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Groupwise Multichannel Image Registration
Jean-Marie Guyader , Wyke Huizinga, Valerio Fortunati, Dirk H. J. Poot, Jifke F. Veenland ,

Margarethus M. Paulides , Wiro J. Niessen, and Stefan Klein

Abstract—Multichannel image registration is an impor-
tant challenge in medical image analysis. Multichannel
images result from modalities such as dual-energy CT or
multispectral microscopy. Besides, multichannel feature im-
ages can be derived from acquired images, for instance, by
applying multiscale feature banks to the original images
to register. Multichannel registration techniques have been
proposed, but most of them are applicable to only two mul-
tichannel images at a time. In the present study, we propose
to formulate multichannel registration as a groupwise image
registration problem. In this way, we derive a method that al-
lows the registration of two or more multichannel images in
a fully symmetric manner (i.e., all images play the same role
in the registration procedure), and therefore, has transitive
consistency by definition. The method that we introduce
is applicable to any number of multichannel images, any
number of channels per image, and it allows to take into
account correlation between any pair of images and not
just corresponding channels. In addition, it is fully modu-
lar in terms of dissimilarity measure, transformation model,
regularisation method, and optimisation strategy. For two
multimodal datasets, we computed feature images from the
initially acquired images, and applied the proposed regis-
tration technique to the newly created sets of multichan-
nel images. MIND descriptors were used as feature images,
and we chose total correlation as groupwise dissimilarity
measure. Results show that groupwise multichannel im-
age registration is a competitive alternative to the pairwise
multichannel scheme, in terms of registration accuracy and
insensitivity towards registration reference spaces.
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I. INTRODUCTION

IMAGE registration is an important tool for medical image
analysis. Medical image datasets can be made up of images

obtained from different modalities, time points, or patients, for
instance. Spatial correspondence between the images is there-
fore, in most cases, not naturally ensured. Automated image
registration can be used to realign such datasets, which is cru-
cial for many post-acquisition image processing techniques.

Among the large range of image registration techniques that
have been developed, various research works have focused
on multi-channel registration. Multi-channel image registration
consists of applying registration to images for which several
channels are available. The channels of a given multi-channel
image can be obtained from different post-acquisition opera-
tions (e.g. filtering, computation of feature images), or from
different acquisitions (e.g. different modalities or time points).
In this study, we consider an image as being multi-channel when
its channel images are spatially registered, either because they
are naturally spatially registered, or thanks to a preliminary
registration step. Multi-channel image registration is the task
of finding spatial correspondences between several such multi-
channel images. Rhode et al. [1], [2] were among the first to
propose a method handling the registration of two multi-channel
images. They designed an approach based on multivariate corre-
lation, and applied it in the context of diffusion-tensor imaging.
Other applications of multi-channel registration focus on the
registration of feature images: instead of applying registration
to the images originally present in a dataset, feature images
derived from the original images are used for the registration.
Such a technique was proposed by Legg et al. [3], who ex-
tracted several feature images based on Gaussian derivatives,
and subsequently registered these feature images using a dis-
similarity measure based on regional mutual information [4].
Staring et al. [5] designed α-mutual information, a technique
that registers sets of feature images using the concepts of mutual
information. Heinrich et al. [6] created a registration similarity
measure based on a sum of squared absolute differences of the
feature images, to register sets of multiple feature images ob-
tained with a descriptor called modality independent neighbour-
hood descriptor (MIND). Li et al. [7] derived another descriptor
from MIND, and named it the autocorrelation of local structure
(ALOST). Suarez et al. [8] used a registration technique based
on a dissimilarity measure derived from the correlation matrix
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of two multi-channel images. Heinrich et al. [9] introduced local
canonical correlation analysis, a method that assess dissimilar-
ity into new bases that best represent the relations between two
multi-channel images. Chen et al. [10] addressed the pairwise
registration of two images of different modalities by generating
synthetic images that are considered as a second channel for
pairwise image registration.

Most multi-channel methods that were previously proposed
are pairwise registration schemes. This means that they are ap-
plicable to only two multi-channel images at a time, and require
to select a fixed reference image to which the remaining multi-
channel image will be registered. These multi-channel pairwise
registration schemes have the drawback that they require the
choice of fixed reference image, which may bias registration
accuracy, as shown by Geng et al. [11].

In the present study, we propose a novel framework for multi-
channel image registration. The key idea is to cast multi-channel
registration as a groupwise registration problem. The novel reg-
istration technique that we devise is suitable not only for the
common case of two multi-channel images, but also for cases in
which the aim is to register three or more multi-channel images
at a time. The multi-channel registration method that we propose
is designed as a groupwise registration problem: it is symmetric
and all image data is taken into account simultaneously in a
single optimisation procedure.

Various groupwise registration methods have been proposed.
One of the earliest groupwise method was the technique of
Joshi et al. [12], based on unbiased diffeomorphic registration.
Learned-Miller [13] presented a groupwise method consisting of
minimising the sum of the pixelwise entropies computed at each
voxel location. Bhatia et al. [14] designed a groupwise dissimi-
larity measure based on the sum of the entropies of each image.
Metz et al. [15] proposed a groupwise dissimilarity measure
based on voxelwise variance, designed for monomodal images.
A few groupwise methods for multimodal images or multipara-
metric images (i.e. same modality, different acquisition settings)
were presented, such as an efficient joint entropy minimisation
presented by Spiclin et al. [16], a sum of accumulated pairwise
estimates presented by Wachinger et al. [17], a technique based
on principal component analysis introduced by [18], a technique
based on Pythagorean means created by Polfliet et al. [19], and a
technique based on total correlation that we previously proposed
[20]. It was not investigated in the literature whether and how
these methods could be applicable to multi-channel images.

In this study, the generic groupwise multi-channel registration
framework that we propose is applicable to any number of multi-
channel images, any number of channels per image, and allows
to take into account correlations between any pair of channel
images. Moreover, it is fully modular in terms of dissimilar-
ity measure, transformation model, regularisation method and
optimisation strategy.

II. METHOD

A. Preliminaries

Let us consider M̃1 , . . . , M̃G , a series of G ≥ 2 multi-channel
images. One multi-channel image will be denoted M̃g , and its
associated channel images will be denoted M̃g,f (the index

f varies between 1 and the number of channels Fg of image
M̃g ). The multi-channel images M̃1 , . . . , M̃G have F1 , . . . , FG

channels, respectively. The complete set of image channels to
register is therefore:

M̃ =
{

M̃g,f with g = 1 · · ·G and f = 1 · · ·Fg

}
(1)

Each channel image M̃g,f is associated with a differentiable
function M̃g,f (x) of the spatial coordinate x.

Multi-channel image registration is the task of finding the spa-
tial correspondence between several misaligned multi-channel
images, assuming that the channel images of each multi-channel
image are already all aligned. This study focuses on intensity-
based registration methods based on the minimisation of a dis-
similarity measure D.

For the particular case of mono-channel image registration
(i.e. F1 = · · · = FG = 1), each image M̃g can be assimilated
with its single channel image M̃g,1 . In that case, the following
shorthand notation will be used: Mg = M̃g = M̃g,1 .

B. Existing Pairwise Multi-Channel Image Registration

All multi-channel registration methods designed so far are
pairwise: they are limited to G = 2 images and require the
selection of a fixed reference space among the multi-channel
images to register. Let us consider two multi-channel images
M̃1 and M̃2. When the numbers of channels F1 and F2 are equal
(F1 = F2 = F ), a generalized pairwise multi-channel (PMC)
dissimilarity measure DPMC can be written:

DPMC(M̃) =
F∑

f =1

Dpairwise

(
M̃1,f , M̃2,f

)
(2)

with Dpairwise a pairwise mono-channel dissimilarity measure
that can be chosen among the wide range of pairwise mea-
sures conventionally used in image registration such as the sum
of squared differences, or mutual information [21]. One multi-
channel image is taken as fixed reference (here M̃1). The other
multi-channel image is known as the moving image (here M̃2).
The aim of pairwise multi-channel image registration is to min-
imise the following function:

µ̂ = arg min
µ

DPMC(M̃1,f (x), . . . , M̃1,F (x),

M̃2,1(T (x,µ)), . . . , M̃2,F (T (x,µ))) (3)

with T (x,µ) the registration transformation applied to the chan-
nels of the moving image M̃2,1, . . . , M̃2,F , where µ is a vector
containing the parameters of the transformation, e.g. rotations
and translations for a rigid transformation model, or B-spline
coefficients for a free-form deformation model [22].

When G > 2 initially acquired images are considered, the
pairwise multi-channel image registration scheme can still be
used, but it should be applied G − 1 times. One multi-channel
image must be chosen as fixed reference image, e.g. M̃1, to
which the other images are registered. Disadvantages of such
a scheme are that each independent registration is performed
using only a fraction of the total available image information,
and that the registration result depends on the choice of reference
image [11].
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C. Existing Groupwise Mono-Channel
Registration Scheme

Contrary to pairwise registration, groupwise registration al-
lows to register multiple images in one optimisation procedure,
without the need to select a fixed image space reference [13],
[15]–[18], [23]. The aim of groupwise mono-channel registra-
tion is to simultaneously bring the G ≥ 2 mono-channel images
Mg (x) of M̃ to a mid-point space, by means of a transforma-
tion T (x,µ), where µ is a vector containing the parameters µg

of the transformation T g (x,µg ) that is applied to each image
Mg . Let us denote D a measure quantifying the dissimilarity
between all transformed images Mg (T g (x,µg )). Groupwise
mono-channel registration can then be formulated as the min-
imisation of the dissimilarity measure D with respect to µ:

µ̂ = arg min
µ

D(M1(T 1(x,µ1)), . . . , MG (T G (x,µG )))

(4)
subject to:

G∑
g=1

µg = 0 (5)

where the constraint of Equation (5) serves to define a mid-point
space [24]. An attractive property of groupwise registrations is
that they are fully symmetric (i.e. all images play the same role
in the registration procedure), and are transitive consistent by
definition.

D. Novel Groupwise Multi-Channel Image Registration

The aim of the novel registration scheme that we propose
is to solve multi-channel image registration by treating it as
a groupwise registration problem. Simply extending the opti-
misation scheme presented in Equation 4 to channel images
taken as individual images would not be satisfactory. Indeed,
this would not take into account the knowledge that some im-
ages belong together, while others do not. The multi-channel
nature of the images introduces an extra constraint: the channel
images M̃g,1, . . . , M̃g,Fg

of a given multi-channel image M̃g

should be warped using the same transformation T g (µg ). We
therefore incorporate a restricted transformation model within
the standard groupwise registration approach of Equation (4).
The new optimisation problem that we propose to solve is:

µ̂ = arg min
µ

D(M̃1,1(T 1(µ1)), . . . , M̃1,F1 (T 1(µ1)), . . .

M̃g,1(T g (µg )), . . . , M̃g,Fg
(T g (µg )), . . .

M̃G,1(T G (µG )), . . . , M̃G,FG
(T G (µG )))

(6)
This optimisation is subject to Equation (5). In this scheme,
image dissimilarity D is assessed in an analogous way as in
the existing groupwise mono-channel registration scheme (see
Section II-C), but the different optimisation procedure induces
that the images are warped by groups.

This novel groupwise multi-channel image registration
scheme allows to take into account correlations between any

pair of channel images M̃g,f , and not just the corresponding
channels that have the same feature index f , which is a limi-
tation of pairwise multi-channel registration (Equation (2)). In
our framework, we consider all

∑G
g=1 Fg images together. In

this way, the information that is shared between any pair of
channel images can be taken into account, and not only the in-
formation shared between corresponding channels. Moreover,
the scheme that we propose can be directly extended to datasets
for which different numbers of channels are computed for each
multi-channel image: in other words, our method does not sup-
pose that there exists corresponding channel images, computed
from each original image.

E. Choice of the Dissimilarity Measure

Multiple intensity-based groupwise dissimilarity metrics
have been proposed and could be used within the novel multi-
channel registration framework described in section II-D.

A particular case would be that the images of M̃ are multi-
channel and monomodal. In that case, choosing the groupwise
dissimilarity measure based on the sum of variances, devised
by Metz et al. [15] for images with similar intensities, would be
appropriate.

In the most general case, however, the
∑G

g=1 Fg images of

M̃ may have different contrasts. The groupwise dissimilarity
measure to choose within the novel scheme should ideally han-
dle such contrast differences. This is the case of the groupwise
dissimilarity measures based on principal component analysis
developed by Huizinga et al. [18], or based on mutual informa-
tion by Bhatia et al. [14] or Guyader et al. [20]. The total corre-
lation dissimilarity measure for groupwise registration (denoted
DTC ), devised by Guyader et al. [20], is one of the multivari-
ate versions of mutual information. Previous studies [20] have
shown that total correlation yields equal or better registration
results than competing state-of-the-art methods on quantitative
MRI datasets. Given the performances of total correlation on
such non-monomodal datasets, we made the choice to select
it as groupwise dissimilarity measure witin the multi-channel
and generic registration framework described in section II-D.
This choice of dissimilarity measure was made to apply the
novel scheme in a concrete case, but other choices in terms of
dissimilarity measures and other registration components could
have been made (see Discussion section). The total correlation
dissimilarity measure DTC is based on the computation of a
correlation matrix K (see supplement material A for details),
obtained from the images M1 , . . . ,MG in the existing group-
wise mono-channel registration scheme (see section II-C), and
obtained from the channel images M̃1 , . . . , M̃G in the novel
groupwise multi-channel registration scheme that we propose
(see section II-D). Total correlation is computed as follows:

DTC =
1
2

G∑
j=1

ln λj (7)
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with λj the jth eigenvalue (λj > λj+1) of the correlation matrix
K based on the image intensities of the images or channel
images to register (see supplement material A).

F. Optimisation Methods and Implementation Details

The adaptive stochastic gradient descent (ASGD) of Klein
et al. [25] was used as optimisation method for solving
Equation (6). This method randomly samples positions in the
image space at each iteration to reduce computation time. For
the ASGD optimisation, the derivative of the cost function has
to be computed. To that purpose, we followed the work of van
der Aa [26] to differentiate the eigenvalue decomposition, sim-
ilarly to what Huizinga et al. [18] did. Sampling is done off the
voxel grid, which was shown to be necessary to reduce interpo-
lation artefacts [27]. We chose to use an Euler parametrisation
for rigid transformations (i.e. linear with 3 rotations and 3 trans-
lations, without scaling) and a B-spline model for non-rigid (i.e.
non-linear) transformations.

A multi-resolution strategy was used: the images are
Gaussian-blurred with a certain standard deviation, which is de-
creased at each resolution level. With this procedure, the large
deformations are corrected first, and the finer deformations are
corrected in subsequent levels. Linear interpolation is used to
interpolate the images during registration, which reduces com-
putation time without significantly compromising registration
accuracy [18], but cubic B-spline interpolation was used to pro-
duce the final registered images.

The registration framework that we propose supports the in-
clusion of regularisation terms in a trivial way [27]. However,
we chose to leave these considerations out of the present work,
to avoid the introduction of another hyperparameter (weight of
the regularisation term). Instead, we keep the B-spline control
point (when applicable) rather conservative, which intrinsically
already provides some regularisation.

Many other choices for rigid (e.g. [28], [29]) and non-
rigid (e.g. [1], [22], [30]–[34]) transformation models exist
and could have been used in this study, but also when it
comes to the different optimisation methods (e.g. gradient de-
scent [35], quasi-Newton [36], nonlinear conjugate gradient
[37], Kiefer–Wolfowitz [38], simultaneous perturbation [39],
Robbins–Monro [40], and evolution strategy [41]), different
groupwise dissimilarity measures (see section II-C), multi-
resolution strategies [42], and different regularisation terms (e.g.
[43]–[45]). Comparing these different methods exhaustively is
outside the scope of this paper: what we propose in this arti-
cle is a generic framework that can be customised for different
applications.

III. EXPERIMENTS

The groupwise multi-channel registration scheme presented
in section II-D was evaluated on two multimodal imaging
datasets, and compared to three other registration scenarios.

A. Registration Scenarios

Four registration scenarios are compared. Each of them is
detailed in this section and illustrated in Fig. 1.

1) Scenario A: Groupwise Multi-Channel Image Registration:
This scenario uses the novel groupwise multi-channel scheme
introduced in section II-D, Equation (6). The feature images that
we use are the modality independent neighbourhood descriptors
(MIND) introduced by Heinrich et al. [6]. MIND feature images
are obtained based on local variance and patch-based distances,
using the following expression:

M̃g,f (x) =
1
n

exp
(
−Dp(Mg,x,x + rf )

V (Mg,x)

)
(8)

where Dp is a patch-based distance, V an estimation of lo-
cal variance, and n a normalisation constant. F spatial search
vectors r1 , . . . , rF serve to compute F MIND feature images
M̃g,1 , . . . , M̃g,F for each original image Mg . For a given vector
rf , the MIND images obtained from different original images
M̃1,f , . . . , M̃G,f have a quite similar appearance [6], [46], as
shown in Fig. 2. However, this is not the case when different
rf are considered. As justified in section II-E, total correla-
tion DTC is taken as groupwise dissimilarity measure in that
scenario.

2) Scenario B: Pairwise Multi-Channel Image Registration:
In this second scenario, we use the existing pairwise multi-
channel scheme described in Equation (3). MIND feature im-
ages are used, like in scenario A, to build the multi-channel set
of images that has to be registered. MIND feature images ob-
tained for a given index f have similar intensity distributions,
irrespective of the modality of the original image. The pairwise
multi-channel dissimilarity measure that we choose to consider
in this scenario is mutual information DMI [21], [28]:

DPMC(M̃) =
F∑

f =1

DMI

(
M̃1,f , M̃2,f

)
(9)

with Ma , Mb two images with N samples.
3) Scenario C: Groupwise Mono-Channel Registration: Sce-

nario C consists of applying existing groupwise mono-channel
registration to the original images, without using any feature
image. The registration scheme is the one corresponding to
Equation (4), using DTC as dissimilarity measure.

4) Scenario D: Pairwise Mono-Channel Registration: In sce-
nario D, we apply pairwise mono-channel registration based on
mutual information DMI to the original images.

5) Additional Groupwise Scenarios: To provide insight into
the influence of the choice of the groupwise dissimilarity mea-
sure, experiments similar to scenario A and C were repeated, but
with another dissimilarity measure than DTC . Huizinga et al.
[18] previously designed a groupwise dissimilarity measure
based on principal component analysis, denoted DPCA2 , the
expression of which is close to DTC . In their study, Huizinga
et al. [18] concluded that the registration results obtained with
DPCA2 were similar to or better than results obtained with other
state-of-the-art techniques, which is why we also performed re-
sults with that dissimilarity measure. We additionally performed
the same experiments with Wachinger and Navab’s [17] dissimi-
larity measure based on accumulated pairwise estimates, DAPE ,
which is not based on mutual information and not closely related
to DTC .
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Fig. 1. Registration scenarios (case with 3 original images).

Fig. 2. Examples of MIND feature images and original images for the head and neck dataset and for the RIRE dataset. (a) Head and neck dataset.
(b) RIRE dataset.
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B. Experiment 1: Head and Neck Multimodal Dataset

Twenty-two patients with a tumour in the head and neck
region [47]–[50] were scanned for radiotherapy and hyperther-
mia treatment planning [51], [52]. Approval was obtained from
the institutional review board in regard to our study (num-
ber: METC-2010-318). A multimodal dataset was acquired
for each patient, consisting of a T1-weighted magnetic reso-
nance image (MRI), a T2-weighted MRI, and a computed to-
mography (CT) image. The CT images were acquired using
a Siemens scanner (Somatom Sensation Open, Siemens), with
a voxel size of 0.98 × 0.98 × 2.50 mm3 for 21 patients, and
1.27 × 1.27 × 2.50 mm3 for the remaining patient. The T1 and
T2-weighted MR images were acquired on a 1.5 T scanner (Op-
tima MR450w, General Electric Healthcare). Half of the patients
had MR images with a voxel size of 0.49 × 0.49 × 3.00 mm3,
the other half of 0.68 × 0.68 × 3.00 mm3. The out-of-plane field
of view (FOV) was 20 cm centered at the location of the tumour,
yielding slightly different FOV values among patients. T1 and
T2 images were corrected for intensity inhomogeneity, using
the N3 method [53] for the T1 images, and the built-in algo-
rithm (surface coil intensity correction) of the MR scanner for
the T2 images. Radiotherapy immobilisation masks were used
[48] both for the acquisition of the MR and CT images. For 12
patients (subset α), the immobilisation masks covered the head,
the neck and the shoulders. For this first subset, the MR images
were acquired using 6-channel flex coils allowing for the same
immobilisation position in both the MR and CT acquisitions.
For the remaining ten patients (subset β), smaller immobil-
isation masks were used, covering only the anterior parts of
the head and neck region. For this second subset, the use of
head coils made it impossible to impose the exact same patient
position in the CT and MR acquisitions.

1) Image Preparation: In the current implementation of
the method, the groupwise multi-channel and mono-channel
schemes operate provided that the images to register have equal
voxel sizes. To ensure that this is the case, the T2 and CT
images were first coarsely registered to the T1 image using a
rigid transformation and pairwise mutual information. The im-
ages were subsequently misaligned using artificially generated
Euler transformations. The data was resampled only once for
these operations. These transformations were randomly gener-
ated using uniform distributions (translations±10 mm, rotations
±0.25 rad). To generate the MIND feature images, we chose a
Gaussian weighting of σ = 2, and a six-neighbourhood spatial
region for the search vectors r1 , . . . , rF , resulting in F = 6
feature images for each acquired image [6], [46]. Examples of
such images are shown in Fig. 2(a).

2) Registration Settings: For each patient, the original im-
ages after image preparation are denoted M1 (the T1-weighted
MRI), M2 (the T2-weighted MRI) and M3 (the CT image).

The four image registration scenarios described in
section III-A. are then applied to the image datasets. Registra-
tions were applied in two consecutive steps. Firstly, with a rigid
transformation model based on Euler transformations, and
secondly with a deformable model based on B-spline transfor-
mations [22] with control point spacing of 100 mm, to account

for possible non-rigid misalignments due to different patient
bulk positioning or organ positioning (especially in the neck re-
gion) between the scans. The Euler transformations were taken
as starting points for the registrations based on B-splines. Ini-
tial trial-and-error experiments suggested that the value of 100
mm is sufficient to compensate for the deformations in the head
and neck images. Three resolutions of 1000 iterations each with
a smoothing σ of 8, 4 and 2 voxels were used in both the
Euler and B-spline cases. For the pairwise mono-channel reg-
istrations based on mutual information, the number of bins that
we selected was 32. A B-spline Parzen windowing approach
was used to estimate the probability density function for mu-
tual information [54]. Furthermore, registration masks for the
head and neck region were delineated for each patient for all
modalities in order to prevent the influence on registration of
artefacts such as ghosting for the MR images, and the presence
of the immobilisation. Considering that these feature images
show noisy backgrounds, these registration masks seemed to be
particularly necessary when MIND images have to be registered
(Fig. 2).

3) Registration Evaluation: For each patient, an expert
placed n = 19 ± 2 corresponding landmarks for all imaging
modalities. Registration accuracy was evaluated by computing
the following target registration error (TRE) between the land-
marks of the three modalities:

TRE =
1
3

(dT1−T2 + dT1−CT + dT2−CT)

with dp−q =
1
n

n∑
i=1

||pi − qi||
(10)

with pi and qi the landmark coordinates, || . || the Euclidean
distance, and dp−q the average landmark distance between the
modalities p and q . The head and neck dataset allows to
study the influence of the choice of reference image: T1, T2 or
CT. In the pairwise multi-channel case (scenario B) and in the
pairwise mono-channel case (scenario D), the landmarks were
directly propagated to the three image reference spaces of T1,
T2 and CT. In the groupwise cases (scenarios A and C), no
reference space is chosen during registration (all images are
brought to an average space), but the evaluation of registra-
tion accuracy can be done in the image spaces of the original
images. To that purpose, the landmarks were brought to the av-
erage image space, and were subsequently propagated to each
of the original image spaces T1, T2 or CT by using the in-
verses of the transformations obtained by the groupwise regis-
trations [15]. Wilcoxon signed-rank tests were used to assess
significance of comparisons of TRE values with respect to sce-
nario A. Significance was considered for p < 0.01. Intra-rater
variability (IRV) was assessed by repeating the placement of
landmarks one month after the first placement session. This op-
eration was done for the T2 and CT images before the artificial
misalignments were applied. Landmarks were not annotated on
T1 because of the natural alignment of the T1 and T2 images
at the moment of acquisition. For each patient, the IRV was
computed using IRV = 1

2 (dT2−T2� + dCT−CT�), the � refer-
ring to the second session of landmark delineation.
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C. Experiment 2: RIRE Multimodal Dataset

This experiment focuses on multimodal images of the
publicly available Retrospective image registration evaluation
(RIRE) project [29]. Out of the 18 patient datasets avail-
able on the website of the RIRE project (http://www.insight-
journal.org/rire/), we selected the 12 datasets including at least
the three following modalities: CT, MR-T1 and MR-T2. Seven
of these 12 datasets also included a proton density-weighted
MR image (MR-PD). PET images were not considered in
this study because of the presence of halo artefacts. CT im-
ages had a voxel size between 0.40 × 0.40 × 3.00 mm3 and
0.65 × 0.65 × 4.00 mm3 , and MR images had a voxel size be-
tween 0.82 × 0.82 × 3.00 mm3 and 1.25 × 1.25 × 4.00 mm3 .
One of the patients was not included because the field of view
of the MRIs was much smaller than for the CT image.

1) Image Preparation: The initial step was to resample the
T1, T2 and PD images (when present) to the image space of the
CT image. MIND images are computed using the same settings
as described in section III-B1. Examples of such images are
shown in Fig. 2(b).

2) Registration Settings: The registration scenarios that we
considered are the same as for Experiment 1. Only the CT im-
age was taken as fixed reference space in scenarios B and D due
to the specific requirements of the online evaluation tool. Reg-
istrations were applied in two consecutive steps. Firstly, with
a translation transformation model, and secondly with an Eu-
ler transformation model. The translation transformations were
taken as starting points for the registrations based on Euler. Non-
rigid transformations were not considered for RIRE datasets,
following the guidelines of the RIRE online platform. In a simi-
lar fashion to the head and neck dataset, registration masks were
used to exclude the background during registration. The regis-
tration parameters that were used here are identical to those of
Experiment 1.

3) Registration Evaluation: The registrations were evaluated
by uploading lists of points to the website of the RIRE project.
The ground truth is made available in an indirect manner only:
users cannot get direct access to the ground truth, and instead
have to upload points transformed using the registration results.
In contrast to the head and neck dataset, the ground truth is here
only known with respect to the CT images, which is why the
influence of the choice of reference image could not be studied
in the framework of this experiment. Wilcoxon signed-rank test
were used to assess significance of comparisons of TRE values
with respect to scenario A.

D. Experiment 3: Groupwise Multi-Channel Registration
for Multi-Channel Images With Different
Numbers of Channels

As mentioned in the Method section, the groupwise multi-
channel scheme described in this article offers the possibility to
register datasets of multi-channel images with different numbers
of channels. For the head and neck dataset, we performed an ex-
ample of a groupwise multi-channel registration with total cor-
relation DTC with all MIND channels for T1 (M̃1,1 , . . . , M̃1,6),
with 4 MIND channels for T2 (M̃2,1 , . . . , M̃2,4), and with
5 MIND channels for CT (M̃3,1 , . . . , M̃3,5). The registration

TABLE I
EXPERIMENT 1 – TRE [MM] FOR EACH REFERENCE SPACE T1, T2, AND CT

Bold values of Average 1 and Average 2 signal distributions that are significantly different
from scenario A (underlined values). For Average 1, the comparisons were performed per
reference space. For Average 2, all data was considered together.

settings are the same as those described in Experiment 1
(section III-B2).

E. Implementation

All registration methods used in this study were implemented
as part of the open source package elastix [27]. For the ex-
periments, image manipulations were performed using Python
(version 2.7.3) with packages NumPy 1.6.2, SciPy 0.11.0, py-
dicom 0.9.7, and NiBabel 1.3.0. To obtain the MIND feature
images, we directly used the MATLAB code made available by
its authors (http://www.ibme.ox.ac.uk/research/biomedia/julia-
schnabel/Software). All computations were done on a Linux
machine (64 GB of memory, 8 cores, 2412 MHz).

IV. RESULTS

A. Results on Experiment 1: Head and Neck Dataset

Target registration errors (TRE) obtained for the head and
neck dataset are presented in Table I for the four registration
scenarios and for the three reference spaces T1, T2 and CT.
Results obtained for the groupwise scenarios with DPCA2 and
DAPE are presented in supplement material B. Average 1 and
STD 1 are obtained based on the TRE values that correspond
to a given scenario and a given reference space. Average 2 and
STD 2 are obtained based on all TRE values for a given scenario.

Focusing first on the Average 2 values, it is observed that
scenario C resulted in gross registration failures, which was
the case with DTC , with DPCA2 and with DAPE . The lowest
registration errors were obtained with scenario B, which was
significantly lower than for scenarios A and D. Similar patterns
are observed when focusing on Average 1 values. A discordant
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TABLE II
EXPERIMENT 2 – TRE [MM]

Bold values signal distributions that are
significantly different from scenario A
(underlined values).

note is the fact that the Average 1 TRE values for scenario D
with CT as reference image were substantially larger than the
TRE values with the T1 and T2 as reference images. In addition,
the difference in Average 1 TRE values between scenario A and
D with CT as reference image was statistically significant.

Comparing the TRE values between the reference spaces T1,
T2 and CT allows to assess the influence of the choice of ref-
erence image on registration accuracy. Standard deviation val-
ues were therefore computed between the three average TRE
values obtained in each image reference space to measure the
registration consistency across the three reference spaces (see
Section III-B3). These standard deviations are denoted Variabil-
ity in Table I, and are computed based on the three corresponding
values of Average 1. The lowest variability was obtained for sce-
nario A. When inspecting the individual TRE values for each
subject, this becomes even more apparent.

Table I clearly indicates that the TRE values obtained for
subset α (large immobilisation mask) are lower than for subset
β (small immobilisation mask). This result can be explained by
the fact that the immobilisation mask and gradient coils used
for subset β did not allow a similar positioning of the patient
between the CT and MR acquisitions. In particular, rotations of
the neck region may make the registration more challenging.
The intra-rater variability averaged over all patients is 0.9 mm,
which is about three times lower than the best Average 2 TRE.

B. Results on Experiment 2: RIRE Dataset

For the RIRE dataset, the registration accuracy results are pre-
sented in Table II. Results obtained for the additional scenarios
with DPCA2 and DAPE are presented in supplement material
B. The average TRE before registration is 26.6 mm. After reg-
istration, the average TRE is 3.3 mm for scenario A, 4.3 mm

for scenario B, 33.2 mm for scenario C and 3.3 mm for sce-
nario D. Contrary to Experiment 1, the best registration re-
sults were here obtained with groupwise multi-channel registra-
tion (scenario A), and with pairwise mono-channel registration
(scenario D).

C. Results on Experiment 3: Groupwise Multi-Channel
Registration for Multi-Channel Images With Different
Numbers of Channels

In this experiment, we considered the images obtained from
patients 1 to 12 of the head and neck dataset. Using the set
of images {M̃1,1 , . . . , M̃1,6 , M̃2,1 , . . . , M̃2,4 , M̃3,1 , . . . , M̃3,5},
which includes different numbers of channels for each multi-
channel image, we obtained an average TRE of 2.3 mm, which
is only slightly worse than the TRE of 2.2 mm obtained in the
original experiment with all channels.

V. DISCUSSION

In this study, we presented a novel groupwise multi-channel
image registration scheme. This scheme can be combined with
a wide range of groupwise dissimilarity measures and sets of
feature images. As a proof of concept, we applied this groupwise
multi-channel registration scheme to MIND feature images, and
used total correlation DTC as groupwise dissimilarity measure.

Groupwise multi-channel image registration (scenario A) was
compared to a pairwise multi-channel registration scheme (sce-
nario B). The first main theoretical advantage of the group-
wise multi-channel scheme is that it is fully symmetric, and
therefore has transitive consistency by definition. Additionally,
groupwise multi-channel image registration is directly extensi-
ble to datasets for which different numbers of feature images
are computed for each image, which is not the case for the
pairwise multi-channel dissimilarity measure. Results on two
multimodal datasets (head and neck and RIRE) indicate that
groupwise multi-channel registration achieves similar registra-
tion accuracy as pairwise multi-channel registration, in terms
of TRE (scenario A yielded better TRE results than scenario B
for the RIRE dataset, but slightly worse for the head and neck
dataset). In terms of variability, the experiments on the head and
neck dataset confirm the interest of the symmetric groupwise
formulation, in the sense that TRE results depend more on the
reference space in the pairwise methods than in the groupwise
multi-channel approach. The poor variability figures obtained in
the groupwise mono-channel case is attributed to the complete
registration failure obtained in that case.

These two multi-channel schemes (scenarios A and B) were
also compared to mono-channel scenarios based on the original
images only, either in a groupwise manner (scenario C), or in a
pairwise manner (scenario D). The fact that scenario C results
in a registration failure, while scenario A did not, illustrates the
potential of the novel scheme that we propose. The results indi-
cate that even when groupwise mono-channel registration with
a given dissimilarity measure results in registration failure, there
is a possibility to improve the registration results by computing
appropriate feature images from the original images (e.g. using
MIND feature images) and applying the proposed groupwise
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multi-channel registration with the same dissimilarity measure.
Besides, the experiment on the head and neck dataset indicates
that groupwise multi-channel registration (scenario A) is much
less sensitive towards the choice of reference space than pair-
wise mono-channel registration (scenario D), which verifies one
of the advantages of groupwise registration with respect to pair-
wise registration.

Groupwise total correlation was previously applied to
monomodal and quantitative MR images and did not require
the use of feature images to obtain results similar or better
than pairwise mutual information [18], [55]. The fact that the
groupwise total correlation dissimilarity measure requires fea-
ture images like MIND images for the registration of multimodal
datasets might be explained by the fact that such feature images
are more similar to one another, and therefore easier to register
(which indeed was the prime motivation for developing MIND
[6]). The approximation of total correlation used for the sake of
computational feasibility are apparently too drastic in the case
of true multimodal images, while it worked on multi-parametric
images as shown in [20]. MIND pre-processing allows to make
the images sufficiently similar so that they can be registered
using total correlation.

The focus of our study was to present a novel multi-channel
groupwise registration technique, and does not consist of a com-
parison between multiple pre-processing algorithms. However,
many other pre-processing methods, like ALOST [56] could
have been tested. Many choices would have been possible with
respect to the transformation model, regularisation, optimisa-
tion, pre-processing features and dissimilarity measures (see
Section II-F), in particular. Comparing various such components
is outside of the scope of this paper. Our key contribution, i.e. the
formulation of multi-channel image registration as a groupwise
registration problem, is independent of these choices. We do
not claim that the proposed groupwise multi-channel method is
per se better than mono-channel registration. Some dissimilarity
measures might be better in coping with certain differences in in-
tensities than others, and it depends on the image characteristics
which dissimilarity measure is optimal. For pairwise registra-
tion, mutual information is a proven robust method that works
in many multimodal registration scenarios. Yet, it was shown
that using additional features yields improved performances in
certain applications [3], [5], [6]. For groupwise situations, no
analogous approach to mutual information has been presented
yet, so there the use of multiple feature channels, as proposed in
our study, is a worthwhile option to consider. However, we can-
not claim that this multi-channel approach will lead in general
to better performance.

VI. CONCLUSION

In this article, we described a scheme for the groupwise reg-
istration of multi-channel images. We showed that the registra-
tion of multiple sets of feature images can be solved effectively
with a groupwise multi-channel registration method, using pre-
viously proposed intensity dissimilarity measures suitable for
multiparametric imaging data, in combination with a restricted
transformation model that assigns a single transformation to all
feature images that belong together. In this way, the shared in-

formation between all feature images of all images is taken into
account, the number of feature images in each set is flexible,
the registration is unbiased (i.e. there is no need to choose a
reference frame), and the approach naturally scales to scenarios
with more than two sets of feature images.
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