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Original Research Article 
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A B S T R A C T   

Background and purpose: Retrospective dose evaluation for organ-at-risk auto-contours has previously used small 
cohorts due to additional manual effort required for treatment planning on auto-contours. We aimed to do this at 
large scale, by a) proposing and assessing an automated plan optimization workflow that used existing clinical 
plan parameters and b) using it for head-and-neck auto-contour dose evaluation. 
Materials and methods: Our automated workflow emulated our clinic’s treatment planning protocol and reused 
existing clinical plan optimization parameters. This workflow recreated the original clinical plan (POG) with 
manual contours (PMC) and evaluated the dose effect (POG − PMC) on 70 photon and 30 proton plans of head-and- 
neck patients. As a use-case, the same workflow (and parameters) created a plan using auto-contours (PAC) of 
eight head-and-neck organs-at-risk from a commercial tool and evaluated their dose effect (PMC − PAC). 
Results: For plan recreation (POG − PMC), our workflow had a median impact of 1.0% and 1.5% across dose metrics 
of auto-contours, for photon and proton respectively. Computer time of automated planning was 25% (photon) 
and 42% (proton) of manual planning time. For auto-contour evaluation (PMC − PAC), we noticed an impact of 
2.0% and 2.6% for photon and proton radiotherapy. All evaluations had a median ΔNTCP (Normal Tissue 
Complication Probability) less than 0.3%. 
Conclusions: The plan replication capability of our automated program provides a blueprint for other clinics to 
perform auto-contour dose evaluation with large patient cohorts. Finally, despite geometric differences, auto- 
contours had a minimal median dose impact, hence inspiring confidence in their utility and facilitating their 
clinical adoption.   

1. Introduction 

Manual contouring of organs-at-risk (OAR) in radiotherapy is a time 
and resource-demanding task [1–3], especially in head-and-neck cancer 
due to a large OAR count [4]. Moreover, it is plagued by inter- and intra- 
annotator variability [5–8] and hence there is a need for automation. In 
the last few years, availability of deep learning-based commercial tools 
have reduced the barriers for clinics to implement auto-contouring 
technology in daily practice. However, these tools may produce 

erroneous contours due to poor contrast, organ deformations, surgical 
removal of an organ or when tested on different patient cohorts [9]. 
Such cases may potentially lead to commercial providers providing 
updates to the underlying deep learning models. Thus, as deep learning 
auto-contouring tools are increasingly adopted in clinics, with the po-
tential for future updates to models, there is a growing need to bench-
mark them, preferably at large-scale and in an automated manner. 

As deep learning-based auto-contouring methods for head-and-neck 
OARs have been shown to offer satisfactory geometric performance 
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[10,6], the next step is to evaluate their dose impact [11]. However, we 
observed that dose-based studies on auto-contours tend to use either 
smaller (≤ 20) [12–18] or medium-sized (⩽40) [19], rather than larger 
[20] datasets. Studies using larger datasets simply superimpose the 
automated contours on the clinical dose [20] which does not fully 
replicate the treatment planning process. Conversely, studies using 
smaller or medium-sized test datasets either made manual plans 
[14,17–19], used knowledge-based planning [13], a template approach 
[12] or a priori multi-criteria optimization (MCO) [15,16]. Since smaller 
datasets may be affected by sampling bias, there is a need to perform 
dose analysis with a larger patient cohort. However, a manual approach 
to plan optimization is simply not scalable. Moreover, existing auto-
mated approaches [13,12,15], if not already clinically implemented, 
require additional skills and resources. Therefore, there is a need for an 
automated approach to treatment planning that can be done at a large 
scale and also leverages existing clinical knowledge and work. 

Thus, our contribution was to propose and assess a plan optimization 
method for retrospective studies that is scalable due to its automated 
nature and easily implementable due to the use of existing clinical re-
sources (i.e., knowledge, tools and optimization parameters). We then 
used this approach in a use case to quantify auto-contour-induced dose 
effects for head-and-neck photon and proton radiotherapy. 

2. Materials and methods 

2.1. Data acquisition 

Our dataset consists of 100 head-and-neck cancer patients, of which 
70 had clinical plans made for photon therapy, while 30 had proton 
plans, at Leiden University Medical Center (Leiden, The Netherlands) 
from 2021 to 2023. Patients were treated for either oropharyngeal (71) 
or hypopharyngeal (29) cancers with cancer stages T1-4, N0-3 and M0. 
92 patients were treated with curative intent, i.e., 7000 cGy to the pri-
mary tumor, while others were prescribed 6600 cGy due to their post- 
operative nature. Details about CT scans used in planning are written 
in Supplementary Material A. The study was approved by the Medical 
Ethics Committee of Leiden, The Hague, Delft (G21.142, October 15, 
2021). Patient consent was waived due to the retrospective nature of the 
study. 

2.2. Automated contours 

For automated contouring, a commercial deep learning model from 
RayStation-10B (RaySearch Labs, Sweden) – “RSL Head and Neck CT” 
(v1.1.3) was used. A subset of the OARs which were used clinically for 
treatment planning were auto-contoured – Spinal Cord, Brainstem, Pa-
rotid (L/R), Submandibular (L/R), Oral Cavity, Esophagus, Mandible 
and Larynx (Supraglottic). See Supplementary Material B for additional 
details. 

2.3. Treatment planning protocol 

We used volumetric modulated arc therapy (VMAT) to generate a 
photon plan using a 6MV dual arc beam. The elective and boost Planning 
Target Volumes (PTV), henceforth referred as DL1/DL2 (dose level 1/2) 
were prescribed 5425 cGy/7000 cGy in 35 fractions. For post-operative 
patients, our clinic prescribed 5280 cGy/6600 cGy in 33 fractions 
instead. Planning was done such that at least 98% of DL1 and DL2 
volumes received 95% of the prescribed dose (V95%) and also by keeping 
D0.03cc for DL2 below 107% of the prescribed dose. 

Proton plans consisted of six beam intensity modulated proton 
therapy (IMPT). Planning was done such that V95% ⩾98% for DL1/DL2 
and D2% ⩽107% for DL2 of the Clinical Target Volume (CTV) in a 21-sce-
nario robust optimization with 3 mm setup and 3% proton range un-
certainty. For robust evaluation of CTV DL1/DL2 we instead use 28- 
scenarios and test the voxel-wise minimum (vw-min) plan such that its 

V94% ⩾98% [22] and voxel-wise maximum (vw-max) of D2%⩽107%. 

2.4. Automated treatment planning 

To make our automated program, a four-step script [23–25] was 
created which uses manually defined beam settings and objective 
weights from the clinical plan (more details in Supplementary Material 
C). This approach is also referred as robot process automation (RPA) 
[26], a process wherein a program emulates a human. 

In summary, for step 1, we began with an objective template i.e., a 
class solution with a standard set of weights that focuses on targets and 
the body contour. Step 2 then added dose-fall-off (DFO) objectives for 
organs which is the distance over which a specified high dose falls to a 
specified low dose. In step 3, we introduced equivalent uniform dose 
(EUD) objectives [27] on the OARs. Manual planning for the EUD 
objective involves iteratively fine-tuning its parameters. Since only the 
parameters of the last iteration were available to us, we instead followed 
a single-step optimization for this objective. Finally, in step 4, we used 
patient-specific control structure contours to reduce OAR dose or sculpt 
the dose to the targets. In the last step, we also updated any other 
weights the treatment planner might have changed compared to the 
objective template. Note, these final weight updates were asynchronous 
to manual planning, since we did not know when these weights were 
updated in the aforementioned process. Note that each of the above 
steps underwent four optimization cycles. 

Using our automated program, we made two plans – 1) a plan 
optimized on manual contours (PMC) and 2) a plan optimized on auto-
mated contours (PAC) as shown in Fig. 1. For the targets, elective lymph 
nodes, and OARs not available in the auto-contouring model we used 
manual contours which were used clinically for the original plan (POG). 
The plans were made using the Python 3.6 scripting interface of the 
Treatment Planning System (TPS) of RayStation. The scripts for this 
work are available at https://github.com/prerakmody/dose-eval 
-via-existing-plan-parameters. 

2.5. Geometric evaluation 

We used volumetric and surface distance metrics like Dice Coeffi-
cient, Hausdorff Distance 95% (HD95) and Mean Surface Distance 
(MSD) to evaluate our contours. Moreover, we also evaluated Surface 
DICE (SDC) with a margin of 3 mm to gain insight into contour editing 
time requirements [28]. 

2.6. Dose and NTCP evaluation 

Given that our plans – POG, PMC and PAC have differences in the way 
they were created, we need to compare them. Metrics relevant to OARs 
were calculated and plans were compared in the following manner: 

ΔDx = Dx,p1 − Dx,p2. (1)  

Here, x refers to the OAR for which we calculated a dose metric D and 
then compared it between any pair of plans p1 and p2. Here, D can refer 
to D0.03cc (Spinal Cord, Brainstem), Dmean (Parotid, Submandibular, Oral 
Cavity, Larynx (Supraglottic), Esophagus) or D2% (Mandible). 

For normal tissue complication (NTCP) probability [21] evaluation, 
we used a similar approach: 

ΔNTCPd = NTCPd,p1 − NTCPd,p2, (2)  

where d refers to either Xerostomia or Dysphagia with a grade ⩾2 or ⩾3. 
For the above ΔDx (dose) and ΔNTCPd values, we performed a 

Wilcoxon signed-rank test (p ⩽0.05 is considered a significant differ-
ence) to evaluate if the differences between plans are significant. 
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3. Results 

3.1. Geometric evaluation 

Fig. 2 shows five organs (Spinal Cord, Parotids, Submandibulars, 
Oral Cavity, Mandible) had a median DICE ⩾0.78 (with additional 
summary measures tabulated in Supplementary Material B). In Fig. 2b 
we observed that in general the surface DICE values for the OARs are 
higher than their DICE values, except for the oral cavity. Fig. 2c and 
Fig. 2d shows that HD95 and MSD had trends similar to DICE in Fig. 2a. 

OARs with a median DICE ⩾0.8 had their median HD95 less than 7.7 mm 
and their median MSD less than 2.6 mm. The spinal cord had DICE 
values that are better than brainstem, but its HD95 range was as long as 
brainstem. 

3.2. Dose evaluation 

The median absolute value of POG (original plan) - PMC (automated 
plan using manual contours) was 0.27 Gy (1.0%), 1.66 Gy (4.6%) and 
0.21 Gy (0.7%) for all, central nervous system (CNS), i.e., Brainstem and 

Fig. 1. Workflow for automated plan optimization and use-case of evaluating the effect of automated contours on dose. By reusing original plan (POG) parameters, we 
made a plan for both the manual contours (PMC) and automated contours(PAC), shown with yellow and blue colors respectively. Dashed lines indicate the evaluation 
workflow where both doses were evaluated on the manual contours. Pink, maroon and orange contours are used to represent the manual, automated and PTV (DL1) 
contours respectively. Finally, we used manual contours to compute dose metrics and normal tissue complication probability (NTCP) [21] models and compare 
all plans. 

Fig. 2. Box plots showing geometric (a) and surface metrics (b–d) for all our patients. The scatter points indicate the metric values for each patient.  

P. Mody et al.                                                                                                                                                                                                                                   
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Spinal Cord and non-CNS organs, respectively. The same for PMC - PAC 
(automated plan using auto-contours) was 0.58 Gy (2.0%), 1.86 Gy 
(5.4%) and 0.46 Gy (1.6%), with metrics of individual organs in Fig. 3a 
listed in Supplementary Material D. Fig. 3b shows dose metrics for tar-
gets where, for PMC and PAC, we achieved PTV (DL1) (V95) ⩾98.0% for 
76% and 60% of plans. However, 96% and 93% of PMC and PAC plans 
achieved PTV (DL1) (V95) ⩾97.5%. For this metric, a statistically sig-
nificant difference was observed between POG and PMC as well as PMC and 
PAC. Finally, Fig. 3c shows |ΔNTCP| results, where the maximum median 
across all toxicities was 0.3% (individual toxicity metrics in Supple-
mentary Material E). 

For proton, |POG − PMC| had a median value of 0.33 Gy (1.5%), 1.13 
Gy (11.5%) and 0.22 Gy (0.8%) for all, CNS and non-CNS organs, 
respectively. The same for PMC − PAC was 0.48 Gy (2.6%), 0.75 Gy (6.9%) 
and 0.38 Gy (1.8%). Fig. 4b shows proton targets wherein 58% and 62% 
of PMC and PAC plans achieved PTV (DL1) (vw-min) (V94) ⩾98.0%, while 
82% and 80% achieved PTV (DL1) (vw-min) (V94) ⩾97.5%. Similar to 
photon, a statistically significant difference was observed between POG 
and PMC as well as PMC and PAC. For |ΔNTCP| (Fig. 4c), the maximum 
median across all toxicities was 0.2%. 

A weak Spearman correlation coefficient between DICE and dose 
differences (|PMC − PAC|) was observed for CNS organs (|ρs|⩽0.11), across 

both photon and proton (Fig. 5). Conversely, the Parotids, Sub-
mandibulars and Oral Cavity had relatively higher values 
( − 0.43⩽ρs⩽ − 0.17). The remaining organs did not have similar corre-
lations across both radiotherapy treatments. 

Finally, our automated plan optimization took 45 min and 2.5 h of 
computer time, compared to 3 and 6 h of manual time (on average, as 
estimated by our clinic’s planners), for photon and proton, respectively. 

4. Discussion 

This work aimed at proposing and assessing an automated plan 
optimization workflow for retrospective studies that can be easily 
implemented by clinics due to its use of existing clinical resources. 
Unlike previous works [12–18], we performed this at large-scale and for 
both photon and proton radiotherapy. To replicate our approach, a 
clinic can simply use the scripting interface of their treatment planning 
system (TPS) and convert their planning process into a step-by-step 
approach. This requires minimal additional expertise (i.e., Python cod-
ing), for which many TPS solutions provide documentation. For head- 
and-neck radiotherapy, automated plans on manual contours (PMC) 
showed a negligible difference (i.e., median impact of 1.0% and 1.5% 
across organs), when compared to the original clinical plan (POG) 

Fig. 3. Dose metrics for the original (i.e., clinical) photon plans (POG) as well as plans (re) made on manual (PMC) and automated (PAC) contours using an automated 
program. POG − PMC shows the dose effect of the proposed planning process, while PMC − PAC shows the effect of using auto-contours. Here represents a p-value 
⩽0.05. In a) we see the difference in the dose metric of each OAR when comparing across plans. The plots in b) show us the metrics for the targets, while c) shows us 
the difference in NTCP values. 
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[29,30]. Thus, the proposed evaluation process could serve as a 
springboard for clinics to validate an auto-contouring model, at large- 
scale, by simply reusing their existing plans. When using this program 
for the use case of head-and-neck auto-contour evaluation, the plan 
using auto-contours (PAC) had a low dose impact when compared to the 
plan using manual organ contours, for both photon (2.0%) and proton 
(2.6%) planning. Additionally, minuscule differences in NTCP values 
indicated that minor plan differences did not lead to large differences in 
long-term radiation-induced toxicity. This could potentially promote 
confidence in the community [31] to adopt auto-contouring to speed up 
clinical workflows. 

For five out of eight OARs (i.e., Spinal Cord, Parotid, Submandibular, 
Oral Cavity and Mandible), the average DICE scores may be considered 
on par with previous work (≈ 0.8) [6,10,12] (see Supplementary Ma-
terial B). A visual inspection of the remaining auto-contours, i.e., Larynx 
(SG), Brainstem (and by extension the Spinal Cord) (Fig. 6, 

Supplementary Material F) indicated that they had contouring protocols 
that differed from our clinic. Moreover, the auto-contouring model was 
trained on a different patient cohort, leading to additional contour dif-
ferences with our clinical dataset. Finally, we chose to not perform any 
additional refinement on manual contours, since they were also used for 
making clinical plans (POG) delivered to patients. For e.g. in the first row 
of Fig. 6, we see that only the caudal section of the Brainstem was an-
notated. Treatment planners find optimizing this section sufficient due 
to its potential for high dose from tumor proximity. The aforementioned 
reasons are why we noticed reduced measures for Larynx (SG), Brain-
stem and Spinal Cord in Fig. 2. 

A critique of using unmodified manual contours may be that a lack of 
“gold-standard” contours will not give accurate geometric measures. 
Since our primary goal however was dose evaluation using existing 
clinical resources (i.e., unmodified manual contours), we proceed 
without any refinement. Also, in an auto-contouring dose evaluation 

Fig. 4. Dose metrics for the original proton plans (POG) as well as plans (re) made on manual (PMC) and automated (PAC) contours using an automated program. 
POG − PMC shows the dose effect of the proposed planning process, while PMC − PAC shows the effect of using auto-contours. Here represents a p-value ⩽0.05. In a) 
we see the difference in the dose metric of each OAR when comparing across plans. The plots in b) show us the metrics for the targets, while c) shows us the difference 
in NTCP values. 
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scenario, it is already sufficient to know that plans made on auto- 
contours are equivalent to plans made on manual contours as seen in 
Fig. 3b (photon) and Fig. 4b (proton). Thus, our approach of using 
existing manual contours improves the ease-of-implementation of auto- 
contour dose evaluation studies and enables evaluation at large-scale. 

To evaluate the quality of our automated plans, we first assessed 
target dose metrics. We use PTV (DL1) (V95%) for photon and CTV (DL1) 
(V94%) (vw-min) for proton, since planners prioritize them due to their 
difficulty. Hence it serves as a good benchmark for our automated plans. 
Results indicated that most of our plans (⩾93% for photon and ⩾80% for 
proton) were of near-clinical quality (i.e., ⩾97.5%). Those plans that did 
not strictly achieve clinical quality (i.e., ⩾98%) on the aforementioned 
metrics, had reduced dose coverage in either the most cranial or caudal 

slices. In a retrospective study for dose-evaluation of auto-contours, such 
a minor error will have a minimal effect on the dose metrics of organs we 
are interested in. 

Fig. 4b shows that most proton plans, including POG, tended to have 
hotspots, i.e., D2%(vw − max)⩾107%, unlike most photon plans which 
did not, i.e., D0.03cc⩽107% (Fig. 3b). In our dataset, these proton plans 
were made for performing a plan comparison between photon and 
proton (via NTCP), according to the model-based selection [32]. If 
during proton treatment planning, the NTCP differences already indi-
cated either a) high organ sparing or b) not sufficiently better organ 
sparing than photons, planners did not further optimize this plan. 
However, given that dose hotspots are quite small, they did not affect 
dose metrics for the auto-contoured organs in our study. Finally, 

Fig. 5. Scatter plots for eight organs-at-risk from the auto-contouring module. Here we plot the DICE (x-axis) against each organs absolute dose metric differences, i. 
e., |PMC − PAC| (y-axis) for photon (a–h) and proton (i–p) radiotherapy. 
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differences in plans were also caused because the same plan optimiza-
tion process when run twice, may lead to similar, but not exactly the 
same solution due to randomness in initialization. 

Fig. 3 shows that of all the organs the Spinal Cord and Brainstem had 
wider boxplots for both POG − PMC and PMC − PAC. This is because the 
ΔD0.03cc metric is inherently more sensitive to dose changes than ΔDmean. 
This is seen in the first row of Fig. 6 where similar DICE values for the 
Brainstem output vastly different dose differences. For proton (Fig. 4), 
we saw a similar trend for POG − PMC, but not for PMC − PAC. This indi-
cated that proton planning is more susceptible to workflow differences 
than contour differences of Brainstem and Spinal Cord, for our cohort of 
oro- and hypopharyngeal cancers, which are at a distance from these 
organs. 

Fig. 3a, 3c (photon) and Fig. 4a, 4c (proton) show statistically sig-
nificant differences, but from a clinical standpoint, the minor differences 
in organ dose metrics and ΔNTCP values may be clinically irrelevant. 

Moving on to the effect of DICE on dose metric of organs (Fig. 5), one 
would expect that a decrease in DICE would lead to higher ΔcGy values 
for organs. This was true for the Parotids, Submandibulars (Fig. 6) and 

Oral Cavity across both photons and protons ( − 0.43⩽ρs⩽ − 0.17). The 
Brainstem and Spinal Cord showed poor correlation scores for both 
forms of radiotherapy, primarily due to the sensitive nature of the D0.03cc 

metric. The Esophagus also showed low correlation, since, in many 
cases, it is caudally far away from the tumor regions for the patients in 
our cohort. The Larynx showed a high correlation for photon, but not for 
proton, which could be an effect of sample size. Finally, the Mandible, an 
organ with high DICE, showed opposite trends in photon and proton. 
Overall, we noticed that there was a low correlation between DICE and 
dose metrics. 

This work was inspired by prior research on treatment plan scripting 
[24,23] to scale-up dose evaluation for auto-contours. However, some 
plans were still not of the highest possible quality since our four-step 
replication of the clinical process is a close, but imperfect emulation 
of a treatment planners approach. Non-iterative EUD optimization (step 
3), lack of synchrony in weight updates between the manual and auto-
mated approach (step 4), and re-use of control structures from POG to 
PMC and PAC (step 4), led to small deviations from the original planning 
process. These limitations cause PMC and PAC dose metrics to be 

Fig. 6. CT scans of photon (a–d) and proton (e–h) patients overlayed with a dose distribution as well as PTV (DL1) (orange), PTV (DL2) (blue), manual (pink) and 
automated (maroon) contours. Each example shows the POG, PMC and PAC plans from left to right. The dose metric in the sub-captions compares the absolute per-
centage difference of PMC − PAC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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imprecise which could potentially impact our results. For future work 
we would like to more closely mimic the optimization steps as well as 
consider control structures specific to each plan, rather than simply 
copying them. 

To conclude, we showed an automated approach to plan creation for 
retrospective studies that was employed for the use-case of evaluating 
the dose impact of auto-contouring software, at scale. We hope our re-
sults showcasing low dose impact of auto-contours will inspire others to 
investigate and eventually use them in clinical settings. 
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