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Abstract

GNSS Attitude Determination is a valuable technique for the estimation of

platform orientation. To achieve high accuracies on the angular estimations, the

GNSS carrier phase data has to be used. These data are known to be affected by

integer ambiguities, which must be correctly resolved in order to exploit the

higher precision of the phase observables with respect to the GNSS code data.

For a set of GNSS antennae rigidly mounted on a platform, a number of nonlinear

geometrical constraints can be exploited for the purpose of strengthening the

underlying observation model and subsequently improving the capacity of fixing

the correct set of integer ambiguities. A multivariate constrained version of the

LAMBDA method is presented and tested here.

118.1 Introduction

Attitude determination is an important issue in remote

sensing applications: the knowledge of the orientation

of the platform which carries the sensors (radars,

lasers, etc.) is required for the pointing procedures.

Although the accuracy of a stand-alone GNSS attitude

system might not be comparable with the one obtain-

able with other modern attitude sensors, a GNSS-

based system presents several advantages. The main

assets are that it is driftless and it requires less mainte-

nance. Many works investigated the feasibility and

performance of GNSS Attitude Determination, see

e.g. [1–6]. The key for a precise attitude estimation

is the ambiguity resolution process, since only when

the integers inherent to the GNSS carrier phase

observations are correctly fixed one is able to

exploit the carrier phase data, which are of two orders

of magnitude more accurate than the GNSS code

observations. In this contribution we focus on the

problem of fixing the correct integer ambiguities for

data collected on a frame of antennae firmly mounted

on a rigid platform: the relative positions between the

antennae are assumed to be known and constant. In

such configurations, the baselines lengths and the

angles between them are known, resulting in a set of

nonlinear constraints posed on the baseline vectors

which can be exploited to strengthen the underlying

observation model. The set of GNSS phase and code

observations is cast into a linearized system solvable
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in a least-squares sense, where both the integerness of

the ambiguities and the constraints on the baselines

must be fulfilled. The method is based on an extension

of the Integer Least Squares (ILS, [7]) principle,

employed to solve in a least-squares sense a linear

system of equations where some of the unknowns are

integer-valued. A well-known mechanized implemen-

tation of the ILS principle is the Least squares AMBi-

guity Decorrelation Adjustment (LAMBDA) method

[8], widely used for its high computational efficiency.

This method has been recently extended to accommo-

date those baseline applications where the distance

between the antennae is known and constant: the base-

line Constrained LAMBDA method was introduced in

[9, 10]. The inclusion of the baseline length constraint

results in a large improvement in the success rate, as

shown in [11–15].

We here present and test the performance of

the multivariate generalization of the Constrained

LAMBDA method [16], which solves the model

where the full set of nonlinear geometrical constraints

is taken into account, i.e. the different baseline lengths

and their relative positions.

118.2 Modeling of the Multi-antennae
GNSS Observations

We consider a set of m þ 1 antennae (m independent

baselines) simultaneously tracking the same n þ 1

GNSS satellites on a single frequency. The set of

linearized Double Difference (DD) GNSS phase and

code observations obtained on the m baselines can be

cast into a Gauss–Markov model as follows:

EðYÞ ¼ AZ þ GB Z 2 Zn�m;B 2 R3�m

DðvecðYÞÞ ¼ QY (118.1)

where

E(·) is the expectation operator

Y is the 2n by m matrix whose columns are the

code and phase DD observations derived at each

baseline:

Y ¼ y1 y2 . . . ym½ �

Z is the n by m matrix whose columns are the integer-

valued ambiguities for each baseline:

Z ¼ z1 z2 . . . zm½ �

B is the 3 by m matrix whose columns are the real-

valued baseline coordinates:

B ¼ b1 b2 . . . bm½ �

A is the 2n by n design matrix which contains the

carrier wavelength

G is the 2n by 3 design matrix of line-of-sight vectors

D(·) is the dispersion operator

QY is the 2nm by 2nm variance–covariance matrix of

the vector of observations vec (Y)

We make use of the vec operator, which stacks

the columns of a matrix below each other, to define

the variance–covariance matrix of the vector of

observations vec (Y). We assume that the antennae

are separated by short baselines, for which the

atmospheric effects can be neglected, and the only

real-valued unknowns to be estimated are the 3m
coordinates of the baseline vectors. Also, the short

baseline hypothesis allows us to make use of a unique

matrix of line-of-sight vectors G for all the baselines.

A Gaussian-distributed error is assumed on the

observables Y.

Aiming to estimate a platform’s orientation solely

via GNSS measurements, two or more antennae are

assumed to be firmly mounted on the platform, which

is here considered as a rigid body. We introduce

a system of body axes (local) u1u2u3 taken as to have

the first axis u1 aligned with the first baseline, the

second axis u2 perpendicular to u1 and lying in the

plane formed by the first two baselines, and the third

axis u3 oriented that u1u2u3 form an orthogonal frame

(see Fig. 118.1, where fi is the ith baseline, and fij
indicates the jth coordinate of the baseline i). The

baseline coordinates expressed in the local frame are

collected in matrix F, and the relationship between

these and the coordinates B expressed in the global

frame x1x2x3 is:

B ¼ R � F (118.2)

where R is the orthogonal matrix which describes

the relative orientation between the local and global

frames, i.e. the attitude of the platform. For notational

convenience, the rotation matrix and the local baseline

coordinates F are defined as [16]
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m� 3

q¼ 3

(
: RF¼ r1; r2; r3½ �

f11 f21 f31 � � � fm1

0 f22 f32 � � � fm2

0 0 f33 � � � fm3

2
64

3
75

m¼ 2

q¼ 2

(
: RF¼ r1; r2½ � f11 f21

0 f22

� �

m¼ 1

q¼ 1

(
: RF¼ r1½ � f11½ �

(118.3)

where q is a parameter introduced to cope with the

case of m < 3 baselines. The relation (118.2) is a

linear transformation, which changes the unknowns

of the problem: the estimation of the baseline

coordinates B turns into the estimation of the

components of the matrix R, of which only three are

independent. Hence, in addition to the integer con-

straint on the matrix Z, also the orthogonality of the

matrix R has to be considered. This allows to rewrite

the set of baseline observations (118.1) as

EðYÞ ¼ AZ þ GRF Z 2 Zn�m;R 2 O3�q

DðvecðYÞÞ ¼ QY (118.4)

This is the model that we aim to solve in a least-

squares sense. The standard LAMBDA method can be

employed to solve the system when the constraint on

the matrix R is disregarded, being the system solely

subject to the integer constraint on Z. Via a modifica-

tion of the LAMBDA method, the model (118.4) is

solvable in a rigorous least-squares sense taking into

account all the different constraints, which are the

integer nature of the entries of Z and the orthogonality

of the rotation matrix R. This is demonstrated in the

following section.

118.3 Integer Least Squares

We aim to solve for the model (118.4) in a rigorous

least-squares sense, minimizing the weighted squared

norm of the residuals. The solution of the model

(118.4) is derived with a three-steps procedure: first

obtain a float solution, then search for the integer

ambiguities and finally extract the orthogonal matrix

R. In this section we describe each of these steps.

118.3.1 The Float Solution

The float solution of (118.4) is the least-squares solu-

tion obtained disregarding both the integerness of the

matrix Z and the orthogonality of R:

N � vecðẐÞ
vecðR̂Þ

 !
¼ Im � AT

F� GT

� �
Q�1

Y vecðYÞ

N ¼ Im � AT

F� GT

� �
Q�1

Y Im � A FT � G
� �

(118.5)

where � is the Kronecker product and we made use of

the property

vecðX1X2X3Þ ¼ XT
3 � X1

� �
vecðX2Þ

vecðẐÞ and vecðR̂Þ are the float estimators of Z and R;
their v–c matrices are obtained via the inversion of the

normal matrix N:

QẐ QẐR̂

QR̂Ẑ QR̂

� �
¼ N�1 (118.6)

If one assumes that the matrix Z is known, the

conditional solution of R (conditioned on the know-

ledge of the matrix Z) is obtained as

vecðR̂ðZÞÞ ¼ vecðR̂Þ � QR̂ẐQ
�1
Ẑ
vecðẐ � ZÞ (118.7)

Fig. 118.1 The first baseline f1 (Main antenna – Aux1 antenna)
defines the first body axis u1, while the second body axis u2,
perpendicular to u1, lies in the plane formed by f1 and f2 (Main
antenna – Aux2 antenna). u3 is taken as to form an orthogonal

frame
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The precision of the conditional solution R̂ðZÞ is

described by the v–c matrix

QR̂ðZÞ ¼ QR̂ � QR̂ẐQ
�1
Ẑ
QẐR̂ (118.8)

118.3.2 The Search for the Integer
Minimizer

Given the float estimator Ẑ, the conditional solution

R̂ðZÞ and their v–c matrices, we can write the sum-of-

squares decomposition of the weighted squared norm

of the residuals of (118.4) as

vecðYÞ � ðIm � AÞvecðZÞ � ðFT � GÞvecðRÞ
�� ��2

QY

¼ vecðÊÞ
�� ��2

QY
þ vec Z � Ẑ

� ��� ��2
QẐ

þ vec R̂ðZÞ � R
� ��� ��2

QR̂ðZÞ

(118.9)

where Ê is the matrix of least-squares residuals. The

decomposition shows that the last term can always be

made zero for any value assumed by Z, by taking

R ¼ R̂ðZÞ, if the orthogonality of R is disregarded.

The minimization of the least-squares residuals then

reduces to the well known case of finding the integer

minimizer of the second term, and the standard

LAMBDA method can be directly applied. When the

orthogonality constraint on the matrix R is taken, the

last term generally differs from zero, since R̂ðZÞ is

usually non orthogonal: this leads to a modification

of the search algorithm to be adopted, resulting in

a multivariate constrained version of the LAMBDA

method.

118.3.2.1 The LAMBDA Method
Disregarding the orthogonality of R, the integer-

valued minimizer of (118.9) equals

�ZU ¼ arg min
Z2Zn�m

vecðZ � ẐÞ
�� ��2

QẐ
(118.10)

The matrix �ZU has the minimum distance from the

float solution Ẑ in the metric defined by QẐ: since

no closed-form solution of (118.10) is known, the

estimation of the matrix �ZU involves a direct search

inside a set of suitable integer candidates:

OU w2
� � ¼ Z 2 Zn�mj vecðZ � ẐÞ

�� ��2
QẐ

	 w2
n o

(118.11)

The set OU, which geometrically draws an hyper-

ellipsoid centered in vecðẐÞ and size/shape driven by

the entries of QẐ, is evaluated and the integer matrix Z
that minimizes the squared norm (118.10) is extracted.

The LAMBDA method is applied to perform the

search in an efficient and fast way; it works by

decorrelating the ambiguities performing an admissi-

ble (i.e. which preserves the integerness of the vari-

ables) transformation: the effect of the decorrelation

is to have a reduced set of integer candidates, among

which the matrix �ZU is quickly extracted.

118.3.2.2 The Multivariate Constrained
LAMBDA Method

The full-constrained least-squares minimization of

(118.9) is obtained by taking the minimization with

respect both the matrix of ambiguities Z and the

orthogonal matrix R:

�ZC ¼ arg min
Z2Zn�m

CðZÞ

CðZÞ ¼ vecðZ � ẐÞ
�� ��2

QẐ
þ vecðR̂ðZÞ � �RðZÞÞ
�� ��2

QR̂ðZÞ

(118.12)

with

vecð �RðZÞÞ ¼ arg min
R2O3�q

vecðR̂ðZÞ�RÞ
�� ��2

QR̂ðZÞ

(118.13)

where O3�q is the class of 3 � q orthogonal matrices,

i.e. RTR ¼ Iq. The integer minimizer �ZC weighs the

sum of two terms: the first is the distance with respect

to the float solution Ẑ weighted by QẐ, and the second

is the distance between R̂ðZÞ and the solution of the

nonlinear constrained least-squares problem (118.13).

The latter gives the orientation of the platform �RðZÞ by
minimizing in a least-squares sense the distance from

the matrix R̂ðZÞ, subject to the orthogonal constraint.

Note that for the single-baseline case (m ¼ 1) the

944 G. Giorgi et al.



problem reduces to the one addressed in [9, 10, 17]:

the method discussed here is a multivariate gene-

ralization. The minimizer of (118.12) is searched in

the set defined as

O w2
� � ¼ Z 2 Zn�mjCðZÞ 	 w2

	 

(118.14)

Minimizing the cost function (118.12) in the set

O(w2) is a non-trivial task: the evaluation of C(Z)
involves the computation of a nonlinear constrained

least-squares problem, and if the set contains a

large number of candidates the search is very time-

consuming. Hence, the choice for the scalar w is

an important issue, since it strongly affects the time

dedicated to the minimization process.

To make the search more time-efficient, and to

cope with both the problems of setting the value of w
and computing (118.13) a large number of times, the

two algorithms coined as the Expansion and the Search

and Shrink approaches were developed [12–15]: by

using two functions that provide a lower and an

upper bound for the cost function C(Z) and that are

easier to evaluate (i.e. the computation of (118.13) is

avoided), the search for the integer minimizer �ZC is

computed efficiently and in a much faster way.

118.3.3 The Attitude Solution

The two above mentioned search methods provide the

ILS minimizer �Z of the expression (118.9), respectively

with (Constrained LAMBDA, �Z ¼ �ZC) or without

(LAMBDA, �Z ¼ �ZU) considering the orthogonality of

R. Note that in general �ZU 6¼ �ZC. Given the integer

minimizer resolved, the conditional attitude solution

is obtained as in (118.7): the solution R̂ðZÞ is char-

acterized by a better accuracy (118.8), but it is in

general non-orthogonal. In order to obtain the sought

orthogonal attitude matrix, the following nonlinear

constrained least-squares problem has to be solved:

vecð �Rð �ZÞÞ ¼ arg min
R2O3�q

vecðR̂ð �ZÞ � RÞ
�� ��2

QR̂ðZÞ

(118.15)

where �Z ¼ �ZU for the LAMBDA method and �Z ¼ �ZC

for the Constrained LAMBDA method. The nonline-

arity of the problem comes from the orthogonality of

R: via a suitable parameterization of the rotation

matrix, e.g. Euler angles or Quaternions [18], the

orthogonality is implicitly fulfilled, and the least-

squares solution of (118.15) can be solved for example

with the Newton method.

118.4 Testing the Method

The method presented was tested with simulated data

and with data collected during a kinematic experi-

ment. All the data sets were processed with both the

LAMBDA method and the Constrained LAMBDA

method, in order to compare the different performance

obtained in terms of single-epoch, single-frequency

success rate.

118.4.1 Simulation Results

Different sets of data were generated via a Monte Carlo

simulation, reproducing the set of baseline observations

according to the model (118.4). Table 118.1 sum-

marizes the set-up of the simulations: from the actual

GPS constellation on 22 January 2008 (as seen from

Delft, The Netherlands), we selected five to eight

satellites, with corresponding PDOP values between

4.2 and 1.8. Two baselines were simulated, of 1 and

2 m length, forming an angle of 100
. For each of

the 24 scenarios, 105 samples were generated, aiming

to extract an accurate estimation of the success

rate, defined as the ratio of samples where the correct

integer ambiguity matrix has been fixed and the

total number of samples. The data sets were proces-

sed applying the LAMBDA and the Constrained

LAMBDA methods as described in Sect. 118.3.

Table 118.2 shows the single-frequency, single-epoch

Table 118.1 Simulation set up

Frequency L1

Number of satellite (PRNs)

5/6/7/8

Corresponding PDOP 4.19/2.14/

1.92/1.81

Undifferenced code noise

sp (cm)

30-15-5

Undifferenced phase noise

sf (mm)

3-1

Baselines fi (x1, x2, x3) ~f 1 ¼ ½1; 0; 0�m
~f 2 ¼ ½�0:35; 1:97; 0�m

Samples simulated 105

118 Improving the GNSS Attitude Ambiguity Success Rate 945



success rates for the methods: the improvement is

large especially for the weaker scenarios (lower num-

ber of satellite/higher levels of noise), where the dif-

ference between the methods is significant. For

example, the weakest simulated data set, with five

available satellites and high noise values, shows an

improvement from a low 0.17–99.60%. The number of

correctly fixed samples for the Constrained LAMBDA

method is always higher than 99.6%: as expected,

the strengthening of the underlying model due to

the embedded geometrical constraints substantially

affects the capacity of fixing the correct integer ambi-

guity vector. The two-baseline case shows success

rates higher than 99% on all the data sets processed,

obtaining a 100% success rate on 20 out of 24 data

sets simulated.

118.4.2 Experimental Results

We tested the new method on a set of data collected

onboard a vessel during a kinematic experiment

held in Delft, The Netherlands. The vessel was

equipped with three couples of antennae-receivers

(1) a choke-ring antenna connected to an Ashtech

receiver; (2) an antenna connected to a Leica SR530

receiver; (3) an antenna connected to a Novatel OEM3

receiver. The baseline lengths between the antennae

are 2 m (antennae 1–2) and 1.5 m (antennae 1–3),

and the coordinates F in the local plane u1u2 are

F ¼ f11 f21
0 f22

� �
¼ 1:5 1:89

0 0:74

� �
ðmÞ

The vessel sailed for about 2.5 h, collecting a total

of 9,000 epochs of GPS observations. The number of

tracked GPS satellite varied between seven and eight,

except for the first thousands epoch, were only data

from six GPS satellite were stored. The PDOP values

were between 2.1 and 4. We processed both the

baselines (1–2 þ 1–3) embedded in the model (118.4).

The LAMBDA method gave a 54.08% single-epoch,

single-frequency success rate, thus providing the

correct attitude solution for about half the epochs

processed. As expected, the number of correctly

fixed epochs largely increased when the Constrained

LAMBDA method was employed: only four epochs

were incorrectly fixed, thus achieving 99.96% success

rate. This is due to the stronger observation model

obtained by including the known geometrical con-

straints on the different baselines. Each of the (either

correctly or incorrectly) fixed ambiguity matrices were

used to compute the full attitude of the vessel in the

East-North-Up (ENU) frame according to (118.15).

Figure 118.2 shows the Heading, Elevation and Bank

angles computed epoch by epoch according to the

output of the LAMBDA algorithm: the plot is rather

scattered due to the low success rate (54.08%), which

resulted in many wrong attitude solutions �Rð �ZÞ.
The Constrained LAMBDA method, providing for

99.96% of the epochs the correct integer matrix,

produces the plots of Fig. 118.3: as shown, the single-

epoch full attitude solution was available for the entire

(only four epoch missed) duration of the experiment.

Conclusions

In this contribution it is analyzed how to resolve

the integer ambiguities in a rigorous ILS sense for

GNSS Attitude Determination applications. It is

firstly described how to model the set of GNSS

phase and code observations collected on a frame

of antennae mounted on the same platform. Then the

Table 118.2 Simulation results: single-frequency, single-

epoch success rates for the unconstrained and constrained

LAMBDA methods. Success rates higher than 99.9% are

stressed

sf (mm) 3 1

sp (cm) 30 15 5 30 15 5

N Two-baselines success rate, LAMBDA
Two-baselines success rate, constrained LAMBDA

5 0.17 5.69 83.87 0.55 10.18 95.48

99.60 99.94 100 100 100 100

6 9.81 56.89 96.83 30.12 81.35 100

99.99 100 100 100 100 100

7 31.97 73.07 99.74 61.16 91.33 100

99.99 100 100 100 100 100

8 81.72 93.12 99.99 99.99 100 100

100 100 100 100 100 100

Table 118.3 Vessel experiment results: single-epoch, single

frequency success rates for the LAMBDA and Constrained

LAMBDA methods

Baselines LAMBDA Constrained

LAMBDA

Single-epoch, single

frequency success

rate (%)

1–2 + 1–3 54.08 4867
9000

� �
99.96 8996

9000

� �
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Constrained LAMBDAmethod is introduced, which

solves the problem of minimizing the norm of the

least-squares residuals taking into account both the

integerness of the ambiguities and the orthogonality

of the rotation matrix. The latter constraint is

derived assuming the relative positions of the

antennae as known and constant. The strengthening

of the observation model, due to the inclusion of the

geometrical constraints, improves the capacity of

fixing the correct set of integer ambiguities, as

shown via simulations and as tested on data

collected during a kinematic experiment. The high

fixing rates obtained from the tests suggest that for

GNSS Attitude Determination applications the sin-

gle-epoch, single-frequency ambiguity resolution is

feasible when either the quality of the observation is

high or the number of constrained baselines on the

platform increases. During the kinematic test was

proven that already with a three antennae/two

baselines configuration the Constrained LAMBDA

method is capable of providing the correct full atti-

tude solution almost at every epoch.

Heading angle

Elevation angle

Bank angle

a

b

c

Fig. 118.2 Single-epoch/single-frequency full attitude solu-

tion, LAMBDA method

Heading angle

Elevation angle

Bank angle

a

b

c

Fig. 118.3 Single-epoch/single-frequency full attitude solu-

tion, Multivariate Constrained LAMBDA method
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