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1. Introduction
The issue of  waves on the water  surface has  long captivated people.  Leonardo da Vinci  left  numerous
sketches of whirlpools and wave motion, revealing that waves are the rotational motion of water particles.
However, it wasn't until the late 18th century that the problem of water surface waves began to be treated
mathematically within the framework of classical mechanics established by Galileo and Newton.

As will be introduced in the following sections, until the birth of coastal engineering in the mid-20th century,
wave problems were dealt with by mathematicians and physicists, and were outside the understanding of
civil and harbour engineering technicians. This situation was radically changed by World War II. The United
States and the UK needed accurate predictions of breaking wave conditions in order to successfully conduct
landing operations in the Mediterranean and Pacific theatres.

Therefore, they developed techniques for predicting the development of wind waves, deformation in shallow
sea areas, and estimating breaking wave heights. In addition, an artificial harbour was quickly built as a base
for  landing  military  supplies  during  the  Normandy  landing  operation,  and  the  theory  of  diffraction  of
electromagnetic waves was applied to the problem of waves. Coastal engineering, a new field born out of
these military needs, was established after the war.

One of the driving forces behind the advancement of wave problem research since the 1950s was the rapid
increase in oil demand. Drilling for underwater oil was limited to shallow areas with a water depth of a few
metres until the 1940s, but by 1967, large platforms were being installed at points with a water depth of 104
metres, and now oil is being pumped from the seabed over 500 metres deep.

The design external force of such deep-sea oil drilling and production equipment is maximum wave power,
and  the  calculation  theory  of  finite  amplitude  waves  has  developed.  In  addition,  tankers  have  become
increasingly large to reduce transportation costs, and the sophistication of wave theory has also been pursued
for the planning and construction of deep-water ports that can accept them.

Moreover, recent advancements and the miniaturisation of computers have made precise wave propagation
and deformation calculations possible, and numerical calculations are now becoming a viable alternative to
tank experiments. In this paper, I would like to introduce how these various issues related to surface waves
have been studied.

Naturally, research on wave problems spans a vast range, and it is extremely difficult to grasp the whole
picture. Here, I want to discuss it as a personal outlook, focusing on what I have studied so far. As for the
wave theory itself, it is introduced by Isobe (1999) and others, who are lecturers this year, so I will describe
it in a narrative style in this paper.

I believe there are not a few places where I have overlooked important parts of the history of wave research
due to my lack of study. I ask for your understanding.

2. The Dawn of Wave Theory
2.1 Wave Speed of Surface Waves
The first theory of wave dynamics involved the relationship between wavelength and wave speed. Already,
Newton discussed the speed of surface waves and sound waves using a pendulum analogy in his Principia
(1687). In the UK, two years before this, Charles II, who had restored the monarchy after Cromwell's Puritan
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Revolution,  had  passed  away,  and  in  France,  Louis  XIV was  in  the  peak  of  his  44th  year  of  reign.
Newcomen's steam engine, which played a leading role in the Industrial Revolution, was invented 28 years
later in 1705.

The  18th  century  was  a  time  when  fluid  mechanics  was  established  by  Bernoulli,  Euler,  d'Alembert,
Lagrange, and others. Regarding surface waves, Lagrange published the long-wave speed formula in 1783
and recorded it in the Analytical Mechanics (1788), published in Berlin. However, both Laplace and Poisson
pointed out the error of applying this formula to waves of any water depth, and not just long waves.

Laplace (1749 – 1827) was 13 years younger than Lagrange (1736 - 1813), and Poisson was younger still,
being born in 1781. Lagrange was active from the reign of Louis XVI to the era of the French Revolution,
instructing French mathematics and analytical mechanics as a professor at the Ecole Polytechnique. Laplace
also flourished from the revolutionary period through the Napoleonic era, and was active even until  the
period of the Bourbon Restoration. He is also known as a pioneer of tidal theory.

Poisson presented a theory in 1816 for phenomena such as the propagation of ripples when a stone is thrown
onto the water surface, or when a part of the water surface is lifted or pushed down. This phenomenon of
surface waves is referred to as the Cauchy-Poisson wave, in reference to Cauchy’s presentation of a similar
theory the previous year.

2.2 Theory of Trochoidal Waves
Gerstner, of Prague Technical University, was the first to explicitly present the waveform and water particle
motion of surface waves in the form of mathematical equations. Although he published this in the Journal of
the  Bohemian Royal  Society of  Sciences  in  18041,  his  theory remained unknown to mathematicians  in
France and England for over half a century. According to Stokes (1847), Russell (1844) supposedly sketched
the waveform of deep-sea trochoidal waves, but this has not been confirmed.

Rankine (1862)  rediscovered trochoidal  waves and not  only discussed the waveform and water  particle
motion, but also the underwater pressure. Moreover, in Stokes' (1847) theory of finite amplitude waves, the
rotating orbit of water particles advances slightly forward, whereas Rankine pointed out that no such mass
transport  exists  in  trochoid  waves.  Rankine  explained  this  difference  as  due  to  the  assumption  of  zero
vorticity by Stokes, while in trochoid waves, vorticity remains constant at each depth.

The trochoidal wave theories of Gerstner and Rankine are complete as theories of large wave heights in the
deep sea, accurately describing the characteristics of surface waves. However, under the assumption of a
perfect fluid, motion with vorticity cannot appear without human intervention. For this reason, as Lamb
(1932) pointed out,  they have fallen out of the mainstream of wave theory. The only exception is when
Sainflou extended the trochoid wave theory to derive the wave pressure theory of duplicate waves.

2.3 Wave Theory Based on Velocity Potential
When Euler's  fluid motion equation is  transformed,  the  velocity  potential  φ  of  fluid motion is  derived.
Lagrange presented this, and Laplace introduced it as a fundamental equation for the velocity potential of a
perfect fluid:

The first person to derive the wave theory based on this velocity potential was Airy (1845). He published it
in the "Tides and Waves" section which he contributed to the Metropolitan Encyclopaedia at that time, which
is essentially the theory of infinitesimal amplitude waves as it exists now. Its main parts have been described
in many textbooks since then, and it forms the basis of current wave theory. However, the author has not seen
the original document. The dispersion relation of wavelength and wave speed, ω2 = gk tan kh, is due to Airy.

Two years  after  this  theory  of  Airy,  Stokes  (1847)  presented  the  theory  of  finite  amplitude  waves  by
perturbation expansion. At this time, Stokes was a young and promising scholar of 28 years, presumably
1According to page 98 of Rouse's History of Hydraulics. However, Lamb (1932, p.421) states that it was in 1802. 
Furthermore, Lamb assesses that Rankine was not aware of Gerstner's paper.
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inspired by the theory of Airy, who was 18 years older. While Stokes' formulation is slightly different from
the current one, he derived up to the second-order approximation for shallow surface waves and the third-
order  approximation  for  deep  sea  waves.  He  also  noted  mass  transport  in  finite  amplitude  waves  and
discussed interface waves in stratified densities.

Furthermore,  in 1876,  Stokes introduced the theory of group velocity as the superposition of two wave
groups. At that time, the problem of group velocity seems to have attracted the attention of mathematicians
and physicists (Levi, 1995 p.467), with Rayleigh (1877) also developing a general theory of group velocity.

3. Transforming Waves and Stationary Waveforms
In Stokes' 1847 paper, it is stated that if  a/h is smaller than h/L2, the wave will not deform. Conversely, it
would  have  been  naturally  accepted  from the  observation  of  actual  waves  that  long  waves  with  large
amplitudes change.

Russell (1844) pointed out that there are cases where waves propagate in a uniform cross-sectional water
channel without changing shape. In 1834, when he was a 26-year-old teacher at the University of Edinburgh,
the Scottish Canal Society requested an investigation into the possibility of using a paddle steam tug instead
of towing barges with horses (Levi, 1995, p.180).

Russell continued to observe the canal several times for this reason, and at one point, a barge drawn by two
horses stopped suddenly, then began to move forward with great momentum. The barge was lifted by a
solitary wave coming from the opposite side within the canal, and was released from the flow resistance of
the solitary wave with the passing of the wave peak. Russell recorded the propagation speed and wave height
decay of such solitary waves along the canal.

The company that asked Russell for an investigation was likely seeking strategies to compete with railway
transportation, as this was the 1830s in Britain, a time when railways were becoming more prominent than
canals.

The  phenomenon  of  solitary  waves  was  reported  earlier  by  Bidone  (1826)  in  Turin,  but  it  seems  that
researchers in Britain and the Netherlands did not notice it. The solitary wave phenomenon reported by
Russell was seriously studied 27 years later by Boussinesq (1871) and five years later by Rayleigh (1876).
Rayleigh's paper provided an overview of wave theory at that time, dealing with deep sea waves and surface
vibrations in cylindrical containers.

The theory of solitary waves was later refined by McCowan (1891), who formalized waveforms, underwater
pressure,  effective  wavelength,  water  particle  motion,  and  wave  energy.  McCowan  also  mentioned  the
maximum wave height of solitary waves in this paper and scrutinized this issue in a paper four years later in
1894, concluding that the limit wave height was 0.78 times the water depth. This theory of solitary waves by
McCowan was used as a guideline when Munk (1949) summarized the breaking wave index after World War
II.

Furthermore, when calculating the wave force acting on underwater structures, it was necessary to have the
vertical  distribution  of  horizontal  particle  velocity,  and  for  this  purpose,  Munk's  computation  chart  for
solitary waves was used until the 1960s.

On  the  other  hand,  Korteweg  and  de  Vries  (1895)  derived  the  theory  of  stationary  waveforms  with
periodicity in shallow water areas. As the waveform is represented using Jacobi’s elliptic function (cn), they
named it  cnoidal  wave.  In  developing  the theory,  they  performed a  kind  of  perturbation  expansion for
horizontal-vertical particle velocities and velocity potential. They substituted this into the flow function and
found the equation of the wave shape that satisfies the condition of a steady wave form.

After deriving the condition of a higher-order approximate solution, they finally presented a second-order
approximate solution of the wave form. They also proved that McCowan's solitary wave is the limiting form
of the cnoidal wave. Recently, the theory of Korteweg and de Vries has been rewritten into the following
equation and is used as a basic equation in numerical analysis of the behaviour of nonlinear dispersive waves
such as electromagnetic waves, plasmas, and solitons (Zabusky and Galvin, 1971):
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Boussinesq's (1871) research included both solitary waves and periodic waves, and it was possible to handle
waves that deform as they propagate. However, as far as searching for subsequent literature is concerned, no
papers appear to have inherited and developed this research in the field of wave motion. It was not until the
1970s,  about  100 years  later,  that  the  Boussinesq equation became popular  as  the  darling of  numerical
calculation of waves.

Research on waves from the 19th century to the early 20th century, including the search for limit wave
heights  in  the  next  section,  was an  academic interest  of  mathematicians  and physicists,  and  except  for
Russell's observation of solitary waves in a canal, it seems to have been detached from real engineering
problems. There were limited papers dealing with waves, and not a few described their own research results
after  citing  papers  from  decades  ago.  Compared  to  the  current  situation  where  many  researchers  are
constantly publishing new papers, there was a laid-back atmosphere.

4. Approach to Limit Wave Height
The year before McCowan calculated the limit wave height of the solitary wave, Mitchell (1893) sought the
breaking limit  of  deep-sea waves.  He showed that  by accurately calculating the perturbation expansion
according to the definition that Stokes formed, a convex angle of 120° at the top of the limit wave, the
maximum value of the wave shape gradient is 0.142, and the instantaneous wave speed is 1.2 times the small
amplitude wave.

This  series  representation by such perturbation expansion was continued by Rayleigh (1917),  Havelock
(1918), and others. However, there remained doubts about the convergence of such series expansions. The
person who solved this problem was Levi-Civita of the University of Rome (1925).

Discussions of limit wave heights were mostly for deep sea waves. Havelock's paper seems to have dealt
with finite water depths, but it has been cited very little since then. In the field of coastal engineering, Miche
(1944) discussed the breaking limit  in dealing extensively with the wave problem in shallow areas and
presented the following breaking limit equation.

(H/L)b = 0.142 tanh 2π (h/L)b

Miche was a professor at the French civil engineering school (École des Ponts et Chaussees) founded in
1747. The school made significant contributions to the development of wave theory in the first half of the
20th century.

In the first half of the 20th century, this university greatly contributed to the development of wave theory,
with Sainflou publishing a theory on overlapping wave pressure in the institution's journal (Annales des
Ponts  et  Chaussees).  Notably,  the  civil  engineering school  was repositioned as  a higher-level  institution
following Napoleon's reform of the engineering school (École Polytechnique) in 1804 and remains so to this
day (Kurita 1992, p.30).

The discussion on the limit of breaking wave height was further refined by Hikoji Yamada of the Institute of
Applied  Mechanics  at  Kyushu  University  (Yamada  1957  a,b;  Yamada  et  al.  1986  a,b).  Through  his
theoretical work and numerical calculations, he examined the limit of the steady wave form at a fixed water
depth. It is safe to say that the wave height has been confirmed.

Yamada's research is occasionally cited by applied mathematicians in the West, but it remains unnoticed in
the field of coastal engineering. Consequently, despite Yamada's accurate value of 0.8261h for the breaking
wave height limit of solitary waves, the value of 0.78 by McCowan is still frequently cited.

5. Various Problems with Wave Forces Acting on Structures
For harbour engineers, the size of the wave force acting on lighthouses and breakwaters has been of interest
for a long time. Stevenson, who constructed lighthouses on islands with harsh wave conditions in Scotland,
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had been working on wave force observations using a maximum wave pressure recorder with a panel system
since 1842 (Stevenson, 1886). In the United States, Gaillard (1905) proposed a wave pressure formula in the
form of a pressure head of water flow colliding with a vertical wall, based on observations along the Great
Lakes.

In Japan, Hiroi (1919, 1920) proposed the famous Hiroi formula based on his observations of wave pressure
at Otaru Harbour, considering the pressure of the falling water flow accompanied by breaking waves. This
formula has been trusted for over 60 years as the basic formula for breakwater design in our country.

However,  in  the  West,  interest  in  vertical  breakwaters  has  been  increasing  recently,  and  before  the
advancement of research on wave pressure, it was almost unknown. These wave pressure formulas were
empirically  derived  independent  of  wave  theory.  The  first  to  theoretically  derive  the  problem of  wave
pressure was Sainflou (1928).

In Europe, where there were numerous cases of vertical breakwater damage in the early 20th century and a
return to rubble mound breakwaters, Sainflou's theory, which theoretically clarified the wave pressure acting
on the wall surface,  garnered overwhelming support  from harbour engineers (Ito,  1969). The theoretical
formula was quite complicated as it was based on the trochoidal wave in shallow water. However, it seems
that it gained a lot of support because Sainflou himself, a graduate of the School of Civil Engineering, also
presented a simple formula convenient for use.

Sainflou's  simplified  wave  pressure  formula  was  approved  as  the  basic  formula  at  the  1935  PIANC
conference, held every four years, and has since been listed in Western textbooks. In Japan, Matsuo (1941)
introduced it in the form of a translation in the magazine "Harbor".

The problem with Sainflou wave pressure is that the vorticity is not zero because it is based on the trochoidal
wave theory, but it introduced finite amplitude effects, such as showing that the median wave height is higher
than the average water surface. If one dares to apply a perturbation expansion order, it will correspond to a
1.5 order approximation.

Based on Stokes’ wave theory,  the  finite  amplitude theory of  the  velocity  potential  and  the wall  wave
pressure were derived by Gourret (1935). According to Tanaka (1958), this is a second-order approximation
theory of overlapping wave pressure. Tanaka also introduced the second-order overlapping wave pressure
theory by Lagrange coordinates derived by Missie (1944). The expansion of such overlapping wave pressure
theory from the second order to the third order was done by Penney and Price (1952) for deep-sea waves,
and Tadjkash & Keller (1960) provided a theoretical solution for shallow surface waves.

Aida and Kakizaki (1966) further expanded the theoretical formula to the fourth order from the perspective
of  design  wave  pressure  on  breakwaters.  However,  this  level  of  approximation  accuracy  includes
convergence errors in the surface boundary conditions.  Therefore,  they calculated the wave pressure  by
adding a forced numerical convergence condition and obtained results that almost match the experimental
results.

On the other hand, for the wave force acting on the columnar members that form the basis of the design of
offshore oil drilling equipment, Morison et al. (1950) and Morison (1951) proposed a method to obtain it as
the sum of drag force and inertia force. This was when offshore oil drilling was gradually moving offshore
from shallow water depths, and a method for calculating wave force was sought from a practical point of
view.

The theoretical basis for adding drag force and inertia force is weak, but it is presumed that the background
of  the  proposal  for  the  practical  formula  was  that  experimental  data  on  drag  coefficients  had  been
accumulated from the development of wing theory for aircraft since the 1930s. 

Theoretically, it is easier to derive the inertia force, and three years after Morison's announcement, MacCamy
and Fuchs (1954) derived the inertia force acting on large-diameter circular columns from diffraction theory.
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In addition,  Aida and Yoshimura (1971)2 developed the diffraction theory of waves by vertical  elliptical
cylinders and presented the inertia force coefficient when expressing wave force as inertia force.

Because marine structures are generally complex in shape, it is difficult to theoretically obtain the velocity
potential. Therefore, in recent years, it has become common to solve the velocity potential by numerical
analysis using various techniques.

6. Wave Generation Theory for Hydraulic Model Experiments
Creating waves in a laboratory tank to act on a model has been done for quite some time. Though I have not
specifically researched this, it was done at the old Ministry of the Interior's Civil Engineering Testing Station
(now the Ministry of Construction's Civil Engineering Research Institute), established in 1923, at least from
the early 1930s for experiments such as harbour shielding. Froude in the UK is the pioneer of ship model
testing, and there is a possibility that the first wave generation experiment was done in relation to ships.

The design and manufacture of these experimental wave-making devices was entirely based on experience.
The period was set at a specified value by adjusting the rotation speed of the DC motor or the speed of the
continuously  variable  transmission  connected  to  the  AC  motor,  and  the  wave  height  was  adjusted  by
changing the amplitude of the wave-making board through trial and error. The first to present a theory for
such  wave-making  devices,  according  to  Biesel  (1951),  was  Havelock  (1929),  who  published  in  the
Philosophical  Magazine.  I  haven't  researched the literature,  but  it's  likely for  a  cylindrical  plunger-type
wave-making device. 

Biesel (1951) and Biesel and Suquet (Biesel-Suquet 1951) determined the velocity potential of the waves
generated  by  the  piston  type,  flap  type,  and  their  mixed-type  wave-making  boards.  The  solution  is  a
superposition of a progressive wave and a stationary attenuating wave near the wave-making board, and not
only the wave height of the generated wave but also the wave force acting on the wave-making board and the
required horsepower are calculated. 

The latter paper (in French) was soon translated into English in the United States, which was brought to
Japan and used in the design of the 105-metre large wave-making flume at the Port and Harbour Research
Department of the then Transport Technology Research Institute (now the Ministry of Transport's Port and
Harbour Technology Research Institute) (Tsuruta and Hisada, 1957).

When large waves are generated in the wave-making flume in shallow water, small secondary wave crests
may appear between the crests of the waves. This secondary wave crest moves slower than the main crest, so
it is overtaken and absorbed by the main crest as the wave propagates, and then reappears behind the main
crest after a short time. This phenomenon is due to the nonlinearity of the waves. That is, strong nonlinear
waves, as shown in the Stokes wave theory, have a constrained wave of twice the frequency. 

This constrained wave induces a horizontal motion of twice the frequency in the water particles. However,
the  wave-making  board  only  makes  a  sinusoidal  back-and-forth  motion  of  the  fundamental  frequency.
Therefore, a mismatch occurs in the water particle motion at the wave-maker position. In reality, a free wave
of twice the frequency in reverse phase to the constrained wave is excited, resulting in only the sinusoidal
back-and-forth  motion  of  the  water  particles  at  the  wave-maker  position.  The  free  wave  of  twice  the
frequency moves slower than the constrained wave, which results in the secondary wave crest appearing to
move slowly.

Furthermore, the free wave of twice the frequency interferes with the progressing wave of the fundamental
frequency, exciting a wave of the third order. Therefore, when the waveform records at each point in the
flume are Fourier analysed, the amplitudes of each frequency increase and decrease at a constant interval.
The double and triple frequency components change in phase, and the fundamental frequency component is
out of phase with these. 

As the Fourier amplitudes vary spatially in this way, it is easy to think that energy exchange is occurring due
to  resonance  between  the  frequency  components.  However,  the  progressing  wave  of  the  fundamental
frequency, the accompanying secondary and tertiary constrained waves, the free wave of twice the frequency,
2 Takayama is the current reference.
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and the interfering waves of the fundamental and triple frequencies each propagate while retaining their own
amplitude,  and  no  energy  exchange  occurs  between  them.  It  only  appears  that  the  Fourier  amplitudes
analysed at fixed positions in the flume are changing.

As for these nonlinear wave-making phenomena, Fontanet (1961) was the first  to derive a second-order
theory. Using Lagrangian coordinates, he solved the velocity potential, focusing on the constrained wave of
twice the frequency. Takayama made explicit the generation of the constrained and free waves, suggesting
that the modulation interval of the Fourier amplitude at twice the frequency is given by the reciprocal of the
difference in wave numbers between the constrained and free waves. However, as this paper was published
in French, it was not well known to researchers in the English-speaking world. 

The nonlinear wave-making theory in Eulerian coordinates was given by Flick and Guza (1980) along with
Bendykowska and Massel (1988) among others, providing a second-order solution, and the author (Goda,
1997) presented a theoretical solution that included third-order interference. This solution to the third-order
interference clarified the mechanism of the movement of the secondary wave peak, which had long remained
unexplained.

7. Birth of Coastal Engineering and Introduction of Wave Deformation Calculations
Rewinding back to the first half of the 20th century, the mathematical theory of waves had been significantly
developed, a state that can be overviewed in Lamb's textbook (Lamb 1932). However, such wave theories
were irrelevant  to  harbour  engineers,  and coastal  and port  structures  were designed based on empirical
formulas. The only exception was the overlapping wave pressure theory by Sainflou (1928). 

The question of how large waves would occur in actual seas could only be answered by empirical formulas
derived  from visual  observations  at  various  locations.  People  like  Stevenson,  Hiroi,  and  Molitor  were
displaying the relationship between wave height and wind speed with cross-shore distance as a parameter.
There  were also empirical  formulas  given for  the  wave height  within the  harbour  when its  entrance is
narrowed by breakwaters, which were cited in textbooks on harbour engineering (Masaji Suzuki 1932, pages
51-52). However, concepts of wave diffraction or refraction were not known in engineering.

The outbreak of World War II dramatically changed this situation. As many books introduce, the war spread
across the Pacific, Atlantic, and the Mediterranean, and it was inevitable to carry out landing operations on
coasts occupied by the enemy. When soldiers were sent into enemy territory on landing craft, rough seas
could capsize the boats and cause unnecessary loss of life. Therefore, accurate forecasts of weather and wave
conditions on the day of the landing operation were essential, and meteorologists and oceanographers were
mobilised. 

Research of  this  type was initiated in  Japan,  but  it  was America  that  succeeded in establishing a wave
prediction method. Under the guidance of Sverdrup, the director of the Scripps Institution of Oceanography
at the University of California, Munk, a member of the institute, analysed a large amount of wave data from
the sea as a member of the Army Air Corps Meteorological Section's Ocean Division. Combining this with
experimental data from wind tunnels and waterways, he developed a new scientific wave calculation method
by devising a model of energy transfer from wind to waves. 

This was the beginning of the significant wave method, which was later expanded and reorganized with the
addition of more data, and widely disseminated as the SMB method, named after the initials of Sverdrup,
Munk, and Bretschneider.

Bates (1949) introduces the contribution of wave forecasting for landing operations during World War II. The
wave forecasting method of Sverdrup and Munk was a military secret during the war, and it was not until
1946 that it was published at the American Geophysical Union in a co-authored paper. They also issued a
manual for practitioners as publication No. 601 of the U.S. Navy Hydrographic Office in 1947, enabling
many people to use the new wave forecasting method.

For landing operations, not only ocean wave information but also information on the surf zone is necessary.
Therefore, charts calculating the refractive effect of waves and surf indices were compiled and delivered as
manuals to weather officers (U.S. Hydrographic Office 1944). Munk's paper on surf published later (Munk
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1949) appears to be a reorganisation of the data from that time using revised solitary wave theory. Regarding
the creation of refraction charts, Johnson et al. (1948) compiled early methods, and later a more convenient
wave-ray method was published by Arthur et al. (1949).

On the other hand, for the Normandy landing operations in June 1944, it was necessary to secure a long
sandy beachhead for  unloading  military  supplies  after  the  successful  landing.  Therefore,  many floating
breakwaters and simple breakwaters were made in the UK and towed to be sunk offshore, allowing the rapid
construction of an artificial harbour. For this plan, it was necessary to appropriately evaluate the shielding
effect of breakwaters. 

Someone came up with the idea to apply Sommerfeld's electromagnetic wave diffraction theory, established
in  physics,  to  surface  waves.  The  calculation  results  of  the  diffracted  wave  height  were  compiled  and
published in a paper by Penney and Price (1944). Later, Johnson (1951) created diffraction charts for various
openings of breakwaters, which were cited in textbooks and technical guidelines for a long time.

With the rapid development of wave calculation methods out of wartime necessity and the aim of having
many engineers utilise them, a symposium on the new interdisciplinary field of "coastal engineering" was
held in Long Beach, California, USA in 1951. The instigator was Professor O'Brien from the University of
California,  Berkeley,  who,  reaching  out  not  just  to  civil  engineers  but  also  to  experts  in  meteorology,
geology,  and  other  fields,  organized  the  Wave  Research  Council  and  hosted  the  Coastal  Engineering
Conference. 

As is well known, this was the origin of coastal engineering. Initially only involving the U.S. and the UK, it
soon drew attention from around the world and grew into a biennial international conference.

8. Advances in Wave Theory through Offshore Oil Production Projects
The next catalyst for the development of wave theory was the advancement into deep-sea areas of offshore
oil  drilling projects.  Oil  fields are located several  thousand meters below the seafloor, and after  several
exploratory drillings, one may be fortunate enough to succeed in finding an oil field. In order to find and
extract oil from these fields, structures that can withstand high waves of 10 to 30 meters must be built in the
sea. 

Many of these marine structures for oil drilling are made up of large-diameter steel pipes assembled in a
truss shape (platforms), with the main force against wave load being drag. Since drag is proportional to the
square of the particle speed of the water, a highly accurate theory against high waves was required. As a
result, since the late 1950s, there have been successive presentations on higher order finite amplitude wave
theory.

First, Chappelear (1959) considered particle motion of shallow sea surface waves from deep-sea areas to a
water depth wavelength ratio of about 0.1 and their breaking limits and vicinity. However, the approximation
accuracy was slightly inferior compared to Yamada (1957a). Although it was easy to extend Stokes' (1847)
second-order finite amplitude wave theory to a third-order approximation, Skjelbreia and Hendrikson (1960)
presented a fifth-order theory using perturbation expansion. 

Meanwhile, Laiton (1960) targeted extremely shallow sea areas and derived a second-order approximate
solution for cnoidal and solitary waves. Compared to Stokes waves, the waves in extremely shallow sea
areas require a fairly complex mathematical expansion even for a second-order approximation.

As the finite amplitude wave theory became more accurate, a large amount of numerical calculation was
required  to  specifically  determine  waveforms  and  water  particle  motion.  For  example,  Skjelbreia  and
Hendrikson conducted computer calculations for a wide range of water depth wavelength ratios and wave
slope gradients, and compiled the results into a numerical table exceeding 400 pages for the convenience of
users. However, actual design conditions do not perfectly match the conditions of such numerical tables.
Therefore,  research started leaning towards direct  numerical  calculation of wave motion in high waves,
assuming the use of a computer. 
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Chappelear (1961) was one of the pioneers in this regard. Eventually, Dean (1965) 3, who was then employed
by an oil company, developed a numerical calculation method that automatically expands the stream function
to  any order  on  a  computer,  and this  made it  possible  to  determine  wave  motion  with extremely high
accuracy. It seems that this stream function method is still being used as the basis for design calculations of
marine structures.

Theories of regular finite amplitude waves continue to be researched, and achievements have been made in
cnoidal waves and others. For these, please refer to Isobe (1999) and others at this year's summer training
session.

9. Development of Numerical Analysis Method for Wave Transformation
The advancement and high-performance of computers have dramatically accelerated the numerical analysis
of various wave issues. Initially, many performed numerical calculations according to theoretical solutions
that had already been provided, such as the diffraction problem of waves by breakwaters or the fifth-order
approximate solution of Stokes waves. 

Gradually, a method was developed to solve the equations that determine wave transformation according to
the seabed topography at each step, like creating refraction diagrams by computers, essentially numerical
simulation of wave transformation. For the theory and methods concerning this, please refer to Nadaoka
(1999) in this workshop.

The need for improved work efficiency and corresponding cost  reduction seems to have stimulated the
development of numerical analysis methods for refraction diagrams. Speaking of wave estimation methods
for wind wave development, Wilson (1955) developed a schematic solution for wind fields that vary spatially
and temporally in deep sea areas. 

Furthermore, Sakamoto et al. (1960) proposed a schematic solution developed from Wilson's method for
fluctuating  wind  fields  in  shallow  sea  areas.  As  these  schematic  solutions  were  time-consuming  and
complex, automatic analysis programs were eventually created by computers and used in actual problems.

These numerical analyses are based on linear theory and belong to this category, including the response of
bays to tsunamis and resonance analysis of harbor water surfaces. Moreover, in complex seabed topography
such as on a spherical shoal, the wave direction lines of the refraction diagram may intersect. In such places,
diffraction waves occur due to rapid changes in the surface gradient of the wave shape. 

This was known experimentally, but it was Berkhoff (1972) who made its numerical analysis possible. He
presented the mild slope equation as a basic equation of wave transformation, and clarified that the wave
height  distribution can be obtained by its  numerical  analysis.  Furthermore,  Radder  (1979)  presented an
elliptical  equation  as  its  approximate  formula.  Since  then,  many  papers  have  been  published  on  the
transformation problem of linear waves. 

However, they mostly remain objects of researcher interest, and their practical use is not very commonplace.
This is because in practice, the main focus is on analyzing the wave height distribution in ports, for which
methods such as Barailler and Gaillard (1967) based on the Green's function method and others have been
developed. However, these were for regular waves and may not necessarily be practical for actual irregular
waves.

In contrast, the Boussinesq equations make it possible to perform numerical calculations incorporating the
nonlinearity of waves. In particular, phenomena such as the forward inclination of the wave shape just before
wave breaking, or wave splitting phenomena on a submerged breakwater, can be reproduced fairly accurately
by the Boussinesq equations. 

The first to handle the transformation problem of nonlinear waves was Biesel (1951). He incorporated the
spatial variation of the wave number  fc for the propagation of small amplitude waves in a field where the
water depth changes, into the integral form, and demonstrated the change in wave shape up to just before
3 Subsequently, Dr. Robert G. Dean moved to a university where he has been conducting research primarily on sediment
transport problems, including the design of artificial beach nourishment.
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wave breaking on the slope. However, this paper does not seem to have had much influence on subsequent
research. 

Eventually, Peregrine (1966, 1967) discussed the transformation problem of long waves on a slope and the
generation problem of bores using the Korteweg & de Vries equation. Perhaps inspired by this, Byatt-Smith
(1971) has discussed the application of the Boussinesq equation.

Those who promoted the development of numerical calculation models paying attention to the potential of
this Boussinesq equation seem to be like Professor Abbott of the International Institute for Hydraulic and
Environmental Engineering in the Netherlands. The author is not familiar with these numerical calculation
models, so I cannot state when the first model was put into practical use, but I believe one of the early ones
in the literature is Abbott et al. (1978). The Boussinesq equation was originally targeted for long waves, so
the calculation accuracy for the propagation speed of short period waves is low. For this reason, various
modifications  have  been  made  to  improve  the  approximation  accuracy  of  the  equation,  and  it  is  now
applicable over a wide range of water depth to wavelength ratios. 

Calculation programs for three-dimensional topography, including the mooring area of the port, have been
developed and are used in actual problems. In particular, by giving the time-space wave shape of irregular
waves  with  a  direction  spectrum  at  the  offshore  boundary  as  input,  it  is  possible  to  calculate  the
transformation problem of irregular waves at once (for example: Nwogu and Mansard, 1994). However, it
takes quite a long time for the calculation, so we may need to wait for further improvements in computer
performance to use it in practical calculations.

10. Development of Irregular Wave Theory
Actual waves are irregular waves represented by directional spectra, and in applying wave theory to practical
problems, we must incorporate the irregularity of the waves. The flow of irregular wave research has been
mentioned  by  the  author  in  the  1992  summer  training  session  (Goda  1992),  and  although  it  overlaps
somewhat with that, it will be briefly introduced below. 

It could be said that it was common sense among ocean physicists that sea waves are irregular waves and
their structure is only revealed by the spectrum, from the time when waveforms of sea surface waves could
be obtained. Therefore, in 1961, a workshop titled "Ocean Wave Spectrum" was held, gathering leading
scientists and engineers, and the proceedings of the meeting, complete with discussions, were published by
Prentice-Hall in 1963. 

This record included many basic documents, such as Barber's (1963) discussion of the basic formula of
directional  spectrum  analysis,  Longuet-Higgins  et  al.'s  (1963)  introduction  of  directional  spectrum
observation  by  two-way  inclined  buoys,  and  Tick's  (1963)  presentation  of  the  theory  of  secondary
interference  of  component  waves  in  the  frequency  spectrum  structure.  Also,  the  author  (Goda  1970)
simulated the time waveform by providing a frequency vector and analyzed the statistical properties of wave
height and period, which was inspired by the discussions at this conference.

The directional spectrum is based on the recognition that ocean waves are linear superpositions of countless
component waves with different frequencies and directions. The first to analyze the shallow water-refraction
deformation of waves based on this concept was Pierson et al. (1952). This paper was presented at the 3rd
Coastal Engineering Conference, but it was ignored by researchers and practitioners in the field of coastal
engineering.  At  that  time,  the  field of  coastal  engineering was just  reaching a stage where the drawing
method  of  refraction  diagrams  based  on  the  concept  of  meaningful  waves  was  established,  and  the
importance of cutting-edge research may not have been understood. Also, at that point, it was cumbersome to
draw refraction diagrams for each spectral component and it may have been considered impractical.

The next to introduce the directional spectrum to wave deformation calculation was Karlsson (1969). This
research is about solving the transport equation of directional spectrum energy density, which is in the same
manner as wave prediction based on the concept of the spectrum. However, since refraction changes the
direction of each component wave, a 3-dimensional differential equation is solved by adding wave direction
as a variable in addition to the two orthogonal axes. 
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In wave prediction, time is a variable, but in wave deformation, a steady state is assumed and the time term is
removed.  Also,  the  calculation  proceeds  from  offshore  to  the  shore,  ignoring  reflected  waves  heading
offshore. Karlsson's energy balance equation was also not discussed among overseas coastal scholars for a
while. The first to adopt this in practical calculation was a Japanese harbour group (Nagai et al. 1974, Goda
and Suzuki 1975). It wasn't until the late 1980s that the energy balance equation started to be addressed in
Europe and the US. 

At the same time in Japan, a method was introduced into practical calculation to calculate the diffraction of
waves by the superposition of directional spectral component waves, and in 1979 it was officially adopted in
the  guidance of  the  director  of  the  Ministry  of  Transport's  Port  Bureau on  technical  standards  for  port
facilities.  However,  in  Europe  and the  US,  more  effort  has  been  put  into  research  on  the  deformation
calculation of irregular waves in recent years, and various programs operating on PCs have been developed,
aiming to spread them to developing countries.

Regarding the statistical properties of waves, the theory of wave height Rayleigh distribution by Longuet-
Higgins (1952) is best known. However, his 1957 paper is more important as a basic document. He discusses
not only wave height but also the statistical quantities of period and water surface slope in relation to the
directional spectrum. 

However, because it is somewhat difficult to understand and is rarely cited by other researchers, Longuet-
Higgins published a paper in 1975 that made the section on the joint distribution of wave height and period a
little easier to understand. This may be one example where even an excellent paper is not fully appreciated if
the gap is large between those who digest and use it.

For irregular waves, there are many important practical themes, such as the theory of nonlinear interference
between component waves. However, as this deviates somewhat from the main theme of this paper, "Wave
Problems", I would like readers to refer to appropriate literature and other resources.

11. Conclusion
The wave problem is one of the few fields in civil  engineering where advanced solutions can be found
through mathematical theory. As initially stated, the founders of modern science such as Newton, Lagrange,
and Laplace also had an interest in wave problems. In this paper, I have tried to understand the history of
wave problem research under the backdrop of the time.

As is the case in any field, research is not isolated from the demands of the times. Particularly in the field of
engineering, theory matures and develops with its application to real problems. Overly advanced theoretical
research may be ignored if its value is not fully understood. Gerstner's trochoidal wave theory is an example
of this, and the refraction calculation method of directional spectrum waves by Pearson and others is an
example of theory being shelved by practitioners. There are also cases where it has not been used for more
than 100 years, like Boussinesq's (1871) research.

Research themes have trends, and when one excellent study is published, many follow-up studies inspired by
it ensue. The calculation of the limit wave height by Mitchell (1893) and McCowan (1894) is an example of
this. However, following up on a theme often yields little result for the effort involved. It is not easy to
achieve results that surpass previously published research. In the peer review of overseas journals, repeat
studies are seldom highlighted. 

Where we should focus the most in research is not on refining theory or experimental techniques, but on
uncovering fresh and widely applicable excellent themes. One must heighten their problem consciousness
and search for what kind of resolution is demanded. 

If a research theme is borrowed from conference proceedings or collections of papers, the research may have
few opportunities to be highlighted even after it is completed. The excavation of research themes is always a
troubling matter, but recognising its importance could be said to be the first step towards excellent research
results.
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