
  

 

 

 

 

 

Exploring the enhancement of predictive accuracy for minority 

classes in travel mode choice models. 

 

 

Master thesis submitted to Delft University of Technology 

in partial fulfillment of the requirements for the degree of 

Master of Science in 

Engineering and Policy Analysis 

Faculty of Technology, Policy and Management 

 

Author: Aspasia Panagiotidou 

Academic Year: 2023-2024   

 

 

 Chair & First Supervisor: Dr.ir. Sander van Cranenburgh 

                    Second Supervisor: Dr. Trivik Verma 

                            External Supervisor: Dr.ir. Kingsley Adjenughwure 

                            Advisor: Ir. Gabriel Nova 

 

 

All rights are reserved. No part of this thesis or the content on it may be reproduced, stored or transmitted 

in any form or by any means electronic, mechanical, photocopying, recording or otherwise, without the permission 

of the author and TNO. 

 



2 
 

Acknowledgements  

I would like to express my gratitude to everyone who contributed to this project. First of all, I would like 
to convey my special gratitude to my external supervisor from TNO, Dr.ir. Kingsley Adjenughwure, for 
all his guidance, the support and the time he devoted throughout this project. His contribution was truly 
invaluable. Secondly, I would like to express my gratitude to my first supervisor, Dr.ir. Sander van 
Cranenburgh for entrusting me with this project. I would like to thank him for his guidance as well as for 
bringing me in contact with TNO and assisting me with my internship. Next, I would like to express my 
gratitude to my second supervisor Dr. Trivik Verma, for agreeing to be part of my committee. I would 
also like to thank him for his guidance and for warmly welcoming me to CUSP. Lastly, I would like to 
express my gratitude to my advisor from TU Delft, Ir. Gabriel Nova for all his help and the time he 
dedicated. His expertise in the DCM models has been invaluable to me. Furthermore, I want to express 
my gratitude to all colleagues from SUMS for the inspiring discussions and their assistance on this 
project. Finally, none of this would have been possible without the unwavering support from the most 
important people in my life. I feel truly blessed to have them by my side. 
 
 

 

 

  



3 
 

Executive summary  

Transportation systems are pivotal in shaping the economic and social dynamics of contemporary 
societies, fostering connectivity and opportunities while reducing geographical distances. Despite these 
benefits, they also contribute to adverse effects such as emissions, congestion, and traffic fatalities. 
Effectively developing and maintaining transportation infrastructure and services that cater to evolving 
population needs and align with environmental goals requires accurate forecasting of travel demand. 
However, due to inherent uncertainty in individuals' behavior and data limitations, forecasting this 
demand is a complex task. 

A common limitation often encountered in transport datasets is class imbalance, with regard to the 
utilization of the different modes. Class imbalance in this context refers to the uneven distribution of 
samples among the various modes. Modes with a higher number of samples are termed majority modes, 
while those with fewer instances are labeled as minority modes. The existence of class imbalance within 
the dataset has the potential to compromise the performance of classifiers, especially for the minority 
modes, leading to inaccurate forecasts. This, in turn, may result in insufficient investments and 
provisions for these modes, ultimately having adverse consequences for the population segments that 
rely on them. Existing studies in the literature have either entirely overlooked or only partially addressed 
the impact of class imbalance. Recognizing the significance of precise demand predictions and 
acknowledging the identified gaps within the literature, the primary research question of this study was 
formulated as follows: 
 

“How can the impact of class imbalance in  model performance  be systematically identified and 

addressed in transport mode share forecasting?’’ 

 

To address the main question, a framework was proposed. This framework encompassed various 
aspects including a) the measurement of class imbalance within a dataset and the assessment of its 
impact on classification performance, b) the investigation of other challenging factors coexisting in 
imbalanced datasets, with a specific focus on class overlap, and c) the proper evaluation of classification 
performance across classes. As an integral part of this framework, the 'Performance Gap Metric’ was 
introduced - a metric employed to evaluate the difference in classification performance between the 
majority and minority classes. Establishing a threshold of 20%, favorable classifier performance was 
determined when this metric fell below the threshold, signifying the classifier’s equitable treatment of 
both minority and majority classes. Subsequently, this framework was applied using the ODiN data as a 
case study to predict mode choices in the Netherlands. Mode choices encompassed car, bike, and 
transit, with car representing the majority and transit the minority class. Two modeling techniques, 
namely Random Forest and an MNL model, were employed in conjunction with various sampling 
techniques, including the SMOTENC, the Neighborhood-based Undersampling, and the Separation 
scheme. 

The key findings of this study can be summarized as follows: Both models were impacted by the 
presence of class imbalance and class overlap in the dataset, exhibiting a reduced performance on the 
minority class. Multiclass scenarios proved to be more complex compared to binary scenarios. Among 
the employed sampling techniques, SMOTENC and Neighborhood-based Undersampling demonstrated 
superior performance in binary and multiclass scenarios, respectively, when employing the Random 
Forest model. This resulted in the Performance Gap Metric falling below or nearly reaching the 
predetermined threshold in each case. Conversely, when employing the MNL model, SMOTENC 
emerged as the best-performing technique, achieving a Performance Gap Metric below the 
predetermined threshold in both scenarios. Furthermore, the heightened sensitivity of the minority 
class after the  implementation of sampling techniques was consistently accompanied by a decrease in 
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its precision, indicating a trade-off between the two metrics. Concurrently, as the sensitivity of the 
minority class increased, in most scenarios, the sensitivity of the other classes and sometimes the overall 
accuracy also decreased, suggesting that achieving fairness might necessitate compromises. 

Moreover, this study provided practical recommendations concerning all aspects addressed within the 
proposed framework, while it also suggested considerations beyond the accurate prediction of travel 
demand that transport planners and policymakers should take into account to ensure an inclusive 
transportation system. Finally, the primary limitations of the study were also acknowledged. These 
included the exclusive assessment of the Performance Gap Metric based on the majority (Car) and 
minority (Transit) classes, overlooking the classifier’s performance on the Bike class in multiclass 
classification tasks, as well as the confined testing of the proposed framework in only one specific case. 
As recommendations for future research, the consideration of all classes when evaluating the classifiers’ 
performance and an extended validation of the proposed framework were proposed. Furthermore, 
exploring more advanced techniques, such as the use of generative models to augment the minority 
classes and the implementation of  feature engineering techniques to enhance class separability, were 
also suggested. 
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CHAPTER 1: Introduction 
Transport systems hold great significance as they serve as the backbone of economic and social 
activities, bringing people together, reducing distances, and connecting individuals to a multitude of 
opportunities, encompassing education, employment and leisure activities. Conversely transportation 
can also have external effects such as congestion, carbon emissions, noise and traffic fatalities, which 
negatively impact human well-being (Mackett & Thoreau, 2015).   
 
To create and uphold transportation infrastructure and services that align with both the travel demand 

of the population and environmental and other sustainability goals, precise assessment of travel 

demand stands as a paramount necessity for urban planners and transportation authorities. Travel 

demand has a substantial influence on resource allocation for infrastructure investments and the 

prioritization of transportation policies (H. Chen & Cheng, 2023). Nevertheless, forecasting this demand 

is a challenging task. The complexity emerges from the inherent uncertainty in individuals' behavior as 

they adapt their preferences based on a multitude of factors, limiting modelers from accurately 

representing the actual decision-making processes individuals undergo when selecting transportation 

modes. Furthermore, challenges in data quality, such as incomplete data or biases introduced by 

sampling methods or survey designs focused on collecting pertinent information, contribute to the 

overall complexity. 

 
A common limitation observed in transportation datasets is the occurrence of class imbalance, 

especially concerning the distribution of users across different travel modes (Qian et al., 2021; Hillel et 

al., 2021; H. Chen & Cheng, 2023). Class imbalance, in this context, refers to the uneven distribution of 

target classes within the dataset (Fernández et al., 2018), where certain modes, termed majority classes, 

have a significantly larger number of samples compared to others, termed minority classes. Using 

imbalanced data to predict travel demand can result in inaccurate forecasts, particularly resulting in a 

diminished number of correctly classified minority samples, as classifiers often demonstrate suboptimal 

performance on minority classes (Johnson & Khoshgoftaar, 2019). The underestimation of travel 

demand for minority modes can lead to diminished attention and support for these modes in terms of 

transportation planning and resource allocation. 

 
In the context of the conventional approach to evaluating transportation projects, an accurate 

determination of modal shares, especially for less commonly used modes (minority modes), is of 

paramount importance. Traditionally, the primary method for evaluating transportation projects in 

most western countries has been the use of Cost-Benefit Analysis (CBA).  CBA has its roots in utilitarian 

theory, which places paramount importance on achieving the greatest good for the largest  number of 

people (Van Wee & Roeser, 2013). Allocating resources to transport infrastructure, driven by higher 

user demand and potential overall benefits, leads to overlooking  the spatial, social, and economic 

background of various groups within this demand (Pereira et al., 2016; Jafino et al., 2021). This approach 

can exacerbate disparities among disadvantaged populations, which within the literature, are defined 

by factors such as income level, gender, age, and health status (Hananel & Berechman, 2016). 

For instance, designing transportation systems for sparsely populated rural areas is often seen as 

economically challenging, leading to a prioritization of investments in urban areas. Due to their larger 

populations and economic importance, urban regions often occupy a higher position in the political 

agendas and decision-making processes related to transport, while rural regions frequently experience 

exclusion (Flipo et al., 2023) Many individuals facing restricted transportation options in outlying areas 

belong to the low-income demographic, often forced to relocate from city centers due to soaring 

housing costs. This group encompasses single-parent families, migrant families, newly established 
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households (e.g., first-time homebuyers), and elderly, some of whom may also lack access to a car or 

have given up driving (Stanley & Stanley, 2017). Conversely, higher-income residents also inhabit 

suburban areas, but their residential choices are primarily driven by preference rather than necessity  

Scott & Horner, 2008; Van Wee and Geurs, 2011). 

In the Netherlands, public transport represents a minority mode, serving only 9% of the population (CBS, 

2019). Public transport systems, encompassing trains, buses, trams, and metros, play a vital role in 

reducing carbon emissions, alleviating traffic congestion, and ensuring essential accessibility, especially 

for population groups such as low-income individuals, the elderly, and students who heavily rely on 

transit for their daily travel needs. Underestimating the demand for public transport can lead to 

insufficient investments in these systems and a lack of prioritization in improving service quality, 

frequencies, and accessibility where it is most needed. Restricting access to essential services and 

opportunities for specific subgroups may ultimately result in their isolation and social exclusion.  

 

Scientific Relevance 
Different levels of transport service provision and transport policies often result in mode choice data 

exhibiting a significant degree of class imbalance (Hillel et al., 2021). Determining mode choices is 

primarily a classification task, which in presence of discrepancies in the number of samples among the 

target classes can become difficult (Qian et al., 2021). Despite being infrequent, minority classes can 

contain valuable information, often overshadowed by classifiers' focus on classes with larger sample 

sizes. Nevertheless, the challenge of class imbalance in the field of mode choice modeling has not yet 

been sufficiently addressed (H. Chen & Cheng, 2023). 

 

Within the domain of travel-behavior research and mode share  prediction, discrete choice models, 

particularly those belonging to the logit family, have traditionally been heavily relied upon. These 

models, known for their interpretable results, offer insights into the behavioral aspects influencing 

decision-making processes (Kashifi et al., 2022). The most widely used discrete choice model is the 

Multinomial Logit (MNL) model (McFadden, 1973), while other statistical models such as the nested 

logit and mixed logit models have been used as well. Occasionally, Machine Learning (ML) models are 

also applied due to their enhanced prediction capabilities and efficient handling of large datasets 

(García-García et al., 2022). Nevertheless, their adoption by choice modelers has been slower, as despite 

their superior predictive performance, ML models face criticism for operating as 'black boxes' and 

lacking the theoretical basis for understanding and interpreting human behavior (Brathwaite et al., 

2017). Both model categories can be affected by the presence of class imbalance, exhibiting problems 

in accuracy performance (van Cranenburgh et al., 2022).  

 

Various research studies in the domain of mode share forecasting have essentially neglected the issue 

of class imbalance (Omrani, 2015; Sekhar et al., 2016; Zhao et al., 2020). On the contrary, there are still 

some studies that have made efforts to address it by incorporating a range of methods derived from 

the field of machine learning, which has extensively examined class imbalance over the past two 

decades (Johnson & Khoshgoftaar, 2019). Hagenauer and Helbich (2017) leveraged oversampling and 

under-sampling techniques to balance their dataset and improve the prediction accuracy of the minority 

modes. However, their analysis focused solely on classification results following the implementation of 

these techniques, without offering a comparison of classifier performance before data balancing. Qian 

et al. (2021) introduced a novel Support Vector Machine (SVM) model that significantly enhanced the 

accuracy of minority modes. However, despite its effectiveness, this method is tailored to  their specific 

model and cannot be applied across various classifiers. Kim (2021) took a different approach, increasing 

the visibility of minority class instances by assigning weights inversely proportional to the frequency 

https://www.sciencedirect.com/topics/computer-science/discrete-choice-model
https://www.sciencedirect.com/science/article/pii/S0957417417300738?casa_token=blrFX_hsvsEAAAAA:zMaWtbHTlPeC_o7mx7ohz3uIB3ymE1e1sd33zkJPjC-CnKUTyfRpiecozpOoFpnYqRU4KclN#bib0047
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distribution of each class during the training of the models. Nevertheless, their approach did not prove 

successful, as the performance of the minority class remained poor. Finally, other studies have primarily 

focused on assessing the overall performance of models without considering  metrics that evaluate the 

performance independently on each class, such as recall, f1-score and others (García-García et al., 

2022). Even in cases where class specific evaluation metrics were considered and a thorough 

comparison of results before and after the implementation of balancing techniques was presented, as 

observed in the study by H. Chen & Cheng (2023), a comprehensive and generic framework for 

addressing the impact of class imbalance was absent. 

 
Considering the above, it becomes evident that existing research studies in mode choice forecasting 
either neglect or only partially address the presence of class imbalance in the data. Given that, the main 
gap in the current literature is pinpointed in the lack of a systematic and structured approach that 
researchers in the field could adopt to effectively manage case studies involving imbalanced datasets. 
 
 

Objective 
So far, it has been clear that class imbalance can negatively impact the performance of classifiers, and 

a diminished predictive performance for minority modes can have adverse effects on future transport 

provisions aiming to create an inclusive transportation system. Recognizing the importance of attaining 

consistently precise predictions across various travel modes and taking into account the primary gap in 

the current body of literature, our principal aim in this research is to introduce a comprehensive 

framework for systematically identifying and mitigating the implications of class imbalance on classifier 

performance. Specifically, through this framework, we aim to provide guidelines on: a) quantifying class 

imbalance within a dataset, b) investigating potential adverse effects on the classification performance 

of minority modes, c) exploring other challenging factors co-existing in imbalanced datasets, with a 

particular emphasis on class overlap, and d) evaluating the classification performance across classes 

both before and after implementing techniques aimed at addressing performance degradation caused 

by imbalanced datasets. Furthermore, to showcase the practical application of this framework, we plan 

to implement it in forecasting mode share in the Netherlands, utilizing the 'Onderweg in Nederland' 

(ODiN) data for the years 2018-2019 as a case study. 

 

The main research question of this study is formulated as follows:  

 

“How can the impact of class imbalance in  model performance be systematically identified and 

addressed in transport mode share forecasting?’’ 

 
To be able to answer the main research question the following sub-questions will be also addressed: 
 

1. What are the existing techniques for identifying and addressing  the impact of class imbalance 
in model performance in different contexts? 
 

2. How can these techniques be incorporated within a comprehensive framework aiming in 

systematically addressing class imbalance? 

 

3. How can the application of these techniques be extended across various types of transport 

mode share forecasting models, encompassing both traditional utility models and machine 

learning models? 
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This research study will be conducted within the Sustainable Urban Mobility and Safety department 

(SUMS) at TNO. Recently, SUMS has shifted its focus towards leveraging the capabilities of machine 

learning algorithms in the field of travel mode choice modeling. Acknowledging the common occurrence 

of class imbalance in transportation datasets and its impact on the predictive performance of minority 

modes, the department is dedicated to thoroughly investigating and addressing the potential 

implications of class imbalance on the performance of models forecasting mode share. 

 

So far, the problem of this research study has been introduced. The subsequent structure of this 
document is as follows: Chapter 2 provides an in-depth literature review, highlighting the identified 
knowledge gaps and establishing the theoretical background. Chapter 3 outlines the proposed 
framework, constituting the methodology of this study. Moving forward, Chapter 4 offers a 
comprehensive description of the data used in this study. Chapter 5 presents the application of the 
proposed methodology as well as the results of our analysis. Finally, Chapter 6 serves as the conclusion, 
summarizing the main findings, highlighting limitations and proposing ideas for future research (Figure 
1). 

 

 
 

Figure 1. Flowchart of the present research study.  
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Chapter 2: Literature Review  &  Theoretical Background 
Following the introduction of the primary research question and sub-questions in this study, this chapter 

reveals our findings from a comprehensive review of the existing literature, aimed at identifying gaps 

related to the treatment of class imbalance within recent mode choice studies. Additionally, it provides 

readers with the theoretical background necessary for a thorough understanding of the key concepts in 

this study. Specifically, it delves into defining class imbalance and class overlap, elucidating existing 

techniques to address them. Subsequently, it provides insights into the models and sampling techniques 

employed in this study. 

2.3 Class imbalance in the Transport domain  
In Chapter 1, we briefly outlined the gaps related to addressing class imbalance in studies focusing on 
mode choices. This section delves deeper, providing a more thorough presentation of these studies. 
Table 1 outlines key information for each study, including its objectives, the data and models employed 
and the metrics utilized to assess the classifiers’ performance. Additionally, we highlight whether 
researchers have implemented techniques, specifying which ones, to address class imbalance.  
 
Beyond addressing class imbalance, this study places emphasis on investigating and mitigating the 
potential existence of class overlap in the data. Class overlap is recognized as one of the factors that can 
hinder classification performance when learning from imbalanced datasets, often considered the most 
detrimental (Santos et al., 2023). Consequently, we also provide information on whether the examined 
studies have explored and/or mitigated the potential presence of class overlap. 
 

 
 

Study 
 

Purpose 
 

Data 
 

Models 
 

Performance 
Evaluation 

 Metrics 

 
Addressing 

Class 
Imbalance 

 
Techniques 

for addressing 
class imbalance 

 
Investig
ation of   

class 
overlap 

 
Technique 

for 
addressing 

class 
overlap 

 
Omrani 
(2015) 
 

 
Assessment of 
predictive 
performance 
across 
classifiers 

 
Data from 
national 
travel survey 
in Luxemburg  

 
Multinomial Logit 
Model, Multilayer 
Perceptron, 
Support Vector 
Machine, Radial 
Basis Function 
Network 
 

 
Root mean square 
percentage error, 
Average   
probability of 
correct 
assessment 

 

✗ 

 
_ 

 

✗ 

 
_ 

 
Sekhar et 
al. (2016) 
 

 
Assessment of 
predictive 
performance 
across 
classifiers  

 
Data 
gathered 
from  
household 
interviews in 
Delhi  

 
Multinomial Logit 
Model, Random 
Forest 

 
Overall Accuracy  

 

✗ 

 
_ 

 

✗ 

 
_ 

 
Hagenauer 
and 
Helbich 
(2017) 

 
Assessment of 
predictive 
performance 
across 
classifiers 

 
Dutch travel 
diary data 
from the 
years 2010-
2012  

 
Multinomial Logit 
Model, Naïve 
Bayes, Support 
Vector Machine, 
Artificial Neural 
Network, 
Classification Tree, 
BOOST,  BAG, 
Random Forest 
 

 
Overall Accuracy, 
Recall (Sensitivity) 

per mode 

 
✓ 

 
Combination of 

Random 
Oversampling 
and Random 

Undersampling  

 

✗ 

 
_ 

 
Wang & 
Ross 
(2018)  
 

 
Assessment of 
predictive 
performance 
across 
classifiers  
 

 
Data from 
household 
travel survey 
in Delaware 
Valley Region 
(2012) 
 

 
Multinomial Logit 
Model, Extreme 
Gradient Boosting 
Model 

 
Overall Accuracy, 
Prediction error 

per mode 

 
✗ 

 
_ 

 

✗ 

 
_ 
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Zhao et al. 
(2020) 
 

 
Assessment of 
predictive 
performance 
among 
classifiers  
 

 
Stated 
preference 
data from a 
survey from 
the 
University of 
Michigan 
 

 
Multinomial Logit 
Model, Mixed 
Logit Model, Naïve 
Bayes, CART, BAG, 
Random Forest, 
Support Vector 
Machine, Neural 
Network 
 

 
Overall Accuracy, 

Accuracy per 
mode, L1-norm 

 

✗ 
 

_ 
 

✗ 

 
_ 

 
Qian et al. 
(2021) 
 

 
Assessment of 
predictive 
performance 
among 
classifiers  
 

 
Data from 
national 
household 
travel survey 
from 
California 
(2017) 
 

 
Novel Support 
Vector Machine 
algorithm with 
adjusting kernel 
scaling technique,  
other SVM-based 
models, Artificial 
Neural Network, 
XGBoost, Bayesian 
Network 
 

 
Overall and per 
mode Accuracy, 
Recall per mode, 

Precision per 
mode, F1-score 

per mode  

 
✓ 

 
Novel Support 
Vector Machine 
algorithm with 
adjusting kernel 
scaling 
technique 

 

✗ 

 
_ 

 
Kim (2021) 

 
Assessment of 
predictive 
performance 
among 
classifiers  
 

 
Data from 
national 
household 
travel survey 
from Seoul 
(2016) 

 
Artificial Neural 
Network, 
XGBoost, Random 
Forest  
 

 
Recall per mode, 

precision per 
mode, Balanced 

accuracy 

 
✓ 

 
Training the 
models by 
assigning 
weights 
inversely 
proportional to 
the frequency 
distribution of 
each class 
 

 

✗ 

 
_ 

 
Rezaei et 
al. (2021) 
 

 
Assessment of 
predictive 
performance 
and 
interpretability 
of mode choice 
models under 
balanced and 
imbalanced 
data conditions 

 
Trip data 
from the city 
of Nashville 
 

 
Multinomial Logit 
Model, Nested 
Logit Model, 
Mixed Logit Model 
 

 
Overall accuracy, 
Recall per model, 

Mean absolute 
percentage error,  

Signs and 
magnitude of beta 

coefficients  

 
✓ 

 
Combination of 
Random 
Undersampling 
and Random 
Oversampling  
 

 

✗ 

 
_ 

 
Kashifi et 
al. (2022) 

 
Assessment of 
predictive 
performance 
across various 
classifiers  

 
Dutch 
National 
travel survey 
data from the 
years 2010-
2020 
 

 
Logistic 
regression, 
Decision Tree, 
Random Forest, 
Multilayer 
Perceptron, Light 
Gradient Boosting 
Decision Tree 
 

 
Precision per 

mode, Recall per 
mode, F1-score 

per mode, Overall 
accuracy, Average 

precision 

 
✓ 

 
Random 
Oversampling, 
Random 
Undersampling 
  

 

✗ 

 
_ 

 
 
Chaipanha 
& 
Kaewwichi
an (2022) 
 

 
Assessment of 
the predictive 
performance 
across 
classifiers 
 

 

Trip data 
from a Thai 
study and 
interviews 
(2015) 

 
k-Nearest 
Neighbor, 
Decision Tree, 
Naïve Bayes 

 
Accuracy, True 

positive rate, False 
positive rate,  

Macro F1-score 

 

✓ 

 
SMOTE, 
Random 
Undersampling  

 

✗ 

 
_ 

 
García-
García et 
al. (2022) 
 

 
Assessment of 
the predictive 
performance 
across 
classifiers 
  

 
a) Revealed 

Preferences 
dataset from 
Switzerland 
(2009-2010) 
 
b) Dutch 
national  
travel survey 
data (2010-
2012) 
 

 

Multinomial Logit 
Model, Multilayer 
Perceptron, Deep 
Neural Network, 
Support Vector 
Machine, Random 
Forest 
 
 

 
Overall Accuracy  

 

✓ 

 
Combination of 
Random 
Oversampling 
and Random 
Undersampling 
 
(balancing 
techniques were 
implemented only 
in the 2nd dataset) 

 

 

✗ 

 
_ 
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H. Chen & 
Cheng 
(2023) 

 

Assessment of 
the predictive 
performance 
across 
classifiers 
 

 
Data from 
household 
travel survey 
in London 
(April 2012 – 
March 2015) 

 
Multinomial Logit 
Model, XGBoost,  
Deep Neural 
Network 

 
F1-score per 
mode, Macro F1-
score, Overall 
Accuracy, MADMS 
(Mean Absolute 
Deviation of 
Market Share), 
Economic 
interpretation 
through 
elasticities 

 
✓ 

 
SMOTE, 
ADASYN, One-
Sided Selection, 
Neighborhood 
Cleansing Rule, 
Random Under-
sampling,  
Random 
Oversampling  

 

✗ 

 
_ 

 
Narayanan 
&  
Antoniou 
(2023) 

 

Estimation of 
choice model 
for shared 
mobility 
services 
 

 

Data from 
household 
travel  
survey from 
Madrid 
(February 
2018-June 
2018) 

 

 
Multinomial Logit 
Model 

 
_ 

 

✓ 
 

Combination of 
SMOTE and 

Random 
Undersampling  

 

✗ 

 
_ 

Table 1. Summary of the most recent research studies on mode choice forecasting employing imbalanced datasets. 

 
 

Identified gaps 
 
Upon examining the research studies outlined in the above table, several gaps in the literature emerge: 

o In some studies, the presence of class imbalance in the dataset is entirely neglected. 
 

o Certain studies rely solely on overall accuracy for performance evaluation, neglecting to assess 
the models’ performance on individual classes. 

 
o Certain studies propose alternatives to sampling techniques including the development of novel 

models explicitly designed to handle imbalanced data or the assignment of higher weights to 
the minority class during the classifiers’ training. While these approaches may have proven 
successful in enhancing accuracy for the minority class in specific studies, it is crucial to 
acknowledge that they are tailored to particular models and may lack universal applicability. 

 
o No research study investigates and/or addresses the potential presence of class overlap in the 

data. 
 

o Notably, there is an absence of studies presenting a comprehensive framework for addressing 
the impact of class imbalance in classification performance. 

 

 

2.1. Class imbalance in classification tasks 
Classification involves assigning a label (or class) to an observation based on its distinctive features. 
Classification tasks are commonly divided into two main groups: binary and multiclass. In binary 
classification, the goal is to differentiate instances between two classes, whereas multiclass 
classification involves assigning instances to one of three or more classes (Ali et al., 2019). In the realm 
of transportation planning, a prime illustration of classification involves forecasting travel mode choices. 
Mode choice prediction constitutes the third stage in the traditional four-step travel demand model, 
encompassing trip generation, trip distribution, mode choice prediction, and trip assignment. The 
prediction of transportation mode choices involves estimating the likelihood that a traveler will opt for 
a specific mode based on diverse factors, such as individual characteristics, preferences, trip attributes, 
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and built environment features (Omrani et al., 2015; Rezaei et al., 2021). Biases stemming from sampling 
methods and survey designs aimed at collecting relevant data, as well as variations in the number of 
users across different transportation modes often result in travel mode choice datasets characterized 
by ‘’class imbalance”. 

Class imbalance is a common issue, observed in diverse domains such as fraud detection, disease 
diagnosis, and image recognition, which refers to disparities in class representation within a dataset. 
Classes with fewer samples compared to others are referred to as  'minority classes', while those with 
more samples are referred to as 'majority classes'. Identifying majority and minority classes in a dataset 
can be accomplished through various methods. The most commonly used metric for measuring class 
imbalance is the Imbalance Ratio (IR), defined as the ratio of the number of majority samples to the 
number of minority samples (Zhu et al., 2020). Class imbalance may manifest to varying degrees, 
resulting in datasets that are either slightly or highly imbalanced, even though no official thresholds 
exist for categorizing a dataset into one of these two categories. 

Classifiers tend to exhibit superior predictive performance for majority classes compared to minority 
classes. Despite having fewer samples, minority classes may encompass crucial information that is of 
great interest to analysts and may be also associated with higher misclassification costs. Consequently, 
insufficient identification of these classes can result in adverse effects, the nature of which vary across 
applications (Johnson & Khoshgoftaar, 2019). In the context of predicting travel mode choices, 
imbalanced datasets can lead to models favoring overrepresented modes. Relying on the outcomes of 
such models may result in suboptimal and inequitable policies, as insufficient provisions and resource 
allocation for minority modes fail to address the diverse mobility preferences of the population. 
 
Class imbalance is not a new challenge. In the field of machine learning it has been studied  since the 
last two decades (Johnson & Khoshgoftaar, 2019).  According to He & Garcia (2009), class imbalance 
can be characterized as either ‘intrinsic’ or ‘extrinsic’. Intrinsic imbalance arises from naturally occurring 
skewed data distributions, while extrinsic imbalance is introduced by external factors, such as data 
collection processes and privacy issues. While it is often presumed that class imbalance is the main 
factor contributing to the deterioration in classifier performance, research studies have unveiled that 
the decline in performance when learning from imbalanced datasets is also affected by other factors. 
Among the data characteristics that compound the complexity of classification tasks, class overlap is 
identified as the most detrimental. Both earlier and recent research studies affirm that the performance 
of learning algorithms diminishes across different levels of class overlap, whereas class imbalance does 
not consistently have a significant impact (Prati et al., 2004; S V. García et al., 2007 ; Santos et al., 2023). 
 
 

2.1.2 Techniques to address class imbalance 
In this section, we introduce the techniques found in the existing literature that are utilized to address 

class imbalance. Addressing class imbalance is commonly categorized into solutions at the algorithmic 

level and data level. Furthermore, hybrid methods result from combining these approaches (Napierala 

et al., 2010; Johnson & Koshgoftaar, 2019). 

At the algorithmic level, addressing class imbalance entails either developing new algorithms specifically 

designed to handle imbalanced data or modifying the costs assigned by existing algorithms to different 

classes. Cost-modification entails assigning higher misclassification costs to the minority class during 

classifiers' training compared to those assigned to the majority class. This elevation of costs for the 

minority class enhances its importance, reducing the likelihood of the classifier making incorrect 

classifications for instances belonging to this class (Napierala et al., 2010; Krawczyk, 2016). However, a 

drawback of this technique is that misclassification costs are not always known (Elrahman & Abraham, 

2013). 
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At the data level, solutions revolve around altering the composition of the dataset itself through the 

application of sampling techniques. These techniques can be broadly categorized into two types: 

undersampling techniques and oversampling techniques. Simple methods include Random Under-

sampling and Random Oversampling (H. Chen & Cheng, 2023). Random Under-sampling involves 

balancing classes by randomly removing instances from the majority class. While this method is 

straightforward to implement, it has the downside of potentially discarding valuable examples, leading 

to the loss of crucial information. This problem becomes more evident when the class imbalance ratio 

is high, as it may lead to the removal of a significant amount of data. In contrast, Random Oversampling 

addresses class imbalance by randomly duplicating instances from the minority class. Like Random 

Under-Sampling, this technique is also easy to implement; however, the replication of samples might 

result in overfitting (H. Chen & Cheng, 2023).  

In response to the limitations arising from the use of Random Oversampling with replacement and to 

enhance the classifier's generalization on testing data, Chawla et al. (2002) introduced an advanced 

approach for augmenting the minority class through the generation of synthetic samples. Their method, 

known as Synthetic Minority Oversampling Technique (SMOTE), is one of the most widely used sampling 

algorithms in machine learning (García et al., 2016). Based on SMOTE, new examples are created along 

the line segments connecting minority class samples to their k-nearest neighbors from the minority 

class. In specific, synthetic samples are generated by calculating the difference between the sample 

under consideration and its nearest neighbor. This difference is then multiplied by a random number 

between 0 and 1 and added to the corresponding feature vector. The selection of neighbors from the k 

nearest neighbors is done randomly, depending on the desired amount of oversampling. In their 

research study, Chawla et al. (2002) conducted a comparison between the implementation of random 

oversampling and oversampling through the creation of synthetic instances in a binary classification 

task. Their findings indicated that the latter yielded superior results. 

Following the development of SMOTE, various adaptations emerged, emphasizing targeted 

oversampling rather than random oversampling and targeted undersampling rather than random 

undersampling (Han et al., 2005; He et al., 2008; Johnson & Khoshgoftaar, 2019). Additionally, 

generative models, from the field of machine learning,  have also been  leveraged for data augmentation 

showing promising results (Rezaei et al., 2021; Salas et al., 2023). 

 

 

Figure 2. Overview of strategies utilized for handling imbalanced data. Techniques employed in the existing literature to 
mitigate the impact of class imbalance are categorized into data-level, algorithmic-level and combination-level approaches. 
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2.2. Class overlap in classification tasks and techniques to address it 
As it has been previously mentioned,  one of the factors that can impede classification performance 

when learning from imbalanced datasets is class overlap. In classification tasks, class overlap arises when 

instances from different classes share similar or identical feature values, leading to ambiguity for the 

classifier in determining the correct class label. Class overlap is a prevalent challenge encountered in 

various real-world problems and similar to class imbalance it has  been a subject of study in the machine 

learning community over the last two decades (Trappenberg & Back, 2000; Alogogianni & Virvou et al., 

2023). 

Prati et al. (2004) were among the first to explore the relationship between class imbalance and class 

overlap. To determine whether class imbalance singularly contributed to the decline in classifiers’ 

performance or whether other factors were also involved, they conducted a systematic study utilizing 

binary artificial datasets  with varying levels of class imbalance and class overlap. Their findings revealed 

a strong correlation between class imbalance and class overlap. As the extent of overlap increased the 

classifier experienced a decline in performance, more pronounced in highly imbalanced datasets. On 

the contrary, in cases where classes were distinct with minimal overlap, classifier performance showed 

less dependence on prior probabilities, suggesting that the models’ performance was mostly influenced 

when both class imbalance and class overlap were concurrently present. 

Garcia et al. (2007) also explored the relationship between class imbalance and class overlap, and their 

implications on classification performance. In their study, they applied the Nearest Neighbor algorithm, 

utilizing  binary artificial datasets with a consistent imbalance ratio and varying degrees of class overlap. 

According to their results, in the absence of overlap, both classes demonstrated comparable 

performance. However, as overlap increased, their accuracies declined, and the disparity between them 

widened. In line with observations by Prati et al. (2004), their findings suggested that classifier 

performance is not affected by class imbalance alone; rather, the influence of the latter becomes more 

prominent with the escalation of class overlap. 

Additionally, other research studies focused on exploring ways to address classification challenges 
stemming from overlapping data. Trappenberg and Back (2000) proposed a classification scheme,  that 
focused on avoiding predictions in data regions considered highly ambiguous.  Their approach 
comprised two key steps: Initially, a k-nearest neighbor algorithm was applied to reclassify the data 
samples. If the majority of a sample’s k-nearest neighbors belonged to a specific class, that sample was 
assigned to that class. On the contrary, in the absence of clear majority, the sample was categorized 
into a new class denoted as “IDK” (I Don’t Know). Subsequently, after reclassifying all the samples in the 
training set, a classifier was trained on the re-labeled data to perform the final classification task. The 
potential outcomes included the initial classes along with the addition of the "IDK" class. This proposed 
scheme could be seamlessly integrated with any classifier, and during testing on two real-world 
datasets, no misclassifications were reported. 

 
Similarly, Xiong et al. (2013) conducted a thorough investigation into addressing class overlap through 

three distinct strategies: the discarding, the merging, and the separating scheme. Their study 

incorporated five real-world datasets with varying overlap ratios, and each scheme underwent testing 

across five classifiers. In the discarding scheme, data within the overlapping region were completely 

disregarded and the classifiers were exclusively trained on non-overlapping data. The merging scheme, 

consisting of two models, categorized data from the overlapping region into a new class labeled 

'overlapping' using the first model, while the second model was then applied to learn the samples within 

this new class. Finally, in the separating scheme  two models were used, one for the overlapping region 

and one for the non-overlapping region, respectively. The F1-score for both classes was used to evaluate 

the performance across the different classifiers. The separating scheme demonstrated superior 



21 
 

performance and was further tested in artificial datasets characterized by both class overlap and class 

imbalance. Their findings revealed that as the degree of class imbalance increased, the classification 

performance improved when implementing the separating scheme compared to the baseline scenario 

where no scheme was applied. 

In recent studies, Vuttipittayamongkol and Elyan (2020) introduced an under-sampling framework 

aiming in identifying and removing majority class instances from the overlapping region. The framework 

featured four k-NN based methods, each exploring the local surroundings of individual instances and 

identifying overlapped instances for elimination based on distinct criteria. Extensively tested on both 

real and artificial datasets, all four methods exhibited superior performance in terms of the sensitivity 

of the minority class compared to widely used state-of-the-art methods. 

 

2.4 Theoretical background 
So far, we have emphasized the identified gaps in the existing literature and provided definitions for the 

concepts of class imbalance and class overlap. Furthermore, we have introduced various techniques 

within the literature aimed at addressing their impact. Before delving into our proposed methodology, 

this section imparts essential information on foundational concepts crucial for readers to comprehend 

the remainder of this study. Specifically, we delve into the two models  -Random Forest and Multinomial 

Logit model- employed in this study. Furthermore, we provide details about the sampling techniques 

applied to these models, namely the SMOTENC, the Neighborhood-based Undersampling, and the 

Separation scheme. Table 2 outlines the techniques utilized in conjunction with each model. It is 

important to note that this study does not involve a comparative analysis between the two models. 

Instead, we individually assess the classification performance of each model both before and after 

implementing the sampling techniques. 

 Machine Learning modeling Discrete choice modeling 

Random Forest MNL 

SMOTENC ✓ ✓ 
Neighborhood-based Undersampling ✓ ✓ 
Separation scheme ✓ ✗ 

Table 2. Overview of the models and sampling techniques employed in this study. Both the SMOTENC and Neighborhood-
based Undersampling techniques are employed to both models, whereas the Separation scheme is exclusively applied to the 
Random Forest model. It is important to emphasize that no comparative analysis between the two models is conducted in this 
study. Instead, the classification performance is assessed individually for each model before and after the implementation of 
the sampling techniques. 

 

2.4.1 Random Forest model – Model description 
The Random Forest model is an ensemble supervised machine learning algorithm that comprises 

multiple tree estimators, and is employed for both regression and classification tasks. To promote 

diversity among the single trees and mitigate their susceptibility to overfitting, Random Forest combines 

bootstrapping and random feature selection. Bootstrapping is a statistical technique that involves 

randomly sampling with replacement from a set of observed values. Based on this technique, each tree 

is constructed using a distinct training set of the same size. Because the sampling is done with 

replacement, some observations may be duplicated, while others may be omitted. Furthermore, the 

random feature selection entails considering only a random subset of variables to split each node, rather 

than using all the explanatory variables (Breiman, 2001). These two layers of randomness contribute to 

minimizing errors stemming from biased or noisy samples and consequently reducing prediction 

variance (Cheng et al., 2019). 
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In the Random Forest model, each tree estimator divides the data into mutually exclusive regions based 

on the explanatory variables of the dataset, grouping together samples with similar target values. 

Specifically, as mentioned earlier, at each node, a randomly selected subset of  the input features is 

considered. Using a specified criterion, the best splitting point for each feature is determined, and 

ultimately, the optimal pair of splitting variable and splitting point is selected to partition the data at 

each node (Cheng et al., 2019). This process continues until the tree is fully grown or until a constraint 

is met. Constraints may include reaching the maximum depth of the tree or having fewer than the 

minimum required samples in one or both branches of a node after a split. Once all trees are 

constructed, the predicted class for each input sample is determined through majority voting. In other 

words, the class that gains the highest number of ‘votes’ from the individual trees is selected as the final 

prediction. An illustration of the Random Forest model is presented in Figure 4. 

While various criteria are available to evaluate the quality of each split and determine the optimal 

choice, in this research study we employed the Gini Index. This index is used to calculate the impurity 

of a node after utilizing each splitting feature. Impurity, in this context, indicates the homogeneity of 

the class labels at a node. A zero value indicates a pure node with samples exclusively from the same 

class. Conversely, a value of 0.5 (in binary tasks) denotes maximum impurity, signifying an equal 

distribution among classes. A feature is deemed optimal when a split based on it yields the lowest 

impurity. 

The mathematical calculation of impurity based on the Gini criterion is detailed below, where G 

represents the impurity at a node m based on split θ, 𝑄𝑚 represents the data at node m,  𝑄𝑚
𝑙𝑒𝑓𝑡

 and 

𝑄𝑚
𝑟𝑖𝑔ℎ𝑡

 are the data in the left and right branches of the node respectively, 𝑛𝑚is the total number of 

samples at node m, 𝑛𝑚
𝑙𝑒𝑓𝑡

and 𝑛𝑚
𝑟𝑖𝑔ℎ𝑡

  represent the number of samples at the left and right branches, θ 

represents each candidate split, and H() denotes the impurity criterion, which in our case is the Gini 

Index.  

In specific, for each candidate split θ = (j, 𝑡𝑚) consisting of a feature j and a threshold 𝑡𝑚  the data is 

partitioned into the 𝑄𝑚
𝑙𝑒𝑓𝑡

(𝜃) and 𝑄𝑚
𝑟𝑖𝑔ℎ𝑡(𝜃) subsets, where x is a training vector (𝑥𝑖 ∈ 𝑅𝑛, 𝑖 = 1, … , 𝐼) 

and y a label vector (y ∈ 𝑅𝑙). Next, the quality of the split is calculated based on  (2.5).  

 

𝑄𝑚
𝑙𝑒𝑓𝑡

(𝜃) = {(𝑥, 𝑦)|𝑥𝑗 ≤  𝑡𝑚} (2.1) 

𝑄𝑚
𝑟𝑖𝑔ℎ𝑡(𝜃) =  𝑄𝑚\ 𝑄𝑚

𝑙𝑒𝑓𝑡
(𝜃)   (2.2) 

𝑝𝑚𝑘 =
1

𝑛𝑚
 ∑ 𝐼(𝑦 = 𝑘)𝑦∈𝑄𝑚

     (2.3) 

H(𝑄𝑚 ) =  ∑ 𝑝𝑚𝑘(1 − 𝑝𝑚𝑘)𝑘      (2.4) 

 

𝐺(𝑄𝑚, 𝜃) =  
𝑛𝑚

𝑙𝑒𝑓𝑡

𝑛𝑚
 𝐻(𝑄𝑚

𝑙𝑒𝑓𝑡(𝜃)) +  
𝑛𝑚

𝑟𝑖𝑔ℎ𝑡

𝑛𝑚
 𝐻(𝑄𝑚

𝑟𝑖𝑔ℎ𝑡(𝜃))     (2.5) 

 

The criterion to select a feature for a split is the minimization of impurity. Consequently, the feature 

which satisfies (6) is finally selected. 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐺(𝑄𝑚,𝜃)  (2.6) 
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2.4.1.1 Random Forest  model – Feature Importance 
The Gini criterion (equation. 2.4) can be also employed to identify the most influential variables among 

the considered explanatory features in predicting the target variable. The importance of each feature 

in a single tree is calculated as the sum of the impurity reduction over all nodes where it was used for 

splitting. The overall importance of a feature in the forest is then defined as the average of its 

importance values across all trees (Cheng et al., 2019). 

2.4.1.2 Random Forest model – Hyperparameter tuning  
Prior to deploying the Random Forest Classifier, we fine-tuned its hyperparameters. This tuning process 

was essential, as it facilitated the identification of specific model parameters tailored to the unique 

characteristics of our dataset, with the goal of achieving optimal performance. The parameters 

subjected to tuning included: 

• Number of estimators (the quantity of the trees in the forest). 

• Max depth (the maximum depth of individual trees). 

• Minimum number of samples in the leaf nodes (the minimum number of samples that should 

be left in both the left and right branches for a split to be considered). 

• Max samples (the number of samples considered for training each tree). 

• Max features (the number of features to be drawn for training each tree). 

To determine the ideal values for these parameters, we defined a range of potential values for each and 

systematically trained the model for every possible combination. Subsequently, we evaluated the 

model's performance on a validation set, which constituted 10% of the dataset. The values of the 

parameters that yielded the highest accuracy were selected. This iterative procedure was replicated 

each time a model was trained on a new dataset. Another option could have been to use a k-fold cross-

validation method. 

2.4.1.3 Random Forest model – Testing  
The results obtained with the Random Forest model  represent  the average performance on the test 

set across  five model runs. This approach was employed to account for the inherent model’s stochastic 

nature, which introduces randomness via the implementation of bootstrapping and random feature 

selection techniques.  

 

 

 

Figure 3. The structure of a decision tree is organized as follows: the topmost node, known as the root node, represents  the 
entire dataset. Moving down the tree, the internal nodes, often called split nodes, make decisions based on specific features, 
effectively partitioning the dataset into subsets. These nodes are linked by branches, representing the outcomes of the 
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decisions, which can be either True or False. Furthermore, the nodes maintain a hierarchical relationship: the starting point of 
a branch, referred to as the parent node, is connected to child nodes, symbolizing the subsequent decision paths. Ultimately, 
the terminal nodes at the end of the branches are known as leaf nodes, each denoting a distinct class label. 

 

 

Figure 4.  Illustration of the random forest method. Random Forest is an ensemble learning approach comprising multiple 
decision trees. Each tree is constructed using the bootstrapping technique and incorporates random feature selection. After 
training the ensemble, the method consolidates the outcomes from each individual estimator. In classification tasks, this 
consolidation involves considering the majority vote among the trees 

 

2.4.2 Multinomial Logit Model (MNL) – Model description & specification 
Discrete choice models constitute a family of models capturing decision makers' choices among a set of 
alternatives, referred to as the choice set. Specifically, these models are typically formulated on the 
premise that decision makers select the alternative that maximizes their utility (Train, 2003). 
 
In detail, these models propose that each alternative j provides the decision maker n, with  a specific 
level of utility Unj, j = 1….J. The utility comprises two components: one encompasses the effects of the 
observed explanatory variables (including attributes of the alternatives, such as travel time and cost, as 
perceived by the decision maker, and attributes of the decision maker, such as income and age), and 
the other reflects the influence of the variables that the analyst cannot observe. 
As a result the utility of mode j is expressed as follows: 

𝑈𝑛𝑗 =  𝑉𝑛𝑗 + 𝜀𝑛𝑗            (2.7) 

 

In equation  (2.7),  𝑉𝑛𝑗 is the observed part of the utility, often called ‘’representative utility’’ and 

𝜀𝑛𝑗 the unobserved part.  

A decision maker chooses alternative 𝑖 if and only if 𝑈𝑛𝑖 > 𝑈𝑛𝑗 ∀ 𝑗 ≠ i. The probability that the decision 
maker 𝑛 will choose alternative 𝑖 is defined as the probability that 𝑈𝑛𝑖 > 𝑈𝑛𝑗 ∀ 𝑗 ≠ 𝑖 . In order to calculate 
this probability, the distribution of the unobserved component (random error) 𝜀𝑛𝑗 must be assumed by 
the researcher. By specifying distinct types of random errors different logit models arise. In the present 
study we specifically employed the Multinomial Logit Model (MNL), ,in which the assumption is made 
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that the unobserved 𝜀𝑛𝑗 is independently and identically Gumbel-distributed (H. Chen & Cheng, 2023). 
The strength of this model lies in its explicit closed-form mathematical formulation (Kashifi et al., 2022). 
 
In the MNL model, the probability that a decision maker n chooses mode i  is given by the following 
formula: 

𝑃𝑛𝑖 =  
𝑒𝑉𝑛𝑖

∑ 𝑒
𝑉𝑛𝑗

𝑗

    (2.8) 

 
Model Specification 
 
The utility function employed in this study for each alternative i is defined as follows. 

𝑉𝑖 =  𝐴𝑆𝐶𝑖 + 𝐵𝑡𝑖𝑚𝑒𝑖
∗ 𝑡𝑖𝑚𝑒𝑖 +  𝐵𝑐𝑜𝑠𝑡𝑖

∗ 𝑐𝑜𝑠𝑡𝑖  (2.9) 

 

In the above equation, " 𝑖 " represents the 𝑖𝑡ℎ mode, while “𝑡𝑖𝑚𝑒𝑖” and "𝑐𝑜𝑠𝑡𝑖" respectively signify the 

duration and expenses related to a specific trip undertaken using mode i. 𝐵𝑡𝑖𝑚𝑒 and 𝐵𝑐𝑜𝑠𝑡 serve as the 

coefficients for the time and cost attributes, while 𝐴𝑆𝐶 denotes the alternative specific coefficient. This 

coefficient corresponds to the mean of the error term and captures inherent preferences that are 

independent of specific attribute values, expressing user inclinations towards the alternatives. 

 

2.4.2.1 Multinomial Logit Model – Cross Validation 
For the MNL models utilized in this study, internal validation was carried out following the approach 
outlined by Parady et al. (2021). Specifically, to assess the models' ability to maintain predictive accuracy 
across different samples from the same population, a 3-fold cross-validation was implemented. In each 
iteration, 2/3 of the dataset was used for model estimation, with the remaining 1/3 reserved for testing. 
Given the dataset's imbalance, a stratified shuffling approach was employed to guarantee that the class 
distribution was preserved during the splitting process. Ultimately, the predictive performance of the 
model was evaluated based on its mean performance across all iterations. 
 

 

 

Figure 5.  Illustration of the 3 fold cross-validation process. In this study, cross-validation is employed for the internal validation 
of the MNL model. Within each of the three iterations, 2/3 of the dataset is utilized for model estimation, and the remaining 
1/3 is reserved for testing. 

 

2.4.3  Sampling Techniques 
In this section, we present a summary of the sampling techniques applied in this study. All three 
methods belong to the category of data-level approaches, aiming to modify the distribution of the 
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dataset used for training the classifiers. The key advantage of these techniques is their applicability, as 
they can be implemented irrespective of the underlying classifier. 
 

2.4.3.1  SMOTENC 
The first technique  implemented in this study is the Synthetic Minority Over-Sampling Technique 

Nominal Continuous (SMOTENC). SMOTENC is an adaptation of the popular SMOTE technique, which  

was initially introduced by Chawla et al. in 2002. Unlike traditional oversampling with replacement, 

SMOTE addresses class imbalance by generating  "synthetic" examples to augment the minority class. 

Synthetic examples are generated as follows:  First, for each minority sample the k-nearest neighbors 

from the minority class are identified. Then, based on the desired number of new instances, one or 

more neighbors are randomly selected for each sample. New synthetic examples are generated by 

adding to each minority sample the product of the difference between itself and its neighbor, and a 

randomly chosen number ranging from 0 to 1. In case the desired quantity of new instances is smaller 

than the initial number of the samples in the minority class, random selection is used to choose the  

minority samples. 

Example of creating new instances using SMOTE: 
Consider a minority sample (a,b) and let (c,b) to be its nearest neighbor. 
diff_1  = (a – c) 
diff_2  = (b – d) 
The new sample will be generated as : 
(x,y) = (a,b) + rand(0,1) * (diff_1, diff_2) 
, where rand(0,1) generates a random sample between 0 and  1. 

Table 3. Creation of new instances employing the  SMOTE algorithm. 

 

SMOTENC is tailored to handle datasets that encompass both continuous and nominal features. Within 

the SMOTENC framework, the continuous features of the newly generated synthetic minority samples 

are constructed using the same approach that has been previously described. The key distinction lies in 

the calculation of the Euclidean distance between the minority samples and their neighbors. Specifically, 

when a considered minority sample differs in its nominal features from its nearest neighbor, the median 

of the standard deviations of all continuous features from the minority class is included in the 

calculation. An illustrative example of this computation is provided in Table 4. Furthermore, nominal 

features are assigned the value that is most frequently observed among the  k-nearest neighbors. Note 

that in this study, we have utilized the SMOTENC algorithm from the open-source imblearn library. Also, 

the synthetic data has been created by only using the training data to avoid a potential ‘data leakage’ 

between the training and test sets. Finally, similar to the binary classification tasks, in the multiclass 

classification tasks, synthetic data have been solely created for the minority class. 

Example of calculating the Euclidean distance within the SMOTENC framework: 
 
Consider a minority sample (continuous_feature_1, continuous_feature_2, nominal_feature_1, nominal_feature_2) 
and its nearest neighbor (continuous_feature_3, continuous_feature_4, nominal_feature_3, nominal_feature_4).  
 
Given that nominal_feature_1 ≠ nominal_feature_3 and nominal_feature_2 ≠ nominal_feature_4,  the Euclidean distance 
is calculated as follows: 
 
Euclidean_distance = sqrt [(continuous_feature_3 − continuous_feature_1)2+ 
                                                                   (continuous_feature_4 − continuous_feature_2)2 + 𝑀𝑒𝑑2 + 𝑀𝑒𝑑2] 
 
, where Med is the median of the standard deviations of  the continuous features of the minority class. The median term is 
included twice since two nominal features differ among the two samples. 

Table 4. The Euclidean distance  computed within the SMOTENC framework. SMOTENC, a variant of the traditional SMOTE 
technique, distinguishes itself by altering the calculation of the Euclidean distance between minority samples and their k-
nearest neighbors compared to the conventional approach. 
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Figure 6. Illustration of the generation of synthetic data through the implementation of SMOTE technique considering the 5 
nearest neighbors. 

 

2.4.3.2 Neighborhood based under-sampling  
The second technique implemented in this study is the Neighborhood-based Undersampling technique 

(NBU). The NBU technique was introduced by Vuttipittayamongkol and Elyan (2020). Its primary 

objective is to cleanse the overlapping area by  eliminating any sample from the majority class that 

possesses at least one neighbor from the minority class. The elimination criterion is established at only 

one minority neighbor to ensure the visibility of all minority samples. This approach leads to a reduction 

in the number of majority samples, simultaneously enhancing the visibility of the minority samples. That 

way it effectively addresses both class imbalance and class overlap. 

 
A brief description of the methodology is provided in the table below. Also, it is important to note that 

in the case of multiclass classification, samples were eliminated from all classes other than the minority 

class. 

Neighborhood-based under-sampling:  
 
𝑇𝑚𝑖𝑛   →   training samples from the minority class 
𝑇𝑚𝑎𝑗   →   training samples from the majority class 

 
# Step 1: Identify the majority instances to be eliminated 
eliminated_instances= [] 
for sample in T_maj: 
    nearest_neighbors = find_nearest_neighbors(sample, T_maj + T_min) 
    for neighbor in nearest_neighbors: 
        if neighbor.class == minority class: 
            add sample to eliminated_instances 
 
# Step 2: Remove the samples that belong to the eliminated_instances from the training samples 
T_maj = T_maj – eliminated_instaces 
# Step 3: Run the model with the remaining training samples and classify them into the majority and minority classes 
respectively 
model = train_model(T_maj + T_min, labels) 

Table 5. Pseudocode of the Neighborhood-based Undersampling approach in binary classification. 
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2.4.3.3 Separation between the overlapping and non-overlapping regions 
The third technique implemented in this study is the Separation scheme. The Separation scheme 

proposed by Xiong et al. (2010) was implemented in this study for both the binary and multiclass 

classification tasks using the Random Forest model. This scheme involves a neighborhood analysis of 

the data space, utilizing a geometrical distance (in this case, the Euclidean distance) to partition samples 

into two regions: the overlapping and non-overlapping regions. After defining these regions, a different 

model is applied within each region to perform the classification task. 

In the binary case, the implementation of the Separation scheme utilized two distinct Random Forest 
(RF) models. The first RF model classified samples into either the overlapping or non-overlapping region. 
Samples categorized into the non-overlapping region were identified as belonging to the majority class, 
as all minority samples were grouped within the overlapping region. The samples categorized as part of 
the overlapping region were then fed into the second Random Forest model, which further classified 
them into either the minority or majority class. 

A similar approach was employed for multiclass classification. In this scenario, three distinct classes were 
considered. Unlike binary classification, three RF models were utilized. The first RF classifier categorized 
samples based on whether they fell within the overlapping or non-overlapping region. Subsequently, 
within each of these regions, two distinct RF models were applied to precisely determine the class to 
which each sample belonged. In this case, the overlapping region consisted of samples belonging to 
minority class and their k-nearest nearest neighbors from the other two classes, while the non-
overlapping region consisted solely of samples belonging to classes other than the minority class. 
 

Table 6. Pseudocode of the separation scheme approach  for binary classification. 

 

 

 

 

Separation scheme approach for  binary classification: 
 
𝑇𝑚𝑖𝑛   →   training samples from the minority class 
𝑇𝑚𝑎𝑗   →   training samples from the majority class 

𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝  →   set of training samples belonging to the overlapping region 

𝑇𝑛𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝  → set of  training samples belonging to the non-overlapping region 

 

# Step 1: Define the overlapping region 
overlapping_samples = [] 

 
for sample in 𝑇𝑚𝑖𝑛: 

    add sample in 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝   

    nearest_neighbors = find_nearest_neighbors(sample, 𝑇𝑚𝑎𝑗 + 𝑇𝑚𝑖𝑛) 

    for neighbor in nearest_neighbors: 
        if neighbor.class != minority_class: 
            add neighbor to 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝   

 
# Step 2: Train a RF model to classify samples in overlapping and non-overlapping regions 
RF_model  =  train_RF_model (𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝  + 𝑇𝑛𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝  , labels) 

# Step 3: Train a RF model to classify samples in the overlapping region into minority and majority classes 
RF_model_overlap = train_RF_model (𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝 , labels) 
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Separation scheme approach for multiclass classification: 
 
𝑇𝑚𝑖𝑛   →   training samples from the minority class 
𝑇𝑐𝑙𝑎𝑠𝑠_1   →   training samples from class_1 (class_1 != minority class) 
𝑇𝑐𝑙𝑎𝑠𝑠_2   →   training samples from class_2 (class_2 != minority class and class_1 != class_2) 
𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝  →  set of  training samples belonging to the overlapping region 

𝑇𝑛𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝  →  set of  training samples belonging to the non-overlapping region 

 
# Step 1: Define the overlapping region 
overlapping_samples = [] 

 
for sample in 𝑇𝑚𝑖𝑛: 

   add sample in 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝   

   nearest_neighbors = find_nearest_neighbors(sample, 𝑇𝑐𝑙𝑎𝑠𝑠_1 + 𝑇𝑐𝑙𝑎𝑠𝑠_2+ 𝑇𝑚𝑖𝑛) 
   for neighbor in nearest_neighbors: 
        if neighbor.class != minority_class: 
            add neighbor to 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝   

 
# Step 2: Train a RF model to classify samples in overlapping and non-overlapping regions 

RF_model  =  train_RF_model (𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝  + 𝑇𝑛𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝  , labels) 

# Step 3: Train a RF model to classify samples in the non-overlapping region into class_1 and class_2 
RF_model_overlap = train_RF_model (𝑇𝑛𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝  , labels) 

 
# Step 4: Train a RF model to classify samples in the overlapping region into class_1, class_2 and minority class 
RF_model_overlap = train_RF_model (𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝  , labels) 

Table 7.  Pseudocode of the Separation scheme approach for multiclass classification. 

 
 
 
 
 
 

 
 
 

Figure 7. Illustration of testing the Separation scheme. 
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CHAPTER 3 : Proposed Framework 
Building upon the literature review presented in the previous chapter, it becomes evident, based on the 

identified gaps, that class imbalance is a prevalent issue in classification tasks. Despite being extensively 

discussed in recent years, a comprehensive, unified framework to address this challenge remains absent 

(Erlahman & Abraham, 2013). Within the transportation domain, which is the focus of this research 

study, the problem of class imbalance is often either entirely  overlooked or addressed only to a limited 

extent (H. Chen & Cheng, 2023). Furthermore, the presence of additional complexities in imbalanced 

datasets, such as class overlap—which is deemed particularly detrimental—is not receiving the 

necessary attention. 

In light of these gaps, we move forward by  introducing a framework -depicted in Figure 8-, which 

comprises several steps that could be integrated in classification tasks involving imbalanced datasets. 

The framework is model agnostic, meaning that it can be implemented irrespective of the underlying 

classifier. Our main objective with this approach is to bring researchers' attention to factors that may 

contribute to the deterioration of classification performance, with a particular focus on class imbalance 

and class overlap. Additionally, we aim to provide helpful guidelines that researchers can adopt when 

dealing with imbalanced datasets. These guidelines concern:  

• The identification of the presence of class imbalance and/or other ‘’difficulty factors’’ such class 

overlap within a dataset. 

• The selection of right techniques to mitigate their effects. 

• The selection of suitable evaluation metrics for model assessment. 

 

 

Figure 8.  Proposed framework comprising several steps that can be integrated in  classification tasks with imbalanced 
datasets. 

 

In the rest of this section we delve into the details of the steps integrated in our proposed framework. 

STEP 1 - Inspection of class imbalance & Calculation of the Imbalance ratio: As illustrated in Figure 8, 

the 1st  step in addressing imbalanced datasets is to assess the degree of class imbalance. In specific, 

once the minority and majority classes are identified, class imbalance can be quantified. While there 

exist various methods to measure class imbalance, in the current framework we propose employing the 
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Imbalance Ratio (IR), as it is the most commonly used metric for characterizing the degree of imbalance 

in a dataset. Nevertheless, researchers can opt for an alternative approach should they find it more 

suitable for their specific application. 

As depicted in equation (3.1), IR is calculated as the ratio of the number of majority samples to minority 

samples (Zhu et al., 2020).  When IR = 1, then the dataset is perfectly balanced. Conversely, when IR  is 

greater than 1, the higher its value, the greater the imbalance in the dataset. 

Imbalance Ratio (IR)  = 
𝑁𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

𝑁𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 
            (3.1) 

In the context of classification tasks involving more than two classes, 𝑁𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 denotes the sample size 

of the largest class, while 𝑁𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 signifies the sample size of the smallest class within the dataset (Zhu 

et al., 2020). 

STEP 2 – Preliminary Classification: The 2nd  step of the framework involves the preliminary execution of 

the classification task. Upon reviewing the existing literature, it has become apparent that the presence 

of class imbalance within a dataset may not always pose a problem (Prati et al., 2004).  For instance, the 

presence of class imbalance seems to have little effect on linearly separable classification tasks 

(JapkowiczNathalie & StephenShaju, 2002). Therefore, we recommend conducting the classification 

task initially without applying any techniques to assess whether class imbalance truly hinders it or not.  

One of the merits of our proposed framework lies in its adaptability, allowing its integration with any 

classification model. Instead of mandating expertise in specific modeling techniques, the choice of the 

classifier is left to the discretion of the researcher. A prime illustration of this is the application of the 

framework across two different model categories, as described later in this report, showcasing its 

effectiveness irrespective of the specific model employed. 

STEP 3 – Preliminary evaluation of the classification performance across classes: The 3rd step of the 
framework involves the initial evaluation of the classifier’s performance across classes. Comparing the 
evaluation metrics across different classes can provide insights into potential factors hindering 
classification performance. Although, defining precise thresholds for the difference among metric 
values is not an easy task, a notable performance gap should trigger a more thorough analysis of the 
dataset. Conversely, consistently high performance across all classes, implies that class imbalance does 
not impact the model’s performance, and in that case no further step is required to address it. 
 
To evaluate the performance gap among classes, drawing inspiration from the fairness metric 
introduced by Zheng et al. (2023), we propose the use of the metric outlined in equation 3.2. This metric 
quantifies the absolute percentage difference between the sensitivity of the minority and the majority 
classes. The metric's minimum value is zero, indicating that the model is equally adept at identifying 
instances of both classes. Conversely, the maximum value it can attain is 1. This situation occurs when 
the sensitivity for one class is at its maximum value (100%), while for the other class it is at its minimum 
value (0 %). This suggests that the model is highly effective in identifying instances of one class but falls 
short in recognizing instances from the other class.  
 
Given the above, to ensure a fair model that identifies instances of both classes equally well, we want 
the value of the metric to be as close to zero as possible. As noted earlier, establishing precise thresholds 
is challenging; nevertheless, in assessing performance across classes in this study, a 20% threshold is 
applied to the metric. If the performance difference among classes falls below this threshold, the 
model's performance is considered favorable. Should the difference exceed this value, a set of 
corrective techniques is applied.  
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It is crucial to acknowledge that the predetermined threshold may vary in different applications. Its 
value is contingent on the importance researchers place on achieving equally accurate predictions 
across all classes. Therefore, the selection of an appropriate threshold is at the discretion of the 
researcher, and alternative values, including more or less strict, may be considered more suitable in 
different applications. 
 
In equation 3.2, TP represents true positive, TN represents true negative, FN represents false negative, 
and FP represents false positive. Additional clarification for these terms is provided in the confusion 
matrix outlined in Table 8 presented later in this section. Furthermore, when we use the term "positive," 
we are indicating the minority class, whereas "negative" corresponds to the majority class. Finally, in 
the context of multiclass classification, the metric can be applied to class pairs, where "positive" and 
"negative" represent the minority and majority classes within each pair. 
 
 
 

  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐺𝑎𝑝 𝑀𝑒𝑡𝑟𝑖𝑐 = |𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 ∗ 100% − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 ∗ 100%| 

 

 =  |
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100% −  

𝑇𝑁

𝑇𝑁+𝐹𝑃
∗ 100%|    (3.2) 

 
 

STEP 4 – Visualization of data samples in a low-dimensional space: The 4th  step of the framework 
involves visualizing the dataset utilized in the classification task. Given the potential difficulty of 
identifying patterns and relationships in a higher-dimensional space, we propose visualizing the data in 
a lower-dimensional space for enhanced clarity. 
 
This step is particularly valuable when there's a observed discrepancy in measuring the performance 
gap across classes, enhancing our understanding of the data structure. Graphic inspection, in general, 
serves as a method to comprehend the internal characteristics of a dataset (Santos et al., 2023). In the 
context of imbalanced datasets, it can facilitate the identification of factors beyond class imbalance that 
might impede classification performance. For high-dimensional data, visualization can be facilitated by 
applying transformation techniques that allow data representation in two or three dimensions. Note 
that although we discuss this step at this stage in the framework, researchers can implement it at any 
point they deem necessary. 
 
STEP 5 - Inspection of factors impeding classification: The 5th  step  of the framework involves the 

identification of factors that hinder classification performance based on the graphic inspection of the 

previous step. Imbalanced datasets often encompass additional factors that contribute to decreased 

performance in classification tasks. These factors may include the presence of rare sub-concepts within 

the minority class, known as "within-class" imbalance, or the existence of overlapping regions between 

classes. Specifically, the combination of class overlap, along with class imbalance, is widely 

acknowledged as one of the most challenging issues within the machine learning community (Lango & 

Stefanowski, 2022; Santos et al., 2023). Given the intricacies they introduce to the classifier's learning 

process, these factors are commonly referred to as "difficulty" factors. Identifying difficulty factors 

through visualization techniques can guide the selection of appropriate methods to enhance 

classification performance. 

STEP 6 - Selection of corrective techniques: The 6th  step of the framework involves the selection of 

appropriate techniques to mitigate the impact of difficulty factors and improve the classifier’s 

performance. In the existing literature, numerous techniques have proved successful in addressing 

challenges posed by these factors, with each technique suited to address the problems associated with 

one or more of them. A comprehensive analysis of these techniques is presented in the literature review 
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chapter (Chapter 2). In our suggested framework, we advocate for the adoption of data-level techniques 

due to their independence from specific modeling approaches (Napierala et al., 2010; Elrahman & 

Abraham, 2013), thereby enhancing the adaptability of the framework. Since the suitability of different 

techniques may vary depending on the dataset or the modeling technique, researchers are granted 

discretion in choosing the most appropriate ones for their specific cases. 

STEP 7 - Classification:  The 7th  step of the framework involves executing the classification task. This 

step aligns with STEP 2 of the  framework; however, the classification task is now performed after the 

implementation of the corrective techniques selected in STEP 6. 

STEP 8 – Evaluation of classification performance across classes:  Similar to STEP 3, the 8th step of the 

framework involves evaluating the classifier's performance across classes. In addition to the proposed 

metric outlined in equation 3.2, there are alternative metrics available, based on which the effectiveness 

of the applied techniques can be assessed.  

Due to the presence of class imbalance, we specifically, advocate for the use of metrics that 

independently evaluate the performance of each class. These metrics, including recall (sensitivity), 

precision (specificity), F1-score, balanced accuracy, area under the ROC curve (AUC), and others, are 

not influenced by disparities in class sizes, offering a more meaningful evaluation. 

In general, the proper selection of evaluation metrics in classification tasks with imbalance datasets is a 

critical consideration, as highlighted in the literature review (Chapter 2). Commonly employed 

evaluation metrics, such as overall accuracy or the error rate, are mostly influenced by majority classes 

due to the their significantly larger sample sizes (Prati et al., 2004; García et al., 2007). Furthermore, 

these metrics assign equal misclassification costs to all classes, whereas highly imbalanced problems 

often entail non-uniform error costs that prioritize the minority classes, which are typically of greater 

interest. One of the key objectives in introducing our framework is to underscore the significance of 

choosing appropriate metrics when working with imbalanced datasets and to encourage fellow 

researchers to make thoughtful choices in this regard. This is critical to prevent overly optimistic yet 

potentially misleading outcomes.  

Information regarding the evaluation metrics mentioned above is outlined in the subsequent tables. 
While these details are provided in the context of binary classification, metrics can be extended to apply 
to multiclass classification scenarios as well. 
 
 

  Predicted Negative Class Predicted Positive Class 

Actual Positive Class   False Negative (fn) True Positive (tp) 
Actual Negative Class  True Negative (tn) False Positive (fp) 

Table 8.  Confusion matrix for binary classification. TP represents the number of correctly classified positive examples, FN 
denotes the number of positive examples misclassified as negative, TN signifies the number of correctly classified negative 
examples, and lastly, FP represents the number of negative examples misclassified as positive. The attribution of the terms 
"positive" and "negative" to the minority or majority classes is contingent upon researchers' choice. 

 
 

Metric                       Formula Evaluation focus 

Accuracy  𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Accuracy measures the proportion of 
correct predictions over the total number of 
instances assessed. 

Balanced accuracy  1

𝑁
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑁

𝑖=1

 

 

 
Balanced accuracy measures the average 
recall across all classes. 

Error rate  𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Misclassification error measures the 
proportion of incorrect predictions over the 
total number of instances assessed. 
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Recall  𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 ,

𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

Recall measures the number of correctly 
classified positive (negative) samples. 

Precision  𝑡𝑝

𝑡𝑝 + 𝑓𝑝
,

𝑡𝑛

𝑡𝑛 + 𝑓𝑛
 

Precision measures the proportion of 
positive (negative) patterns correctly 
classified among the total patterns 
predicted as positive (negative). 

F-score  
2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

F-score represents the harmonic mean 
between the recall and precision values. 

Table 9. Evaluation metrics for classification tasks. Accuracy and Error rate are commonly utilized metrics for evaluating the 
overall performance. Recall, Precision and F-score are often employed to assess performance independently for each class.  

 

If the chosen metrics indicate an improvement in classification performance, and the researcher deems 

this improvement satisfactory, then this step concludes the framework. Alternatively, if further 

enhancement is desired, STEPS 6,7 and 8 can be reiterated, as illustrated in Figure 8.  
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CHAPTER 4:   Data 
Following the introduction of our proposed framework, this chapter offers insights into the data utilized 

in this study before delving into the framework's application. Initially, we provide a brief literature 

review on the factors influencing travel mode choices. Subsequently, we present a succinct description 

of the dataset, along with a descriptive analysis and an overview of the pre-processing steps. Finally, we 

briefly discuss the assumptions and limitations associated with the data. 

4.1 Literature review - Determinants of  travel mode choices  
A brief literature review on the determinants of mode choices based on studies conducted using data 

from the Netherlands is summarized in this section. The variables encompass socio-economic attributes 

at both the household and individual level, along with trip-related factors, built environment 

characteristics, weather conditions and attitudes-perceptions. 

 

 
 Variables Sources 

Trip characteristics  Trip distance, Trip purpose, Day of the 
week, Trip cost 

Böcker & Thorsson (2016); Hagenauer and 
Helbich  (2017);  Kashifi et al. (2022); 
Versteijlen et al. (2021) 

Socio-demographic characteristics 
(encompasses both individual and 
household related variables) 

Age, Education, Car ownership, Work 
status, Gender, Possession of valid driving 
license, Ethnicity, Health condition (e.g. 
disability), Household size, Public Transport 
Card Ownership, Income 

 
Schwanen et al. (2001); Limtanakool et al. 
(2006); Rassouli & Timermans (2014); 
Böcker et al. (2016);  Hagenauer & Helbich  
(2017); Kashifi et al. (2022) 

Built environment  Degree of urbanization, Green space Limtanakool et al. (2006); Kemperman & 
Timmermans (2014); Hagenauer & Helbich 
(2017); Kashifi et al. (2022) 

Weather characteristics Temperature, Precipitation, Season Böcker et al.(2013); Böcker & Thorsson. 
(2016);  Kashifi et al. (2017); Ton et 
al.(2019) 

Attitudes-Perceptions Perception of infrastructure’s quality, 
Travel convenience, Environmental 
concerns, Perceived benefit, Awareness, 
Safety concerns 

Heinen et al. (2011); La Paix Puello et al. 
(2020); Versteijlen et al. (2021) 

Table 10. List of factors influencing mode choices. 

 

4.1.1 Trip characteristics 
Among trip characteristics, distance emerges as a crucial factor in determining mode choices 

(Hagenauer & Helbich , 2017; Kashifi et al., 2022). Across all age groups, shorter distances are notably 

more likely to be covered by bicycle and especially on foot, whereas longer distances are significantly 

more likely to be covered by car and public transport. It is worth noting that the impact of distance on 

transportation choices appears to be more pronounced among the elderly, which could be attributed 

to biological limitations or challenges in walking and cycling longer distances as age increases (Böcker 

et al., 2016). According to Böcker et al. (2016), and regarding trip purposes, leisure trips are 

predominantly undertaken by car, whereas walking, cycling, and public transport are preferred for 

work/study, errands, and social visits. Moreover, according to the same study, the day of the week does 

not exhibit any noticeable influence on the transport mode choices of the elderly, while public transport 

usage by younger age cohorts is less in the weekends. Finally, travel expenses emerged as a significant 

determinant in students' transportation choices for commuting to the university. Notably, high parking 

costs was the primary motivation to transition from using their cars to opting for public transport 

(Versteijlen et al., 2021). 
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4.1.2 Weather conditions 

With respect to the effect of weather conditions on mode choices, literature presents mixed findings. 
In a study conducted in Rotterdam by Böcker et al. (2016), higher maximum air temperatures were 
observed to have a favorable influence on choosing cycling over using a car, for both elderly and non-
elderly individuals, while they did not significantly impact the choice of public transport or walking. 
Similarly, precipitation had a negative effect on cycling among the non-elderly but did not show a 
significant impact on the elderly population, while wind speed showed no notable effect on transport 
mode choices for all age groups. The influence of seasonality on mode choices was also observed, 
especially for cyclists and pedestrians who are more exposed. Summer and autumn were identified as 
the most favorable seasons for selecting these modes (Böcker et al., 2013). Additionally, temperature 
was recognized as a pivotal factor, especially in forecasting bicycle and public transport trips, in 
Hagenauer & Helbich's research (2017), while Kashifi et al. (2022) affirmed the influence of temperature 
in forecasting all modes. Conversely, a study conducted by Ton et al. (2019), found no impact between 

weather conditions and the choice of active transportation modes.  

 

4.1.3 Built-Environment attributes 
Regarding built-environment attributes, address density, which serves as a metric of the urbanization 
level, displayed a greater relevance in forecasting public transport trips compared to other modes 
(Hagenauer & Helbich, 2017; Kashifi et al., 2022). An elevated urbanity level was found to have a positive 
correlation with choosing public transport over private cars, particularly among the elderly population 
(Limtanakool et al., 2006; Böcker et al., 2016). In their study, Schwanen et al. (2001) discovered that 
elderly individuals residing in urban areas are less inclined to cycle and more inclined to use public 
transport when compared to their counterparts in rural areas. This difference could be attributed to 
better access to public transport in densely populated areas and the fact that urban areas have heavier 
traffic, which may make cycling seem less appealing as a choice. Additionally, Kempermann & 
Timmermans (2014) confirmed that elderly individuals in urban areas are less likely to cycle, while they 
also concluded that green residential environments are more likely to encourage them to cycle and 
walk. 
 

4.1.4 Socio-demographic attributes 
Concerning the socio-demographic variables,  ethnicity appears to be an influential factor, with research 
indicating that individuals with a non-Western migration background tend to cycle less and rely more 
on  public transport than native Dutch individuals (Böcker et al. , 2016). According to Limtanakool et al. 
(2006), socio-demographic factors in general and car availability, significantly influence the choice of 
transportation modes for medium and longer distance trips, regardless of the trips’ purpose. 
Conversely, in the study by Rassouli & Timmermans (2014), car availability was determined to have 
minimal significance in travel mode choice decisions, while Hagenauer & Helbich (2017) and Kashifi et 
al., (2022) demonstrated that the number of cars and bicycles per household held importance, along 
with other significant variables such as age, education, and household income. Furthermore, in line with  
the study of Böcker et al. (2016), household size plays a significant role, particularly for the elderly. The 
study’s results indicated that elderly individuals living in larger households are more likely to partake in 
walking, cycling, and the use of public transport compared to those in smaller households. Additionally, 
car ownership, bicycle ownership, and the possession of a driving license and a public transport card 
influence transportation mode choices regardless of age, as evidenced by studies such as Schwanen et 
al. (2001) , Böcker et al. (2016) and Kashifi et al. (2022). Finally,  concerning health characteristics, 
disability is linked to a decrease in trip frequencies for both the elderly and non-elderly populations, 
while among the non-elderly, obesity is negatively correlated with the use of active transportation 
modes (Böcker et al., 2016). 
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4.1.5 Perceptions & Attitudes 

In the context of perceptions and attitudes, La Paix Puello et al. (2020) found that an enhanced 
perception of the quality of cycling infrastructure is strongly associated with a greater likelihood of 
choosing the bicycle as the preferred mode of transport for reaching the train station.  Travel 
convenience was also discovered to be a crucial factor influencing students to favor public transport 
over cars, when commuting to the university (Versteijlen et al., 2021). This preference was attributed 
to the fact that public transport provided them with the opportunity to engage in other activities during 
the commute. In the same study, environmental considerations were also mentioned as a motive for 
selecting public transport, albeit rarely. In their research regarding bicycle commuting, Heinen et al. 
(2011) discovered that the decision to use a bicycle as a means of commuting to work is shaped by the 
perceived advantages of time savings, comfort, and flexibility, as well as individuals' appraisal of these 
benefits. Moreover, consideration of the impacts of cycling on personal health, the environment, and 
safety concerns significantly contributes to influencing the decision to commute by bicycle. 

 

4.2 Dataset Description 
The dataset employed in the present study combines information from two main sources: the 'Centraal 

Bureau voor de Statistiek' (CBS) and the open-source software OpenTripPlanner (OTP). The CBS data 

used in the current research study concerns the years 2018-2019 and is derived from the ODiN survey 

(formerly known as OViN); a national revealed-preference travel survey, which is conducted via an 

online questionnaire and is designed to gather statistical insights into the daily mobility patterns of the 

Dutch population. The survey's target population includes Dutch residents aged 6 years and older 

residing in private households, with the exclusion of individuals living in institutions or other types of 

communal settings. The data collected through the survey encompasses sociodemographic information 

about the respondents (e.g. age, income, car ownership, education) at both individual and household 

levels, as well as details about their daily trips (e.g. origin-destination postcode, start time, mode 

choices). In the present study, specific features from the ODiN survey were selected based on their 

significance in influencing travel mode choice, as indicated by relevant literature (Table 10). Next, the 

OTP software was used to compute the distance and duration for all available travel options for the 

individual trips recorded in the survey. This computation was carried out by using the centroids of the 

origin and destination postcodes associated with these particular trips. Finally, data regarding the 

expenses associated with the car and public transport journeys was obtained from a dataset provided 

by TNO. The final dataset includes both  numerical and categorical attributes. The categorical features 

are encoded with numerical values, with each category assigned a specific numerical representation. 

Detailed information about each feature is presented in Table 11. 

Figure 9 illustrates the overall distribution of mode preferences in the Netherlands using ODiN data 

(2018-2019). It is important to note that, in the this study, classification tasks exclusively focused on  the 

car (driver), bike and transit modes. Figure 10 and Figure 11 showcase the distributions of trips involving 

these three modes across Dutch provinces. 
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Figure 9. Mode preferences in the Netherlands using ODiN data (2018-2019), highlighting an inherent imbalance in the 
utilization of the different modes. Note that in the classification tasks of this study only the Car (driver), Bike and Transit modes 
are considered. 
 
 

 

 

 

Figure 10. Maps of the Netherlands depicting the distribution of transit and car trips across  Dutch provinces. Notably, the 
majority of transit trips occur in the Randstad area, encompassing the provinces of South-Holland, North-Holland, Utrecht 

and Flevoland. 
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Figure 11. Map of the Netherlands depicting the distribution of  bike trips across Dutch provinces. 

 

 

4.2.1 Descriptive Analysis of the dataset 
 

 Description Type Source 

Socio-demographic attributes    

 
Individual level 

 
Age  

 
1: age < 18 , 2: 18 ≤ age ≤ 
54,  
3: age ≥ 55 
 

 
Categorical 

 
CBS data (2018-2019) 

Sex male – 1 ; else – 0 
 

Categorical CBS data (2018-2019) 

Education higher education - 1 ; else – 
0 
 

Categorical CBS data (2018-2019) 

Driving license  driving license – 1 ; else – 0 
 

Categorical CBS data (2018-2019) 

Paid occupation yes – 1 ; else – 0 
 

Categorical  CBS data (2018-2019) 

 
Background 

1: native Dutch, 2: Western 
migration background,  
3: non-Western migration 
background 
 

 
Categorical 

 
CBS data (2018-2019) 

Possession of student public 
transport card 

yes – 1 ; else - 0 Categorical  CBS data (2018-2019) 

 
Household level 

Income  
 

1: low, 2: high Categorical CBS data (2018-2019) 

Car ownership 
 

car ownership  - 1; else - 0 Categorical CBS data (2018-2019) 

E-bike ownership 
 

e-bike ownership  - 1 ; else - 
0 

Categorical CBS data (2018-2019) 
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Children 
 

yes - 1 ; else - 0 Categorical  CBS data (2018-2019) 

Number of people in the 
household 

single-person household – 
1 ; else - 0 

Categorical CBS data (2018-2019) 

 
Trip attributes 

Origin postcode 
 

origin postcode (PC4) Categorical CBS data (2018-2019) 

Destination postcode 
 
 

destination postcode (PC4) Categorical CBS data (2018-2019) 

Origin province 
 

1: Groningen, 2: Friesland, 
3: Drenthe, 4: Overijssel, 
5:Flevoland, 6: Gelderland, 
7:Utrecht, 8: Noord-
Holland, 9: Zuid-Holland, 
10: Zeeland, 11:Noord-
Brabant,12: Limburg 
 

Categorical CBS data (2018-2019) 

Purpose purpose of the trip, 1: 
commute trip, 2: business 
trip, 3: other 
 

Categorical CBS data (2018-2019) 

Weekday 
 

weekday – 1; else - 0 Categorical CBS data (2018-2019) 

Holiday 
 

public holiday -1 ; else - 0 Categorical CBS data (2018-2019) 

Departure time 1: morning, 2: afternoon, 3: 
evening  
 

Categorical CBS data (2018-2019) 

    
Season 1: winter, 2: spring, 3: 

summer, 4: autumn 
Categorical CBS data (2018-2019) 

    
 
Mode choice 

1: car as driver,  
2: car as passenger,  
3: transit*, 4: bike, 5: walk 
*(train, bus, tram, metro) 
 

 
Categorical 

 
CBS data (2018-2019) 

Car duration 
 

travel time by car in sec Numerical OTP 

Transit duration 
 

travel time by public 
transportation in sec  

Numerical OTP 

Cycling duration cycling travel time in sec  
 

Numerical OTP 

Walking duration walking travel time in sec  
 

Numerical OTP 

Car cost cost in euros for driving  
journeys 
 

Numerical  TNO 

Transit cost cost in euros for public 
transportation journeys 

Numerical TNO 

 
Number of mode transitions 
during a transit journey 
 

 
number of mode transitions 

 
Numerical 

 
OTP 

Activity duration duration of the activity the 
respondent undertook after 
reaching the destination of 
their trip in min 
 

Numerical CBS data (2018-2019) 

Peak-hour Peak-hour  – 1; else - 0 Categorical CBS data (2018-2019) 
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Built environment attributes    

Urbanity level of the origin 
postcode 

1: very high,  2 : high,   
3: moderate, 4: low, 5:  
rural area 
 

 
Categorical 

 
CBS data (2018-2019) 

Urbanity level of the 
destination postcode 

1: very high,  2:high,  
3: moderate, 4: low, 5: rural 
area 
 

 
Categorical 

 
CBS data (2018-2019) 

Population class * 
 
*of the respondent’s residential 
municipality  

1: inhabitants ≤ 50.000, 2: 
50.000 <inhabitants ≤ 
150.000, 3: inhabitants > 
150.000 

Categorical CBS data (2018-2019) 

 

Table 11. Description of the dataset utilized in the application of this study. The descriptions of the variables correspond to the 
post-processing stage. 

 

 

4.2.2 Descriptive Analysis of the dataset 

 
Variable   Values/ 

Percentages 
 Variable  Values/ 

Percentages 

 
Mode choice 

Car 
Bike  
Transit  

55% 
34% 
11% 

 Possession of driving 
license 

Yes 
No 

82% 
18% 

Car ownership Yes 
No 

87% 
13% 

Sex Male 
Female 

53% 
47% 

E-bike ownership Yes 
No 

23% 
77% 

 
Trip purpose 

Commute  
Business 
Other 

32%, 
4% 

64% 

Possession of student 
public transport card 

Yes 
No 

7% 
93% 

Single household Yes 
No 

17% 
83% 

Public holiday Yes 
No 

1% 
99% 

Children in the household Yes 
No 

53% 
47% 

Peak- hour Yes 
No 

39% 
61% 

Population class * 
 
*of the respondent’s 
residential municipality 

1 
2 
3 

39% 
31% 
30% 

Weekday Yes 
No 

79% 
21% 

Car duration (sec) mean 
sd 

1313,842 
1004,374 

 
Age 

1 
2 
3 

11% 
75% 
14% 

Income* 
*High income category includes both 
medium and high income households 

High 
Low 

76% 
24% 

Paid occupation Yes 
No 

64% 
36% 

Departure time 1 
2 
3 

37% 
45% 
18% 

Higher Education Yes  
No 

45% 
55% 

Migration Background 1 
2 
3 

82% 
9% 
9% 

Urbanity level of the 
origin postcode 

1 
2 
3 
4 
5 

29% 
28% 
17% 
14% 
11% 

Urbanity level of the 
destination postcode 

1 
2 
3 
4 
5 

29% 
29% 
17% 
14% 
11% 
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Season 1 
2 
3 
4 

24% 
25% 
24% 
27% 

 Transit duration (sec) mean 
sd 

3036,2119 
2802,1498 

Bike duration (sec) mean 
sd 

2911,1169 
3991,797 

Car cost (euros) mean 
sd 

7, 3 
9, 4 

 Number of mode 
transitions during a 
transit journey 
 

mean 
sd 

3, 2 
2, 1 

Transit cost (euros) mean 
sd 

3, 2 
4, 1 

 Origin province 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

6% 
3% 
2% 
6% 
2% 

11% 
8% 

18% 
24% 
2% 

13% 
5% 

Table 12. Descriptive analysis of the dataset utilized in the this study after the pre-processing stage. For numerical variables, 
mean and standard deviation values are provided for both the datasets utilized in the Random Forest model (left value) and 
the MNL model (right value). 

 

 

4.3  Data Preprocessing Steps 
The preprocessing of the dataset utilized in the present study  can be summarized in the following steps: 

o Trips from the ODiN data were filtered to encompass only those conducted using one of the 
following modes: car (as a driver), bike, and transit. 

o Intermediate legs for trips consisting of multiple segments were eliminated. 

 

o Trips with zero postcode coordinates were removed. 

 

o Trips with identical origin and destination postcodes were removed from the dataset since the 

OTP software cannot generate travel alternatives for such trips. It is worth noting that this 

decision resulted in a notable reduction in the number of cycling and walking trips. 

 

o Trips in which a driving license was not present, and car was reported as the chosen mode were 

excluded. 

 

o The exact start time of the trips were replaced with one of the following categories : ‘morning’, 

‘afternoon’, ‘evening’. Additionally, based on the start times, trips were categorized as 

occurring during peak hours or not. 

 

o The weekday feature was encoded by assigning a value of 1 for weekdays and 0 for weekends, 

instead of using distinct numerical representations for each day of the week.  

 

o For the Random Forest model, missing values were substituted with the median value of their 
corresponding features. This process was executed after the dataset was partitioned into 
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training and test sets to avoid any 'data leakage' from the test set to the training set. To clarify 
the procedure, the missing values were initially replaced in the training set, and afterward, the 
median values from the training set were used to fill in the missing values in the test set. 
 

o For the MNL model , the treatment of NaN values differed. Specifically, for each alternative 

mode, a corresponding variable indicating its availability was created. When the OTP software 

produced NaN values for the duration and distance of a particular mode, indicating the 

unavailability of that option for a particular trip, the availability of that mode for the trip in 

question was set to zero. Conversely, if the OTP software provided valid values, the availability 

was defined as 1. Modes with zero availability were excluded from the user's choice set during 

the computation of the utility functions.  

 

o Samples for which the OTP software generated no information for the duration and distance 

features  of the respondent’s chosen mode were excluded. 

o Samples with zero transit costs were excluded in the MNL model. 
 

o The availability of the car alternative in the MNL model was dependent on the possession of a 
valid driving license. 
 

o Data binning was performed to address the presence of categories within the features with very 

few samples. This step was taken to mitigate potential issues when dividing the dataset into the 

training and test sets. 

 

o Features without any inherent category order, such as trip purpose, background of the 

respondent, departure time etc were subjected to one-hot encoding. 

 

o Missing values from the activity duration feature were imputed with the feature’s median 
value derived from trips with the same trip purpose. 
 

 

4.3.1 Feature selection  
A crucial step taken after the data pre-processing was feature selection. This step is of paramount 

importance, as irrelevant features can hamper the performance of classification algorithms. 

Furthermore, in our case it could contribute to addressing the presence of class overlap in the dataset. 

The selection of the appropriate techniques to assess correlation between variables should be 

contingent on the variables’ type. Considering the presence of both numerical and categorical data in 

our data, we evaluated correlation using three different metrics. 

Specifically, to identify potential correlation among the numerical explanatory variables, we employed 

the Pearson coefficient, which is the most widely used measure for assessing linear correlation between 

numerical variables. The values of Pearson coefficient range from -1 to 1. A correlation coefficient of 

zero signifies no linear relationship between the variables; a value of -1.00 indicates a perfect negative 

linear relationship, while a value +1.00 indicates a perfect positive linear relationship (Prematunga, 

2012). 
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By setting a threshold of 0.95, the distance feature for the car and bike modes was excluded due to its 
high correlation with the trip duration of these alternatives. Similarly, the distance feature for the public 
transport mode was omitted as it exhibited a high correlation with the cost feature of this alternative. 

To assess variable correlation among categorical variables, we employed Cramer’s V association 
(Khamis, 2008). For examining the correlation between continuous and categorical variables, we used 
the point-biserial correlation test, a specific case of the Pearson coefficient tailored for exploring 
correlation between continuous and dichotomous (binary) variables. In both cases, no features 
displayed high correlation. 

Mutual Information was utilized to detect weak dependencies between the features and the target, 
with the goal of potentially excluding certain features. However, a challenge arose as mutual 
information values, spanning from 0 to +∞, consistently remained close to zero for all features in our 
case, rendering the selection process difficult. Moreover, literature evidence indicated that all 
considered variables play a role in determining mode choices, and consequently, the decision was made 
to retain all variables for further analysis. 

 

 

4.3.2 Calculation of trip costs 
In this sub-section we outline the methodology  employed to compute the costs for both the car and 

transit trips in our dataset. 

To compute the car costs, we considered two factors: the cost per kilometer and parking expenses. The 

cost per kilometer was set at 0.34 euros/km, relying on data gathered by TNO. Parking costs were 

computed by multiplying the parking tariff by the duration of the respondent's activity after reaching 

the trip destination. Activity durations were sourced from the ODiN data, and parking tariffs were 

extracted from a dataset developed by TNO. This dataset associates each postcode in the Netherlands 

with a parking tariff, representing the weekly average tariff for the respective postcode. The detailed 

calculation of car costs is outlined in the following equation: 

 

𝑐𝑎𝑟 𝑐𝑜𝑠𝑡 (𝑒𝑢𝑟𝑜𝑠) = 0.34 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑎𝑟 + 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑡𝑎𝑟𝑖𝑓𝑓𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 
𝑝𝑜𝑠𝑡𝑐𝑜𝑑𝑒

∗ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (4.1) 

Similarly, to compute transit costs, we considered two factors: a base tariff of 0.96 euros and the cost 

per kilometer traveled .The same travel fare (euros/km) was applied to all means of public transport 

and all regions. The value of the travel fare corresponds to the average train fare from the Hague and 

Rotterdam areas. The calculation of transit costs is expressed by the following equation: 

𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑐𝑜𝑠𝑡 (𝑒𝑢𝑟𝑜𝑠) = 0.96 +
(0.147+0.166)

2
∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑎𝑛𝑠𝑖𝑡    (4.2) 
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4.3.3  Data Assumptions  
In this subsection, we outline the assumptions made in the current study with regard to the data. 

Data assumptions 
 

o In this study, we focused only on the following modes: car, transit and  cycling, while the remaining mode choice 
alternatives were not considered. 
 

o In the ODiN survey, the primary mode for each trip is determined by considering the mode that covered the 
greatest distance.  

 
o To generate the public transport alternatives through the OTP software, a maximum walking distance of 2 km was 

considered. Modifying this walking distance limit, could possibly lead to the generation of alternative options for 
the public transport mode. 

 
o Intermediate legs for trips consisting of multiple segments were excluded in order to simplify the process and 

reduce complexity.  
 

o Trips intended for going home were regarded as having no associated parking costs. 
 

o While the ODiN survey originally classified means of public transport into two distinct categories—namely, train, 
and tram/bus/metro—we consolidated them into a single category referred to as "public transport." 
 

o When calculating the cost of transit trips, the same fares were considered for all modes within the public transport 
category, including the train, tram, bus, and metro. Additionally, the costs associated with bike trips were assumed 
to be zero. 

 
o Although certain respondents of the survey have reported multiple trips, we treated all samples in the dataset as 

independent observations. 
 

Table 13. Summary of the data assumptions considered in this study. 

 

4.3.4 Data Limitations 

Data Limitations 
 
The primary limitations of our dataset pertain to the travel alternatives derived from the OpenTripPlanner software, 
outlined as follows: 
 

• The OTP software generates travel alternatives using separate origin and destination points. In our methodology, 
we supplied the software with the centroids of the origin and destination postcodes for each trip. As a result, 
travel alternatives for trips within the same postcode could not be generated. This predominantly impacted 
walking trips, given that these trips typically cover short distances compared to other modes that are more 
frequently used for longer journeys. Consequently, a substantial number of walking trips had to be excluded. 
Coupled with a substantial amount of missing values for the remaining trips (approximately 30%), we opted to 
exclude the walking class entirely from our analysis. 
 

• Due to the fact that postcode centroids may land within inaccessible areas, such as lakes or fields distant from 
the road network, the software may deem a requested trip impossible. As a result, no travel alternatives will be 
generated for such trip, even though, in reality, it may have been undertaken. 
 

• The data derived from the OTP software may be subject to both overestimation and underestimation. For 
example, a very short trip from one side of a postcode's border to the other might be overestimated, as the 
software will provide information related to a longer route between the centroids of the two neighboring 
postcodes. Conversely, an underestimation may occur for trips conducted between the furthest edges of two 
postcodes. 

 

Table 14. Summary of the limitations of the data utilized in this  study. 
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CHAPTER 5: Application of the proposed framework 
Having introduced our proposed framework (Chapter 3) and discussed the data utilized in this study 
(Chapter 4), this section presents the practical application of our framework, specifically in the context 
of predicting travel mode choices in the Netherlands. In contrast to numerous prior studies, that delve 
into the issues of class imbalance and class overlap using artificial datasets, our approach employs 
Revealed-Preference (RP) data. In specific, we employed the CBS ODiN dataset (for the years 2018-
2019), which provides information on the daily mobility patterns of the Dutch population, data from the 
OpenTripPlanner (OTP) software, and a parking cost dataset developed by TNO. Comprehensive details 
about each of these datasets are thoroughly outlined in Chapter 4. Furthermore, unlike the majority of 
studies that primarily focus on binary scenarios, resulting in a relatively limited exploration of multiclass 
classification tasks with imbalanced datasets (Lango & Stefanowski, 2022), our framework was 
employed for both binary and multiclass classification tasks. 

Figure 12, illustrates the sequential steps we undertook, showcasing how our proposed framework can 

be integrated in a classification task involving imbalanced datasets. Further explanation of these steps 

is provided in the remainder of this section. 

 

Figure 12. Integration of the proposed framework in the context of forecasting travel mode choices in the Netherlands. 

 

STEP 1 - Specification of the Research Question:  The 1st step in our methodology involved articulating 

our research question. As previously mentioned, the central focus of our study revolves around 

identifying and addressing the impact of class imbalance within the context of forecasting mode choices 

in the Netherlands. 

STEP 2 - Model selection: The 2nd  step encompassed the selection of the modeling techniques 
employed for the classification task. As mentioned earlier, we applied our proposed framework, using 
two distinct model categories: machine learning and Random Utility Maximization (RUM) theory – based 
models. Within the array of machine learning models we opted for the Random Forest Classifier. Our 
decision was primarily influenced by its superior performance in recent studies focused on forecasting 
travel mode choices, compared to alternative models (Hagenauer & Helblich, 2017; García-García et al., 
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2022). Within the array of RUM theory-based models, we opted for the Multinomial Logit Model (MNL), 
recognized as the most widely used discrete choice model (Salas et al., 2022).  
 

Typically, this step involves an iterative process wherein researchers experiment with various models to 

identify those most suitable to their specific cases. In our current application, we have chosen the 

aforementioned models, recognizing that a more comprehensive exploration could potentially lead to 

finding more optimal alternatives. Nevertheless, our primary goal in this study is to demonstrate the 

applicability of our proposed framework across different models rather than determining the most  

optimal classifier. 

 
STEP 3 - Data: The 3rd  stage in our application involved both data collection and pre-processing. This 

step followed model selection, recognizing that the chosen models can profoundly influence the pre-

processing of the data. To identify the factors influencing travel mode choices in the Netherlands, we 

conducted a comprehensive literature review, elaborated upon in Chapter 4. As mentioned earlier, our 

dataset comprises information from three distinct sources: ODiN data for the years 2018-2019, data 

from the OTP software, and data developed by TNO.  

In specific, when employing the Random Forest classifier, we incorporated most of the mode choice 

determinants identified in the existing literature, based on their availability in the ODiN travel survey. In 

contrast, the Multinomial Logit (MNL) model includes only the cost and duration features. While we 

acknowledge the potential improvement in predictive performance with an increased number of 

relevant features, as mentioned earlier, our study's primary objective is not to find the most optimal 

classifiers. Instead, we aim to demonstrate the adaptability of our proposed framework to any classifier, 

leaving the choice of models to the discretion of researchers. Additionally, even with a simplified 

specification of the MNL model, we can effectively capture the Value of Time (VoT), a crucial parameter 

in the appraisal of transport projects, and explore whether and to what extent its values are affected 

when addressing the impact of class imbalance. In-depth details regarding all variables and pre-

processing steps are included in Chapter 4. 

Finally, it is noteworthy that the two models employed in this study differ not only in terms of 

explanatory features but also in the pre-processing steps applied to their samples, making a direct 

comparison between them impractical. Nevertheless, it is essential to emphasize that our study does 

not intend to directly compare these models. Rather, our goal is to illustrate the versatility of the 

proposed framework when implemented employing different models. 

STEP 4 – Inspection of class imbalance & Calculation of the Imbalance ratio: In the 4th  step of our 

application, we identified the minority and majority classes and calculated the Imbalance Ratio (IR) for 

each dataset. This was necessary because the number of samples in the datasets used in each model 

differed , given the latter’s distinct preprocessing requirements. In all cases, the majority and minority 

classes were the Car and Transit classes, respectively. In the context of classification tasks using Random 

Forest, the Imbalance Ratio (IR) was found to be 5, whereas the dataset employed in the MNL model 

had an Imbalance Ratio equal to 6.8. 

 

 Imbalance Ratio 

Random Forest 5 

MNL 6.8 

Table 15. Imbalance Ratio of the datasets utilized in each model within this study. 
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STEP 5 & STEP 6 - Preliminary Classification - Preliminary  evaluation across classes: The 5th  and 6th steps 

in our application involved the preliminary execution of the classification task and the subsequent 

evaluation of the performance across classes, by employing the Performance Gap Metric outlined in 

equation  3.2 of STEP 3 in Chapter 3. 

 

The packages and libraries used for classification are outlined in the following table. 

 

 

 

Table 16. List of libraries and packages employed for classification in the application of this study. 

 

STEP 7 & STEP 8 - Visualization of data in a low-dimensional space – Inspection of difficulty factors:  The 

7th and 8th steps in our application involved the data visualization and inspection. Given the noted 

disparities in the performance among classes, in both the binary and multiclass scenarios, our goal in 

this step was to gain a more comprehensive insight into the data structure, with a particular emphasis 

on exploring the closeness between samples.  

Among the various visualization techniques found in the literature, in this study we opted for a 2D data 

visualization using the t-distributed Stochastic Neighbor Embedding (t-SNE) plot (Van Der Maaten & 

Hinton, 2008). t-SNE is as a non-linear dimensionality reduction technique, transforming 

multidimensional data into a two or three-dimensional space. Its primary objective is to maintain local 

distances between data points, grouping similar samples together. The initial step involves converting 

high-dimensional Euclidean distances among data points into conditional probabilities, which capture 

the similarities between them. Proximity results in higher conditional probabilities, while distant points 

yield infinitesimal probabilities. These probabilities are then calculated for the lower-dimensional space. 

Through an optimization process, the mismatch between distributions in the higher and lower 

dimensional spaces is minimized, ensuring that the positions of data points in the lower-dimensional 

space faithfully represent their relationships observed in the higher-dimensional space. For an in-depth 

description of t-SNE’s mathematical foundations, readers are referred to Van Der Maaten and Hinton 

(2008). 

As depicted in Figure 13 and Figure 14, in both  binary and multiclass scenarios, in addition to the 

challenge posed by class imbalance our dataset exhibits significant overlap, which serves to validate the 

observed performance deviations. 

Also, it is important to note that while the application of this study concentrates on the class imbalance 

between different classes (''between-class'' imbalance) as well as the class overlap, a brief analysis 

related to the ''within-class'' imbalance mentioned in STEP 5 of Chapter 3 is also provided in the 

Appendix of this study. 

 

STEP 9 - Selection of corrective techniques:  The 9th step of our application involves implementing 
techniques to address both class imbalance and class overlap. Drawing from existing methodologies, 
the solution space encompasses sampling approaches, data decomposition, modification of existing 
algorithms, and the creation of new learning algorithms specifically tailored for imbalanced data. As 

Libraries & packages   

Scikit-learn Random Forest Classifier 

Biogeme MNL 
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mentioned earlier, our proposed framework advocates for the use of data-level techniques, due to their 
independence from the underlying classifier. In particular, the techniques we employed either focus on 
augmenting the number of minority class samples to enhance their visibility to the classifier or on 
treating overlapping and non-overlapping regions of the data space separately, following a separation 
scheme similar to that proposed by Xiong et al. (2010). In this context, "overlapping" pertains to regions 
in the data space where samples from the minority class and their nearest neighbors from other classes 
coexist. On the other hand, "non-overlapping" signifies regions exclusively occupied by samples from 
classes other than the minority class. A thorough descriptions of each method is provided in Chapter 2. 
 
Table 17 provides an overview of the techniques employed in this study. Concerning data augmentation, 
we chose to utilize the Synthetic Minority Over-Sampling Technique Nominal Continuous (SMOTENC) 
as it is considered the state-of-the-art approach for augmenting imbalanced tabular datasets. The 
selection of the other two techniques was motivated by identifying significant overlap in the dataset 
and consulting relevant literature for its effective resolution. Similar to our approach in selecting 
modeling techniques, we recognize that there may exist more suitable techniques than those 
implemented. Additionally, different techniques may be more appropriate for specific cases. 
Consequently, researchers should select techniques that align better with the specifics of their 
individual cases. 
 

 

Selected techniques 

SMOTENC 

Neighborhood-based Undersampling 

Separation scheme 

Table 17. Summary of the sampling techniques utilized in the application of this study. 

 

STEP 10 & STEP 11 – Classification & Evaluation of performance across classes: The 10th and 11th steps 

encompassed the execution of the classification task and the evaluation of classification performance 

across classes. Detailed results from these steps are presented later in this chapter. With the completion 

of these steps our application was concluded. 

 

 

5.1  Results  
In this section the final results of our application are presented. Initially we provide a brief overview of 

the applied techniques and subsequently we proceed to showcase the results achieved through their 

implementation. 

 

Techniques utilized in the this study 

 
 
 
 
SMOTENC 

 
Creation of synthetic data for the minority class along the line segments that connect minority 
samples and their nearest neighbors, which belong also to the minority class. Note that 
SMOTENC is a version of the traditional SMOTE technique, able to handle both numerical and 
categorical variables. 
 
Parameters to be determined: 

• k : number of nearest-neighbors to be considered.  

• N : number of samples to be created.  
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Neighborhood-based 
Undersampling 
 

 
Elimination of samples from the majority class that have at least one nearest neighbor belonging 
to the minority class. Note that in the context of the multiclass classification, samples were 
eliminated from both the car and bike classes. 
 
Parameters to be determined: 

• k : number of nearest neighbors to be considered 
 

 
 
 
Separation scheme 
  
 

 
Classification is conducted in two (binary case) or three (multiclass case) stages. In the initial 
stage, a classifier categorizes samples by determining whether they belong to the overlapping 
or non-overlapping regions. Following this classification, two distinct classifiers are employed in 
each of the regions to predict the actual classes of the samples. Specifically, in the binary case, 
all samples within the non-overlapping region are assigned to the car class. Consequently, the 
second stage of classification exclusively takes place within the overlapping region. 
 
Parameters to be determined: 

• k: number of nearest neighbors to be considered when defining the overlapping 
region 

 

Table 18. Summary of the sampling techniques utilized in this study. 

 

 

 

5.1.1 Random Forest – Binary & Multiclass classification 
In this section we present the results obtained with the Random Forest model. Table 20 presents the 
results for binary classification, encompassing the Car and Transit classes, whereas Table 22 presents 
the results for multiclass classification, involving the Car, Transit and Bike classes. In both cases, Car 
constitutes the majority class, while Transit the minority class. The reported values represent the mean 
performance of the model across five runs, with standard deviation values indicated in parentheses. As 
mentioned earlier, this method was utilized to accommodate the inherent stochastic nature of the 
model, which introduces randomness through the implementation of bootstrapping and random 
feature selection techniques. 
 
 
In both scenarios, Random Forest models were trained using 70% of the dataset. For hyperparameter 
tuning, 10% of the data served as a validation set, with the remaining 20% designated for testing. Given 
the imbalanced nature of our dataset, we adopted a stratified splitting approach to ensure the 
preservation of the target class ratio across all sets. Finally the models’ performance was assessed based 
on both aggregate (overall & balanced accuracy) and mode-specific (precision, recall, f1-score) 
evaluation metrics as presented in the tables that follow. 
 

 

5.1.1.1 Binary classification 
As mentioned earlier, the Imbalance Ratio (IR) in the dataset used for classification tasks employing the 

Random Forest model was determined to be 5. To assess whether class imbalance indeed impacted the 

classifier’s performance and following the steps outlined in the proposed framework, we ran the model 

and calculated the Performance Gap Metric (eq. 3.2). The metric yielded an approximate value of 31%, 

surpassing the established threshold and prompting us to proceed with a more thorough analysis of the 

dataset’s structure. 
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Imbalance ratio 5 
Performance Gap Metric 
(baseline model) 

≈ 31 % 

Table 19. Imbalance Ratio and Performance Gap Metric in the context of binary classification using the Random Forest model.  
The Imbalance Ratio evaluates the difference in the number of samples between the majority and minority classes, whereas 
the Performance Gap Metric quantifies the discrepancy in their respective classification performances. 

 

Figure 13 depicts the data projection into a 2D space. The t-SNE plot reveals the existence of both clean 

and noisy regions within the data space. Clean regions in this study are characterized by the presence 

of samples belonging to classes other than the minority class. In this specific case, clean regions are 

occupied by samples from the Car class. Noisy regions, on the other hand, contain samples from both 

classes. In this study, regions where no minority samples overlap with samples from other classes are 

labeled as "non-overlapping", whereas areas with sample overlap between the minority class and the 

rest of the classes are designated as "overlapping". 

 

 

Figure 13.  T-SNE plot for the binary classification between the Car and Transit classes, highlighting both overlapping and non-
overlapping regions within the dataset. T-SNE is a dimensionality reduction technique that improves the visualization of 
multidimensional data by projecting it into a lower-dimensional space. In this case, the data is visualized in a 2D space.  In the 
above plot, two distinct regions are emphasized: the overlapping, encompassing both transit and car samples, and the non-
overlapping, comprising exclusively car samples. 

 

 

To address the characteristics of our dataset, marked by both class imbalance and class overlap, we 

employed all three techniques briefly outlined in Table 18. The results of these techniques are discussed 

as follows. 

With regard to the SMOTENC technique and contrary to other studies (Kashifi et al., 2022; H.Chen & 

Cheng, 2023) that oversampled the minority class to make it equal with the majority class, without 
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performing any exploration with regard to the number of created samples, in this study we conducted 

three experiments. Each experiment involved the generation of a different number of minority 

instances. Specifically, in the first experiment, we aimed for a number of minority samples equal to 30% 

of the number of majority samples, while in the second and third experiments, this percentage was set 

to 50% and 100%, respectively.  

Upon comparing the outcomes of applying SMOTENC to the baseline model (prior to any technique 

implementation) the most notable enhancement in the sensitivity (recall) of the minority class 

(approximately 11%)  is observed when achieving an equal class distribution. In this case, the 

Performance Gap Metric also exhibited improvement, falling below its established threshold and 

reaching a value of 16.6%. Conversely, in the first and second experiments, where the number of 

generated samples equaled 30% and 50% of the majority samples, sensitivity exhibited a more modest 

increase of approximately 4% and 8%, respectively. Additionally, the Performance Gap Metric did not 

fall below the 20% threshold, although in the second experiment it nearly attained it. 

Furthermore, we observe that in all three experiments, the heightened sensitivity was coupled with a 

reduction in precision. The trade-off between these two metrics is reflected in the F1-score of the 

minority class, which remained relatively stable, exhibiting only a minimal decrease in the third 

experiment. 

Simultaneously, with the increase in the sensitivity of the minority class, the sensitivity of the majority 

class exhibited a slight decrease, which became more pronounced (approximately 4%) when the two 

classes became equal. In contrast, the total accuracy remained relatively stable, while the balanced 

accuracy exhibited an increase, which is attributed to heightened  sensitivity of the minority class. 

In the implementation of the Neighborhood-based Undersampling technique, two experiments were 
conducted, each utilizing a distinct value for the k parameter. In the initial experiment, k was set to 3, 
while in the subsequent one, it was set to 5. In both experiments, the sensitivity of the minority class 
increased, with the improvement being more pronounced, reaching  approximately 12% compared to 
the baseline model, when k was equal to 5. Comparing the two experiments with different k values 
reveals a greater increase in the sensitivity of the minority class with the higher value of k. This can be 
attributed to the more substantial elimination of majority samples as k increases. Specifically, with k = 
3, the Imbalance Ratio between the two classes was 3.9, while in the case of k = 5, the Imbalance Ratio 
was reduced to 3.1. 
 
The heightened sensitivity of the minority class in the second experiment led to the Performance Gap 
Metric falling below its predetermined threshold, reaching a value of approximately 15%, signifying the 
model's effective prediction with regard to  both classes. Similar to the SMOTENC technique, however, 
the improved sensitivity of the minority class was counterbalanced by a decrease in its precision 
(approximately 16%, when k was equal to 5), resulting in a relatively unchanged F1-score. 
Simultaneously, with the increase in the sensitivity of the minority class, the sensitivity of the majority 
class exhibited a slight decrease, more pronounced in the second experiment. The total accuracy 
remained relatively stable, while the balanced accuracy slightly increased, following the trend of the 
sensitivity of the minority class. 
 
In the implementation of the Separation scheme, three experiments were conducted, each utilizing a 

distinct value for the k parameter. In the first experiment, k was equal to 2, while in the second and 

third experiments,  k was equal to 3 and 5, respectively.  By implementing the separation scheme, the 

sensitivity of the minority class increased in all three experiments. Nevertheless, as the value of k 

increased from 3 to 5, the incremental improvement in sensitivity compared to the baseline model 

diminished. This phenomenon can be attributed to the increasing class imbalance within the 
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overlapping area with the rising value of k, involving more nearest neighbors from the majority class. 

Specifically, when k was equal to 3, the Imbalance Ratio was 1.2, while for k = 5, the Imbalance ratio was 

2. 

In the scenario with k equal to 3, the Performance Gap Metric exhibited improvement, falling below the 

predetermined threshold; however, once again precision had to be compromised. Concurrently, a 

minimal decrease was observed in the sensitivity of the majority class, while the total accuracy remained 

unchanged and the balanced accuracy slightly increased. 

In summary, the application of all three techniques led to an enhancement in the sensitivity of the 
minority class, with the Neighborhood-based Undersampling proving to be the most effective, resulting 
in the minimum value of the Performance Gap Metric. Furthermore, in all cases, total accuracy remained 
relatively stable, indicating that fairness in terms of accurately predicting both classes could be achieved 
without compromising the overall accuracy of the classifier. Lastly, when comparing the optimal results 
obtained by the SMOTENC and the Separation scheme techniques, it is evident that while both methods 
achieve a relatively similar increase in the sensitivity of the minority class, the latter’s precision is further 
diminished during the implementation of the SMOTENC. This may be attributed to the 'blindness' of this 
technique in generating synthetic samples, disregarding the presence of majority samples. 
Consequently, in the presence of substantial overlap in the dataset, an increase in the number of 
synthetic samples may elevate noise, resulting in a higher misclassification of majority samples. On the 
contrary, when employing the Separation scheme, the classifier focuses exclusively on the overlapping 
area, potentially acquiring a better ability to differentiate between samples belonging to the two classes. 
  

 Precision Recall F1-score Acc. B. 
Acc. 

Perf. 
Gap  

Metric 

Car PT Car PT Car PT Total Total Car-PT 
Baseline model 
 
 
 

94 
(0) 

90 
(0) 

98.4 
(0.55) 

67 
(0) 

96.1 
(0.26) 

77 
(0) 

93 
(0) 

83 
(0) 

31.4% 

SMOTE-NC (k = 
5, N = 30% of 
majority 
samples) 
 

94 
(0) 

85.2 
(0.45) 

97.6 
(0.55) 

71 
(0) 

95.8 
(0.26) 

77.2 
(0.45) 

93 
(0) 

84 
(0) 

26.6% 

SMOTE-NC (k = 
5, N = 50% of 
majority 
samples ) 
 

95 
(0) 

80.2 
(0.45) 

96 
(0) 

74.8 
(0.45) 

95.5 
(0) 

77.2 
(0.45) 

93 
(0) 

85.4 
(0.55) 

21.2% 

SMOTE-NC (k = 
5, N = 100% of 
majority 
samples) 

95 
(0) 

73.8 
(0) 

94.2 
(0.45) 

77.6 
(0.55) 

94.6 
(0.22) 

75.4 
(0.55) 

92 
(0) 

86 
(0) 

16.6% 

 
NBU  (k = 3) 
 

95 
(0) 

82 
(0) 

97 
(0) 

73.8 
(0.45) 

96 
(0) 

77.8 
(0.45) 

93 
(0 

85 
(0) 

23.2% 

 
NBU  (k = 5) 
 

96 
(0) 

74 
(0) 

94 
(0) 

79.2 
(0.45) 

95 
(0) 

76.2 
(0.45) 

92 
(0) 

87 
(0) 

14.8% 

 
Separation 
scheme (k = 2) 
 

95 
(0) 

81 
(0) 

96 
(0) 

74.8 
(0.45) 

95.5 
(0) 

77.8 
(0.24) 

93 
(0) 

85.4 
(0.22) 

21.2% 

 95 78.8 96 76.4 95.5 77.6 93 86.2 19.6% 
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Separation 
scheme (k = 3) 
 

(0) (0.45) (0) (0.55) (0) (0.23) (0) (0.27) 

 
Separation 
scheme (k = 5) 
 

95 
(0) 

82.6 
(0.55) 

97 
(0) 

73 
(0) 

96 
(0) 

77.5 
(0.24) 

93 
(0) 

85 
(0) 

24% 

Table 20. Summary of the results of binary classification using the Random Forest model. The reported values represent the 
mean performance of the model across five runs, with standard deviation values indicated in parentheses. The values of the 
Performance Gap Metric are highlighted in the cases where its value surpasses the 20% threshold, indicating the ability of the 
classifier to predict equally well the majority and the minority classes. 

 

5.1.1.2 Multiclass classification 

In the multiclass classification, the Bike class was introduced alongside the existing Car and Transit 
classes. The ratio between Car and Bike samples was 1.6, while for Bike and Transit samples, it was 3.  
 
The Performance Gap Metric (eq. 3.2), focusing on the Car and Transit classes, reached 40%, surpassing 
the established threshold of 20%, as well as exceeding the metric's value in the case of  binary 

classification (≈ 31%). This  further increase in the Performance Gap Metric compared to the binary 
scenario indicated a reduced capability of the classifier to identify samples from the minority class in 
the presence of additional classes. 
 

Imbalance ratio Car-Transit 5 
Imbalance ratio Car - Bike 1.6 
Imbalance ratio Bike - Transit 3 
Performance Gap Metric 
(baseline model)* considering the 

majority and minority classes 

≈ 40 % 

Table 21. Imbalance Ratios and Performance Gap Metric in the context of multiclass classification using the  Random Forest 
model. In this case, the Imbalance Ratio was computed for all pairs of classes, signifying the difference in their number of 
samples, while the Performance Gap Metric was utilized to quantify the disparity in the classification performance between 
the majority and minority classes. 

 

The results of the data projection for the multiclass scenario are displayed in Figure 14. The t-SNE plot 

indicates substantial overlap among samples from all classes. While certain regions appear to be 

primarily occupied by car and transit samples, we chose to simplify the analysis and refrain from 

decomposing the data space into multiple regions. Instead, we adopted the same separation scheme 

introduced in binary classification. In this context, the overlapping region encompassed all samples from 

the minority class and their k-nearest neighbors from the other two classes. Conversely, the non-

overlapping regions included only samples from the Car and Bike classes. 
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Figure 14.  T-SNE plot for multiclass classification involving the Car, Transit, and Bike classes. T-SNE is a dimensionality reduction 
technique that improves the visualization of multidimensional data by projecting it into a lower-dimensional space. In this case, 
the data is visualized in a 2D space. In the context of multiclass classification, overlapping regions are defined as those occupied 
by the minority class samples and their nearest neighbors from the Car and Bike classes, while non-overlapping regions are 
considered those occupied solely by samples from the Car and Bike classes. 

 
Regarding the SMOTENC technique, similar to the binary case, three experiments were also performed 
in the multiclass scenario, entailing the generation of varying numbers of synthetic samples. Minority 
samples were synthesized until their total number reached 30%, 50%, and 100% of the number of 
majority samples (Car samples). Across all three experiments, the sensitivity of the minority class 
improved, with the maximum increase (15%) observed when the sizes of the minority and majority 
classes became equal. In that case, the Performance Gap Metric demonstrated its maximum 
improvement, nearly attaining the 20% threshold when the classes became equal. 

In all three experiments, the increased sensitivity was offset by a reduction in precision, which reached 
its maximum decline (approximately 21%) when the minority and majority classes achieved equal 
representation. This trade-off between sensitivity and precision metrics resulted in the F1-score of the 
minority class remaining relatively consistent. 

Contrary to the increased sensitivity of the minority class, the sensitivity of the other two classes 
declined, with a more pronounced decrease as the number of generated samples increased. 
Meanwhile, the total accuracy remained stable, while there was a slight rise in the balanced accuracy, 
attributed to the heightened sensitivity of the minority class. 

With regard to the Neighborhood-based Undersampling technique, as previously mentioned, in the 
context of multiclass classification, apart from the car class, overlapped samples were also eliminated 
from the bike class. This step was taken due to considerable overlap observed among samples from all 
classes, aiming to ensure the clear visibility of minority samples to the model. Similar to the binary case 
two experiments were conducted with k =2 and k = 3, respectively. In both cases, there was an 
enhancement in the sensitivity of the minority class, with the improvement being more pronounced, 
reaching approximately 14% compared to the baseline model, when k was equal to 5. Comparing the 
two experiments with different k values reveals a greater increase in the sensitivity of the minority class 
with the higher value of k. As previously stated, this can be ascribed to the more substantial elimination 
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of majority samples as k increases. In specific, with k = 3, the Imbalance Ratio between the Car and 
Transit classes was 4, while in the case of k = 5, the Imbalance Ratio between the two classes decreased 
to 3.4. Correspondingly, between the Bike and Transit classes, these values were 2.8 and 2.6, 
respectively. 

The heightened sensitivity of the minority class also resulted in an improvement in the Performance 
Gap Metric, nearly attaining the predetermined threshold in the second experiment (k =5). Similar to 
the implementation of the SMOTENC technique, however, the improved sensitivity of the minority class 
was counterbalanced by a decrease in its precision. The maximum decrease in precision was evident in 
the scenario where k = 5, reaching approximately 18%. This trade-off between the two metrics resulted 
in the F-score for the minority class relatively consistent compared to the baseline scenario. 
 
Contrary to the increased sensitivity of the minority class, the sensitivity of the two other classes 
declined. Concurrently, the total accuracy remained unchanged, while balanced accuracy exhibited a 
slight increase in line with the trend observed in the sensitivity of the minority class. 

Concerning the Separation scheme, similar to the binary scenario, three experiments were performed, 

each employing a distinct value for the parameter k. In the initial experiment, k was set to 2, while in 

the subsequent two experiments, k took on values of 3 and 5, respectively. 

In all three experiments, the sensitivity of the minority class increased, with a more pronounced 
enhancement observed at higher values of k (approximately 9%). However, despite this enhancement, 
in none of these cases  the Performance Gap Metric attained or fell below the predefined threshold. 
Concurrently precision experienced a decline, reaching its maximum drop of around 12% at when k was 
equal to 5. This trade-off between the two metrics resulted in a relatively stable F1-score for the 
minority class. 

Contrary to the sensitivity of the minority class, the performance of the remaining two classes exhibited 
a decline, while the total accuracy remained stable and the balanced accuracy exhibited a minimal 
increase compared to the baseline model, aligning with the trend observed in the sensitivity of the 
minority class. 

In summary, the application of all three techniques led to enhanced sensitivity for the minority class. 

However, in none of the scenarios the Performance Gap Metric drop below the predefined threshold. 

Notably, SMOTENC emerged as the most effective technique, with the Performance Gap Metric nearly 

attaining the 20% threshold, closely followed by Neighborhood-based Undersampling. Throughout all 

cases, the overall accuracy remained relatively consistent, suggesting that achieving fairness in terms of 

accurately predicting both majority and minority classes was feasible without undermining the 

classifier's overall accuracy. 

 Precision Recall F1-score 

Car Bike Transit Car Bike Transit Car Bike Transit 
Baseline model   81 

(0) 
83 
(0) 

81.6 
(0.55) 

93 
(0) 

72.2 
(0.45) 

52.2 
(0.45) 

86.6 
(0) 

77.2 
(0.25) 

63.6 
(0.55) 

SMOTE-NC (k = 5, N = 
30% of majority 

samples ) 

81 
(0) 

83.4 
(0.55) 

75 
(0) 

92 
(0) 

71.4 
(0.55) 

57 
(0) 

86.2 
(0) 

76.9 
(0.55) 

65 
(0) 

SMOTE-NC (k = 5, N = 
50% of majority 

samples ) 

82 
(0) 

84 
(0) 

68 
(0) 

91 
(0) 

70 
(0) 

63 
(0) 

86.7 
(0) 

76.4 
(0) 

65 
(0) 

SMOTE-NC (k = 5, N = 
100% of majority 

samples ) 

82 
(0) 

84.2 
(0.45) 

60.4 
(0.55) 

89 
(0) 

68.8 
(0.45) 

67.2 
(0.45) 

85.4 
(0) 

75.7 
(0.36) 

64.2 
(0.45) 
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NBU (k=3) 
 

81 
(0) 

83 
(0) 

72.4 
(0.55) 

91 
(0) 

71 
(0) 

60.4 
(0.55) 

85.7 
(0) 

76.5 
(0) 

65.6 
(0.55) 

NBU (k=5) 
 

81 
(0) 

83 
(0) 

63.4 
(0.55) 

89 
(0) 

69.8 
(0.45) 

66.6 
(0.55) 

84.8 
(0) 

75.8 
(0.26) 

64.8 
(0.45) 

Separation scheme (k = 
2) 

 

81 
(0) 

82.8 
(0.45) 

73.2 
(0.45) 

91.4 
(0.55) 

71.2 
(0.45) 

58 
(0.71) 

86 
(0) 

76.8 
(0.45) 

(64.7 
(0.47) 

Separation scheme (k = 
3) 
 

81 
(0) 

83 
(0) 

70.3 
(0.58) 

91 
(0) 

70 
(0) 

61 
(0) 

86 
(0) 

76 
(0) 

65.3 
(0.25) 

Separation scheme (k = 
5) 
 

81 
(0) 

83.3 
(0.58) 

70 
(0) 

91.7 
(0.58) 

69.3 
(0.58) 

61 
(0) 

86 
(0) 

75.7 
(0.58) 

65.2 
(0) 

 

 Accuracy Balanced 
accuracy 

Perf. Gap 
Metric 

 Total Total Car-PT 
Baseline model 81.6 

(0.55) 
72.8 

(0.45) 
40.8 % 

SMOTE-NC (k = 5, N = 
30% of majority 

samples ) 
 

81 
(0) 

74 
(0) 

35% 

SMOTE-NC (k = 5, N = 
50% of majority 

samples ) 

81 
(0) 

75 
(0) 

28% 

SMOTE-NC (k = 5, N = 
100% of majority 

samples ) 

80 
(0) 

75.4 
(0.55) 

21.8% 

NBU (k=3) 
 

81 
(0) 

74 
(0) 

30.6% 

NBU (k=5) 
 

80 
(0) 

75 
(0) 

22.4% 

Separation scheme 
(k = 2) 

 

81 
(0) 

73.5 
(0.3) 

33.4% 

Separation scheme 
 (k = 3) 

 

81 
(0) 

74 
(0) 

30% 

Separation scheme 
 (k = 5) 

 

81 
(0) 

74 
(0) 

30.7% 

 
Table 22. Summary of the results of multiclass classification using the Random Forest model. The reported values represent 
the mean performance of the model across five runs, with standard deviation values indicated in parentheses.  
The highlighted value of the Performance Gap Metric corresponds to the scenario that produced the optimal result, nearly 
attaining the 20% threshold. 

 

 

5.1.2 Multinomial Logit Model – Binary & Multiclass classification 
In this section we present the results obtained with the MNL model. Table 24 presents the results for 
binary classification, encompassing the Car and Transit classes, whereas Table 26 presents the results 
for multiclass classification, involving the Car, Transit and Bike classes. In both cases Car constituted the 
majority class, while Transit the minority class. The reported values represent the mean performance 
across 3 fold cross-validation, with standard deviation values indicated in parentheses.  



58 
 

 
For every iteration in the cross-validation process, 2/3 of the dataset was used for model estimation, 
and 1/3 for validation. To prevent "data leakage" between the estimation and test sets, all techniques 
were implemented only in the estimation set, while the test set remained untouched. Given the 
imbalanced nature of our dataset, we adopted a stratified splitting approach to ensure the preservation 
of the target class ratio across all sets. Finally, the models' performance was assessed based on both 
aggregate metrics (overall & balanced accuracy) and mode-specific metrics (precision, recall, f1-score), 
as presented in the tables that follow.  
 
Unike Random Forest model and given the nature of the MNL model , the separation scheme could not 
be applied in this case. Therefore results are only presented for the SMOTE and the Neighborhood-
based Undersampling techniques. Furthermore, concerning the samples utilized for synthetic data 
generation, only those with all alternatives valid were taken into consideration.  When employing the 
MNL model, in contrast to the Random Forest, NaN values are not imputed. As a result, samples 
containing such values become unsuitable for the calculations involved in the SMOTENC algorithm. The 
same restriction applies to samples utilized in the Neighborhood-based Undersampling technique. 
 

 

5.1.2.1  Binary classification 
As previously mentioned, in the datasets employed in the classification tasks with the MNL model, the 

Imbalance Ratio (IR) was equal to 6.8. The difference in the Imbalance Ratio between the data used for 

the MNL model and that used for the Random Forest model arises from the distinct data requirements 

of the two models in terms of pre-processing steps, which result in a different number of samples for 

each class in each model. Also, the Performance Gap Metric in the baseline model was approximately 

50%. In comparison with the binary Random Forest model, the MNL model demonstrates significantly 

lower performance. Although the two models are not directly comparable, a lower performance is 

expected for the MNL model, due to its inherent high bias and its simplistic specification, making it 

challenging to capture complex patterns in the data. 

 
Imbalance ratio 6.8 

Performance Gap Metric 
(baseline model) 

≈ 50 % 

Table 23. Imbalance Ratio and Performance Gap Metric for the case of binary classification employing the MNL model. The 
Imbalance Ratio evaluates the difference in the number of samples between the majority and minority classes, whereas the 
Performance Gap Metric quantifies the discrepancy in their respective classification performances. 

 

Similar to the Random Forest model, in the application of the SMOTENC technique, three experiments 
were conducted, generating minority samples equivalent to 30%, 50%, and 100% of the majority 
samples, respectively. Across all three experiments, the sensitivity of the minority class improved, with 
the most notable enhancement (approximately 27%) observed when achieving an equal class 
distribution. In this last experiment, the Performance Gap Metric experienced its greatest improvement, 
falling below the predetermined threshold by reaching a value of approximately 12%. 

In all three experiments, the heightened sensitivity of the minority class, was accompanied by a 
decrease in its precision -revealing the usual trade off between the two metrics-, reaching its maximum 
value of approximately 43%, when the two classes became equal. Additionally, a declining trend was 
also observed for the F1-score metric. 
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Simultaneously, with the increase in the sensitivity of the minority class, both the sensitivity of the 
majority class and the total accuracy decreased, with the decline becoming more pronounced as more 
synthetic samples were generated. Conversely, the balanced accuracy increased following the trend of 
the sensitivity of the minority class. 

In the application of the Neighborhood-Undersampling technique, two experiments were conducted, 
each employing a distinct value for the k parameter. In the initial experiment, k was set to 3, while in 
the subsequent one, it was set to 5. In both scenarios, there was an improvement in the sensitivity of 
the minority class, with the enhancement being more notable, reaching approximately 12% compared 
to the baseline model when k was equal to 5. A comparison between the two experiments with different 
k values highlights a greater increase in the sensitivity of the minority class with the higher k value. As 
mentioned earlier, this can be attributed to the more substantial elimination of majority samples as k 
increases, further reducing the imbalance as well as the overlap between the minority and majority 
classes. Despite the increase in sensitivity of the minority class, however, the Performance Gap Metric 
did not manage to reach or fall below the predetermined threshold, improving only up to 36% in the 
second experiment (k = 5). 

Additionally, similar to the implementation of the SMOTENC technique, the improved sensitivity of the 
minority class was counterbalanced by a decrease in precision. The maximum decline in precision was 
evident in the scenario where k was equal to 5, reaching 23%. This trade-off between the two metrics 
resulted in the F-score for the minority class remaining stable compared to the baseline model.  
Concurrently, as the sensitivity of the minority class increased, the sensitivity of the majority class 
declined. Additionally, a minimal decrease was also observed in the total accuracy, while balanced 
accuracy increased, aligning with the trend of the sensitivity of the minority class. 

In summary, both techniques led to an enhancement of the sensitivity of the minority class. However, 
the SMOTENC proved to be the most effective, resulting in the Performance Gap Metric falling below 
the 20% threshold. Unlike the case of the Random Forest model, though, in this case total accuracy 
decreased indicating that fairness, in terms of accurately predicting both classes could be achieved at 
the cost of the classifier’s accuracy. 

In summary, both approaches improved the sensitivity of the minority class. However, SMOTENC 
demonstrated superior effectiveness, with the Performance Gap Metric falling below the 20% 
threshold. Unlike the scenario with the Random Forest model, though, total accuracy decreased in this 
case, suggesting that achieving fairness, in terms of accurately predicting both the majority and minority 
classes, came at the expense of the classifier's overall accuracy. 

 

 Precision Recall F1-score 

 Car  PT Car PT Car PT 
Baseline scenario 93 

(0) 
89.7 

(0.577) 
99 
(0) 

48.3 
(0.577) 

95.9 
(0) 

62.7 
(0.577) 

SMOTE (k = 5, 30%) 94 
(0) 

74.3 
(0.577) 

97 
(0) 

55.3 
(0.577) 

95.5 
(0) 

63.3 
(0.577) 

SMOTE (k = 5, 50%) 94.4 
(0.577) 

63 
(0) 

95 
(0) 

62 
(1) 

94.7 
(0.288) 

62.3 
(0.577) 

SMOTE (k = 5, 
100%) 

96 
(0) 

46.3 
(0.577) 

87.3 
(0.577) 

75 
(1) 

91.5 
(0.32) 

57 
(0) 

NBU (k = 3) 94 
(0) 

74.7 
(0.577) 

97 
(0) 

55.3 
(0.577) 

95.5 
(0) 

63.3 
(0.577) 

NBU (k = 5) 94 
(0) 

66.3 
(0.57) 

95.7 
(0.577) 

60 
(1) 

94.8 
(0.283) 

63 
(0) 
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 VOT Car VOT PT TT Car TT PT TC car TC PT ASC Car 

Baseline 
scenario 

44.4 
(0.78) 

5.45 
(0.27) 

-0.076 
(0.001) 

-0.024 
(0.001) 

-0.102 
(0.002) 

-0.263 
(0.001) 

2.77 
(0.023) 

SMOTE(k=5, 
30%) 

44.1 
(1.022) 

4.63 
(0.45) 

-0.08 
(0.001) 

-0.022 
(0.001) 

-0.109 
(0.002) 

-0.289 
(0.01) 

2.143 
(0.02) 

SMOTE 
(k = 5, 50%) 

42.8 
(0.381) 

3.59 
(0.365) 

-0.083 
(0.001) 

-0.02 
(0.001) 

-0.117 
(0.001) 

-0.327 
(0.014) 

1.743 
(0.032) 

SMOTE(k = 
5, 100%) 

41.6 
(2.075) 

2.08 
(0.59) 

-0.0871 
(0.002) 

-0.033 
(0.002) 

-0.163 
(0.003) 

-0.37 
(0.005) 

1.228 
(0.05) 

NBU(k =3) 35.1 
(1.452) 

5.36 
(0.346) 

-0.096 
(0.007) 

-0.033 
(0.002) 

-0.160 
(0.007) 

-0.365 
(0.018) 

2.62 
(0.02) 

NBU (k = 5) 32.1 
(1.347) 

5.204 
(0.346) 

-0.112 
(0.004) 

-0.039 
(0.002) 

-0.209 
(0.004) 

-0.451 
(0.004) 

2.53 
(0.022) 

 

 

 Total 
Accuracy 

 

Balanced 
Accuracy 

Final 
Loglikelihood 

Performance 
Gap Metric 

Car - PT 
Baseline 
scenario 

92.6 
(0.081) 

73.7 
(0.289) 

-14631 
(68.5) 

50% 

SMOTE(k=5, 
30%) 

91.8 
(0.084) 

76.2 
(0.289) 

-24640 
(176.4) 

41.7% 

SMOTE 
(k = 5, 50%) 

90.4 
(0.04) 

78.5 
(0.5) 

-34225 
(188.9) 

 

33% 

SMOTE(k = 
5, 100%) 

85.6 
(0.15) 

81.2 
(0.29) 

-50715 
(435.9) 

12.3% 

NBU(k =3) 91.9 
(0.094) 

 

76.2 
(0.289) 

-12705 
(70.7) 

41.7% 

NBU (k = 5) 91 
(0.115) 

 

77.8 
(0.29) 

-11399 
(87.2) 

35,7% 

Table 24. Summary of binary classification results obtained with the MNL model. The reported values represent the mean 
performance of the model following a 3-fold cross-validation, with standard deviation values indicated in parentheses. VOTs 
are expressed in euros/h. The highlighted value of the Performance Gap Metric corresponds to the scenario that produced the 
optimal result, falling below the 20% threshold and indicating the ability of the classifier to predict equally well the majority 
and the minority classes. 

 

 

5.1.2.2 Multiclass classification 

In the multiclass classification, the Bike class was introduced alongside the existing Car and Transit 
classes. The ratio between Car and Bike samples was 1.5, while for the Bike and Transit samples, it was 
4.4.  

In the multiclass scenario, the Performance Gap Metric (eq. 3.2) reached a value of 70%, surpassing the 
predefined threshold and demonstrating the most substantial difference in predictive accuracy 
between the Car and Transit classes among all models in this study. Additionally, when comparing this 
value with that obtained in the binary scenario, it becomes clear that the introduction of additional 
travel alternatives increases the complexity of the classification task. 
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Imbalance ratio Car-Transit 6.8 
Imbalance ratio Car - Bike 1.5 
Imbalance ratio Bike - Transit 4.4 
Performance Gap Metric 
(baseline model)* considering the 

majority and minority classes 

≈ 70 % 

Table 25. Imbalance Ratios and Performance Gap Metric for the case of multiclass classification with MNL model. In this case, 
the Imbalance Ratio was computed for all pairs of classes, signifying the difference in their number of samples, while the 
Performance Gap Metric was utilized to quantify the disparity in the classification performance between the majority and 
minority classes. 

 

In the multiclass scenario, similar to all scenarios utilizing the SMOTENC technique, three experiments 
were conducted, generating minority samples equivalent to 30%, 50%, and 100% of the majority 
samples, respectively. Across all three experiments, the sensitivity of the minority class improved, with 
the maximum increase, equal to 39%, observed when the sizes of the minority and majority classes 
became equal. In this case,  the Performance Gap Metric exhibited its greatest improvement, falling 
below the established threshold by reaching a value of approximately 19%. 

However, in all three experiments, the heightened sensitivity was counterbalanced by a decrease in 
precision, with its maximum drop (≈46%) occurring when the minority and majority classes achieved 
equal representation. Notably, as the number of generated samples increased, the decline in precision 
became more pronounced.  

Contrary to the sensitivity of the minority class, the sensitivity of the other two classes exhibited a 
decrease as more synthetic samples were generated, followed by a subsequent decrease in their F1 
score metrics. Total accuracy mirrored their trend, while balanced accuracy exhibited an increase, 
attributed to the heightened sensitivity of the minority class. 

In the application of the Neighborhood-based Undersampling technique, the elimination of overlapped 
samples extended beyond the car class to include also the bike class. Similar to the binary scenario, two 
experiments were conducted with different k values, specifically k=2 and k=3. In both scenarios, there 
was an enhancement in the sensitivity of the minority class. This improvement was more prominent, 
reaching approximately 8% compared to the baseline model, when k was set to 5. A comparative 
analysis of the two experiments with varying k values reveals a more significant increase in the sensitivity 
of the minority class with the higher k value. This outcome can be attributed to the more substantial 
elimination of majority samples as k increases, further diminishing the imbalance and overlap between 
the minority and majority classes. 

In contrast to the SMOTENC technique, the Neighborhood-based Undersampling approach resulted in 
a smaller increase in the sensitivity of the minority class, preventing the Performance Gap Metric from 
attaining or falling below the 20% threshold. Concurrently, the rise in sensitivity of the minority class 
was counterbalanced by a decrease in precision ranging between 10% and 15% in the two experiments. 

Concurrently, with the rise in sensitivity of the minority class, there was a slight decrease in the 
sensitivity of the car class, whereas the sensitivity of the bike class exhibited a contrasting trend. The 
total accuracy remained consistent, while a slight increase was observed in  the balanced accuracy. 

In summary, both techniques improved the sensitivity of the minority class. However, only SMOTENC 
achieved a Performance Gap Metric falling below the 20% threshold, proving to be the most effective 
between the two techniques. Similar to the binary scenario presented above, in this case, total accuracy 
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decreased, indicating that achieving fairness, in terms of accurately predicting both the minority and 
majority classes, came at the expense of the classifier's overall accuracy. 

 
 

 Precision Recall F1-score 

Car Bike PT Car Bike PT Car Bike PT 
Baseline 
scenario 

72.7 
(0.577) 

80.7 
(0.577) 

80.7 
(0.577) 

95 
(0) 

55.7 
(0.577) 

24.7 
(1.528) 

82.3 
(0.37) 

65.8 
(0.355) 

37.7 
(1.528) 

SMOTE (k = 
5, 30%) 

73 
(0) 

80.3 
(0.577) 

61 
(1) 

93 
(0) 

55.6 
(0.577) 

33.7 
(1.155) 

81.8 
(0) 

65.8 
(0.214) 

43.7 
(1.155) 

 
SMOTE(k = 
5, 50%) 

73.7 
(0.577) 

80.6 
(1.155) 

50 
(0) 

90.3 
(0.577) 

    55 
(1) 

43.7 
(1.15) 

81.2 
(0.121) 

65.4 
(0.42) 

46.3 
(0.577) 

SMOTE(k = 
5, 100 %) 

 

73.7 
(0.064) 

81.7 
(0.577) 

34.3 
(0.577) 

82.3 
(0.58) 

50.3 
(0.577) 

63.7 
(1.155) 

77.8 
(0.063) 

62.3 
(0.271) 

44.7 
(0.577) 

NBU (k = 3) 73 
(0) 

79.7 
(0.577) 

70 
(1.732) 

93.3 
(0.577) 

56 
(1) 

29 
(1) 

81.9 
(0.219) 

65.8 
(0.717) 

41 
(1) 

NBU (k =5) 73.3 
(0.577) 

79 
(0) 

65.7 
(2.31) 

92 
(0) 

57.3 
(0.577) 

32.6 
(2.31) 

81.6 
(0.352) 

66.4 
(0.387) 

43.7 
(2.3) 

 

 VOT Car VOT PT TT Car TT PT TT bike TC car TC PT ASC 
CAR 

ASC 
PT 

Baseline 
scenario 

28.8 
(1.267) 

7.38 
(0.832) 

-0.048 
(0.002) 

-0.021 
(0.002) 

-0.0819 
(0.001) 

-0.098 
(0.002) 

-0.169 
(0.005) 

-0.074 
(0.012) 

-2.594 
(0.03) 

SMOTE(k = 
5, 30%) 

33.9 
(1.608) 

5.53 
(0.29) 

-0.059 
(0.002) 

-0.02 
(0.001) 

-0.09 
(0.001) 

-0.105 
(0.002) 

-0.223 
(0.002) 

-0.027 
(0.008) 

-1.908 
(0.01) 

SMOTE(k = 
5, 50%) 

 

35.9 
(1.186) 

4.5 
(0.427) 

-0.07 
(0.001) 

-0.02 
(0.001) 

-0.0935 
(0.001) 

-0.111 
(0.002) 

-0.266 
(0.008) 

-0.001 
(0.085) 

-1.46 
(0.03) 

SMOTE(k = 
5, 100%) 

37.3 
(1.98) 

3.27 
(0.82) 

 

-0.075 
(0.004) 

-0.018 
(0.004) 

-0.1 
(0.003) 

-0.121 
(0.001) 

-0.325 
(0.014) 

0.0444 
(0.013) 

-0.885 
(0.061) 

NBU (k = 3) 
 
 

26.51 
(0.266) 

7.13 
(0.581) 

-0.055 
(0.001) 

-0.024 
(0.001) 

-0.091 
(0.0002) 

-0.124 
(0.001) 

-0.21 
(0.001) 

-0.059 
(0.018) 

-2.429 
(0.018) 

NBU (k  = 5) 
 
 

26.31 
(1.33) 

5.79 
(0.478) 

-0.0613 
(0.0022) 

-0.0244 
(0.001) 

-0.098 
(0.001) 

-0.139 
(0.002) 

-0.2538 
(0.012) 

-0.061 
(0.0136) 

-2.384 
(0.017) 

 

 Total 
Accuracy 

 

Balanced 
Accuracy 

Final 
Loglikelihood 

Performance 
Gap Metric 

Car- PT 

Baseline 
scenario 

74.9 
(0.117) 

58.4 
(0.694) 

-61466 
(110.8) 

70.3% 

 
SMOTE 

(k = 5, 30%) 
 

 
74.52 
(0.17) 

 
60.8 

(0.51) 

 
-76183 
(162.6) 

 
59.3% 

 
SMOTE(k=5, 

50%) 
 

 
73.6 

(0.12) 

 
63 

(0.33) 

 
-90364 
(272.1) 

 
46.6% 

SMOTE(k = 
5, 100%) 

69.4 
(0.054) 

65.4 
(0.193) 

-115408 
(646.5) 

 

 
18.6% 
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NBU(k =3) 74.7 
(0.13) 

 

59.4 
(0.509) 

-40173 
(51.24) 

 
64.4% 

NBU (k = 5) 74.7 
(0.26) 

 

60.7 
(0.882) 

-37748 
(124.7) 

59.4% 
 

Table 26. Summary of multiclass classification results obtained with the MNL model. The reported values represent the mean 
performance of the model following a 3-fold cross-validation, with standard deviation values indicated in parentheses. VOTs 
are expressed in euros/h. The highlighted value of the Performance Gap Metric corresponds to the scenario that produced the 
optimal result, falling below the 20% threshold and indicating the ability of the classifier to predict equally well the majority 
and the minority classes. 

 

5.1.2.3 MNL - Interpretability 
So far , we have discussed the results with regard to the predictive accuracy of the MNL model in both 
the binary and multiclass scenarios. However, when evaluating discrete choice models, it is crucial to 
consider not only the predictive accuracy but also the interpretability of the models (Rezaei et al., 2021). 
To assess the interpretability of the MNL model in this study, we primarily focused on the sign and 
statistical significance of the coefficients, as well as on the Value of Time (VOT) estimated for each mode. 
It is worth mentioning that, in the case of the Bike alternative, no Value of Time was estimated due to 
the absence of associated costs with this mode. 
 
In the binary model, the coefficients consistently exhibited statistical significance, while they also had 

negative signs, aligning with the expectations for the time and cost features (Rezaei et al., 2021). 

Similarly, in the multiclass scenario, the coefficients were also statistically significant and negative. An 

exception arose in the multiclass scenario utilizing SMOTENC (N = 50%), in which the Alternative Specific 

Constant (ASC) for the car alternative, was found insignificant, indicating that no inherent preference 

for the car mode existed in that specific scenario. The results of the t-tests conducted to infer the 

significance of the coefficients are provided in the Appendix of this study. Additionally, in the multiclass 

scenarios, the Bike alternative was found to be the most appealing, while between the Car and Transit 

alternatives, the Car alternative was more attractive. Conversely, in all binary scenarios the Car emerged 

as the most attractive mode.  

Regarding the Values of Time (VOTs), a comparison between the estimates from the baseline models of 
this study and the most recent national VOTs for the Netherlands (Significance, 2023), as presented in 
Table 27, reveals a discrepancy. In specific, our estimated VOT for the Car alternative appears 
significantly higher than its corresponding national values, while the VOT for the transit alternative is 
comparatively lower. Variations in Value of Time (VOT) observed in this study may be attributed to 
several factors. Firstly, it is important to highlight that national VOTs are derived from Stated Preference 
(SP) choice experiments, utilizing a questionnaire distributed among the target audience (Significance, 
2023). Conversely, our study relies on Revealed Preference (RP) data obtained from actual trips. 
Therefore, the disparity in the values between the two sources could be partly attributed to the 
hypothetical bias frequently observed in SP data (Krčál et al., 2019).  
 
Regarding the Value of Travel Time (VTT) associated with the transit alternative, as shown in Table 27, 
national VOTs distinguish between train and local public transport (including bus, tram, and metro). In 
contrast, our study consolidates these modes into a single category labeled "transit," resulting in a 
unified VOT. Additionally, while national VOTs are reported separately for each travel purpose, our study 
does not make such distinctions. Furthermore, our study does not differentiate between in-vehicle and 
out-of-vehicle travel time, encompassing all stages of the transit trip, including walking, waiting, and 
transfer time. These differences may account for the relatively lower VOT observed for the transit 
alternative in our study. 
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Concerning the car alternative, as mentioned earlier, its VOT in our study appears notably higher than 
the values reported in Significance (2023). This difference can be attributed to the comprehensive 
calculation of car costs in our study using data from TNO, covering both fixed and variable components 
such as fuel costs, motor vehicle taxes, depreciation costs, maintenance costs, insurance costs, interest 
expenses, and parking costs. In contrast, in SP surveys, individuals often overlook several of these 
factors. For example, in an Israeli survey conducted by Shiftan & Bekhor (2002), most participants 
considered only gas costs in their assessment of car expenses. The perceived car costs by respondents 
in the survey were significantly lower than the costs calculated through a vehicle cost survey, which is 
considered the primary source of auto costs in the country. The authors concluded that it is more 
challenging for people to perceive the cost of a single car trip, as the driver never directly pays for a 
single trip out of their pocket. Consequently, these disparities between actual and perceived costs could 
possibly be reflected in the VOTs calculated from the two distinct sources.  
 
Finally, the implementation of the sampling techniques influences the VOTs for both the Car and the 
Transit alternatives, reflecting the alterations introduced in the dataset’s composition during the model 
estimation process. Specifically, for the Transit alternative, the implementation of sampling techniques 
leads to a reduction in its VOT, with the most significant decrease (62% and 56% in the binary and 
multiclass scenarios, respectively) observed after applying the SMOTENC (N =100%) technique, which 
induces the most substantial alteration in the composition of the Transit class. In the case of the Car 
class, in the binary scenario, the VOT also experiences a decrease, with the most substantial reduction 
(28%) observed after the implementation of the NBU (k = 5) technique. Conversely, in the multiclass 
scenario, the most notable change occurs after implementing the SMOTENC technique, resulting in an 
approximate 30% increase in the VOT. 

 

 
 
Mode 

Value of Travel Time 

Commute Business Other 

Car  10.78 ± 0.63 21.20 ± 3.06 9.60 ± 0.40 
Train 12.05 ± 0.26 17.96 ± 1.75 8.64 ± 0.17 

Local public transport  
(bus/tram/metro) 

7.62 ± 0.20 14.39 ± 2.59  6.66 ± 0.20 

Table 27. National averaged Values of Time with uncertainty bandwidths in the Netherlands, in € / hr (Significance, 2023). 
(Values are reported in euros in price level 2022). 

 

 
Mode 

Value of Travel Time 

Binary case Multiclass case 

Car  44.4 
(0.78) 

28.8 
(1.27) 

Transit (train/bus/metro/tram) 5.45 
(0.27) 

7.38 
(0.83) 

Table 28. Value of Time for the Car and Transit alternatives according to the baseline scenarios (before the implementation 
of sampling techniques) of this study. 
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Chapter 6: Discussions & Conclusions 
 

This section marks the conclusion of this study, providing a summary of its contents and key findings. 

Furthermore, it emphasizes the study's contribution and evaluates its alignment, or lack thereof, with 

other research studies in the literature. Lastly, it outlines the study's limitations and presents practical 

recommendations, along with ideas for future research. 

To begin with, this study aimed to investigate and address the potential adverse effects of imbalanced 
data on the classification performance of minority classes in mode choice models, providing an answer 
to the main research question formulated as follows: 
 

“How can the impact of class imbalance in  model performance  be systematically identified and 

addressed in transport mode share forecasting?’’ 

 
In response to identified gaps in the existing literature and to answer the main research question of this 
study, we introduced a comprehensive framework that is applicable regardless of the underlying 
classifier. This framework places emphasis on critical aspects, including the measurement of class 
imbalance within the data, the examination of its impact on classification performance, -particularly for 
the  minority modes-,  the exploration of additional challenging factors such as class overlap, and the 
proper evaluation of classification performance across classes. Concurrently, as part of the framework, 
we introduced the ‘’Performance Gap Metric’’, a metric to assess the difference in classification 
performance between the majority and minority classes. A threshold of 20% was set for this metric, 
recognizing that different threshold values may be more suitable in different applications. If the metric’s 
value fell below the predetermined threshold, resulting in a reduction in the performance gap between 
the two classes ( <20%) after conducting a classification task, the classifier's performance was deemed 
favorable, as prediction outcomes demonstrated fairness. In this context, fairness refers to the 
classifier's equitable treatment of both majority and minority classes, ensuring accurate predictions for 
both. Following that, our framework was applied using the ODiN data as a case study to predict mode 
choices among car, transit, and cycling in the Netherlands. Specifically, we utilized two modeling 
techniques – a Random Forest and a Multinomial Logit model – in combination with various sampling 
techniques, including the SMOTENC, the Neighborhood-based Undersampling, and the Separation 
scheme. 
 
In the application of this study, the minority class corresponded to the transit mode. This aligns with the 

recognition of the transit mode as the minority mode  in other mode choice studies (Rezaei et al., 2021 

; Kashifi et al. , 2022). In different studies, both soft modes (comprising cycling and walking) (Omrani et 

al., 2015; Wang & Ross, 2018; H. Chen & Cheng, 2023), and shared mobility services (encompassing 

bike-sharing, car-sharing, and ride-hailing) (Narayanan & Antoniou, 2023) have also been observed as 

minority modes. Accurate predictions for minority modes are crucial for population groups that heavily 

rely on them. Concerning public transport systems, systematically underestimating travel demand can 

result in insufficient transit services. This reduction in services may lead to a decline in ridership, 

potentially setting off a negative loop (Zheng et al., 2023). The consequences of inaccurate transit 

demand predictions can be significant, particularly in rural and peripheral areas where accessing 

essential activities requires covering greater distances. Transit services in these regions are inherently 

limited compared to urban areas, mainly due to diminished demand stemming from declining 

populations in these areas. The combination of increased distances and limited travel options makes 
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rural and peripheral areas more car dependent, as well as more susceptible to "transport poverty”, 

meaning that individuals residing in these areas may face greater constraints in reaching essential 

destinations (Pot et al., 2020).  

In the Netherlands, particularly in the Randstad region, encompassing the provinces of South-Holland, 

North Holland, Utrecht, and Flevoland, where nearly half of the population resides, public transport 

systems are well-developed (Kasraian et al., 2016). The remaining peripheral and rural provinces outside 

the Randstad region are still recognized for having higher accessibility levels compared to other 

European rural regions. However, in the upcoming years, the outskirts of the country are anticipated to 

undergo a population decline coupled with population aging (PBL, 2019), which may heighten the risk 

of experiencing transport poverty. Consequently, it is evident that accurate predictions of travel 

demand will play a pivotal role in mitigating this risk in the future, through transport planning and 

provisions tailored to the actual needs of the population.  

6.1 Main findings 
Having provided a brief summary of this study, its main findings can be summarized as follows. To begin 

with, apart from class imbalance our dataset exhibited also substantial overlap. Classification results 

revealed that both the Random Forest and MNL models were affected by those factors, exhibiting 

reduced predictive performance for the minority class compared to the majority class. Concurrently, 

performance metrics in the multiclass classification tasks were lower than those in the binary 

classification tasks, highlighting the heightened complexity associated with additional classes. While 

many studies typically compare the classification performance among classifiers, highlighting the 

superior performance of the Random Forest model over the MNL model (Hagenauer & Helbich, 2017; 

García-García et al., 2022), this study diverges in not directly comparing the two models. This decision 

stems from two main considerations: firstly, as mentioned earlier, our primary goal in this study is not 

to determine the most optimal classifier, but rather to demonstrate the applicability of our proposed 

framework across different models. Secondly, the datasets used in each model include distinct 

explanatory features and samples, due to the models' different data requirements, rendering direct 

comparisons impractical. 

Furthermore, the selection of the most effective techniques characterized by the smallest achievable 
value for the Performance Gap Metric, varied depending on the specific model employed.  For the 
Random Forest model, in the binary classification task, the NB-Undersampling technique demonstrated 
the smallest difference in the predictive performance between the minority and majority classes. 
Conversely, in the multiclass classification task, the best-performing technique was SMOTENC, closely 
followed by the Neighborhood-based Undersampling, with only a marginal difference. Also, while in the 
binary scenario the Performance Gap Metric exceeded the 20% threshold reaching a value of 14.8%, in 
the multiclass scenario it nearly attained it, with a value of 21.8%. In the case of the MNL model, both 
in the binary and multiclass classification tasks, the best-performing technique was SMOTENC, with the 
Performance Gap Metric reaching the values of 12.3% and 18.6%, respectively. Drawing from the results 
obtained by the two models, our proposed framework successfully enhanced the classification 
performance of the minority mode. As a result, the classifiers in this study could be characterized by an 
improved sense of fairness, ensuring more equitable treatment of both minority and majority classes. 
The effectiveness of the SMOTENC technique in achieving robust classification performance for the 
minority class was also highlighted in the study by H. Chen and Cheng (2023), ranking among the top 
three techniques that exhibited the most substantial improvement out of the six sampling techniques 
employed in their research. However, in the study conducted by Chaipanha and Kaewwichian (2022), 
SMOTE demonstrated lower performance compared to the Random Undersampling technique. These 
findings across the different studies emphasize the significance of acknowledging that diverse 
techniques may yield more favorable outcomes when coupled with different models and datasets. 
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Therefore, researchers should select techniques based on the specific models and requirements 
applicable to their study. 

Additionally, another finding of this study, is that the increase in the sensitivity of the minority class in 
both models and classification tasks, was consistently accompanied by a decrease in its precision, 
revealing a trade-off between the two metrics. While the ideal scenario involves classifiers exhibiting 
high precision and high recall simultaneously, in this case the compromise in precision is justifiable as  
the primary goal is to improve the models' ability to accurately predict the minority class.  In any case, 
the extent to which a reduction in precision is acceptable is contingent on the researchers' discretion, 
considering the importance they attribute to enhancing classifier fairness (with fairness in this context 
referring to the classifier’s ability to accurately predict both the minority and majority classes) as well as  
the potential cost associated with misclassifying the majority class. 

Regarding the Values of Time (VOTs) estimated from the MNL models, our findings diverge from the 
national VOTs for the Netherlands as reported in Significance (2023). As previously highlighted in this 
study, several factors could contribute to this discrepancy, including: a) variations in data sources (SP vs 
RP data), b) the consolidation of all means of public transport in this study  into a single category labeled 
''transit,'' resulting in the calculation of a unified VOT, c) the computation of car costs in this study 
considering various fixed as well as variable factors, d) the absence of differentiation based on trip 
purpose, and e) the inclusion of both in-vehicle and out-of-vehicle travel times in the calculation of the 
VOT for the transit mode. After implementing  the sampling techniques, and since the composition of 
the dataset is altered,  the values of the VOTs are also changing. Unfortunately, there is a scarcity of 
literature addressing the implementation of sampling techniques in discrete choice models, providing 
limited opportunities for comparing our results. One of the limited studies available for comparing the 
travel time coefficients is the study by Rezaei et al. (2021). In this study, transit represents the minority 
class, while single occupancy vehicles constitute the majority class. After balancing the classes through 
a combination of the Random Undersampling and Random Oversampling techniques, the coefficients 
of travel time for both classes demonstrated a reduction of 50%. Regarding the best-performing 
scenarios within our study, the travel time coefficient for the car class also experienced a decrease, 
showing a reduction of 14.6% in the binary scenario and 56.25% in the multiclass scenario. Meanwhile, 
the travel time coefficient for the transit class decreased by 37.5% in the binary scenario, while it 
increased by approximately 14.3% in the multiclass scenario. Considering the substantial significance of 
the Value of Time (VOT) as a vital factor in evaluating transport projects (Significance, 2021), we 
recommend that researchers carefully evaluate the results of their specific cases to determine the 
acceptability of changes resulting from the implementation of such techniques. Additionally, we argue 
that in cases where fairness, with respect to accurate predictions for both minority and majority classes, 
is a primary concern, a slight decrease in the models' interpretability may be justified. In any case, 
researchers must approach these techniques with caution, ensuring meticulous and accurate 
implementation to prevent any adverse effects on the models' behavioral outputs. 

Finally, in both the Random Forest and MNL models, experiments demonstrating the minimum value of 
the Performance Gap Metric showed, on average, a reduction in the sensitivity of classes other than the 
minority class. In some scenarios, a decline in the total accuracy was also observed, particularly 
pronounced in the case of the MNL model. These findings suggest that achieving fairness in this context 
might necessitate a compromise in accuracy. Simultaneously, they underscore the importance of not 
solely relying on metrics like overall accuracy, as the most accurate models may not always be the most 
fair. Faced with the accuracy-fairness dilemma, the responsibility falls on the researchers to prioritize 
the more crucial aspect for their specific case and determine when and to what extent compromises 
are acceptable. 
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6.2 Practical recommendations 
In light of the main findings, this section offers practical guidelines. As discussed in preceding chapters, 

the key motivation for introducing our proposed framework was to raise awareness among fellow 

researchers about the impact of class imbalance and shed-light into the factors they should consider 

when confronted with it. 

The classification results obtained with imbalanced data in this study revealed a decline in classifiers' 

performance concerning minority classes, underscoring that, unlike the approach followed by many 

existing studies, the presence of class imbalance in the data should not be overlooked. This is especially 

crucial in applications where fairness, measured by accurately predicting both minority and majority 

classes, outweighs simply achieving the highest overall accuracy, as our findings suggest that the most 

accurate classifier is not always the fairest. Additionally, alongside class imbalance, the analysis of data 

structure also unveiled the presence of high overlap, identified in the literature as the most detrimental 

factor coexisting in imbalanced data. Consequently, we emphasize the importance of thorough data 

exploration, shedding light on the internal characteristics of the data and aiding in the informed 

selection of techniques to address the impact of challenging factors within the data. Furthermore, as 

demonstrated, different techniques yield varied results when applied to diverse cases. Therefore, 

researchers are advised to select techniques that are more suitable for their specific cases and ensure 

their correct implementation to avoid compromising the accuracy and behavioral outputs of their 

models. Additional, a crucial  aspect is the proper evaluation of classification performance. Here, we 

want to emphasize the importance of avoiding the use of misleading metrics and focusing on metrics 

that provide insights into the realistic performance of the models. Such metrics, as mentioned earlier is 

this study can be the ones evaluating performance individually on each class. 

Thus far it has become evident, that this study has exclusively focused on improving the predictive 

accuracy of the minority class, corresponding to transit. Accurately forecasting transit demand is crucial 

for ensuring sufficient transport availability, playing a paramount role in establishing an inclusive 

transport system. However, broader considerations are essential in transport planning. A recent 

investigation by Pot et al. (2020) shed light on the perspectives of individuals in specific regions of the 

Zeeland province regarding public transport accessibility. Their findings revealed a gap between 

perceived and actual accessibility, emphasizing the impact of individual experiences and local social 

norms. Consequently, we stress the importance of transport planners and policymakers taking into 

account a diverse array of factors when striving for designing a transport system that caters to all. 

Particularly in the realm of public transport systems, a profound understanding of the demographic 

groups utilizing them is vital for tailoring transit services to meet their specific needs. Therefore, it is 

crucial to closely consider the individuals constituting public transport demand and prioritize factors 

such as their perceptions of safety and competence in utilizing transit modes, the accessibility of 

information regarding the latter’s availability and operation, and travel costs. That way we can ensure 

comprehensive service for all population segments, leaving no one overlooked. 

 

6.3 Main contributions 
Having outlined our primary findings as well as provided guidelines for transport practitioners, this 

section provides a summary of the key contributions made by this study. 

To begin with, this study introduces a comprehensive framework designed to identify and alleviate the 

impacts of class imbalance, similar to which - to the best of our knowledge- has not been presented by 

any other study within the existing literature. While H. Chen and Cheng (2023) have provided a detailed 

framework in their study, focusing on the evaluation of the classification performance following the 
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implementation of sampling techniques, their work lacks a methodology encompassing all the essential 

steps preceding the assessment of classifiers. On the contrary, our framework offers a structured 

methodology, including various aspects researchers should consider when working with imbalanced 

datasets, while it also provides the advantage of being implementable across various classifiers, 

datasets, and domains. 

Furthermore, beyond addressing class imbalance, this study investigates and tackles the impact of class 

overlap. While numerous studies in the field of mode choice forecasting have addressed the impact of 

class imbalance (Hagenauer and Helbich, 2017; Qian et al., 2021; Rezai et al., 2021; Kashifi et al., 2022; 

Chaipanha & Kaewwichian, 2022; García-García et al., 2022; Narayanan & Antoniou, 2023; H. Chen & 

Cheng, 2023), none of these studies explores the potential existence of class overlap or other factors 

that might hinder classification performance when learning from imbalanced datasets. Conversely, 

several studies within other domains have simultaneously addressed both class imbalance and class 

overlap (L. Chen et al., 2016, Devi et al., 2019, Vuttipittayamongkol & Elyan, 2020). Therefore, this study 

contributes by drawing the attention of researchers within the transport field to the presence of various 

challenging factors within imbalanced data, which might be even more detrimental than imbalance itself 

(Garcia et al. 2007), and proposes techniques to address them. 

Among the sampling techniques employed in this study, the SMOTE technique has consistently found 

application in various research studies across different domains, including the transport field. This 

research expands its contribution by demonstrating the effectiveness of the Neighborhood-based 

Undersampling and the Separation scheme techniques, adopted from the field of machine learning and 

not previously explored in transport studies. Furthermore, although these techniques have traditionally 

been used in binary classification tasks, this study extends their application to multiclass classification 

scenarios. 

Finally, a notable contribution of this study is the integration of sampling techniques with the MNL 
model, filling a gap in the literature concerning the scarcity of research addressing class imbalance in 
discrete choice models. Exceptions include the mode choice studies by Rezaei et al. (2021), who tackled 
class imbalance through a combination of the Random Oversampling and Random Undersampling 
techniques, as well as the work of H. Chen and Cheng (2023), who employed various sampling 
techniques alongside an MNL model. Another relevant study is by Salas et al. (2023), where the 
oversampling of the minority class, when employing an MNL model, was accomplished through 
leveraging a Variational Autoencoder. Our study aligns with these works, particularly with regard to the 
enhancement of the classification performance of the minority class, emphasizing the significance of 
addressing class imbalance for improved model estimation. Moreover, distinguishing itself from the 
majority of studies employing discrete choice models that rely on Stated Preference (SP) data, this study 
stands out by utilizing Revealed Preferences (RP) data. This choice enables us to estimate and assess 
model performance using actual trip data, eliminating the potential hypothetical bias associated with 
SP data. 

 

6.4 Limitations & Ideas for future research  
Finally, while recognizing the contributions of this study, we also acknowledge its limitations, which are 
summarized in this section. Concurrently, we conclude this study by providing suggestions for future 
research. 
 
Firstly, a limitation of this study arises from the reliance on the Performance Gap Metric, computed 
exclusively between the majority (Car) and minority (Transit) classes, to select the best-performing 
techniques across all examined scenarios. This approach confines the evaluation of classifiers' equitable 
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performance to only these two classes, overlooking the assessment of other classes, such as the Bike 
class in this study. Adopting this approach in multiclass scenarios may result in a classifier showing 
enhanced performance for the minority class but potentially exhibiting less accuracy for the remaining 
classes. To overcome this limitation, we suggest as a further enhancement to consider the classification 
performance of all classes and compare the results with those of this study to identify any notable 
discrepancies. 
 
Moreover, an additional limitation in this study is the confined testing of the proposed framework to 
one specific case. To enhance the validity of our framework and thoroughly assess its effectiveness, we 
propose, as a potential avenue for future research, its application in diverse cases, extending even 
across other domains. In this study, the datasets for each model exhibited imbalance ratios of 5 and 6.8, 
respectively. However, literature reports studies with imbalance ratios ranging from nearly equal to 1, 
and even up to 10000 (Johnson & Khoshgoftaar, 2019). Therefore, a future direction could involve the 
implementation of  the proposed framework in datasets with varying Imbalance Ratios to examine how 
the effectiveness of the sampling techniques is possibly altered. Additionally, another idea could be to 
validate our models using data from subsequent years to evaluate their temporal robustness and 
generalization capabilities. This form of validation, referred to as external validation (Parady et al., 
2021), assesses the temporal transferability of a model, indicating how well it generalizes using data 
from a different period. Concerning the ODiN data, it could be worthwhile to consider validating our 
models using data from the year 2022, while avoiding the years 2019-2021 during which the data 
distribution might have undergone changes due to the consequences of the pandemic with regard to 
mobility patterns. 

Lastly, another idea could be to incorporate more advanced techniques into our specific case. For 
instance, delving into the utilization of generative models for synthetic data generation could be an 
avenue worth exploring. Although Salas et al. (2023) previously attempted this, in their study model 
evaluation was restricted to predictive accuracy, and therefore our approach could extend to 
comprehensively assess behavioral outputs as well. Additionally, delving into feature engineering 
methods may prove beneficial in addressing class overlap by improving class separability. 
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Appendix  
 

1. Spatial Analysis – Addressing the ‘’within-class’’ imbalance 

As highlighted in STEP 5 of the proposed framework (Chapter 3), the presence of “within-class” 

imbalance is acknowledged as one of the difficulty factors in imbalanced datasets, potentially leading to 

reduced performance in classification tasks. Unlike “between-class” imbalance, which involves the 

disparity in the number of instances between different classes, “within-class” imbalance, according to 

Japkowicz (2001), refers to the presence of sub-clusters with varying number of instances within a class. 

Encountering imbalance, particularly within the minority class and in conjunction with between-class 

imbalance, can contribute to increased misclassification rates in classification algorithms. While this 

study predominantly addresses ‘’between-class” imbalance in combination with class overlap, this 

section briefly integrates an analysis considering “within-class” imbalance – an aspect that has not 

received the same level of attention in the literature compared to “between class” imbalance. 

Specifically, we focused on the observed imbalance within the transit class concerning the quantity of 

trips conducted per Dutch province, assessed according to the origin of the trips. As illustrated in Figure 

16, it is evident that the majority of public transport trips take place within the Randstad area, 

particularly in the provinces of South-Holland (32.3%) and North-Holland (27.6%). In contrast, only a 

minimal percentage of trips is observed in the peripheral and more rural areas, with the province of 

Zeeland recording the lowest percentage, accounting for only 0.6 % of the total transit trips. Upon 

evaluating the prediction results of the Random Forest model (Table 29), we noted that the province of 

Zeeland exhibited the least favorable prediction performance, with only 50% of its trips correctly 

classified. In contrast, other peripheral provinces demonstrated relatively good accuracy, which in 

certain cases surpassed the accuracy observed for larger urban centers. 

Accurate mode choice predictions are in general of paramount importance given evolving factors such 

as population growth and aging. Specifically, for the Netherlands, population is expected to grow from 

17.3 to 18.5 million inhabitants by 2050, with the growth mostly concentrated in the Randstad area, 

while a population decline is expected in the outskirts of the Netherlands. Simultaneously, in the 

upcoming years, all regions will face the challenge of an aging population, a phenomenon expected to 

accelerate more rapidly in the outskirts than in the Randstad (PBL, 2019). Due to their aging and 

decreasing populations, coupled with a decline in services and less developed transport systems due to 

lower demand, peripheral and rural areas are typically more prone to experiencing transport poverty 

(Lucas et al., 2012). This vulnerability arises due to increased distances to reach essential services and 

activities, coupled with diminished travel opportunities beyond car usage, potentially leading to the 

social exclusion of individuals due to physical or financial reasons (Pot et al., 2020). Therefore, accurate 

predictions of travel demand are particularly crucial for these regions. 

 

Accessibility levels in Dutch peripheral areas may exceed those in other European rural regions due to 

higher population densities and dense road networks with close links to urban centers. Nonetheless, 

specific peripheral Dutch regions, such as those within the province of Zeeland, albeit on a smaller scale, 

still demonstrate patterns of population decline and service reduction similar to other peripheral 

regions in Europe (Pot et al., 2020). 

Recognizing the significance of precise travel forecasts for less urban regions and taking inspiration from 

the research of Pot et al. (2020), who delved into the mechanisms behind experienced transport poverty 

in regions within the province of Zeeland by assessing the population's perception of accessibility, we 
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sought to investigate whether addressing both "within-class" and "between-class" imbalance could 

enhance predictive accuracy for the transit trips of the province of Zeeland, aiming to better capture its 

travel demand. 

To conduct our analysis, we followed the methodology outlined by Japkowicz et al. (2001). In her study, 
Japkowicz et al. (2001) explored the impact of concurrently addressing ''between-class'' and ''within-
class'' imbalance on the error rate of each sub-cluster within the minority class. In specific, she balanced 
the classes by  oversampling the minority class, ensuring that all of its sub-clusters had an equal size. To 
increase the number of minority samples, Random Oversampling was employed. This approach resulted 
in a lower error rate for each sub-cluster compared to the scenario where balancing the majority and 
minority classes occurred without addressing the imbalance within the minority class. 

 
In our analysis, we focused on the binary classification task involving the Car and Transit classes. Within 
the transit class, 12 sub-clusters were defined corresponding to the 12 Dutch provinces. Both Random 
Oversampling and SMOTENC techniques were utilized to augment the number of transit trips for each 
province, ensuring that the total number of transit samples equaled the number of car samples. The 
specific steps undertaken are depicted in Figure 15. 
 

 

Figure 15. Approach adopted to tackle both ''between-class'' and ''within-class'' imbalance, following the methodology 
proposed by Japkowicz et al. (2001). The term ''between-class'' imbalance denotes the existence of classes with varying 
numbers of instances within a dataset. In contrast, “within-class” imbalance indicates the presence of sub-clusters with varying 
numbers of instances within a specific class.  
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Figure 16.  Map of the Netherlands indicating the proportion of transit journeys per province based on the trips' origins. The 
Netherlands comprises 12 provinces, including South Holland, North Holland, Utrecht, Zeeland, Flevoland, North Brabant, 
Limburg, Overijssel, Drenthe, Friesland, and Gelderland. Among these provinces, South-Holland stands as the most populous, 
while Zeeland is recognized as the least populous Dutch province. 

 

Table 29 displays the outcomes of our analysis, focusing on the sensitivity of individual subclusters, 

corresponding to Dutch provinces, within the transit class. The results are showcased for various 

models, including the baseline model (using imbalanced data), the model after implementing the 

SMOTENC technique to targe "between-class" imbalance, the model after implementing the SMOTENC 

technique to address both "between-class" and "within-class" imbalances, and the model after 

implementing the Random Oversampling technique also aimed at mitigating both "between-class" and 

"within-class" imbalances. 

Regarding the Zeeland province, which is of particular interest for the present analysis, we observe that 

employing the SMOTENC technique to address both "within-class" and "between-class" imbalance does 

not result in a substantial improvement in sensitivity compared to using SMOTENC solely for mitigating 

the "between-class" imbalance, as previously executed in this study. Conversely, when the Random 

Oversampling technique is applied to tackle both types of imbalance, sensitivity exhibits a more 

significant enhancement. The minimal improvement observed after implementing the SMOTENC 

technique for both types of imbalance could be attributed to the province's very small sample size and 

particularly to the position of its samples in the feature space, which might make it more challenging to 

generate meaningful and truly informative synthetic samples.  
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Province Representation 
in the training 
set (baseline 
model) 

Baseline 
model 

(imbalanced 
data) 

Representation 
in the training 
set (SMOTENC, 
between class 
imbalance) 

SMOTE
NC 

(betwee
n-class 
imbalan
ce) 

Representation 
in the training 

set 
(ROS/SMOTENC, 

between class 
imbalance & 
within-class 
imbalance) 

SMOTENC 
(both 

between-
class and 

within-class 
imbalance 

 

Random 
Oversampli

ng 
(both 

between-
class and 

within-class 
imbalance) 

1.Groningen 2.4% 79 % 
(0.016) 

1.5% 82% 
(0.001) 

8.3% 84% 
(0.013) 

83% 
(0.011) 

2.Friesland 1.6% 72 % 
(0.014) 

0.8% 75% 
(0.012) 

8.3% 77% 
(0.012) 

75% 
(0.009) 

3.Drenthe 1 % 70 % 
(0.019) 

0.4% 70% 
(0.019) 

8.3% 75% 
(0.015) 

71% 
(0.012) 

4.Overijssel 3.6% 61 % 
(0.009) 

2.3% 73% 
(0.014) 

8.3% 74% 
(0.013) 

69% 
(0.007) 

5.Flevoland 2.3% 59 % 
(0.011) 

1% 67% 
(0.015) 

8.3% 73% 
(0.004) 

68% 
(0.024) 

6.Gelderland 7.2% 68 % 
(0.007) 

5.4% 73% 
(0.009) 

8.3% 73% 
(0.004) 

73% 
(0.011) 

7.Utrecht 10% 61 % 
(0.009) 

8.1% 75% 
(0.005) 

8.3% 71% 
(0.004) 

67% 
(0.005) 

8.Noord-
Holland 

27.5% 67 % 
(0.006) 

31.6% 80% 
(0.001) 

8.3% 73% 
(0.004) 

68% 
(0.002) 

9.Zuid-
Holland 

32.6% 68 % 
(0.002) 

40.4% 81% 
(0.002) 

8.3% 71% 
(0.004) 

69% 
(0.006) 

10.Zeeland 0.6% 50 % 
(0) 

0.3% 53% 
(0.027) 

8.3% 54% 
(0.022) 

56% 
(0.022) 

11.Noord-
Brabant 

8% 72 % 
(0.01) 

6.4% 78% 
(0.006) 

8.3% 79% 
(0.01) 

76% 
(0.008) 

12.Limburg 3.1% 64 % 
(0.008) 

1.7% 67% 
(0.013) 

8.3% 71% 
(0.016) 

68% 
(0.011) 

        

Recall transit 
class 

- 67 % 
(0) 

- 78% 
(0) 

- 73.2% 
(0.447) 

69.8% 
(0.447) 

Recall car class - 98.4 % 
(0.548) 

- 94% 
(0) 

- 97% 
(0) 

98% 
(0) 

Table 29. Sensitivity outcomes pertaining to the prediction of transit trips across Dutch provinces are presented. From left to 
right, the results are displayed for the baseline model (using imbalanced data), the model after implementing SMOTENC to 
address "between-class" imbalance, the model after implementing SMOTENC to address both "between-class" and "within-
class" imbalance, and lastly, the model after implementing Random Oversampling to tackle both types of imbalance. 

 

In the final step of our analysis, we expanded our investigation by consolidating the sub-clusters within 
the minority class into two broader groups—namely, the Randstad and non-Randstad sub-clusters. This 
decision was driven by the observation that the majority of transit trips occur within the Randstad area 
(72.5%), where transit systems are already well developed, while only a small number of trips take place 
in the remaining provinces. Given the lower connectivity in these provinces compared to the Randstad 
region, precise predictions for them are of heightened importance (Kasraian et al., 2016). 

Table 30 presents the sensitivity results for the Randstad and non-Randstad regions. When addressing 
the "within-class" imbalance, the application of the SMOTENC technique results in a modest increase in 
sensitivity for the non-Randstad provinces compared to exclusively addressing the "between-class" 
imbalance. Although not substantial, this increase might still remain noteworthy, particularly 
considering the lower development of transit systems in these provinces.  
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In conclusion, it is important to note that in this analysis, we exclusively experimented with the Random 

Oversampling and SMOTENC techniques. However, we acknowledge that the implementation of 

alternative techniques might have resulted in more favorable outcomes. 

 
 
 

 

 

Figure 17. Map of the Netherlands depicting the percentage of public transport journeys originating in both the Randstad and 
non-Randstad regions. The Randstad area encompasses four Dutch provinces: South Holland, North Holland, Utrecht, and 
Flevoland. 

 

 Recall 

 Randstad region Non-Randstad region 

Baseline model (imbalanced data) 66.3% 68.7% 

SMOTENC, between class imbalance) 79.3% 74% 
SMOTENC (between-class imbalance 
& within-class imbalance) 

71.8% 75.5% 

Random Oversampling (between-class 
imbalance & within-class imbalance) 

68.3% 73.3% 

Table 30. Sensitivity outcomes concerning the prediction of transit trips in the Randstad and non-Randstad regions. Results are 
displayed for the baseline model (using imbalanced data), the model after implementing SMOTENC to address "between-class" 
imbalance, the model after implementing SMOTENC to address both "between-class" and "within-class" imbalance, and lastly, 
the model after implementing Random Oversampling to tackle both types of imbalance. 
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2. Random Forest-Feature Importance 

In this section we present the top 10 most important features (Table 31) identified in the binary and 

multiclass classification tasks using the Random Forest model. Feature importance serves as a metric, 

uncovering the significance of individual features in improving the accuracy of the model's predictions. 

As detailed earlier in this study, each feature's importance is assessed by calculating the average 

reduction in impurity caused by splitting on that feature across all trees in the forest. Features that 

exhibit a notable decrease in impurity during tree splits are considered more crucial and can be selected 

during feature selection, contributing to enhanced predictive accuracy. 

Upon reviewing the results presented in Table 32 and Table 33,  it is evident that, in both scenarios and 

particularly in binary classification, using only the top 10 most important features yields results very 

close to the ones obtained when employing  the baseline model, incorporating all explanatory features. 

When working with a high-dimensional dataset, opting for including only the most important features 

in a classification task can prove beneficial, as while this choice might result in a slight decrease in the 

predictive accuracy, it can save computational time. Nevertheless, in our specific scenario, we are not 

dealing with such a dataset; therefore, we have opted to retain all features for our analysis. 

 

 Top 10 Most Important Features 

Binary case Driving license, Car ownership, Transit cost, Car cost, Car trip duration, Transit trip duration, 
Urbanity level(trip origin), Possession of OV card, Urbanity level(trip destination), Age 

Multiclass case 
Car-Transit-
Cycle 

Bike trip duration, Driving License, Transit Cost, Car trip duration, Car Cost, Transit Trip 
Duration, Age, Car ownership, Urbanity level (trip origin), Urbanity level (trip destination) 

Table 31. Top 10 most important features identified in the binary and multiclass classification tasks employing the Random 
Forest model. The significance of each feature is assessed based on the average reduction in impurity across all splits within 
the forest where the feature is employed. 

 

 Precision Recall F1-score Accuracy Balanced 
accuracy 

Car PT Car PT Car PT Total Total 
Baseline model 94 

(0) 
90 
(0) 

98.4 
(0.55) 

67 
(0) 

96.1 
(0.26) 

77 
(0) 

93 
(0) 

83 
(0) 

Baseline model-
Top 10 most 
important 
features 

 
94 
(0) 

 
83.8 

(0.45) 

 
97 
(0) 

 
67.4 

(0.55) 

 
95.5 
(0) 

 
74.8 

(0.45) 
 

 
92 
(0) 

 
82 
(0) 

Table 32. Results from the binary classification task using the Random Forest model. The top row of the table showcases 
classification results with utilizing all explanatory features, while the second row illustrates classification outcomes considering 
only the top 10 most important features. 

 

 Precision Recall F1-score 

Car AM Transit Car AM Transit Car AM Transit 
Baseline model   81 

(0) 
83 
(0) 

81.6 
(0.55) 

93 
(0) 

72.2 
(0.45) 

52.2 
(0.45) 

86.6 
(0) 

77.2 
(0.25) 

63.6 
(0.55) 

Baseline model-Top 10 
most important 

features 

78.4 
(0.55) 

75 
(0) 

73.2 
(0.45) 

88 
(0) 

68 
(0) 

51 
(0) 

82.9 
(0.31) 

71.3 
(0) 

60 
(0) 
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 Accuracy Balanced 
accuracy 

 Total Total 
Baseline model 81.6 

(0.55) 
72.8 

(0.45) 
Baseline model-Top 10 

most important 
features 

77 
(0) 

69 
(0) 

Table 33. Results from the multiclass classification task employing the Random Forest model. The first row of the table 
illustrates outcomes when employing all explanatory features, while the second row showcases results when only the top 10 
most important features are considered. 

 

 

3. t-tests 

In the subsequent two tables, we display the computed values derived from the t-test, assessing the 
statistical significance of the coefficients utilized in the MNL model. 
 

 TT Car TT PT TC Car TC PT ASC Car 

Baseline model -131.6 -41.6 -88.3 -455.5 208.6 

SMOTENC (k=5, N 
= 30%) 

-138.6 -38.1 -94.4 -50.1 185,6 

SMOTENC (k =5, 
N = 50%) 

-143.7 -34.6 -202.6 -40.45 94.3 

SMOTENC (k=5, N 
= 100%) 

-75.43 -28.8 -94.1 -128.17 42.54 

NBU (k = 3) -23.75 -28.58 -39.6 -35.12 90.76 

NBU (k = 5) -48.49 -33.7 -90.5 -195.3 199.19 

Table 34. t values for the binary classification task employing the MNL model. For a degree of freedom (df) equal to 2 and a 
95% confidence level, the critical t values are ± 4.3 (two-tailed test). 

 

 TT Car TT PT TT Bike TC Car TC PT ASC Car ASC PT 

Baseline 
model 

-41.6 -18.18 -141.85 -84.87 -58.54 -10.68 -149.76 

SMOTENC 
(k=5, N = 30%) 

-51.1 -34.64 -155.88 -90.93 -193.12 -5.85 -330.5 

SMOTENC (k 
=5, N = 50%) 

-121.24 -34.64 -161.95 -96.13 -57.59 -0.02 -84.89 

SMOTENC 
(k=5, N = 
100%) 

-32.47 -7.79 -57.74 -209.6 -40.2 5.92 -25.13 

NBU (k = 3) -95.26 -41.57 -788.08 -214.77 -363.75 -5.677 -233.73 

NBU (k = 5) -42.47 -42.26 -167.74 -120.37 -36.63 -7.768 -242.89 

Table 35. t values for the multiclass classification task employing the MNL model. For a degree of freedom (df) equal to 2 and 
a 95% confidence level, the critical t values are ± 4.3 (two-tailed test). 

 

 


