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Synopsis

This paper presents an effective autonomous follow-the-leader strategy for Azimuthal Stern Drive vessels.
The control logic has been investigated from a theoretical point of view. A line-of-sight algorithm is exploited
to ensure yaw-check ability, while a speed-check feature is implemented to track the velocity of the target along
the path. For this purpose, a linearised manoeuvrability model for azimuthal drive surface vessels is presented.
A model-based control synthesis is proposed to ensure the stability of the closed-loop system and robust PID
controllers are designed by using Linear Matrix Inequalities technique. The control strategy has been successively
validated in two steps, initially by using simulation techniques, and then experimentally using an outdoor scenario
with model scale tugs.

The path planning, navigation, guidance and control modules are studied, detailed, and digitally implemented
on-board of the model scale tugs. The models are supplied with GNSS+INS navigation system. Low-level
management and control of Azimuthals angles and shaft revolutions is implemented on-board. High-level decen-
tralised path planning, guidance, and control sequence evaluation are dealt with at a remote ground station.

In particular, the presented follow-the-leader strategy meets the most generic needs of platooning convoys,
and, in the specific instance, of Escort convoy tugs. The operative profile of the latter concerns long-lasting and
routine chases with the continuous demand of tuning heading and speed to track the target vessels, until the rare
occurrence of an emergency event. In a realistic scenario, the proposed control system would be beneficial for
the tug master’s lucidity and alertness, while reducing avoidable risks.

At the end of the paper, the results of the experimental campaign are shown to demonstrate the effectiveness
of the proposed control logic.

Keywords: Follow-the-Leader, Tugs, Azimuthal Propulsion, Line-of-Sight, Path-Following, Platooning

1 Introduction
The art of navigation is one of the most crucial tasks each bridge officer should facing with. Nowadays with the

development of the technologies, the design of a control system in guaranteeing the highest quality and reliability
becomes imperative and creates several challenges for the scientists.

The most of the operative life of a sailing vessel itself concerns the ability to track in route and speed a pre-
determined path, basically in open waters and oceans; however, the capability of forming convoys and following
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a leading target-vessel within its wake becomes a valuable feature in both blue seas and busy/restricted areas. In
the last scenario, the two main challenges are to steer and keep off-track tolerances to a minimum threshold and to
tune speed accordingly to the leader, while keeping a safe distance.

In this instance, this paper presents an effective autonomous follow-the-leader strategy valid in general for
Azimuth-Drive surface vessels. The azimuth-driven class of vessels is connotated by high and flexible 0-360°
thrust allocation features and manoeuvring capabilities. These qualities turn to be ideal for both work-vessels such
as tugs and Offshore Supply Vessels (OSV) (z-drive ducted propellers), and merchant vessels (ducted or podded-
propellers) that approach to restricted/inland areas and harbours without the need of external assistance. The class
of azimuth-driven vessels indeed represents the most competitive solution in handling for steering vessels both at
low and high-speed, and thus moved the prime interest of the authors.

The ability to follow a moving target along its route meets the most restrictive needs of sailing in crowed and
restricted areas, such as harbours and channels, where traffic management is crucial (Schiaretti et al., 2017a,b).
The narrower the navigation lane, the greater the demand of precision of the guidance, the navigation and the
control (GNC) system. This dictates the requirement of gathering vessels in assembled and neat “train” convoys
in compliance with the traffic control rules, i.e. multi-body vessel platoons. In particular, especially this theme is
believed by the authors to be a crucial step towards autonomous shipping in the EU social perspective, and thus
moved the rationale of the study.

Several works in the literature deal with the theoretical idealisation and design of aided-navigation follow-the-
leader control systems (Caccia et al., 2008; Encarnação and Pascoal, 2001; Ghommam and Saad, 2018; Pettersen
and Nijmeijer, 1998; Breivik et al., 2008; Xie et al., 2018; Bibuli et al., 2012; Chen et al., 2019, 2018; Chen
et al., 2019), but most of them remain simulation-based, and not fully-contextualized with real vessel dynamics
and modelling. Amongst them, many parties work with experimental demonstration of the trustworthiness of the
algorithms (Schiaretti et al., 2017b) but, in any case, only few presented results for follow-the-leader techniques
(Bibuli et al., 2009; Zhang et al., 2019; Belleter et al., 2019). In particular, almost no model experiments in
an outdoor GNSS-INS based navigation systems exist. Switching from simulation to real testing indeed is a
great challenge. A reliable simulation environment certainly is strategic for model-based control design purposes
(Martelli et al., 2019; Alessandri et al., 2019), but real world always overcomes many of the ideal assumptions made
to build it. The algorithms precision must deal with real-odometry complications and real system non-linearities
(Donnarumma et al., 2018; Martelli and Figari, 2017). Moreover, as most of the times engineering applications
suggest, the simplest the system, the most robust. The degree of sophistication of the algorithm cannot disregard
the quality and precision of the whole system itself.

The novel algorithm presented in this work proposes an effective autonomous follow-the-leader strategy for
Azimuthal Stern Drive vessels. The control logic is investigated from a theoretical point of view. The well-
consolidated line-of-sight algorithm (LOS) is exploited to ensure yaw-check ability, while a simple supplementary
speed-check feature (LOS+V) is implemented to track the velocity of the target along the path (Fossen et al., 2003;
Breivik and Fossen, 2004; Donnarumma et al., 2020). To this purpose – an original linearised manoeuvrability
model for azimuthal drive surface vessels is deduced starting from the complete non-linear modelling proposed
by Piaggio et al. (2019); Figari et al. (2020). In combination with this, a novel model-based control synthesis is
proposed to ensure the stability of the closed-loop system and robust PID controllers are designed by using Linear
Matrix Inequalities (LMI) techniques (Alessandri et al., 2015). Finally, the control strategy has successively been
validated in two steps by Piaggio (2020), initially by using simulation techniques, and then experimentally in a
unique outdoor scenario with model scale vessels. The present paper presents a brief insight into the preliminary
experimental results.

The whole picture discloses an innovative and proactive control-design framework for azimuth-drive surface
vessels, starting from its theoretical formulation, passing through an original LMI model-based synthesis, and
finally leading to its practical and successful system implementation in the real world.

1.1 System Architecture
The block algebra representing the proposed Follow-the-Leader strategy is reported in figure 1. The goal of the

control feature is the pursuit of the target ship with converging cross-track error and speed to the leader’s path. The
following vessel receives the position of the leader that is moving in front of it through the communication system,
managed by the ground station. The control inputs of the following tug are the azimuth angles and the revolutions,
and they are assessed by the on-board control station.

The path-planning module first collects, records, and elaborate target’s trajectory on board the tug. Then, the
Guidance, throughout a line-of-sight algorithm processes and translates the relative position errors into heading
and speed set-points.

The module LMI-PID control includes the heading and speed pilot control system, they convert heading and
speed errors into actuators lever positions (azimuth angle and shaft-line revolution), which are the most suitable
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Figure 1: Follow-the-Leader scheme

control actions to comply with the path-following control goals.
The navigation module is designated to sense and observe positions, speeds and headings.
A closed-loop structure arises, based on path planning pre-processed relative positioning and speed consider-

ations. The stability of the cascaded guidance and control modules must be ensured in each sub-part in the tug
perspective. Last but not least, the measurement quality and reliability of both the navigation modules must be
guaranteed.

1.2 Experiments
A model-scale outdoor experiment with two 1:33 Azimuthal Stern Drive tugs is presented (figure 2 – for

full details see Haseltalab and Negenborn (2019)). The models, named TN3212, are equipped with an IMU unit
(magnetometers, accelerometers, gyroscopes) and a GPS. The models are controlled in RPMs and Azimuth angles,
locally, with a low-level loop. The guidance and control of navigation are realised by means of two independent
decentralised computers which close the high-level feedback loop. A communication bridge between the two
broadcasts and echos the position information. A wireless serial communication protocol is adopted. Complete
details can be found in the experimental setup section.

Figure 2: TN3213 models & ground-Station

The paper is structured as follow: Section 2 reports the theoretical insight into the Mathematical Formulation of
the Follow-the-Leader strategy. The details of the Path Planning, Guidance and Control modules are supplied with
the linearised vessel model used for design purposes. Moreover, in Section 2.4, the application of LMI techniques
for the PID design is shown. Section 3 reports the proposed experimental setup and the manoeuvres carried out to
validate the proposed strategy. Many promising results and conclusions are drawn consequently, in the Section 4.

2 Mathematical Formulation
Figure 3 sketches the details of the problem’s geometry. The path recording and filtering of the leader-vessel

trajectory could be liken to the role of the classic Path Generation step. According to this, a complementary Line-
of-Sight & Speed-check algorithm [LOS+V] is used to supply suitable heading and speed set-points (Breivik and
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Figure 3: Geometrical overview of the algorithm LOS+V

Fossen, 2004; Fossen et al., 2003), whose aim is to ensure the geometrical convergence of the guidance module
to the traced path. Then, the considered tugs’s model is presented, which results from the linearisation of the non
linear one detailed in (Piaggio et al., 2019; Figari et al., 2020; Piaggio, 2020), at cruise speed.

The autopilot and speed-pilot controllers are based on the azimuthal actuators, given by the helm angles and
propeller revolutions. Two PID controllers are designed by relying Lyapunov arguments, according to Linear
Matrix Inequality techniques (Alessandri et al., 2015). The closed-loop stability in both heading and speed is
thus guaranteed. In conclusion, the overall system’s stability is thus ensured in agreement with the cascaded-
hierarchical architecture.

2.1 Path-Planning
The leader’s trajectory is collected and processed by the follower’s path planning module in order to supply a

regular and smooth trajectory to be fed to the guidance and control algorithm. A filtering process is included in the
preprocessing of the leader’s raw-GPS data. It has been used a Savitzky-Golay filter, which is a digital linear time-
invariant convolution filter: the principle is based on the discrete signal fit over a moving window (size m samples)
with a low-degree polynomial (e.g. cubic). Linear least-squares method is applied. Successive subsets of adjacent
data points are analysed, and the convolution coefficients are derived through pseudo-inverse WWW = (HHHT HHH)−1HHHT .
As a result, the output signal is re-sampled and smoothed.

x̄xxi
target = (WWW ∗ xxxtarget)i =

m−1
2

∑
j=−m−1

2

WWW ixxx
j+i
target (1)

One of the advantages of the method is the easy recursive implementation and the simplicity in evaluating
differentials and derivatives. The smoothness of the trajectory to be followed combined with the regularity of its
derivatives is beneficial for the path and set-point generation to be fed to controllers.

2.2 Guidance System
The guidance system is split in two parts: a line-of-sight and a speed-check module. A description of both of

them is detailed in the following.

2.2.1 Line-of-sight Algorithm
The geometrical task of the convergence of the tug’s position cross-track error επ⊥ is achieved by means of the

vessel’s heading-check. The LOS guidance algorithm generates a sequence of LOS angles ψLOS, toward which the
ship must head to succeed in the pursuit. The forward intercepting LOS point allows to find the latter angle xxxLOS

π
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of the look-ahead circle of radius ∆LOS = nL centred onto the tug xxxtug with the smoothed trajectory traced by the
target πππ(t): { ∥∥xxxLOS

π − xxxtug
∥∥= ∆LOS

dπππ

dt (xxx
LOS
π ) ·∆∆∆LOS > 0

(2)

The LOS intercept is selected such that the dot product in between the LOS vector ∆∆∆LOS = xxxLOS
π − xxxtug and

the path tangent velocity vector π̇ππ = dπππ/dt is strictly positive, i.e. is the one guaranteeing an advance speed
contribution in the direction of the target displacement. Thus, LOS intercept angles ψLOS and local tangent to the
intercepted path γLOS can be easily derived, exploiting simple trigonometric considerations:

ψLOS = tan−1 yLOS
π − ytug

xLOS
π − xtug

(3a)

γLOS = tan−1 ẏLOS
π

ẋLOS
π

(3b)

2.2.2 Speed-check Algorithm
During the path following task, the vessel is subject to the dynamic requirement of adjusting and conforming its

speed to the target, i.e. the transit velocity along the path traced by the leader vessel Vπ(t) = ‖ π̇ππ ‖. This is driven
by the LOS intercept local path speed in the time parametrisation V LOS

π (t) = ‖ π̇ππ (xxxπLOS)‖, plus an additional cruise
control input action dVcc, which enables the system to get nearer or further to the target:

Vtug −−→
t→∞

‖ π̇ππ(xxxπLOS) ‖+dVcc (4)

2.3 Vessel’s Dynamics
Starting from Piaggio et al. (2019, 2020); Piaggio (2020), a 3-DoF linearised version of the tug dynamics

is derived around the straight-ahead sailing point at design speed ud for the present control-design scope. The
hydrodynamic modelling of the vessel distinguishes the contributions in two main parts: H and AZ superscripts
denote hull and azimuthal contributions, respectively. Jacobians of both the hull, azimuthal, and interaction parts
are exploited in terms of kinematics, i.e. velocities ννν = [u,v,r]T , its derivatives, i.e. accelerations ν̇νν , and its control
actions uuu = [n,δ ]T . The position of the vessel in the earth-reference η = [x,y,ψ]T can be obtained by means of the
planar rotation of the body-fixed velocities ννν . Complete equations are thus deduced in concise matricial form:

(MMM+MMMA)ν̇νν + C̄CCννν− D̄DDννν = τ̄ττAZ [nnn,δδδ ]T (5a)
η̇ηη = RRR(ψ)ννν (5b)

where C̄CC represents the linearised Coriolis-centripetal matrix at the design speed, and D̄DD summarises the lin-
earised passive damping matrix in which the hull’s and azimuthal’s passive hydrodynamic contributions merge;
RRR(ψ) is the rotational matrix; MMM+MMMA represents the mass and added-mass matrices.

The active part of the azimuthals is retained in the actuator forces array τ̄ττAZ . In detail, the latter counts the
portside and starboard contributions. This plays the role of the control input array uuu in terms of the azimuth angles
and revolutions, where uuu = [n,δ ]T .

In the linearised context (small variations of the variables), propeller revolution, and azimuth angle effect
play separated roles in surge and sway+yaw dynamics, de facto uncoupling completely the problem in two sub-
problems. Moreover, port-side and starboard-side azimuthals contributions become identical, leading to a factor 1
or 2 in case they are used individually or twin.

At the end, actuation dynamics are included and simplified through two additional first-order differential equa-
tions. Time constants representative of the response of azimuthal’s revolution raise τn

AZ and helm angle settling
τδ

AZ are thus introduced to model mechanical/control limits to systems’ step responses to revolution nSET and helm
angle δSET setpoints.

ṅ = 1/τ
n
AZ(nset −n) (6a)

δ̇ = 1/τ
δ
AZ(δset −δ ) (6b)
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2.4 LMI-PID Control System
2.4.1 PID Controllers

The maritime industrial practice fosters the simplicity and robustness of control algorithms (Donnarumma
et al., 2018; Martelli and Figari, 2017). PID structures indeed enable to control successfully most of the me-
chanical systems, which are reducible to second-order dynamics, by means of suitable zeros and poles placement
techniques in the frequency-domain. The control is achieved by evaluating the actual error of the desired quantity
to be controlled and by devising a suitable control action. Three coefficients are adopted for the tuning, i.e., the

proportional kp, integral ki, and derivative kp parameters. The transform function to be dealt is G(s) = kds2+kps+ki
s .

Speed eu := (ur−u) and heading eψ := (ψr−ψ) error dynamics in closed-loop are given by:

nset = ku
peu + ku

i

∫ t

0
eu(τ)dτ + ku

d ėu (7a)

δset = kψ
p eψ + kψ

i

∫ t

0
eψ(τ)dτ + kψ

d ėψ (7b)

which reads the necessity of inclusion of two new state variables ε̇u :=
∫ t

0 eu(τ)dτ and ε̇ψ :=
∫ t

0 eψ(τ)dτ ,
describing the dynamics of the integral errors during the system’s evolution.

2.4.2 LMI Controller Synthesis
The present section proposes the control synthesis technique based on Lyapunov stability of linear systems

(Alessandri et al., 2015). The modelled architecture lays the ground on the augmented linear system described
by the set of tug’s dynamics and kinematics (Eq. 5), the actuation dynamics (Eq. 6) and the control dynamics
augmented of the error dynamics (Eq. 7). Let xxx = [u,v,r,ψ,n,δ ,εu,εψ ]

T be the augmented state of the system, and
AAA its resulting augmented transition matrix. The resulting linear matrix description of the system is thus so derived
by means of the state feedback control action uuu =−KKKxxx, where the matrix KKK collects the PID parameters. Explicit
complete closed-loop dynamics are thus obtained:

ẋxx = (AAA−BBBKKK)xxx+EEEuuuset (8)

The aim of the controller design is the evaluation and shaping of the stability properties of the (AAA−BBBKKK) closed-
loop matrix up to the shifting part EEEuuuset . Lyapunov stability criteria concern the individuation of a matrix QQQ > 0
such that, for xxx , 0:

V (xxx) = xxxT QQQxxx > 0 (9a)

V̇ (xxx) = ẋxxT QQQxxx+ xxxT QQQẋxx < 0 (9b)

Given the state dynamics – which depends on the state-feedback control matrix KKK – the problem is laid down
in the two matrices unknowns QQQ and KKK. The system is quadratically stabilisable if this pair is such that:

QQQ > 0 (10a)

(AAA−BBBKKK)T QQQ+QQQ(AAA−BBBKKK)< 0 (10b)

Equivalently, the same blinear expressions are converted to a linear problem, by pre and post-multiplying for
QQQ−1, and switching variables to the pair PPP := QQQ−1 and YYY := KKKQQQ−1. This results in the more convenient LMI form
given by:

PPPAAAT −YYY T BBBT +AAAPPP−BBBYYY < 0 (11)

The proportional, derivative and integral control gain is thus deduced once the problem is solved, reversing
back to the original variables, i.e. KKK = PPP−1YYY .

3 Experimental Validation
3.1 Set-up & Facilities

In order to validate the previous controller synthesis, an experimental campaign is designed and carried out.
Two 1:33 TN3212 model-scale Azimuthal Stern Drive tugs (Fig. 2) were instrumented for outdoor remote-
controlled navigation (Fig. 4).
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The TN3212 manoeuvring linear coefficients were deduced and calibrated according to a customary identifi-
cation optimisation process in the first steps of the experimental activities, based on Piaggio et al. (2019); Piaggio
(2020). A sketch of the experimental set-up scheme is reported in figure Fig. 5. Each vessel was equipped with two
distinct Arduino Mega 2560 micro-processors MCU, the “Main” and the “Navigation.” The former is responsible
for the low-level control and communication; the latter manages the sensor’s data.

Figure 4: Experimental model-tests
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Figure 5: Experimental set-up

The Main Processor was intended as the local on-board low-level controller of azimuthals in angles and revo-
lutions and the querier and collector of the sensed telemetries. The internal clock rate was shaped on the engine’s
shaft revolution frequencies so that it was possible to manage its control. Engines’ maximum rates are about 3300
RPMs. The management of the PWM DC-engine powering in revolution and the helm servo in angle are internally
feedback loop controlled.

The Navigation Processor was devised for gathering the freshest onboard navigation instrumentation data at
100HZ sampling frequencies, ready to supply it to the Main at any query. A geo-reference GPS receiver (Ublox
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Neo-7m - 1 Hz) and an inertial 9-DoF IMU sensor (Adafruit BNO055 - 100 Hz) were installed onboard. Interrupts
and callbacks were exploited with such an aim. Serial communication is supplied to connect to the Main processor
directly.

On-shore Control Stations Decentralised high-level control was conceived through two independent laptops,
connected by means of wireless Xbee asynchronous serial communication to the vessels. At PC’s query the vessels’
Mains forward the telemetries, the computer elaborates and replies to the vessel with control inputs. Path-Planning
and Guidance were thus remotely processed and overlaid onto the screen in a user interface, while control actions
were sent back to the vessels, in this way closing the high-level feedback loop. A high-level 10 Hz control loop
frequency was guaranteed to appreciate model scale dynamics and kinematics useful for guidance and control
together with the INS refresh, while GNSS updates run at 1 Hz.

Bridge Communication A second wireless Xbee asynchronous serial cross-communication between the laptops
was set-up in order to share relative positioning information. Leadership telemetry was constantly shared to the
trailing tug by means of another callback, triggering at each data refresh. In case of delay in refreshing or commu-
nicating new data, the tug proceeds with previous information and estimates without crashing. The two tugs were
thus conceived completely independent and robust to each other failure and in case of emergency fully recoverable
in real-time manual mode.

Experiments were carried out at TUDelft facility lake, which is about 25×25m sized (Fig. 4). Manual control
through a joystick was provided to start navigation and backup in case of failures to recover the vessels. The
Follow-the-Leader strategy was activated, once the vessels were initialized at speed. The integral part was smoothly
activated to avoid initial bump cumulative errors. No tow line was secured in order to check the best suitability of
the controllers without its aid. Azimuthals were helmed parallel and tuned synchronously in engine revolutions.
The maximum angle was selected about 45 deg, while max engine revolutions were about 3300 RPM. Experiments
have been conducted with a sailing speed such as in full-scale correspond to a ranges of 6-12 knots. The orange tug
is the leader, manually or automatically sailing with varying course and speed, while the blue tug autonomously
follows (see Fig. 4) .
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Figure 6: Experimental model testing – 8-Runs

3.2 Results
The proposed validation manoeuvring scenarios concerns an 8-shaped pattern of tight turnings with varying

speed, where the leader vessel was sailed manually, while the follower engaged the pursuit.
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Figure 7: Experimental model tsting – 8-Runs controllers

The convoy trajectories are depicted in Fig. 6(i). The orange tug is the leader (orange lines and markers),
while the blue one follows (blue lines and markers). Crossed markers refer to the raw measurements of positions,
processed then by the Path-Planning algorithm, which results in the solid smoothing lines. The squared and
diamond markers point the start and the end of the tests, respectively. The convergence of the system in position
is immediately geometrically noticeable by keeping bounded the cross-track errors within 0.3m in average: the
cluster of trajectories positively narrow tightens, especially with in mind the normal GPS limitations at very small
scales. The presented complete test successfully lasted 10 minutes without human intervention.

For the reader’s convenience, an extract of the first 300 s of the test is reported in the following rows. The
LOS algorithm intercept coordinates (north and east) and its descending heading and speed guidance set-points
are overlaid to the actual quantities in Fig. 7(ii) time-series. Controllers are started as soon as the path-planning
algorithm is pre-filled and initialised within the first 10 s. Once the target is engaged, control set-points and actual
quantities almost result in a time-delayed version of the leader’s state at regime up to the self-induced control

Proceedings of the International Ship Control Systems Symposium (iSCSS)

International Ship Control Systems Symposium (iSCSS) 2020 https://doi.org/10.24868/issn.2631-8741.2020.004



oscillations during transient phases. In fact, the follower’s series (blue marks) responsively converge in position to
the LOS target intercepts values at algorithm’s engagement (red marks), efficiently reacting at the leader’s heading
and speed variations (see actual values – blue marks – overlapping to set-points – black marks). This positively
depicts the algorithm’s ability in retracing the leader’s path and speed at a safe distance, always keeping within its
wake.

Fig. 7(iii) shows the vessel’s control sequences, i.e. helm azimuth-angles and propeller revolutions. Error
time-series in heading and speed (red, left axis) are compared with the actual azimuth control actions in angles and
revolutions (black, right axis). This representation is used to emphasize the closed-loop response of the system.
The initial transient phase (5-10s) in the activation of controllers is rapidly handled with a satisfactory convergent
response. Then, in detail, the two controllers both track the smoothly changing and the faster step-wise switching
set-points. On the one hand, faster and harsher responses are dealt with by heading-check controller due to the
fast response to the action of azimuthals’ helming. On the other hand, intentionally softer raise and descent in
speed occur due to the slower dynamics in the surge speed. As a consequence, both heading and speed errors
satisfactorily tend to zero in average.

4 Conclusions and further research
Follow-the-Leader techniques development – from design to testing – are relevant themes in the shipping

world indeed, with a substantial social impact especially in the EU’s vision. On the one hand, the subject matter
deeply pervades many civil applications, for instance, the restricted waters and inland navigation, and in partic-
ular: the platooning of autonomous vessels and barges along inland corridors and the deployment of Escorting
routes. On the other hand, the same permeate both the research and naval field, e.g. swarming, platooning, survey-
ing/reconnaissance and cooperative formation of unmanned vehicles.

Under these terms, an original and straightforward Follow-the-Leader control-strategy for azimuth-drive sur-
face vessels has been theoretically investigated, practically designed and experimentally validated in a novel out-
door GNSS+INS-based model scale campaign. This originally closes the loop of an innovative and proactive
control-design framework from theory to the real world.

The yaw-check ability of the LOS algorithm and the speed-check tracking feature are experimentally verified
based on a well-established theory. The algorithms are simultaneously active contemporary, ensuring convergence
without negative interference. When turning, the speed loss and the heading errors steps are dealt from the con-
trollers smoothly, demonstrating the robustness of the proposed controllers. The manoeuvring non-linearities do
not undermine the effectiveness of the PID control in case of narrow turning, as it result from using the linearised
model and the LMI-based controller synthesis.

The experiment satisfactorily demonstrates the efficacy and robustness of the tracking algorithms in all the
complications of an experimental set-up which involve real-world non-scalable instrumentation precision and ac-
curacy, wireless serial transmission delays, and lost ticks of two contemporary hardware and software independent
vessels, and multi-machine clock synchronisation issues. The algorithm is simple, robust, and recursive at each
time step to suit digital microprocessor programming and wireless XBee asynchronous serial communication in
the high-level feedback loop at about 10 Hz.

Further investigations will be carried out by accounting for environmental disturbances within the theoretical
framework, in spite of the non-ideal testing conditions, which were been successfully positively managed by the
proposed control setup.

In conclusion, the small scale complications given by the accuracy of the GPS system (that could be improved
by using dGPS techniques) and the adoption of a simple and almost straight-scalable navigation and communica-
tion equipment satisfactorily fosters promising results for future real full-scale applications.
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Acronyms

dGPS Differential Global Satellite System.
DoF Degrees of Freedom.
GNC Guidance, Navigation and Control.
GNSS Global Navigation Satellite System.
GPS Global Satellite System.
IMU Inertial Measurement Unit.
INS Inertial Navigation System.
LMI Linear Matrix Inequalities.
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LOS Line-of-Sight.
LOS+V Line-of-Sight + Speed-check.
MCU Microcontroller unit.
OSV Offshore Supply Vessels.
PID Proportional, Integral, Derivative.
PWM Pulse Width Modulation.
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