Paradox (Kasprzyk et al., 2016). Consultation with actual stakeholders

is required for well-researched weights (Taebi et al., 2020).

Scope of distribution The scope of distribution looks to the actors to be included in multi-actor problems

for the distribution of resources. While I defend in this thesis that distributive justice is essential to consider

in serving the multiple purposes of water, to whom these allocation rights can be attributed is equally

important. Syme et al. (1999) showed that water should be managed for the community as a whole.

Moreover, the environment has allocation rights, justifying the need for environmental flows. Additionally,

self-interest and economic arguments should not contribute to the determination of whether to continue or

uphold environmental flows (Syme et al., 1999). Conclusively, both the environment and communities

require their own objective in MOO-studies.

Shape of distribution The concept of distributive justice in water resource management centers on the

shape of the distribution, which directly impacts perceptions of fairness (Jafino et al., 2022; Jafino et al.,

2021). Defining this shape involves two interconnected lines of inquiry: equity in resource exchange and the

ethical principle serving as the moral foundation for water distribution. These aspects are interdependent,

as the notion of exchange is clarified by ethical considerations, and vice versa. Ignoring one without the

other is inaccurate, making it vital to explore both when determining fairness in water allocation. The

contextual nature of fairness further complicates matters, with some advocating equal water allocation for all

and others emphasizing allocation based on essential needs. Therefore, understanding both perspectives

is crucial to comprehensively describe the distribution’s shape in water resource management.
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Notion of exchange Equity 3 is an ambitious concept where an attempt is made to reach a consent

among several parties in terms of one definition (Wegerich, 2007). The aim of a notion of equity in this way,

sets foot for determining when an action is leading to inequality among actor objectives. Firstly, equity

is defined as ’horizontal’. Similar to the egalitarian principle, where the resources should consistently be

distributed equally among actors (Syme et al., 1999), regardless of their individual demand. This aligns

with the equal inputs of equity theory (Savas, 1978). The limitation of ’horizontal equity’ is that it disregards

the demand of actors. Hence, what may satisfy the needs of one actor, may be insufficient for the other.

While equality is reached in terms of allocation, this type of equity will not satisfy justice according to the

demand of actors.

Therefore, it forms a contrasting view to the second notion of equity, ’vertical’ equity, where demand

satisfaction is part of what is deemed as justice. Here equity is defined as proportional to the demand,

where resources are distributed based on the actual gain from water allocation. Proportionality implies

redistributing until allocation is deemed ’fair’ by the actor (Wegerich, 2007). In this thesis, I argue that

using this notion of equity for water management purposes is correct since it includes actor preferences

without requiring more information than a baseline reference demand.

Ethical principle The equity of distribution heavily relies on what our view is of the world, our ethical

principle. Choosing an ethical principle is the beginning point of choosing a desired distribution (Jafino et al.,

2021). Figure 2.2 shows equity is subdivided between efficiency, and distributive justice, and distributive

justice is subdivided in shape, scope, and unit.

Equity, as previously mentioned, encompasses the concept of a ’just notion of exchange’. However,

the perception of what is considered ’just’ in terms of equity varies depending on the ethical principles

adopted as a foundational standpoint. Distributive justice principles therefore rely on ethical principles,

and in this way represent the same. Ethical principles are the only way in which water management can

be more ’effective, efficient, and ethically acceptable’ Rossi (2015) and Sohail and Sue (2006). These

principles are the lens used to determine the equity of distribution. In water management, the most

important ones are utilitarianism, sufficientarianism, egalitarianism, prioritarianism, envy-free, and the

Rawlsian difference principle (Ciullo et al., 2020; Jafino et al., 2022; Sarva, 2021). Defining equity from

an ethical lens obscures the implications on actors as seen from another lens, raising issues of moral

uncertainty in the system assessed (Taebi et al., 2020). Therefore, studies suggest exploring multiple

ethical principles simultaneously to avoid introducing normative uncertainty (Jafino et al., 2022; Jafino

et al., 2021). To showcase the differences, below is a brief description of how ethical principles drive

fairness. Later in this Chapter (Chapter 2.3.5, one principle is chosen as the ethical foundation for the

research of distributive justice.

Figure 2.2: Thesis scope on the alternative notions for equity. This tree will grow throughout the thesis. In

green, are the concepts considered in the rival framings approach. Green boxes are modelling concepts

that are directly studied in this thesis. Green arrows point to modelling concepts that are included in this

thesis, but not studied on their implications.

Utilitarianism deems equity as a situation where the aggregated benefits between actor objectives

3Studies talk about equity, but in this thesis I assume it is the same as distributive justice.
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are maximized without considering the relative distribution between them (Driver, 2009). Hence, its focus

is efficiency as it focuses solely on maximizing the overall social benefit, making it a popular method for

the standard (yet very limited) CBA method (Ciullo et al., 2020). Sufficientarianism deems equity as

a situation where it is satisfied only when a stakeholder gains a minimum threshold value, or sufficient

amount of benefit (Doorn, 2019). Studies introduce this in models in different ways. It can be introduced

as a maximization objective of the difference between the minimum and the objective value (Jafino et al.,

2022), another conceptualization can focus on minimizing the positive difference distance between the

objective value and the minimum threshold, i.e. ensuring sufficiently of the resource is available for the

subsequent time step or time horizon. How one comes to this minimum threshold remains non-trivial.

Envy-free deems equity as the situation where each (actor) objective does not create ’envy ’ between

stakeholders, i.e. the policy solution provides stability. This is however a principle whose conceptualization

in optimization is computationally expensive due to the recursive comparison of objectives. Moreover, this

can only be done if the conversion factor to utility is unequal to one. Lastly, this principle is suitable for

the post-analysis of optimization models (Sarva, 2021). Prioritarianism deems equity as the situation

where the level of benefit of the marginalized surpasses a certain threshold which is deemed as unfair

(Ciullo et al., 2020). In response to this, studies suggest prioritarianism to be introduced in models where

the worse-off actor is leveraged such that when inequalities rise it is only because these worse-off actors

are compensated (M. Adler et al., 2017). Rawlsian difference principle, similar to prioritarianism, the

Rawlsian difference principle deems equity as finding policy inputs that only bring benefits to the worse-off

actors (Jafino et al., 2022). Egalitarianism deems equity as a situation where the available benefits are

equally distributed among (actor) objectives. Studies will often model this as the minimization of relative

difference between objectives. Because of this it can be seen the foundation of more elaborate ethical

principles, as described below.

2.2.2. Normative studies: Intertemporal aspect
Several studies have analyzed how one should implement distributive justice principles into decision-

support models. Jafino et al. (2021) built a framework for the implementation of distributive justice. For this,

first, the disaggregation of the intertemporal aspect is required. A distinction is drawn between the intra-

generational justice dimension and the intergenerational justice dimension because decision-making has a

longstanding effect on the availability of resources and hence affects both current and future generations.

Xu et al. (2019) attempts to integrate both intertemporal aspects, along with sustainability as an objective

principle 4, where intra-generational equity is measured through the Gini-coefficient (Equation 2.1) of water

allocation. Interestingly, Xu et al. (2019) finds that inequality increases when intergenerational justice

aspects are not considered, while the efficiency remains the same. Moreover, Xu et al. (2019) finds that if

distributive justice is not included in the objective formulation, water resources will drop over time. This

results in an inefficient (detrimental) effect for all actors involved. Thus, including distributive justice, is

essential for efficient and sustainable water use.

Fletcher et al. (2022) proposes several other requirements to determine how resources should be

distributed. More importantly, system modelling-specific requirements are to explore multiple metrics for

the operationalization of equity as decision-makers improve the weighting on trade-offs. They continue

by giving an illustrative example of how the operationalization of inequality leads to different conclusions

from MOO-models. In this example, they showcase a) optimizing the mean of inequality across the time

horizon, or b) optimizing the standard deviation of inequality between time steps. Nonetheless, regardless

of the intertemporal aspect, and how it is quantified MOO-justice studies agree on the trade-off between

efficiency and equity (Ciullo et al., 2020; Dai et al., 2018; Hu, Chen, et al., 2016).

Fletcher et al. (2022) continues by explaining how to improve the trade-off between distributive justice

and efficiency. They propose contrasting the operationalization formulation for justice, i.e. a rival framings

approach. While Xu et al. (2019) tried to solve several issues at once and drew some useful implications

on how to design equity-MOO models, there are undiscussed parts of the parametric uncertainty (e.g. the

NPV is often arbitrary and used to skew the implications drawn from a model), and structural uncertainty

on how the optimization problem is framed (e.g. ecology should also be included in the trade-offs, or that

sustainability already partially satisfies intergenerational justice). To avoid the use of models that are not fit

for its purpose, jumping in on the rival framings approach of the performance metrics is key in determining

4Lévite and Sally (2002) states the triangle of principles for water allocation: efficiency, equity, and sustainability. The triangle

creates a trade-off and bounds the water system in what goal is important.
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where the normative drives the outcomes. This is discussed in the next Section.

2.3. Operationalization of equity in models (explorative studies)
Explorative studies look at how resources will be distributed. Therefore operationalizing distributive justice

is an important component of these studies. Fletcher et al. (2022) advocates understanding the effects

performance (inequality) metrics have on the policy implications. In addition to this, Jafino et al. (2021)

discusses the requirement of having value-based disaggregated metrics. The following Section therefore

synthesize how state-of-art literature is operationalizing distributive justice in decision-support models. This

synthesis is split into the four most important components to formulate distributive justice in a mathematical

formulation. Emphasis is set on the last two since this will be part of what is researched in this thesis.

1. First lies in having a model that is able to capture trade-offs, either across objectives or across

principles.

2. Second is the solution concept, used for finding optimal solutions in MOO models.

3. Third is the inequality metric that parametrizes how I define differences in distributions among actor

objectives.

4. Fourth how to aggregate over time this objective. The latter is important to synthesize as its specific

formulation is often left out of the explanation and studies, and even more its implications for

distributive justice studies.

2.3.1. Direct Policy Search models to capture trade-offs
The latest research improves on the limitations of previous approaches (of CBA, and water simulation

models (Single-Objective Optimization)) by making use of simulation-based MOO-problem formulation of

release (water allocation) policies (Giuliani, Castelletti, et al., 2016; Kasprzyk et al., 2016; Mason et al.,

2018; Quinn, Reed, & Keller, 2017; Rădulescu et al., 2020; Sari, 2022; Wild et al., 2019; Zatarain-Salazar

et al., 2016). MOO sheds light on trade-offs between multiple objectives and finds optimal solutions,

balancing conflicting objectives, which would lead to the desired improved efficiency and sustainability of

water management (Giuliani, Anghileri, et al., 2016). In the field of MOO, there is the Evolutionary Multi-

Objective Direct Policy Search (EMODPS) approach that identifies optimal water management policies

through the use of evolutionary optimization, and whilst considering system constraints (Giuliani, Castelletti,

et al., 2016). Moreover, it is a flexible method of conceptualizing the problem, providing a satisfactory

model as a foundation for the rival framings approach. EMODPS consists of two components, the Direct

Policy Search (DPS) method, and the Multi-Objective Evolutionary Algorithms (MOEAs).

DPS is a closed-loop control method 5, parameterize the operating policies using a context-specific

family of mathematical functions to find policy combinations that optimize the set of objectives (Quinn,

Reed, & Keller, 2017). The non-linear approximations, either Artificial Neural Networks (ANNs) or Radial

Basis Functions (RBFs), map the system states to time-varying decisions. In water management, this

enables finding optimal decisions for every system state, and therefore finding non-linear relationships

among release decisions. Subsequently, the operating policy is a set of release decisions. Finally, to

conclude on the optimal use, RBFs are proven to be suitable non-linear approximators for complex water

management problems (Giuliani, Castelletti, et al., 2016).

Additionally, DPS can be combined with evolutionary optimization (using MOEAs) to directly optimize

multiple objectives, and finally approximate the Pareto set of solutions for MOO-problems (Quinn, Reed, &

Keller, 2017; Zatarain-Salazar et al., 2016). Thus, DPS ensures the parametrization of release decisions

into system states. Evidently, this reduces the curse of dimensionality (Quinn, Reed, & Keller, 2017).

To this, the evolutionary search algorithms will approximate Pareto-optimal solutions for the multiple

objectives. From this, reliable representations of trade-offs can be found. Hence, its solutions are

considered mathematically stable 6 across objectives.

While the EMODPS captures trade-offs, it is often along the lines of the same utilitarian goal, which

seeks to evaluate and compare optimal policies by solely looking at the best-aggregated consequences,

5The adaptive problem formulation using closed loops between the policies and the system states are proven to deal with complex

and uncertain water demands (Soncini-Sessa et al., 2007).
6according to the Pareto solution concept
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i.e. maximizing the overall benefits and minimizing the overall costs of model outcomes. Again, such

formulations, oversimplify the problem (Ciullo et al., 2020), hiding policy outcomes that are otherwise not

seen by the model abstracting the MOO-problem (Kasprzyk et al., 2016), and lead to poor system perfor-

mances (Ciullo et al., 2020). Currently, studies on the EMODPS approach have not unified a methodology

to include distributive justice in the optimization formulation of a MOO-model. Therefore, I argue that

EMODPS requires the exploration of the sensitivity of Pareto-optimal solutions and the approximation of

the Pareto front, from alternative methodologies to implement and operationalize distributive justice.

2.3.2. Solution concept
The problem with water ethics lies in the fact that they can be difficult to implement in models. Water

ethics are similar to the UN’s definition of water rights, of qualitative quality for the analysis. In response to

this limitation, solution concepts are a useful tool for implementing distributive justice in decision-support

models because they provide a framework for evaluating and comparing different solutions based on how

well they satisfy different fairness criteria. Decision-support models with the aim of optimizing solutions are

designed to identify optimal solutions that balance multiple competing objectives. There may be several

different feasible solutions that are all optimal in terms of satisfying the objectives, but they may not be

equally just or equitable for all actors. Solution concepts provide a framework for implementing distributive

justice. While there are many solution concepts available such as the egalitarian, utilitarian, Rawlsian or

Nash bargaining solution, the most widely adopted solution concept for optimization models is the Pareto

dominance (Giuliani et al., 2014; Quinn, Reed, & Keller, 2017; Zatarain-Salazar et al., 2016).

In using the Pareto dominance for distributive justice, there are two possibilities to evaluate how well

solutions perform. First, one can adapt the objective formulation. This serves as a pre-defined criterion for

the Pareto-search for solutions. Several studies have used such pre-defined formulations (Ciullo et al.,

2020; Hu, Wei, Yao, Li, et al., 2016; Xu et al., 2019). Second, the Pareto-search can run as-is, and only

after evaluated based on pre-defined criterion for fairness (Jafino et al., 2022; Sarva, 2021). The latter is

suitable to compare a set solutions and rank them according to each pre-defined criterion, which may be

in the form of the operationalization of an ethical principle.

Pareto-optimal solutions aim for aggregated system-wide efficiency where no actors are disadvantaged

by the gain acquired from other actors, and therefore inherently one is considering a utilitarian approach

which obscures marginalized objectives or stakeholders (Rădulescu et al., 2020). In this context, how can

distributive justice be reached if marginalized stakeholders are underrepresented in the Pareto

front?. Nonetheless, Pareto is among the few solution concepts that can easily be implemented in MOO

models. Hence, which is why the pre-defined objective formulation for the Pareto solution concept was

used in this thesis.

2.3.3. Inequality metric
Examples of the inequality metric are the Gini-coefficient, Theil-index, Atkinson-index, Palma ratio, and

many more. Each metric conceptualizes inequality differently, but most of these have data-specific

requirements to be able to implement. Some of these metrics (e.g., Theil-index, Atkinson-index) describe

inequality not across objectives, but within objectives, i.e. its spatial distribution. The Theil-index would yield

the dispersion rate of inequality, or the Atkinson index would need data on how actors prefer redistribution

of resources. Hence, the most widely adopted metric in MOO-studies, is the one with least requirements to

implement and most direct to describe relative differences over objectives. Therefore, the Gini-coefficient is

used in many optimization problems for water allocation (Ciullo et al., 2020; Deng et al., 2022; Farhadi et al.,

2016; Y. Guo et al., 2020; Hu, Wei, Yao, Li, et al., 2016; Lopes et al., 2015; Nishi et al., 2015; Xu et al.,

2019; Yang et al., 2023). TheGini-coefficient, a distance-based measure, is the popular inequality measure

(Gini, 1921). Its validity is based on for examples studies such as Cullis and Van Koppen (2007), who

confirm that the Gini-coefficient is a valid approach to quantify and measure inequality in water allocation.

To integrate inequalities, as already mentioned, studies use the Gini-coefficient as shown in Equation

2.1. Here, xi is objective i, xj is objective j, n is the number of objectives, and x̄ is the average across
all objectives. Also, in each study, the Gini-coefficient has the x (in Equation 2.1) defined differently. In

some studies x will be the ratio of net economic benefit and water allocation, the water allocation, the ratio

between water demand and allocation, or in studies it is defined as the risk. This is understandable seeing

that each context is different.
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Gini =

∑n
i=1

∑n
j 6=i(xi − xj)

2n2x̄
(2.1)

Another branch of studies examined how to consider equity in MOO models. This can be either through

a redefinition of the original objectives to represent a distributive or ethical principle such as equity through

the maximization for the economic benefit of the water management (Hu, Chen, et al., 2016). Or by studying

the trade-off between efficiency and equity in water allocation. The latter may come in different ways. Dai

et al. (2018) studied this for water allocation, S. Guo et al. (2022) studied this for agricultural purposes on

food-water-energy nexus, and contrastingly Xu et al. (2019) added an intergenerational component, by

also examining the trade-off between intra-generational and intergenerational equity optimization. Finally,

Ciullo et al. (2020) studied the trade-off by changing the ethical principle to which distributive justice is

viewed. In doing so, the implications of four ethical principles for flood risk management are assessed,

which is similar to the recent work of Yang et al. (2023) where the study focused on the effect of alternative

objectives formulation when implementing distributive principles.

Implementation of the inequality metric

Tabs. 2.1, 2.2 form an overview of the most relevant papers addressing the operationalization of distributive

justice in the different forms of multi-objective optimization models. This provides us with the foundation

on how to operationalize ethical principles, and foremostly, distributive justice which is more ambiguous.

Most papers analyze the implications of having different ethical principles as the beginning point. Others

will study the trade-off between equity and efficiency.

As Yang et al. (2023) mentioned, and is also clear from the Tables 2.1, 2.2, most of the objective

formulations set to focus on Pareto-optimal solutions. Therefore, studies will try to counteract the limitation

of the Pareto regarding the underrepresentation of marginalized actors by changing the problem formulation,

which is used to give a direction for the optimization that finds the (Pareto-) optimal solutions. In doing so,

the Pareto concept has no other option than to consider inequalities between objective values.

1. Distributive justice is implemented in the MOO-problem formulation.

2. Distributive justice is analyzed by using the Pareto-optimal solutions as input for cooperative game

theory (Sarva, 2021).

3. Distributive justice principle values are inputted to social welfare functions (Jafino et al., 2021).

The implementation of distributive justice in MOO-problem formulations gains definition from the use

of an ethical principle. Table 2.3 shows the advantages and disadvantages of using a specified ethical

principle as the notion to define a just exchange of resources. Utilitarianism is often the most straightforward

to consider, but as seen will fail to consider distributional aspects. Other principles will introduce a new

level of complexity, namely on how to quantify these concepts. Moreover, because of the trade-off between

efficiency and distributive justice, other principles will lead to sub-optimal Pareto-outcomes. Within these

principles, besides utilitarianism, egalitarianism is the most straightforward ethical (distributive justice)

principle that will handle inequalities among actor (objectives). Regardless of the ethical principle, there is

still a missing problem with the implementation: the operationalization of inequality.

Examples of operationalization of distributive justice

There are several ways in which the operationalization of distributive justice (and thus inequality) was

studied. As Tables 2.1, 2.2 show Yang et al. (2023) tackled operationalizing distributive justice by performing

sensitivity analysis on the distributive justice formulation parameters. They changed the existing objective

formulation for the MOO-model while adding the distributive justice principle formulation with alternative

weights to penalize relative differences among objectives. Here, inequity is defined as the ratio between

the standard deviation between objectives and the mean of the aggregated objectives. During this process,

Yang et al. (2023) found firstly that this objective formulation ensures more distributive justice between the

objectives, i.e. the ratio is smaller. Secondly, it shows that water levels improve when including distributive

justice relative to multi-objective optimization formulation that has an objective aimed solely at the individual

maximization of objectives. Moreover, by applying value functions (linear and non-linear) to mitigate the

bias of aggregating values (Kasprzyk et al., 2016), it is found that the trade-offs for objectives on the Pareto

front change.
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Table 2.1: Part 1 (continued): Overview of papers that have operationalized equity in Multi-Objective

Optimization-models.

Paper Optimization method Unit of resource Ethical principles

Hu, Chen, et al. (2016) Compromise Programming (CP) Water (allocation and mean economic benefit)
Aggregated utilitarian,

Egalitarian

Deng et al. (2022) MOEA Water (consumption and GDP)
Aggregated utilitarian,

Egalitarian

Ciullo et al. (2020) MOEA Currency (Expected annual damage costs)

Cost-benefit analysis,

Constrained Cost-Benefit Analysis,

Egalitarian,

Prioritarian

Yang et al. (2023) EMODPS Water (volumetric reliability)
Disaggregated utilitarian,

Absolute-value egalitarian

Tjallingii (2021) IAM and DMDU Social welfare (aggregated benefits and costs)

Aggregated utilitarian,

Prioritarian,

Sufficientarian,

Egalitarian

Farhadi et al. (2016) MODFLOW using MOEA Water (deficit, allocation)
Aggregated - utilitarian,

Egalitarian

Kazemi et al. (2022) MOO (Undefined) Currency, water (allocation), and utility Aggregated utilitarian

S. Guo et al. (2022) MOO (ELI and FMO) Water, emissions, currency Aggregated utilitarian, Egalitarian

Reddel (2022) IAM and DMDU Social welfare (aggregated benefits and costs)

(Dis)aggregated Utilitarian,

Prioritarian

Sufficientarian,

Egalitarian

Xu et al. (2019) Mass-balanced MOO Water (allocation and mean economic benefit)
Aggregated utilitarian,

Egalitarian

Sarva (2021) EMODPS and Game-theory Utility (based on water allocation)

Aggregated utilitarian,

Prioritarian,

Sufficientarian,

EgalitarianEnvy-free

Jafino et al. (2022) IAM with robustness analysis Utility

Utilitarian,

Strict-egalitarian,

Rawlsian difference principle,

Prioritarian,

Sufficientarian,

Envy-free,

Composite principles (Utilitarian &

Strict-egalitarian)

On another example, Ciullo et al. (2020) claims that distributive justice should have the aim of minimizing

the relative distance between actors. This is supported by Fletcher et al. (2022) who argues for the trade-off

between efficiency and equality Here, equality refers to the relative difference among the existing (baseline)

objective values. Therefore, distributive justice is reached through the reduction of absolute distances

between gains. To this, they approach this minimization from three distinctive ethical principles, each giving

a different weight to relative differences across actor objectives. Prioritarianism, relative to egalitarianism,

resulted in a more fair distribution of risk while minimizing the aggregated costs, hence addressing

inequalities better (Ciullo et al., 2020). Moreover, not considering these ethical principles resulted in some

marginalized areas experiencing a significant increase in risks (negative benefits) while the overall benefits

were maximized. Reddel (2022) built on ethical principles by investigating aggregation/disaggregation

effects of utility, and finding that while disaggregation of egalitarianism and prioritarianism leads to a more

uniform distribution of welfare loss, welfare gain follows an inverse proportional trend, making a trade-off

to be made when having to choose the problem formulation.

Limitations of the inequality metrics

The limitation in the Gini-coefficient lies in how equality is defined using the ratio between deviation and

mean of Equation 2.1. The relative variability can increase or decrease faster than the mean, leading to

disparities in this inequality metric (Fletcher et al., 2022). As a result, situations may arise where inequality

is gained in one metric while lost in another, highlighting the need to reveal implications from the outcomes.

To address this, a disaggregated approach between standard deviation and mean is necessary to uncover

these implications. Consequently, the Gini-coefficient does not ensure distributive justice is satisfied on its
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Table 2.2: Part 2 (continued): Overview of papers that have operationalized equity in Multi-Objective

Optimization-models.

Paired multiple ethical

principle objectives?
Solution concept

Inclusion of inequality

in objective formulation?
Evaluation method for distribution?

Yes Pareto
Yes, relative Gini-coefficient,

Ratio water allocation and economic benefit
Data analysis

Yes Pareto

Yes, 3 relative Gini-coefficients,

Ratio water allocation and population,

Ratio water allocation and water availability,

Ratio water allocation and GDP

Relative Gini-coefficient and data analysis

No Pareto Yes, relative Gini-coefficient Relative Gini-coefficient

Yes Pareto Yes, aggregated mean deviation with value function Trade-off and data analysis

No Pareto Yes, relative Gini-coefficient Relative Gini-coefficient

Yes Nash-bargaining Yes, volumetric reliability-based Gini-coefficient Data analysis

Yes Pareto
Yes, relative Gini-coefficient,

Ratio water allocation and economic benefit
Data analysis

Yes Undefined
Yes, relative Gini-coefficient,

Ratio water allocation and land resources
Data analysis

No Pareto Yes, relative Gini-coefficient Relative median-based outcome score

Yes Undefined
Yes, relative Gini-coefficient,

Ratio water allocation and economic benefit
Data analysis

No Pareto Yes, relative Gini-coefficient Relative Gini-coefficient

Yes Pareto Yes, defined per moral principle Ranking of suggested policies

own. To achieve distributive justice in terms of relative equality across all objectives, multiple formulations

are needed in distance-based measures like the Gini-coefficient (Fletcher et al., 2022).

As the Gini-coefficient was chosen as a reference for the limitations of widely adopted inequality metrics,

the last limitation discussed of the Gini-coefficient lies in its formulation, which treats all actor objectives

equally. Yet, it overlooks the sensitivity to variations in benefits demanded across objectives. This means

that if one actor objective requires significantly more benefits than others, the Gini-coefficient may yield a

high inequality value, even though the actors themselves are unequal. To address this, the distribution

assessment should consider the actor background through actor-based disaggregation (Jafino et al., 2021).

Moreover, most studies treat the Gini-coefficient as an additional objective, represented as the sum of

pairwise distances. As a result, it obscures larger distribution differences between two or more objectives,

hindering a comprehensive assessment of inequality. Ciullo et al. (2020) resolved this by introducing

several extra objectives for distributive justice, one for each actor objective. These new objectives measure

the relative distance between each objective and the one receiving the highest allocation difference. By

doing so, they ensure fairness between actors with the greatest disparities.

2.3.4. Aggregation method over time for the inequality metric
When decision-support models are optimized, a formulation is needed to determine how one deals with

the intermediate results of the model between time steps. This is because of the ’curse of computational

expenses’ (Giuliani, Castelletti, et al., 2016). Moreover, it would not be logical to optimize between time

steps if the aggregate objective results are unsatisfactory. For example, when looking at the water allocation

over a year, optimizing the water allocation for a day can negatively influence the optimal allocation over

a year. This is why, each study aggregated its objectives over time using its own indicator such as the

mean, 99th percentile, standard deviation, etc. Hu, Wei, Yao, Li, et al. (2016) minimized the covariance of

the matrix of objectives matrix throughout the time horizon, Zatarain-Salazar et al. (2016) optimized the

daily-based mean of each objective singularly over the time horizon. Interestingly, it is recurrent that MOO

studies do not specify how the objectives are aggregated.

The aggregation method over time influences the outcomes for MOO whenever the performance needs

to be measured for a social aspect, i.e. not only distributive justice. McPhail et al. (2018) acknowledges this

and built a framework for robustness metrics of deep uncertainty problems. Here they conduct a rigorous

sensitivity analysis on the performance metrics transformation (for us this would be the inequality metric),

and the performance metric calculation (for us this would be the aggregation method over time) for the

robustness. While testing an extensive combination of the metric, its calculation, and the subset scenario

choice, they find that the performance calculation has the largest effect on the robustness of policies.
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Table 2.3: Advantages and disadvantages of using varying popular (in MOO) ethical principles as the

notion for distributive justice. Utilitarianism will be oppositional to the other ethical principles.

Ethical principle Notion of equity Advantages Disadvantages

Utilitarianism Fairness over the aggregation of outcome Pareto-optimal outcomes
Neglects inequalities

(distribution) in the outcomes

Egalitarianism
Fairness through equal satisfaction

of outcomes
Justice favoured over efficiency Sacrifices Pareto optimality

Sufficientarianism
Minimum benefit must be reached

from outcome
Justice favoured over efficiency

Sacrifices Pareto optimality

Non-trivial minimum threshold

Envy-free
Actor must not ’prefer’ the outcome

of another objective
Justice favoured over efficiency

Increases complexity of the model

Sacrificed Pareto optimality

Prioritarianism
Benefit of the marginalized is

always most important
Justice favoured over efficiency

Complex to define and measure

the least advantaged population

while also optimizing variations

in the least advantaged

Sacrificed Pareto optimality

Rawlsian difference principle
Inequalities caused are valid if

the marginalized are better off
Justice favoured over efficiency

Complex to define and measure

the least advantaged population

while also optimizing variations

in the least advantaged

Sacrificed Pareto optimality

Therefore, they identified that an optimization model is sensitive to the aggregation method (descriptive

calculation) being used.

I argue that by acknowledging the influence this has on the generic use of a performance metric, regard-

less of the social aspect, the aggregation over time is also important for distributive justice. Considering

distributive justice problems also deal with the need to aggregate the objectives, a knowledge gap lies

in the role of aggregation over time as it is left unspecified. Paraphrasing McPhail et al. (2018) to the

distributive justice context, they find that the mean and sum of objectives assign equal weight to every

time step.In contrast, rather than the mean or sum, Yang et al. (2023) used the ratio between standard

deviation and mean as a balancing method for variability over time steps. Therefore, the differing use from

studies needs to be investigated in the same rival framings way Fletcher et al. (2022) argues it for the use

of inequality metrics. Together the rival framings then consist of the alternating operationalization for the

inequality metrics, and the aggregation method separately.

2.3.5. Synthesis of research approach
This Section summarizes the relevant concepts and knowledge gaps found in the Literature review. So

how do we structure what was found in the Literature?

Figure 2.3 shows the different options for the modelling of distributive justice stemming from the

Literature Review. At the core lies how the distributive justice principle will be operationalized in its

objective formulation. The core of what was studied is indicated by the green boxes. Green arrows refer

to the modelling concepts used in this thesis, but these are not further studied. The knowledge gaps in

defining the shape of justice for a MOO-problem, the green boxes, as well as the suggested methods in

literature to deal with these gaps are discussed below.

1. Inequality metric.

2. Aggregation method over time.

3. Objective formulations with combined efficiency and equity objectives.

Inequality metric: For water problems, it is often already possible to express everything in the same

volumetric unit without requiring a transformation calculation for inequality. In response to metrics where

assumptions are made and gains are aggregated, distributive justice is implemented using mathematical

functions that calculate the relative distance between the unweighted objective values, i.e. the inequality

among objectives. It remains heavily understudied if the way this inequality is formulated correctly quantifies

relative differences. Therefore, this thesis used the mathematical formulations of inequality metrics as a

comparison in the rival framings approach as they provide flexibility in application across different water

allocation problems.
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Figure 2.3: Thesis scope on the alternative implementations of equity in decision-support models. This

tree will grow throughout the thesis. In green, are the concepts considered in the rival framings approach.

Green boxes are modelling concepts that are directly studied in this thesis. Green arrows point to

modelling concepts that are included in this thesis, but not studied on their implications.

Furthermore, the Gini-coefficient served as a useful starting point for the rival framings approach.

While widely adopted, the Gini-coefficient falls short when defining inequality since its aggregated pairwise

definition, ignores differences between the direction of the deviation, and the direction of the mean, and

also the singular pairwise differences between objectives are hidden. As defended in the Literature

review, a method of dealing with this hidden uncertainty is by contrasting the Gini-coefficient with other

distance-based measures that do not include such ratios in the formulation.

Aggregation over time: Furthermore, to the best of my knowledge, the role of aggregation over time

has not been thoroughly assessed in the existing literature. In many studies, the choice of aggregation

level for the objective formulation is often assumed by the modeller without adequate justification. The

objectives are commonly aggregated over the time horizon to manage computational complexity and align

with the overall problem formulation, such as maximizing water allocation gains over the entire duration.

However, even for deep uncertainty Multi-Objective Optimization (MOO), which shares similarities with

distributive justice-MOO in terms of requiring performance metrics, the choice of aggregation method has

been found to significantly influence the implications (McPhail et al., 2018). The aggregation method is

also an integral part of defining distributive justice operationalization.

To address this gap, Fletcher et al. (2022) suggests examining the influence of modelling choices

on distributive justice operationalization, including the subcomponents that have the most substantial

impact on the implications. In this thesis, a rival framings approach will be adopted to investigate different

formulations for the aggregation method over time. The robustness metric framework of McPhail et al.

(2018) will serve as the starting point for exploring these various formulations.

Combined principle for objective formulations: Studies so far have understudied the combination
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of efficiency and distributive justice principles in the objective formulation for water system models with

varying operationalization formulations for the same notion of distributive justice. Instead of forming

contrasting objective formulations, as is done for studies where ethical principles are implemented in the

formulation and assessed, understanding how the Pareto front of the existing baseline formulations - where

objectives are optimized without looking at their relative differences - shifts is useful because efficiency

and distributive justice are equally important (Lévite & Sally, 2002). Hence, arguing that both are equally

important, both aspects should be represented in the objective formulation. The baseline (traditional)

formulation is therefore for each optimization formulation complemented with an alternative formulation for

the distributive justice principle. Additionally, using the existing efficiency-focused problem formulation

serves as a reference across different rival framings formulations when the distributive justice formulations

are changed across the framings, i.e. yielding the net effect of the specific formulation assessed.



Part II
Research design
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3
Research Approach

In this Chapter an explanation is given on how to answer the research question. By delving in the literature,

the most suitable approaches are found for this. Also, limitations of this research approach are discussed,

hence providing the research and conclusion suitability, are also discussed.

Firstly, a choice is made for the case-study where optimization experiments were run. Secondly, the

chosen rival inequality metrics will be discussed. Thirdly, an explanation is given on the chosen rival

aggregation methods. Fourthly, it is discussed how this will be implemented in the model, and assumptions

and limitations are specified.

3.1. Focus area: Conowingo Reservoir System
3.1.1. Case-study: Multi-faceted use of the Conowingo
The chosen case-study is the Lower Susquehanna River Basin, - crossing multiple states in the United

States of America - a subbasin of one of the oldest and largest rivers in the world. Its spatial overview

is shown in Figure 3.1. Built in 1926, originally for serving solely hydropower purposes, the Conowingo

Reservoir is a water body used for water allocation management and distribution from the upstream

Susquehanna River Basin. The Conowingo Reservoir needs to satisfy the six objectives of Figure 3.2 at all

times. Each of these objectives yields a gain to one of the local stakeholders. Additional to the Conowingo

Reservoir, the Muddy Run Reservoir (MR) is a pumped-hydropower plant that leverages intra-daily cycles

by pumping water from the Conowingo to the Muddy Run when energy prices are low, and during peak

energy prices it is released back to maximize hydropower profit (Zatarain-Salazar et al., 2016). The more

water passes through the turbines of both hydropower plants, the more power generated, and the higher

the revenue.

In Table 3.1 one can see who benefits from objectives. The management of the Conowingo is also

Figure 3.1: Spatial overview of how the Lower Susquehanna River Basin, together with its Conowingo

Reservoir, forms part of the larger Susquehanna River Basin.
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a complex case due to its demand for truly diverging purposes such as hydropower revenue, atomic

power plant cooling, and environmental flow requirements. Additionally, from Figure 3.2 I infer that the

demand difference between actors is high, obscuring marginalized actors in the regular Pareto set found.

Due to this fact, uncovering distributive justice in such a system is especially relevant for actors who are

marginalized in the Pareto-optimal solutions. All in all, the case-study is appropriate to analyze what the

effects are from introducing distributive justice in alternative mathematical formulations.

Due to the complexity of satisfying six objectives, there is an existing EMODPS-model for the case-study.

Giuliani et al. (2014) designed an EMODPS-model in collaboration with stakeholders to assess trade-offs,

and Zatarain-Salazar et al. (2016) tested the performance of alternative MOEAs in terms of generational

distance, ε-progress, and hypervolume convergence. Sarva (2021) analyzed the fairness and stability of
the Pareto-optimal set of solutions obtained from the EMODPS-model through cooperative game theory.

Most recently, Zatarain-Salazar et al. (2022) determined the performance to obtain the Pareto optimal

control policies from a set of alternative Radial Basis Functions (RBFs). Hence, examining the implications

of multiple inequality principles adds to the understanding of the Conowingo Reservoir’s optimal release

policies. Furthermore, building on previous research, results in a better understanding of the system

behaviour, since previous limitations of the model have already been identified.

Figure 3.2: Overview of the Conowingo River System. The objectives are measured in volumetric water

reliability. For Hydropower the revenue is measured. Adapted from Zatarain-Salazar et al. (2016).

Table 3.1: The stakeholders matched with the objective included in the water system optimization

problem.

Actor Objective

Hydrodam owner Hydropower revenue

Nuclear reactor owner Atomic power plant cooling supply-demand reliability

Chester municipality Domestic supply-demand reliability of Chester

Baltimore municipality Domestic supply-demand reliability of Baltimore

Visitors of the Lower Susquehanna River Basin Supply-demand reliability of the Conowingo storage

Federal Energy Regulatory Comission Supply-demand reliability of the environment

3.1.2. Evolutionary Multi-Objective Direct Policy Search: Conowingo Reservoir

Model
So how does this EMODPS-model of the Conowingo Reservoir System work?

As mentioned in Chapter 2, EMODPS is a simulation-based Multi-Objective Optimization method where

optimal policies are found through a closed-loop control problem. This method can deal with the modelling
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of complex water systems, and it is easily adaptable to problem contexts, making it possible to complement

existing EMODPS models with distributive justice objectives. Hence, EMODPS is a widely applied MOO

method to approximate the Pareto front of a problem (Giuliani, Castelletti, et al., 2016; Quinn, Reed, &

Keller, 2017). In this thesis, the EMODPS model designed by Giuliani et al. (2014) and further improved

by Zatarain-Salazar et al. (2016) was used. The model parametrizes the operating policies 1 and will make

use of Radial Basis Functions (RBFs) to optimize the operating policies. Radial Basis Functions (RBFs) are

non-linear approximators responsible for mapping the system state through a vector of decision variables.

The model makes use of MOEA, a meta-heuristic approach responsible for finding the optimal policy

sets over the policy search space. Hence, the MOEA is the sampling method for the extensive policy

space 2. Specifically, the ε-NSGA-II sampling method was used as it was found that this MOEA is most

suitable for water allocation case-studies (Zatarain-Salazar et al., 2016). For more explanation on how this

’black-box’ approach works please refer to Giuliani, Castelletti, et al. (2016) and Quinn, Reed, and Keller

(2017), and Zatarain-Salazar et al. (2016) for how it is set up for this focus area.

But how are variables interacting the model?

The EMODPS-model uses the XLRM-framework 3, where input parameters interact with the model and

on every time step t the model outcomes are calculated. This is shown in Figure 3.3. The water flows mainly
from the Susquehanna River Basin, as well as some lateral flows from other River Basin into the Lower

Susquehanna River Basin until it reaches the Conowingo Reservoir System, the Reservoir responsible

for the local water distribution. Policy levers (L) are described as the set of release decisions, for every

objective, during each time step. Model outcomes (M) are the objectives of the traditional formulation. The

following input specifications are given.

• Input: Inflow trajectories, evaporation losses, energy prices of the year 1999, as this represent a

year with droughts. (Zatarain-Salazar et al., 2016), and thus limited water resources, making the

case for distributive justice under water stress relevant.

• Time horizon: The year of 1999. Using the data of 1999, the model will simulate the optimal water

allocation for that year.

• Time step: A daily time step with release decisions every four hours.

The mass-balance equations are used to describe the flow of water through the Lower Susquehanna

River Basin, with the various inputs, outputs, and transformations that occur. In its simplest form, the

mass-balance equation states that the rate of change of the total amount of water in a system is equal

to the difference between the total inflow and outflow rates. In this case-study, Equations 3.1, 3.2 are

used to describe the mass-balance equations where t is the time-index in (days), si is the volume at the
reservoirs (i = Conowingo (CO), or Muddy Run (MR)), qt+1

i are the main and later flows at [t, t+ 1], rt+1
i

are the releases to MR or to the four release options of the XLMR-framework, Et+1
i are the evaporation

losses of i at [t, t+ 1], qt+1
p is the water pumped from CO to MR at [t, t+ 1], and finally qt+1

i + qt+1
i,L are the

mainstem measured at the Marietta Gauging Station.

st+1
CO = stCO + qt+1

CO + qt+1
CO,L − rt+1

CO − Et+1
CO − qt+1

p + rt+1
MR (3.1)

st+1
MR = stMR + qt+1

MR − rt+1
MR − Et+1

MR − qt+1
p (3.2)

3.1.3. Conowingo Reservoir system objectives
This Subsection explains how the objective formulation was adapted in order to have a baseline (reference)

of the model outcomes.

1The operating policies are the release decisions. The release decisions are parametrized for this case-study within a given class

of functions.
2The policy space refers to the set of possible policies that an optimization algorithm can choose from in order to solve a given

problem.
3The XLRM-framework is a policy analysis approach that focuses on understanding and addressing the complexities of policy

issues by examining the levers available for intervention, the relationships between various actors and factors, the models used to

represent the system, and the uncertainties associated with the policy problem, aiming to provide more comprehensive and effective

policy recommendations.
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Figure 3.3: Simplified XLRM-framework for the Lower Susquehanna River Basin, the exemplary focus

area of this thesis. On the left, the policy levers (L), our decision variables. On the right, the performance

metrics (M), the objectives. On the top, the external (X), the data fed into the model for the year 1999. In

the middle, the model relationships (R), how the model simulates the interactions as per the mass-balance

equations.

Traditional objective formulation

As indicated, the model has six objectives as described below. These are the model outcomes. Equation

3.3 shows the objective function to maximize all objectives, except for the environmental shortage index

(seen by the negative sign). The formulation, objective, and description can be found in Zatarain-Salazar

et al. (2016) or in the Appendix B.

JTraditional = ArgMax(f(JHydro, JAtomic, JBaltimore, JChester,−JEnvironmental, JRecreational)) (3.3)

3.2. Model implementation of distributive justice
3.2.1. Objective formulation with distributive justice principle complemented
The above objectives could be seen as the disaggregated utilitarian approach, aiming to maximize gains

for objectives without considering their relative distribution (Driver, 2009; Sen, 2018). In the case study

of the Lower Susquehanna River Basin, the lack of consensus on water distribution has led to issues

like insufficient funding for the Conowingo System projects (Hicks et al., 2008) and deteriorating water

quality (Ain et al., 2014). To meet objectives amid uncertainty about the distribution, the utilitarian lens is

commonly employed as it assigns equal effort to optimizing all objectives, satisfying the efficiency concept

(Hu, Chen, et al., 2016). This formulation is referred to as the traditional formulation.

However, utilitarianism is criticized for overlooking lower-level factors and prioritizing large-scale

infrastructure projects under the CBA method (Ciullo et al., 2020). It may favor stakeholders with relatively

high gains while obscuring the disadvantages of marginalized actors since performance is based on overall

gains. This interpersonal aggregation assumes that it is morally acceptable for some actors not to benefit

from the allocation as long as others do (Hansson, 2007).

To complement the traditional formulation with distributive justice, I propose considering the egalitarian

principle by Ciullo et al. (2020), aiming to minimize relative differences between all objectives (Doorn,

2019). Two options are presented: the maximum disaggregated approach, minimizing relative differences

between objectives with the largest difference, and the aggregated approach, minimizing relative differences

between all objectives, regardless of their size. The latter aligns with vertical egalitarianism, proportional to

demand (Doorn, 2019; Jafino et al., 2022). This approach addresses the limitations of both utilitarianism

and egalitarianism, forming the combined principle formulation (Jafino et al., 2022).

The new objective formulation with distributive justice (referred to as equity) added is shown in Equation

3.4.
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JCombined = ArgMax(f(JHydro, JAtomic, JBaltimore, JChester,−JEnvironmental, JRecreational,−JEquality))
(3.4)

3.2.2. Inequality metric
Always using the Gini-coefficient leaves an important normative uncertainty open on how the metric affects

the solution space. This thesis intended to assess the performance of the water model optimization when

it undergoes changes in its mathematical formulation, i.e. which inequality metric is used. I argue it is

important to observe that distance-based measures are the most straightforward-to-implement method to

accurately shed light on inequalities. Due to the limited time availability, the scope is bounded to comparing

the aggregated Gini-coefficient with at least one other metric. In this research, the other chosen method is

the widely multidisciplinary adopted aggregated Euclidean distance metric. This metric is popular for any

type of problem where the variance in a set of points must be determined (in this case objectives). It is the

reason why D’Agostino and Dardanoni (2009) and Dokmanic et al. (2015) argue for its applicability in a

variety of problem contexts. Comparing a standardized method for relative distance, to the standardized

method for inequalities brings light to the two outermost extremes on how implications are shaped by the

mathematical formulation applied. Shown in Equation 3.5, the sum of pairwise differences is considered,

similar to Equation 2.1, with the difference that as advocated previously, there is not a fraction between

deviation and mean. Instead, deviation is looked at using the Euclidean distance. Here again, xi refers

to the value of objective i, and xj refers to the value of objective j. Additionally, large relative distances

between xi and xj will gain higher weight in the calculation with the Euclidean from its quadratic formulation.

Euclidean =

√√√√ n∑
i=1

n∑
j 6=i

(xi − xj)2 (3.5)

3.2.3. Aggregation method over time
The focus area, the Lower Susquehanna River Basin, has seen previous EMODPS-studies optimizing

over yearly mean water objectives without providing a rationale for this level of aggregation (Giuliani et al.,

2014; Zatarain-Salazar et al., 2016). To address this lack of justification, this thesis compared alternative

aggregation methods when measuring distributive justice to better understand their implications.

The original yearly mean aggregated objective, used in the traditional Pareto front comparison (Zatarain-

Salazar et al., 2016), is retained. Additionally, three distinctive formulations are employed to address

distributive justice aggregation over time, following the framework of McPhail et al. (2018) and insights from

previous MOO-studies. One formulation by Yang et al. (2023) used the ratio between standard deviation

and mean of objective values. However, to address the issues of relative variability, the formulation is

decomposed as suggested by Fletcher et al. (2022), examining distributive justice from the perspective of

mean, standard deviation, and the ratio of both for better comparability with previous findings.

To measure distributive justice, the objective values were first transformed into performance values

using an inequality metric. Subsequently, the aggregation method’s value over time was converted into

the final value used in the optimization formulation. Figure 3.4 illustrates this process for each experiment.

Aggregation method 1: Mean

The mean refers to the yearly (daily-based) mean of the inequality metric assessed. This formulation is

similar to the one for the other objectives of the traditional formulation. Moreover, the mean assigns equal

weight to inequalities reached for each day of the year. In Equation 3.6, T is the number of days in a year

(T = 365 days), and xday is the inequality value of the specific day.

Mean =

∑T
day=1 xday

T
(3.6)
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Figure 3.4: Diagramatic overview of the transformation method to arrive at the distributive justice value

(Jequality) which is implemented as seventh objective in the optimization formulation of Equation 3.4.

Aggregation method 2: Standard deviation

The standard deviation refers to the yearly (monthly-based) standard deviation of the inequality metric 4.

This method considers intra-monthly differences to ensure the variability in inequality between months is

minimized. This method is a simplified, yet useful, manner to consider another type of intertemporal aspect

of distributive justice. Moreover, Giuliani et al. (2014) finds that the demand throughout the year between

objectives can vary significantly. During certain months the trade-off between objectives can be so high

that critical thresholds are met (Sheer & Dehoff, 2009). This formulation deals with such effects over time.

In Equation 3.7, n is the number of months in a year (n = 12 months), and xmonth is the inequality value of

the specific month, xaverage is the yearly average of inequality values for the n months.

Std =

√
|(
∑n

month=1(xmonth − x̄average)|2
n

(3.7)

Aggregation method 3: Ratio between standard deviation and mean

The disaggregated methods are combined into one method as defined by the literature. This is similar to

previous studies with a similar scope. (Yang et al., 2023). Moreover, a combination ensures both types of

justice formulations are considered.

3.3. Final thesis tree
Now that the approach is demarcated, the modelling concepts are merged with the notions of equity. This

is shown in Figure 3.5. In this way, the final research focus for this thesis is reached. Subsequently, it also

forms the basis for the Experimental design which will be explained further in Chapter 4.

3.3.1. Assumptions
In order to have a working EMODPS-model that would include the distributive justice objective in the

optimization formulation, assumptions needed to be made. In the next Subsection the most important

assumptions made in this research are discussed.

Two assumptions were made to enable the distributive justice objective. Firstly, all objectives were

expressed in the same unit, namely volumetric reliability. Most objectives were already converted, except

for hydropower revenue. To address this, hydropower reliability was introduced, representing the energy

generated by the Conowingo and Muddy Run dam divided by the desired maximum energy output uniformly

distributed for release decisions, every four hours. The desired maximum power output was obtained

4It was assumed here that a monthly scale is a satisfactory intertemporally disaggregated time step while ensuring computational

capabilities are manageable by the CPU.
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Figure 3.5: Thesis scope on the alternative implementations of equity in decision-support models. Equity

is defined as equality. Green boxes are modeling concepts that are directly studied in the rival framings

approach. Green arrows point to modeling concepts that require normative choices, but are not studied on

their implications.
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from Exelon’s online data, with the dam’s current contribution in 2023 averaging 1,600 MWatt-Hours

annually. It was converted to a desired energy output for 1999 using a conversion factor to ensure that a

hydropower reliability of 1 equals the maximum hydropower revenue achieved in Giuliani et al. (2014)’s

previous case-study.

Secondly, the yearly recreational reliability objective was duplicated for every month due to the model’s

previous formulation. This decision aimed to maintain consistency with the local community’s specific

recreation season on the Conowingo Reservoir. While this duplication might slightly underestimate

inequality between objectives in some months, it was deemed negligible as only one of the six objectives

was assumed constant for the monthly inequality calculation.

3.4. Limitations
Foremostly, the egalitarian idea for distributive justice was criticized by the fact that it will not ensure the

maximum benefit to be gained for each actor, in this case the reliability for each objective. While this is

not the goal of optimizing relative distribution, it does not ensure the reliability of marginalized objectives

is considered. Moreover, other studies even suggested that prioritarianism should be the main ethical

principle of policy evaluation (Lamont, 2017). However, they are more difficult to implement (Reddel, 2022;

Sarva, 2021). M. Adler (2011) proposes the application of a concave function that decreases the value

of the objective as the gain increases. Similarly, Yang et al. (2023) applies a concave function to the

distributive justice formulation that adds higher weights to marginalized actor objectives. These studies are

each aiming at reducing inequality between the outermost extreme values of actor objectives, while this

study as mentioned in Subsection 3.2.1 focuses on considering distributive justice for all actor objectives.

Hence, these limitations depend on the formulation of distributive justice one is chasing.

The inequality metrics still used the aggregated distributive justice perspective. While it was possible to

uncover the pairwise inequality between actor objectives, this would come at the cost of an increase in

objectives. Namely for each combination of pairwise comparisons of six objectives, minimally 36(= 62)
objectives would be added. This would be extremely computationally expensive as Giuliani, Castelletti, et al.

(2016) finds. Another solution was evaluating which pairwise comparisons are most relevant to include in

the objectives, similar to Ciullo et al. (2020)’s comparison between objectives with the largest difference.

This would require a more experimental phase in the research to determine what is most suitable for the

focus area, and due to time constraints for this thesis, it was impractical to realize this in a timely manner.

Also, due to the computational expensiveness, the aggregation of time was performed in months, which

was considered to be an appropriate disaggregated time scale to consider intertemporal variability. Future

research should test if there are significant differences if the time scale would be increased in granularity.

Other limitations are briefly described below.

• The approximation of the Pareto front found using the MOEA is highly dependent on the initial

conditions of the sampling search. This increases the risk of not converging to the actual Pareto front

(Laumanns et al., 2002). Zatarain-Salazar et al. (2016) validates that the ε-NSGA-II is among the
most suitable MOEAs to approximate the Pareto front of this case-study.

• Lastly, the RBFs (neural networks) are a ’black-box’ as there is little explainability on how the

EMODPS model came to its final solution set. Therefore, the limitation of this thesis, and many other

research was the interpretability and explainability of MOO models. To future research, I suggest

improving the explainability of such complex models.



4
Experimental setup

The goal was to run the EMODPS model for different formulations where the traditional formulation was

complemented with equality formulations in the optimization function. The simulation setup made it possible

to determine how to run the experiments and why. Therefore, the simulation setup was determined to

remove 1 dependencies from this setup to the model outcomes. Lastly, a validation process known as

the convergence of solution was chosen to determine if the solutions found were indeed an accurate

approximation of the Pareto front. If not, the simulation setup was adapted.

4.1. Simulation setup
4.1.1. Seeds
As mentioned in the previous Chapter the ε-NSGA-II algorithm was used to run the EMODPS simulation

for the Susquehanna River Basin water system. The algorithm uses stochasticity to sample candidate

solutions, and this made the solutions found sensitive to the used seed. The seeds used in the simulation

aim to choose random initial points of the system state to begin the simulation. Having random seeds is

important to reduce the dependency of solutions found on the chosen seed.

Nonetheless, random seeds used in simulations are pseudo-random generated, which are a deter-

ministic (non-random) sequence. Hence, solutions found depend on the pseudo-random sequence. To

reduce this dependency, random seed analysis controls the unprecedented effects of variability to find the

consistency among several seeds runs (Reed et al., 2013). Therefore, the more seeds are run for one

operationalization, the less dependent the Pareto front is on the pseudo-random behaviour.

This research used five seeds using five pseudo-random generators. While previous studies on

the Susquehanna case used ten seeds of ten pseudo-random generators, this research was bounded

to computational expenses, resulting in the assumption that running five seeds per operationalization

formulation is satisfactory.

4.1.2. Function evaluations
The number of function evaluations refers to the number of times the EMODPS model is run. The search

process is updated after every function evaluation. Therefore, the number of function evaluations will track

the convergence 2 of the optimization, i.e. whether the found solutions are stable. To recall, the EMODPS

using ε-NSGA-II algorithm approximates the Pareto front. Hence, stability again refers to when the Pareto

front approximation does not significantly change after subsequent model runs.

The more function evaluations ran, the more likely it is that the solutions converge to the real Pareto

front. Previous studies used 100,000 function evaluations and found that the solutions converge (Zatarain-

Salazar et al., 2022). Since the existing (baseline) objective formulation was complemented (Equation 3.3)

with an equality objective, I infer that the complexity of the model increases. This is due to the calculation

1Ideally, one should remove all dependencies. However, due to the burdens of large-scale complex simulation systems, the

implications will always have a degree of dependence on the chosen experimental setup (Giuliani, Castelletti, et al., 2016; Reed

et al., 2013).
2Convergence refers to the phenomena where after each function evaluation there are not new solutions found. The search

algorithm has already found every potential solution there is, and hence the best approximation of the Pareto front.
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Figure 4.1: Experimental design for the research.

of differences between the baseline objectives. To find solutions that are Pareto-optimal and converge,

more function evaluations were run. After an experiment with 250,000 function evaluations, it was found

that these are sufficient to reach convergence of solutions (see Appendix C.1).

4.2. Experimental setup
The experimental setup is described in Figure 4.1 where the rival framings approach is shown, as well as

how it is linked to the simulation-based MOO (EMODPS) approach, and how the results will be analyzed.

At core of the rival framings approach are the combinations for operationalizing the objective formulation

for equality. Both the original model outcomes and the operationalization for equality (together forming

Equation 3.4) were fed into the simulations. The operationalization formulation was changed for each

experiment. Finally, once all function evaluations were run, non-dominated solutions were filtered in

the analysis, using the epsilon− sort function designed by Woodruff and Herman (2013) 3. These non-

dominated solutions were fed into the Analysis phase. Note that the solutions for the baseline formulation

were also part of this analysis since the rival framing formulations used the traditional formulation as a

reference.

Finally, the non-dominated solutions were tested on convergence. In other words, the solutions were

tested if they are stable in approximating the Pareto front, across the progress of function evaluations.

If this was not the case, then the solutions found only point to local optima, i.e. a specific subset of the

solution space. The global optima solutions refer to the strongest trade-off and therefore the real Pareto

front. Hence, solutions stuck in local optima will not capture the strongest trade-offs. That is why the

convergence analysis is important and has an entire Section devoted in Appendix C.1.

In Tables 4.1, 4.2 the abbreviations used during the experiments are shown. The distribution goal

3The epsilon− sort non-dominated solution search algorithm can be found in the pareto.py of the Github repository

https://github.com/farleynitro/MUSEH2O/blob/main/susquehanna/notebooks/pareto.py


is specified for each formulation in Table 4.1. The baseline formulation will from now on be named the

traditional formulation as done for the baseline formulation in Yang et al. (2023). The traditional formulation

aligns with Equation 3.3 where the goal is to optimize the desired direction for the objectives. For each

formulation, a new distribution goal was added which aligns with the distributive justice principle. For

example, when the goal was to minimize the variability over the time horizon (one year), the goal was to

minimize the standard deviation of monthly-means (the chosen time step to determine variability over). In

Table 4.2 the combination of inequality metric and aggregation method was indicated for each experiment.

Table 4.1: Specifying the abbreviated experiment name for each formulation. Additionally, the distribution

goal is indicated for every formulation. Note that in each formulation, the traditional formulation is part of

the goal, since this traditional formulation is complemented with distinctive alternative goals for the equality

of water allocation for these objectives.

Experiment name Formulation Distribution goal

F1 Traditional formulation Maximize daily-based annual mean of objectives

F2 Combined traditional & Gini-mean
Maximize daily-based annual mean of objectives &

Minimize Gini of annual mean of objectives

F3 Combined traditional & Gini-standard deviation

Maximize daily-based annual mean of objectives

Minimize annual

standard deviation of monthly means

F4 Combined traditional & Gini ratio

Maximize daily-based annual mean of objectives &

Minimize Gini of annual mean of objectives &

Minimize annual standard deviation of monthly means

F5 Combined traditional & Euclidean-mean
Maximize daily-based annual mean reliability &

Minimize Euclidean of annual mean of objectives

F6 Combined traditional & Euclidean standard deviation
Maximize daily-based annual mean reliability &

Minimize annual standard deviation of monthly means

F7 Combined traditional & Euclidean ratio

Maximize daily-based annual mean of objectives &

Minimize Euclidean of annual mean of objectives &

Minimize annual standard deviation of monthly means

Table 4.2: For each experiment, an indication is given on the chosen inequality metric, and chosen

aggregation method over time. Together, they satisfy the distribution goal of Table 4.1.

Experiment name Inequality metric Aggregation method over time Papers applying similar formulation

F1 None
Mean

(central tendency of outcomes)
Traditional MOO studies

F2 Gini
Mean

(central tendency of outcomes)
(Hu, Chen, et al., 2016)

F3 Gini
Standard Deviation

(variability)
None

F4 Gini
Ratio standard deviation &

Mean
(Siddiqi et al., 2018; Yang et al., 2023)

F5 Euclidean
Mean

(central tendency of outcomes)
(Hu, Chen, et al., 2016)

F6 Euclidean
Standard Deviation

(variability)
None

F7 Euclidean
Ratio standard Deviation &

Mean
(Siddiqi et al., 2018; Yang et al., 2023)
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5
Results

5.1. Convergence and statistical test
5.1.1. Choice of convergence metrics
To determine if solutions converge three popular convergence metrics were used, namely the generational

distance (GD), the ε-indicator (EI) and the ε-progress. For each of these convergence metrics, the solution
set is compared to the reference set. The reference set is the set of solution that are non-dominated

Pareto-optimal, i.e. the best approximation to the real Pareto front. An elaboration on the discussion of

convergence can be found in Appendix C.1. Furthermore, the code can be found in the notebook for

convergence tests.

To give a quick elaboration on what each convergence metric calculates: the GD calculates the distance

between the solution set and the reference set. A smaller distance indicates the solution set is converging.

In addition, the EI measures the convergence and diversity of solutions. Since the GD determines only the

distance between the reference set and the solution set, it is not sufficient to determine how dominant the

solution is compared to the rest of the solution space. The EI takes this into account and calculates the

distance the approximation sets needs to be translated in order to dominate the reference set. However,

this metric is sensitive to gaps in the Pareto front. That is why the GD and EI complement each other’s

findings for which its discussion was left in the Appendix C.1. Doing so yields the coverage of the real Pareto

front. Lastly, the ε-progress determines how many new solutions have been added over the progress of

function evaluations (Reed et al., 2013). It does this by comparing solutions in ε-box and only making a
choice out of the non-dominated solutions (Zatarain-Salazar et al., 2022). Hence, the ε progresses as it
escapes local optima in the objective space. Convergence is determined by the flatness of the curve. In

Figure 5.1 the results are discussed for the ε-progress.

ε-Progress
ε-progress indicates the ability to escape local optima and to find continued improvements to the non-
dominated archive. Specifically, the epsilon value indicates the user-specified threshold for which the

search algorithm needs to produce at least one solution above this threshold at a certain frequency to

avoid stagnation.

In summary, the formulations are able to escape their local optima. Nevertheless, two observations

were made. First, for the Gini Mean, Euclidean Deviation, and Euclidean Ratio some of the seeds progress

more than others. Hence, the convergence is dependent on the seed run. Second, although they escape

local optima, none of the formulations seems to have reached a point of convergence. Especially when

comparing this to 1,000,000 function evaluations (in the notebook for validation one can see that the

epsilon can still progress. Hence, ideal convergence is far from being reached but would be extremely

computationally expensive to reach.

To deal with this limitation, I infer that when the ε− progress is not growing linearly, a satisfactory level
of convergence is satisfied. Linear growth indicates it has not converged. In light of this context, most

formulations have reached some convergence since they stopped growing linearly after approximately

150,000 function evaluations. The only formulation that does show a higher linear behaviour compared to

other formulations is the Gini Ratio. Hence, I conclude that the solutions converge to the Pareto front for

most formulations, except for the Gini Ratio formulation.
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Figure 5.1: Epsilon Progress for each formulation in Tables 4.1, 4.2.
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5.1.2. Statistical Analysis
In order to determine if differences in the objective values across formulations are due to randomness,

or from an actual difference in the objective formulation, statistical tests were performed. Using the

non-parametric tests, Kruskall- Wallis H test and Mann-Whitney U test, two main observations were made.

First, the distribution of the Traditional formulation has a significant statistical difference (p-value < 0.05)

among its objectives compared to the other formulations, except for the Atomic PP. Second, the Deviation

and Ratio formulations (F3, F4, F6, and F7) share a similar distribution within the same inequality metric

formulation for the objectives of Chester, and the Atomic PP. The common factor here is the inclusion of

the standard deviation in the optimization. Hence, seen every formulation with the Deviation (Equation

3.7) was affected, I could infer that the standard deviation has a higher influence than the Mean on the

Ratio objective formulation. It’s important to consider these observations when forming a conclusion about

formulations, since its distribution is not unique to its formulation. Further explanation can be found in

Appendix C.2.

5.2. Trade-off analysis
In this Section, the discussion focus is on the trade-offs across objectives for the solution set from each

formulation. First, an explanation on how to interpret the Parallel Axes Plot, the visualization for the

trade-offs, can be found in Appendix A. Next, the trade-offs for the solutions of the Traditional formulation

(Equation 3.3) are shown. Last, using this baseline (traditional) trade-off the trade-offs from formulations

with a complementing inequality objective formulation are compared to the Traditional formulation.

One should note that the axes were reversed for the Environment to have a coherent direction of

preference relative to the other objectives. The Environmental shortage index ought to be minimized. To

visually represent this, the Environmental reliability value ought to be maximized. To achieve this, the

optimized (minimized) value was subtracted from 1.

Moreover, equal satisfaction of objectives was desired to achieve distributive justice. Hence, the

solutions ideally represent a horizontal solution, i.e. no trade-off across objectives. Since this is not always

easy to read from graphs, additionally, inequalities were mathematically represented. An alternative was

using the operationalized inequalities as performance indicators for the level of inequality. However, it was

found that this would skew the results to the specific operationalization formulation. Hence, dependency

would increase from a normative choice made. How these solutions are skewed from the choice of

inequality metric can be found in Appendix C.3.

To counteract this, I infer that it is best to compare the level of inequality across traditional objectives

(Equation 3.3) is by using the standard deviation, Deviation score, between objectives for each solution

found. This served as a performance indicator of the equality across objectives. A low deviation is equal to

high equality, and a high deviation is equal to high inequality. Hence, the Deviation score indicated how

strong the trade-offs are across objectives. This Deviation score is a global measure of inequality that can

be related to all formulations.

5.2.1. Baseline: Traditional formulation
In Figure C.3 the trade-off rising from the optimization of the Traditional objective formulation is shown,

and further described by Equation 3.3. Due to the controversy around the Hydropower objective for the

case-study it was decided to use the maximum, minimum, and median value of the Hydropower revenue

as a reference to what the trade-offs are of the Traditional Formulation. Moreover, Giuliani et al. (2014)

color grades the solutions based on how much Hydropower revenue they produce, affirming its relevance

to use as comparison for solutions. Hence, the Hydropower objective represents the objective where focus

is set on its efficiency.

The reference set spans over the entire objective space since objectives lie within two outermost

extremes from high values to low values. For the Hydropower revenue, this lied between 36.25 M$ and

81.08 M$. Across the objective space, I identified a pattern of trade-offs where solutions yielded a revenue

for Hydropower of approximately 60 M$. This subset of solutions yielded a strong trade-off where also

high values for the Atomic PP, Recreation, Environment, were obtained and low values for Chester and

Baltimore. For example, one trade-off for the solution is when the Hydropower Revenue is around 60 M$

(80% of the maximum revenue attainable), Atomic PP 100%, Baltimore 0%, Chester 95%, the Environment

90%, and the Recreation close to 100%. Hence, objectives will be close to satisfactory values at the
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Figure 5.2: Parallel Axes Plot: solutions of the Traditional Formulation, with emphasis on the maximum,

minimum, median solution of the Hydropower revenue objective. The direction of preference is up for the

objectives except for the Deivation score. Besides the optimization of the Traditional formulation, the

deviation score. The direction of preference for the Deviation score is down. The maximum solution

shows the strongest trade-off.

expense of the efficiency performance of the Hydropower Revenue objective, and even stronger for the

Baltimore objective.

Furthermore, I infer that low values for Baltimore were because the demand of Baltimore is the highest

across the six objectives as shown in Figure 3.2. Hence, the reliability, which made of this demand as

a reference value to calculate the reliability value leads to the same water allocation across objectives,

representing large differences in the reliability objective obtained. In such a case, having a complementing

inequality formulation enables solutions with such large relative differences across objectives to not be

considered in the solution space.

The solution with the maximum value of Hydropower revenue yielded a maximum value of 81 M$. This

led to a strong trade-off with the Baltimore objective at 0%, and the Environment at 90%. Conversely, the

median value showed more horizontality across objectives, with objective values around 50-55% of their

maximum attainable. The Environment and Recreation benefited from the median solution as they were

both close to maximum performance values. The solution with minimum Hydropower revenue increased

the objective value of Baltimore relative to the maximum Hydropower solution, but stayed below the value

achieved by the median Hydropower solution.

The higher Deviation value also showed that the maximum Hydropower revenue leads to the strongest

trade-off across objectives. Conversely, the minimum and median solutions of Hydropower revenue lead

to more equality across the objectives. The median has the lowest inequality across objectives. This

indicates that the mean aggregation of solutions for the Traditional formulation has weaker trade-offs.

Pattern observed for the Traditional formulation: The maximum revenue led to the strongest

trade-offs across objectives. Baltimore gained very low objective values while Recreation, Atomic

PP, and Hydropower gained high values. The median revenue led to more water allocation for other

objectives, and thus more equality across other objectives.

5.2.2. Complementing formulations: Median evaluation
The median solution of the Traditional formulation has high values for the Hydropower revenue. Conversely,

Baltimore had no water allocated in this case. Other objectives gained reliability between 60-90%, with the

Atomic PP receiving the highest value out of the remaining objectives. The strongest trade-off lay with high

values for the Hydropower revenue, Environment and Recreation, and low values for Baltimore. Chester

gained a reliability close to 60%, leading to a weaker trade-off than the trade-off between Hydropower

revenue and Baltimore. In Figure 5.3 one can already see that the Traditional formulation led to the highest

inequality across objectives.

In comparison, the Gini Mean shows that the trade-off between high performance values for the

Hydropower revenue, Atomic PP, Chester, and low values for Baltimore, are now weaker (reduced)

compared to the trade-off observed for the Traditional formulation. This is observed in the lowering of the

Deviation value. Moreover, the trade-off between objectives on the Pareto front changes. For example, the
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Figure 5.3: Parallel Axes Plot: Median solution of all formulations. The median is calculated according to

each formulation’s equality objective value. For the traditional formulation, this is calculated from the

median of the Hydropower revenue. The equality score is left out due to a lack of overlapping

comparisons. This is shown in Appendix C.

Atomic PP drops around 30% relative to the pattern of solutions observed for the Traditional formulation.

Chester and the Environment benefit from this drop in the Atomic PP. The Environment and Recreation

gain a similar value.

Conversely, the Gini Deviation formulation yielded less equality across objectives. The Hydropower

revenue dropped even more than for the Gini Mean, while the Atomic PP stayed approximately at the same

value as the Traditional formulation. Baltimore’s values dropped again below Chester’s objective values

for the Gini Mean, but were significantly higher compared to the Traditional formulation. Other objectives

seem to lie relatively around the same value. The increase in Baltimore and Chester for the Gini Mean

relative to the Gini Deviation means that the low values are constant across months (i.e. less inequality

across months), for which the Gini Mean leads to higher values for these objectives that previously had

very low values.

The Gini Ratio created stronger trade-offs than for the previous Gini formulations, observed in the

trade-offs, but also in the Deviation value which is closest to the Traditional. Across the Gini Formulations,

this formulation will also yield the lowest value for the Environment, and Chester. Hence, the trade-off

across objectives is strong, but weaker relative to the Traditional formulation. I infer that this drop in

equality is because it is difficult to find solutions in the objective space that can find Pareto-optimal values

for both the disaggregated (monthly standard deviation) and aggregated (yearly mean) scale, in one

solution. Thus when combined, there is a shift of the traditional Pareto front, but the equality effect of both

operationalization formulations cancelled each other out. From Appendix C.11 it was seen that indeed it is

not possible to reach high values for one of the operationalized equality objectives without leading to lower

values for the other operationalized equality objective.

The trade-offs of the Euclidean formulations are significantly weak compared to previous formulations

(including the Traditional). The Deviation shows that the lowest inequality was reached for the Euclidean

formulations, with the Euclidean mean leading to the smallest Deviation (inequality) score. Yet, it seems

to be the formulation that led to the lowest objective values. A good explanation is that in the Euclidean

formulation in Equation 3.5, large relative distances are penalized because of the quadratic formulation.

While the objective value of Hydropower drops, other objectives gained from this difference in water

allocation. For the Euclidean Mean, the Recreation objective dropped to around 80% which is still deemed

satisfactory when considering performance criteria (i.e. to maximize the objective).

Moreover, the Euclidean Deviation showed a similar behaviour across objectives. When the Hydropower

revenue further drops for the Euclidean Deviation, significantly higher, and horizontal values can be

achieved for the other objectives. I infer that the Euclidean Deviation reaches an even lower inequality

score than depicted if the Hydropower revenue was left out. Nonetheless, even with this objective that

had a large relative difference compared to other objectives, the Deviation was relatively low compared to

other formulations.
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The Euclidean Ratio was the first to show a trade-off between relatively high Hydropower values and

low Atomic PP values. Yet, it is the first formulation that yielded high values for both the Baltimore and

Chester objectives at an equal level. The Environment dropped to approximately 94%, and Recreation

stayed at 100%. In the Deviation, it is less notable if the inequality has increased relative to the Traditional

formulation.

Moreover, I can infer from this that the Euclidean formulations have a stronger penalizing effect than

the Gini formulations on large relative distances between objectives due to the quadratic formulation. This

is why objectives such as the Hydropower revenue, and the Recreation which would have the highest

value have dropped to a relatively lower value.

Pattern observed for the median evaluation: The Euclidean formulations led to a more egalitarian

behaviour across objectives. The Euclidean Mean had the highest equality, at the expense of lower

objective values. The Ratio formulation led for both inequality metrics (Gini, and Euclidean) to the

lowest equality. The Mean formulations led for both inequality metrics to the highest equality.

Trade-off for the median evaluation: The complementing formulations yielded weaker trade-offs.

Objectives with previously low values such as Baltimore received higher water allocations, while

objectives with low values had now less water allocated.

5.2.3. Complementing formulations: Maximum evaluation

Figure 5.4: Parallel Axes Plot: Maximum solution of all formulations. The maximum is calculated

according to each formulation’s equality objective value. For the traditional formulation, this is calculated

from the maximum of the Hydropower revenue. The equality score is left out due to a lack of overlapping

comparisons. This is shown in Appendix C.

Recall that the Traditional Formulation led to very strong trade-offs. Conversely, the Gini Mean is now

the formulation leading to the highest equality, as well as the highest performance in terms of efficiency. All

objectives were close to 100% of the values they can reach. This is similar to the small subset of solution

observed for the Traditional formulation in Fig. C.3. Only the environment reached a reliability of 90%, i.e.

still high.

In comparison with the Gini Deviation, Hydropower revenue dropped by around 30% of its maximum.

The objectives of the Atomic PP, Baltimore, Chester, obtain lower values compared to Traditional (Baltimore

25% lower), but for the Environment this again rose to 95%. Hence, the Gini Deviation formulation shifted

the traditional Pareto front to higher values for the Environment.

The Gini Ratio showed stronger trade-offs than other Gini formulations. Baltimore dropped more

(around 50 % relative to the Gini Mean), the Environment to 90%, and Hydropower revenue was close to its

maximum value. For the Atomic PP, Baltimore, Chester, the Environment, and Recreation, the difference

in value compared to the Gini Deviation formulation was negligible. This aligned with the findings during

the Mann-Whitney analysis that the pattern of distribution of the Gini Deviation was similar to the Gini Ratio.

This was due to the dominant influence of the Deviation in the formulation.
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The Euclidean Mean achieved similarly to the median evaluation, very high equality across objectives.

However, this was heavily at the cost of the efficiency of objectives, because all objective values experience

a significant drop. Hydropower revenue is close to 14 M$ which was the lowest across all objectives, the

Atomic PP had a value close to 15%, Baltimore around 2%, Chester around 30%, and for the first time,

the Environment was around 60 %, and the Recreation objective dropped close to 60%. Nonetheless,

trade-offs across objectives were not apparent. In comparison, Baltimore had the highest relative objective

value. This points to what was mentioned before where objectives with a high gain receive less, and

objectives with less gain receive more under the Euclidean formulation.

The Euclidean Deviation provided high equality, similar to the Gini Mean, but with a lower performance.

The efficiency performance is still higher across objectives than for the Euclidean Mean.

The Euclidean Ratio showed trade-offs similar to the Traditional formulation. The Hydropower revenue

drops, but the Environment increases by around 5%. Hence, what is lost in Hydropower revenue, goes

mostly to the Environment, while the values for other objectives become more equal across objectives.

It seemed that the Euclidean Ratio cancelled out the equality effects achieved from the optimization of

individual aggregation methods.

Pattern observed for the maximum evaluation: The Gini Mean led to both high equality and high

efficiency performance. Similarly to the median evaluation, the Euclidean Mean led to high equality,

but now at a higher cost for efficiency. Euclidean formulations led to a more egalitarian behaviour

across objectives. Within inequality metrics, Ratio formulations led to the highest inequality across

objectives.

Trade-off for the maximum evaluation: The complementing formulations yielded weaker trade-offs,

except for the Ratio formulations. Trade-offs across objectives became weaker, but will not change in

terms of what objectives have higher and lower values.

5.2.4. Complementing formulations: Minimum evaluation

Figure 5.5: Parallel Axes Plot: Minimum solution of all formulations. The minimum is calculated according

to each formulation’s equality objective value. For the traditional formulation this is calculated from the

minimum of the Hydropower revenue. The equality score is left out due to a lack of overlapping

comparison. This is shown in Appendix C.

Interestingly, the baseline formulation now yielded higher equality across objectives than the Gini Mean,

Gini Deviation, and Euclidean Mean formulations. It was these formulations that showed the highest

equality when looking at the median and maximum solutions. An explanation could not be found for this.

However, I can infer that the formulation’s performance in terms of equality depends on the indicator used.

If it is desired to avoid worst-case inequalities, it is better to optimize the formulations that lead to the

highest equalities for the minimum solutions.

From a holistic observation, across formulations, I observe that most formulations showed very strong

trade-offs across objectives. The Traditional formulation showed a strong trade-off, but an even stronger
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trade-off was achieved by the aforementioned best-performing (in median and maximum) formulations.

The Hydropower Revenue, Atomic PP, Chester, the Environment, and Recreation gained a high value,

while Baltimore and Chester were worse off. The demand of Chester was similar to the Atomic PP (in the

range of 100,000 m3/day), indicating that there was a high degree of inequality reached from this solution.

There are exceptions. The Euclidean Ratio and Gini Ratio achieved the same Deviation score, and

had high objective values with a drop of approximately 5% on the Environment to compensate for this.

Hence, the Euclidean Ratio and Gini Ratio were able to find a suitable balance between efficiency and

equity. Moreover, this behaviour resembled the trade-off of the maximum solution of the Gini Mean. For

other formulations, I observed that there is always at least one objective with a high value, while others

remain significantly low. The Euclidean Deviation is the other formulation to reach more equality than the

Traditional.

Pattern observed for the minimum evaluation: The Gini Ratio and Euclidean Deviation managed

to achieve the highest equality across objectives. Previously well-performing formulations for equality

now led to stronger trade-offs.

Trade-off for the minimum evaluation: Most of the formulations shifted the Pareto front to a stronger

trade-off between one or more objectives. Often Hydropower revenue and Recreation obtained higher

values compared to other objectives.

Main observations

When comparing formulations:

• The performance of formulation in terms of equality and efficiency depended on the indicator (median,

maximum, minimum) being used for post-processing. There is a similarity in the implications from

the median and maximum.

• The Euclidean Mean stood out for the maximum and median indicators since it led to more equality.

Additionally, the Euclidean Deviation also yielded high equality, but also higher efficiency performance

relative to the Euclidean Mean.

• Overall, for the maximum and median indicators, the Euclidean formulations performed better. The

Ratio aggregation method over time, for both inequality metric operationalization led to the highest

inequality, and a lower efficiency performance compared to the Traditional formulation.

• For the minimum solution, the Ratio aggregation methods over time yielded the highest equality.

Also, the other formulations led to significantly higher inequality. This is in contrast to the implications

from the median and maximum indicators.

When comparing the Pareto front shift from solutions:

• Each formulation had its own Pareto front shift, and in that sense not only affects over which objectives

there is a trade-off, but also the strength of these trade-offs.

• The differences in objective performance values from different formulations relative to the Traditional

formulation always lied in the range of 5%. Hence, the drop in efficiency is smaller than the achieved

equality, making a strong case to consider both.

• An alternative is analyzing all solutions as shown in Appendix C. However, due to the number of

solutions, it is more difficult to determine the Pareto front shift. One requires looking at patterns

across all solutions. From this pattern, and the previous statistical analysis, I infer that the Euclidean

formulations yield more egalitarian behaviour than the Gini formulations.

5.3. Distribution analysis
The second part of the results were visualized through the boxplots, an easy-to-interpret visual representa-

tion of the distribution of the solution space from the different experiments. The Parallel Axes Plots were an

aggregation of the solution space through its maximum, minimum, and median indicators. To complement

this the solution space for each objective were shown using the boxplot. Trade-offs are not visible, but

shifts in the space are. Hence it is purposeful to look at the tendency of data and not its patterns. For each

objective, the median, interquartile (IQ) range, and outliers were visualized.
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Figure 5.6: Boxplot: Distribution of the solutions from formulations in terms of each objective value. F1 is

the Traditional formulation. F2 to F7 are the Traditional formulations combined with a complementing

equality objective in the objective function. F2 combines the Traditional formulation (F1) with the equality

objective using the Gini Mean operationalization formulation, F3 with the Gini Deviation formulation, F4

with the Gini Ratio formulation, F5 with the Euclidean Mean formulation, F6 with the Euclidean Deviation

formulation, and F7 with the Euclidean Ratio formulation.

5.3.1. Hydropower revenue
The IQ range (between 25th percentile and 75th percentile) of the Traditional formulation lay between 55

M$ and 65 M$ with the median at 60 M$. In terms of Hydropower revenue, this was around 75% of what

can maximally be achieved, meaning efficiency was gained for this objective. There were some upper

outliers reaching 80 M$, and lower outliers at 35 M$. Most formulations had a wider IQ range, and thus

a more variated set of solutions. The Gini Mean, Gini Deviation, Gini Ratio, Euclidean Deviation, and

Euclidean Ratio, had approximately a median higher than the Traditional formulation. The Gini Mean, Gini

Deviation, Gini Ratio, and Euclidean Ratio had a median between 63 M$ and 68 M$. The 75th percentile

of the aforementioned formulations now reached above 70 M$, with the Gini Deviation yielding an even

higher 75th percentile of 75 M$. The 25th percentile of each formulation except the Euclidean Mean lay

around 55 M$, similar to the Traditional formulation. Only the Euclidean Mean led to a lower IQ range,

with the 75th percentile at 55 M$, the median at 50 M$ and the 25th percentile at 40 M$. As observed

during the Parallel Axes Plot, the solutions of the Euclidean Mean led to a more horizontal (egalitarian)

distribution across objectives. The egalitarian reallocation of water came from the drop in Hydropower

revenue, which dropped for these solutions. This was what most likely led to other objectives obtaining

higher values when solutions were compared across objectives for the Parallel Axes Plot.

Most formulations had a wider and higher IQ range compared to the Traditional formulation, their outliers
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reached relatively low values as well. Moreover, the lower limit was quite different across formulations.

The Gini Mean and Gini Deviation had the highest lower bounds, lying around 40 M$. The Gini Ratio

dropped further to 35 M$, Euclidean Mean to 15 M$, Euclidean Deviation to 30 M$, and Euclidean Ratio

to 35 M$. The upper bounds of the formulations lay at the same range as the outliers of the Traditional

formulation, i.e., at 80 M$. I considered the differences significant since the formulation is in M$, where 5

M$ made a substantial difference.

5.3.2. Atomic PP
For the Atomic PP, the IQ range of the Traditional formulation lay between 95% and 75%, with the median

at 85%. The maximum value was 100%, and the minimum value was 45%, with outliers that went all the

way to 0%. Compared to this, other formulations had a wider IQ range. Moreover, the 25th percentile

of complementing equality objectives were all lower than the Traditional formulation, and for the 75th

percentile, the difference was smaller. The median of the formulations except for the Euclidean Mean

were approximately 80%, 5% lower than for the Traditional formulation. For the Euclidean Mean, this was

70%, 15% lower. The IQ range was different across formulations, but I notice that the Gini Deviation had

the widest IQ range. The extremes across formulations were attributed to the Gini Mean and Euclidean

Mean where the 25th percentile lay for the Gini Mean at 65%, and for the Euclidean Mean at 55%, a 10%

difference. In all cases, the 25th percentile dropped by 5-15% compared to the Traditional formulation.

The minimum values of the Gini formulation were slightly above 0.2, while for the Euclidean formulations,

this dropped below 0.2. Similarly, to the Traditional formulation, outliers can range between the minimum

and values around 0.

5.3.3. Baltimore
For the Baltimore objective, there is a wider distribution of values compared to other objectives. Looking

at the Traditional formulation, the minimum and maximum values were across formulations similar. The

IQ range was between 30% and 70%, with the median at 50%. The minimum and maximum value could

range for anything between 0% and 100%. The Gini Mean and Gini Ratio brought this IQ range up by

approximately 5-10%, with the Gini Ratio showing also a higher 25th percentile. The IQ range seemed to

be relatively similar across formulations with small (but significant) differences in the IQ range, namely with

the 75th percentile at 70%, the median at 50%, and the 25th percentile at 35%. The Gini Deviation would

perform quite similarly to the Traditional formulation. Again, this came from the fact that the intertemporal

equality was increased but could not be seen when visualizing data on the yearly mean. The median of

the Euclidean Mean outperformed other medians as it lay around 0.65, and the 25th percentile at almost

0.5, around 20% higher than for the Traditional formulation. The Euclidean Deviation also had a median

higher than the rest, close to 0.6, and with the 75th percentile at 0.8, the highest across formulations. The

25th percentile was however similar to the Traditional formulation, showing no improvement here. The

Euclidean Ratio kept the same IQ range width but brought this up by 5% compared to the Traditional

formulation. The median for this formulation is 50%.

5.3.4. Chester
To begin with, the optimization of certain formulations yielded higher reliability Baltimore, at the cost of

the reliability for Chester. This can be noticed when comparing the median of the formulations with the

median of the Traditional formulation. Formulations with a higher median for Baltimore, now had a lower

median for Chester, specifically seen for the Gini Ratio, Euclidean Mean, and Euclidean Deviation. The

Traditional formulation had an IQ range between 60% and 90%, and a median close to 80%. An exception

for the aforementioned statement was the Gini Mean, whose median was higher for both objectives. The

Gini Mean’s increase was 5% which is relatively small. Moreover, its IQ range became smaller, with the

25th percentile at 70%, 10% lower. Hence the solutions of the Gini Mean satisfied higher values. Other

formulations performed worse than the Traditional formulation. Also, the IQ range across formulations

showed more difference than for the other objectives. The Euclidean Mean had the lowest 75th percentile

and median. The Gini Deviation, Gini Ratio, Euclidean Deviation, and Euclidean Ratio had a 75th percentile

5% lower than the Traditional formulation. Their median was also around 5% lower. Only the Gini Ratio

and Euclidean Mean had a 25th percentile close to 50%, 10% lower. Hence, the Gini Ratio had a wider

solution space than other formulations. The differences in minimum value were only notable for the Gini

Mean where compared to other formulations the reliability of Chester shifted from 10% (and 20%) to 30%,

an increase of 10-20%.



5.3.5. Environment
One should recall that while the Environmental objective was desired to be as high as possible in the

Parallel Axes Plot, it was because the Axes were reverted so the trade-off across the objective was more

easily visible if the direction of preference was the same for all objectives. Hence, in this boxplot, the aim

iwas to minimize the Environmental shortage index. A lower Environment objective value was desired. In

this sense, I observe that the Euclidean Mean immediately stood out. The IQ range of this formulation

was not only wider than other formulations but significantly higher. Its median value was 15% than for

other formulations. A reason why the Environment was heavily jeopardized compared to other objectives

remained unclear. However, from the Parallel Axes Plot, it was shown that the Euclidean Mean led to one

of the highest horizontal distributions across objectives, and while the Environment gained significantly

high values for other formulations, the Euclidean Mean penalized the relative advantage the Environment

gained compared to other objectives. The operationalization formulation then ensured the water was

reallocated to objectives with previously low values. This can be observed for the Baltimore objective,

where most trade-offs from other formulations led to a low Baltimore reliability, while for the Euclidean

Mean, it had the highest and most narrow IQ range. The Traditional formulation and other formulations

showed a similar distribution for the Environmental shortage index, with the entire distribution lying between

4% and 12%. This distribution is close to the desired behaviour.

5.3.6. Recreation
The Recreation objective seemed to be satisfied maximally for all solutions across all formulations, except

for the Euclidean Mean. The outliers were negligible, and would still lie at high values between 90% and

100%. This 10% drop in the Recreation objective was allocated to other objectives. The median of the

Euclidean Mean brought the IQ range to lie between 80% and 90%. Minimum values would drop even

further to 60%. This meant that overall the Euclidean Mean led to a decrease in performance of 40%.

Again, a similar explanation was found as to the Environment objective. The Euclidean Mean penalized

objectives that previously gained high relative values in the simulation. Subsequently, this water was

allocated and distributed more equally across objectives, leading to a lower overall system efficiency

satisfaction. The Euclidean Mean represented the strongest trade-off between distributive justice and

efficiency, as for most objectives it performed less well compared to other formulations.

Distribution analysis 1: The distribution across formulations depended on the objective. In general,

the solution space for objectives became larger (wider in the objective space) when complemented

with an equality objective. Among these larger solution spaces, differences across formulations for

each objective were mostly apparent in the width of the IQ range. The pattern depended on the

objective and on the formulation, for which there was not a fixed pattern in the shifting of the Pareto

front.

Distribution analysis 2: The medians of complementing formulations lay within the 5-10% range

from the median of the Traditional formulation. This indicates small changes in the tendency of the

Pareto front in the objective space. Overall, the IQ range (incl. median) of the Atomic PP, Chester,

was worse (lower) for complementing formulations. For the Hydropower this range will be better

(higher), except for the Euclidean Mean. For the Environment and Recreation the range stayed the

same across formulations, except for the Euclidean Mean which was again worse off. The Euclidean

Mean had across objectives both median, IQ range, and extreme values at a different range of the

objective space. The Euclidean Mean was also the formulation that led to a significant shift in the

Pareto front of the post-processed median solution and maximum solution that also in most cases

resulted in lower objective values.

Distribution analysis 3: Moreover, as expected, the boxplot analysis does not make it possible to

look at the shifting of the solution space across time. This is why the Deviation and Ratio formulations

showed smaller shifting in the Pareto front of the yearly mean objectives than the other two Mean

formulations.
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6
Discussion

Based on the results of Chapter 5 the key findings are discussed, as well as the limitations of this research.

6.1. Key findings

What is the shifting effect on the Pareto front from introducing different formulations for the

equality objective of existing multi-objective optimization models?

Research Question : Main Question

This question set out to explore what influence normative choices, from the formulation of a distributive

justice principle objective, have on the Pareto front, and subsequently on the implications from existing

decision-support models for water allocation. Without understanding the implications, it remains unknown

if the implementation is satisfactory. Egalitarianism was chosen as justice principle for demand satisfaction.

Hence, this question was explored by implementing an equality objective in the objective formulation of a

MOO-model. For this question, I argue that the solution set is sensitive to the formulation of (in)equality. To

explore this question three levels of formulation were used, the notion of exchange for resources (hereby

equality), the formulation for the inequality metric (Gini, and Euclidean), and the aggregation method of the

inequality over time (Mean, Standard deviation, and Ratio of both).

So what do the results tell me?

It becomes apparent that the shifting effect of the Traditional Pareto front is dependent on the objective

formulation for the desired equality formulation. The shift per objective is between 5-10%, indicating

that the shift per objective (in terms of median) is less significant. It is the solution space over multiple

dimensions that will thus change, and lead to a change in the trade-offs as observed from the Parallel Axes

Plots. Therefore, I argue that the only way of establishing reliable justice methods for the decision-support

using models is by a) using MOO-models with disaggregated actor objectives to assess trade-offs across

objectives and high-level goals (efficiency and distributive justice), b) explaining why for the choice of

justice notion (in our study it is deemed as equality), ethical premise, or any ethical choice in that sense, c)

understanding what formulation is suitable for the efficiency goals and justice goals of the model.

6.1.1. Inequality metrics
First, the trade-off on the Pareto front was observed. The Deviation score tells us that the Traditional

formulation leads to a high degree of inequality across objectives. Moreover, it leads to strong trade-offs

between the water supply of Baltimore, and the Hydropower revenue. While in the model these are merely

two objectives, in real life this can set out to strong conflicting situations among stakeholders. Introducing

equality in the objective formulation sets out to favour the demand of everyone without causing large

relative differences across this demand satisfaction. Nonetheless, how much equality is reached depends

on the indicator of choice for evaluation. While considering this, the Euclidean formula (Equation 3.5)

as the inequality metric implemented in the objective formulation led to a smaller degree of inequality

across objectives when looking at the solution space of the median and maximum solution. Moreover,

the quadratic formulation creates higher equality across objectives that previously had a large relative
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difference. For example, Baltimore and Hydropower had closer satisfaction values to each other, regardless

of their difference in demand.

The Gini formula (Equation 2.1), frequently used in MOO-justice studies, led to less inequality across

objectives, but performed less well than the Euclidean formula for the median solution. There was an

exception for the Gini Mean that performed the best for the maximum solution set.

For the minimum solution, the Euclidean Ratio was found to yield the most equal, and efficient solution.

The minimum indicator could be deemed to be the indicator for actors that want equality in the worst-case

scenarios, while the median and maximum serve as indicators for actors that want equality in either the

most recurrent scenario or the best-case scenario.

In the end, both formulations shift the trade-offs of the Pareto to a more equal satisfaction (i.e. higher

equality) across objectives. To add to this, the Euclidean will generally lower the satisfaction values for all

objectives, at the expense of (even) more equality. Conversely, the Gini is able to keep high objective

values for objectives that already possessed a high value in the Traditional formulation. In light of this

context, the shifting effect from the Euclidean formulation is more significant. This is also observed in the

boxplot where the Euclidean mean significantly shifts the solution space of the Traditional Pareto front

for several of the objectives, for better and worse. Additionally, in the boxplots, it becomes evident that

the Pareto front shift of other formulations is quite different since the median, and its IQ range have high

relative differences across objective and formulations. For the Atomic PP, Baltimore, and Chester this

results in a lower and wider IQ range. For the Hydropower revenue the solution space for complementing

formulations becomes also wider, but will also shift the IQ range up. An exception to this is the Euclidean

Mean that for other objectives shows also a solution space that is less Pareto-optimal 1. Coming to an

understandable pattern is close to impossible and emphasizes the normative uncertainty introduced by the

modeller.

6.1.2. Aggregation method
On a more granular scale, the aggregation method defined if the optimization was considering the inequality

across the monthly time step, or on the aggregate of the yearly mean. While at the trade-off analysis, the

shifting effect is stronger based on the inequality metric used, the aggregation method also played its role

in shifting the trade-off. In the maximum solution, the Gini Mean’s high equality was closely followed by

Euclidean Deviation, and after by the Euclidean Mean. This pattern was broken in the median and minimum

solution where the Deviation (regardless of the chosen inequality metric) formulation led to lower equality

than the Mean formulation. The Ratio for example also showed controversial findings. In the median and

maximum solution, it led to the lowest equality of all, for both inequality metrics formulations. Moreover, it

provided the best solution in terms of efficiency (defined by how much of the objective values are satisfied).

The differences were seen across aggregation methods with on one side the Standard deviation and

Mean, and on the other side, the Ratio of Standard deviation and Mean are deemed significant. Hence,

across aggregation methods, the shift on the Pareto front plays a role. Depending on the indicator used,

this shifting effect will yield more or less equality. Over which objectives there is a trade-off does change

significantly based on the choice of aggregation.

The distribution of objective values will be (statistically) similar for the Deviation and Ratio for both

Euclidean andGini. This indicates that the Ratio is strongly sensitive to the intertemporal equality measured

(and optimized) from the monthly Standard Deviation. Across inequality metrics, the Mean showed no

similarity in pattern, since the Gini Mean and Euclidean Mean have their own distinctive distribution for each

objective. For the Euclidean Mean, as already mentioned, the Pareto front will shift to a sub-optimal space.

Taking the Environment as example, the solution space is much higher compared to other formulations

that stay close to the Traditional formulation’s distribution. Also, there is no apparent similarity with the

other aggregation methods. Similarly to the finding for the inequality metrics, the median and its IQ range

for each specific formulation are even more highly varying across objectives. Hence, making a choice

on the aggregation method seems to have a less significant shifting effect in trade-offs, but in terms of

distribution will play a significant role.

1With Pareto-optimal it is referred to solutions that would otherwise yield the highest possible values for all objectives separately.
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6.2. Research limitations
The findings point to useful implications for the choice of modelling inequality. Before accepting the findings

point to a fixed shifting effect of the traditional Pareto front, from the choice of inequality formulation,

limitations affect the suitability of the conclusion of this research, and the research itself.

6.2.1. Limitation of the research
The problem formulation for justice

Notably, the formulation of inequality explored in this research is limited in the number of formulations

but also limited in the modelling concept researched. I argued that inequality must be introduced in the

objective formulation. Nonetheless, in this research, the possibility of exploring the problem formulation

was left out of the reasoning of constraining the solution space. Instead of implementing it in the objective

function, it is put in the model constraint. Even with a rival framings approach making use of the same

notion of justice (i.e. equality), the solution set will be different. Nonetheless, to constrain the inequality of

the solution sets, a higher stakeholder input is needed, to determine what is deemed unacceptable from

their viewpoint. The objectives do not make use of the same reference demand, for which the value range

of inequality is non-intuitive from an external point. Only with close collaboration, other modelling aspects

for justice in the objective formulation can be studied.

Flavours of equality in the implementation

Moreover, the limited choice of rival framings sets out to leave an unattended bias in what is deemed

as inequality. Ciullo et al. (2020)’s formulation where the relative distances of actor objectives must be

minimized was the starting point of this study. This relative distance can be measured across all actor

objectives and aggregated as was done here. But as Ciullio et al. themselves do, relative differences

can also be measured among the objectives with the largest relative difference. Instead of optimizing the

relative differences that are negligible since they could be already deemed as satisfying equality, only high

inequalities are given priority. Doing so is another dimension of the notion for equality that could yield

better results in terms of equality, and unknown effects to the efficiency performance of objectives. Another

limitation is in the choice of objectives considered for equality from an actor’s perspective. The aggregation

of relative distances hides the influence of each objective. An alternative lies in backpropagating the

results by leaving objectives in and out of this relative difference calculation. In doing so, a deeper sense

is gained of which objectives equality is beneficial. Currently, the Euclidean formulation already showed

that polynomial effects will prioritize large relative differences, from which I hypothesize that it is between

the highest and lowest objective (values). This finding is limited to the results of the model and could stem

from a different reason, making the backpropagation of equality important.

Inconsummerable comparison between efficiency and justice

Closely related to the previous limitation, in this research I never discussed how to visually interpret the

relations between (increase and drops in) efficiency and distributive justice. In this sense, while the results

are synthesized by looking at the shift in inequality from each formulation, similarly, the synthesis could

have been based on the differences in achieved efficiency. In doing so, I can find a more objective answer

to how the trade-off between efficiency and equality is changing. For example, this would highlight ’What

are acceptable decreases in levels of efficiency for the increase in levels of equality?’. Since the efficiency

is defined by six objectives (Equation 3.3) and the equality by one objective (Figure 3.4), the trade-off

across solutions is (objectively) incomparable. Two opposite concepts are being compared. Currently, I

drove implications from a visual inspection between the objective values and relative differences (supported

by the Deviation metric). In light of this context, the conclusion on the trade-off between the two principles

is biased from the visual interpretation of the modeller.

Limited scope for the justice of solutions

Equity is not bound to distributive justice, nor a chosen definition such as equality for this study. In the

Literature review, I already mentioned that procedural justice, the fairness of the process for how decisions

are taken, is as important. Especially, since this determines if actors accept the solutions proposed by the

decision-support model. This is difficult to implement in models, and that is why the fairness of solutions

is determined a-posteriori using cooperative game theory. Here the preference of actors is considered

and the stability of solutions. This was not considered, which means that while an ambitious attempt at
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defining what is fair is made, actors might not accept this definition. However, this is simultaneously a

post-processing step of this research beyond the thesis scope.

The rank-ordering of solutions was not assessed in this research while previous studies found that this

is the most useful method to determine justice from decision-support models (Jafino et al., 2022). Currently,

the post-processing of solutions was limited to statistical tests, and foremost, the statistical indicators.

While the maximum, minimum, and median capture a great part of the range of implications, ordering all

solutions instead of their extremes or average, yields more reliable implications of the Pareto front shift.

Lastly, not all levels of justice were considered. The level of justice considered in this research was at

best the top-level, which assumes a general notion of equity for all actors involved. In reality, it is up to

individual actors to determine what is deemed fair. The importance becomes clear when one considers

that actors will want compensation for historic events in the water allocation of a river basin. Moreover,

Groenfeldt (2019)’s domains of water ethics is yet again another way of viewing that justice depends on

the actor environment. For example, the environmental perspective sets priority on intertemporal justice

rather than the aggregated justice, and will also have concrete constraints in the water management. The

same applies to other domains. Currently, this is not part of the problem formulation since it would add

a complexity layer beyond the possibility of convergence for the model. It must also be added that this

top-level justice perspective at no time inspects the lower-level spatial justice. Once Baltimore or Chester

has water supplied, the local distribution of water among its community is equally important. This variability

scope is kept outside this research but can be implemented using more data and other inequality metrics

such as the Theil-index.

6.2.2. Limitations of the model
Formulations of objectives

Inherently, the objectives that are part of the objective function have a limitation in the way they are

formulated. For example, the environmental objective (Equation B.4) in its formulation dates back to

1982, and since then has been validated (Hashimoto et al., 1982). However, it does not penalize severe

shortages in important months for the local flora and fauna. The assessment of justice in this study is over

one year, but not penalizing this over more years, will change the ecology of the lower Susquehanna River

Basin, which is exactly what is experienced right now (Ain et al., 2014; Hicks et al., 2008; Noe et al., 2020;

Zhang et al., 2013). Finding more elaborate formulations that deal with this intertemporal complexity will

be essential to the development of decision-support models.

Limited reality of water allocation

In this model, there is a wrong representation of reality because the allocation of water serves solely one

purpose. The context of this case-study is a River Basin, so one can imagine that if water is released

to generate Hydropower revenue, this water is also useful for the Environmental flow, since water is

already flowing. In this sense, there are multiple benefits to the water being released. In this research,

it is assumed that this effect is negligible. Since there is a lack of expert consultation and the fact that

many MOO-decision-support models do not consider this, it was left out of the scope. However, what if

this effect is not negligible? In this case, the optimization would prove unfeasible to capture the system’s

complexity, and hence the result implications are not useful. Future research should consult experts on

this matter before continuing.

6.2.3. Limitations of the method
Neglected discrimination of variability

Although it was found that the strongest influence on the findings stems from the inequality metric used,

the influence of the aggregation method is clearly not negligible. Therefore, the inequality measured is

sensitive to the formulation to determine variance (relative distances). In this research, the Standard

Deviation method was used. Other (unconsidered) metrics such as the skewness methods discriminate

between positive and negative variance. A good example of when the sign of variance is important is when

one objective becomes negative while it needs to be maximized (e.g. Recreation) while the other objective

needs to be minimized (e.g. Environment). Moreover, even when variances are calculated, the level of

efficiency performance reached for this is undesirable. Hence, a baseline must be considered to determine

when variance changes of sign. This again depends on how one defines the interaction between efficiency

and justice. For the sake of simplicity, in this study, it was assumed that any type of positive or negative
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signed inequality is deemed wrong. Considering this limitation would only improve the quality of justice

implementation in decision-making, but it does not invalidate the methodology used.

Post-processing of results

Another limitation lies in the fact that the Deviation and Ratio optimized intra-monthly time steps, whose

concrete implications from achieved equality are not as clearly seen for the yearly mean, as is the case

for the formulation when the yearly mean equality is optimized. This raises the question if the trade-offs

highlight the right findings. The truth is that there are hidden implications in this aggregation method. As the

aggregation is over twelve-time steps, I infer that the implications from model results are not too divergent

from each other. However, to still make some sense out of this, Appendix C.5 highlights differences in

achieved Equality on a yearly basis, as well on a monthly intertemporal basis. For future research, I

suggest considering plotting the change in trade-off across months so it is further understood what the

hidden consequences are, which can have a great impact (Kasprzyk et al., 2016).

Foremostly, the largest limitation of this research lay in how the results were evaluated. In Appendix

C.4 the trade-offs sorted by the Hydropower revenue generated are visible for each formulation. Especially

here one can notice how diverse and wide the solution space is. Hence, it remains debatable whether

using the median, maximum, or minimum is sufficient to determine the implications of different optimization

formulations. This is a limitation every MOO-study must deal with and is dependent on the context

being studied. For this specific context (since the solution space is so wide it would not lead to concrete

implications) this method of post-processing the results - comparing the median, maximum, and minimum

of the equality solution, to the same indicators for the Hydropower revenue solution of the Traditional

formulation - aligns the most with the research questions where light is shed on the trade-off rising from

the implementation of equality, and the trade-off between efficiency (covered by the solution indicator

using the Hydropower revenue objective) and equality (covered by the solution indicator using the equality

objective).
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Conclusion

In this thesis, the notion of a chosen distributive justice principle for its use in a multi-objective optimization

(MOO)-model for a multi-purpose water reservoir system was operationalized. The chosen distributive

justice principle was egalitarianism with its equality defined as the goal to minimize the relative distance

between the multiple purposes of the water reservoir system. Existing MOO-models included objectives

to maximize the benefits of each objective. This aligned with the efficiency principle, i.e. to gain as

much as possible. Equality was as an important principle to be included in the optimization as efficiency.

Therefore, its (operationalized) formulation was inserted in the existing objective formulation, and in this

sense complemented the traditional formulation. This provided a reference on how the traditional (and thus

existing) Pareto front shifted when an objective was inserted that considered distributive justice. For an

existing MOO-model, the EMODPS-model of the real-world case-study of the Lower Susquehanna River

Basin was used, which has six conflicting objectives that need to be optimized during a year of severe

drought and its water allocation was managed by the release decision of its Conowingo Reservoir System.

Moreover, I point out the need for understanding how the operationalization of distributive justice

shapes the implications drawn from the ’optimal’ outcomes of decision-support MOO-models. Without

determining what the influence is on the optimization of distributive justice, normative uncertainty is added

to the outcomes.

To assess the difference in implications drawn from outcomes based on the chosen operationalization

methods, this research uses a rival framings approach. In this rival framings, the traditional optimization

formulation was complemented with an equality objective, yielding a total of six distinctive equality objectives.

The difference lied in their operationalization formulation that consisted of a combination of changing the

inequality metric and aggregation method over time for the inequality metric. Moreover, the inequality

metrics studied are the Gini-coefficient and the Euclidean distance. Both metrics aim to quantify relative

differences across objective values but have a different mathematical formulation, making it a perfect

example of how a subtle difference in logic can affect the implications. In addition, studies found that

aggregation methods affected model outcomes. Since the objectives require an aggregation method over

time, differences here also affect implications drawn from outcomes. The aggregation methods studied

are the daily-based yearly mean which represented the entire time horizon, the monthly-based standard

deviation over a year, and the ratio of the monthly standard deviation and yearly mean. Hence, seven - 2

inequality metrics x 3 aggregation methods, including the traditional optimization - optimizations were run

and compared in terms of achieved equality and efficiency. In the following Section, the sub questions are

answered based on the previous Chapters, and finally the main research question for this research.

7.1. Research questions answered

How do varying formulations for inequality shift the existing (baseline) trade-offs across objec-

tives?

Research Question : Sub Question 1

The solutions of maximum, median, and minimum are compared for the equality objective to each

other and to the traditional (reference) solutions. For the median I argue that the Euclidean Mean and the
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Euclidean Deviation lead to the least deviation across objectives, and in this sense highest equality across

objectives. Trade-offs are much weaker. Nonetheless, the efficiency of objectives drops significantly.

On the other hand, the Gini Mean and Gini Deviation leads to less equality (stronger trade-offs) than the

Euclidean formulations, but will yield more equality than the Traditional formulation. In contrast to the

Euclidean formulations, the efficiency of objectives will be higher. Hence, the equality objective satisfaction

is less sensitive to the Gini formulations. Out of the three aggregation methods, the Ratio leads for

both inequality metrics to the least inequality across aggregation methods. Additionally, the Euclidean

Mean is the only formulation to change the trade-offs across objectives since Baltimore will now have

the highest efficiency gain (in the Traditional the lowest), and for other formulations, it has the lowest.

Thus, other formulations lead to more equality but maintain a similar trade-off. The trade-offs are similar

to the Traditional formulation, except for the Euclidean Mean, Gini Mean, and Euclidean Deviation. The

maximum solutions point to similar results with the difference that the Gini Mean leads to the highest

equality across objectives. Moreover, it will also yield the highest efficiency for objectives, and even higher

than for the Traditional formulation. The Euclidean formulations still lead to a high degree of inequality at

the (further) cost of efficiency. The Ratio formulation for both inequality metrics yields again the lowest

equality (largest trade-offs), however, a higher equality than the Traditional formulation.

The minimum solutions point to contrasting implications since the Ratio formulations now provide

the highest equality across objectives. The high equality is followed by the Euclidean Deviation. Other

formulations lead to a lower equality than the Traditional formulation, while for the median and maximum

solution, a different pattern was observed. This indicates that the trade-off depends on the indicator, even

if it is found that one formulation leads to a large shift in the trade-off, either for more efficiency or for more

equality.

What is the role of the inequality metrics on shifting the solution space of the Pareto front?

Research Question : Sub Question 2

When neglecting the aggregation method over time in the analysis I conclude that the inequality metric

plays a key role in the level of achieved equality, and level of achieved efficiency. Summarizing the results,

the main conclusions are: a) The Euclidean formulations lead to more equality because of the penalizing

effect the quadratic formulation has compared to the lack of this formulation in the Gini, b) as observed from

the Euclidean Mean, the higher the equality, the larger the shift on the Pareto front. and c) the distribution

of the solution space widens when equality is introduced in the objective formulation.

The latter is an interesting finding. I infer that the widening of the solution space stems from the

aggregated formulation for equality among the existing objectives. Therefore, more combinations of

redistribution of water become apparent in order to achieve higher equality. The equality objective does

not discriminate against how this redistribution should take place. For example, release decisions to

Baltimore with very low water allocation in the existing formulation can now have water (re-)allocated from

the Hydropower revenue (with previously the highest efficiency gain), but also from any other objective

in that sense. Subsequently, trade-offs point in different directions, widening the solution space. If it is

desired to have a smaller solution space, one can disaggregate the equality objective per objective from

the Traditional formulation in Equation 3.3, increasing the curse of multiple objectives (Giuliani, Castelletti,

et al., 2016). Nonetheless, having disaggregated objectives improves the understanding of trade-offs

rising from specific equality objectives.

What is the role of the aggregation method over time on shifting the solution space of the Pareto

front?

Research Question : Sub Question 3

When observing patterns of the aggregation method, I infer that across aggregation method formulations

the shift in the Pareto front is less significant than across inequality metrics. The inequality metric has

a larger significance in this shift. Furthermore, in terms of consistency, for efficiency, the pattern is not

consistent across aggregation methods. The Deviation and Ratio have a similar distribution for the solution

space, but differ in trade-offs across objectives. The Mean has a different distribution and trade-off. In
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terms of equality, for the median and maximum solution indicators, the Deviation yields lower equality

across objectives than the Mean. The Ratio yields the lowest equality of the three. Fletcher et al. (2022)

finds that if the Mean and Deviation are optimized as a Ratio, chances are that they gain during the

optimization in opposite directions. This could explain the worse-off behaviour of the Ratio. Also, I infer

that the optimization is not able to find a Pareto-optimal solution space, where both the aggregated (yearly

mean) and disaggregated (intertemporal, monthly deviation) aspects are considered to collectively yield

higher equality in terms of the Deviation score (which is used as performance indicators for inequality).

However, in the minimum solutions, this pattern breaks where the Ratio yields the highest equality, followed

by the Deviation, and finally the Mean. Depending on the indicator used, this shifting effect yields more or

less equality. The trade-off across objectives does not follow a specific pattern from the chosen aggregation

method. Nonetheless, the difference between the Ratio on one hand, and the Mean and Deviation (among

the latter two the difference is smaller) on the other, is large when considering equality. The inequality

metric is of higher influence.

How do different operationalization formulations for inequality in existing multi-objective optimiza-

tion models shift the Pareto front?

Research Question : Main Question

From this study, I conclude that the trade-off between equality and efficiency is highly dependent on

the chosen formulation for equality. As a reference, I highlight the behaviour of the Euclidean Mean, which

yields relatively higher equality at the expense of the efficiency gain. Moreover, if it is desired to achieve

high levels of equality as for the Euclidean Mean, the Pareto front will shift drastically compared to other

formulations. For other formulations, the shifting effect will be smaller, but all point out significant changes

in the a) level of equality, b) the trade-off across objectives, and c) the strength of the trade-offs.

7.2. Scientific and societal implication
In terms of scientific implications, using the conclusion above, it must be acknowledged that there is a large

bias introduced from the choice of formulation for equality. Many MOO-studies adopt formulations in the

line of the Gini, but I find that this does certainly not guarantee maximum distributive justice is reached (at

least in terms of equality). I infer that the same conclusion will hold for other distributive justice principles

modelled. Rather than contrasting ethical viewpoints, the focus should lie on finding ways to unify these

viewpoints. An attempt was made by combining the aim of efficiency and equality.

To further unify collective views, unifying the views under the same distributive justice (ethical) principle

is as important. Future studies need to address this normative uncertainty by contrasting the chosen

objective formulation for the distributive justice principle with at least one other formulation. The focus

should lie on contrasting it with another inequality metric formulation. Here I infer that the inequality metric

influences how relative distances are compared and thus optimized. Considering its influence, it is time now

to open the uncertainty box. So, it is time to further explore possible inequality metrics beyond the widely

adopted Gini, or (now) Euclidean. Each inequality metric will have a different formula with penalizations

through quadratic, polynomials, exponential, and linear distances, and thus its own way of considering

justice.

In contrast, I debate that the chosen aggregation method is of less influence, but will most certainly

shift the Pareto front and thus drive the implications. Therefore, future research should critically reflect

on what type of justice their aim is. If intertemporal justice is needed, consider the use of methods such

as the Standard deviation, or other formulations to calculate intertemporal injustices. Moreover, next to

having a critical reflection, the limitations of MOO-model need to be considered, and not just ’rely on’ that it

is doing what it should do. For example, the Ratio of Deviation and Mean will not yield beneficial results for

equality nor justice, while its formulation is assumed to do this. The criteria posed to a MOO-study must be

realistic before its complexity is impossible to handle.

If future research decides to further study the concept elaborated in this thesis, I suggest looking at

multiple points that create a broader view of justice in MOO, and create a deeper understanding of justice in

MOO. First, it is time to consider relative injustice from a disaggregated perspective. Rather than optimizing

the sum of inequalities, it is possible to solely focus on high inequalities. It depends on the context. As it
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was already found (in the Ratio setting too many contrasting criteria for the EMODPS), the more precise

the objective formulation is designed to its goal, the more fit the model will be for its purpose. In this sense,

a maximum relative distance as done in Ciullo et al. (2020) would be interesting to contrast with aggregated

Euclidean Mean. Moreover, for future research, I suggest improving the methods to consider positive and

negative variance. In doing so, considering in which direction the inequality is moving (as discussed in

Chapter 6, discrimination of variance) will improve the combined satisfaction of efficiency and distributive

justice.

In terms of social implications, if our decision-making makes use of reliable decision-support models, it

is time to implement justice in these models and continue with the extraction of advice from these models.

Simulation-based MOO-models such as the EMODPS-model used in this study are a way of dealing with

the complexity of our world by putting its most relevant components flexibly, and modularly in a model.

The time has come to stop using models such as the CBA that are a snapshot of a situation with many

assumptions introduced to study its future implications. Not only will it not be possible to achieve efficiency

in this manner, but it will also not be possible to achieve justice.

To have higher usefulness from these justice-included models, society must further reflect what their

stance is on justice. For example, it needs to address how this justice formulation is related to risk aversion.

This is seen in the results where the minimum solutions imply the optimization of the Euclidean or Gini

Ratio - a formulation that would for the maximum and median solution lead to high inequality - if high

equality is desired. The optimization of formulations to minimize the inequality for the minimum solution

could be seen as the aggregation of undesirable scenarios where actors (or stakeholders) want to avoid

injustices at all costs. Vice versa, optimizing for the maximum solutions connects to scenarios where

actors have a positive prospect about the future they want to optimize. In these statements, the probability

of achieving these desired results is not part of the scope. What is part of the scope, is to include what

actors want before getting to pragmatic implementations. Even with a lack of data, that is seen as the

holistic purpose of this thesis. Collect views, unify views, and unify distribution.
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A
Parallel Axes Plot explained

To explain how the Parallel Axes Plot works, Figure A.1 a) exemplifies solutions of an optimization problem

with two objectives of the case-study. In the case-study, I want to minimize the environmental shortage

index, and maximize the recreational reliability. Both objective values can lie between 0 and 1. All solutions

found for this problem are plotted. All solutions are in blue, and the Pareto-dominant solutions are in red,

further described as the solutions that are superior to other solutions. A solutions gains this title if the found

solution is better than other solutions for (at least) one of the objectives, and at least better than another

solution for the other objective. Hence, the solution cannot improve without sacrificing the performance for

another objective. In Figure A.1 a), this is possible for the solution with coordinates (0, 0.6) and (0.4, 0.6).

In these two Pareto-dominant solutions, the implications of a trade-off directly become apparent, where the

recreation objective for coordinate (0.4, 0.6) is maximized at the cost of an increase in the environmental

objective of 0.4.

Now imagine that there are not two objectives, but multiple, i.e. dimension higher than two (three or

more). It becomes impossible to plot the solutions using a 2-D scatter plot in the same manner. Luckily, the

Parallel Axes Plot is the solution to deal with this. Figure A.1 shows that when also the atomic power plant

objective needs to be maximized, it is better to show the coordinates of a higher dimension optimization

problem using a solution line. The solution line passess through the coordinates of each objective, and

in this way sheds light on trade-offs across objectives. For example, coordinate (0.4, 0.6) is shown in

Figure A.1 through the red line passing through 0.4 on the first axis (Environment), 0.6 on the second axis

(Recreation), and 0.8 on the third axis (the Atomic PP).

Now that the Parallel Axes Plot has been explained which is the foundation for the trade-off analysis, I

can continue with the analysis of results. The Parallel Axes Plot will be used to see how the set of solutions

yields combinations in the objective space (the space of all possible objective values that can be achieved).

The Parallel Axes Plot sheds lights on trade-offs between objectives, making it the most useful visualization

on how the Pareto front eventually shifts relative to the Traditional formulation when being complemented

with alternative operationalization formulations for the distributive justice principle.
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(a) Example Scatter Plot. On the x-axis, the environmental objective, to be

minimized. On the y-axis, the recreational objective, to be maximized.

(b) Example Parallel Axes Plot. On the axis 1, the environmental objective, to be minimized. On the axis 2, the recreational objective,

to be maximized. On the axis 3, the atomic power plant objective, to be maximized.

Figure A.1: Example plots to explain how to convert a scatter plots to Parallel Axes Plots.



B
Formulations

B.1. Objectives
The explanation on the objectives is paraphrased from Zatarain-Salazar et al. (2016). The formulations

are inspired from Hashimoto et al. (1982).

Hydropower revenue objective

Jhydro =

H∑
t=1

HPt · pt (B.1)

where Jhydro (to be maximized) is expressed in $/MWh and is the sum of the Hydropower generated

(in MWh) multiplied by the energy price, at time step t. HPt generated is further calculated through Eq.

B.2.

HPt = η · g · γw ·∆h̄qturbt · 10−6 (B.2)

where η is the turbine efficiency, g is acceleration due to gravity, γw is the water density (1000 kg/m3),
∆H is the net hydraulic level in metres (reservoir level - tail water level) and qturbt is the turbine flow inm3/s
at time step t.

Chester, Baltimore, Atomic power plant reliability objective

JV R,i =
1

H

H∑
t=1

Yi,t

Di,t
(B.3)

where JV R,i (to be maximized) is expressed in volumetricreliability ranging between 0 (no reliability)
to 1 (full reliability). i can be for the three actors of Tab. 3.1 - Baltimore, Chester and Atomic Power Plant.
At time step t for actor i, volumetric reliability is expressed as the ratio between the water allocated Yi,t in

m3 and the demand Di,t in m3.

Environmental shortage index objective

JSI =
1

H

H∑
t=1

max
(

Zt − Yt, 0)

Zt

2

(B.4)

where JSI (to be minimized) is expressed in the self-formulated shortageindex, that is relative to the
FERC 1. The shortageindex ranges between 0 (high shortage) to 1 (no shortage). At time step t, volumetric
reliability is expressed as the ratio between the difference of the FERC flow requirement Zt and the water
allocated Yt divided by the FERC flow requirement Y + t, both variables expressed in m3

1Federal Energy Regulatory Commission reponsible for environmental flows of River Basins such as the Susquehanna River Basin.
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Recreational objective

JSR = 1− nf

2Nwe
(B.5)

where JSR (to be maximized) is expressed in storagereliability in weekends of touristic periods,

ranging between 0 (no reliability) to 1 (full reliability). nf is the number of weekends the storage falls below

the level, divided by the total number of weekends Nwe of the touristic period. The target level is 32.5 m
(106.5 ft), a sufficient level for boats to drive on the reservoir.



C
Remaining results

C.1. Convergence plots
To summarize the findings, the GD indicates that the solutions for all formulations converge after 50,000

function evaluations.

The EI shows that for all formulations, except the Gini Mean, the ε dropped below 0.3, indicating a high

convergence. The Traditional formulation showed quite some diversity across seeds, as well as for one

seed of the Gini Ratio formulation. Other formulations had a reasonably stable behaviour across seeds,

indicating its convergence but also that the solution set across seeds is less diverse. There is the risk that

solutions converge to a local optimum since the solutions converge relatively fast. However, running more

function evaluations would not offer a solution. More seeds need to be run, but this would be beyond the

computational load of this thesis.

C.1.1. Generational Distance
In this case, a low metric value was desired as it indicates the average distance between the global

reference set and the Pareto front approximation. Generational distance was used in this study mainly to

detect an absolute failure in the configurations.

After approximately 50,000 function evaluations, most solutions had converged. In conclusion, the

generational distance converges to a reasonably low distance value from the global reference set, which

aimed to represent the real Pareto front.

C.1.2. Epsilon Indicator
The additive epsilon indicator measured gaps in the Pareto front, hence, it was a harder metric to meet

than generational distance. Similarly to generational distance, this metric was computed relative to a global

reference set and a low value was desired as it measured the distance that an approximation set needs to

be translated in order to dominate the global reference set.

The Gini Mean principle did not approach low distances, as well as the Euclidean Mean. Conversely, it

is these two formulations that showed the least variability in solutions found across seeds. As a matter

of fact, the Mean formulations were far off from an ideal distance. An explanation for this could be that

the global reference set was calculated without having a methodology that standardized the distributive

justice values from each formulation to a uniform value. Therefore, formulations such as the normalized

Euclidean Mean with values had a different range to Gini values between 0 and 1. Other formulations

converged towards a low distance from the global reference set. However, there was a significant amount

of variability for the Gini Ratio, Gini Deviation, and Euclidean Deviation, while for the Euclidean Ratio, the

solution was more stable.

Hence, for most of the formulations, the epsilon indicator indicates that there was quite some variability

across seeds for each formulation. This may indicate that the solution space from each seed was stuck in

local optima, showcasing different trade-offs from the objective space. This was without necessarily being

near to the global reference (except for the Euclidean Ratio, Euclidean Deviation, and Gini Deviation).
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Figure C.1: Generational Distance for each formulation in Tables 4.1, 4.2.
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Figure C.2: Epsilon Indicator for each formulation in Tables 4.1, 4.2.
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C.2. Statistical analysis
C.2.1. Choice for statistical tests
Non-parametric statistical tests were used to determine if there were statistically significant differences in

the distribution between the objectives across formulations. This was done using the Kruskall-Wallis H

test, and the Mann-Whitney U test. Both tests were used to determine if there are statistically significant

differences across objectives, and across formulations. Both tests were non-parametric, meaning that they

did not rely on assumptions of normality or equal variances. For this analysis, a p-value < 0.05 indicated

that the H0 could be rejected.

1. The Kruskal-Wallis H test was used when comparing two objectives from the same formulation, and

it tested the null hypothesis that the distributions from the two objectives were drawn from equal

medians. In light of this context, the Kruskal-Wallis was be tested to determine if the median of the

traditional objectives in Equation 3.3 was drawn from the median of the justice objective (i.e. Jequity).

2. The Mann-Whitney U test, on the other hand, was used to compare the objectives between formula-

tions, and it tested the null hypothesis that the two samples had the same distribution.

For the Kruskall-Wallis test the following null hypothesis was assumed:

H0 = The samples from the distribution for objective i in Equation 3.3 originated from the same distribution

as Equation 3.4. Hence if the null hypothesis was rejected it means that the mean of groups from justice

levels was different across a chosen objective i, i.e. the justice levels affected (correlate with) the objective

i values.

For the Mann-Whitney test the following null hypothesis was assumed:

H0 = The distribution from objective i in Equation 3.3 and formulation j in Table 4.1 had the same

distribution as another objective in Eq. 3.3 and another formulation in Table 4.1. The probability of

distribution were equal.

Hence if the null hypothesis is rejected it means that the distribution of a specific objective (i) for a

specific formulation (j) is independent from the distribution of another objective, or over another formulation.

C.2.2. Statistical tests results discussion
Due to the extensiveness of the results across objectives and across formulation, the results are only visible

in the notebook for statistical tests. To summarize the analysis, the null hypothesis of the Kruskall-Wallis

test can be rejected for all objectives. Hence, the means of the justice objective and traditional objective

were independent of each other.

Mann-Whitney across formulations with the same objective: For the Mann-Whitney analysis,

interesting insights are formed. The p-value of the distribution for the Atomic PP exceeded a p-value

of 0.05 across several of the formulations. Between the Traditional formulation and formulations with

distributive justice, the p-value would always exceed 0.05 for the Atomic PP. Subsequently, the distribution

for the Atomic PP objective was not unique to the formulation observed.

Interestingly, while the Gini formulations shared a high p-value when comparing the Atomic PP, Chester,

and the Environment objectives across different aggregation methods (over time), for the Euclidean

formulation the case was less strong. Hence, the Gini, regardless of the aggregation method over time,

provided the same distribution for the aforementioned objectives. Nonetheless, the p-value exceeded 0.05

for any Deviation or Ratio formulation, regardless of the inequality metric used. This indicates the strength

of the influence the Deviation formulation of Eq. 3.7 has on the Ratio.

Mann-Whitney across formulation with a different objective compared: The distributions across

different objectives from different formulations were different such that the null hypothesis can be rejected.

Only between formulations with the Mean (aggregation method over time) (i.e. F2, F4, F5, and F7 of

Table 4.1) I infer that the distributions of the Atomic PP and Chester are similar (p-value > 0.05). Such

formulations shared the same shift in the Pareto front. Note that this does not say anything about the

trade-offs across objectives since the combination of objective values to form the Pareto front is insensitive

to the distribution. For other objectives, there was a statistical difference between the distribution of

objectives.

https://github.com/farleynitro/MUSEH2O/blob/main/susquehanna/notebooks/Farley_Statistical_analysis.ipynb
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C.3. Parallel Axes Plot: Traditional formulation with inequality met-

rics
There was already a subset of solutions with less strong trade-offs between the Hydropower revenue,

Atomic PP, and Baltimore. However, this came at the cost of lower values for Chester. Additionally, there

were also solutions with a strong opposite trade-off between Chester and Baltimore, where Chester had

low values, and the Atomic PP and Baltimore subsequently reached higher values. Finally, there was also

a small subset of solutions, that produced no trade-off between objectives and ensured high objective

values for each objective. The frequency of such solutions was very low, which was almost not apparent in

the objective space, as shown in Figure C.3.

When bringing inequality into the discussion, relatively high equality values were achieved. For the

Gini Mean, this lied between 76% and 92%, Gini Deviation between 99% and 100%, Euclidean Deviation

between 77% and 95%, the Gini Ratio and Euclidean Ratio between 96% and 99%. Conversely, due

to the range of the Euclidean Mean, the metric was normalized according to its own range of values.

Subsequently, the range varied between 100% and 0%, with the lowest justice value indeed leading to

a strong trade-off between objectives (low Baltimore value and high Chester value, high Hydropower

revenue, Atomic PP value, and Environmental value). It should be noted that across inequality metrics,

the value for justice of the solutions for the extreme (maximum, median, minimum) of the Hydropower

revenue, varied. For example, while the solution for max Hydropower revenue reached the lowest justice

value according to the Euclidean Mean, the Gini Deviation indicated that this solution reached the highest

justice value. Similar variations in implications could be noted across other inequality formulations between

minimum, maximum, and median. This indicates how dependent the justice values from solutions are on

the inequality formulatuion implemented. The inequality formulation resulted in opposing levels of justice

across solutions.

When optimizing over a formulation with an equality formulation, the Traditional formulation had low

equality values compared to these formulations. The optimization of other formulations ensured that the

relative distance between objectives was minimized. However, each formulation changed the trade-offs

observed in the Traditional formulation differently, which is discussed next.

To summarize, the solution of maximum Hydropower revenue led to the strongest trade-off across

objectives, and the median solution of Hydropower revenue led to the weakest trade-off across objectives.

The inequality formulations that showcased this behaviour were the Gini Mean and Euclidean Mean.

Hence, these two formulations can be used as reference objectives to analyze trade-offs between achieving

efficiency of the Hydropower revenue, and the according justice value. Note, that this does not mean

the standard deviation formulations were not apt to determine justice. Instead, such inequality metrics

optimized justice across the intertemporal scale, something that could not be seen in this plot with a

different aggregation over time. Since the traditional objectives were calculated in yearly means, the

behaviour of justice across objectives was difficult to put into the context of formulations optimizing over

deviations across smaller time steps.

Figure C.3: Parallel Axes Plot: solutions of the Traditional Formulation, with emphasis on the maximum,

minimum, median solution of the Hydropower revenue objective. Besides the optimization of the

Traditional formulation, the justice score according to each distributive justice formulation is visible.
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C.4. Parallel Axes Plots: All solutions sorted by Hydropower revenue

formulation
The widespread of solutions was large, which puts into question if having the median, maximum, or

minimum as a reference was the best method to show differences. The Hydropower revenue was kept as

a reference for efficiency. Subsequently, the deviation was used how much equality is reached.

There was a significant difference between the Euclidean and Gini formulations. The Gini kept the same

trade-off as observed for the Traditional formulation. When comparing the Gini Mean with the Euclidean

Mean, I notice that the Euclidean Mean is the first formulation to show solutions where Hydropower

revenue were favoured while also reaching high values across other objectives. In comparison, each

Gini formulation showed a similar Pareto front to the Traditional formulation. The Euclidean Deviation

and Euclidean Ratio will resemble the Traditional trade-off. However, baseline (traditional) Pareto-optimal

solutions led to higher values for other objectives, or the same Pareto solutions shifted the trade-offs. For

example, for the Euclidean Ratio, some of the solutions yielded for Baltimore higher values, while Chester

had lower values.

In terms of Deviation, there was little difference to notice since the range of values seemed to be spread

over the entire spectrum. A small difference observed was that complementing formulations reached lower

Deviation values than the Traditional formulation.

Figure C.4: Parallel Axes Plot: Solutions for the Traditional formulation, sorted by the Hydropower

revenue. There is a strong trade-off between the objectives having high values, and Baltimore having low

values.

Figure C.5: Parallel Axes Plot: Solutions for the Gini Mean formulation, sorted by the Hydropower

revenue. There is a strong trade-off between the objectives having high values, and Baltimore having low

values.



C.5. Boxplot of inequality scores 71

Figure C.6: Parallel Axes Plot: Solutions for the Gini Deviation formulation, sorted by the Hydropower

revenue. There is a strong trade-off between the objectives having high values, and Baltimore having low

values.

Figure C.7: Parallel Axes Plot: Solutions for the Gini Ratio formulation, sorted by the Hydropower revenue.

There is a strong trade-off between the objectives having high values, and Baltimore having low values.

Figure C.8: Parallel Axes Plot: Solutions for the Euclidean Mean formulation, sorted by the Hydropower

revenue. There is a strong trade-off between the objectives having high values, and Baltimore having low

values.

C.5. Boxplot of inequality scores
In this Section, the discussion focuses on values in relative terms without looking at the values of justice,

because the values are merely a measure of relative distance, i.e. inequalities. Hence, what it means to

achieve a certain equity value was not representative of an exact degree of justice. The metric values

gained relevance when they were compared to each other. To make this possible, while the optimization
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Figure C.9: Parallel Axes Plot: Solutions for the Euclidean Deviation formulation, sorted by the

Hydropower revenue. There is a strong trade-off between the objectives having high values, and

Baltimore having low values.

Figure C.10: Parallel Axes Plot: Solutions for the Euclidean Ratio formulation, sorted by the Hydropower

revenue. There is a strong trade-off between the objectives having high values, and Baltimore having low

values.

was run for a specific distributive justice formulation such as the Gini Mean complementing the Traditional

formulation, for each solution found the other metrics were calculated as well, without optimizing over them.

Hence, it became possible to compare what degree of justice had been achieved according to one specific

formulation, over other formulations. This brought light to differences between justice values achieved

across inequality metrics and across aggregation methods over time. One should recall that it was desired

to minimize the justice value. Hence the distribution closest to 0 was desired.

C.5.1. Gini Mean inequality score
According to the Gini Mean, there was no difference in justice achieved between the Traditional formulation,

Gini Mean, and Gini Deviation. The Gini Ratio led to higher inequality. The Euclidean Mean was the

formulation reaching lower inequality. This was also seen in the Parallel Axes Plot. For other formulations,

it was unclear why the Traditional formulation had a similar distribution for this inequality score. Especially,

when observing the median of solutions, this indicates that the trade-offs were substantially weaker

compared to the Traditional formulation.

C.5.2. Euclidean Mean formulation inequality score
Previously it was determined that the Gini Mean and Euclidean Mean best represent when a solution is just

due to the horizontal line across objectives observed aligning with a higher justice value in its formulation.

Since the Euclidean Mean was normalized to its own solution range space it was most suitable to show

the ranges achieved across solutions.

According to the Euclidean Mean, the different formulations will lead to similar justice values. It
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Figure C.11: Boxplot: Distribution of the solutions from formulations in terms of each objective value. F1

is the Traditional formulation. F2 to F7 are the Traditional formulations combined with a complementing

equality objective in the objective function. F2 combines the Traditional formulation (F1) with the equality

objective using the Gini Mean operationalization formulation, F3 with the Gini Deviation formulation, F4

with the Gini Ratio formulation, F5 with the Euclidean Mean formulation, F6 with the Euclidean Deviation

formulation, and F7 with the Euclidean Ratio formulation.

is interesting to note that the justice achieved by the Traditional formulation again was similar to the

formulations where distributive justice was being optimized. When zooming into relative differences, while

the Gini Mean indicated that the Gini Deviation led to a slightly higher IQ range, for this inequality score,

the Gini Deviation indicated a lower IQ range. Thus, there was a difference in justice across inequality

metric used for optimization.

Moreover, only the Euclidean Mean reached lower justice values. This was also seen in the Parallel

Axes Plot analysis. However, this will be at the cost of efficiency as observed from the distribution of the

different objectives.

C.5.3. Gini Deviation, Gini Ratio, Euclidean Deviation, Euclidean Ratio inequality

score
Both inequality scores indicated the same. While the Euclidean Mean achieved more justice when looking

over the yearly mean objectives, across months, the Euclidean Mean was responsible for a higher inequality.

This was an interesting finding, which indicates that there is a trade-off to be made between justice across

time (disaggregated) and justice over the entire time span (aggregated).

Furthermore, when looking at the differences across formulations, there were small changes in inequality
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compared to the Traditional formulation. For this, the Euclidean Deviation was used as inequality score

since it best represented the differences. In contrast to the Euclidean Mean, the Gini Mean lowers the IQ

range compared to the Traditional formulation. The Euclidean Deviation, and Euclidean Ratio lower the

median similarly to the Gini Mean. Conversely, the Gini Deviation and Gini Ratio bring the IQ range up

(with the median). This indicates that the penalizing effect for relative distances across months was weak

such that the behaviour for distributive justice relative to the traditional maximization was not dominant in

the optimization.
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