MSc Geomatics for the Built Environment | Thesis presentation

## Automated rooftop solar panel detection through Convolutional Neural Networks

Simon Pena Pereira

1<sup>st</sup> supervisor: 2<sup>nd</sup> supervisor: Co-reader:

**ŤU**Delft

Dr. Azarakhsh Rafiee Dr. Stef Lhermitte Dr. Roderik Lindenbergh





**T**UDelft

#### **Introduction - Research Questions**

Main question:

To what extent is a CNN with U-Net architecture suitable for detecting PV panels on rooftops in aerial images?

#### Sub-questions:

- What is the impact of different land use types on the detection of PV panels?
- How is the correlation between roof and panel color affecting the detection of PV panels?
- What is the effect of adding near-infrared data to aerial images on the detection of PV panels?
- How sensitive is the model towards lower resolutions with regard to the panel size?



## Theoretical background

#### **Convolutional Neural Network**

ightarrow Extracts high-level semantic information from images

#### **Semantic Segmentation**

ightarrow Classified image in which each pixel is associated with a class

#### **U-Net architecture**

• contracting path (left)

expansive path (right)





(Ronneberger et al., 2015)



## Methodology - Overview





#### Technical Implementation – Define Study Area



|                           | commercial | city center | suburbs | total  |
|---------------------------|------------|-------------|---------|--------|
| Area (km <sup>2</sup> )   | 1,393      | 7,694       | 2,227   | 11,314 |
| Buildings                 | 638        | 20,998      | 5,055   | 26,691 |
| Buildings/km <sup>2</sup> | 456        | 2,729       | 2,270   | 2,359  |

**T**UDelft

#### 1. Commercial area:

.

- 295 PV panels
- White-greyish roof

#### 2. City center:

- 40 PV panels
- Greyish roof

#### 3. Suburbs:

- 28 PV panels
- Red roof







|                                                       | commercial | city center | suburbs | total  |
|-------------------------------------------------------|------------|-------------|---------|--------|
| Buildings with PV panels                              | 31         | 62          | 78      | 171    |
| PV panels                                             | 7,994      | 2,431       | 2,083   | 12,508 |
| Mean PV panels/building                               | 258        | 39          | 26      | 73     |
| Buildings (with PV panel) mean size (m <sup>2</sup> ) | 1,364      | 418         | 140     | 410    |

#### Technical Implementation – Pre-processing steps



#### Technical Implementation – U-Net configuration



#### Technical Implementation – Model Evaluation



#### **Qualitative analysis** (Visual assessment)

- Comparing images, labels, predicted probabilities, and prediction masks per sample and between areas
- Analysis of mean reflectance per rooftop
  - Labels
  - True Positives
  - True Negatives
  - False Positives
  - False Negatives

#### Technical Implementation – Loss function & learning rate





(f) Learning rate = 0.0001

100

| Area      | loss function | accuracy (%) | precision (%) | recall (%) | F1-score (%) | IoU (%) |
|-----------|---------------|--------------|---------------|------------|--------------|---------|
| all areas | BCE           | 98.87        | 95.32         | 87.29      | 91.13        | 91.25   |
| all areas | FL            | 99.21        | 94.36         | 93.76      | 94.06        | 93.97   |

#### City center (100 images):

| loss | LR   | accu. (%) | prec. (%) | recall (%) | F1-score (%) | IoU (%) |
|------|------|-----------|-----------|------------|--------------|---------|
| BCE  | 1e-2 | 96.91     | 84.74     | 22.63      | 35.72        | 59.31   |
| BCE  | 1e-3 | 98.11     | 90.49     | 55.93      | 69.13        | 75.45   |
| BCE  | 1e-4 | 99.23     | 93.97     | 85.1       | 89.31        | 89.95   |
| FL   | 1e-2 | 96.21     | 0         | 0          | 0            | 48.1    |
| FL   | 1e-3 | 98.04     | 98.39     | 49.17      | 65.57        | 73.39   |
| FL   | 1e-4 | 98.90     | 84.57     | 86.76      | 85.65        | 86.88   |

#### Taken parameters:

- Binary cross-entropy (BCE)
- Learning rate: 0.0001
- Optimizer: adaptive moment estimation (Adam) ۲



#### Training and testing experiments

- Training and evaluating a U-Net within the same area
   based on TrueDOPs at a resolution of 10 cm with RGB channels
- 2. Evaluating the U-Net's performance based on cross-validation
- 3. Evaluating the U-Net's performance by training and evaluating with **Near-infrared** (NIR) data
- 4. Training and assessing the U-Net on **lower-resolution** TrueDOPs



## Results – General classifications of all areas







| Area        | precision (%) | recall (%)  | F1-score (%) | IoU (%) |
|-------------|---------------|-------------|--------------|---------|
| commercial  | 89.40         | <b>91.5</b> | 90.44        | 88.96   |
| city center | 89.1          | 85.59       | 87.31        | 88.25   |
| suburbs     | 97.86         | 60.66       | 74.89        | 78.96   |
| all areas   | 91.64         | 88.74       | 90.16        | 90.36   |

- Best overall results: Commercial- and all areas
- Poorest result: Suburbs

## Results – General classifications of all areas



**T**UDelft

## Results – Analysis of potential artifacts

#### Does the U-Net produce artifacts at the patches' edges?

- → Heat map of all False Negative Classifications (False Negatives → Not detected PV panels)
- $\rightarrow$  No systematic error can be found



# Results – Cross-validation: commercial area, city center, and suburbs





#### Results – Classification based on TrueDOPs including NIR data

| Area        | precision (%) | recall (%) | F1-score (%) | IoU (%) |
|-------------|---------------|------------|--------------|---------|
| commercial  | 93.91         | 84.07      | 88.72        | 87.35   |
| city center | 92.07         | 83.41      | 87.53        | 88.45   |
| suburbs     | 96.81         | 52.65      | 68.21        | 74.71   |
| all areas   | 94.06         | 89.55      | 91.75        | 91.81   |



→ Negative impact on the classification of suburb images



## Results – Classification based on TrueDOPs including NIR data



## Results – Classification based on TrueDOPs including NIR data











**T**UDelft



 $\rightarrow$  Mean reflectance indicates similarities between PV panel and ground truth data

#### Results – Classification of lower-resolution TrueDOPs

| Area        | precision (%) | recall (%) | F1-score (%) | IoU (%) |
|-------------|---------------|------------|--------------|---------|
| commercial  | 87.29         | 85.17      | 86.22        | 86.89   |
| city center | 93.12         | 12.47      | 22           | 55.4    |
| suburbs     | 85.46         | 28.12      | 42.32        | 62.89   |
| all areas   | 77.09         | 62.09      | 68.78        | 75.04   |



Delft



- Barely any impact on training in the commercial area
- Performance drop for all areas, city center, and suburbs
- Notably: Low recall score for city center/suburbs

#### Results – Classification of lower-resolution TrueDOPs



20

## **Discussion - Hyperparameters**

| Weight initialization                                                                                                                                | Epochs                                                                                                                                                                                     | Loss function                                                                                                                                                                                 | Learning rate                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| <ul> <li>Transfer-learning could<br/>prevent from fluctuations in<br/>the training</li> <li>Pre-trained weights based<br/>on RGB channels</li> </ul> | <ul> <li>No early-stopping</li> <li>Strongly depends on the model's performance and the number of input images</li> <li>Preventing different regions from over- or underfitting</li> </ul> | <ul> <li>Binary cross-entropy<br/>outperformed Focal loss</li> <li>Weighted loss functions to<br/>address class imbalance</li> <li>Class imbalance is not<br/>present in all areas</li> </ul> | <ul> <li>Depends on the number of<br/>input images and on the<br/>performance</li> </ul> |
| → randomly by He uniform to<br>allow comparison between<br>RGB and NIR                                                                               | → 60 epochs                                                                                                                                                                                | → Binary cross-entropy                                                                                                                                                                        | → 0.0001 due to few training images                                                      |



## Discussion – Quantitative & Qualitative Results

|   | <b>RGB</b> classifications                                        |   | <b>Cross-validations</b>                                                                                                |   | Near-infrared                                |   | Lower-resolutions                                                                     |
|---|-------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------|---|---------------------------------------------------------------------------------------|
| • | Higher precision than recall score except for the commercial area | • | Performance drops when<br>validating the model in a<br>different region than where<br>it was trained (Jong et al. 2020) | • | Rarely examined in research<br>Mixed results | • | Lower precision due<br>misclassification of small<br>objects                          |
| • | Heterogeneous rooftops<br>cause more false negatives              | • | Similar effect on a local<br>level, especially between<br>commercial areas and<br>suburbs                               |   |                                              | • | Significant drop in recall<br>scores for heterogeneous<br>areas with class imbalances |



## Limitations

- Collecting ground truth data: Only annotations of high confidence
- Amount of input data: Little training data
- Data augmentation: No changes of brightness, contrast, saturation, or hue
- Output format: PNG instead of TIFF



#### **Conclusions – Research Questions**

**Sub-questions:** 

• What is the impact of different land use types on the detection of PV panels?

Answer: + Commercial area: Homogeneity of commercial areas + large PV systems  $\rightarrow$  facilitate detection

- Suburbs: Greater variation of rooftops + smaller PV systems  $\rightarrow$  poor classification results

• How is the correlation between roof color and panel color affecting the detection of PV panels? Answer: + Commercial area: High contrast  $\rightarrow$  facilitates detection

- Suburbs: Low contrast between black roofs and black PV panels  $\rightarrow$  impairs detection rate



## **Conclusions – Research Questions**

Sub-questions:

- What is the effect of adding near-infrared data to aerial images on the detection of PV panels?
- Answer: + All areas: Slight improvement; might be caused by inconsistency of training
  - Suburbs: Causing more false negatives
- How sensitive is the model towards lower resolutions with regard to the panel size?
- Answer: + Barely any effect when detecting large PV systems
  - Sensitive towards lower-resolution images with small PV systems



## **Conclusions – Research Questions**

Main question:

To what extent is a CNN with U-Net architecture suitable for detecting PV panels on rooftops in aerial images?

Answer:

- A U-Net is suitable for classifying PV panels on RGB TrueDOPs at 10 cm spatial resolution in patches of 256 x 256 pixels
- It works better for homogeneous surroundings with white or greyish rooftops and large PV systems



## Contribution





## **Future Work**

→ Adapt the composition of training data and the hyperparameter to the urban and architectural properties of the area of interest as well as to the PV system sizes

- Additional data: Height data or building footprint; If available, include thermal infrared imagery
- **Classes:** PV panels and Solar Thermal Collectors; Black and Blue PV panels
- Amount of training data: Data augmentation & Synthetic training data
- Weights: Transfer learning should be considered for RGB images
- **Regularization:** Appropriate number of epochs should be chosen manually; Batch normalization; Dropout



## Thank You!

