
Fast step-response settling of micro electrostatic actuators operated at low air pressure using

input shaping

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Micromech. Microeng. 19 074020

(http://iopscience.iop.org/0960-1317/19/7/074020)

Download details:

IP Address: 131.180.130.109

The article was downloaded on 08/08/2011 at 10:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0960-1317/19/7
http://iopscience.iop.org/0960-1317
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF MICROMECHANICS AND MICROENGINEERING

J. Micromech. Microeng. 19 (2009) 074020 (5pp) doi:10.1088/0960-1317/19/7/074020

Fast step-response settling of micro
electrostatic actuators operated at low air
pressure using input shaping
L Mol1, L A Rocha2, E Cretu3 and R F Wolffenbuttel1

1 Faculty EEMCS, Department MicroElectronics/EI, Delft University of Technology, Mekelweg 4, 2828
CD Delft, The Netherlands
2 Department of Industrial Electronics, University of Minho, Campus de Azurém, 4800-058 Guimarães,
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Abstract
Squeeze-film damping is highly inadequate in low-pressure systems or in systems where air
pressure and/or gap dimensions are poorly defined. Input shaping has been used to circumvent
the oscillations typically associated with under-damped mass-spring-damper systems and
drastically decrease the settling time. The proposed method does not rely on feedback but
solely on the system dynamics. The required input signal is derived analytically from the
differential equation describing the system. The resulting device response is simulated and
experimentally verified on an electrostatically actuated microstructure. Settling occurs even
faster than for an equivalent critically damped system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Micro electro-mechanical systems (MEMS) that are used
in positioning applications (e.g., micro-mirrors [1], tunable
capacitors), desirably have a fast and accurate response to
the applied input signal. For MEMS that can be modelled
as second-order systems this translates to a critically damped
system response. The conventional approach is based on a
design in which gas damping in between the moving plate and
the static plate (the backplane) is used to obtain a critically
damped system.

Low-pressure devices find application in optical MEMS
intended for specific applications, where the absorption of
light in air has to be avoided. Damping at low pressures
close to vacuum has been extensively investigated for high-Q
resonator design [2–5]. Although other damping mechanisms
have been identified, the main damping mechanism remains
gas damping. However in this regime damping should be
considered an interaction between free molecules rather than
a viscous effect and is much less prominent [6, 7]. For low-

pressure-packaged devices gas damping is typically reduced
by two orders of magnitude and gas damping is insufficient.
The insufficient damping shows as oscillations (ringing) in the
step response, hence, in a much longer setting time.

Eddy-current-based damping could be adopted for
providing sufficient damping to ensure a critically damped
system. However, the need for a permanent magnetic field
arises. This undermines the case for micrometer-sized devices,
as permanent magnets are typically bulky and relatively
expensive.

Another alternative is to use electronic damping. In
principle, any signal that provides a counteracting force
proportional to the velocity of the moving object (plate) can
be used to provide damping. In the most-straightforward
implementation a velocity sensor could be used to generate
a voltage that is used in feedback to drive the same structure.
Obviously, this would yield a cumbersome system, which is
prone to instability. Additionally it can only be applied to
differential structures, since the electrostatic damping force is
always an attracting force.
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Figure 1. Schematic representation of a MEMS as a mass spring
damper system.

This work demonstrates the technique of input shaping
[8]. A simple modification (shaping) of the input signal is
shown to avoid the oscillations that normally occur when the
device settles from a step input. As a consequence the system
reaches its steady-state position faster. Input shaping does not
rely on feedback, but solely on prior knowledge of the system
dynamics. The required input signal is derived analytically
from the differential equation describing the system. The
approach can be extended to applications where damping is
critical and either the dimensions of the moving structure and
the air gap or the gas pressure are poorly defined.

In section 2 the technique and the analytical background of
input shaping are introduced. Section 3 introduces the device
and measurement set-up used for experimental validation. The
measurement results are presented in section 4, followed by
the conclusions in section 5.

2. Input shaping

The technique of input shaping is well known in the macro
world, where large relatively slow systems can benefit greatly
from faster settling (e.g., container cranes). It is based on
prior knowledge of the system dynamics. By using the prior
knowledge, a system can be driven with an input that cancels
the unwanted spurious parts of its response.

2.1. Second-order systems

MEMS can often be described in a simplified form as the mass
spring damper system as shown in figure 1. Such a system can
mathematically be described as a second-order system with
differential equation:

mẍ(t) + bẋ(t) + kx(t) = 0, (1)

where m is the mass, k is the spring constant and b is the
damping coefficient. Using the following,

ζ = b

2
√

km
and ω0 =

√
k

m
(2)

(1) can be rewritten in a more generic way as

ẍ + 2ζω0ẋ + ω2
0x = 0, (3)

where ζ is the damping ratio and ω0 is the natural frequency.
The step response of such a system in the case of under-

damping (0 � ζ < 1) is

1 − e(−ζω0t)

(
cos(ωdt) +

ζ sin(ωdt)√
1 − ζ 2

)
,

ωd = ω0

√
1 − ζ 2. (4)

Figure 2. Simulation of the step response of a critically damped (a)
and an under-damped (b) system. Also shown is the two-step input
waveform (c) for ζ = 0.2 that results in a settling-time optimized
device response (d).

The time and amplitude of the first overshoot peak can be
found by equating the derivative of the step response to zero
as (see figure 2)

tp = π/ωd and xpeak = 1 + e
(− ζπ√

1−ζ2
)
. (5)

Inspection of the step response unveils the potential for input
shaping. Note that at time tp the device has zero velocity. This
implies that the device would in principle maintain this position
if the input at that moment would correspond to a steady state
solution xpeak. Expressed differently: for each device position
there exists (i) a step input resulting in an overshoot to that
position and (ii) a step input with that position as its steady-
state solution.

For an initial duration tp the amplitude of the step input is
chosen such that its overshoot xpeak corresponds to the desired
final position. At time tp the input level is changed to keep
the device at its final value set point. Figure 3 illustrates the
concept.

2.2. Input shaping function

The above time domain analysis shows the concept of input
shaping in an intuitive way. A more generalized approach uses
the Laplace domain. The second-order system considered here
is assumed linear and time invariant. As shown in figure 2, a
second step input with adequate amplitude and time exactly
cancels the unwanted oscillations. This leads to the concept
of an input shaping function. It merely consists of two Dirac
pulses:

is(t) = 1

xpeak
δ(t) +

xpeak − 1

xpeak
δ(t − tover). (6)

Any input signal that is convoluted with the input shaping
function is(t) leads to a system response without overshoot.
The convolution simplifies to a multiplication in the Laplace
domain. The process is shown graphically in figure 4.
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Figure 3. (a) Input with shaping applied. (b) Response to signal in (a) where the coloured/dashed sections of the line correspond to each
other. The green dash-dotted line corresponds to the correct steady-state response. The blue solid line cancels the transient that would
appear if the input signal were to continue with the red dotted line.

Figure 4. Generalized input shaping example showing the
convolution of a reference signal with a shaper consisting of just two
Dirac pulses. The shaped input leads to a system response following
the reference as close as possible without any overshoot.

3. Experimental verification

In order to experimentally verify the concept of input shaping
a parallel-plate capacitive MEMS was used. The effectiveness
of input shaping is investigated and compared to the expected
results from simulation.

3.1. The electrostatic actuator

An electrostatically actuated 1-DOF MEMS structure with
separate drive and sense electrodes has been designed and
fabricated in an SOI process [9] and consists of a central mass
suspended on four folded springs (Figure 5). Four distinct sets
of electrodes are attached to a central moving bar with counter
electrodes at the substrate. The two narrow beam sets located
towards the centre of the device form a differential capacitor
that is used to read out the device displacement, while each
of the wider beam sets is used to excite the mass through
electrostatic actuation in either direction. Table 1 lists the key
properties of the device.

Figure 5. SEM image of the MEMS with the narrow electrodes in
the centre used as sensing capacitors and the wider ones on the
outside for electrostatic actuation. Insets show details of suspension
and stopper.

Table 1. 1-DOF MEMS device properties

Property Value Unit

Mass (m) 42.0 μg
Spring constant (k) 12.9 N m −1

Undamped natural frequency 2.84 KHz
Sense capacity (Cs) 1.12 PF
Device layer thickness (H) 25.0 μm
Length sense arm (Ls) 230 μm
Length actuation arm (La) 300 μm
Number of sense arms (Nsa) 40
Number of actuation arms (Naa) 18
Small gap size (w0) 2.29 μm
Large gap size sense electrodes (w1s) 14.3 μm
Large gap size actuation electrodes (w1s) 12.3 μm

The displacement readout is implemented with a two-
channel differential charge amplifier circuit and a coherent
detection mixer (figure 6). A 1 MHz carrier signal is injected
on the central movable part of the MEMS. Any motion of the
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Figure 6. Simplified schematic of the read-out circuit.

Figure 7. Chip photo of the AMIS 0.35 μm CMOS realization of
the two-channel differential charge amplifier with a coherent
detector circuit.

structure results in an input current of the read-out circuit. The
amplified AM modulated carrier signal is coherently detected
using a chopper mixer. The readout circuit has been integrated
in the AMIS 0.35 μm CMOS process and the photograph of
the 2.8 × 2.8 mm2 chip is shown in figure 7. The overall
displacement uncertainty of the combined sensor and readout
at a 2.8 kHz bandwidth is 1.6 nm.

3.2. Pressure-dependent damping

The amount of squeezed film damping is highly dependent
on the pressure of the gas surrounding the structure. By
operating the structure inside a vacuum chamber with variable
pressure the damping ratio of the resulting second-order
system can be controlled. Figure 8 shows a plot of the
calculated damping coefficient as a function of pressure. The
resulting system is highly under-damped (ζ � 1) for pressures
below ambient. The experimental verification was done at a
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Figure 8. Calculated pressure-dependent damping coefficient for
the device under test.
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Figure 9. Calculated input shaped electrostatic actuation voltage
needed to drive the MEMS at 10 mbar to 22% displacement of the
initial gap, without overshoot. The down-step has not been input
shaped for comparison.

pressure of 10 mbar, corresponding to a calculated damping
coefficient of 4.5 × 10−5 N s m−1.

3.3. Calculated shaped input

At the chosen operating pressure of 10 mbar, the system has a
damping ratio ζ of 0.0031. Together with the natural frequency
ω0 (table 1), it is used in equations (5) and (6) to determine
the input shaping function. In order to verify the concept we
calculated the needed shaped input for a device displacement
of 22% of the initial gap size. The resulting two-level step
input is defined in terms of force (N), however force cannot be
directly set. The actual input variable is the actuation voltage,
which generates the electrostatic force and has a quadratic
dependence on the applied voltage. The input shaped actuation
voltage waveform corrects for this quadratic relation. The
waveform is thereafter programmed into a function generator.
The removal of the actuation voltage results in a step down
to the initial position. In order to compare the difference in
settling time, no input shaping is applied to the step back to
zero. Figure 9 shows the calculated actuation voltage needed
for smooth device movement at 10 mbar.
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Figure 10. Measured actuator displacement with input shaping
applied on the rising edge, however not on the falling edge.

4. The measurement results

The structure was packaged in a non-sealed LCC28 carrier
and together with the CMOS readout chip mounted on a small
PCB. The complete PCB is mounted inside a vacuum chamber
with variable pressure, which is regulated to 10 mbar. Vacuum
compatible feed throughs allow the passage of electrical
signals in and out of the chamber. The structure is actuated
with the input shaped voltage step shown in figure 9. The
resulting displacement signal was fed to a data acquisition
board and sampled at 100 ksamples/s and further processed
in Matlab. The difference in the response is evident from
Figure 10. It is interesting to note that the exponential
rate of decay of the oscillations contains information on the
damping caused by the surrounding gas. With the use of
signal processing a curve fit is done on the decay envelope.
This confirms the damping coefficient b to be 4.53 × 10−5 N s
m−1 at 10 mbar as calculated and also confirms the simulated
results in figures 2 and 3.

5. Conclusions and future work

Input shaping for obtaining damping without squeeze film air
damping has been demonstrated. The technique is relatively
simple and can be applied without feedback. However, the
technique does depend on prior knowledge on the dynamics
of the structure and the gas pressure. In order to determine

the shaping function the natural frequency and damping ratio
need to be known. The technique is robust in the sense that
deviations from the optimal waveform due to uncertainties in
device parameters merely result in a slightly longer settling
time.

Although the reduction of settling time depends on the
damping ratio of the system and the selected settling threshold,
it can easily be orders of magnitude lower compared to step
inputs without input shaping.

The most interesting applications are in driving an array of
MEMS (e.g., micro-mirrors). Within this framework further
analysis of the technique is required on two issues. First,
the compatibility with a row/column drive scheme with a
common readout. Second, the susceptibility of the technique
to variations in the structural dimensions and uncertainties in
the gas pressure.
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