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Summary

Insulated rail joints (IRJs) play a crucial role in modern railway systems. They serve the critical function
of electrically isolating rail segments through the placement of an insulating material, known as an end
plate, between two rail ends. This insulating material is necessary to define track segments, which
makes it possible to determine the position of trains within the railway system. Knowing a train’s posi-
tion is key to ensuring efficiency, reliability, and safety. While these joints are highly important, they are
also vulnerable. The interruption in rail geometry results in a complex interaction between wheel and
rail, giving rise to high dynamic impact forces. Traditional IRJs, or squared IRJs, have the cut between
the rail ends orthogonal to the rail. In this thesis, an alternative design with a non-orthogonal junction
angle is analyzed.

The primary goal of this thesis is to determine how the junction angle influences both the global wheel-
rail interaction and the local contact pressure at the wheel-rail interface. To achieve this, the thesis
is split into two parts: (1) the global wheel-rail interaction analysis, which studies the influence of the
junction angle on the interaction between the wheel and rail using simplified geometries in a kinematic
approach, and (2) a local wheel-rail interface analysis, which studies the effect of the junction angle on
an assumed uniform contact pressure between wheel and rail.

The global analysis revealed the possibility of two distinct contact scenarios, depending on lateral wheel
position and dip angles greater than zero. In contact scenario 1, the effective geometry and the result-
ing vertical impulse remained identical to those of squared joints. However, in contact scenario 2, the
active geometry of the joint changes, leading to an increase in vertical impulse of the wheel’s center
of mass. Additionally, the introduction of the junction angle increased the likelihood of less favorable
contact conditions for contact scenario 1 and guaranteed less favorable contact conditions for contact
scenario 2. The local analysis showed that uniform contact pressure between the wheel and rail in-
creases slightly for non-orthogonal junction angles with dip angles near zero. For small junction angles
(resulting in a long cut in the longitudinal direction), outside of the practical range, the rate of change
of the contact pressure was greatly reduced.

The study has shown that insulated rail joints with non-orthogonal junction angles within the practical
range do not provide significant improvements in dynamic performance compared to traditional squared
joints. However, due to the assumptions made in this model, the complexity of the rail geometry was
significantly simplified, and material elasticity was not considered. These limitations are expected to af-
fect the contact behavior and could effect the results. This should be investigated further. The second
model demonstrates that for junction angles within the practical range, the assumed uniform contact
pressure increased slightly. However, for very small junction angles, which result in impractically elon-
gated joints, the rate of change in uniform contact pressure can be greatly reduced.
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1
Introduction

1.1. Background information
Railway systems play a crucial role in efficiently transporting people and goods across regions. Their
rapid and large-scale transportation contributes greatly to urban accessibility. Their importance is a
result of their high speed, safety, reliability, cost-effectiveness and environmental advantages over
road transportation [1]. High speed rail is especially effective for the transportation of people between
densely populated urban areas [2]. To maintain the effectiveness of this important transport network, it
is essential to ensure the safety and reliability of its components. This is especially challenging in high-
speed rail systems where the higher velocities place greater demands on these components. Despite
improvements to various system components in the past decades, some remain vulnerable to damage,
particularly those associated with imperfections in rail geometry.

Imperfections are an unwanted but unavoidable phenomenon in railway systems. They lead to unde-
sirable effects such as noise, vibration and increased maintenance costs for wheels and tracks. These
imperfections occur in various places along the railway track systems, the most common ones being:
joints, crossings, switches, turnouts, tunnels and bridges. In response to these undesirable effects, the
number of joints in the track has been significantly reduced in recent years, and continuously welded
rail (CWR) has become the norm [3]. However, insulated rail joints (IRJs) are still widely used since
they fulfil an important role in train signalling as they are required to define track circuits.

A major problem arises when the wheel-rail contact has a spatial discontinuity. A discontinuity occurs,
for example, in dipped joints, IRJs and bolted rail joints. These joints have a smaller vertical bending
stiffness compared to the rail [4], [5], [6]. This results in a difference in deflection when a train ap-
proaches the railway joint. This difference in deflection generates the dip-angle. When a train crosses
the joint with a dip-angle, a complex interaction between the train wheels and the joint happens in which
large impulse noise peaks [7] and high dynamic forces arise [8]. The forces that arise from this inter-
action will damage the joint increasing maintenance costs and reducing reliability of the railway system.

In railway infrastructure, IRJs play a critical role in segmenting track circuits for signal and control
systems. An electric current is fed to both rails at one side of the segment. When the segment is
unoccupied the electric current can be detected on the other end of the section. When a train enters
the section, it short-circuits the current in the rails. The standard layout of IRJs typically involves the
use of insulating materials between adjoining rail ends to electrically isolate sections of the track. In
standard IRJs, this insulating material is placed in the rail, perpendicular to the rolling direction of the
train. This means the longitudinal direction of the rail and the insulation material are at an angle of
90 degrees as seen in the last figure in Figure 1.1. However, in past decades the development of
insulated rail joints with a non-orthogonal junction angle has gained attention due to their potential to
enhance the performance and longevity of IRJs. Unlike the traditional perpendicular IRJs, IRJs with a
non-orthogonal junction angle have an angled interface between the rail ends. In Figure 1.1 in the first
and second images, two insulated rail joints with non-orthogonal junction angles are shown. According

1



1.2. Problem definition 2

to experiments [5], [9], joints with a non-orthogonal junction angle reduce noise and dynamic impact
and improve the structural integrity of the joint.

Figure 1.1: Insulated rail joints with 30, 45 and 90 (perpendicular) cuts

1.2. Problem definition
Insulated rail joints (IRJs) are a weak link in modern-day railway systems. A local reduction in stiffness
and an interruption in track geometry give rise to high dynamic impact forces. These forces are a cause
of quick track deterioration which increases the maintenance required. To minimize dynamic impact
forces and extend the service life of IRJs, an alternative design has been developed: the insulated rail
joint with a non-orthogonal junction angle. In this design, the end plate (the insulation material between
two rail segments) is not positioned perpendicular to the rail’s direction as it would be in traditional joint
designs, but it is placed diagonally in the rail. In Figure 1.2 a schematic of an IRJ with a non-orthogonal
junction angle is presented. While experimental studies have demonstrated that this joint design offers
improved structural performance, there is still a lack of comprehensive theoretical research on this
topic.

1.3. Aim of the thesis
The aim of this thesis is to investigate the influence of the junction angle of an insulated rail joint on the
global and local wheel-rail interaction. This research seeks to develop a better understanding of how
varying the junction angle affects the dynamic behaviour of the rail joint and the contact pressure at the
wheel-rail interface.

The main objective of this thesis is:

• Analyze the effect of the junction angle on the global and local wheel-rail interaction in insulated
rail joints, to enhance theoretical understanding that can aid in design optimization.

The sub-objectives are to:

• Analyze the global dynamic behaviour of the wheel-rail interaction.
• Analyze the local contact pressure at the wheel-rail interface.

1.4. Research question
Research question:

• What is the influence of the junction angle (θ) on the time-variant wheel-rail interaction in
insulated rail joints?

To assess the influence of the junction angle on the global wheel-rail interaction, it is crucial to describe
the trajectory of the wheel’s center of mass in time z(t). This time-dependent trajectory reflects the
dynamic characteristics of the interaction and provides a basis for determining the magnitude of the
resulting impact.
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Sub-questions global model:

1. Does a parameter space exist for the junction angle of the rail (0 < θ ≤ 90), a dip angle larger
than zero (β > 0) and the wheel modeled as an infinitely thin disc, such that the first derivative
of the trajectory (z(t)) of the moving disc’s center of mass is continuously defined in a kinematic
approach?

2. If this solution does not exist, which combination of parameters, as mentioned in sub-question 1,
results in the smallest variation in the first derivative of the trajectory z(t)?

3. What is the influence on the trajectory when the finite width of the rigid wheel is taken into account?

Sub-questions local model:

1. How does the junction angle of an insulated rail joint (θ) affect the magnitude of an assumed
uniform contact pressure (p), when an elliptical contact patch moves uniformly over an insulated
rail joint with a nominal gap (g)?

2. How does the junction angle (θ) of an insulated rail joint affect the rate of change in uniform
contact pressure (p) over time, as an elliptical contact patch moves uniformly over a rail joint with
a nominal gap (g)?

Figure 1.2: Top-view and cross-section of an insulated rail joint, illustrating junction angle θ and dip angle β.

1.5. Structure of the report
This report is divided into seven chapters:

• Chapter 1: Introduction
This chapter provides an overview of the research, presenting background information, problem
definition, and the aim of the thesis. It outlines the research questions and the objectives of the
study.

• Chapter 2: Theoretical Background
This chapter introduces the theoretical foundations of railway engineering relevant to this thesis.

• Chapter 3: Global Analysis: Wheel-Rail Interaction
Here, the global dynamic behavior of the wheel-rail interaction is explored. The chapter presents
the kinematic approach to wheel-rail interaction analysis and introduces the framework and mod-
els used for the global analysis.
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• Chapter 4: Results of Global Wheel-Rail Interaction
This chapter provides the results of the global analysis, focusing on the dynamic properties of
the system, including vertical impulse and the visualization of contact points during double-point
contact.

• Chapter 5: Local Analysis: Wheel-Rail Interface
This chapter shifts focus to the local wheel-rail interaction, specifically analyzing contact pressure
at the wheel-rail interface.

• Chapter 6: Results of Local Wheel-Rail Interface Analysis
The results of the local contact pressure analysis are presented in this chapter.

• Chapter 7: Conclusions and Recommendations
The final chapter summarizes the findings of the thesis and provides recommendations for future
research.

The report also includes an appendix, which contains supporting material such as a literature study and
additional calculations.



2
Theoretical background

2.1. Static and dynamic analysis in railway engineering
In railway engineering, the structural integrity, safety and performance of the railway components are
dependent on various forces acting on the system. These forces can be categorized into static and
dynamic forces which differ in nature and application. To get a broad understanding of how the system
performs it is crucial to conduct both static and dynamic analyses.

2.1.1. Static forces
Static forces are the forces that remain constant or vary very slowly over time. In railway engineer-
ing they are related to the self-weight of the train, tracks, and other components of the system. The
most common example of a static force is the self-weight of the train acting on the track. This load is
predictable and remains constant as the train traverses the track.

2.1.2. Dynamic forces
Dynamic forces are the those that vary rapidly over time due to changes in speed, acceleration and
the interaction between the train and the track. These forces occur when the train is in motion and
are influenced by track irregularities, acceleration, deceleration and aerodynamic effects. Modelling of
dynamic forces is generally more complex than static forces and often require a good understanding
of the wheel-rail interaction. The dynamic force on the system may be expressed relative to the static
force. According to some analyses, the dynamic forces in railway joints can increase the load on the
system be a factor 4-6 compared to the static load [7].

2.1.3. Total Force
The total force acting on the railway system is a combination of the static and dynamic force:

Ftotal = Fstatic + Fdynamic

The summation of the forces provides a complete description of the load acting on the railway struc-
ture. The static analysis alone is used for many applications but dynamic analysis becomes more and
more crucial in modern, high speed rail networks where the dynamic forces become more and more
significant.

2.2. Beam on Wrinkler foundation and dipped joint geometry
The combination of rail and underlying soil can be modelled using the Wrinkler foundation model in
combination with a beam element. The rail is modelled as a beam element with bending stiffness EI
and is placed on a continuous vertical spring with spring constant k, which represents the ballast and
subgrade. The model is used to calculate the rail deflection, bending moments, and shear forces in
the rail under train loads. The governing equation of the deflection of the beam on elastic foundation
is given by:

d4w(x)

dx4
EI + k · w(x) = F (x)

5
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wherew(x) is the deflection of the beam at position x, k is the stiffness of the subgrade, E is the young’s
modulus of the beams material, I is the moment of inertia of the beam and F (x) is the applied load
as a function of x. In Figure 2.1 the beam on an elastic foundation is shown if no load is applied. For

Figure 2.1: Beam element and Wrinkler foundation when no load is applied

continuous rail, the bending stiffness of the system remains uniform along the track. When a train load is
applied, the rail behaves like a beam, resulting in smooth deflection due to its constant bending stiffness.
However, this condition changes in the presence of a rail joint. At the joint, the bending stiffness is no
longer uniform but experiences a localized reduction. As a result, the deflected shape of the rail near
the joint deviates from the smooth profile seen in continuous sections. Instead, a discontinuity, forms
at the joint, producing what is commonly referred to as a dipped joint geometry. In Figure 2.2 the model
is shown with and without joint. The image also shows the resulting dipped joint geometry. The dipped

Figure 2.2: Beam element and Wrinkler foundation when load is applied for a). continuous beam element and b). beam
element with joint

joint geometry follows from the local displacement field of the system at the location of the joint and
is often used in literature to describe the rail’s deformation near the joint. In well known paper [10],
Jenkins et al. introduced the dipped joint geometry and defined the dip angle which described the
gradient of the rail at the point where they connect. Two definitions are commonly used to describe
the dip angle: it can either refer to the angle between the horizontal and the rail at the point where the
rail ends connect, or the angle between the two rail ends themselves. Various mathematical functions,
including linear, quadratic, and sinusoidal functions, have been used to model the shape of the dipped
joint. In Figure 2.3 the geometries are shown for a linear and sinusoidal function.

Figure 2.3: Linear and sinusoidal dipped joint geometries
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2.3. Classification of wheel-rail contact
In [4] Steenbergen describes the difference between the situation that occurs when a wheel is in single-
point contact or multi-point contact with the rail geometry. A perfectly circular wheel running on a
perfectly flat rail continuously has a single-point contact in time. The contact patch is reduced to be a
point as a result of the assumption that all materials are fully rigid and perfectly shaped. The single-
point contact in time may shift to double-point contact when an imperfection in track geometry occurs,
see Figure 2.4. The type of contact will only shift when the length scale of the imperfection is smaller
than the diameter of the wheel or when the curvature of the vertical rail geometry exceeds the curvature
of the wheel rim.

Figure 2.4: Continuous single point contact (left) and transient double-point contact (right) [4]

In the case of single-point contact, the wheel may be modelled as a lumped mass supported by a spring.
The spring is used to model the Hertzian wheel-rail contact stiffness. This stiffness is nonlinear but is
often assumed to be linear, which is valid under the assumption of small deviations of the load. The
irregularities in the track geometry are modelled as excitation’s of the wheel-rail contact point in the
spring model. For a rail with height z(x) the equation of motion of the wheel on the Hertzian spring
becomes the same as for a simple oscillator, see Figure 2.5:

mwü(t) + kHu(t) = kHz(t)

Figure 2.5: Wheel model for single-point contact [4]

In double-point or multi-point contact the kinematic relations between the perfectly shaped wheel and
rail geometries have to be described to find the trajectory of the wheel’s center of mass during the
wheel-rail interaction. The trajectory of the wheel’s center of mass depends on the type of vertical ge-
ometrical imperfection the wheel traverses. The most common ones are described in [11] and include:
smooth irregularity, step-up joint, step-down joint, step-wise joints and wheel flats. In [4] Steenbergen
concluded that applying the single-point contact model as described above for these type of track irreg-
ularities strongly underestimates the contact forces as it does not describe the occurring mechanisms
correctly. In Figure 2.6 an example wheel-rail interaction during two-point contact is shown.
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Figure 2.6: Double-point contact when a step in vertical rail geometry occurs.

2.4. Discontinuities in rigid body analysis
To facilitate the analytical analysis of wheel-rail interaction, both the wheel and the rail are considered
to be fully rigid, neglecting the elasticity of the materials. This assumption leads to an instantaneous
change in the direction of the wheel’s center of mass during two-point contact. This instantaneous
change in direction corresponds to a singularity in the vertical velocity of the wheel’s center of mass,
resulting in an undefined time derivative. This derivative is crucial for calculating the vertical impulse
force. For a merely kinematic analysis, the impulse force remains undefined. In reality, the elasticity of
the contacting bodies will smooth out the interaction, resulting in a continuously defined function for the
vertical velocity, and a defined vertical impulse force. In Figure 2.7, an example of the vertical velocity
is plotted, with the dotted line illustrating the smoothing effect of material elasticity.

Figure 2.7: Example of discontinuous vertical velocity as a result of rigid bodies. Dotted line illustrates the smoothing effect of
elasticity.



3
Global analysis: Wheel-Rail

Interaction

In this chapter, the wheel-rail interaction of an insulated rail joint with a non-perpendicular junction an-
gle is analyzed and an analytical wheel-rail interaction model is obtained using a kinematic approach.
The primary objective of this analysis is to determine the effect of the junction angle θ on the dynamic
performance of an insulated rail joint.

The chapter begins by providing an introduction. Then the objectives, scope, and limitations of the
adopted model are discussed. Following this, a road map is outlined, guiding through the steps of the
analysis. To illustrate the application of the road map, a well-known problem is solved as a demonstra-
tion. The core of the chapter presents the wheel-rail interaction model specific to insulated rail joints
with a non-orthogonal junction angle. The results of this analysis will be presented in chapter 4.

3.1. Introduction to kinematic wheel-rail interaction analysis
3.1.1. Background information
A perfectly round wheel traversing a perfectly straight rail experiences single-point contact in time.
When the wheel encounters a geometrical imperfection, the contact may shift from single-point-contact
to double- or multi-point contact. The kinematic relation between the wheel and rail geometry describes
the trajectory of the wheel’s center of mass, see section 2.3. In a kinematic approach, the bodies are
considered to be fully rigid, neglecting the elasticity in the materials. This leads to a singularity in the
time derivative of the velocity. This time derivative is crucial in calculating the impact forces, which
means that in a kinematic analysis, the vertical impulse force remains undefined, see section 2.4.

3.1.2. Objectives
The primary objective of this analysis is to address the gap in theoretical knowledge regarding the
dynamic performance of insulated rail joints with a non-orthogonal junction angle. To achieve this, a
kinematic wheel-rail interaction model is adopted that describes the wheel-rail interaction of a wheel
traversing an IRJ with a non-orthogonal junction angle. By examining the effect of the junction an-
gle θ on the dynamic behavior of the IRJ, this study takes the first steps toward establishing a more
comprehensive theoretical foundation. Although the adopted model is simplified, it provides an initial
understanding of the dynamic performance and can serve as a basis for future research.

3.1.3. Model scope and limitations
The model consists of a wheel, initially modeled as a perfectly shaped infinitely thin disc, and a sim-
plified geometry of a non-orthogonal insulated rail joint. The kinematic interaction between wheel and
joint geometry, as the wheel traverses the joint, results in a description of the trajectory of the wheel’s
center of mass in time. The primary focus is on the trajectory of the wheel’s center of mass during the
two-point contact phase, as the magnitude of the impact is defined at this specific wheel position.

9



3.2. Global wheel-rail interaction: framework and example 10

In this analysis, the geometries of both the wheel and rail are simplified. Initially, the wheel is modeled
as an infinitely thin disc, and later as a cylinder with finite thickness. The rail is assumed to be perfectly
flat, and the wheel-rail contact assumed as a single point. In reality, the wheel has a conical and more
complex shape, while the rail is curved, and the actual contact patch between the two has an elliptical
area. Additionally, material properties are not considered, meaning all the bodies are considered fully
rigid and geometrically perfectly shaped. Inertia is also neglected. This assumption results in the wheel
being ’glued’ to the track and not able to break contact because of its velocity.

The analysis conducted in this section has merely theoretical value and is solely used to demonstrate
and gain insights in the dynamic behaviour at the wheel-rail contact at insulated rail joints with a non-
orthogonal junction angle.

In the horizontal plane (x-y plane), the joint’s geometry consists of two rail segments both with length
L
2 and width 2 bt (now half the track has thickness bt) that are separated by a cut that is placed under
a junction angle θ to the longitudinal direction of the track. The end plate material is neglected since
the stiffness of the material can be neglected in comparison to the stiffness of the rail. In the vertical
plane (x-z plane) the model has an assumed linear elastic deformation, defined by the dip angle β as
seen in earlier literature. The wheel geometry consists initially of a perfectly round infinitely thin disc
with radius R.

3.2. Global wheel-rail interaction: framework and example
3.2.1. Framework
To structure and guide the analysis, a framework has been developed to organize the steps involved.
This framework is illustrated in Figure 3.1 and in this subsection, the process is briefly explained. The

Figure 3.1: Framework for global wheel-rail interaction of an insulated rail joint with non-orthogonal junction angle. The force is
not defined due to the rigid body assumption.

joint and wheel geometry both serve as inputs for the kinematic wheel-rail interaction model. The
output of the model is the trajectory of the wheel’s center of mass as a function of time. By taking the
time derivative of the trajectory, the vertical velocity of the wheel’s center of mass can be determined.
Multiplying this velocity by the mass of the wheel results in the momentum of the wheel. Given that
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the vertical velocity is a function of time, the change in vertical velocity during double-point contact can
be calculated. The difference in vertical velocity before and after double-point contact is now used to
determine the magnitude of the impulse during impact. Typically, the time derivative can be taken one
more time to determine the impact force. However, assuming rigid bodies leads to a discontinuity in
the vertical velocity in time, which coincides with an undefined time derivative of this vertical velocity.
Consequently, the force during this interaction is undefined. Since this force remains undefined, the
magnitude of the impulse is used as a measurement of the magnitude of impact.

3.2.2. Global wheel-rail interaction example case
Prior to applying the framework to an insulated rail joint with a non-orthogonal junction angle, it will be
used to analyze a simpler case: a step in vertical track geometry. This preliminary analysis is intended
to present the use of the roadmap on a well known problem.

Joint and Wheel Geometry
In Figure 3.2 a wheel with radius R and center of mass M is shown traversing a step in vertical rail
geometry with step height u0. In reality, the radius of a train wheel typically far exceeds the magnitude of
the step in vertical geometry. This characteristic allows for expressions in this analysis to be simplified,
as the wheel radius is significantly larger than the size of the imperfection (R >> u0). As the wheel
moves along the track, it encounters the scenario illustrated in Figure 3.2. At position A the wheel is
in contact with both the vertical step in track geometry and the original surface it was in contact with,
resulting in transient double point contact. This causes an instantaneous change in the direction of the
wheel’s center of mass and shifts the center of rotation from the wheel’s geometrical center to the point
of contact with the vertical geometry. The wheel then rotates around this new center of rotation until it
reaches position B, where its trajectory becomes parallel to the track again.

Figure 3.2: Schematic of wheel experiencing a step in vertical geometry

The horizontal distance a between the new center of rotation and the vertical center line of the wheel
can be determined using the following trigonometric relations:

cos (α) = R− u0

R

sin (α) = a

R
(3.1)

cos (α) =
√

1− sin2α (3.2)
Plugging in Equation 3.1 in Equation 3.2 results in an expression for horizontal distance a:

a = ±
√
2Ru0 − u0

2, for R >> u0 : a = ±
√
2Ru0
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Using Equation 3.1 the final result for the vertical component at transient double-point contact at A can
then be written as:

sinα =

√
2u0

R
(3.3)

Trajectory
In Figure 3.3 the trajectory for the center of mass M as function of x is shown in a coordinate system.
The coordinate system’s origin is defined to coincide with the point of instantaneous change in direction
to simplify expressions. The point x0 depicts the moment of two point contact and x1 depicts the point
where the trajectory is merely horizontal again. Between these 2 points the center of mass M follows
a circular path around it’s new center of rotation as seen in Figure 3.3. α depicts the initial angle of
the trajectory right after two point contact. The center of mass M follows this circular path until the
direction of the trajectory is merely horizontal again. At this point it will continue it’s path parallel to
the surface. For the coordinate system defined in Figure 3.3 the location of the new center of rotation
can be described using parameters from the geometry. The trajectories illustrated in this analysis are
purely theoretical, and their shape is greatly exaggerated. In reality, due to the significant difference
in scale between the wheel radius and the step in vertical geometry, the trajectory’s shape is far less
distinct.

Figure 3.3: Trajectory of wheel’s center of mass M as a function of position x

The trajectory of the center of massM as function of x can be described using the following expressions:

z(x) = 0 for x < 0

z(x) = −R+ u0 +

√
2x

√
u0(2R− u0) +R2 − 2Ru0 + u2

0 − x2 for 0 ≤ x ≤ x1

This equation can be slightly simplified using R >> u0 :

z(x) = −R+ u0 +

√
2x

√
2Ru0 +R2 − 2Ru0 − x2 for 0 ≤ x ≤ x1

z(x) = u0 for x > x1

The position of the wheel can be described in the time domain using a linear operator, the train’s velocity
v. Due to the assumption that the interaction occurs in a zero time interval, the velocity remains constant
during the whole interaction between wheel and track:

x = vt (3.4)

Using Equation 3.4 the trajectory of z can be expressed as a function of time:

z(t) = f(x(t))

This results in the following expressions for the trajectory in the time domain:

z(t) = 0 for t < 0



3.2. Global wheel-rail interaction: framework and example 13

z(t) = −R+ u0 +

√
2
√
2Ru0 · vt+R2 − 2Ru0 − v2t2 for 0 ≤ t ≤ t1

z(t) = u0 for t > t1

Due to the linear scaling between v and x, the graph in the time domain appears identical, though with
an x-axis scaled with factor v, as seen in Figure 3.4.

Figure 3.4: Trajectory of the wheel’s center of mass M as function of time t

Velocity
Having represented the trajectory in the time domain, the vertical velocity can be determined by taking
the time derivative directly, or applying the chain rule to the expressions as function of x to determine
the derivative of z with respect to time:

ż(t) =
dz

dx
· dx
dt

This results in the following expressions for the vertical velocity ż of the center of massM as a function
of time:

ż(t) = 0 for t < 0 (3.5)

ż(t) =
(2
√
2Ru0 − 2vt)v

2
√
2
√
2Ru0vt+R2 − 2Ru0 − v2t2

for t0 < t < t1

ż(t) = 0 for t > t1

The parameter ξ = u0

R determines the degree of circularity for the trajectory. A smaller ξ corresponds
to a trajectory of the wheel’s center of mass that more resembles a straight line, while a larger ξ results
in a trajectory with a more pronounced circular path and a larger initial angle α. The vertical velocity of
the center of mass is non linear for a circular trajectory, but when ξ becomes small enough the vertical
velocity of the center of mass along the circular path will seem linear. In Figure 3.5 and Figure 3.6 the
trajectories and vertical velocities of the center of mass are shown for various values of ξ. It should
be noted that the vertical velocity is defined for every value of t, but is not continuous (jump in vertical
velocity at t = 0). This discontinuity corresponds to an undefined vertical acceleration (second time
derivative of z). These values, though theoretical and greatly exaggerated, are a good illustration for
the changes in trajectory and vertical velocity. In practice, the wheel’s radius R is typically way larger
than u0. Since dynamic effects are not considered here the train velocity v = 1 was used to have the
same scaling on the x-axis for the position and the time domain. The chosen values for ξ were chosen
to generate easily readable figures. When the center of mass M reaches t0, and two point contact
occurs, the direction of the center of mass changes instantaneous. The vertical velocity of the center
of mass at this exact moment (t = 0) can be described as:

ż(t = 0) = v ·
√
2Ru0√

R2 − 2Ru0

= v ·
√
2Ru0√

R(R− 2u0)

For R >> u0:

ż(t = 0) = v ·
√

2u0

R
(3.6)



3.2. Global wheel-rail interaction: framework and example 14

Figure 3.5: Trajectories for various values of ξ

Figure 3.6: Vertical velocities for various values of ξ with discontinuity at t = 0

.

As expected, the result from the vertical component solved from the geometry and trigonometric rela-
tions (Equation 3.3), when multiplied by v, matches the result obtained using the trajectory of wheel
and track (Equation 3.6). While solving the vertical component through geometric relations may be sim-
pler for this case, using trajectory analysis offers a more versatile solution, applicable across a broader
spectrum of scenarios. For example, this approach remains viable when measurements along a track
are carried out and only the trajectory of the center of mass is known.

Momentum, impulse and force
The vertical momentum of the center of mass is dependent on the vertical velocity of the center of mass
and the mass of the wheel. The wheel’s momentum while traversing the track can be expressed as:

p⃗(t) = M · v⃗(t)

Since the vertical velocities along the path of the center of mass are known, the vertical momentum
along the path can determined (the mass doesn’t change). From Equation 3.5 and Equation 3.6 can
be observed that an instant change in vertical velocity occurs at t = t0. This instant change in ver-
tical velocity, or an instantaneous rotation of the velocity vector, corresponds to a change in vertical
momentum, or a vertical impulse ∆pz. For the two-point contact at t = t0 the vertical impulse can be
expressed as:

∆p⃗z = p⃗z,t′0 − p⃗z,t0 = M · v ·
√

2u0

R



3.2. Global wheel-rail interaction: framework and example 15

The abrupt change in direction over an infinitesimal time interval produces a velocity that, while defined
for every time instant t, is discontinuous, as illustrated in Figure 3.6. This discontinuity in vertical velocity
results in an undefined time derivative of the velocity dv

dt . Consequently, the force remains undefined,
as the force is defined as:

F =
dp⃗

dt

To address this, the magnitude of the impulse is utilized to quantify the impact.

In Figure 3.7, graphs depicting the trajectory, vertical velocity, momentum, and impulse are presented
over time. The horizontal axes are aligned to provide a clear overview of how all concepts relate to each

Figure 3.7: Time-Aligned Plots of Trajectory, Vertical Velocity, Vertical momentum and Vertical Impulse of the center of mass of
a wheel traversing a step in vertical geometry with u0 = 0.3 m, R = 1 m, M = 750 kg, v = 50 m/s

other. The chosen time interval shows the trajectory of the center of mass of the wheel, starting just
before the two-point contact, marked as t0 and ending when the wheel returns to a merely horizontal
position, marked as t1. The dimensions of the step height u0 and wheel radius R are selected to create
easily readable figures and hold merely theoretical value. In reality, the wheel radius far exceeds the
step height. At t = t0, two-point contact occurs, causing an instantaneous change in the direction of
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the wheel’s center of mass. This directional shift in a zero time interval results in an instantaneous
change and a discontinuity in the vertical velocity. Given that vertical momentum is the product of
vertical velocity and a constant factor (the mass of the wheel’s center), the plot of vertical momentum
mirrors this behavior, showing a similar discontinuity. The vertical impulse, defined as the change in
vertical momentum, shows as a sharp peak at t0.

The illustrated framework is used to derive the dynamic properties from a wheel and rail geometry for
a basic example. In the following sections this framework will be used to analyze a rail joint with a
non-orthogonal junction angle.

3.3. Insulated rail joint with a non-orthogonal junction angle
In this section the framework introduced in subsection 3.2.1 is applied to analyze a non-orthogonal rail
joint. After introducing the adopted geometries of the wheel and the joint, using the framework, the
expressions for the dynamic properties of the joint are derived.

3.3.1. Adopted geometry
To describe the wheel-rail interaction of the wheel as it traverses a non-orthogonal insulated rail joint
the dipped joint geometry defined below is adopted. The deflection of the joint is assumed to be linear.

Figure 3.8: Top view and 2 cross-sections of the adopted geometry for the insulated rail joint with a non-orthogonal junction
angle.

The diagonal line in the top view depicts the separation between the two rail ends. The global coordinate
system is established with its origin at the midpoint of the track for a joint with zero deflection. The angle
θ represents the junction angle of the cutoff, while the angle β defines the dip angle, as observed in
earlier literature. As a result of the non-orthogonal junction angle, the deflection of the rail’s end is
dependent on both the x and y coordinates. This results in the following relations between the x and y
coordinates for the diagonal cutoff:

xjoint(y, θ) = y · cot θ (3.7)
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yjoint(x, θ) = x · tan θ (3.8)
Due to the geometry of the joint, the vertical deflection of the rail ends varies along the cross-section
perpendicular to the rail. At the track’s centerline (y = 0), the rail head and tail have the same deflection.
For every other y-value, the deflection varies between both rail ends, resulting in a vertical mismatch.
Due to the placement of the x-y coordinate system in the middle of the track, the deflection of the left
rail end at a certain y-coordinate lines up with the deflection of the right rail end for the same negative
y-coordinate. Using this characteristic the height of the mismatch ∆h between the rail ends can be
determined using the following equations:

wz(y) = sin (β
2
) · y · cot θ

∆h(y) = wz(y)− wz(−y) (3.9)

3.3.2. Wheel-rail contact scenarios
The wheel is initially modeled as an infinitely thin disc. The position of the center of this disc in the
coordinate system is denoted using xw, yw and zw. The width of the track is denoted as bt. Due to the
diagonal cutoff of the joint, the height difference between the rail ends increases as the position on the
track becomes more eccentric. In other words, as y increases, the mismatch height ∆h increases. As
the disc approaches the rail joint, it is initially rolling down the rail. The locations of the contact points
during 2-point contact for a regular dipped joint depend on the radius of the disc R and the dip-angle
of the joint β. When the disc is located close enough to the center of the track during 2-point contact,
the mismatch of the rail ends will be too small for the disc to encounter. This is when contact scenario
1 occurs. When the disc is positioned more eccentric (yw increases) the mismatch between rail ends
will become large enough for the disc to encounter and 2-point contact will occur in such a way that
one of the contact points makes contact the diagonal cutoff. This is when contact scenario 2 will occur.
The y-value for which the scenario that occurs changes from scenario 1 to scenario 2 is defined as the
transition value and denoted as yt. This means that depending on the disc’s position along the y-axis,
2 ranges for yw can be distinguished corresponding to the two wheel-rail contact scenarios:

• Contact scenario 1: 0 < yw < yt
• Contact scenario 2 : yt < yw < bt

In Figure 3.9 the bandwidths for each scenario are shown on the rail. Due to symmetry in the geometry
of the track and the assumption that dynamic effects are not considered (inertia), the contact scenarios
will occur symmetrically on both sides of the rail’s center line. The maximum value for yw is limited by
the track width bt. In Figure 3.10 both contact scenarios are depicted in the x-z plane. The trajectory of

Figure 3.9: Overview of possible values of yw and the position of the contact scenarios. Note that yw should always be
smaller than the track width bt

contact scenario 1 follows the dipped joint geometry. Contact scenario 2 initially has the same trajectory
as contact scenario 1 but after 2-point contact, the trajectory follows a circular path until the trajectory
is parallel to the rail again. Note the horizontal and vertical shift in the position of contact point A for
contact scenario 2.
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Figure 3.10: Both contact scenarios and their trajectories. Contact scenario 1 follows the shape of the dipped joint geometry,
while scenario 2 has a circular trajectory after 2-point-contact

To gain a better understanding of what happens in the x-z plane as the eccentricity of the disc increases
Figure 3.11 shows the position of the wheel during 2-point contact for four key values of yw. Note that yt
denotes the transition value between the two wheel-rail contact scenarios and that xA and xB denote
the horizontal distance between the contact pointsA andB to the vertical center line of the wheel. xjoint

denotes the horizontal distance from the middle of the joint to the diagonal cutoff and ∆h denotes the
height of the vertical mismatch between the rail ends. The following things should be observed in each
situation:

1. The disc is located in the middle of the track (yw = 0). The height of the vertical mismatch ∆h is
equal to 0. Contact scenario 1 occurs.

2. The disc is located between the middle of the track and the transition value (0 < yw < yt). The
height of the vertical mismatch ∆h is larger than 0 but not large enough for the disc to encounter.
Contact scenario 1 occurs.

3. The disc is located at the transition value (yw = yt). At this point the vertical mismatch∆h is equal
to the vertical position of contact point A. This is the maximum yw value for contact scenario 1
occurs.

4. The disc is located eccentric on the track beyond the transition value (yw > yt) (Note that yw
always has to be smaller than bt). The vertical mismatch ∆h is now large enough for the wheel
to encounter. Contact scenario 2 occurs and the center of rotation has shifted to contact point A.

The horizontal distance between the vertical centerline of the wheel and both contact points, denoted
as xA and xB , remains constant in all cases where contact scenario 1 occurs, and can be directly
determined from the wheel and track geometry:

xA = sin (β
2
) ·R (3.10)

The expression for the transition value yt follows from the known horizontal distance between the disc’s
vertical centerline and contact point xA. As seen in Figure 3.11 the height of the vertical mismatch ∆h
is 0 when the wheel is placed in the center of the track (yw = 0). When the eccentricity of the disc on
the rail increases (the value of yw increases), the height of the diagonal cut starts increasing. If the
eccentricity of the disc keeps increasing the height of the vertical mismatch ∆h will match the height of
the contact points. The horizontal distance between the vertical center line of the wheel and the contact
point in this position is still equal to Equation 3.10, which results in the following expression:

xjoint = xA = sin (β
2
)R

Now, using the relationships between the x and y coordinates of the diagonal cut Equation 3.19, and
the expression for the known horizontal distance between the disc’s vertical center line and contact



3.3. Insulated rail joint with a non-orthogonal junction angle 19

Figure 3.11: Schematic view of wheel-rail interaction in the x-z plane at 4 values of interest when yw increases

point Equation 3.10 the transition value can be determined:

yt = sin β

2
tan (θ)R

In contact scenario 2, this horizontal distance between the cut and the vertical center line xA increases,
making the derivation of an expression for xA more complex. The expression for xA in contact scenario
2 will be handled in the corresponding section subsection 3.3.4.

3.3.3. Contact scenario 1
Trajectory
In Figure 3.12 the trajectory of the disc’s center of mass as a function of time is shown in a coordinate
system. The origin of the coordinate system is chosen at the time of two-point contact to simplify
expressions and the transformation to the time domain is done using Equation 3.4.

Figure 3.12: Trajectory of the center of mass for mechanism without definitively defined center of rotation
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The trajectory in the time domain can be described using the following expressions:

z(t) = − sin (β
2
) · v · t for t < t0

z(t) = sin (β
2
) · v · t for t ≥ t0

Assuming small deflections the expressions can be simplified using small angle theorem:

z(t) = −β

2
· v · t for t < 0

z(t) =
β

2
· v · t for t ≥ 0

Vertical velocity
Now that the trajectory in the time domain is known the derivative with respect to time can be taken to
obtain the expressions for the vertical velocity along the trajectory:

ż(t) = −β

2
· v for t < 0 (3.11)

ż(t) =
β

2
· v for t ≥ 0

These functions are not continuously defined and have a singularity at the moment of 2-point contact
(t = t0). This singularity in the vertical velocity is a result of the assumption that the bodies in this
analysis are considered fully rigid, see section 2.4. In Figure 3.13 the vertical velocity is plotted as a
function of time.

Figure 3.13: Vertical velocity before and after two-point contact for contact scenario 1. Instant change in velocity at t = t0.

Using Equation 3.11 and Equation 3.3.3 the change in vertical velocity at the moment of two-point
contact (t = t0) can be determined:

∆ż = ż+ − ż− =
β

2
v − (−β

2
v) = β · v (3.12)

Vertical Impulse
The instant change in vertical velocity results in an instant change in the momentum of the disc’s center
of mass. Since a change in momentum is defined as the impulse, Equation 3.12 can be used to define
the impulse for contact scenario 1:

∆pz = M ·∆ż = M · β · v (3.13)

Given that, as a result of the rigid body assumption, the impact force remains undefined, the impulse
will be used as a measurement for the magnitude of impact.
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3.3.4. Contact scenario 2
When the eccentricity of the disc on the track exceeds the transition value (yw > yt) the height of the
vertical mismatch between the rail ends becomes large enough to make contact with the disc. This
results in a shift of the wheel’s center of rotation to the point of contact on the diagonal cutoff, as
seen in Figure 3.10. This situation greatly resembles the example case, see subsection 3.2.2. The
key distinctions in this contact scenario are that the initial angle of the trajectory is inclined, and the
horizontal distance xA from the vertical centerline of the wheel to the contact pointA is initially unknown,
as illustrated in Figure 3.11. For this contact scenario, the horizontal distance xA is not directly defined
from the geometry. To define the trajectory of the disc’s center of mass during 2-point contact, knowing
the magnitude of xA is crucial. To find xA a set of equations following from the rail and disc’s geometry
have to be solved.

Local coordinate system
To find the horizontal distance between the vertical centerline of the disc and contact point A a local
coordinate system is introduced. This local coordinate system is located at the bottom of the wheel
at yw = yt and its axes are denoted as x′, y′ and z′, as seen in Figure 3.14 and Figure 3.15. The
following linear transformations are applied to transform from the global coordinate system to the local
coordinate system:

x′ = x

y′ = y −m, with m = yt = sin (β
2
)R tan θ

z′ = z − n, with n =
L

2
sin (β

2
)

The expression for yt has been derived in subsection 3.3.2. The expression for n is equal to the
vertical distance travelled by the wheel until it makes 2-point contact (note that yw = yt, so the contact
points are located as in contact scenario 1). The vertical distance travelled follows from the horizontal
distance travelled by the wheel into the joint and the dip angle. The horizontal distance travelled by
the wheel is equal to L

2 which leads the expression for n. The expression for yt has been derived

Figure 3.14: Transformation of local axis in x-y plane

in subsection 3.3.2. The expression for n is equal to the vertical distance travelled by the wheel until
it makes 2-point contact (note that yw = yt, so the contact points are located as in contact scenario
1). The vertical distance travelled follows from the horizontal distance travelled by the wheel into the
joint and the dip angle. The horizontal distance travelled by the wheel is equal to L

2 which leads the
expression for n.

Geometry
It should be noted that all values for y′ > 0 refer to contact scenario 2, since y′ = 0 coincides with the
transition value y = yt and that the horizontal distance between the vertical center line of the wheel
and the contact point A are no longer directly defined from the geometry. To solve the equations for
the trajectory, first the expression for xA should be found, as it directly relates to angle α.
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Figure 3.15: Transformation of local axis in x-z plane, situation depicted occurs when yw = yt

The horizontal distance xA between the vertical centerline of the disc and the diagonal cutoff can be
determined by defining the joint and disc geometry in the local coordinate system. Once these are
defined, a set of equations can be solved to find xA. The diagonal cutoff is modeled as a linear function
in 3-dimensional space x′, y′, z′ using the following equations: For the position of the diagonal cutoff in
the x′-z′ plane:

z′joint(x
′) = − sin (β

2
)x′ + z0 (3.14)

To determine z0, a point on the line that represents the diagonal cutoff is used where both the x and
z-coordinate are defined. This point is defined by the geometry at the transition point between the two
mechanism (y = yt) or (y′ = 0), as seen in Figure 3.11 :

x′
joint(y

′ = 0) = R sin (β
2
) ; z′(y′ = 0) = −R(1− cos (β

2
)) (3.15)

Plugging these values into Equation 3.14 results in an expression for z0:

z0 = R(sin (β
2
)
2

+ cos(β
2
)− 1) (3.16)

Now plugging Equation 3.16 into Equation 3.14 leads to the following expression for the position of the
diagonal cut in the x′-z′ plane:

z′joint(x
′) = − sin (β

2
)x′ +R(sin(β

2
)
2

+ cos (β
2
)− 1) (3.17)

The relationship between x′ and y′ for the diagonal cutoff can be determined from the geometry of the
track as seen in Figure 3.8. At the transition value of the contact scenarios (y′ = 0), the value for
x′
joint is equal to horizontal distance between the vertical centerline of the wheel and the contact point

(x′
joint = xA):

x′
joint = R sin (β

2
) , y′ = 0 (3.18)

This results in the following relation between x′
joint and y′:

x′
joint(y

′) = y′ cot θ +R sin (β
2
) (3.19)

Substituting Equation 3.19 into Equation 3.17 results in the following expression for the the diagonal
cut zjoint as a function of y′:

z′joint(y
′) = −(y′ cot θ + sin β

2
) sin β

2
+R(sin β

2

2

+ cos β

2
− 1) (3.20)

For every y′-value the diagonal cutoff has a point corresponding to this y′-value in the x′-z′ plane lo-
cated at (x′

P , z
′
P ). In Figure 3.11 this point is defined as point A. Now that the functions x′

joint(y
′), and

z′joint(y
′) for the diagonal cutoff are known, xP and zP can be determined for any (0 < y′ < bt) by filling

in Equation 3.19 and Equation 3.17 defining the point of contact on the diagonal cutoff in the x′-z′ plane.
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Due to the assumption that the wheel is attached to the bogey using a rigid connection the wheel will
strictly rotate around its rotational axis. This means the wheel will always remain perfectly straight in
the x′-z′ plane. The expression for a circle is used to describe the wheel in this plane:

(x′ − a)2 + (z′ − b)2 = R2 (3.21)

Parameters a and b are respectively the horizontal and vertical shift of the center point of the wheel
and R is the wheel radius. Before making contact with the diagonal cutoff, the wheel will descend
along the rail-head at a known angle, namely half the dip angle: β

2 . This means the vertical shift b is
directly related to the horizontal shift a and an unknown can be eliminated from Equation 3.21 using
the following expression:

b = a · sin (β
2
)−R (3.22)

Now the horizontal shift a of the wheel can be solved as a function of y′ by substituting Equation 3.19,
Equation 3.17 and Equation 3.22 into Equation 3.21 and solving for a.Due to the chosen location of
the local axis, the expression for a becomes large. A more elegant way would be to define a moving
coordinate system along the diagonal cutoff and then proceed as explained above. This will likely
result in a more compact expression for a. The maple script to derive the parameters is added to
the appendices Appendix B. The horizontal distance xA between vertical centerline of the wheel and
contact point A as a function of y′ can now be determined as follows:

xA(y
′) = x′

joint(y
′)− a(y′) (3.23)

The horizontal distance from the wheel’s vertical centerline to it’s point of contact xA remains constant
for all positions of the wheel corresponding to contact scenario 1. Once the wheel is eccentric enough
for contact mechanism 2 to occur xA will increase if the eccentricity of the wheel increases (increase
in yw). In contact scenario 1, xA corresponds to the angle β

2 . In contact scenario 2, xA corresponds to
the angle α. Since xA is always larger or equal for contact scenario 2 compared to contact scenario 1,
α is always larger or equal than β

2 .

In Figure 3.16 the various parameters discussed in this section are depicted. A top view of half of the
rail is shown with the global and local axes. For a certain y-value within the second contact scenario
bandwidth, the disc is depicted in the corresponding position in the x′−z′ plane. Table 3.1 summarizes
these parameters used in this section and gives a short description.

The vertical impulse during impact is determined by the trajectory right before and after 2-point contact
occurs. By focusing on a small segment of the trajectory near the point of two-point contact, the circular
path of contact scenario 2 can be approximated as linear. With this assumption, both scenarios show
a comparable trajectory near the point of impact. The main difference is the angle of the trajectory
immediately after impact. This angle is always larger in contact scenario 2 due to the greater horizontal
distance from the vertical center line of the wheel to the contact point compared to contact scenario
1. In Figure 3.17 the linearized trajectories are shown with the geometries defining the angles during
impact. With the horizontal distance xA defined for any y′-value within the defined boundaries, the
trajectory for contact scenario 2 during two-point contact is fully determined. The value of the outgoing
angle (α) can be determined using the now known horizontal distance between the vertical center line
of the disc and the diagonal cutoff and is defined as:

sinα =
xA

R

Trajectory
In Figure 3.18 the linearized trajectory of contact scenario 2 is shown in a coordinate system that coin-
cides with the instantaneous change in direction during 2-point contact. Since the interaction between
the wheel and the joint is assumed to happen in a zero time interval, the train’s total velocity v during
contact is considered to be constant. As a result, when transferring to the time domain, the horizontal
axis of the trajectory is scaled by the constant scalar v. The trajectory of the center of mass M as
function of time can be described using the following expressions:

z(t) = − sin β

2
vt for t < t0
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Table 3.1: Summary of parameters used in geometry of contact scenario 2

Symbol Name Description
a Wheel shift Horizontal shift of wheel in local coordinate system, follows from

solving the equality between circle equation and position of diag-
onal cut at a certain y’ value

A Contact point A Front contact point of the disc during 2-point contact
B Contact point B Rear contact point of the disc during 2-point contact
xA Horizontal dis-

tance contact
point A

Denotes the horizontal distance between the wheel
vertical center line and contact point A.

xB Horizontal dis-
tance contact
point A

Denotes the horizontal distance between the wheel vertical
center line and contact point B.

θ Junction angle Denotes the junction angle between the joint and
longitudinal direction of the rail. A 90 degree
cut corresponds to a ’squared’ or ’traditional’ IRJ

x′
joint x’-position joint Position of diagonal cutoff in local coordinate system

z′joint z’-position joint Position of joint in z’-direction. The height of
the diagonal-cut in local coordinate system

Figure 3.16: Half of the track with an overview of all parameters and the wheel depicted at a position in contact scenario 2.

z(t) = sinα vt for t ≥ t0

For small deflections, using the small angle theorem:

z(t) = −β

2
vt for t < t0

z(t) = α vt for t ≥ t0
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Figure 3.17: Geometries and trajectories of both contact scenarios during double-point contact. View II shows the linearized
trajectory of contact scenario 2.

Figure 3.18: Linearized trajectory of the disc’s center of mass M for contact scenario 2, immediately before and after 2-point
contact

Note that these functions are only valid for values of t close to t0, since the trajectory has been lin-
earized.

Vertical velocity
Now that the trajectory is known as a function of time the vertical velocity can be determined by taking
the time derivative:

ż(t) = − sin β

2
v for t < t0 (3.24)

ż(t) = sinα v for t = t0 (3.25)

For small deflections, using the small angle theorem:

ż(t) = −β

2
v for t < t0 (3.26)

ż(t) = α v for t = t0 (3.27)

In Figure 3.19 the vertical velocity of the center of mass of the wheel is plotted in time. Again, these
functions are non-continuous due to the assumption that all bodies are fully rigid. Using Equation 3.26
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Figure 3.19: Vertical velocity before and after two-point contact for contact scenario 2. Instant change in velocity at t = t0.

and Equation 3.27 the change in vertical velocity at the moment of two-point contact (t = t0) can be
determined:

∆ż = ż+ − ż− = α · v − (−β

2
· v) = (α+

β

2
) · v (3.28)

Vertical impulse
The instant change in vertical velocity results in an instant change in the momentum of the disc’s center
of mass. Since a change in momentum is defined as the impulse, Equation 3.28 can be used to define
the vertical impulse for contact scenario 2:

∆pz = M∆ż = M · (α+
β

2
) · v

Given that, as a result of the rigid body assumption, the impact force remains undefined, the impulse
will be used as a measurement for the magnitude of impact.

3.3.5. Wheel modeled as a cylinder with finite thickness
In the previous sections, the wheel was modeled as a disc. This section presents a qualitative analysis
of the wheel modeled as a cylinder. Similar to the disc model, it is assumed that no rotation is possible
other than around the central axis. This assumption is justified by the fact that in reality the wheel is
attached to a bogey that prevents rotation around any other axis. The cylinder is treated as a series of
rigidly connected discs. Unlike the disc, where the thickness bw approaches zero, the cylinder has a
finite thickness bw. The adopted geometry for the cylinder, represented as a series of connected discs,
is shown in Figure 3.20.

The use of a cylinder instead of a disc changes the contact conditions from a contact point to a line
contact, which still only holds theoretical value. In reality, the contact patch has en elliptical shape.
Depending on the position on the rail, the length of this line contact may vary. For this qualitative anal-
ysis, a longer line contact is considered to provide better contact conditions, as it is assumed to lead
to more favorable loading conditions for the elliptical contact patch. The actual behavior during contact
is complex and would require a more detailed computational analysis. In Figure 3.21 half of the rail is
shown with the cylinder positioned in 5 different possible configurations. The image also shows which
contact scenario corresponds to each wheel position. Due to symmetry it is unnecessary to provide
the other half of the rail.

In configurations 1 through 4, contact scenario 1 occurs because one of the discs in the cylinder remains
below the transition value. Due to the assumed rigid connection between the discs, the other discs in
the cylinder are constrained to follow the disc that first makes two-point contact. In configuration 5,
contact scenario 2 takes place. In configurations 1 and 2, the full width of the line contact is utilized
for transferring forces between the cylinder and the rail. In configuration 3, only half of the line contact
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Figure 3.20: Adopted geometry for the cylinder. The discs are depicted in red.

Figure 3.21: Possible contact configurations of a cylinder with finite thickness on a joint with a non-orthogonal junction angle.

width is available to transfer the contact forces. In configurations 4 and 5, the contact reduces to a
point contact again, as only a single disc is in contact.
Although this is a qualitative analysis, some theoretical insights can be drawn. When the entire cylinder
remains within the range of contact scenario 1, as in configurations 1 and 2, the full width of the contact
can be utilized, while benefiting from the smaller impulse of contact scenario 1—making this the ideal
configuration. In configurations 3 and 4, the line contact width gradually decreases until it eventually
becomes a point contact, but it still operates under the favorable conditions of contact scenario 1.
Configuration 5 demonstrates that any position of the cylinder in contact scenario 2 will result in a point
contact. This, combined with the larger impulse associated with contact scenario 2, creates the worst



3.3. Insulated rail joint with a non-orthogonal junction angle 28

contact condition.



4
Results Wheel-Rail Interaction

In chapter 3 , the kinematic behavior of the wheel rail interaction of an insulated rail joint with a junction
angle is analyzed. The analysis reveals that two distinct contact scenarios may arise, depending on the
wheel’s lateral position on the rail. Each contact scenario has its own distinct trajectory for the wheel’s
center of mass, resulting in different dynamic properties. This section presents the findings from the
wheel-rail interaction analysis with the main focus on the influence of the junction angle on the dynamic
properties of the joint.

4.1. Wheel and rail parameters
While many dimensions in the railway industry are standardized, there are still numerous models and
variations available. Additionally, factors such as wear, fatigue, and other operational conditions can
affect the geometry dimensions over time. This results in each parameter having a certain range of
variability. In this analysis, specific values were selected for some parameters, while for others, a
range of values was considered. The table below Table 4.1 presents the parameters used in the wheel-
rail interaction model and their selected values or selected value ranges. The chosen value for each
parameter is then briefly explained.

Table 4.1: Parameters and corresponding values or value ranges used for wheel-rail interaction analysis

Symbol Parameter Value Unit
R Wheel radius 475 mm
M Wheel’s lumped mass 750 kg
v Train velocity [10 - 50] m/s
θ Junction angle of joint [30, 45, 60, 90] degrees
β Dip angle [0-0.05] rad
bt Lateral wheel clearance 20 mm
yw Lateral position of wheel [0-20] mm

The radius and mass of a wheel change throughout its service life due to wear. Initially, the initial
wheel’s diameter is equal to 975 mm, but over time it decreases to about 875 mm. Naturally, as the
diameter of the wheel reduces, the mass reduces as well. For this analysis the diameter is chosen to
be 950 mm, which corresponds to a radius of 475 mm. The mass is chosen to be 750 kg which is a
value well within the possible range.

The train’s minimum velocity considered in this analysis is 10 m/s. Lower velocities will result in rela-
tively low impulses and are not relevant for dynamic analysis. The train’s maximum velocity is based
on the maximum speed of intercity trains in the Netherlands, which is approximately 160 km/h.

The junction angle of the joint can theoretically vary range from 0 to 90 degrees. An angle of 90
degrees will result in a standard squared joint geometry. As the angle decreases, the joint between the

29
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rail ends becomes more aligned with the longitudinal direction of the track. However, the angle cannot
be zero degrees, as this would result in the joint becoming fully oriented in longitudinal axis, making the
joint parallel to the rail and preventing it from crossing to the other side. As the angle decreases, the
longitudinal length of the joint increases. In practice, an insulating end plate material is placed within
the joint. If the longitudinal length of the joint becomes too large, it may become impractical to replace
the end plate material in the event of a defect, which is likely to occur over time due to the high and
frequent loads applied to the rail as a result of train axle’s passing by. For this reason, three practical
values for the junction angle θ are selected: 30°, 45°, and 60° to ensure feasibility and manageability.
The 90 degree angle, or squared joint geometry, is considered for reference as for this orientation of
the joint, only contact scenario 1 occurs.
The chosen range for the dip angle β is determined by using the basic deformation of metallurgical
welding in rail and applying a factor for the bolted connection. The dip angle for metallurgical welding
ranges practically from 2 to 5 mrad. Applying an assumed factor of 10 for the bolted connection results
in the mentioned maximum value above of 50 mrad or 0.05 rad, which is also in line with values from
earlier literature.

The width of the rail is determined by extrapolating dimensions the rail head of a 54E1 rail as presented
by pro-rail on their website, see Figure 4.1. In reality the rail head is rounded with a radius of 300. For
this analysis the linear distance of the R300 part and the connection radii R13 is approximated to be
40 mm, which is used for the dimension of the track width bt.

Figure 4.1: Rail head of 54E1 rail. The rolling surface is in reality curved. [12]

4.1.1. Transition value
The transition value, denoted as yt in Figure 4.2, determines the lateral position on the track where the
contact scenario shifts.

Figure 4.2: Top view of the rail with transition value yt and track boundary bt and junction angle θ.

The expression for the transition value follows from the geometry of the joint and is derived in sec-
tion 3.3:

yt = sin (β
2
) tan (θ)R
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It is important to notice that this value should fall between the outer limits of the rail:

−bt < yt < bt

In Figure 4.3 the transition value yt is plotted as a function of the dip angle for the selected junction
angles.

Figure 4.3: Transition value yt as a function of β for selected values of θ

A smaller junction angle leads to lower values of yt for the same dip angle. In other words, as the joint
aligns more with the track’s longitudinal direction, the contact scenario shifts from scenario 1 to sce-
nario 2 for less eccentric wheel positions. Although this may seem counterintuitive, it can be explained
by the fact that yt is proportionally dependent on the x-coordinate of the joint, which determines the
joint height, zjoint, through the dip angle β. The xjoint increases faster for smaller values of θ.

In contact scenario 1, the vertical position of the contact points on the wheel is proportionally dependent
on the dip angle. The vertical height of the joint is proportionally dependent on the dip angle, multiplied
by the cot θ. This results in an increase of yt for larger β.
For larger dip angles, the transition value yt increases. This is a result of the global dipped joint geom-
etry becoming more dominant for larger dip angles.

If, for a certain combination of θ and β, yt exceeds the track width bt, contact scenario 2 cannot occur
since the transition value lays out of the rail’s boundaries. For the selected values, this happens for
θ = 60 and dip angles close to the maximum selected value.

If θ approaches 90 degrees, the transition value yt goes to infinity, meaning contact scenario 2 does
not exist for the square joint geometry.

4.2. Dynamic properties
The trajectories in contact scenario 1 and contact scenario 2 are distinct. In contact scenario 1, there is
no fixed center of rotation during double-point contact, while in contact scenario 2, the center of rotation
shifts to the new point of contact. Even though contact scenario 2 is different, close to the point of im-
pact in time, its trajectory can be considered linear resulting in a trajectory comparable to that of contact
scenario 1, as seen in section 3.3. To examine the influence of the junction angle θ on the dynamic
properties, the dip angle β and lateral position of the wheel yw have to be chosen in such a way that
contact scenario 2 occurs for all three specified values of the junction angle θ. For this reason, consult-
ing Figure 4.3, the dip angle β and the lateral position of the wheel yw are set to 0.03 rad and 15 mm,
respectively. For contact scenario 1, the trajectory of the wheel’s center of mass remains unaffected
by its lateral position on the rail, as long as this lateral position doesn’t exceed the transition value yt,
see Figure 4.4. In this scenario, the incoming and outgoing angle of the trajectory during impact are
equal and only dependent on the dip angle β. In contact scenario 2 the outgoing angle changes due to
the interaction with the joint between the rail ends. In Figure 4.5 the dynamic properties of both contact
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scenario’s are compared. The dynamic properties are plotted absolute in time. For contact scenario 1
the point of impact in x-direction always aligns with the point in time t = 0. For contact scenario 2, due
to the geometry of the joint, the point of impact shifts horizontally depending on the junction angle. The
shape of the trajectory in the plots is greatly exaggerated to increase readability, in reality the trajectory
appears to be almost horizontal.

Figure 4.4: Bandwidth of yc for which contact scenario 1 occurs. The trajectory remains unchanged as long as yw remains
within this bandwidth.

The dynamic performance of contact scenario 1 is better than that of contact scenario 2. Additionally,
the dynamic performance decreases as the junction angle becomes smaller.
A smaller junction angle θ leads to larger change in direction during impact. This is a result of longi-
tudinal position of the joint xjoint increasing faster for smaller junction angles, which results in larger
vertical mismatch between the rail ends at lower y-values. As a result of this, the jump in the vertical
velocity, the jump in vertical momentum and the impulse at the moment of impact is greater for smaller
junction angles.
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Figure 4.5: Time aligned plots for the trajectory, vertical velocity, vertical momentum and vertical impulse of both contact
mechanism. yw = 15 mm β = 0.03 , R = 475 mm, M = 750 kg, v = 50 m/s
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4.2.1. Vertical Impulse
Since the vertical impact force is not defined in this analysis due to the absence of material elasticity,
the magnitude of the vertical impulse is used as the measurement of impact. For contact scenario 1,
the vertical impulse is dependent on the dip angle β, the train velocity v and the mass of the wheel M .
For contact scenario 2, the vertical impulse is dependent on the transverse position of the wheel yw,
the position of the transition value yt, the dip angle β, the train velocity v and the wheel radius R. In
Table 4.2 both contact scenario’s and the parameters influencing the vertical impulse are shown. In

Table 4.2: Overview of parameters influencing the vertical impulse for each contact scenario

Contact Scenario Parameters influencing vertical impulse
1 β, M , v
2 yw, yt, β, M , v, R

Figure 4.6 the vertical impulse Jz during impact is plotted against the dip angle β. The disc representing
the wheel is located 15mm from the center line of the joint (yw = 15) mm to ensure that contact scenario
2 occurs for all the selected junction angles.

Figure 4.6: Vertical impulse as a function of the dip angle β for selected junction angles. The disc representing the wheel is
located at yw = 15 mm, M = 750 kg, R = 475 mm, v = 50 m/s

Due to the chosen eccentric position of the wheel, contact scenario 2 initially occurs for all junction an-
gles. However, as the dip angle increases, the contact scenario transitions from scenario 2 to scenario
1. This shift is caused by the dipped joint geometry of contact scenario 1, which raises the height of
the contact points as the dip angle increases, as seen in Figure 3.11.

Velocity
In Figure 4.7 the effect of the velocity on the vertical impulse is illustrated. It can be observed that the
relation between velocity and vertical impulse is linear for both contact scenario’s. Velocity also has no
theoretical effect on which contact mechanism occurs.

4.3. Top View Visualization of Contact Points during Double-Point
Contact

In Figure 4.8 four top views of the rail are shown, each presenting the location of the contact points
and vertical centerline of the wheel for one of the junction angles. During double-point contact, contact
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Figure 4.7: Effect of train velocity on vertical impulse

point A is positioned at the cut-off and contact point B is located on the rail end. The bandwidth of
contact scenario 1 is marked in dark gray and the bandwidth for contact scenario 2 is marked in light
gray.

Figure 4.8: Location of the contact point A and B and vertical centerline of the disc when double-point contact occurs for
selected junction angles. β = 0.03 rad R = 475 mm, bt = 20 mm

In contact scenario 1, both contact points remain on the rail as the vertical mismatch between the
rail ends is not large enough for the wheel to interact with, as seen in Figure 3.11. In contact scenario
2, contact point A is always located on the rail end. As the position of the wheel yw increases, and
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the horizontal distance between contact point A and the vertical centerline xA increases, resulting in
a larger angle α, as seen in subsection 3.3.4. For smaller junction angles, the bandwidth of contact
scenario 2 increases and for a junction angle of 90 degrees, contact scenario 2 does not occur.



5
Local analysis: the Wheel-Rail

Interface

5.1. Introduction to contact pressure analysis
5.1.1. Background
The local interaction between wheel and rail is an important part of railway engineering. At the wheel-
rail interface, the mechanical forces from the rolling stock are transferred to the track, making it a critical
point of study for understanding complex interactions that influence wear, fatigue and the structural in-
tegrity of both the wheel and rail.

The contact pressure refers to the distribution of force over the contact area between the wheel and rail
and plays an important role in the wheel-rail interaction. It determines how the stresses are transmitted
through the materials which influences things like wear patterns, crack forming and the development
of other surface defects.

The wheel-rail contact pressure is complex to study, due to the combination of varying dynamic forces
in combination with rolling and sliding motions at the contact patch. The increase in computational
power of the past few decades have allowed for more complex numerical computational techniques,
such as the finite element method (FEM), to simulate the wheel-rail interaction with greater precision
than analytical models. Despite the accuracy of these models, they are time consuming and require
significant computational resources to run.

To address this, the analysis simplifies the problem to a quasi-static interaction with a constant normal
force. Although this doesn’t allow for the same precision as the more complex modelling methods that
are available, it does provide initial insights in various key parameters of the interaction between wheel
and rail for insulated rail joints with a non-orthogonal junction angle.

5.1.2. Objectives
The primary objective of this analysis is to investigate the influence of the junction angle of an insulated
rail joint with a non-orthogonal junction angle on the maximum contact pressure between wheel and rail.

To achieve this, the chapter addresses the following research question:

• How does the junction angle of an insulated rail joint, particularly at very small dip angles (β ≈ 0),
affect the maximum normal contact pressure at the wheel-rail interface?

This investigation aims to provide deeper insights into the impact of variations in the junction angle on
the contact area, contact pressure and rate of change of the contact pressure.
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5.1.3. Scope
To study the normal contact pressure that occurs during wheel-rail interaction as a wheel crosses a
joint, a 2D numerical quasi-static contact model was adopted. It is assumed that the joint experiences
negligible elastic displacement and dip under the normal force throughout the interaction. Specifically,
the dip angle is considered to be nearly zero (β ≈ 0), and small deformations are mitigated by the
material’s elasticity. In practical terms, this implies that the joint’s stiffness is nearly equivalent to that
of the continuous track, resulting in minimal vertical deformation due to the train’s weight.

• Boundaries and limitations
• Relevance to thesis

5.2. Modelling of local contact pressure
5.2.1. Model description
Rail geometry, contact patch geometry and step size
To model the contact pressure during wheel-rail interaction, the rail geometry illustrated in Figure 5.1
was used. A coordinate system is defined with the origin located at the top left corner of the gap. The
parameter g represents the absolute distance between two track segments, which is predetermined due
to the electrical isolation function of the joint. The parameter θ indicates the junction angle of the track in
the xy-plane. When = 90◦, the joint functions as a squared insulated rail joint. The longitudinal length
of the gap glong is the distance between rail-head and -tail in longitudinal direction and is dependent
on the nominal gap length g and the junction angle θ. Smaller values of θ result in a larger longitudinal
gap between the rail ends:

glong =
g

sin θ
Initially, the contact patch was approximated as a rectangle with dimensions (a x b). In the model, this
rectangular contact patch is modelled as a polygon with 4 vertices. The horizontal position of the front
of the contact patch in the coordinate system is denoted by xfront. The value of xfront increases with
each iteration of the analysis, allowing the contact patch to move horizontally. The positions of the
vertices of the rectangular contact patch are defined as follows, starting from the top left vertex going
clockwise:

1. (xfront − a, 0)

2. (xfront, 0)

3. (xfront, b)

4. (xfront − a, b)

While the actual contact patch is more accurately represented as an oval, simplifying it to a rectangle is
useful for an initial analysis. This approach provided an early understanding of the interaction between
the contact patch and the joint, offering valuable insights into the system’s behavior before complicating
the analysis. Just like the contact patch, is the gap between rail-head and -tail modelled as a polygon.
It is defined by four vertices spanning a parallelogram. The vertices are labeled Ptl (top left), Ptr (top
right), Pbl (bottom left) and Pbr (bottom right). the positions of these vertices are defined as follows:

1. Ptl = (0, 0)

2. Ptr = (glong, 0)

3. Pbl = ( b
tan θ , b)

4. Pbr = ( b
tan θ + glong, b)

By defining the positions of the vertices of the gap based on the dimensions of the contact patch makes
it look like the contact patch has the same width of the rail. This is done for modelling convenience and
has no effect on the results of the analysis. In reality the width of the rail far exceeds the width of the
contact patch. The top right corner of the contact patch is initially located at the origin of the coordinate
system to coincide with the top left corner of the gap. In this position xfront = 0, marking the start of the
quasi-static analysis. The contact patch is then translated in positive x-direction for a predetermined
number of steps n. A model run is finished when the left edge of the contact patch coincides with the
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Figure 5.1: Dimensions of contact patch and rail

bottom right corner of the gap, at position xend = xbr + a. The step size ∆x can be determined by
dividing the total horizontal distance travelled by the contact patch by number of steps n− 1:

∆x =
xend

n− 1

In Figure 5.2, the model for an analysis consisting of four steps (n = 4) is presented. Each color
corresponds to a different position of the contact patch as it traverses the joint gap, which is depicted
in black.

Figure 5.2: Positions of rectangular contact patch for analysis with 4 steps (n = 4) with a = 14, b = 10, g = 6, θ = 45◦

Total contact area, reduction area and active contact area
Initially, the entire area of the contact patch is in contact with the rail-head. This total contact area, or
initial contact area is denoted as A0 and is defined as:

A0 = ab (5.1)

As the contact patch traverses the gap of the joint the area in contact with the rail is reduced. The
part of the area of the contact patch that is in contact with the rail (either rail-head, rail-tail or both) is
referred to as the active contact area and is denoted as Ai where i denotes the step number of the
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analysis. The active contact area is capable of transferring force from the wheel to the rail. The part
of the contact patch that is located above the gap of the joint is referred to as the reduction area. This
area is not capable of transferring force from the wheel to the rail and is denoted as Ri. The active
contact area is defined as:

Ai = A0 −Ri (5.2)

When the rectangular polygon, representing the contact patch, traverses in x-direction, it intersects with
the parallelogram shaped polygon representing the gap. The result of these two polygons intersecting
is a new polygon located ’above’ the gap between rail-head and -tail. This polygon represents the
reduction area Rn. The vertices of the polygon representing the reduction area can be determined
using the following steps:

1. Define linear functions of the line segments of both the contact patch and the gap in the coordinate
system.

2. Find points of intersection by setting two equations equal to each other
3. Check if point is located within the boundaries of the gap

Now that the vertices of the polygon representing the reduction area are known the area can be deter-
mined using the shoelace formula. The shoelace formula, or Gauss’s area formula, returns the area of
any polygon connected by straight line segments described in a Cartesian coordinate system. If the x
and y values of the intersection points are denoted as xj and yj for j = 1..n the reduction area can be
calculated using the shoe lace formula:

2Ri =

∣∣∣∣x1 x2

y1 y2

∣∣∣∣+ ∣∣∣∣x2 x3

y2 y3

∣∣∣∣+ ...+

∣∣∣∣xn x1

yn y1

∣∣∣∣ (5.3)

Now that the total contact area A0 and the reduction area Ri are known the active area Ai can be
determined by substituting Equation 5.1 and Equation 5.3 into Equation 5.2. In Figure 5.3 the relation-
ship between the total contact area, reduction area and active contact area is shown. The areas are
normalised by dividing the active contact area and reduction area by the total area. In practise, the size

Figure 5.3: Relationship between total contact area, reduction area and active contact area for a rectangular contact patch.
a = 14, b = 10, g = 6, θ = 45◦ n = 100

of the contact patch varies as it crosses a rail gap. As the active contact area reduces, the pressure in
the remaining area increases. This increase in stress results in a slight increase of contact area in the
remaining active contact area. However, due to the relatively high stiffness of the contacting materials
in wheel-rail contact the increase in area is minimal. Since the redistribution of contact area remains
small in wheel rail contact it is considered negligible for this analysis. Neglecting deviations of the ideal
contact shape is a common way to deal with complex wheel-rail interaction problems and allows for
analytical solutions [13].
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Uniform contact pressure
To simplify the analysis, it is initially assumed that the contact pressure is uniformly distributed over the
active contact area. While this assumption is not entirely realistic it, like the assumption of a rectangular
contact patch, serves as a useful starting point for understanding the model. Under this assumption,
the uniform contact pressure for each iteration Pi, assuming a constant normal force N acting on the
wheel, is defined as:

Pi =
N

Ai

The assumption of a constant normal force acting on the wheel is in line with the assumption of the
dip angle being nearly zero since no changes in vertical velocity will occur during the interaction. The
normal force’s magnitude then merely dependents on the train’s weight, which can vary slightly across
different train models. According to EN 15528 [14] maximum axle load for railways in the Netherlands
is 22.5 tonnes for new rails. Dividing this by 2 (two wheels per axle) gives an approximate normal force
of 11.25 tonnes per wheel. For practical purposes a normal force of 100 kN (10̃ tonnes) was used. The
uniform contact stress at the beginning of the analysis corresponds to the position of the contact patch
in which the total contact area of the contact patch is active. This initial contact stress is denoted as:

P0 =
N

A0

Figure 5.4 shows the absolute contact pressure and the contact pressure relative to the initial contact
pressure during joint traversal of a rectangular contact patch.

Figure 5.4: Absolute and relative uniform contact pressure for a rectangular contact patch traversing the joint. a = 14, b = 10,
g = 6, θ = 45◦ n = 100

Improved contact patch shape: ellipse shaped polygon
Initially, a rectangular contact patch was used to simplify the building and testing of the model. How-
ever, in reality, the contact patch more closely resembles an ellipse [15]. To create a polygon that
approximates an ellipse, the position of the vertices in the coordinate system had to be determined.
This was achieved using the parametric equations of an ellipse, where a denotes the major axis and b
denotes the minor axis of the ellipse Figure 5.5. The x and y coordinates of an ellipse are given by:

x(θ) =
a

2
cos θ

y(θ) =
b

2
sin θ
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Figure 5.5: Oval contact patch with major axis a and minor axis b

To create a polygon, these equations can be sampled at regular intervals for a specified number
of vertices, ranging from 0 to 2π. By connecting these vertices with straight lines, an approximate
polygonal shape can be formed. This method allows the contact patch to be modeled with straight
line segments which means the Shoelace theorem remains valid. Using more vertices leads to a better
approximation of an oval but it also increases the computation time of themodel. In Figure 5.6 a polygon
approximating an ellipse with 6, 10 and 100 vertices is shown. Note that only polygons with an even
amount of vertices result in a shape that is symmetrical around both the x and y axis. For an uneven
amount of vertices the shape will only be symmetrical around the x-axis. It is important to note that the

Figure 5.6: Approximation of an ellipse with 6, 10 and 100 vertices. a = 14, b = 10

total area of the polygon changes with the number of vertices, even when the parameters a and b remain
constant. This difference in total area should be considered when analyzing the model’s results. To
make comparison between different contact shapes possible, it is useful to normalize the active contact
areas and contact stresses relative to their initial values, as done in Figure 5.3 and Figure 5.4.

Time Domain
The initial model was established in the position domain, where each step in horizontal translation
corresponded to a specific distance. Given that the interaction between the wheel and rail is brief, the
train’s velocity is assumed to be constant. To transition the model into the time domain, a linear operator
v, representing the train’s velocity, is applied as follows:

x = v · t



6
Results Wheel-Rail Interface Analysis

In chapter 5, the uniform contact pressure of a wheel traversing an insulated rail joint with a non-
orthogonal junction angle was analyzed. Initially, as simplification, the contact patch was considered
as a rectangle. To improve the model, later an elliptical contact patch was considered. The uniform
contact pressure is determined for various junction angles using a quasi static model. By assuming
a negligible dip angle, the normal force was considered constant during joint traversal. The uniform
contact pressure was determined by calculating the contact area between wheel and rail in each step
in position or time and dividing the constant normal force by the calculated contact area. This chapter
presents the results of this analysis.

6.1. Rail and contact patch parameters
The parameters used in this analysis are presented in Table 6.1.

Table 6.1: Overview of used parameters in wheel-rail interface analysis

Symbol Parameter Value Unit
N Normal Force 112.5 kN
a Shape major axis 16 mm
b Shape minor axis 12 mm
g Nominal gap 6 mm
θ Junction angle of joint [30, 45, 60, 90] degrees
v Train velocity 50 m/s
n_steps Number of steps 1000 -
n_vertices Number of vertices 100 -

The normal force is determined to be 112.5 kN. According to [14] the axle load in the Netherlands is 225
kN. Dividing this by 2 (two wheels per axle) results in 112.5 kN.

The values of a and b represent the major and minor axes of the ellipse. For an elliptical contact patch,
this results in a smaller area compared to a rectangular contact patch. To ensure that the the perfor-
mance of different shapes on contact pressure can still be compared, the area’s and pressures are
displayed relative to their initial values. The approximate size of a contact patch in reality is between 1
and 2 cm2. For the chosen values for a and b, both the rectangular and elliptical contact patch will fall
within this range.

The nominal gap size g is determined by the requirement to prevent the flow of current across the joint.
According to Dutch standards, the minimum nominal distance between the 2 rail ends should be at
least 6 mm. Note that for a cut at a non-orthogonal junction angle between the rail ends the longitudi-
nal distance between the rail ends will exceed 6 mm.
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The junction angle θ of the joint can theoretically vary from 0 to 90 degrees. An angle of 90 degrees
will result in a standard squared joint geometry. As the angle decreases, the cut between the rail ends
becomes more aligned with the longitudinal direction of the track. However, the angle can’t be zero
degrees, as this would result in the cut becoming fully oriented in longitudinal axis, , making the cut
parallel to the rail and preventing it from crossing to the other side. As the angle decreases further, the
longitudinal length of the diagonal cut increases significantly. In practice, an insulating end plate ma-
terial is placed within this cut. If the longitudinal length becomes too large, it may become impractical
to replace the end plate material in the event of a defect, which is likely to occur over time due to the
high and frequent loads applied to the rail. For this reason three practical values for the junction angle
θ are selected.

The train’s velocity is based on the maximum speed of intercity trains in the Netherlands, which is ap-
proximately 160 km/h.

6.2. Uniform Contact Pressure
The quasi-static uniform contact pressure model is used to determine the relative uniform contact pres-
sure for the selected junction angles, the results are shown in Figure 6.1.

Figure 6.1: Relative contact pressure for selected values of the junction angle.

As the junction angle decreases, resulting in a longer cut along the longitudinal direction of the rail, the
longitudinal gap between the rail ends must increase to maintain the minimum required nominal gap
length, as shown in section 5.2. This increase in longitudinal gap length leads to a larger total gap area
between the rail ends, which in turn causes the uniform contact pressure between the wheel and rail
to increase. The horizontal shift between the graphs is a result of the model configuration. The initial
position of the contact patch remains the same for every junction angle, but for smaller junction angles
the distance between the initial position of the contact patch and the start of the gap increases.
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6.3. Rate of change
Given that the uniform contact pressure on each time step is known, the rate of change in this pressure
can be determined. A higher rate of change of the stresses results in greater damage to both the wheel
and rail. Figure 6.2 illustrates the rate of change in uniform contact pressure for the selected junction
angles. The other parameters are as presented in section 6.1.

Figure 6.2: Rate of change in uniform contact pressure for an elliptical contact patch crossing the gap between the rail ends at
various junction angles.

For junction angles of 90, 60 and 45 degrees, the rate of change shows no significant differences.
However, at 30 degrees a significant decrease occurs. To better understand the the graph, Figure 6.3
shows the graph for a 30-degree junction angle with 5 points of interest marked, each explained below:

1. The contact patch leaves the rail head, resulting in an increase of contact pressure.
2. The maximum increase in contact pressure is reached. The contact patch starts making contact

with the rail-tail increasing the contact area on this side and reducing the rate of change.
3. The contact patch is positioned exactly in the middle of the gap, resulting in 2 symmetrical contact

areas on rail head and tail. The rate of change is 0 in this position. This point coincides with the
maximum uniform contact pressure, see Figure 6.1.

4. The peak in the rate of change is reached due to the contact patch losing contact with the rail-
head. This configuration is the same as in position 2. Note that the absolute values are plotted,
the actual values of this peak are negative.

5. The contact patch is completely located on the rail tail.
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Figure 6.3: Rate of the change of uniform contact pressure for a junction angle of 30 degrees with 5 points of interest marked.

Figure 6.4: Five positions of an elliptical contact patch traversing the gap of a joint with a junction angle. In reality, the rail is
wider than the contact patch.

6.4. Junction angles outside of practical range
The notable reduction in rate of change between a junction angle of 45 and 30 degrees suggests that
smaller junction angles have a greater effect on the rate of change. This is expected since for smaller
junction angles, the longitudinal length of the joint increases significantly, which extends the time of in-
teraction and decreases the rate of change in contact pressure. For these smaller angles, the uniform
contact pressure also increases, as discussed in section 6.2. Figure 6.5 shows the rate of change for
small junction angles, while Figure 6.6 shows the corresponding uniform contact pressure.

Although a significant decrease in the rate of change and a slight increase in uniform contact pressure
at small junction angles might suggest that a longer cut would be an ideal solution, there are practical
limitations. Due to the high and frequent dynamic loading as a result of the train axle’s passing by,
insulated rail joint often get damaged. Replacing the end plate material or doing other repairs to a long
joint might be very impractical.
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Figure 6.5: Rate of change in uniform contact pressure for small junction angles.

Figure 6.6: Uniform contact pressure for small junction angles.



7
Conclusion and recommendations

The effect of the junction angle on both global wheel-rail interaction and local contact pressure in insu-
lated rail joints has been studied. This chapter presents a conclusion and recommendations of both
the global wheel-rail interaction and local wheel-rail interface analysis.

7.1. Conclusion
In a kinematic approach, the global wheel-rail interaction analysis indicated that a diagonal cut for
junction angles within a practical range does not improve the dynamic wheel-rail interaction compared
to the traditional squared cut joint design. In fact, for eccentric wheel positions on the running surface,
the magnitude of the local impact contact force was shown to increase. The analysis showed the
possibility of two distinct contact scenarios, depending on lateral wheel position and for dip angles
larger than 0. As long as contact scenario 1 occurs, the effective geometry and the resulting vertical
impulse remained identical to those of squared joints. However, in contact scenario 2, the effective
geometry of the joint changes, leading to an increase in vertical impulse.

When the wheel was considered a cylinder with finite width and the contact between wheel and rail
was considered as line contact, the introduction of the junction angle increased the likelihood of less
favorable contact conditions for contact scenario 1 and guaranteed less favorable contact conditions for
contact scenario 2. For some wheel positions in contact scenario 1, and all wheel positions in contact
scenario 2, the contact would reduce to a single point. This could lead to contact conditions that cause
significant damage to both the wheel and rail, characterized by a short impulse in time combined with
a strongly localized load in space.

The point and line contact assumptions were made to simplify the modeling of the interaction over
time. In reality, the contact patch is elliptical, with a 3D Hertzian stress distribution. Moreover, the wheel
is conical, and the rail has a curved profile. The precise effect of the simplification of the contact on the
exchange of vertical momentum between wheel and rail during impact remains unknown. Although the
elasticity of the materials provides a smoothing effect during interaction, its contribution is expected to
be only qualitative due to the relatively stiff steel-on-steel contact between the wheel and rail.

In practice, eccentric wheel positions should be avoided for joints with a junction angle smaller than
90 degrees, unless the dip angle can be controlled near zero. However, avoiding eccentric wheel
positions near the rail joint may be challenging, as the change in vertical stiffness near rail joints may
lead to greater variations in lateral wheel positioning on the rolling surface. Keeping the dip angle close
to zero may only be achievable by adding significant material to the joint to match the stiffness of the
continuous rail for all passing axles and loads. This could however on its turn lead to a rise in dynamic
stiffness because of the added mass.

The local contact pressure analysis showed that a cut at a non orthogonal junction angle increases
the relative uniform contact pressure between the wheel and rail for dip angles close to zero. For small
junction angles (resulting in a longer cut in the longitudinal direction), outside of the considered practical
range, the rate of change of the contact pressure was greatly reduced.

The reduction in the rate of change of the contact pressure becomes more significant at smaller
junction angles. At these angles, the horizontal distance of the cut between the rail ends increases
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substantially, leading to a much longer cut along the longitudinal direction of the rail. This increased
interaction time reduces the rate of change in contact stresses. However, for small junction angles,
the relative contact pressure barely increases, making it a good theoretical solution, as a cyclic fast
increase in local stress over a short time period is expected to increase the susceptibility to damage.

In practice, very small junction angles should be avoided. The long longitudinal cuts make it imprac-
tical and time-consuming to replace the end plate material, if necessary. Given the high axle loads,
dynamic loading conditions, and frequent cycles characteristic of railway systems, damage to the rail
becomes inevitable, making very long diagonal cuts an impractical solution.

7.2. Recommendations
7.2.1. Global Wheel-Rail Interaction Analysis
To improve the accuracy of the global wheel-rail interaction analysis, the description of the geometry of
the wheel, rail, and contact patch should be improved. The following recommendations are proposed:

• Incorporate conicity into the cylindrical model of the wheel.
• Add lateral curvature of the rail surface to better reflect real-world conditions.
• Transition from point or line contact models to a Hertzian contact patch for a more accurate rep-
resentation of the interaction.

Although the assumption of neglecting elasticity is reasonable for stiff materials like steel, adding ma-
terial elasticity will improve the accuracy of the analysis. Since adding elasticity through analytical
methods might be too complex, a finite element method (FEM) should be considered. This would re-
sult in a smoothing effect on the wheel-rail interaction, removing the singularity in the vertical wheel
velocity, and providing a more accurate definition of the vertical impulse force.

For squared joint geometries, the gap between the rail ends is often neglected, allowing the rail ends
to connect directly. For dipped joint geometries, this assumption is justified, as the global geometry is
dominant and does not affect the trajectory of the wheel’s center of mass. However, due to the different
effective geometry in contact scenario 2, including the gap between the rail ends might significantly
affect the dynamic performance.

Including inertia could affect the results for contact scenario 2. The vertical mismatch between rail
ends in step-down geometries may cause the wheel to lose contact, resulting in a different trajectory.
Including inertia in future studies could improve understanding of wheel behavior in these scenarios.

7.2.2. Local Wheel-Rail Interface Analysis
The assumption of uniform contact stress underestimates the maximum contact pressure between the
wheel and rail. A more accurate quasi-static analysis could adopt the Hertzian contact model, which
better describes the contact pressure distribution between the wheel and rail.

In the wheel-rail interface analysis, the shape and size of the contact patch were predetermined.
In reality, the size of the elliptical contact patch between the wheel and rail is not fixed, but constantly
changes during interaction. Once the yield stress in the contact patch is reached, the stress will re-
distribute, resulting in an increase in contact patch area. Including this effect in future analyses will
provide a more accurate description of the contact pressures.
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A
Literature study

A.1. Insulated rail joint
Insulated rail joints (IRJs) are vital components in railway systems, playing a critical role in signal control
and safety operations. These joints facilitate the connection of two rail segments, with an insulating
end post positioned between them to maintain electrical isolation of the adjoining sections. The rail
segments are held together by joint bars, which are bolted on either side of the rail. Over the past few
decades, two primary design approaches for IRJs have emerged [16]. The first approach incorporates
adhesives in addition to mechanical fasteners, leading to what are known as bonded IRJs. This design
is the standard in heavy-haul railway applications. The second approach, referred to as non-bonded
IRJs, is typically used in scenarios involving lower axle loads. In Figure A.1 a simple schematic side
view of an insulated rail joint is presented.

Figure A.1: Schematic side view of inclined rail joint with most important parts [5]

Whether bonded or not bonded, all IRJ’s introduce a discontinuity in the rail geometry. These irregu-
larities along longitudinal direction of the track are inherent characteristics of railway transition zones
and can be attributed to geometry, configuration of track components, and constitutive properties of
the materials [17]. In the case of insulated rail joints, due to the significant stiffness and geometrical
discontinuities, it is considered to be one of the weakest parts of railway track structures [18]. The
reduced stiffness of components such as fishplates or joint bars, as well as end plate materials like
thermoplastic polymers or fiberglass [19], results in greater deflection at the joint compared to continu-
ous rail sections. This local increase in deflection of the rail leads to geometrical spatial discontinuity of
the rail also referred to as a dipped joint. In Wu and Thompson [7] the rail joint excitation is examined
and it is shown that the gap of a rail joint may be typically between 5-20 mm, with a height difference
between both sides of the joint in the range of 0-2 mm. A quadratic formula was developed to estimate
the shape of the dipped rail, and its results were compared with experimental measurements, as shown
in Figure A.2.

A.1.1. Spatial discontinuities in railway joints
The spatial discontinuity that results from dipping of the rail joint is a source of significant wheel impact
[20]. The impact leads high dynamic forces which leads to increased deterioration of the joint.

Jenkins, Lyon and others (British rail) presumably were the first to study the wheel-rail interaction
for a dipped joint [10] where they presented formulae for determining P1 and P2 forces. A vertical
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Figure A.2: Dipped rail shape at joint from quadratic function: —— and from measurement: ◦ [7]

nonlinear Hertz spring was used to model the wheel-rail contact. A discontinuity in the contact at the
dip was not considered.

In Steenbergen [4] a difference is made between modelling a wheel with continuous single-point
contact and a wheel with transient double- or multi-point contact which may occur for irregularities with a
curvature larger than the wheel circumference. It was shown that the first type of model underestimates
the contact forces as the occurring mechanisms are not described correctly.

In [7] Wu and Thompson described the rail joint excitation from measurements and derived a
quadratic formula to approximate this excitation. A model was presented which simulates wheel-rail im-
pact in the time and frequency domain. A full wheel-rail interaction was considered instead of a spring
model. It was shown that the impact forces increased by 4-6 times compared to the static wheel load
depending on the train’s velocity. It was also shown that geometry and static wheel load influence the
dynamic behaviour of the joint.

In [21] Banimahd and others developed a multi spring model in combination with a train-transition
curve was adopted to describe the response of the train in a stiffness transition. The force was calcu-
lated using non linear Hertzian contact theory. By modelling the system using a transition curve that
excites a spring system the discontinuity was avoided.

In [20] Mandal, Dhanasekar and Sun reported on wheel impacts caused by permanently dipped rail
joints. Instead of a linear or quadratic function for the dipped rail shape they developed a sinusoidal
representation. Modelling the spatial discontinuity was avoided by using a spring model which was
numerically solved. It was concluded that the impact forces (both P1 and P2) increase with an increase
of speed and defect depth (a larger geometrical irregularity).

In [11] Kouroussis and others analyzed the effect of railway track discontinuities on ground vibra-
tion generation and propagation. A vehicle/track/soil numerical model was presented. The interaction
between vehicle and track was modelled using a multi body model and the ground was modelled using
the finite element method. Various formulas for the trajectory of the center of mass of the wheel for com-
mon wheel/rail geometric defects were derived such as smooth irregularities, step-up joint, step-down
joint, step wise joint and flat spots. The bodies were considered fully rigid.

A.2. Inclined insulated rail joints
The inclined insulated rail joint is an insulated rail joint with a different design. Instead of having the
end plate material attached perpendicular to the rail the end plate is placed at an angle (the end plate
material is still positioned in the vertical plane). The thickness of the end post material has to remain
the same to ensure the electrical insulation of the joint. The inclined IRJ is considered as a low-impact
joint but there is little to no research evidence to the relative performance of as the vertically cut square
and inclined IRJ’s [5]. In Figure A.3 a square IRJ and an inclined IRJ at an angle of 75 degrees are
shown.

Ataei, Mohammadzadeh, and Miri (2016) conducted a comparative study on the noise, vibration,
and vertical displacement of adjacent sleepers for square, 30-degree, and 45-degree cut Insulated Rail
Joints (IRJs). This was done through a series of tests on the Tehran-Karaj metro track. Their findings
indicated that the acceleration signatures for the 30-degree and 45-degree cut joints were nearly half
the magnitude of those observed in square cut joints. In terms of noise performance, the 30-degree
cut IRJ showed the best performance, followed by the 45-degree cut, which outperformed the square
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Figure A.3: Typical designs of square IRJ (a) and inclined IRJ (b) [5]

cut IRJ.
Dhanasekar and Bayissa (2011) discuss the commonly held view that inclined cut Insulated Rail

Joints (IRJs) generally perform better than square cut IRJs, but also mention the limited availability of
literature on the structural advantages of these two designs. In their study, they analyze the structural
response of both IRJ types when subjected to a passing wheel by measuring strain near the rail head.
Their findings include strain signatures, revealing that incline IRJs experience higher peak shear strains
but lower peak vertical strains compared to square cut IRJs under wheel loading. Furthermore, they
propose a hypothesis regarding the comparative performance of the two joint designs. According to
this hypothesis, the impact duration on a square cut IRJ is shorter than that of an inclined cut IRJ,
leading to higher impact forces on the square cut design.

Megna and Bracciali [3] and Megna Bracciali and Mandal [6] address the failure of traditional insu-
lated rail joints (IRJs), which typically suffer from repeated impacts that cause insulation loss, leading to
broken rails and derailments. The papers introduce a new design called ABJ, a joint that replaces the
conventional 90° cut with a shallow, tapered cut. This cut is at a 3 degree angle resulting in a very long
transition zone between rail head and tail. This design ensures smooth wheel-rail transitions, reducing
shock, noise, and ballast deterioration, ultimately extending joint lifespan. The research includes finite
element analysis (FEA) and multi-body analysis (MBA) to demonstrate the mechanical advantages of
the ABJ over conventional IRJs. It was concluded that dip angle can be eliminated by a long transition
zone and attaching a reinforcing joint cover.

A.3. Wheel-Rail Contact Interface
The wheel-rail interface is an important element of railway dynamics. According to Knothe et al. [22] it
has three fundamental tasks each associated to a specific contact force component:

1. Load bearing to the vertical force
2. Guiding to the lateral force
3. Traction to the longitudinal force

The contact between wheel and rail in normal direction is very stiff. The deformations are in order
of magnitude 10ths of millimeters and the contact area has an approximate size of 1 to 2 cm2 even
when the transmitted vertical loads are very high, in the order of magnitude of 10 tons. This small
contact area in combination with large loads results in large normal stresses [13]. In the tangential
direction the contact behaviour is ruled by friction and exhibits non-linear behaviour and saturation.
These characteristics already express the complexity of the wheel-rail contact problem. In Figure A.4
the various stresses in wheel-rail contact patch are shown as an example of the complexity.

A.3.1. Analytical modelling
Normal contact modelling
When two surfaces come into contact the point or line of contact can become a location of high stress
values. Stress, defined as force per unit area, suggests that any load applied to a point contact would
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Figure A.4: Example of contact stresses. Calculated according to Kalker’s non-elleptical rolling theory [13]

theoretically result in infinite stresses at that point. However, since idealized point or line contacts
do not exist in reality, the actual contact area will always have a finite size. When this contact area
approaches an IRJ part of the contact patch will lose contact with the rail. This results in a complex
interaction between the maximum stresses and the contact area of the contact patch. The behavior
of the contact area and the distribution of stress within it have been extensively studied. However,
due to the complexity of the phenomena involved, many analytical models rely on approximations or
include unknown empirical constants, and do not include imperfections in the rail geometry. In his
classical paper Hertz [15] was the first to develop an analytical method to describe the shape of the
contact, deformation of the materials and the normal pressures in the contact. The theory was derived
based on the fact that elastic deformation between the bodies takes place to provide a larger contact
area which results in finite stresses. To do this, two new parameters were introduced, the contact
modulus which includes the materials of both contacting bodies and the equivalent radius that includes
the geometry of the contacting surfaces. In [23] analytical formulas are given for wheel-rail contact
specifically. The contact modulus is defined as:

1

E∗ =
1− v2w
Ew

+
1− v2r
Er

Where v and E denote the Poisson ratio and elastic modulus respectively. The subscripts w and r
respectively denote wheel and rail. The equivalent radii are defined (the conicity of the wheel is ignored
since they are relatively small) as:
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The contact patch is shaped like an ellipse with major axis a and minor axis band is dependent on the
shape and materials of the geometries in contact:
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In these formulas m and n are coefficients for semi-axis lengths of the ellipse, which were tabulated
by Hertz. In Figure A.5 the elliptical contact patch is shown in the wheel-rail interaction. The contact
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Figure A.5: Elliptical contact patch in wheel-rail interaction

pressure in this contact patch can be expressed as:

p = p0
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)2

where p0 is the maximum contact pressure, located at the center of the ellipse and is expressed as:
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3
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N

πab

A.4. Numerical modelling
Due to the complexity of the wheel-rail interaction at the contact interface, particularly near geometric
rail imperfections, the Finite Element Method (FEM) is frequently employed for analysis. However,
FEM-based approaches are computationally intensive and time-consuming. Therefore, when utilizing
FEM to simulate wheel-rail contact, it is essential to thoroughly understand the underlying mathematical
models and their impact on the performance and accuracy of the simulations.

Wen et al. [24] uses FEM simulations to analyze the dynamic contact-impact behaviour a train wheel
and the rail joint region using ANSYS/LS-DYNA software packages. Imperfections like dip angle, rail
height mismatch and rail gap are examined. The key focus is on investigating the axle load and train
speed on the resulting contact forces, stresses, strains in the rail head of the joint. It is concluded that
axle load has a greater impact compared to train velocity on the contact stresses near the rail joint.

In [19] Mandal presents a comprehensive study the dynamic loading effects on IRJ’s. The study
focuses on the influence of three different end post materials: fiberglass, nylon 66 and polytpolytetraflu-
oroethylene (PTFE) and their mechanical performance is tested over 2000 cycles of wheel load. The
results show that fiberglass performs best in reduction of damage compared to the other materials. A
modified Hertzian contact pressure distribution is adopted. This paper shift the focus frommere contact
pressure analysis to examining material degradation mechanisms.

Yang et al. [25] deployed a complex FEM model to analyze the transient contact behaviour of the
wheel-rail system in the vicinity of an IRJ. Two rail geometries were considered: nominal and measured.
For the material models, also two different types were adopted: elastic and elasto-plastic. The contact
patch area, contact stress and wave propagation were tracked during the wheel passage over the IRJ.
The model successfully models dynamic contact impact-stresses and it was shown that the different
material models and rail head geometries play important roles in the contact behaviour during wheel-
IRJ impact.

A.5. Concluding remarks
This literature review has highlighted key aspects of modeling insulated rail joints (IRJs), with a focus
on the spatial discontinuities and wheel-rail contact interface. One observation is that many existing
analytical models simplify the interaction of wheel-rail contact near a joint by using spring systems,
which leads to an underestimation of impact forces. This approach, while being more convenient, does
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not fully capture the complex interactions that occur during wheel-rail contact, especially when a rail
joint introduces a geometric irregularity.

Another finding is the lack of literature specifically addressing inclined insulated rail joints. De-
spite some studies suggesting that inclined joints may offer better performance compared to traditional
square-cut IRJs, there is limited research on the structural advantages of these designs. This highlights
the need for more comprehensive studies focusing on the theoretical analysis of inclined insulated rail
joints.

Finally, numerical modeling has proven to be an effective method for simulating wheel-rail contact
pressure. The downside is that these models are highly complex and require a lot of time and effort to
develop and run.

While the current state of literature offers good insight into the behavior of insulated rail joints consid-
ering wheel-rail interaction and contact stresses, there is not much known about inclined insulated rail
joints in particular. Further research in into the working of inclined insulated rail joints may contribute
to more reliable and safe infrastructure.
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C
Global Wheel-Rail Interaction Plotting

and Visualization Code

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4

5 # Define all functions
6

7 # Function for the x_location of the cut-off in x'y' (local coordinate
system)

8 def x_cutoff_loc(y_loc, theta, beta, R):
9 x = y_loc * (1 / np.tan(theta)) + R * np.sin(beta / 2)

10 return x
11

12

13 # Define the vertical cut-off in x-y plane:
14 def x_cutoff_glob(y_glob, theta):
15 x = y_glob * (1 / np.tan(theta))
16 return x
17

18

19 # Transform the cutoff y-coordinates from local axis to global axis:
20 # Input is a list of y' (local) values that will be transformed to y (

global) values:
21 def transform_to_glob_y(ys, theta, beta, R):
22 ys_global = []
23

24 for y in ys:
25 ys_global.append(y + R * np.sin(beta / 2) * np.tan(theta))
26

27 return ys_global
28

29

30 # Determine the transition value y_t in global coordinate system
31 def yt(theta, beta, R):
32 y_t = R * np.sin(beta / 2) * np.tan(theta)
33 return y_t
34

35
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36 # Determine the wheel shift when 2-point contact with the cutoff occurs:
37 def a(y, theta, beta, R):
38 a = (-np.tan(theta) * np.sin(beta / 2) * np.cos(beta / 2) * R - np.tan

(theta) * np.sin(beta / 2) * R - np.cos(
39 beta / 2) ** 2 * y + np.sqrt(np.tan(theta) ** 2 *
40 np.sin(beta / 2) ** 2 * np.cos(beta /

2) ** 2 * R ** 2 + 2 * np.tan(
41 theta) ** 2 * np.sin(beta / 2) ** 2 * np.cos(beta / 2) * R ** 2 +

np.tan(theta) ** 2 * np.sin(
42 beta / 2) ** 2 * R ** 2
43 + 4 * np.tan(theta) * np.sin(beta /

2) * np.cos(
44 beta / 2) ** 2 * R * y + 4 * np.cos(beta / 2) * np.sin(beta / 2) *

R * y * np.tan(theta) - 4 * np.sin(
45 beta / 2) * R * y * np.tan(theta)
46 + 4 * np.cos(beta / 2) ** 2 * y ** 2

- 4 * y ** 2)) / (
47 (np.cos(beta / 2) ** 2 - 2) * np.tan(theta))
48 return a
49

50

51 # Determine the horizontal distance between the vertical centerline of the
wheel and contact point A

52 def get_xA(y_loc, theta, beta, R):
53 xA = x_cutoff_loc(y_loc, theta, beta, R) - a(y_loc, theta, beta, R)
54 return xA
55

56

57 # Define the position of the vertical center line of the wheel in x'y'
plane:

58 def xW(y, theta, beta, R):
59 xW = x_cutoff_loc(y, theta, beta, R) - a(y, theta, beta, R) - R * np.

sin(beta / 2)
60 return xW
61

62

63 # Define the exit angle of the trajectory right after two-point contact:
64 def get_alpha(xA, R):
65 alpha = np.arcsin(xA / R)
66 return alpha
67

68

69 # Define the trajectory of contact scenario 1:
70 def trajectory_1(ts, beta):
71 zs = []
72 for t in ts:
73 if t <= 0:
74 zs.append(-np.sin(beta / 2) * v * t)
75 if t > 0:
76 zs.append(np.sin(beta / 2) * v * t)
77 return zs
78

79

80 # Define the trajectory of contact scenario 2:
81 def trajectory_2(ts, y_loc, theta, beta, R, v):
82 xA = get_xA(y_loc, theta, beta, R)
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83 alpha = get_alpha(xA, R)
84

85 zs = []
86

87 for t in ts:
88 if v * t <= 0:
89 zs.append(-np.sin(beta / 2) * v * t)
90 if v * t > 0:
91 zs.append(np.sin(alpha) * v * t)
92 return zs
93

94

95 # Define the vertical velocity of contact scenario 1:
96 def vertical_velocity_1(ts, beta, v):
97 vzs1_before = []
98 vzs1_after = []
99 for t in ts:

100 if v * t <= 0:
101 vzs1_before.append(-np.sin(beta / 2) * v)
102 if v * t > 0:
103 vzs1_after.append(np.sin(beta / 2) * v)
104 return vzs1_before , vzs1_after
105

106

107 # Define the vertical velocity of contact scenario 2:
108 def vertical_velocity_2(ts, y_loc, theta, beta, R, v):
109 xA = get_xA(y_loc, theta, beta, R)
110 alpha = get_alpha(xA, R)
111

112 vzs2_before = []
113 vzs2_after = []
114 for t in ts:
115 if v * t <= 0:
116 vzs2_before.append(-np.sin(beta / 2) * v)
117 if v * t > 0:
118 vzs2_after.append(np.sin(alpha) * v)
119 return vzs2_before , vzs2_after
120

121

122 # Define vertical momentum of contact scenario 1:
123 def vertical_momentum_1(ts, beta, M, v):
124 vs_before = vertical_velocity_1(ts, beta, v)[0]
125 vs_after = vertical_velocity_1(ts, beta, v)[1]
126 Ms_before = []
127 Ms_after = []
128 k = 0
129 m = 0
130 for t in ts:
131 if t <= 0:
132 Ms_before.append(vs_before[k] * M)
133 k += 1
134 if t > 0:
135 Ms_after.append(vs_after[m] * M)
136 m += 1
137 return Ms_before , Ms_after
138
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139

140 # Define vertical momentum of contact scenario 2:
141 def vertical_momentum_2(ts, y, theta, beta, R, M, v):
142 vs0 = vertical_velocity_2(ts, y, theta, beta, R, v)[0]
143 vs1 = vertical_velocity_2(ts, y, theta, beta, R, v)[1]
144 Ms0 = []
145 Ms1 = []
146 k = 0
147 m = 0
148 for t in ts:
149 if t <= 0:
150 Ms0.append(vs0[k] * M)
151 k += 1
152 if t > 0:
153 Ms1.append(vs1[m] * M)
154 m += 1
155 return Ms0, Ms1
156

157

158 # Define the vertical impulse of contact scenario 1:
159 def vertica_impulse_1(ts, beta, M, v):
160 Ms_before = vertical_momentum_1(ts, beta, M, v)[0]
161 Ms_after = vertical_momentum_1(ts, beta, M, v)[1]
162 Ms_before.extend(Ms_after)
163 Ps = [0]
164

165 for i in range(len(Ms_before) - 1):
166 Ps.append(Ms_before[i + 1] - Ms_before[i])
167 return Ps
168

169 # Define vertical impulse of contact scenario 2:
170 def vertical_impulse_2(ts, y, theta, beta, R, M, v):
171 Ms = vertical_momentum_2(ts, y, theta, beta, R, M, v)[0]
172 Ms1 = vertical_momentum_2(ts, y, theta, beta, R, M, v)[1]
173 Ms.extend(Ms1)
174 Ps = [0]
175

176 for i in range(len(Ms) - 1):
177 Ps.append(Ms[i + 1] - Ms[i])
178 return Ps
179

180

181 # Define the input parameters for the model
182 y_glob = 15 # Transverse position of the wheel on the track [mm]
183 thetas = [30 * np.pi / 180, 45 * np.pi / 180, 60 * np.pi / 180] #

Selected incline angles [degrees]
184 beta = 0.03 # Dip angle [rad]
185 R = 475 # Radius of the wheel [mm]
186 M = 750 # Mass of the wheel [kg]
187 v = 50 # Train velocity [m/s]
188 bt = 20 # Width of the track [mm]
189

190 # Set up plotting parameters:
191 ts = np.linspace((-10/1000) / v, (12/1000 / v), 1000)
192 betas = np.linspace(0, 0.05, 100)
193
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194 # Plot the transition values yt as a function of beta for 3 selected
values of theta:

195 yts = [[], [], []]
196

197 for i in range(len(thetas)):
198 for beta in betas:
199 yts[i].append(yt(thetas[i], beta, R))
200

201 # Create inverse values of each list to plot on the mirrored side:
202 yts_negative = []
203 for sub_list in yts:
204 yts_negative.append([value * -1 for value in sub_list])
205

206 # Create the plot for yt
207 plt.figure()
208 plt.plot(betas, yts[0], 'g', label=r'Transition␣value␣$y_t$␣for␣$\theta

=30^\circ$')
209 plt.plot(betas, yts[1], 'r', linestyle='dotted', label=r'Transition␣value␣

$y_t$␣for␣$\theta=45^\circ$')
210 plt.plot(betas, yts[2], 'b', linestyle='dashdot', label=r'Transition␣value

␣$y_t$␣for␣$\theta=60^\circ$')
211 plt.plot(betas, yts_negative[0], 'g')
212 plt.plot(betas, yts_negative[1], 'r', linestyle='dotted')
213 plt.plot(betas, yts_negative[2], 'b', linestyle='dashdot')
214 plt.axhline(y = -20, color = 'k', linestyle = '-', linewidth=2)
215 plt.axhline(y = 20, color = 'k', linestyle = '-', linewidth=2)
216 plt.text(0.0532, -20, r'$-b_t$', va='center', ha='right', fontsize=12)
217 plt.text(0.053, 20, r'$b_t$', va='center', ha='right', fontsize=12)
218 plt.text(0.027, -15, 'Contact␣Scenario␣2', fontsize=12, color='b', ha='

center', va='bottom')
219 plt.text(0.047, -13, 'Contact␣Scenario␣1', fontsize=12, color='b', ha='

center', va='bottom')
220 plt.xlabel('Dip␣angle␣$\\beta$␣[rad]')
221 plt.ylabel('Lateral␣position␣on␣track␣$y$␣[mm]')
222 plt.legend(loc='best')
223 plt.grid(True)
224 plt.gca().invert_yaxis()
225 plt.margins(x=0)
226 plt.margins(y=0)
227

228 beta = 0.03
229

230 # Determine the y_loc and horizontal shift for all three values of theta:
231 yt_thetas = [yt(theta, beta, R) for theta in thetas]
232 y_locs = [y_glob - yt for yt in yt_thetas]
233 a_values = [a(y_locs[i], thetas[i], beta, R)/1000 for i in range(len(

thetas))]
234

235 # Compute the trajectories for contact scenario 1:
236 zs_1 = trajectory_1(ts, beta)
237

238 # Compute the trajectories for contact scenario 2:
239 zs_2 = []
240 for i in range(len(thetas)):
241 zs_2.append(trajectory_2(ts, y_locs[i], thetas[i], beta, R, v))
242
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243 # Determine the vertical velocities for contact scenario 1 before and
after impact for each theta:

244 vzs1_before = vertical_velocity_1(ts, beta, v)[0]
245 vzs1_after = vertical_velocity_1(ts, beta, v)[1]
246

247 # Determine the velocities for contact scenario 2 before and after impact
for each theta:

248 vzs2_before_30 = vertical_velocity_2(ts, y_locs[0], thetas[0], beta, R, v)
[0]

249 vzs2_after_30 = vertical_velocity_2(ts, y_locs[0], thetas[0], beta, R, v)
[1]

250 vzs2_before_45 = vertical_velocity_2(ts, y_locs[1], thetas[1], beta, R, v)
[0]

251 vzs2_after_45 = vertical_velocity_2(ts, y_locs[1], thetas[1], beta, R, v)
[1]

252 vzs2_before_60 = vertical_velocity_2(ts, y_locs[2], thetas[2], beta, R, v)
[0]

253 vzs2_after_60 = vertical_velocity_2(ts, y_locs[2], thetas[2], beta, R, v)
[1]

254

255 # Determine the vertical momentum before and after impact for contact
scenario 1:

256 Mzs1_before = vertical_momentum_1(ts, beta, M, v)[0]
257 Mzs1_after = vertical_momentum_1(ts, beta, M, v)[1]
258

259 # Determine the vertical momentum before and after impact for contact
scenario 2:

260 Mzs2_before_30 = vertical_momentum_2(ts, y_locs[0], thetas[0], beta, R, M,
v)[0]

261 Mzs2_after_30 = vertical_momentum_2(ts, y_locs[0], thetas[0], beta, R, M,
v)[1]

262 Mzs2_before_45 = vertical_momentum_2(ts, y_locs[1], thetas[1], beta, R, M,
v)[0]

263 Mzs2_after_45 = vertical_momentum_2(ts, y_locs[1], thetas[1], beta, R, M,
v)[1]

264 Mzs2_before_60 = vertical_momentum_2(ts, y_locs[2], thetas[2], beta, R, M,
v)[0]

265 Mzs2_after_60 = vertical_momentum_2(ts, y_locs[2], thetas[2], beta, R, M,
v)[1]

266

267 # Determine the vertical impulse for contact scenario 1:
268 Ps1 = vertica_impulse_1(ts, beta, M, v)
269

270 # Determine the vertical impulse for contact cenario 2:
271 Ps2_30 = vertical_impulse_2(ts, y_locs[0], thetas[0], beta, R, M, v)
272 Ps2_45 = vertical_impulse_2(ts, y_locs[1], thetas[1], beta, R, M, v)
273 Ps2_60 = vertical_impulse_2(ts, y_locs[2], thetas[2], beta, R, M, v)
274

275 # Split the t-values to before and after impact:
276 t_before = ts[:len(vzs2_before_30)]
277 t_after = ts[len(vzs2_before_30):]
278

279 # Create a figure with 4 rows and 2 columns (8 subplots in total),
280 # sharing x-axis in columns and y-axis in rows
281 fig, axs = plt.subplots(4, 2, figsize=(10, 12), sharex='col', sharey='row'

)
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282

283 # ---- Column 1: Contact Scenario 1 ----
284

285 # Plot 1: Trajectory contact scenario 1
286 axs[0, 0].plot(ts, zs_1, 'k', label='$0␣<␣\\theta␣\\leq␣90$␣and␣$-y_t␣<␣

y_w␣\\leq␣y_t$', linestyle='dashed')
287 axs[0, 0].set_ylabel("Trajectory␣$z$␣[$m$]")
288 #axs[0, 0].set_title('a1). Trajectory (Scenario 1)')
289 axs[0, 0].set_title('Contact␣Scenario␣1', fontsize=16)
290 axs[0, 0].ticklabel_format(style='sci', axis='x', scilimits=(0,0))
291 axs[0, 0].ticklabel_format(style='sci', axis='y', scilimits=(0,0))
292 axs[0, 0].legend()
293 axs[0, 0].grid(True)
294 axs[0, 0].margins(x=0)
295

296 # Plot 2: Vertical velocity contact scenario 1
297 axs[1, 0].plot(t_before , vzs1_before , 'k', linestyle='dashed', label='$0␣<

␣\\theta␣\\leq␣90$␣and␣$-y_t␣<␣y_w␣\\leq␣y_t$')
298 axs[1, 0].plot(t_after, vzs1_after , 'k', linestyle='dashed')
299 axs[1, 0].set_ylabel("Vertical␣velocity␣$v_z$␣[$m/s$]")
300 #axs[1, 0].set_title('b1). Vertical velocity (Scenario 1)')
301 axs[1, 0].legend()
302 axs[1, 0].grid(True)
303 axs[0, 0].margins(x=0)
304

305 # Plot 3: Vertical momentum contact scenario 1
306 axs[2, 0].plot(t_before , Mzs1_before , 'k', label='$0␣<␣\\theta␣\\leq␣90$␣

and␣$-y_t␣<␣y_w␣\\leq␣y_t$', linestyle='dashed')
307 axs[2, 0].plot(t_after, Mzs1_after , 'k', linestyle='dashed')
308 axs[2, 0].set_ylabel("Vertical␣momentum␣$M_z$␣[$N␣\\cdot␣s$]")
309 #axs[2, 0].set_title('c1). Vertical momentum (Scenario 1)')
310 axs[2, 0].legend()
311 axs[2, 0].grid(True)
312 axs[2, 0].margins(x=0)
313

314 # Plot 4: Vertical impulse contact scenario 1
315 axs[3, 0].plot(ts, Ps1, 'k', label='$0␣<␣\\theta␣\\leq␣90$␣and␣$-y_t␣<␣y_w

␣\\leq␣y_t$', linestyle='dashed')
316 axs[3, 0].set_xlabel("Time␣[$s$]")
317 axs[3, 0].set_ylabel("Vertical␣impulse␣$J_z$␣[$N␣\\cdot␣s$]")
318 #axs[3, 0].set_title('d1). Vertical impulse (Scenario 1)')
319 axs[3, 0].axhline(y = max(Ps1), color = 'k', linestyle = ':', linewidth=1)
320 axs[3, 0].legend()
321 axs[3, 0].grid(True)
322 axs[3, 0].margins(x=0)
323

324 # ---- Column 2: Contact Scenario 2 ----
325

326 labels = ['$\\theta$␣=␣30␣[deg]', '$\\theta$␣=␣45␣[deg]', '$\\theta$␣=␣60␣
[deg]']

327 linestyles = ['solid', 'dotted', 'dashdot']
328

329 # Define offsets to plot the wheel position in absolute point in time:
330 offset_30 = a_values[0] / v
331 offset_45 = a_values[1] / v
332 offset_60 = a_values[2] / v
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333 offsets = [offset_30 , offset_45 , offset_60]
334 colors = ['r', 'g', 'b']
335

336 # Plot 1: Trajectory contact scenario 2
337 for i in range(len(thetas)):
338 axs[0, 1].plot(ts + offsets[i], zs_2[i], color=colors[i], linestyle=

linestyles[i], label=labels[i])
339 #axs[0, 1].set_title('a2). Trajectory (Scenario 2)')
340 axs[0, 1].set_title('Contact␣Scenario␣2', fontsize=16)
341 axs[0, 1].ticklabel_format(style='sci', axis='x', scilimits=(0,0))
342 axs[0, 1].legend()
343 axs[0, 1].grid(True)
344

345 # Plot 2: Vertical velocity contact scenario 2
346 axs[1, 1].plot(t_before + offset_30 , vzs2_before_30 , 'r', label='$\\theta$

␣=␣30␣[deg]')
347 axs[1, 1].plot(t_after + offset_30 , vzs2_after_30 , 'r')
348 axs[1, 1].plot(t_before + offset_45 , vzs2_before_45 , 'g', linestyle='

dotted', label='$\\theta$␣=␣45␣[deg]')
349 axs[1, 1].plot(t_after + offset_45 , vzs2_after_45 , 'g', linestyle='dotted'

)
350 axs[1, 1].plot(t_before + offset_60 , vzs2_before_60 , 'b', linestyle='

dashdot', label='$\\theta$␣=␣60␣[deg]')
351 axs[1, 1].plot(t_after + offset_60 , vzs2_after_60 , 'b', linestyle='dashdot

')
352 #axs[1, 1].set_title('b2). Vertical velocity (Scenario 2)')
353 axs[1, 1].legend()
354 axs[1, 1].grid(True)
355

356 # Plot 3: Vertical momentum contact scenario 2
357 axs[2, 1].plot(t_before + offset_30 , Mzs2_before_30 , 'r', label='$\\theta$

␣=␣30␣[deg]')
358 axs[2, 1].plot(t_after + offset_30 , Mzs2_after_30 , 'r')
359 axs[2, 1].plot(t_before + offset_45 , Mzs2_before_45 , 'g', linestyle='

dotted', label='$\\theta$␣=␣45␣[deg]')
360 axs[2, 1].plot(t_after + offset_45 , Mzs2_after_45 , 'g', linestyle='dotted'

)
361 axs[2, 1].plot(t_before + offset_60 , Mzs2_before_60 , 'b', linestyle='

dashdot', label='$\\theta$␣=␣60␣[deg]')
362 axs[2, 1].plot(t_after + offset_60 , Mzs2_after_60 , 'b', linestyle='dashdot

')
363 #axs[2, 1].set_title('c2). Vertical momentum (Scenario 2)')
364 axs[2, 1].legend()
365 axs[2, 1].grid(True)
366

367 # Plot 4: Vertical impulse contact scenario 2
368 axs[3, 1].plot(ts + offset_30 , Ps2_30, 'r', label='$\\theta$␣=␣30␣[deg]')
369 axs[3, 1].plot(ts + offset_45 , Ps2_45, 'g', linestyle='dotted', label='$\\

theta$␣=␣45␣[deg]')
370 axs[3, 1].plot(ts + offset_60 , Ps2_60, 'b', linestyle='dashdot', label='$

\\theta$␣=␣60␣[deg]')
371 axs[3, 1].axhline(y = max(Ps1), color = 'k', linestyle = ':', linewidth=1)
372 axs[3, 1].set_xlabel("Time␣[$s$]")
373 #axs[3, 1].set_title('d2). Vertical impulse (Scenario 2)')
374 axs[3, 1].legend()
375 axs[3, 1].grid(True)
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376

377

378 # Defining custom 'xlim' and 'ylim' values.
379 custom_xlim = ((-4 / 1000) / v, (12 / 1000) / v)
380

381 # Setting the values for all axes.
382 plt.setp(axs, xlim=custom_xlim)
383

384 #plt.xlim((-4 / 1000) / v, (12 / 1000) / v)
385

386 # Adjust layout for better spacing
387 plt.tight_layout()
388

389 # -------------------------------------------------------------
390 # Set up the plot for the topviews:
391 # Define the rail in global coordinate system:
392 thetas = [30 * np.pi / 180, 45 * np.pi / 180, 60 * np.pi / 180, 90 * np.pi

/ 180] # Add the 90 degree angle to the list
393 ys = np.linspace(0, bt, 100)
394 ys_neg = np.linspace(0, -bt, 100)
395 beta = 0.03
396

397 xs_cut_30 = [x_cutoff_glob(y, thetas[0]) for y in ys]
398 xs_cut_30_neg = [value * -1 for value in xs_cut_30]
399 xs_cut_45 = [x_cutoff_glob(y, thetas[1]) for y in ys]
400 xs_cut_45_neg = [value * -1 for value in xs_cut_45]
401 xs_cut_60 = [x_cutoff_glob(y, thetas[2]) for y in ys]
402 xs_cut_60_neg = [value * -1 for value in xs_cut_60]
403 xs_cut_90 = [x_cutoff_glob(y, thetas[3]) for y in ys]
404 xs_cut_90_neg = [value * -1 for value in xs_cut_90]
405

406 # Define the transition values y_t for each theta:
407 yt_30 = yt(thetas[0], beta, R)
408 yt_30_neg = -yt_30
409 yt_45 = yt(thetas[1], beta, R)
410 yt_45_neg = -yt_45
411 yt_60 = yt(thetas[2], beta, R)
412 yt_60_neg = -yt_60
413 yt_90 = yt(thetas[3], beta, R)
414 yt_90_neg = -yt_90
415 # Define the position of the contact points and center of the wheel for

each theta:
416 xB = np.sin(beta / 2) * R
417 xB_neg = -xB
418

419 xAs_30, xWs_30, xBs_30 = [], [], []
420 xAs_45, xWs_45, xBs_45 = [], [], []
421 xAs_60, xWs_60, xBs_60 = [], [], []
422 xAs_90, xWs_90, xBs_90 = [], [], []
423

424 # Loop through for theta 30 degrees
425 for y in ys:
426 if y <= yt_30:
427 xAs_30.append(xB)
428 xWs_30.append(0)
429 xBs_30.append(-xB)
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430 else:
431 xAs_30.append(x_cutoff_loc(y - yt_30, thetas[0], beta, R))
432 xWs_30.append(xW(y - yt_30, thetas[0], beta, R))
433 xBs_30.append(xW(y - yt_30, thetas[0], beta, R) - xB)
434

435 # Loop through for theta 45 degrees
436 for y in ys:
437 if y <= yt_45:
438 xAs_45.append(xB)
439 xWs_45.append(0)
440 xBs_45.append(-xB)
441 else:
442 xAs_45.append(x_cutoff_loc(y - yt_45, thetas[1], beta, R))
443 xWs_45.append(xW(y - yt_45, thetas[1], beta, R))
444 xBs_45.append(xW(y - yt_45, thetas[1], beta, R) - xB)
445

446 # Loop through for theta 60 degrees
447 for y in ys:
448 if y <= yt_60:
449 xAs_60.append(xB)
450 xWs_60.append(0)
451 xBs_60.append(-xB)
452 else:
453 xAs_60.append(x_cutoff_loc(y - yt_60, thetas[2], beta, R))
454 xWs_60.append(xW(y - yt_60, thetas[2], beta, R))
455 xBs_60.append(xW(y - yt_60, thetas[2], beta, R) - xB)
456

457 # Loop through for theta 90 degrees
458 for y in ys:
459 if y <= yt_90:
460 xAs_90.append(xB)
461 xWs_90.append(0)
462 xBs_90.append(-xB)
463 else:
464 xAs_90.append(x_cutoff_loc(y - yt_90, thetas[3], beta, R))
465 xWs_90.append(xW(y - yt_90, thetas[3], beta, R))
466 xBs_90.append(xW(y - yt_90, thetas[3], beta, R) - xB)
467

468 xAs_30_neg , xWs_30_neg , xBs_30_neg = [value * -1 for value in xAs_30], [
value * -1 for value in xWs_30], [value * -1 for value in xBs_30]

469 xAs_45_neg , xWs_45_neg , xBs_45_neg = [value * -1 for value in xAs_45], [
value * -1 for value in xWs_45], [value * -1 for value in xBs_45]

470 xAs_60_neg , xWs_60_neg , xBs_60_neg = [value * -1 for value in xAs_60], [
value * -1 for value in xWs_60], [value * -1 for value in xBs_60]

471 xAs_90_neg , xWs_90_neg , xBs_90_neg = [value * -1 for value in xAs_90], [
value * -1 for value in xWs_90], [value * -1 for value in xBs_90]

472

473 # Create subplots: 2 rows, 2 columns, sharing y-axis
474 fig, axs = plt.subplots(2, 2, figsize=(16, 16), sharey=True) # Increased

figure size for better spacing
475

476 xmin = -40 # Lower limit for the x-axis
477 xmax = 40 # Upper limit for the x-axis
478

479 # Function to plot on a given subplot axis
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480 def plot_lines(ax, xs_cut, xAs, xBs, xWs, title, yt, ys, add_legend=False)
:

481 # Plot the cut line (thick)
482 ax.plot(xs_cut, ys, 'k', linewidth=2) # Thick solid line for the cut
483

484 # Plot xA (dashed) and xB (dashed)
485 ax.plot(xAs, ys, 'r--', linewidth=1.5, label=r'Contact␣point␣A') #

Dashed line for xA
486 ax.plot(xBs, ys, 'g--', linewidth=1.5, label=r'Contact␣point␣B') #

Dashed line for xB
487

488 # Where xA overlaps with the cut, make it thick dashed
489 overlap = np.array(xs_cut) == np.array(xAs)
490 ax.plot(np.array(xs_cut)[overlap], np.array(ys)[overlap], 'k--',

linewidth=2) # Thick dashed line for overlap
491

492 # Plot xW (dotted)
493 ax.plot(xWs, ys, 'b--', linewidth=1.5, label=r'Wheel␣center') #

Dotted line for xW
494

495 # Add plot titles and formatting
496 ax.axhline(0, color='k', linestyle='-.', linewidth=0.5) # Thin line

at y = 0
497 ax.axhline(-bt, color='k', linewidth=2) # Thick line at y = -bt
498 ax.axhline(bt, color='k', linewidth=2) # Thick line at y = bt
499 ax.set_xlim([xmin, xmax])
500 ax.set_title(title, fontsize=14)
501

502 # Only add the legend once per subplot
503 if add_legend:
504 ax.legend(loc='best')
505

506 # Function to plot on a given subplot axis with shading
507 def plot_lines_with_shading(ax, xs_cut, xAs, xBs, xWs, title, yt, yt_neg,

ys, add_legend=False):
508 # Plot the cut line (thick)
509 ax.plot(xs_cut, ys, 'k', linewidth=2) # Thick solid line for the cut
510

511 # Plot xA (dashed) and xB (dashed)
512 ax.plot(xAs, ys, 'r--', linewidth=1.5, label=r'Contact␣point␣A') #

Dashed line for xA
513 ax.plot(xBs, ys, 'g--', linewidth=1.5, label=r'Contact␣point␣B') #

Dashed line for xB
514

515 # Where xA overlaps with the cut, make it thick dashed
516 overlap = np.array(xs_cut) == np.array(xAs)
517 ax.plot(np.array(xs_cut)[overlap], np.array(ys)[overlap], 'k--',

linewidth=2) # Thick dashed line for overlap
518

519 # Plot xW (dotted)
520 ax.plot(xWs, ys, 'b--', linewidth=1.5, label=r'Wheel␣center') #

Dotted line for xW
521

522 # Add plot titles and formatting
523 ax.axhline(0, color='k', linestyle='-.', linewidth=0.5) # Thin line

at y = 0
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524 ax.axhline(-bt, color='k', linewidth=2) # Thick line at y = -bt
525 ax.axhline(bt, color='k', linewidth=2) # Thick line at y = bt
526 ax.set_xlim([xmin, xmax])
527 ax.set_title(title, fontsize=14)
528

529 # Only add the legend once per subplot
530 if add_legend:
531 ax.legend(loc='best')
532

533 # Fill the region between yt_neg and yt with dark gray
534 ax.fill_betweenx(ys, xmin, xmax, where=(ys >= yt_neg) & (ys <= yt),

color='gray', alpha=0.7)
535

536 # Fill the regions between -bt and yt_neg, and between yt and bt with
lighter gray

537 ax.fill_betweenx(ys, xmin, xmax, where=(ys >= -bt) & (ys <= yt_neg),
color='lightgray', alpha=0.5)

538 ax.fill_betweenx(ys, xmin, xmax, where=(ys >= yt) & (ys <= bt), color=
'lightgray', alpha=0.5)

539

540

541 # Function to plot on a given subplot axis with shading and text
annotations

542 def plot_lines_with_shading_and_text(ax, xs_cut, xAs, xBs, xWs, title, yt,
yt_neg, ys, add_legend=False):

543 # Plot the cut line (thick)
544 ax.plot(xs_cut, ys, 'k', linewidth=2) # Thick solid line for the cut
545

546 # Plot xA (dashed) and xB (dashed)
547 ax.plot(xAs, ys, 'r--', linewidth=1.5, label=r'Contact␣point␣A') #

Dashed line for xA
548 ax.plot(xBs, ys, 'g--', linewidth=1.5, label=r'Contact␣point␣B') #

Dashed line for xB
549

550 # Where xA overlaps with the cut, make it thick dashed
551 overlap = np.array(xs_cut) == np.array(xAs)
552 ax.plot(np.array(xs_cut)[overlap], np.array(ys)[overlap], 'k--',

linewidth=2) # Thick dashed line for overlap
553

554 # Plot xW (dotted)
555 ax.plot(xWs, ys, 'b--', linewidth=1.5, label=r'Wheel␣center') #

Dotted line for xW
556

557 # Add plot titles and formatting
558 ax.axhline(0, color='k', linestyle='-.', linewidth=0.5) # Thin line

at y = 0
559 ax.axhline(-bt, color='k', linewidth=2) # Thick line at y = -bt
560 ax.axhline(bt, color='k', linewidth=2) # Thick line at y = bt
561 ax.set_xlim([xmin, xmax])
562 ax.set_title(title, fontsize=14)
563

564 # Only add the legend once per subplot
565 if add_legend:
566 ax.legend(loc='best')
567

568 # Fill the region between yt_neg and yt with dark gray
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569 ax.fill_betweenx(ys, xmin, xmax, where=(ys >= yt_neg) & (ys <= yt),
color='gray', alpha=0.7)

570

571 # Fill the regions between -bt and yt_neg, and between yt and bt with
lighter gray

572 ax.fill_betweenx(ys, xmin, xmax, where=(ys >= -bt) & (ys <= yt_neg),
color='lightgray', alpha=0.5)

573 ax.fill_betweenx(ys, xmin, xmax, where=(ys >= yt) & (ys <= bt), color=
'lightgray', alpha=0.5)

574

575 # Add the text "Contact Scenario 1" for the area between -yt and yt
576 ax.text(xmax * 0.5, -bt * 0.08 , "Contact␣Scenario␣1", fontsize=12,

color='black', ha='center', va='center')
577

578 # Add the text "Contact Scenario 2" for the area between -bt and -yt
579 ax.text(xmax * 0.5, (yt_neg + -bt) / 2, "Contact␣Scenario␣2", fontsize

=12, color='black', ha='center', va='center')
580

581 # Add the text "Contact Scenario 2" for the area between yt and bt
582 ax.text(-xmax * 0.5, (yt + bt) / 2, "Contact␣Scenario␣2", fontsize=12,

color='black', ha='center', va='center')
583

584 # Now, update the plotting part for each subplot
585

586 # 30 degrees case
587 plot_lines_with_shading_and_text(axs[0, 0], xs_cut_30_neg , xAs_30_neg ,

xBs_30_neg , xWs_30_neg , r"$\theta␣=␣30^\circ$", yt_30, yt_30_neg ,
ys_neg, add_legend=True)

588 plot_lines_with_shading_and_text(axs[0, 0], xs_cut_30 , xAs_30, xBs_30,
xWs_30, r"$\theta␣=␣30^\circ$", yt_30, yt_30_neg , ys)

589

590 # 45 degrees case
591 plot_lines_with_shading_and_text(axs[0, 1], xs_cut_45_neg , xAs_45_neg ,

xBs_45_neg , xWs_45_neg , r"$\theta␣=␣45^\circ$", yt_45, yt_45_neg ,
ys_neg, add_legend=True)

592 plot_lines_with_shading_and_text(axs[0, 1], xs_cut_45 , xAs_45, xBs_45,
xWs_45, r"$\theta␣=␣45^\circ$", yt_45, yt_45_neg , ys)

593

594 # 60 degrees case
595 plot_lines_with_shading_and_text(axs[1, 0], xs_cut_60_neg , xAs_60_neg ,

xBs_60_neg , xWs_60_neg , r"$\theta␣=␣60^\circ$", yt_60, yt_60_neg ,
ys_neg, add_legend=True)

596 plot_lines_with_shading_and_text(axs[1, 0], xs_cut_60 , xAs_60, xBs_60,
xWs_60, r"$\theta␣=␣60^\circ$", yt_60, yt_60_neg , ys)

597

598 # 90 degrees case
599 plot_lines_with_shading_and_text(axs[1, 1], xs_cut_90_neg , xAs_90_neg ,

xBs_90_neg , xWs_90_neg , r"$\theta␣=␣90^\circ$", yt_90, yt_90_neg ,
ys_neg, add_legend=True)

600 plot_lines_with_shading_and_text(axs[1, 1], xs_cut_90 , xAs_90, xBs_90,
xWs_90, r"$\theta␣=␣90^\circ$", yt_90, yt_90_neg , ys)

601

602 # Add x and y labels with units
603 for ax in axs.flat:
604 ax.set_xlabel(r"$x$␣[mm]", fontsize=12)
605 ax.set_aspect('equal')
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606 axs[0, 0].set_ylabel(r"$y$␣[mm]", fontsize=12) # Set y-label only once
since they share y-axis

607 axs[1, 0].set_ylabel(r"$y$␣[mm]", fontsize=12)
608 axs[0, 0].invert_yaxis()
609

610 # Adjust layout
611 plt.tight_layout()
612

613

614 # Determine the maginutude of vertical impulse during contact:
615 def vertical_impulse_during_contact_1(beta, v, M):
616 Mz0 = -np.sin(beta / 2) * v * M
617 Mz1 = np.sin(beta / 2) * v * M
618

619 return (Mz1 - Mz0)
620

621

622 def vertical_impulse_during_contact_2(y_loc, theta, beta, R, M, v):
623 xA = get_xA(y_loc, theta, beta, R)
624 alpha = get_alpha(xA, R)
625

626 Mz0 = -np.sin(beta / 2) * v * M
627 Mz1 = np.sin(alpha) * v * M
628

629 return (Mz1 - Mz0)
630

631

632 # Plot the vertical impulse as a function of beta for both contact
scenario's:

633 # Constants
634 y_w = 15 # mm
635 M = 750 # kg
636 v = 50 # m/s
637 thetas = [30 * np.pi / 180, 45 * np.pi / 180, 60 * np.pi / 180]
638 betas = np.linspace(0, 0.15, 1000) # Beta range
639 colors = ['r', 'g', 'b']
640 linestyles = ['solid', 'solid', 'solid']
641 intersect_text = [r'$\beta_{t_{30}}$', r'$\beta_{t_{45}}$', r'$\beta_{t_

{60}}$']
642 theta_labels = [30, 45, 60] # Labels for degrees
643

644 # Create subplots: 1 row, 3 columns (one for each theta)
645 fig, axs = plt.subplots(1, 3, figsize=(18, 6), sharey=True)
646

647 # Loop over the range of theta indices
648 for i in range(len(thetas)):
649 theta = thetas[i] # Get the current theta value
650 vertical_impulses_1 = []
651 vertical_impulses_2 = []
652

653 # Calculate vertical impulses for both contact scenarios
654 for beta in betas:
655 y_loc = y_w - yt(theta, beta, R)
656 vertical_impulses_1.append(vertical_impulse_during_contact_1(beta,

v, M))
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657 vertical_impulses_2.append(vertical_impulse_during_contact_2(y_loc
, theta, beta, R, M, v))

658

659 # Find the intersection point where both lines intersect
660 difference = np.array(vertical_impulses_1) - np.array(

vertical_impulses_2)
661 intersection_points = np.argwhere(np.diff(np.sign(difference))).

flatten()
662

663 # Exclude the first intersection point if it's at the start
664 if len(intersection_points) > 0 and intersection_points[0] == 0:
665 intersection_points = intersection_points[1:]
666

667 # Plot on the corresponding subplot
668 ax = axs[i]
669

670 if len(intersection_points) > 0:
671 x_intersection = betas[intersection_points[0]]
672

673 # Plot Contact Scenario 2 as defined styles up to the intersection
674 ax.plot(betas[:intersection_points[0] + 1], vertical_impulses_2[:

intersection_points[0] + 1],
675 label=f'Contact␣Scenario␣2␣�(␣=␣{theta_labels[i]}°)',
676 color=colors[i], linestyle=linestyles[i])
677

678 # Plot Contact Scenario 1 as dotted line up to the intersection
679 ax.plot(betas[:intersection_points[0] + 1], vertical_impulses_1[:

intersection_points[0] + 1],
680 label=f'Contact␣Scenario␣1␣reference␣line',
681 linestyle='--', color='black')
682

683 # Plot Contact Scenario 1 as solid line after the intersection
684 ax.plot(betas[intersection_points[0]:], vertical_impulses_1[

intersection_points[0]:],
685 label=f'Contact␣Scenario␣1',
686 linestyle='-', color='black')
687

688 # Add vertical dashed line at the intersection point
689 ax.axvline(x=x_intersection , color='black', linestyle=':')
690

691 # Add label for intersection point
692 ax.text(x_intersection , 5500, intersect_text[i], fontsize=12,

rotation=90,
693 verticalalignment='center', horizontalalignment='right')
694 else:
695 # If no intersection point, plot both scenarios normally
696 ax.plot(betas, vertical_impulses_1 ,
697 label=f'Contact␣Scenario␣1␣�(␣=␣{int(np.degrees(theta))}°)'

,
698 linestyle=':', color='black')
699 ax.plot(betas, vertical_impulses_2 ,
700 label=f'Contact␣Scenario␣2␣�(␣=␣{int(np.degrees(theta))}°)'

,
701 color=colors[i], linestyle=linestyles[i])
702

703 # Set labels and grid for each subplot
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704 ax.set_xlabel(r'Dip␣angle␣$\beta$␣[-]')
705 ax.grid(True)
706

707 # Add title with LaTeX syntax for incline angle
708 ax.set_title(r'Incline␣angle␣=␣{0}°'.format(theta_labels[i]))
709

710 # Add y-axis label to the first subplot
711 axs[0].set_ylabel(r'Vertical␣Impulse␣$J_z$␣[$N␣\cdot␣s$]')
712

713 # Add a legend to each subplot
714 for ax in axs:
715 ax.legend()
716

717 # Adjust the layout
718 plt.tight_layout()
719

720 # Plot the vertical impulse as a function of beta for both contact
scenario's:

721 y_w = 15 # mm
722 R = 475 # mm
723 M = 750 # kg
724 beta = 0.03 # [rad]
725 theta = 30 * np.pi / 180
726 y_loc = y_w - yt(theta, beta, R) # Determine the distance between yt and

the wheel
727

728 vs = np.linspace(0, 50, 100)
729

730 impulses_v_1 = []
731 impulses_v_2 = []
732

733 for v in vs:
734 impulses_v_1.append(vertical_impulse_during_contact_1(beta, v, M))
735 impulses_v_2.append(vertical_impulse_during_contact_2(y_loc, theta,

beta, R, M, v))
736

737 # Creating a subplot with 1 row and 2 columns
738 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
739

740 # First plot: Contact Scenario 1
741 ax1.plot(vs, impulses_v_1 , 'b')
742 ax1.set_title('Contact␣Scenario␣1')
743 ax1.set_xlabel(r'Train␣velocity␣$v$␣(m/s)')
744 ax1.set_ylabel(r'Vertical␣Impulse␣$J_z$␣[$N␣\cdot␣s$]')
745 ax1.grid(True)
746 ax1.margins(x=0)
747 ax1.margins(y=0)
748

749 # Second plot: Contact Scenario 2
750 ax2.plot(vs, impulses_v_2 , 'r')
751 ax2.set_title('Contact␣Scenario␣2')
752 ax2.set_xlabel(r'Train␣velocity␣$v$␣(m/s)')
753 ax2.set_ylabel(r'Vertical␣Impulse␣$J_z$␣[$N␣\cdot␣s$]')
754 ax2.grid(True)
755 ax2.margins(x=0)
756 ax2.margins(y=0)
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757

758 # Adjusting layout for clarity
759 plt.tight_layout()
760

761 # Display the plots
762 plt.show()



D
Local Wheel-Rail Interface Model

Code

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from shapely.geometry import Polygon
4

5

6 class PlotData:
7 def __init__(self, x_data, y_data, xlabel, ylabel, title):
8 self.x_data = x_data
9 self.y_data = y_data

10 self.xlabel = xlabel
11 self.ylabel = ylabel
12 self.title = title
13

14

15 def create_parallelogram(b, g, theta):
16 g_long = g*(1/np.sin(theta))
17

18 P1 = (0, 0)
19 P2 = (b/np.tan(theta), b)
20 P3 = (b/np.tan(theta) + g_long, b)
21 P4 = (g_long, 0)
22

23 parallelogram = Polygon([P1, P2, P3, P4])
24 return parallelogram
25

26

27 def create_rectangle(a, b, x, v, time_domain):
28 if time_domain:
29 vertices = [((x * v), 0), ((x * v) - a, 0), ((x * v) - a, b), ((x

* v), b)]
30 else:
31 vertices = [(x, 0), (x-a, 0), (x-a, b), (x, b)]
32 return Polygon(vertices)
33

34

35 def create_polygon(a, b, num_vertices , x, v, time_domain):
36 phis = np.linspace(0, 2 * np.pi, num_vertices + 1)

82



83

37 if time_domain:
38 vertices = [((a / 2) * np.cos(phi) - (a / 2) + x * v, (b / 2) * np

.sin(phi) + (b / 2)) for phi in phis]
39 else:
40 vertices = [((a / 2) * np.cos(phi) - (a / 2) + x, (b / 2) * np.sin

(phi) + (b / 2)) for phi in phis]
41 return Polygon(vertices)
42

43

44 def get_xs(a, b, g, theta, steps, v, time_domain):
45 g_long = g * (1 / np.sin(theta))
46 start_x = 0
47 if time_domain:
48 end_x = (b / np.tan(theta) + g_long + a) / v
49 else:
50 end_x = b / np.tan(theta) + g_long + a
51

52 xs = np.linspace(start_x, end_x, steps)
53 return xs
54

55

56 def get_derivative(xs, ys):
57 # Get rate of change of a plot using central difference method
58 dx = xs[1] - xs[0]
59 dydx = np.gradient(ys, dx)
60 return dydx
61

62

63 def find_x_local_maxima(x_data, y_data):
64 maxima = []
65

66 for i in range(1, len(y_data) - 1):
67 if y_data[i-1] < y_data[i] > y_data[i+1]:
68 maxima.append(x_data[i])
69 return maxima
70

71

72 def find_contact_patches(a, b, g, theta, steps, v, time_domain ,
num_vertices , shape, x_values):

73 contact_patches = get_reduction_areas(a, b, g, theta, steps, v,
time_domain , num_vertices , shape)[0]

74 x_values_patches = []
75 found_contact_patches = []
76

77 for contact_patch in contact_patches:
78 if time_domain:
79 x_value_patch = contact_patch.exterior.xy[0][0] / v
80 x_values_patches.append(x_value_patch)
81 else:
82 x_value_patch = contact_patch.exterior.xy[0][0]
83 x_values_patches.append(x_value_patch)
84

85 for i, x_value_patch in enumerate(x_values_patches):
86 if x_value_patch in x_values:
87 found_contact_patches.append(contact_patches[i])
88 return found_contact_patches
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89

90

91 def get_initial_area(a, b, v, time_domain , num_vertices , shape):
92 if shape == 'Rectangle':
93 return create_rectangle(a, b, 0, v, time_domain).area
94 elif shape == 'Polygon':
95 return create_polygon(a, b, num_vertices , 0, v, time_domain).area
96 else:
97 raise ValueError("Shape␣type␣not␣supported")
98

99

100 def get_reduction_areas(a, b, g, theta, steps, v, time_domain ,
num_vertices , shape):

101 xs = get_xs(a, b, g, theta, steps, v, time_domain)
102

103 joint = create_parallelogram(b, g, theta)
104

105 contact_patches = []
106 reduction_areas = []
107

108 if shape == 'Rectangle':
109 def create_contact_patch(x_pos): return create_rectangle(a, b,

x_pos, v, time_domain)
110 elif shape == 'Polygon':
111 if num_vertices is None:
112 raise ValueError("num_vertices␣must␣be␣provided␣for␣polygon␣

shape")
113

114 def create_contact_patch(x_pos): return create_polygon(a, b,
num_vertices , x_pos, v, time_domain)

115 else:
116 raise ValueError("Unsupported␣shape␣type")
117

118 for x in xs:
119 contact_patch = create_contact_patch(x)
120 contact_patches.append(contact_patch)
121 intersection = joint.intersection(contact_patch)
122 reduction_areas.append(intersection.area)
123

124 return contact_patches , reduction_areas
125

126

127 def get_reduction_areas_relative(a, b, g, theta, steps, v, time_domain ,
num_vertices , shape):

128 reduction_areas = get_reduction_areas(a, b, g, theta, steps, v,
time_domain , num_vertices , shape)

129 initial_area = get_initial_area(a, b, v, time_domain , num_vertices ,
shape)

130

131 reduction_areas_relative = [reduction_area / initial_area for
reduction_area in reduction_areas[1]]

132 return reduction_areas_relative
133

134

135 def get_contact_areas(a, b, g, theta, steps, v, time_domain , num_vertices ,
shape):
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136 A0 = get_initial_area(a, b, v, time_domain , num_vertices , shape)
137 reduction_areas = get_reduction_areas(a, b, g, theta, steps, v,

time_domain , num_vertices , shape)[1]
138 contact_areas = [A0 - reduction_area for reduction_area in

reduction_areas]
139 return contact_areas
140

141

142 def get_contact_areas_relative(a, b, g, theta, steps, v, time_domain ,
num_vertices , shape):

143 contact_areas = get_contact_areas(a, b, g, theta, steps, v,
time_domain , num_vertices , shape)

144 initial_area = get_initial_area(a, b, v, time_domain , num_vertices ,
shape)

145 relative_contact_areas = [(contact_area / initial_area) for
contact_area in contact_areas]

146 return relative_contact_areas
147

148

149 def get_uniform_contact_stresses(N, a, b, g, theta, steps, v, time_domain ,
num_vertices , shape):

150 contact_areas = get_contact_areas(a, b, g, theta, steps, v,
time_domain , num_vertices , shape)

151 uniform_contact_stresses = [N / contact_area for contact_area in
contact_areas]

152 return uniform_contact_stresses
153

154

155 def get_uniform_contact_stresses_derivative(N, a, b, g, theta, steps, v,
time_domain , num_vertices , shape):

156 x_data = get_xs(a, b, g, theta, steps, v, time_domain)
157 y_data = get_uniform_contact_stresses(N, a, b, g, theta, steps, v,

time_domain , num_vertices , shape)
158 y_data = abs(get_derivative(x_data, y_data))
159 return y_data
160

161

162 def get_uniform_contact_stresses_relative(N, a, b, g, theta, steps, v,
time_domain , num_vertices , shape):

163 uniform_contact_stresses = get_uniform_contact_stresses(N, a, b, g,
theta, steps, v, time_domain , num_vertices , shape)

164 initial_contact_stress = uniform_contact_stresses[0]
165 relative_uniform_contact_stresses = [uniform_contact_stress /

initial_contact_stress for uniform_contact_stress in
uniform_contact_stresses]

166 return relative_uniform_contact_stresses
167

168

169 def get_linear_contact_stresses(N, a, b):
170 # Calculate the contact stress at point (x, y)
171 p_max = 3 * N / (a * b)
172

173

174 def plot_reduction_areas(a, b, g, theta, steps, v, time_domain ,
num_vertices , shape):

175 xs = get_xs(a, b, g, theta, steps, v, time_domain)
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176 y_data = get_reduction_areas(a, b, g, theta, steps, v, time_domain ,
num_vertices , shape)[1]

177

178 if time_domain:
179 xlabel = 'Time␣[s]'
180 ylabel = 'Reduction␣of␣contact␣area␣[mm2]'
181 title = f'Reduction␣of␣contact␣area␣for␣theta␣=␣{round(theta␣*␣

(180␣/␣np.pi))}␣[deg]'
182 else:
183 xlabel = 'Position␣[mm]'
184 ylabel = 'Reduction␣of␣contact␣area␣[mm2]'
185 title = f'Reduction␣of␣contact␣area␣for␣theta␣=␣{round(theta␣*␣

(180␣/␣np.pi))}␣[deg]'
186 plot_data = PlotData(xs, y_data, xlabel, ylabel, title)
187 return plot_data
188

189

190 def plot_reduction_areas_relative(a, b, g, theta, steps, v, time_domain ,
num_vertices , shape):

191 xs = get_xs(a, b, g, theta, steps, v, time_domain)
192 y_data = get_reduction_areas_relative(a, b, g, theta, steps, v,

time_domain , num_vertices , shape)
193

194 if time_domain:
195 xlabel = 'Time␣[s]'
196 ylabel = 'Ri/A0␣[-]'
197 title = f'Ratio␣of␣reduction␣area␣to␣initial␣area␣for␣theta␣=␣{

round(theta␣*␣(180␣/␣np.pi))}␣[deg]'
198 else:
199 xlabel = 'Position␣[mm]'
200 ylabel = 'Ri/A0␣[-]'
201 title = f'Ratio␣of␣reduction␣area␣to␣initial␣area␣for␣theta␣=␣{

round(theta␣*␣(180␣/␣np.pi))}␣[deg]'
202 plot_data = PlotData(xs, y_data, xlabel, ylabel, title)
203 return plot_data
204

205

206 def plot_contact_areas(a, b, g, theta, steps, v, time_domain , num_vertices
, shape):

207 xs = get_xs(a, b, g, theta, steps, v, time_domain)
208 y_data = get_contact_areas(a, b, g, theta, steps, v, time_domain ,

num_vertices , shape)
209

210 if time_domain:
211 xlabel = 'Time␣[s]'
212 ylabel = 'Contact␣area␣[mm2]'
213 title = f'Active␣contact␣area␣for␣theta␣=␣␣{round(theta␣*␣(180␣/␣

np.pi))}␣[deg]'
214 else:
215 xlabel = 'Position␣[mm]'
216 ylabel = 'Contact␣area␣[mm2]'
217 title = f'Active␣contact␣area␣for␣theta␣=␣␣{round(theta␣*␣(180␣/␣

np.pi))}␣[deg]'
218 plot_data = PlotData(xs, y_data, xlabel, ylabel, title)
219 return plot_data
220
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221

222 def plot_contact_areas_relative(a, b, g, theta, steps, v, time_domain ,
num_vertices , shape):

223 xs = get_xs(a, b, g, theta, steps, v, time_domain)
224 y_data = get_contact_areas_relative(a, b, g, theta, steps, v,

time_domain , num_vertices , shape)
225

226 if time_domain:
227 xlabel = 'Time␣[s]'
228 ylabel = 'Ai/A0␣[-]'
229 title = f'Ratio␣of␣active␣contact␣area␣to␣initial␣contact␣area␣for

␣theta␣=␣{round(theta␣*␣(180␣/␣np.pi))}␣[deg]'
230 else:
231 xlabel = 'Position␣[mm]'
232 ylabel = 'Ai/A0␣[-]'
233 title = f'Ratio␣of␣active␣contact␣area␣to␣initial␣contact␣area␣for

␣theta␣=␣{round(theta␣*␣(180␣/␣np.pi))}␣[deg]'
234 plot_data = PlotData(xs, y_data, xlabel, ylabel, title)
235 return plot_data
236

237

238 def plot_uniform_contact_stresses(N, a, b, g, theta, steps, v, time_domain
, num_vertices , shape):

239 xs = get_xs(a, b, g, theta, steps, v, time_domain)
240 y_data = get_uniform_contact_stresses(N, a, b, g, theta, steps, v,

time_domain , num_vertices , shape)
241

242 if time_domain:
243 xlabel = 'Time␣[s]'
244 ylabel = 'Uniform␣contact␣stresses␣[MPa]'
245 title = f'Uniform␣contact␣stresses␣for␣theta␣=␣{round(theta␣*␣(180

␣/␣np.pi))}␣[deg]'
246 else:
247 xlabel = 'Position␣[mm]'
248 ylabel = 'Uniform␣contact␣stresses␣[MPa]'
249 title = f'Uniform␣contact␣stresses␣for␣theta␣=␣{round(theta␣*␣(180

␣/␣np.pi))}␣[deg]'
250 plot_data = PlotData(xs, y_data, xlabel, ylabel, title)
251 return plot_data
252

253

254 def plot_uniform_contact_stresses_relative(N, a, b, g, theta, steps, v,
time_domain , num_vertices , shape):

255 xs = get_xs(a, b, g, theta, steps, v, time_domain)
256 y_data = get_uniform_contact_stresses_relative(N, a, b, g, theta,

steps, v, time_domain , num_vertices , shape)
257

258 if time_domain:
259 xlabel = 'Time␣[s]'
260 ylabel = 'Rel.␣contact␣pressure␣Pi/P0␣[-]'
261 title = f'Ratio␣of␣uniform␣contact␣stress␣to␣initial␣contact␣

stress␣for␣theta␣=␣{round(theta␣*␣(180␣/␣np.pi))}␣[deg]'
262 else:
263 xlabel = 'Position␣[mm]'
264 ylabel = 'Rel.␣contact␣pressure␣Pi/P0␣[-]'
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265 title = f'Ratio␣of␣uniform␣contact␣stress␣to␣initial␣contact␣
stress␣for␣theta␣=␣{round(theta␣*␣(180␣/␣np.pi))}␣[deg]'

266 plot_data = PlotData(xs, y_data, xlabel, ylabel, title)
267 return plot_data
268

269

270 def plot_max_uniform_contact_stress_vs_theta(N, a, b, g, steps, v,
time_domain , num_vertices , shape):

271 thetas = np.linspace(1, 90, 100)
272 max_stresses = []
273

274 for theta in thetas:
275 theta = theta * (np.pi / 180)
276 max_stresses.append(max(get_uniform_contact_stresses(N, a, b, g,

theta, steps, v, time_domain , num_vertices , shape)))
277

278 x_data = thetas
279 y_data = max_stresses
280 xlabel = 'Theta␣[deg]'
281 ylabel = 'Stress␣[MPa]'
282 title = 'Max␣stress␣during␣joint␣traversal␣as␣function␣of␣theta'
283 plot_data = PlotData(x_data, y_data, xlabel, ylabel, title)
284 return plot_data
285

286

287 def plot_derivative_uniform_contact_stresses(N, a, b, g, theta, steps, v,
time_domain , num_vertices , shape):

288 x_data = get_xs(a, b, g, theta, steps, v, time_domain)
289 y_data = get_uniform_contact_stresses(N, a, b, g, theta, steps, v,

time_domain , num_vertices , shape)
290 y_data = get_derivative(x_data, y_data)
291 y_data = [abs(y) for y in y_data]
292

293 if time_domain:
294 xlabel = 'Time␣[s]'
295 ylabel = 'Rate␣of␣change␣[MPa/s]'
296 title = 'Uniform␣contact␣stress␣derived␣to␣time'
297 else:
298 xlabel = 'Position␣[mm]'
299 ylabel = 'Rate␣of␣change␣[MPa/mm]'
300 title = 'Uniform␣contact␣stress␣derived␣to␣position'
301 plot_data = PlotData(x_data, y_data, xlabel, ylabel, title)
302 return plot_data
303

304

305 def plot_contact_patch(contact_patch):
306 x_contact_patch , y_contact_patch = contact_patch.exterior.xy
307 fig, ax = plt.subplots()
308 ax.fill(x_contact_patch , y_contact_patch , edgecolor='black', facecolor

='black', alpha=0.6)
309 ax.invert_yaxis()
310 ax.set_xlabel('[mm]')
311 ax.set_ylabel('[mm]')
312 ax.axis('equal')
313 ax.grid(True)
314
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315

316 def plot_system_static(contact_patch , joint, position=0):
317 x_contact_patch , y_contact_patch = contact_patch.exterior.xy
318 x_joint, y_joint = joint.exterior.xy
319

320 x_contact_patch = np.array(x_contact_patch)
321 x_contact_patch += position
322

323 fig, ax = plt.subplots()
324 ax.fill(x_contact_patch , y_contact_patch , edgecolor='red', facecolor='

None', alpha=0.8)
325 ax.fill(x_joint, y_joint, edgecolor='black', facecolor='None')
326 ax.invert_yaxis()
327 ax.axis('equal')
328 ax.grid(True)
329

330

331 def plot_system_dynamic(contact_patches , joint):
332 x_joint, y_joint = joint.exterior.xy
333

334 xs_contact_patch , ys_contact_patch = [], []
335

336 #labels = ['x_start', 'x_1', 'x_2', 'x_end']
337

338 for contact_patch in contact_patches:
339 x_contact_patch , y_contact_patch = contact_patch.exterior.xy
340 xs_contact_patch.append(x_contact_patch)
341 ys_contact_patch.append(y_contact_patch)
342

343 fig, ax = plt.subplots()
344 ax.fill(x_joint, y_joint, edgecolor='black', facecolor='black', alpha

=0.5)
345

346 colors = ['red', 'green', 'blue', 'orange', 'purple']
347 for i in range(len(xs_contact_patch)):
348 color = colors[i % len(colors)]
349 ax.fill(xs_contact_patch[i], ys_contact_patch[i], edgecolor=color,

facecolor=color, alpha=0.4)
350

351 #x_front = min(xs_contact_patch[i])
352 #ax.plot([x_front + 14, x_front + 14], [0, max(y_joint) + 6],

color='black', linestyle='dotted')
353 #ax.text(x_front + 14, max(y_joint) + 7, labels[i], rotation=0, va

='top', ha='center')
354

355 ax.set_xlabel('[mm]')
356 ax.set_ylabel('[mm]')
357 ax.invert_yaxis()
358 ax.axis('equal')
359 ax.grid(True)
360

361

362 def plot_critical_points(N, a, b, g, theta, steps, v, time_domain ,
num_vertices , shape):

363 xs = get_xs(a, b, g, theta, steps, v, time_domain)
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364 ys = get_uniform_contact_stresses_derivative(N, a, b, g, theta, steps,
v, time_domain , num_vertices , shape)

365 xs_maxima = find_x_local_maxima(xs, ys)
366 polygons = find_contact_patches(a, b, g, theta, steps, v, time_domain ,

num_vertices , shape, xs_maxima)
367

368 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), sharex=True)
369

370 ax1.plot(xs, ys)
371 ax1.grid(True)
372 ax1.set_ylabel('Rate␣of␣change␣[MPa/mm]')
373

374 for polygon in polygons:
375 x, y = polygon.exterior.xy
376 if time_domain:
377 x = [x_val / v for x_val in x]
378 y = [y_val / v for y_val in y]
379 ax2.fill(x, y, edgecolor='r', facecolor='none')
380

381 joint = create_parallelogram(b, g, theta)
382 x_joint, y_joint = joint.exterior.xy
383

384 if time_domain:
385 x_joint = [x_val / v for x_val in x_joint]
386 y_joint = [y_val / v for y_val in y_joint]
387

388 ax2.fill(x, y, edgecolor='r', facecolor='none')
389 ax2.fill(x_joint, y_joint, edgecolor='k', facecolor='none')
390

391 ax2.set_aspect('equal')
392 ax2.set_xlabel('x␣[mm]')
393 ax2.set_ylabel('y␣[mm]')
394 ax2.invert_yaxis()
395

396 if time_domain:
397 ax1.set_ylabel('Rate␣of␣change␣[MPa/s]')
398 ax2.set_xlabel('t␣[s]')
399 y_ticks = ax2.get_yticks()
400 ax2.set_yticklabels([f'{y_tick␣*␣v:.0f}' for y_tick in y_ticks])
401

402 for x_max in xs_maxima:
403 ax1.axvline(x=x_max, color='gray', linestyle='--')
404 ax2.axvline(x=x_max, color='gray', linestyle='--')
405

406

407 def main(N, a, b, g, theta, steps, v=0, time_domain=False, num_vertices=
None, shape='Rectangle', plot_geometry=False, plot_critical=False):

408 # Convert from degrees to radians to use in numpy functions
409 theta = theta * (np.pi / 180)
410

411 # Check if there are enough vertices to make a reasonable shape
412 if shape == 'Polygon' and num_vertices < 4:
413 raise ValueError("Number␣of␣vertices␣should␣be␣minimum␣4")
414

415 # Using self defined plot functions to gather all the plot data using
self defined PlotData object
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416 p1 = plot_contact_areas(a, b, g, theta, steps, v, time_domain ,
num_vertices , shape)

417 p2 = plot_contact_areas_relative(a, b, g, theta, steps, v, time_domain
, num_vertices , shape)

418 p3 = plot_reduction_areas(a, b, g, theta, steps, v, time_domain ,
num_vertices , shape)

419 p4 = plot_reduction_areas_relative(a, b, g, theta, steps, v,
time_domain , num_vertices , shape)

420 p5 = plot_uniform_contact_stresses(N, a, b, g, theta, steps, v,
time_domain , num_vertices , shape)

421 p6 = plot_uniform_contact_stresses_relative(N, a, b, g, theta, steps,
v, time_domain , num_vertices , shape)

422 p7 = plot_max_uniform_contact_stress_vs_theta(N, a, b, g, steps, v,
time_domain , num_vertices , shape)

423 p8 = plot_derivative_uniform_contact_stresses(N, a, b, g, theta, steps
, v, time_domain , num_vertices , shape)

424 plot_list = [p1, p2, p3, p4, p5, p7, p6, p8]
425

426 # Create the subplot figure and fill it with the plot data
427 n_cols = 2 # Make sure there is 2 columns
428 n_rows = (len(plot_list) + n_cols - 1) // n_cols # Determine the

number of rows needed
429 fig, axs = plt.subplots(n_rows, n_cols, figsize=(15, 10)) # Create

figure with right amount of subplots
430

431 for i, p in enumerate(plot_list):
432 row = i // n_cols
433 col = i % n_cols
434 ax = axs[row, col] if n_rows > 1 else axs[col]
435

436 ax.plot(p.x_data, p.y_data, color='k')
437 ax.set_xlabel(p.xlabel)
438 ax.set_ylabel(p.ylabel)
439 #ax.set_title(p.title)
440 ax.grid(True)
441

442 # Remove the empty subplots if they are there
443 for j in range(len(plot_list), n_rows * n_cols):
444 fig.delaxes(axs.flatten()[j])
445

446 plt.tight_layout()
447

448 # Plot the geometry at first step and all steps if necessary to
visualize the system

449 if plot_geometry:
450 plot_contact_patch(get_reduction_areas(a, b, g, theta, steps, v,

time_domain , num_vertices , shape)[0][0])
451 plot_system_static(get_reduction_areas(a, b, g, theta, steps, v,

time_domain , num_vertices , shape)[0][0], create_parallelogram(b
, g, theta))

452 plot_system_dynamic(get_reduction_areas(a, b, g, theta, steps, v,
time_domain , num_vertices , shape)[0], create_parallelogram(b, g
, theta))

453

454 # if plot_critical:
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455 #plot_critical_points(N, a, b, g, theta, steps, v, time_domain ,
num_vertices , shape)

456

457 # This part of code creates a plot that describes the relationship
between the total area, reduction area and total area

458 plt.figure()
459 plt.plot(p1.x_data, p2.y_data, color='black', label='Active␣contact␣

area␣Ai')
460 plt.plot(p3.x_data, p4.y_data, color='black', linestyle='dashed',

label='Reduction␣area␣Ri')
461 plt.plot(p1.x_data, [p2.y_data[i] + p4.y_data[i] for i in range(len(p4

.y_data))], color='black', linestyle='dashdot', label='Total␣
contact␣area␣A0')

462 plt.xlabel('Position␣front␣of␣contact␣patch␣x_front␣[mm]')
463 plt.ylabel('Relative␣area␣[-]')
464 plt.legend(loc='best')
465 plt.grid(True)
466

467 plt.tight_layout()
468 plt.show()
469

470

471 # The main function plots and tests all the functions and is used to build
the file. The create_plots_report function creates the plots for the

report.
472 # main(N=112.5*10**3, a=16, b=12, g=6, theta=45, steps=100, v=50*10**3,

time_domain=True, num_vertices=100, shape='Polygon', plot_geometry=True
, plot_critical=False)

473

474

475 def create_plots_report(N, a, b, g, theta, steps, v, time_domain=False,
num_vertices=None, shape='Rectangle', plot_geometry=True, plot_critical
=True):

476 thetas = [30 * np.pi / 180, 20 * np.pi / 180, 10 * np.pi / 180, 5 * np
.pi / 180]

477 contact_pressure_plot_data = []
478 contact_pressure_plot_data_relative = []
479 rate_of_change_plot_data = []
480 for theta in thetas:
481 contact_pressure_plot_data.append(plot_uniform_contact_stresses(N,

a, b, g, theta, steps, v, time_domain , num_vertices , shape))
482 contact_pressure_plot_data_relative.append(

plot_uniform_contact_stresses_relative(N, a, b, g, theta, steps
, v, time_domain , num_vertices , shape))

483 rate_of_change_plot_data.append(
plot_derivative_uniform_contact_stresses(N, a, b, g, theta,
steps, v, time_domain , num_vertices , shape))

484

485 linestyles = ['solid', 'dotted', 'dashdot', 'dashed']
486 labels = ['$\\theta$␣=␣30␣[deg]', '$\\theta$␣=␣20␣[deg]', '$\\theta$␣=

␣10␣[deg]', '$\\theta$␣=␣5␣[deg]']
487 colours = ['red', 'green', 'blue', 'black']
488

489 # Plot the contact pressures:
490 plt.figure()
491 for i, data in enumerate(contact_pressure_plot_data):
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492 plt.plot(data.x_data, data.y_data, 'k', linestyle=linestyles[i],
label=labels[i])

493 plt.xlabel("Time␣[$s$]")
494 plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
495 plt.ylabel(r'Uniform␣Contact␣Pressure␣$P$␣[$MPa$]')
496 plt.legend()
497 plt.grid(True)
498

499 # Plot the contact pressures (relative):
500 plt.figure()
501 for i, data in enumerate(contact_pressure_plot_data_relative):
502 plt.plot(data.x_data, data.y_data, color=colours[i], linestyle=

linestyles[i], label=labels[i])
503 plt.xlabel("Time␣[$s$]")
504 plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
505 plt.ylabel(r'Rel.␣Contact␣Pressure␣Pi/P0␣[-]')
506 plt.legend()
507 plt.grid(True)
508

509 # Plot the rate of change:
510 plt.figure()
511 for i, data in enumerate(rate_of_change_plot_data):
512 plt.plot(data.x_data, data.y_data, color=colours[i], linestyle=

linestyles[i], label=labels[i])
513 plt.xlabel("Time␣[$s$]")
514 plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
515

516 if time_domain:
517 plt.ylabel(r'Contact␣Pressure␣rate␣of␣change␣[$MPa/s$]')
518 else:
519 plt.ylabel(r'Contact␣Pressure␣rate␣of␣change␣[$MPa/mm$]')
520 plt.legend()
521 plt.grid(True)
522 plt.show()
523

524

525 create_plots_report(N=112.5*10**3, a=16, b=12, g=6, theta=45, steps=1000,
v=50*10**3, time_domain=True, num_vertices=100, shape='Polygon',
plot_geometry=True, plot_critical=False)
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