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Abstract

In this thesis, it is investigated how the blood flow changes in different physiological situations, using a
one-dimensional model, that describes the blood flow in compliant vessels. The one-dimensional model,
that describes the blood flow, is derived based on the physical laws of conservation of momentum and
conservation of mass. A high resolution flux differencing scheme is applied to a stented artery, a tapered
artery, an arterial bifurcation and a network of the 55 main arteries in the human arterial tree. It is found
that inserting a stent led to an increase in the peak pressure and a dip below the equilibrium pressure,
just before the stent. The nonlinearities in the model are shown using a long tapered artery, in the form
of the steepening of the pulse. The current treatment of the bifurcations has led to reasonable physical
reflections, in the bifurcation test cases. The network of 55 arteries showed that bifurcations play an
important role in the blood flow patterns and, as such, they should not be ignored when considering a
single blood vessel. Further research should focus on the implementation of a vascular prosthesis and
more advanced treatments of the bifurcations.
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1 Introduction

The computational power doubles every two years, as Moore’s law predicts. It, therefore, only seems
reasonable that complex simulations should be applied to everyday life more and more. One specific
field, in which the use of complex models can be critical, is the field of biomedical engineering. One of
many applications in the field of biomedical engineering is the blood flow in the human arterial tree.
The problem that arises with patient specific models is the lack of suitable patient data and, still, the
computational time when using the complete Navier-Stokes equations in three-dimensions (3D). For
the former problem, new methods and instruments can be designed to measure the specific problem
parameters. And, for the latter problem, a simplified model that describes the flow of blood in arteries,
can be derived under reasonable assumptions. Formaggia et al. [10] have shown that the simplified
models provide useful information for the practitioners at reasonable computational cost, thus patient
specific models used for the planning of medical interventions can become a reality soon.

The aim of this thesis is the investigation of blood flow using a one-dimensional model, in different
physiological situations.

As a first physiological situation, we will be investigating a treatment of atherosclerosis, the accumu-
lation of white blood cells or plaque, using a stent, an expandable metal mesh. Atherosclerosis restricts
the flow of blood. Plaques can, in extreme cases, cause irreversible damage to downstream tissue when
the blood flow restriction is so severe that ischemia, the insufficient blood supply to tissues, occurs or it
can detach, move into the circulation, and eventually obstruct downstream branches.

Normal arterial walls are fairly elastic, but when a stent is inserted into an artery, it becomes far
stiffer. The pressure pulse from the heart will, therefore, bump into the stent which does not expand as
easily and so a part of the pulse is reflected upstream. If this reflected pressure pulse is superimposed
on a pressure pulse from the heart at a suture line, a tread of a stitch, of an arterial prosthesis, then the
stitch can be weakened over time and can, eventually, lead to death, if left unnoticed.

The tapering of an artery is considered as a second physiological situation since most arteries are
slightly tapered. The arterial tree uses branching and tapering to decrease the cross-sectional area of
each blood vessel downstream in order to allow the numerous capillaries to have thin vessel walls. The
hair thin vessel walls of the capillaries aid the exchange of water, oxygen, carbon dioxide and many other
nutrients between the blood and the surrounding tissues.

As a final physiological situation, a model of the whole arterial tree is made. Arteries are not single
isolated blood vessels as considered above, but, instead, they form a vastly complex network. Considering
part of the arterial tree allows us to see the effect of the bifurcations on the blood flow.

This thesis is structured in the following way. First, a short summary of the current work in the field
of one-dimensional models of blood flow is given. After that, the equations that describe the blood flow in
compliant vessels are derived from the physical principles of conservation of momentum and conservation
of mass. The derived equations are transformed into the more insightful characteristic equations. To
make the concepts of characteristic variables and systems of PDEs more familiar, a linear test system is
created and analysed. In the section after that, a stented artery and a tapered artery are subjected to
the derived equations. A bifurcation and a model of the human arterial tree are considered as final test
cases. Lastly, conclusions about the performed test cases are drawn.
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2 Literature survey

We will first give a short summary of the current work of one-dimensional models of the human vascular
system.

A system of Partial Differential Equations (PDEs) can be derived, based on the physical laws of
conservation of momentum and conservation of mass, in order to model the blood flow in the human
vascular system. There are two general forms of these systems of PDEs, one based on the volumetric
flow Q and mean velocity u and the other one based on the cross-sectional area A and mean velocity u.
The two forms are equivalent for smooth solutions, but if the solution is not continuous then the system
with the variables Q and u is the proper system to use, see for example Sherwin et al. [1]. It was also
shown that, under physiological conditions, the solution remains smooth.

There have been several relationships between the internal pressure of the blood vessel and the cross-
sectional area of the blood vessel in literature, see Mynard [5] for a comprehensive list. The one most
commonly used in literature is adapted in this thesis, see [1, 2, 5, 9].

Finite Element Methods (FEM), such as the Taylor Galerkin scheme or the Discontinuous Galerkin
scheme, are often used in literature. The problem with FEMs is that they are more difficult to implement
than other methods.

A Finite Volume Method (FVM), that is designed for spatially varying flux functions, is described by
Bale and LeVeque in [4]. A good introduction to FVMs is given in Finite Volume Methods For Hyperbolic
Problems, a book by LeVeque [3].

It is investigated in [1, 2, 5, 9] how stents influence the wave patterns. Sherwin et al. [1] also
investigated what a tapered artery will do to the blood flow. Formaggia [2] tried modelling an endograft,
a stent with closed walls, to treat an abdominal aortic aneurysm, a localized enlargement of the abdominal
aortic. Several networks and physiological data are used in [1, 2, 5, 9] to model the main arteries in the
human vascular system.
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3 Derivation of the model

We derive a one-dimensional model for blood flow in the human arterial system. The arteries are modelled
as compliant vessels. We assume that the blood vessels have a fixed cylindrical axis, the x-axis, and we
assume that the cross-sections are strictly circular. Furthermore, we assume a flat velocity profile within
each circular cross-section, thus the blood velocity within each circular cross-section is constant. The
mean velocity of the blood across a cross-section is given by u(x, t). The cross-sectional area A(x, t) and
mean velocity of the blood u(x, t) are shown in Figure 1 from Peiró et al. [9].

Figure 1: Schematic overview of conserved variables from Peiró et al. [9]

We will be using the Centimetre Gram Seconds (CGS) system instead of the standard SI units. A
conversion Table from the CGS system to SI units can be found in appendix A.

3.1 Conservation of mass

To derive the conservation of mass equation, we consider a control volume from x = a to x = b. The

total mass inside this control volume is given by
� b
a
ρAdx, where A(x, t) is the cross-sectional area at

position x at time t in cm2 and ρ is the density in g/cm3. It is assumed that blood can be modelled
as an incompressible fluid and hence ρ is independent of space and time. The rate at which the mass
inside of the control volume changes depends on the amount of mass that flows through the boundaries
per unit of time i.e. the mass flux. The mass flux through the boundary at x = a is ρA(a, t)u(a, t) and
similarly ρA(b, t)u(b, t) at x = b, where u(x, t) is the mean velocity of the blood at position x at time t
in cm/s. Therefore

d

dt

� b

a

ρAdx = ρA(a, t)u(a, t)− ρA(b, t)u(b, t) (1)

We assume that A and u are sufficiently smooth. We recognise that ride hand side can be rewritten as
the integral

ρA(a, t)u(a, t)− ρA(b, t)u(b, t) = −ρ
� b

a

∂Au

∂x
dx (2)

Bringing the derivative with respect to t inside of the integral as well as the expression above and noting
that ρ is constant, gives

ρ

� b

a

(
∂A

∂t
+
∂Au

∂x

)
dx = 0 (3)

Since this equation is true for any a and b, it follows that the integrand has to be zero. Hence

∂A

∂t
+
∂Au

∂x
= 0 (4)

3.2 Conservation of momentum

Next, we derive the conservation of momentum equation. The argument goes analogously to that of the
conservation of mass. Consider a control volume from x = a to x = b. Because momentum is conserved,
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the total momentum inside of the control volume,
� b
a
ρAudx, can only change due to the momentum

flux through the boundaries ρA(a, t)u(a, t)2− ρA(b, t)u(b, t)2 and due to the applied forces F . Therefore
we have

d

dt

� b

a

ρAudx = ρA(a, t)u(a, t)2 − ρA(b, t)u(b, t)2 + F (5)

The applied forces acting on the control volume can be decomposed into body forces, which are assumed
to be zero, surface forces acting at the boundary A(a, t)p(a, t)−A(b, t)p(b, t), here is p(x, t) the internal

pressure, a side wall pressure force
� b
a
p∂A∂x dx and lastly a viscous resistance force, which is taken in

literature as
� b
a
f dx. Where f is the friction force per unit of length in dyne/cm and p(x, t) is the

internal pressure at location x and at time t in dyne/cm2. Therefore

F = A(a, t)p(a, t)−A(b, t)p(b, t) +

� b

a

p
∂A

∂x
dx+

� b

a

f dx (6)

Thus

d

dt

� b

a

ρAudx = ρA(a, t)u(a, t)2 − ρA(b, t)u(b, t)2 +A(a, t)p(a, t)−A(b, t)p(b, t) +

� b

a

p
∂A

∂x
dx+

� b

a

f dx

(7)
Noting that the d

dt can be put inside of the integral, ρ is independent of x and t and rewriting the
boundary terms as integrals gives

ρ

� b

a

∂Au

∂t
dx = −ρ

� b

a

∂Au2

∂x
dx−

� b

a

∂Ap

∂x
dx+

� b

a

p
∂A

∂x
dx+

� b

a

f dx (8)

A little rewriting then gives

ρ

� b

a

(
∂Au

∂t
+
∂Au2

∂x
+

1

ρ

∂Ap

∂x
− p

ρ

∂A

∂x
− f

ρ

)
dx = 0 (9)

This equation should hold for any a and b, thus the integrand is zero. Thus

∂Au

∂t
+
∂Au2

∂x
+

1

ρ

∂Ap

∂x
− p

ρ

∂A

∂x
− f

ρ
= 0 (10)

This can be simplified by applying the product rule

∂Au

∂t
=
∂A

∂t
u+A

∂u

∂t
,

∂Au2

∂x
=
∂(Au)u

∂x
=
∂Au

∂x
u+Au

∂u

∂x
,

∂Ap

∂x
=
∂A

∂x
p+A

∂p

∂x
(11)

Substituting this back into the equation and rearranging yields(
∂A

∂t
+
∂Au

∂x

)
u+A

(
∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
− f

ρA

)
= 0 (12)

The term in the left brackets is zero by the conservation of mass equation. Similar to Piéro et at [9],
we set the resistance term f to be proportional to the fluid velocity u and the cross-sectional area A, so
f = −ρKRAu. Where KR is a strictly positive quantity and it represents the viscous resistance of the
flow per unit length of the tube in poise·cm/g. Then dividing by A, which is allowed since A > 0 under
physiological conditions, yields

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
+KRu = 0 (13)

3.3 Completing the system

The system of equations is completed, by assuming static radial equilibrium in the radial direction of the
cylindrical tube and using an algebraic relationship between the pressure of the vessel p and the vessel
cross-sectional area A, as in [1], as

p = pext + β(
√
A−

√
A0) (14)
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with

β =

√
πh0E

(1− ν2)A0
(15)

Where β is a measure of the vessel stiffness in dyne/cm3. A0(x) is the cross-sectional area of the vessel
in cm2 and h0 is the vessel thickness in cm both determined at equilibrium state (p, u) = (pext, 0).
E(x) is the Young modulus in dyne/cm, pext is the external pressure in dyne/cm2 and ν is the Poisson
ratio. The Poisson’s ratio for biological tissue is often taken as ν = 1

2 , since biological tissue is almost
incompressible.

3.4 Conservative form

So far we have derived the following set of nonlinear partial differential equations
∂A

∂t
+
∂Au

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
+KRu = 0

(16)

with
p = pext + β(

√
A−

√
A0) (17)

Where differential equations inside of the accolade represent the conservation of mass equation and the
conservation of momentum equation respectively. We would like to write this system of partial differential
equations in the following conservative form with source term

∂U

∂t
+
∂F (U)

∂x
= S(U) (18)

Where U is the conserved quantity, F (U) is the flux function and S(U) is the source term. Taking U ,
F (U) and S(U) as

U =

[
A
u

]
, F (U) =

[
Au

1
2u

2 + p
ρ

]
, S(U) =

[
0

−KRu

]
(19)

gives the required form of (18) [
A
u

]
t

+

[
Au

1
2u

2 + p
ρ

]
x

=

[
0

−KRu

]
(20)

The subscript denotes taking the partial derivative to the respective variable. Here is F (U) the flux
function that will be important when we implement a numerical scheme. To see why this form is called
the conservative form, we integrate (18) from a to b to obtain

� b

a

∂U

∂t
dx+

� b

a

∂F (U)

∂x
dx =

� b

a

S(U) dx (21)

If U is sufficiently smooth, this then gives

∂

∂t

� b

a

U dx = F (U)
∣∣
a
− F (U)

∣∣
b

+

� b

a

S(U) dx (22)

Thus the conserved quantity U in some control volume between a and b only changes in time due to the
fluxes F (U) through the boundaries and due to the sources S(U) inside of the control volume. Hence U
is conserved, if there are no sources.
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4 Characteristic equations

The nonlinear system of partial differential equations (16) can be transformed into a system of charac-
teristic equations. These characteristic equations and characteristic variables completely describe how
the nonlinear system of partial differential equations (16) behaves, while providing important insights in
how the system works. They are also of interest when considering the boundary conditions.

4.1 Derivation of characteristic equations

In the following sections we will assume that pext = 0, β = β(x) and A0 = A0(x). We note that applying
the chain rule to p (17) yields

∂p

∂x
=
∂p

∂A

∂A

∂x
+
∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0

∂x
=

β

2
√
A

∂A

∂x
+ (
√
A−

√
A0)

∂β

∂x
− β

2
√
A0

∂A0

∂x
(23)

Substituting this equation into the partial differential system (16) and applying the chain rule, we can
write the system in quasi-linear form

∂U

∂t
+H(U)

∂U

∂x
=

[
A
u

]
t

+

[
u A
β

2ρ
√
A

u

] [
A
u

]
x

=

[
0

−KRu− 1
ρ

{
(
√
A−
√
A0)∂β∂x −

β
2
√
A0

∂A0

∂x

}]
(24)

Where the flux Jacobian H(U) = ∂F (U)
∂U is given by

H(U) =

[
u A
β

2ρ
√
A

u

]
(25)

This could also be obtained by applying the chain rule to the differential system in conservative from.
Since

∂F (U)

∂x
=
∂F (U)

∂U

∂U

∂x
+
∂F (U)

∂β

∂β

∂x
+
∂F (U)

∂A0

∂A0

∂x
(26)

The eigenvalues of the flux Jacobian matrix H are λ1,2 = u± c with basic wave speed c =
√

β
2ρA

1/4.

The basic wave speed c can be interpreted as the velocity of the waves as seen by an observer moving
with speed u or as the velocity of the waves if the fluid is at rest, while λ1,2 are the real velocities of the
waves, as seen by an observer at rest.

In a paper by Sherwin et al. [1] is found that under physiological conditions, such as A > 0 and typical
values of velocity u, vessel area A and the elastic parameter β, it holds that u < c. Thus the velocity
of the blood u is strictly lower than the rest velocity of the waves c, hence the system is subcritical.
Furthermore since u < c it follows that λ1 > 0 and λ2 < 0. Thus the eigenvalues λ1,2 are real and
distinct, such that the system is strictly hyperbolic.

The flux Jacobian matrix H can be diagonalized and this yields

H = RΛR−1 =

[
A
2c − A

2c
1
2

1
2

] [
u+ c 0

0 u− c

] [
c
A 1
− c
A 1

]
(27)

Therefore can (24) be written as

∂U

∂t
+RΛR−1 ∂U

∂x
= K(U) =⇒ R−1 ∂U

∂t
+ ΛR−1 ∂U

∂x
= R−1K(U) (28)

Where K(U) is given by the right hand side of equation (24). We want to simplify the equations by
introducing the characteristic variables W = [w1 w2]T . Note that R = R(A, x) thus we cannot simply
use W = R−1U since Wx = (R−1U)x = R−1

x U +R−1Ux 6= R−1Ux. But there is a clever trick we can use
to decompose the system into characteristic variables, we can use ∂W

∂U = R−1, as in [1]. The relationship

between A, u and w1, w2 can then be determined from this Jacobian relation ∂W
∂U = R−1, so

∂(w1, w2)

∂(A, u)
=

[
∂w1

∂A
∂w1

∂u
∂w2

∂A
∂w2

∂u

]
=

[
c
A 1
− c
A 1

]
(29)
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These differential equations can be integrated separately and this yields

w1 = u+ 4c = u+ 4A1/4

√
β

2ρ
, w2 = u− 4c = u− 4A1/4

√
β

2ρ
(30)

These relations can also be inverted and this gives

A =

(
w1 − w2

4

)4(
ρ

2β

)2

, u =
w1 + w2

2
(31)

Thus according to the Jacobian relation ∂W
∂U = R−1, we have to choose the characteristic variables as

W =

[
w1

w2

]
=

[
u+ 4c
u− 4c

]
(32)

Substituting the Jacobian relation into equation (28) yields

∂W

∂U

∂U

∂t
+ Λ

∂W

∂U

∂U

∂x
= R−1K(U) (33)

Using the chain rule we have that
∂W

∂t
=
∂W

∂U

∂U

∂t
(34)

and
∂W

∂x
=
∂W

∂U

∂U

∂x
+
∂W

∂β

∂β

∂x
=⇒ ∂W

∂U

∂U

∂x
=
∂W

∂x
− ∂W

∂β

∂β

∂x
(35)

Substituting the above identities into equation (33), it then follows that

∂W

∂t
+ Λ

∂W

∂x
= R−1K + Λ

∂W

∂β

∂β

∂x
(36)

Where Λ, R−1 and K should be written in terms of w1 and w2 using equations (31) to finish the trans-
formation from the original system to the characteristic system. The characteristic variables w1 and w2

are by some authors called the Riemann invariants.
If there is a region where the material properties are (almost) constant, so β(x) = β and A0(x) = A0,

then in that region we have that the derivatives of β and A0 vanish. Furthermore, if we assume inviscid
flow, hence there is no viscous resistance so KR = 0, then it follows that in that region K(U) = 0. Thus
if we have inviscid flow and a region with constant material properties, then the RHS of equation (36)
becomes zero (or very small). Thus

∂W

∂t
+ Λ

∂W

∂x
= 0 (37)

Since Λ is a diagonal matrix this reads componentwise

∂w1

∂t
+ λ1

∂w1

∂x
= 0,

∂w2

∂t
+ λ2

∂w2

∂x
= 0 (38)

We note that λ1 = u+ c = w1+w2

2 +
√

β
2ρ
w1−w2

4

√
ρ

2β = 5w1+3w2

8 and λ2 = 3w1+5w2

8 . Thus the PDEs for

the characteristic variables reduce to a coupled system of quasilinear PDEs where the material properties
are constant. If we linearise these quasilinear PDEs, i.e. take λ1,2 constant, then we would obtain two
scalar transport equations moving with speed λ1,2 respectively.
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5 Linear system

Before we solve the strictly hyperbolic nonlinear system (16), we will first look at a linear test case. The
linear test case will be built from the ground up, to mimic the nonlinear system as closely as possible.
We will solve this linear system both analytically and numerically to compare the results and to obtain
insight into hyperbolic systems of partial differential equations. Note that the variables defined here are
all different from the ones used in the rest of the thesis.

5.1 Linear system and characteristic variables

We have chosen the following linear system for q(x, t) = [q1(x, t) q2(x, t)]T

∂q

∂t
+A

∂q

∂x
=

[
q1

q2

]
t

+

[
a b
b a

] [
q1

q2

]
x

=

[
0
0

]
(39)

Note that matrix A is symmetric and hence it has 2 distinct real eigenvalues if b 6= 0, such that the system
is strictly hyperbolic. The eigenvalues of A are λ1,2 = a ± b. Since we want to mimic the quasilinear
system we choose b > a such that we have two waves travelling in opposite directions corresponding to
λ1 > 0 and λ2 < 0. Matrix A can be diagonalized and this yields

A = RΛR−1 =
1√
2

[
1 −1
1 1

] [
a+ b 0

0 a− b

]
1√
2

[
1 1
−1 1

]
(40)

Therefore
qt +RΛR−1qx = 0⇒ R−1qt + ΛR−1qx = 0 (41)

Now defining the characteristic variables as

w = R−1q (42)

does work because wt = R−1qt and wx = R−1qx. Thus we get

wt + Λwx = 0 (43)

Using that Λ is a diagonal matrix the system decouples in the characteristic variables as

∂w1

∂t
+ λ1

∂w1

∂x
= 0 and

∂w2

∂t
+ λ2

∂w2

∂x
= 0 (44)

These are just scalar transport equations.

5.2 Well posed boundary conditions

To obtain a well posed mathematical problem we have to take special care when dealing with the
boundary conditions. As said before, we have chosen λ1 > 0 such that it represents a wave travelling to
the right and λ2 < 0 to represent a wave travelling to the left. Thus, at the left boundary w1 will flow
into the domain while w2 is leaving the domain. Therefore, we have to prescribe w1 at the left boundary
as it is the inflow variable. To determine which original variable we can prescribe at the left boundary,
we follow [6] and compute

J =
∂(q1, q2)

∂w1
=

[
1√
2

1√
2

]
(45)

where we have used that q = Rw. Because we have exactly one eigenvalue greater than zero, λ1, and
because each element of J is greater than zero, we can choose either q1 or q2 to be prescribed at the left
boundary.

The right boundary is handled in a similar way. At the right boundary, w2 enters the domain while
w1 leaves the domain. Thus we need to prescribe w2 at the right boundary. The same analysis as above
can be done and it is found that prescribing q1 or q2 is allowed.

8
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III

Figure 2: Domain of the solution of the linear test case with the characteristic base curves shown in red and blue
for λ1 and λ2 respectively. The regions where the characteristic variables are determinable in a specific way are
colour-coded: Red for w1 and blue for w2

5.3 Problem formulation

We will solve the following problem on the spatial domain 0 < x < 1 and temporal domain t > 0 governed
by the linear system (39), with initial conditions and boundary conditions given as

IC: q(x, 0) =

[◦
q1(x)
◦
q2(x)

]
, BC1 : q1(0, t) = q̄1(t), BC2: w2(1, t) = 0 (46)

A finite spatial domain and a semi-infinite temporal domain is chosen since it is similar to the domain of
a blood vessel. The left boundary condition BC1 is some prescribed value for q1 while q2 is determined by
the domain. The right boundary condition BC2 is a non-reflective boundary condition. It is a numerical
boundary condition, not a physical one, in the sense that the computational domain cannot be infinite
due to hardware limitations and therefore a border has to be drawn somewhere. This boundary condition
has to be chosen such that it does not impact the domain of interest, hence a non-reflective boundary is
chosen.

5.4 Analytical approach

Using the characteristic variables as described above, one can use the method of characteristics to get
the following analytical solution on the domain 0 < x < 1 and t > 0

q1(x, t) =
1√
2
{w1(x, t)− w2(x, t)}

q2(x, t) =
1√
2
{w1(x, t) + w2(x, t)}

(47)
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where

w1(x, t) =



1√
2

{
◦
q1(x− λ1t) +

◦
q2(x− λ1t)

}
, 0 < t <

x

λ1
(I)

√
2 q̄1

(
t− x

λ1

)
+

1√
2

{
−◦q1

(
λ2

[
x

λ1
− t
])

+
◦
q2

(
λ2

[
x

λ1
− t
])}

,
x

λ1
< t <

x

λ1
− 1

λ2
(II)

√
2 q̄1

(
t− x

λ1

)
, t >

x

λ1
− 1

λ2
(III)

w2(x, t) =


1√
2

{
−◦q1(x− λ2t) +

◦
q2(x− λ2t)

}
, 0 < t <

x− 1

λ2
(I)

0, t >
x− 1

λ2
(II)

(48)
Note that λ2 < 0 such that − 1

λ2
> 0. The domain of the solution is shown in Figure 2. In this figure, each

colour-coded region plus the black lines show a region in which the characteristic variable is determinable
in a specific way, as explained below. These regions also correspond to the regions mentioned in equation
(48).

� Blue I: w2 is determined by the initial conditions.

� Blue II: w2 is determined by the right boundary condition.

� Red I: w1 is determined by the initial conditions.

� Red II: w1 is a combination of w2 from I and a part of the left boundary condition.

� Red III: w1 is determined by a part of the left boundary condition.

Once the solution for w1 and w2 is known analytically it can be transformed back to the original system
by inverting the definition of the characteristic variables, see equation (42).

5.5 Numerical approach

The linear system with initial conditions and boundary conditions described above can also be solved
numerically. The nonlinear system of PDEs (16) and the linear system of PDEs (39) are both strictly Hy-
perbolic PDEs. Hyperbolic PDEs describe a wide range of wave propagation and transport phenomena.
In fact, hyperbolic PDEs are closely related to conservation laws. Recall that the hyperbolic system of
PDEs describing the flow of blood in the arteries was derived from the physical principles of conservation
of the mass and conservation of momentum. Finite Volume Methods (FVM) have the nice property that
the resulting solution satisfies the conservation of quantities, such as mass, momentum or/and energy.
It thus seems very natural to use FVMs for hyperbolic PDEs.

Following LeVeque [3], the spatial domain is discretized into equidistant small volumes of length ∆x.
These cells are centred around each node xi, thus the i-th cell is defined on (xi − 1

2∆x, xi + 1
2∆x) and

is denoted as Ci. We get the following scheme for the cell average Qni ≈ 1
∆x

�
Ci
q(x, tn)dx

Qn+1
i = Qni −

∆t

∆x

(
A+∆Qni−1/2 +A−∆Qni+1/2

)
(49)

Where the superscript n denotes the n-th time step and the subscript i denotes the i-th spatial node.
The entity A+∆Qni−1/2 is the fluctuation, and it represents the net effect of all right going waves from

the border between the i-th and the i−1-th cell. Similarly A−∆Qni+1/2 is the net effect of all left going
waves from the border between the i-th and the i+1-th cell. This equation does make sense, since every
cell has two borders in this one-dimensional problem, a left and right border. The only way in which Q
can change, assuming no production, is due to right moving waves coming from the left border, and left
moving waves coming from the right border. Which is exactly what this equation says.

The fluctuations, in the linear case, can be calculated using

A+∆Qni−1/2 = RΛ+R−1(Qni −Qni−1) (50)

A−∆Qni+1/2 = RΛ−R−1(Qni+1 −Qni ) (51)
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Where the matrices R and R−1 are implicitly defined in equation (40), Λ+ = diag(max(λ, 0)) and
Λ− = diag(min(λ, 0)), so

Λ+ =

[
λ1 0
0 0

]
, Λ− =

[
0 0
0 λ2

]
(52)

Thus Λ+ ’picks’ the positive eigenvalues and sets the negative eigenvalues to zero. Conversely Λ−

’picks’ the negative eigenvalues and sets the positive eigenvalues to zero. We see that equation (50), the
right moving fluctuations, decomposes the difference between Qni and Qni−1 into the basis of matrix A’s
eigenvectors using R−1, after which Λ+ only allows the right moving waves to propagate and removes
the left going waves and lastly we transform back to the original system using R.

5.5.1 Boundary conditions

Equation (49) describes how to handle the linear system on the interior domain. What is left to cover
are the boundary conditions. We start with the right boundary condition. The easiest way to handle
boundary conditions in numerical schemes is by the use of ghost cells and then using the same numerical
scheme, according to LeVeque [3]. The right boundary is an outflow boundary and was chosen as
w2(1, t) = 0 for all t. w2 is the characteristic variable corresponding to the left flowing waves, therefore,
we want the ghost cell after the right most physical cell to have the same w2 component as the right
most physical cell. An easy way to accomplish this goal is by using zero-th order extrapolation of the
right most physical cell since w1 of the ghost cell does not influence the computational domain. Zeroth
order extrapolation means that the ghost cell gets the values from the last physical cell. Let’s call the
right most physical cell m then the ghost cell is the m+1-th cell. For the m-th cell it holds that

Qn+1
m = Qnm −

∆t

∆x

(
A+∆Qnm−1/2 +A−∆Qnm+1/2

)
(53)

We thus see that the problem arises from the A−∆Qnm+1/2 term since we do not have a physical m+1-th

cell. Using the technique described above we get RΛ−R−1(Qnm+1 − Qnm) = RΛ−R−1(Qnm − Qnm) = 0.
Thus nothing is flowing into the computational domain from the right boundary, as required by the right
boundary condition.

The left boundary condition is a bit more difficult and we need to use characteristic decomposition
to obtain the correct result. For the left boundary condition we chose to prescribe q1(0, t) = q̄1(t). We
again will use the ghost cell approach but this time for the left boundary, thus for the first physical cell,
i = 1, we have

Qn+1
1 = Qn1 −

∆t

∆x

(
A+∆Qn1/2 +A−∆Qn3/2

)
(54)

The ghost cell will be the 0-th cell and thus we can alter the inflow fluctuations A+∆Qn1/2 = A+(Qn1−Qn0 )
using Qn0 . Since w2 is determined inside of the computational domain we can only prescribe inflowing
characteristic w1 at x = 0. Explicitly calculating the relation between q1 and w1, w2 from the definition
of the characteristic variables, yields

w = R−1q =⇒ q = Rw =⇒
[
q1

q2

]
=

[
1√
2
(w1 − w2)

1√
2
(w1 + w2)

]
(55)

Thus q1 = 1√
2
(w1 − w2) =⇒ w1 = w2 +

√
2q1, therefore at x = 0 we have w1(0, t) = w2(0, t) +

√
2q̄1(t) where w2(0, t) is determined from the domain. Thus for the ghost cell, we have Qn0 = Rw̃ =

R[w2(0, n∆t) +
√

2q̄1(n∆t) w2(0, n∆t)]T where w2(0, n∆t) ≈ 1√
2
[−1 1]Qn1 .

5.5.2 Stability

A necessary condition for stability is the CFL condition. The CFL condition is given by

|λi|∆t
∆x

≤ 1, i ∈ {1, 2} (56)

The CFL condition basically assures that the waves, originating at the cell interface cannot pass into
another cell within the given time frame ∆t. Since s = vt, so s = |λi|∆t ≤ ∆x rearranging would give
the CFL condition.
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5.6 Results of the linear test case

Having developed all the necessary theory, we can apply it to the following problem[
q1

q2

]
t

+

[
1 2
2 1

] [
q1

q2

]
x

=

[
0
0

]
(57)

i.e. we have chosen a = 1 and b = 2, such that the eigenvalues become λ1 = 3 and λ2 = −1. The initial
condition and boundary conditions read

IC: q(x, 0) =

[
1 + e−100(x−1/2)2

1

]
, BC1: q1(0, t) = 1 +

1

10
sin

(
4π

3
t

)
, BC2: w2(1, t) = 0 (58)

Thus for q1 we have a centred Gaussian as initial condition and a sine as left boundary condition. We
have chosen for such a small value for the variation, or conversely such a big value in the exponent of
the Gaussian, to obtain a localised peak, which is easier to study. The solution of q1 obtained with the
numerical scheme and analytical technique are plotted in Figure 3. We are neglecting q2 because the
overall behaviour of the system can be analysed using q1 only.

We will first look at the overall behaviour of the solution before we compare the analytical and
numerical solutions. Looking at Figure 3, we see that at t = 0, q1 is a Gaussian. As is the case for
the wave equation, this perturbation is composed of two waves, one wave moving in the positive x
direction and a wave propagating towards the negative x direction. For the scalar wave equation the
perturbations move at the same velocity in both directions, but in this more general problem, the waves
move at their respective eigenvalue velocity. For example, the disturbance peak travelling towards the
negative x direction, starts at x = 0.5 and hits the boundary at x = 0 at t = 0.5 as can be seen in the
lower right image from Figure 3, thus v = ∆x

∆t = −1 as expected from λ2 = −1.
We also see that the left boundary condition closely resembles a period of a sine, while the right

boundary has no effect on the solution, as required by the boundary conditions.
The biggest difference between the analytical and numerical solution is that the numerical solution is

a ‘smeared out’ version of the analytical solution. For example, the wave moving towards the negative x
direction has a lower maximum than the analytical solution and the crest is less narrow in comparison to
the exact solution after reflecting off the x = 0 boundary. This is a well known effect of using Godunov’s
first order method.
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Numerical solution

Analytical solution

Figure 3: The q1 component of the solution of problem (57) with IC and BC given as (58) is plotted for x and
t. The first row of Figures corresponds to the numerical solution and the second row is the analytical solution.
The right column of Figures shows the intensity corresponding to q1 for the numerical solution and analytical
solution respectively.
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6 The nonlinear Partial Differential Equations

To be able to solve the nonlinear system PDEs we linearize the system of equations at each cell interface.

6.1 Linearisation of the nonlinear system

We assume that the friction term KR is small and negligible. We, therefore, set KR to zero and in
conservative form (18), the source term S(U) drops out. We are left with the following conservative form
PDE

∂U

∂t
+
∂F (U, x)

∂x
= 0,

[
A
u

]
t

+

[
Au

1
2u

2 + p
ρ

]
x

= 0, U =

[
A
u

]
, F (U, x) =

[
Au

1
2u

2 + p
ρ

]
(59)

Where we have made the spatial dependence of the flux function more explicit, F (U) = F (U, x).
We will use a Finite Volume Method (FVM) to solve this problem, as we did with the linear test

case. LeVeque recommends in his book [3], which is about solving hyperbolic PDEs with FVMs, that
for solving hyperbolic PDEs with spatially varying flux functions, one should use methods based on flux
difference splitting. We will therefore follow Bale and LeVeque, as in [4], to linearize (59).

Let us first reiterate some FVM terminology. The spatial domain is discretized into equidistant
volumes with length ∆x. These cells are centred around each node xi, thus the i-th cell is defined
on (xi − 1

2∆x, xi + 1
2∆x) and is denoted as Ci. Furthermore the cell interface between the i-th and

i − 1-th cell be denoted by xi−1/2. Lastly, let the average value of U in cell i at time tn be denoted as

Uni ≈ 1
∆x

�
Ci
U(x, tn) dx. So U without subscripts and superscripts is the continuous solution while U

with subscripts is the cell average.
We will consider the Riemann problem, which is an initial value problem composed of a conservation

law together with piecewise constant initial data with a single discontinuity. The goal of the Riemann
problem is to determine the solution on a domain.

We will adjust the Riemann problem to fit the finite volume approach. Imagine that we have the i-th
cell and the i− 1-th cell. Then we have the following ‘initial’ data at time tn

U(x, tn) =

{
Uni−1, x < xi−1/2

Uni , x > xi−1/2

(60)

Where the discontinuity is located at the common cell border xi−1/2. The aim is to use the exact solution

of this Riemann problem to approximate the new cell averages ∆t later, so Un+1
i−1 and Un+1

i .
We will use cell centred flux functions. Where the flux function F (U, x) is discretized to be constant

within each cell and generally discontinuous at each cell interface. Let the discretization of the flux
function in the i-th cell be denoted as Fi(U) = F (U, xi).

The (generalised) Riemann problem at the i− 1/2-th cell interface is then governed by

∂U

∂t
+
∂Fi−1(U)

∂x
= 0, if x < xi−1/2

∂U

∂t
+
∂Fi(U)

∂x
= 0, if x > xi−1/2

(61)

Where the CFL condition causes the equations above to only be valid for the i− 1-th and i-th cell, so in
the region xi−3/2 < x < xi+1/2.

In Figure 4 the domain of the solution of the Riemann problem is shown between tn and tn+1. The
line segment from xi−3/2 until xi−1/2 is the i − 1-th cell and similarly the line segment between xi−1/2

and xi+1/2 represent the i-th cell. The interface between the i− 1-th cell and the i-th cell is highlighted
with a dashed line and within each suggested enclosed area the value of U constant.

Next is an explanation of the construction of Figure 4 given. We expect the flux to be conserved
across the cell interface xi−1/2 for bounded solutions. Therefore we have

Fi−1(U li−1/2) = Fi(U
r
i−1/2) (62)

Where U li−1/2 and Uri−1/2 are U just left and right of xi−1/2 respectively. We have that Fi−1(U li−1/2) =

Fi(U
r
i−1/2) and generally that Fi−1(U) 6= Fi(U) for all U . Thus it follows that generally U li−1/2 6= Uri−1/2.
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Figure 4: Domain of the solution of the Riemann problem

Hence there is generally a stationary discontinuity in U at cell interface xi−1/2, when dealing with
spatially varying flux function and using cell centred flux functions.

Note that applying the chain rule to (61) yields

∂U

∂t
+
∂Fi−1(U)

∂U

∂U

∂x
= 0, if x < xi−1/2

∂U

∂t
+
∂Fi(U)

∂U

∂U

∂x
= 0, if x > xi−1/2

(63)

Where ∂Fi(U)
∂U = H(U, xi) = Hi(U) is the flux Jacobian, see (25). The source terms from (24) drop

out because in the two regions considered β(x) and A0(x) are both constant and hence their derivatives
vanish.

To linearize the problem further, we assume that the flux Jacobian is constant within each cell, so
Hi(U) = Hi(U

n
i ) = Hn

i . This way we obtain two linear systems of PDEs for this Riemann problem.
For a 2 × 2 strictly hyperbolic linear system of PDEs, we know that there are two characteristic

variables with corresponding constant eigenvector and constant eigenvalue, as we also have seen in the
linear test case. At t = tn we have piecewise constant initial data, namely Uni−1 and Uni , and piecewise
constant material properties, we then expect the characteristic variables to be piecewise constant as
well. Thus the two characteristic variables both have a discontinuity at xi−1/2 at t = tn. Both the
characteristic variables propagate at their respective constant speed for t > tn. Thus the discontinuity
at xi−1/2 propagates with speed λ1 with the first characteristic variable as well as with speed λ2 with the
second characteristic variable. Hence U , which is composed of the two characteristic variables, consists
of two more discontinuities.

These discontinuities are the so called waves and they travel at their respective characteristic speed
λj as illustrated in Figure 4 with the sloped lines which have travelled s = v · t =⇒ s = λj∆t in ∆t
time.

The eigenvectors and eigenvalues of the flux Jacobian ∂F (U)
∂U = H are

λ1 = u+ c, r1 =

[
A
2c
1
2

]
, λ2 = u− c, r2 =

[
− A

2c
1
2

]
(64)

with basic wave speed c =
√

β
2ρA

1/4, see equation (25) for the definition of the flux Jacobian H.

Since λ1 > 0 it follows that the corresponding wave travels towards the positive x direction and thus
inside the i-th cell. Thus for the first eigenvalue and vector we will be using the values of the i-th cell, so

λn1,i−1/2 = λn1,i, rn1,i−1/2 = rn1,i (65)
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Conversely, since λ2 < 0 it follows that the corresponding ‘second’ wave travels towards to negative
x direction, and hence within the i− 1-th cell. Therefore, we use the values of Uni−1 for the second wave.
Thus

λn2,i−1/2 = λn2,i−1, rn2,i−1/2 = rn2,i−1 (66)

Once we have the strength of these three waves or consequently the values of U inside the cells
between tn and tn+1, we have the solution of the Riemann problem of the linearised system. These
effects can at tn+1 be averaged per cell to obtain a new estimate for the cell average at tn+1 and this
new averaged value is the new value of the cell used for the next time step.

Finding the values of U directly left and right of to xi−1/2 respectively U li−1/2 and Uri−1/2, is a difficult
task. We therefore will use that the flux is continuous at xi−1/2 and instead of decomposing the difference
Ui − Ui−1, we will decompose the difference in the flux Fi(U

n
i )− Fi−1(Uni−1) into so called f-waves, the

flux difference splitting. The first f-wave Zn1,i−1/2 is proportional to the first eigenvector rn1,i and the
second f-wave Zn2,i−1/2 is proportional to the second eigenvector rn2,i−1. We therefore have

Fi(U
n
i )− Fi−1(Uni−1) = Zn1,i−1/2 + Zn2,i−1/2 = βn1,i−1/2r

n
1,i + βn2,i−1/2r

n
2,i−1

= Rni−1/2β
n
i−1/2 =

1

2

Anicni −
Ani−1

cni−1

1 1

[βn1,i−1/2

βn2,i−1/2

]
(67)

Where βnj,i−1/2 is the relative strength of the rnj,i−1/2 eigenvector and Rni−1/2 is the linearised eigenvector
matrix. The vector Znj,i−1/2 = βnj,i−1/2r

n
j,i−1/2 is the j-th f-wave.

Solving for βni−1/2 gives

[
βn1,i−1/2

βn2,i−1/2

]
=

2
An

i

cni
+

An
i−1

cni−1

 1
An

i−1

cni−1

−1
An

i

cni

 (Fi(U
n
i )− Fi−1(Uni−1)) (68)

We can incorporate the f-waves into the fluctuations formalism in the following way

R+∆Uni−1/2 = Zn1,i−1/2 (69)

R−∆Uni−1/2 = Zn2,i−1/2 (70)

Thus we obtain the following explicit method, based in flux difference splitting

Un+1
i = Uni −

∆t

∆x

(
R+∆Uni−1/2 +R−∆Uni+1/2

)
= Uni −

∆t

∆x

(
Zn1,i−1/2 + Zn2,i+1/2

)
(71)

6.2 High resolution methods

As we have seen before in the linear test case, the wave propagation (flux differencing algorithm) al-
gorithm has the tendency to smear out the solution. Furthermore, if the solution contains a shock,
discontinuities or sharp changes then high order spatial discretization could lead to spurious oscillations.
In fact, Godunov’s order barrier theorem says that linear methods cannot provide non-oscillatory so-
lutions higher than first order [7]. In order to obtain a high resolution method, we thus have to use a
nonlinear method. One way to obtain high resolution is by the use of flux limiters. Flux limiters ‘switch’
between two different spatial discretization schemes. If the solution contains a steep gradient then the
flux limiter will use a first order scheme to prevent oscillations at that point. If the solution is smooth
enough then a higher order spatial discretization can be used to obtain high resolution. The switching
between the two schemes is not as binary as portrayed here, it is more like a spectrum between the two
discretization schemes which depends on the strength of the neighbouring waves.

The high resolution method can be formulated as follows

Un+1
i = Uni −

∆t

∆x

(
R+∆Uni−1/2 +R−∆Uni+1/2

)
− ∆t

∆x

(
F̃ni+1/2 − F̃

n
i−1/2

)
(72)
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Where F̃ni−1/2 is a correction flux and it is given by

F̃ni−1/2 =
1

2

2∑
p=1

sign(λnp,i−1/2)

(
1− ∆t

∆x
|λnp,i−1/2|

)
Z̃np,i−1/2 (73)

With Z̃np,i−1/2 a limited version of Znp,i−1/2, defined as

Z̃np,i−1/2 = φ(θnp,i−1/2)Znp,i−1/2 (74)

Here is φ(θ) the chosen flux limiter, which is preferably second order Total Variation Diminishing (TVD)
to guarantee the stability of the scheme. We will be using the minmod limiter, which is second order
TVD and it is defined as

φmm(θ) = max

{
0,min

{
2θ,

2 + θ

3
, 2

}}
(75)

The argument of the flux limiter θnp,i−1/2 is a measure of the strength of the waves to come (upwind)
relative to Znp,i−1/2, which of course depends on the propagating direction of the waves λnp,i−1/2. LeVeque
proposed the following equation to determine this wave strength, if the solution changes rapidly then
more sophisticated methods have to be used, see for example Lax and Liu [8].

θnp,i−1/2 =
Znp,I−1/2 · Z

n
p,i−1/2

Znp,i−1/2 · Z
n
p,i−1/2

(76)

The dot represents the dot product between two vectors. Where

I =

{
i− 1 if λnp,i−1/2 > 0

i+ 1 if λnp,i−1/2 < 0
(77)

6.3 Boundary conditions

In this section we do the same analysis as in section 5.2, to determine which variables can be prescribed
at which boundary, to obtain a well posed mathematical problem. Note that in that section, every
variable is different from the rest of the thesis. The characteristic variable w1 corresponds to λ1 > 0, w1

therefore propagates to the positive x-direction, i.e. to the right. Since λ2 < 0 it follows that w2 travels
to the left. Thus the inflow characteristic variable at the left and right boundary are respectively w1 and
w2. We therefore have to prescribe w1 at the left boundary and w2 at the right boundary. To determine
which original variable, A or u, we have to prescribe at the right boundary, we compute

Jw1 =
∂(A, u)

∂w1
=

[
( ρ

2β )2(w1−w2

4 )3

1
2

]
(78)

Where equation (31) is used.
Similarly, for the right boundary we compute

Jw2 =
∂(A, u)

∂w2
=

[
−( ρ

2β )2(w1−w2

4 )3

1
2

]
(79)

Where we again have used (31). The upper element of Jwj
corresponds to A and the lower one to u.

As long as such an element is nonzero, we can prescribe the corresponding variable. Therefore, at both
boundaries we can prescribe A as long as w1 6= w2 and we can always prescribe u. We have by the

definition of the basic wave speed c that c =
√

β
2ρA

1/4 and under physiological conditions it holds that

A > 0, β > 0, ρ > 0 such that c > 0. From equation (30) we have that w1 = u+ 4c and w2 = u− 4c, so
the requirement w1 6= w2 =⇒ u + 4c 6= u − 4c =⇒ c 6= −c =⇒ c 6= 0 which is what we have shown
earlier. Thus we can always prescribe either A or u and this holds for both boundaries.
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Figure 5: Schematic overview of a blood vessel with a stent from Sherwin et al. [1]

6.3.1 Boundary conditions - forward prescription

The standard method of applying boundary conditions is to choose the inflow characteristic variable
such that a specific boundary condition is met. In our case that boundary condition is a prescribed
pressure p, area A or velocity u. This is mathematically correct and leads to a well posed mathematical
problem. But in the artery system, the heart is the source and we therefore expect a measured quantity
to be propagated away from the heart. Hence this information is propagated with the characteristic
variable, w1. But to prescribe an actual quantity at the boundary, information of the reflected backwards
propagating wave, w2, is needed as well. Since the combination of forwards, w1, and backwards, w2,
propagating wave uniquely describes the system. However the reflected backwards propagating waves
are highly dependent on the system at hand. Are there discontinuous material properties such as a stent?
Are there bifurcations? Where are they? When are they reached by the pressure pulse form the heart?
All this information should be known quite precisely to be able to achieve the same reflected waves as
in the measurements. If the reflected waves are not quite similar to the ones hidden in the measured
quantity, then the inflowing wave is altered to be able to achieve the measured quantity at the boundary.
Which, in turn changes the reflected waves and, as such, changes the inflowing wave even more and can
thus lead to very different results.

It therefore seems more intuitive to prescribe the measured quantity through the forward propagating
wave w1 only, while assuming that the backwards propagating wave w2 is fixed at its initial state. This is
the so called forward prescription. Thus the forward prescription makes sure that the sensitive reflections
do not make the inflowing wave sensitive and so a more robust solution is obtained. While forward
prescription does not assure that at the boundary the given value is attained exactly, the difference
between the real prescribed value and the forward prescription is at most a few percent, while enjoying
good non-reflective properties, see [2, 5].

6.4 Test case - Stented artery

In order to test the algorithm described above, a test case from Sherwin et al. [1] is considered. In
this test case a stent, an expandable metal mesh, is inserted into an artery. The artery has a constant
cross-sectional area at rest and the blood is initially at rest. The stent is modelled as an increase in the
stiffness of the blood vessel, through β(x). See Figure 5 for a schematic overview of the test case and
Figure 6 for the increase in stiffness, both from Sherwin et al. [1]. The test case is illustrated in Figure
5. The blood vessel has length l, the stent is inserted between x = a1 and x = a2 with length L and the
increase in stiffness is κ times stiffer than the normal artery, β0. The pressure will be measured at three
points, the proximal P at l/4, the medial M at l/2 and lastly the distal D at 3l/4. The jumps are made
continuous with a sinusoid with width 2δ centred around the discontinuity, see Figure 6. See Table 1 for
the numeric values used .
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Figure 6: Smoothing of β with two sinusoids with width 2δ from Sherwin et al. [1]

Table 1: Numeric values used in the stented and normal artery test cases

A0(cm2) l(cm) a1(cm) a2(cm) L(cm) ρ(g/cm
3
) δ(cm) β0(dyne/cm

2
) κ(−) T (s)

0.5 15 5 10 5 1 0.5 451352 100 0.33

6.4.1 Boundary conditions of the stented artery

The left boundary condition is a modelled pressure pulse from the heart. It is given as

p̄(t) = 20000 sin

(
2πt

T

)
H

(
T

2
− t
)

(80)

Here, H(t) is the Heaviside step function, scaled and translated such that it allows half a period of the
sine to pass. See the upper left graph of Figure 7 for this boundary condition’s general shape. Using
equation (17) and that pext = 0, we get at x = 0

p̄ = pext + β(
√
A−

√
A0) =⇒ A =

(
p̄

β
+
√
A0

)2

(81)

We can express A in terms of w1 and w2 with (31), so solving for w1 yields

A =

(
w1 − w2

4

)4(
ρ

2β

)2

=⇒ w1 = w2 + 4

√
2β

ρ
A1/4 (82)

Therefore we have at x = 0

w1(0, t) = w2(0, 0) +
4
√

2
√
ρ

√
p̄(t) + β0

√
A0 (83)

As said in the forward boundary condition section, at the left boundary w2 will be fixed at its initial
value, since it is highly dependent on the model used and hence it is not known a priori. w2(0, 0) will be
calculated using equation (30) with the initial values of U from the first physical cell, so U0

1 . The above
value for w1 and the fixed value for w2 are used to compute A and u using equation (31) for the inflow
boundary’s ghost cell.

For the right boundary a non reflective boundary condition is chosen as

w2(l, t) = w2(l, 0) = constant (84)

So, at the right boundary, w2 is also fixed at its initial state, but this time it is because the chosen initial
state is equivalent to the equilibrium state of the system. The right boundary’s ghost cell is, therefore,
a copy of the last physical cell.
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6.4.2 Results of the stented artery

In this section, we compare the results obtained using the high resolution flux difference splitting method
to the Discontinuous Galerkin method used in [1], on a normal artery and a stented artery. As a summary,
the conservative form PDEs given by equation (59) are used and the initial conditions and boundary
conditions are

IC: U(x, 0) =

[
A(x, 0)
u(x, 0)

]
=

[
0.5
0

]
, BC1: p̄(t) = 20000 sin

(
2πt

T

)
H

(
T

2
− t
)
, BC2: w2(l, t) = w2(l, 0)

(85)

Flux difference spliting

Discontinuous Galerkin

Figure 7: Result of a normal, left column, and stented, right column, blood vessel obtained using the the high
resolution flux difference splitting method and the Discontinuous Galerkin method from Sherwin et al. [1]

In the left column of Figure 7 can be seen that we first applied the flux difference splitting method
to an artery with no stent. The parameters are the same as in the stented blood vessel, see Table 1, but
with the stiffness kept constant β(x) = β0. Hence the material properties are constant. The solution
shows a non distorted half sine wave propagating through the artery.

This is expected when looking at equation (38), since U is constant at t = 0 and the material
properties are constant which imply that w1 and w2 are constant at t = 0. Using that the right
boundary condition also prescribes the same constant value for w2 for all t, it follows that w2 is constant
for all t and x. Note that indeed, PDE (38) allows for a trivial constant solution for w2. Since w2 is
constant, it follows that the wave speed λ1 = 5w1+3w2

8 , see below equation (38), does not depend on w2.

20



Figure 8: Figure from Mynard [5] to show the effect of a step increase and decrease of β on the wave propagation

Hence the coupled quasilinear system of PDEs for w1 and w2 decouples into two quasilinear PDEs for
w1 and w2 respectively. Where the quasilinear PDE for w1 is of interest since w1 has a non constant
boundary condition and hence w1 is a nontrivial solution of the quasilinear PDE. However, we do not
see the quasilinear behaviour in the solution because the maximum disturbance of w1 is at most 1% and
therefore is the difference in wave speed at most 1% and because the wave speed is large in comparison
with the vessel length, λ1

l ≈ 100. So the wave has already passed the domain of interest before anything
quasilinear occurs.

The pulse duration at P is about 0.16 seconds, which is in agreement with the duration of the
prescribed pressure pulse at the boundary of T

2 = 0.165 seconds.
It is important to note that the high resolution wave propagation algorithm (flux difference splitting

method) does not ‘smear out’ the solution as the wave propagation algorithms did in the linear test case,
see Figure 3, since the peak pulse height remains nearly constant throughout the vessel, as can be seen
in Figure 7.

If a stent is inserted, then we get the right column of Figure 7. The stent is stiff with respect to
the artery wall and hence it does not expand as easily. When the pressure pulse reaches the stent, the
characteristic velocity of the blood λ1 increases as a result of the increased stiffness and therefore points
M and D are reached earlier than in the non-stented vessel. Furthermore, part of the pressure pulse is
reflected due to the inlet of the stent and the reflected pulse is superimposed on the incoming pressure
pulse leading to an increase in the pressure at P at t = 0.8s, as well as a dip in the pressure below the
equilibrium pressure at t = 0.18s due to the reflection at te outlet of the stent.

The mathematical way of looking at the right column of graphs is as follows. In the regions where
the material properties are constant in x, the system is governed by equation (38) where there are
no source terms and as said earlier we do not see quasilinear behaviour with the current conditions.
Hence the quasilinear PDEs behave like scalar transport PDEs. The material properties are constant
in the following three regions: before the stent, in the stent and after the stent. So here we expect
non distorted transport as seen in the non stented artery. However at the boundaries of the stent the
material properties are not constant and we expect the sources terms to influence the solution. At the
inlet of the stent β increases, so dβ

dx > 0, and this eventually results in a positive source term for A in
the left running waves and subsequently p. While at the outlet of the stent β decreases which leads to
a negative source term for A for the left running waves and thus p, as was shown by Mynard [5] with a
step increase and decrease in β, see Figure 8.

The method based on flux differencing shows the same characteristics as the discontinuous Galerkin
method for both the normal and stented blood vessel. Some of the characteristics are the non distorted
wave propagation for the normal artery with comparable speeds, the increase in peak pressure at P just
before the stent as well as the dip in pressure at P and the small (numerical) oscillations at M at t = 0.18
s. But the flux differencing method has a slightly lower peak pressure at P at t = 0.08.

A grid of 400 cells is used and the time step is chosen such that the CFL condition is just satisfied
at each time tn, so

∆tn =
∆x

|λn|max
(86)
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Figure 9: 3D visualisation of the normal, left, and stented, right, artery cross-sectional area A at t =
0.01s, 0.075s, 0.175s from left to right respectively. The displacement from the equilibrium cross-sectional area
A0 is magnified with a factor of 30.

In Figure 9 a three-dimensional representation of the cross-sectional area A is given at times t = 0.01
s, t = 0.075 s, t = 0.175 s for the normal and stented artery. The displacement from the equilibrium
cross-sectional area A0 is magnified with a factor of 30 for illustration purposes.
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Figure 10: The inflow boundary condition ū(t) is shown

6.5 Test case - Tapered artery

As a further test case from Sherwin et at [1], a normal and a tapered blood vessel are considered. A
tapered artery is a blood vessel that along the length of the vessel gradually becomes smaller in cross-
sectional area and hence the blood vessel is shaped as a cone. At the inlet of the artery A0 = 1 cm2

and the cross-sectional area changes linearly to the outlet cross-sectional area A0 = 0.5 cm2. The initial
condition for the velocity u is u = 1 cm/s at the inlet and then varies linearly to u = 2 cm/s at the
outlet such that the mass flux at the inlet and outlet are the same. While for the normal blood vessel
A0 = 1 cm2 all the way through the blood vessel and the initial condition for the velocity is u(x, 0) = 1
cm/s such that the mass flux is comparable with that of the tapered artery. According to Sherwin et
al. [1] is the basic wave speed an order of magnitude higher than the mean velocity of the blood. Thus

looking at the normal artery, we want to choose β and ρ such that c0 =
√

β
2ρA

1/4
0 = 10 cm/s. We

therefore choose β = 100 dyne/cm3 and ρ = 0.5 g/cm3. Furthermore, they assumed that the spatial
(linear) wavelength λ0 (not the characteristic velocity) of the waves within this artery 100 times larger

is than the vessel diameter, so λ0 = 100
√

4
πA0 ≈ 100 cm. In the linear case, we then have λ0 = c0T , so

T = λ0

c0
= 10 s where T is the period of the wave. To be able to see the waves with a spatial wavelength

of 100 cm a blood vessel of length L = 200 cm is considered where the inlet is located at x = −100 and
the outlet at x = 100. We note that this problem is not physically accurate since there are no arteries
that are 2 meters long without a bifurcation.

6.5.1 Boundary conditions of the tapered artery

The inflow boundary condition is

u(−100, t) = ū(t) = 1− 0.4 sin(ωt)− 0.4 sin(2ωt)− 0.2 cos(2ωt) (87)

Here, ω = 2π
T is the angular frequency with T the time period derived to be 10 s. The waveform

is shown in Figure 10. With this left boundary condition we have taken into account, that further
down the arterial tree the modelled half sine wave at the aortic valve given by equation (80) might
have changed considerably due to reflections at the bifurcations. Using equation (31), we have for the
inflowing characteristic that

u =
w1 + w2

2
=⇒ w1(−100, t) = 2ū(t)− w2(−100, 0) (88)

As said in the forward boundary condition section, at the left boundary w2 will be fixed at its initial
value, since it’s highly depended on the model used and hence it is not known a priori. Using the above
values for w1 and the initial value for w2, we compute A and u for the inflow boundary’s ghost cell using
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equation (31) as

A(−100, t) =

(
w1(−100, t)− w2(−100, 0)

4

)4(
ρ

2β

)2

=

(
2ū(t)− 2w2(−100, 0)

4

)4(
ρ

2β

)2

=

 ū(t)−
(
u0

1 − 4
√

β
2ρ (A0

1)1/4
)

2


4(

ρ

2β

)2

≈ A0
1

u(−100, t) = ū(t)

(89)

where A0
1 and u0

1 are the values of A and u in the first physical cell at time t = 0, and where we no longer
assume that forward prescription holds for u, such that u1

0 ≈ ū(t). A similar assumption was made by
Sherwin et al. [1], who took for the ghost cell A(−100, t) = 1 cm2 and u(−100, t) = ū(t).

The outflow boundary condition is a non reflective boundary condition and is given by

w2(100, t) = w2(100, 0) = constant (90)

So, at the right boundary, w2 is also fixed at its initial state, but this time it is because the chosen initial
state is equivalent to the equilibrium state of the system. The right boundary’s ghost cell is therefore a
copy of the last physical cell.

6.5.2 Results of the non tapered artery

First the non tapered artery, the normal artery, is considered. The results obtained using the high
resolution flux difference splitting will be compared with the Discontinuous Galerkin scheme used in [1].

Figure 11: Results of the normal artery obtained with the high resolution flux differencing scheme at t = 2.5s
(dotted line), at t = 12.5s (dashed line) and at t = 20s (continuous line)
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Figure 12: Results of the normal artery obtained with the Discontinuous Galerkin scheme at t = 2.5s (dotted
line), at t = 12.5s (dashed line) and at t = 20s (continuous line) from Sherwin et al. [1]

Note that in Figure 11, in contrast to the stented artery, where the temporal wave was shown, the
spatial wave is shown here. It is clearly visible that the prescribed blood velocity from equation (87)
is propagated throughout the normal artery, albeit a bit lower than the prescribed value due to the
approximation made at the inflow boundary. The normal propagation is expected since the material
properties are constant.

Because we are considering a long blood vessel, the non linearities of the system can also be seen in
the form of the steepening of the pulse. This effect can be seen for the t = 20 s continuous line, compare
for example the steepness of the pulse at x = 20 cm with the steepness of the pulse at x = −90 cm.

Furthermore, for the continuous line (t = 20 s) for either A or u, we expect in the linear case to see
L
λ0

= 2 pulses in the spatial domain (λ0 is the linear wavelength), but since the actual forward travelling
wave speed is λ1 = u+ c, it follows that λa = λ1T > λ0T , since u > 0 for all t. So the actual wavelength
λa is larger than in the linear case and, hence, less than 2 wavelengths are shown in Figure 11.

Moreover, since w2 is constant, it follows with equation (31) that u and A in Figure 11 are of similar
shape.

The results from the flux differencing and the Discontinuous Galerkin are exactly the same, as shown
in Figure 11 and Figure 12 respectively. The only small differences that can be noticed by the naked
eye are the small oscillation that occur for the Discontinuous Galerkin when the pulse first disturbs the
initial state, which can be seen for the dotted line at x = −60 cm and for the dashed line at x = 50 cm.

6.5.3 Results of the tapered artery

In this section the results of the tapered artery acquired with the high resolution flux differencing method
are compared with the Discontinues Galerkin method from [1].
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Figure 13: Results of the tapered artery obtained with the high resolution flux difference splitting method at
t = 2.5s (dotted line), at t = 12.5s (dashed line) and at t = 20s (continuous line)

Figure 14: Results of the tapered artery obtained with the Discontinuous Galerkin scheme at t = 2.5s (dotted
line), at t = 12.5s (dashed line) and at t = 20s (continuous line) from Sherwin et al. [1]

We note that in Figure 13 for the continuous line (t = 20 s) of either A or u, a tiny bit more than
two wavelengths can be seen compared to the slightly less than 2 wavelengths in Figure 11. This is to be

expected, since the basic wave speed c0 =
√

β
2ρA

1/4
0 decreases over the length of the blood vessel, because

the blood vessel is tapered. Furthermore, w2 is almost constant in time and the waves are getting a bit
steeper further down the artery with respect to the normal artery.

The two methods again show exactly the same solution and the oscillation of the DG are less visible.
A grid size of 400 is used for both the non tapered and the tapered blood vessel, and the time step

is chosen such that the CFL condition is just satisfied at each instant in time.
In Figure 15 a three-dimensional representation of A is given at t = 2.5s, 12.5s, 20s. The displacement

from the equilibrium cross-sectional area area A0 is magnified by a factor of 10 and the x-axis is scaled
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with a factor of 1/20.

Figure 15: 3D visualisation of the normal, left, and tapered, right, artery cross-sectional area A at t =
2.5s, 12.5s, 20s from left to right respectively. The displacement from the equilibrium cross-sectional area A0

is magnified with a factor of 10
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7 The human arterial tree

In this section we will be modelling the human arterial tree, but before we can do that we first have to
look at a bifurcation or the branching of an artery.

7.1 Treatment of a bifurcation

P

D1

D2

Figure 16: Schematic overview of a bifurcation

See Figure 16 for a schematic overview of a bifurcation. The blood vessel that branches is called the
parent vessel P and the vessels that the parent branches into are called the daughter vessels D1 and
D2. Since we have a 2x2 system of PDEs, we only have two waves propagating in the solution. We
can therefore not add an extra f-wave to the flux differencing scheme since we would obtain 3 unknowns
for 2 equations. We could use other conditions to complete the system but that would cause us to
solve a nonlinear system of equations, see for example Sherwin et al. [1]. Here, we have chosen for
another approach. We model the two daughter vessels as one big blood vessel and the resulting f-wave
is distributed according to the cross-sectional areas at rest. To model the two daughter vessels as one
big artery D we will use the following assumptions:

The cross-sectional area of D is given by the sum of the daughter vessel’s cross-sectional areas

AnD = AnD1
+AnD2

(91)

The equilibrium cross-sectional area of D is given by the sum of the equilibrium cross-sectional areas of
the daughter vessels

An0,D = An0,D1
+An0,D2

(92)

The resulting f-wave ZnD is distributed according to

ZnD1
= αZnD, ZnD2

= γZnD (93)

Where

α =
A0,D1

A0,D1
+A0,D2

, γ =
A0,D2

A0,D1
+A0,D2

(94)

are the relative cross-sectional area fractions at rest.
The mean velocity of the blood in D is given by the special averaging

unD = αunD1
+ γunD2

(95)

The stiffness β of D is also given by the special averaging

βD = αβD1
+ γβD2

(96)

Lastly the basic wave speed c at D is obtained using the new base units and is given by

cnD =

√
βD
2ρ
AnD

1/4 (97)
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Figure 17: Result of the equal A0 and equal β for the daughter vessels test case, shown for t = 0.014 s, t = 0.0186
s and t = 0.023 s

Using the above assumptions for artery D, we get the following flux differencing at interface i− 1/2

FD(UnD)− FP (UnP ) = Zn1,D + Zn2,P = βn1,i−1/2r
n
1,D + βn2,i−1/2r

n
2,P = Rni−1/2β

n
i−1/2 (98)

=
1

2

AnDcnD −A
n
P

cnP
1 1

[βn1,i−1/2

βn2,i−1/2

]
(99)

Solving for βni−1/2 gives

[
βn1,i−1/2

βn2,i−1/2

]
=

2
AnD
cnD

+
AnP
cnP

 1
AnP
cnP

−1
AnD
cnD

 (FD(UnD)− FP (UnP )) (100)

The f-wave can then be found from its definition ZnD = βn1,i−1/2r
n
D and equation (93) can be used

for the f-waves in the two daughter vessels. We use the linear wave propagation algorithm (71) (flux
difference splitting algorithm) at the bifurcations and for the rest of the blood vessels we use the high
resolution flux differencing algorithm given by equation (72).

7.2 Test case - Bifurcation

We apply the high resolution flux differencing scheme with the above treatment of the bifurcations to
three bifurcation test cases to investigate its behaviour and to study the reflected waves caused by the
current treatment of the bifurcations. The test cases are called respectively ‘equal A0 and equal β’,
‘equal A0 and different β’ and ‘different A0 and equal β’ for the daughter vessels.

To model a bifurcation of the ascending aorta, the parent equilibrium cross-sectional area A0,P is
taken to be 6 cm2, see Table 4 in appendix B for the physiological data from Sherwin et al. [1]. The
stiffness of the parent vessel βp has an estimated value of 105 dyne/cm3 and the length of each vessel is
3 cm. The blood is initially at rest and the initial cross-sectional area is the equilibrium cross-sectional
area in each vessel. The left boundary condition is a quick and small pulse given as

Ā(t) = A0,P + 0.1e−106(t−0.1)2 (101)

to minimize the effects of the non-linearities in the solution. The outflow boundary conditions are of the
non reflective type.

7.2.1 Results of the equal A0 and equal β for the daughter vessels

As was illustrated in Figure 16, we normally expect that the equilibrium cross-sectional area just before
the bifurcation A0,P to be comparable to the sum of the equilibrium cross-sectional areas just after the
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Figure 18: Result of the equal A0 and different β for the daughter vessels test case, shown for t = 0.014 s,
t = 0.0186 s and t = 0.023 s. Here is βD1 = 2βP = 2βD2

Figure 19: Result of the different A0 and equal β for the daughter vessels test case, shown for t = 0.014 s,
t = 0.0186 s and t = 0.023 s. Here is A0,P = 6 cm2, A0,D1 = 6 cm2 and A0,D2 = 3 cm2
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bifurcation A0,D1
+ A0,D2

. Therefore, was chosen for A0,D1
= A0,D2

= 1
2A0,P = 3 cm2 in this test

case. The arterial stiffness β is constant and the same in each vessel to minimize the reflections, so
βD1

= βD2
= βP .

The results of the equal test case are found in Figure 17. At t = 0.014 s, we can see that the pulse is
travelling through the parent vessel. The bifurcation from parent P to daughters D1 and D2 is illustrated
by the black lines located at x = 3 cm and x = 6 cm. The pulse hits the bifurcation at t = 0.0186 s,
where the peak of the pulse in the parent vessel increases slightly and the wave is evenly split between the
two daughter vessels. At t = 0.023 s, a small pulse is reflected back into the parent vessel and the pulse
propagates undistorted in the daughter vessels. We expected no reflected pulse with these conditions
since the material properties and the cross-sectional areas are equal before and after the bifurcation. The
reflected pulse is about 10% the height of the original pressure pulse, which is acceptable.

Note that the pressures in the daughter vessels do not add up to the pressure in the parent vessel,
this is due to that the pressure is given by p = pext+β(

√
A−
√
A0), so it is dependent on A0(x). We will

do a small calculation to show this effect. A small amplitude pulse W given above steady equilibrium,
is of the form A = A0 +W . Therefore

p = β(
√
A0 +W −

√
A0) = β

(√
A0

√
1 +

W

A0
−
√
A0

)
≈ β

(√
A0

(
1 +

W

2A0

)
−
√
A0

)
=

βW

2
√
A0

(102)
where we have used the approximate Taylor expansion

√
1 + x ≈ 1 + x

2 for small x. After substitution
the values β = 105 dyne/cm3, W = 0.1 cm2, A0 = 6 cm2, we get pP = 2.04 · 103 dyne/cm2 for the peak
pressure in the parent vessel. Using that approximately half of the pulse above equilibrium reaches the
daughter vessels, so W = 0.05 cm2 and A0 = 3 cm2, we get PDi = 1.44 · 103 dyne/cm2 for the peak
pressure in the daughter vessels. These calculations match with what we see in Figure 17. Thus we see
that the pressure scales linearly with the pulse ’height’, but does take the equilibrium cross-sectional
area into account whenever the relative pulse ’height’ is not to big W

A0
� 1.

7.2.2 Results of the equal A0 and different β for the daughter vessels

Same conditions as test case ‘equal A0 and equal β’ for the daughter vessels but this time with the
stiffness of daughter 1 twice as high as in the previous test case, so βD1 = 2βD2 = 2 · 105 dyne/cm3.

The results can be found in Figure 18. The reflected pulse height is about 20% of the original pulse
height. The transmitted wave in daughter vessel D1 at t = 0.0186 s has travelled further than the
transmitted pulse in daughter D2 in the same amount of time, hence its velocity it higher. This is logical

since the basic wave speed c =
√

β
2ρ scales with β. The ratio of the pulses in the daughter vessels is

R =
PD1

PD2
= 1.55 instead of

βD1

βD2
= 2, see equation (102), which is likely due to the fact that, indeed,

D1 and D2 get a 1:1 split of the flux from the parent vessel, but they can independently propagate
flux backwards into the parent vessel. Since the stiffness is relatively high in the D1 vessel, it is likely
that more flux is propagated backwards than in the lower stiffness vessel D2 and hence the ratio R is
lower. This behaviour is physically more realistic since we expect the stiffness to play a role in the flux
distribution. Since the stiffer the artery, the less it wants to expand, hence, a lower proportion of the
flux is propagated into the stiff artery.

7.2.3 Results of the different A0 and equal β for the daughter vessels

Figure 19 shows the results if we keep all the conditions the same as in the ‘equal A0 and equal β’ for
the daughter vessels test case, but this time is the equilibrium cross-sectional area of daughter D1 taken
as A0,D1 = 6 cm2 and for daughter D2 we have A0,D2 = 3 cm2.

The reflected pressure pulse is about 7.5% of the size of the inlet pressure pulse and it is negative,
which is caused by the fact that the sum of the equilibrium cross-sectional areas is greater than that
of the parent vessel and hence a bit more of the pulse is transmitted and therefore there is a negative
pressure pulse or decrease in the cross-sectional area below the equilibrium cross-sectional area in the
parent vessel. Also note that this time the flux is split according to 2 : 1, therefore more flux is propagated
into D1 which in turn leads to a higher pressure than in D2, such that more flux will be propagated
backwards, which is visible in the transmitted pulses in the daughter vessels.
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Table 2: Parent pointer of Figure 20 and Figure 21. The top row is the index of the node and the bottom row is
the corresponding parent. Parent 0 means that that node is a root

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0 1 1 3 3 4 4 7 7 9 9 5 5 2 2 15 15 14 14 19 19 21 21 23 23 18 18 27

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
27 29 29 30 30 28 28 35 35 37 37 39 39 41 41 42 42 44 44 46 46 43 43 50 50 52 52

7.3 Human arterial tree

Having developed all the tools necessary we will proceed to model the human arterial tree. The arterial
tree is modelled as a network of 55 blood vessels. Their spatial dependence is given by Figure 20 from
[1]. The spatial dependence of the arteries in Figure 20 is isomorphic to a full binary tree, in which each
node in the tree has 0 or 2 children. Each artery will be a node and the edges represents the spatial
connections. The root of the tree is artery 1. Artery 1 branches into artery 2 and artery 3. Hence an
edge will be drawn from node 1 to node 2 and from node 1 to node 3. Blood vessel 2 bifurcates to artery
14 and artery 15. Artery 3 splits into artery 4 and artery 5 and so forth. Using this technique we obtain
the graph in Figure 21.

There is a convenient data structure to capture this branching tree behaviour, the parent pointer
data structure. The parent pointer is an array or vector where each index corresponds to the respective
node (artery) and the value at each index represents which node is its parent. See Table 2 for the parent
pointer of Figure 20 and 21. Artery 1 is a root, so it has no parents and hence it has parent 0. Artery 2
and artery 3 are the children of artery 1, so artery 1 is their parent. The parent of arteries 14 and 15 is
artery 2.

The physiological data for the 55 main arteries in the human arterial tree is provided by Sherwin et
al. [1] and is shown in Table 4 and Table 5 in appendix B. This data is altered to minimize the reflections
at the bifurcations for the forward running waves. Blood flows from the heart via the arteries to the
capillaries where the oxygen transfer takes place. We are interested in the results in the larger arteries
and not so much in the numerous small capillaries where the blood flow slows down significantly. But
the network of blood vessel further down the arterial tree will generate backwards travelling waves. To
incorporate these reflections in to the model of 55 arteries is chosen for a terminal resistance coefficient
Rt at the terminal vessels, defined as

Rt = −∆w2

∆w1
= −w

n+1
2 − w0

2

wn+1
1 − w0

1

(103)

where w0
j is the j-th characteristic variable fixed at its initial value. The terminal resistance coefficient

will be applied to each vessel end that is not connected to other blood vessels, the outflow blood vessels.
The lowest row of nodes of Figure 21 represent the outflow blood vessels. It follows that w2 has to be
prescribed at the outflow blood vessels, we therefore solve for w2 and this yields

wn+1
2 = w0

2 −Rt(wn+1
1 − w0

1) (104)

We see that Rt = 0 represents a non reflective boundary condition such that the wave can leave without
disturbing the domain of interest. Setting Rt = 1 represents a perfect blockage of the pulse and thus the
pulse is fully send back into the computational domain. For the terminal resistance coefficient it holds
that Rt ∈ [0, 1].

The inflow boundary conditions has to be prescribed at the start of artery 1 and we will use the
forward prescription. The inflow boundary condition is taken as

Ā(t) = A0,1 + 1.587 · δ(t) H(δ(t)), δ(t) = sin(ωt+ 0.628)− 0.588 (105)

Where A0,1 = 5.983 cm2 is the equilibrium cross-sectional area of the first artery, see Table 4, H(t) is
the Heaviside step function, ω = 2π

T rad/s is the angular frequency with T = 1 s. The inflow boundary
condition is plotted in Figure 22. The density of blood was taken to be ρ = 1.021 g/cm3 and the blood
is initially at rest and the cross-sectional area is at the equilibrium value.
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Figure 20: Connectivity of the 55 main arteries in the human arterial system from Sherwin et al. [1]
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Figure 21: Graph of the connectivity of the 55 main arteries in the human arterial system

Figure 22: Plot of the inflow boundary condition A, see equation (105)
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7.4 Results of the human arterial tree

The results of the simulations of the 55 main arteries in the human arterial tree will be given in this
section.

Figures 23, 24, 25 and 25 show A, u, w1 and w2 for one period T = 1 s at the start of the ascending
aorta (artery 1) and at the start of the l. anterior tibial (artery 49) with and without terminal resistance
(Rt = 0). On the left, the results obtained using the high resolution flux differencing method are shown
and on the right, the results of the Discontinuous Galerkin form Sherwin et al. [1] are shown. Each
second, a pulse is sent into the arterial network. In order to let the wave patters develop in the arterial
tree, we will wait for 9 pulses before looking at a single cycle.

The data of the network of 55 arteries is adjusted such that there should be no (or small) reflections
at the bifurcations for forward running waves according to Sherwin et al. [1] . This, however, is not
the case for both the flux differencing method and the Discontinuous Galerkin as can be seen in Figure
23, where the cross-sectional area A and mean velocity u do not immediately return to the equilibrium
values when the incoming pulse has passed. This implies that there is a reflected wave w2 originating
from the bifurcations since there is no terminal resistance. In Figure 24, it can be seen that, indeed, no
pulse is reflected at the terminal vessels, since w2 is constant.

The general behaviour of the DG and FD is similar but the actual waveforms are quite different as
displayed in Figure 23. The mean velocity u and cross-sectional area A also differ quite a lot in value
between the two methods. They both show the shape of the prescribed pulse until t = 9.3 s. Although
the FD method has lower mean velocity u and a greater cross-sectional area A. After the pulse has
passed, so t > 9.3 s, u shows a steep decline followed by a steep increase, while for the DG the process of
returning to equilibrium is a lot slower and smoother. This is likely caused by the different approaches
of handling the bifurcations. It seems that the approach we used, where we saw the daughter vessels as
one big vessel, causes a greater portion of the pulse to be reflected.

When taking the terminal resistance into account at the terminal vessels, we obtain Figures 25 and
26 at the inlet of the ascending aorta and at the start of l. anterior tibial respectively. The amount of
waves changes significantly due to terminal resistance. Since, the forward running waves reflect of the
terminal vessels and become backwards running waves that reflect of the bifurcation and, as such, create
even more small waves.

In the left column of Figure 25, it can be seen that the reflected waves have become stronger since
the dip in u and the recovery of u are both a bit more pronounced. Also, the cross-sectional area A at
t = 9.5 s becomes smaller than the equilibrium value due to the stronger reflected wave.

It can be seen that the wave has reflected of the terminal vessel end in Figure 26. Compare for
example w2 of Figure 26 with w2 of Figure 24. The axis are the same, but it can be seen that w2 is no
longer constant and, hence, has reflected of the vessel end.

When terminal resistance is considered, then the the FD and the DG both show qualitatively the
same results but quantitatively, the results differ substantially. Note the different scale on the axis. This
is, again, likely caused by the different treatment of the bifurcations.

A grid size of 2000 cells was used, and the time step ∆tn is determined by the maximum allowed
time step by the CFL condition at each time tn.
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Figure 23: Results of the network of 55 arteries considering no terminal resistance shown at the start of the
ascending aorta (artery 1) obtained using the high resolution flux differencing method, left, and Discontinuous
Galerkin method, right, from Sherwin et al. [1]
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Figure 24: Results of the network of 55 arteries considering no terminal resistance shown at the start of the
l. anterior tibial (artery 49, terminal vessel) using the high resolution flux differencing, left, and Discontinuous
Galerkin, right, from Sherwin et al. [1]

37



Figure 25: Results of the network of 55 arteries considering terminal resistance shown at the start of the ascending
aorta (artery 1) using the high resolution flux differencing, left, and Discontinuous Galerkin, right, from Sherwin
et al. [1]
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Figure 26: Results of the network of 55 arteries considering terminal resistance shown at the start of the l.
anterior tibial (artery 49, terminal vessel) using the high resolution flux differencing, left, and Discontinuous
Galerkin, right, from Sherwin et al. [1]
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Figure 27: Two-dimensional representation of the 55 main arteries in the arterial system where the length of the
arteries is on the same scale as the vessel diameters. The physiological data is given in Table 4 and Table 5

Figure 27 shows a spatial representation of the 55 main arteries in the human arterial tree at rest.
The figure is made such that the vessel diameters are on the same scale as the vessel lengths. Also
each artery is labelled with its corresponding number in graph 21. The normal blood vessels have their
number in the centre of the blood vessel and the terminal vessels at the end of the vessel. An algorithm
determined each artery’s needed ‘width’ and using that information, the artery’s length and if it should
go up or down, the corresponding angle and position are calculated. Some arteries are too short for the
calculated width and it therefore seems like that these arteries are not connected, but this is only a visual
consequence of the used algorithm. Artery 41 for example, does not seem to be connected to arteries 42
and 43.
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Figure 28: Part of the 55 arterial network shown for t = 0 s, t = 0.1 s, t = 0.2 s, t = 0.3 s, t = 0.4 s and t = 0.5
s. The displacement relative to equilibrium cross-sectional area A0 is magnified with a factor of 30. The colour
is relative to the maximum pressure per vessel. Maximum pressure is shown in red, no pressure in green and
negative pressure is shown in blue, as illustrated by the colour bar

The start of the 55 arterial network can be found in Figure 28 for t = 0 s, t = 0.1 s, t = 0.2 s, t = 0.3
s, t = 0.4 s and t = 0.5 s. To see the expansion of the blood vessels more clearly, we have magnified
the displacement of the cross-sectional area with a factor of 30. The arterial tree is in its equilibrium
state at t = 0 s. For t > 0, it can be seen how the vessel tree responds to a pulse given by equation
(105). After 0.3 seconds the pulse has stopped at the inlet (artery 1) and hence the system returns to
its equilibrium state once all the reflections have left the domain. Those reflections also cause negative
pressure at some bifurcations, as shown by the blue colour.
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8 Conclusions

The results of the wave propagation algorithm were compared with the exact solution for a linear flux
function. The wave propagation algorithm showed many similarities with the exact solution, but it was
also found to be very diffusive.

As a further test case, the results of the high resolution flux difference splitting method were com-
pared with the results of the Discontinuous Galerkin method for an idealised stented artery using a
spatially varying nonlinear flux function. The flux differencing algorithm proved to give similar results
to Discontinuous Galerkin’s, the most noteworthy similarities were an increase in the peak pressure and
a dip below the equilibrium pressure just before the stent. It was also shown that with constant material
properties, the nonlinear system simplifies to a quasilinear system, which behaved like scalar transport
equations under the considered conditions. The high resolution flux differencing method proved to be
not very diffusive under these conditions, in contrast with the linear wave propagation algorithm.

The nonlinear behaviour of the flux function was shown using a long tapered artery. The nonlinearity
expressed itself, in this case, by the steepening of the pulse. An artery without bifurcations that is this
long, is unrealistic. Thus, luckily, no shock waves will form in normal arteries. It was shown that the
actual speed at which the waves travel, is not the basic wave speed, but is instead the characteristic
velocities.

Furthermore, an approach to the branching of arteries was investigated and it showed reasonable
physical reflections. If the parent and daughter arteries are equally stiff and if the sum of the daughter
vessel’s cross-section area is comparable to that of the parent, then the magnitude of the reflected pressure
pulse is in the order of 10%.

As a final test case, a simplified model consisting of the 55 main arteries in the human arterial tree
is considered, to study the reflections at the bifurcations in the arterial tree. To simulate the missing
arteries a simplified model of terminal resistance is used. The high resolution flux differencing algorithm
showed the same qualitative results, but the quantitative results differed considerably, when compared
to the results of the Discontinuous Galerkin. The discrepancy is likely caused by the treatment of the
bifurcations. It can be concluded that bifurcations play an important role in the overall behaviour of
blood flow and, as such, cannot be neglected when considering a single artery. The results from the
Discontinuous Galerkin are from Sherwin et al. [1].

Future research could try a more advanced treatment of the bifurcations in order to get more compa-
rable results to the Discontinuous Galerkin’s. Moreover, further research can focus on the wave pattern
created by an endovascular prosthesis or a surgical bypass, since this would be a straightforward extension
of the methods presented in this thesis.
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Appendices

A The CGS system

The conversion from the CGS system to the standard SI system is shown in Table 3, which is an
adaptation from [11].

Table 3: Conversion Table from the CGS system to the SI units

Quantity CGS unit Definition SI
length centimetre (cm) 1/100 of metre =10−2 m
mass gram (g) 1/1000 of kilogram =10−3 kg
time second (s) 1 second =1 s

velocity centimetre per second (cm/s) cm/s =10−2 m/s
acceleration gal (Gal) cm/s2 =10−2 m/s2

force dyne (dyn) g·cm/s2 =10−5 N
energy erg (erg) g·cm2/s2 =10−7 J
power erg per second (erg/s) g·cm2/s3 =10−7 W

pressure barye (Ba) g/cm·s2 =10−1 Pa
dynamic viscosity poise (P) g/cm·s =10−1 Pa·s

kinematic viscosity stokes (St) cm2/s =10−4 m2/s
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B Physiological data of the 55 arteries

The physiological data from Sherwin et al. [1] for the 55 main arteries in the human arterial system can
be found in Table 4 and Table 5.

Table 4: Physiological data of the 55 main arteries from [1]
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Table 5: Physiological data of the 55 main arteries from [1] continued

C Numerical implementation

All the created Matlab scripts can be found at https://tinyurl.com/BEP-Marco-Rozendaal (original
link https://drive.google.com/drive/folders/0B7N-e57lbo5FOFcySFpBUUxpeVk?usp=sharing). The
bifurcation script is included below:

clc; clear all; close all;

tic

figs_path = 'C:\ Users\Marco\Documents\TU Delft\BEP\LaTeX BEP\Figures ';

font = 15;

linewidth = 2;

save = 1;

%%

%Bifurcation

% parameters

load('55 _art_data.mat')

p_ext = 0;

rho = 1.021;

if save ==1|| save ==2

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55

parent_p = [0 1 1 3 3 4 4 7 7 9 9 5 5 2 2 15 15 14 14 19 19

21 21 23 23 18 18 27 27 29 29 30 30 28 28 35 35 37 37 39 39 41

41 42 42 44 44 46 46 43 43 50 50 52 52];

L = L(1: length(parent_p)) ';

A_0_s = A_0_s (1: length(parent_p)) ';

beta_s = 1000* beta_s (1: length(parent_p))';

if save ==1

R_t = zeros(size(parent_p));

else

R_t = R_t(1: length(parent_p))';

end

elseif save ==3

L = [3 3 3]; %[4 2 3.4 3.4 17.7 14.8 42.2 23.5 6.7 7.9 17.1 17.6

17.7];%[4 2 3.4 3.4 17.7];

A_0_s = [6 3 3]; %[5.983 5.147 1.219 0.562 0.432 0.123 0.51 0.106

0.145 0.031 0.133 0.121 0.121]; %[5.983 5.147 1.219 0.562

0.432];
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beta_s = [1 1 1]*10^5; %100000; [97 87 233 423 516 2590 466 2866

2246 12894 2446 2644 2467];%[97 87 233 423 516];

R_t = [0 0 0];

elseif save ==4

L = [3 3 3];

A_0_s = [6 3 3];

beta_s = [1 2 1]*10^5;

R_t = [0 0 0];

elseif save ==5

L = [3 3 3];

A_0_s = [6 6 3];

beta_s = [1 1 1]*10^5;

R_t = [0 0 0];

end

if save ==1|| save ==2

%network 55 arteries

T_end = 10;

N = 2000; %2000 spacesize

% left BC - prescribed A(0,t)

T_p = 1;

delta_A = @(t) sin (2*pi*t/T_p +0.628) -0.588;

A_BC = @(t) A_0_s (1) + 1.597* delta_A(t) .* (delta_A(t) >=0);

TPLOT = linspace(0,T_end ,10000);

plot(TPLOT ,A_BC(TPLOT),'k','linewidth ',linewidth)%,TPLOT ,delta_A(

TPLOT))

ylabel('$A$ (cm$^2$) ','Interpreter ','LaTeX ','fontsize ',font)

xlabel('$t$ (s)','Interpreter ','LaTeX ','fontsize ',font)

set(gca ,'fontsize ',font)

set(gcf , 'PaperUnits ', 'centimeters ');

set(gcf , 'PaperPosition ', [0 0 25 6]);

print(fullfile(figs_path ,'network_55_A_inflow_bc '),'-dpng','-r500',

'-opengl ')

else

% test cases

T_end = 0.1;

N = 300;

parent_p = [0 1 1];

% left BC - prescribed A(0,t)

T_p = 0.02;

A_BC = @(t) A_0_s (1) + 0.1* exp(-(t -0.01) .^2*10^6);

end

%ADJ = [0 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 1 1 0 0 0 0; 0 0 0

0 0 1 1 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 1

1; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0];%[0 1 1 0 0; 0 0 0 0 0; 0 0

0 1 1; 0 0 0 0 0; 0 0 0 0 0];

%parent pointer -> adj matrix

for i=1: length(parent_p)

for j=1: length(parent_p)

if parent_p(j)==i

ADJ(i,j) = 1;

else
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ADJ(i,j) = 0;

end

end

end

dx = sum(L)/(N+1);

x_pos = (dx:dx:(sum(L)-dx)) ';

disp(['dx<min(L):' num2str(dx <min(L))])

% Changing A_0 , beta_0 such that they contain N elements

K_r = [diag(ones(N,1) ,0); zeros(1,N)];

K_l = [zeros(1,N); diag(ones(N,1) ,0)];

K_c = [diag(ones(N,1) ,0); zeros(1,N)];

K_ibc = [diag ([1 zeros(1,N-1)]); zeros(1,N)];

K_obc = zeros(N+1,N);

K_z1_up = diag(ones(N,1) ,-1); %v interfaces > z_1 interfaces

K_z2_up = diag(ones(N,1) ,1);

K_z1 = [diag(ones(N,1) ,0) zeros(N,1)]; % Fundamental different , it

relates Z's/interfaces to the cells

K_z2 = [zeros(N,1) diag(ones(N,1) ,0)]; % ^

A_0 = [];

beta = [];

rest = 0;

for i=1:1: length(A_0_s)

cells_unr = (L(i) + rest - dx*(i== length(A_0_s)))/dx;

rest = (cells_unr - floor(cells_unr))*dx;

cells(i) = fix(cells_unr)*(i~= length(A_0_s)) + round(cells_unr)*(i

== length(A_0_s));

A_0 = [A_0; repmat(A_0_s(i),cells(i) ,1)];

beta = [beta; repmat(beta_s(i),cells(i) ,1)];

end

%sum over ADJ

for i=1: length(A_0_s)

total_area = ADJ(i,:)*A_0_s ';

if total_area == 0

total_area = 1;

end

K_obc( sum(cells (1:i))+1 , sum(cells (1:i)) ) = ( sum(ADJ(i,:))==0 )

;

for j=1: length(A_0_s)

% Coeff of bifurcations

alpha(i,j) = A_0_s(j)*ADJ(i,j)/total_area;

% fixing K's

K_r( sum(cells (1:i))+1 , sum(cells (1:(j-1)))+1 ) = ADJ(i,j);

K_c( sum(cells (1:i))+1 , sum(cells (1:(j-1)))+1 ) = alpha(i,j);

K_z1( sum(cells (1:(j-1)))+1 , sum(cells (1:i))+1 ) = alpha(i,j);

K_z1_up( sum(cells (1:(j-1)))+2 , sum(cells (1:i))+1 ) = ADJ(i,j)

;
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K_z2_up( sum(cells (1:i))+1 , sum(cells (1:(j-1)))+2 ) = ADJ(i,j)

;

end

end

Lin = ones(N+1,1);

Lin(cumsum(cells)+1) = (sum(ADJ ,2) ==0);

%%

M = 60000; % Guess for time dimension

% functions

c = @(A,j) sqrt(beta(j)/(2* rho)).*A.^(1/4);

p = @(A,j) p_ext + beta(j) .* ( sqrt(A) - sqrt(A_0(j)) );

F = @(A, u, beta , A_0) [ A.*u 1/2*u.^2 + ( p_ext + beta .*( sqrt(A)-sqrt

(A_0)) )/rho ];

% limiters

% minmod

phi = @( theta) max(0, min(1,theta));

% initialisation

U = zeros(N,2,M); % [A u]

U(:,:,1) = [A_0 zeros(N,1)]; % ICs

beta_ibc = K_ibc*beta;

beta_obc = K_obc*beta;

A_0_obc = K_obc*A_0;

A_0_ibc = K_ibc*A_0;

A_0_r = K_r*A_0 + A_0_obc;

A_0_l = K_l*A_0 + A_0_ibc;

beta_r = K_c*beta + beta_obc;

beta_l = K_l*beta + beta_ibc;

dt = 10^( -4);

t = zeros(1,M);

i = 1;

while t(i)<=T_end

if mod(i ,500) ==0

fprintf('i=%i, t=%6.4f, elapsedtime =%5.2f, eta =%5.2f\n', i, t(i)

, toc/60, (T_end -t(i))/t(i)*toc /60)

end

% Inlet BC

W_2 = 1/2*U(1,2,1) - 2*c(U(1,1,1) ,1); % fixed at initial state

W_1 = W_2 + 4*sqrt(beta (1) /(2* rho))*A_BC(t(i))^(1/4);

U_ibc = [((W_1 -W_2)/4) ^4*(2* rho/beta (1))^2 W_1+W_2; zeros(N,2)];

% Outlet BCs - copy pasta

U_obc = zeros(N,2);
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U_obc(cumsum(cells) ,:) = [U(cumsum(cells) ,1,i) (ones(length(A_0_s)

,1)-R_t ').*(U(cumsum(cells) ,2,1)+U(cumsum(cells),2,i) + 4*( c(U(

cumsum(cells) ,1,i),cumsum(cells)) - c(U(cumsum(cells) ,1,1),

cumsum(cells))) ) - U(cumsum(cells),2,i)];

% filtering

U_obc = K_obc*U_obc;

% Some simplyfing steps

U_h = U(:,:,i);

A_r = K_r*U_h(:,1) + U_obc (:,1);

A_l = K_l*U_h(:,1) + U_ibc (:,1);

u_r = K_c*U_h(:,2) + U_obc (:,2);

u_l = K_l*U_h(:,2) + U_ibc (:,2);

%Real code - Flux difference - matrix

F_r = F(A_r , u_r , beta_r , A_0_r);

F_l = F(A_l , u_l , beta_l , A_0_l);

delta = F_r -F_l;

r_r = A_r .^(3/4) ./sqrt(beta_r /(2* rho));

r_l = A_l .^(3/4) ./sqrt(beta_l /(2* rho));

det = r_r + r_l;

beta_1 = 1./ det .*( delta (:,1) + r_l.* delta (:,2));

beta_2 = 1./ det.*(- delta (:,1) + r_r.* delta (:,2));

% Waves

Z_1 = bsxfun (@times , beta_1 , [r_r ones(N+1,1)]);

Z_2 = bsxfun (@times , beta_2 , [-r_l ones(N+1,1)]);

% High -res based on Leveque

theta_1 = dot(K_z1_up*Z_1 , Z_1 , 2)./dot(Z_1 , Z_1 , 2);

theta_2 = dot(K_z2_up*Z_2 , Z_2 , 2)./dot(Z_2 , Z_2 , 2);

theta_1 (~ isfinite(theta_1)) = 0;

theta_2 (~ isfinite(theta_2)) = 0;

Z_1_t = bsxfun (@times , phi(theta_1), Z_1);

Z_2_t = bsxfun (@times , phi(theta_2), Z_2);

s_1 = U_h(:,2) + c(U_h(:,1) ,1:N);

s_2 = U_h(:,2) - c(U_h(:,1) ,1:N);

s_1_i = K_c*s_1;

s_2_i = K_l*s_2;

F_c = 1/2*( bsxfun (@times , sign(s_1_i).*(1-dt/dx*abs(s_1_i)), Z_1_t

) + bsxfun (@times , sign(s_2_i).*(1-dt/dx*abs(s_2_i)), Z_2_t) )
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;

% Make it linear at bifurcations

F_c = bsxfun (@times , F_c , Lin);

% Update cell avg

U(:,:,i+1) = U(:,:,i) - dt/dx*( K_z1*Z_1 + K_z2*Z_2 ) - dt/dx*(

K_z2*F_c - K_z1*F_c ); %K_z2 and K_z1 good

% Update time

t(i+1) = t(i) + dt;

%determine dt for cfl

lambda_max(i) = max(abs([s_1; s_2]));

dt_cfl(i) = dx/lambda_max(i);

dt = dt_cfl(i);

i = i+1;

end

U(:,:,~any(any(U)))=[];

t(t==0) =[];

t = [0 t];

toc

indeces = repmat ((1:N)',1,length(t));

p_min = min(min( p(squeeze(U(:,1,:)), indeces) ));

p_max = max(max( p(squeeze(U(:,1,:)), indeces) ));

u_min = min(min( U(:,2,:) ));

u_max = max(max( U(:,2,:) ));

A_min = min(min( U(:,1,:) ));

A_max = max(max( U(:,1,:) ));

%% reflection plots

if save ==3 || save ==4 || save == 5

close(figure (9))

figure (9)

t_stamp = [0.014 0.0186 0.023];

linetype = {'k:' 'k--' 'k'};

ax_y_lims = [-200 2500];

ax_x_lims = [0 sum(L)];

x_b = reshape(bsxfun (@times , cumsum(L), ones(3,length(cells)))

,1,[]);%

y_b = repmat ([ ax_y_lims nan], 1,length(cells));

for i=1: length(t_stamp)

index_t = find(t>t_stamp(i) ,1);

p_h = p(U(:,1,index_t) ,1:N);

p_plot = nan(1,N+2);

x_plot = [];

for j=1: length(cells)

p_plot( sum(cells (1:j-1))+j:sum(cells (1:j))+j-1 ) = p_h(sum

(cells (1:j-1))+1:sum(cells (1:j)));

x_plot = [x_plot linspace(sum(L(1:j-1)), sum(L(1:j)), cells

(j)) nan];

end
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plot(x_plot (1:end -1), p_plot , linetype{i}, 'linewidth ',

linewidth);

hold all

end

plot(x_b (1:end -2), y_b (1:end -2),'k', 'linewidth ',linewidth)

ylim(ax_y_lims)

xlim(ax_x_lims)

ylabel('$p$ (dyne/cm$^2$) ','Interpreter ','LaTeX ','fontsize ',font)

xlabel('$x$ (cm)','Interpreter ','LaTeX ','fontsize ',font)

set(gca ,'xtick ' ,0:sum(L))

set(gca ,'xticklabel ',{'0' '1' '2' '3' '4' '5' '3' '4' '5' '6'})

set(gca ,'fontsize ',font)

legend ({ num2str(t_stamp ')},'fontsize ' ,10)

text(cumsum(L)-L/2-0.15, ones(1,length(L))*0.9* ax_y_lims (2), {'$P$'

'$D_1$' '$D_2$'},'Interpreter ','LaTeX ','fontsize ',font)

legend(gca ,'boxoff ')

set(gcf , 'PaperUnits ', 'centimeters ');

set(gcf , 'PaperPosition ', [0 0 25 8]);

if save == 3

print(fullfile(figs_path ,'testcase_bifurcation_equal '),'-dpng',

'-r500','-opengl ')

end

if save == 4

print(fullfile(figs_path ,'

testcase_bifurcation_equal_A0_diff_beta '),'-dpng','-r500','-

opengl ')

end

if save == 5

print(fullfile(figs_path ,'

testcase_bifurcation_diff_A0_equal_beta '),'-dpng','-r500','-

opengl ')

end

end

%% Connectivity Graph

close(figure (13))

if save ==1 || save ==2

eps = 0.0001;

figure (13)

treeplot(parent_p);

h = findobj(gca ,'Type','line');

set(h,'color ','black ','linewidth ',linewidth);

[x_c ,y_c] = treelayout(parent_p);

hold on

plot(x_c ,y_c ,'o','color ',[eps 0 0],'markersize ',7,'linewidth ' ,9)

text(x_c (1:9) ,y_c (1:9), num2str ((1:9) '),'color ',[1-eps 1 1], '

FontName ','FixedWidth ', 'fontweight ','bold', 'VerticalAlignment '

,'middle ', 'HorizontalAlignment ','center ');

h=text(x_c (10: end),y_c (10: end), num2str ((10: length(x_c)) '),'color '

,[1-eps 1 1], 'FontName ','FixedWidth ', 'fontweight ','bold', '

VerticalAlignment ','middle ', 'HorizontalAlignment ','center ');

set(gca ,'visible ','off')

set(gca ,'position ' ,[0 0 1 1]);

set(gcf , 'PaperUnits ', 'centimeters ');
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set(gcf , 'PaperPosition ', [0 0 18 10]);

print(fullfile(figs_path ,'network_55_connection_graph '),'-dpng','-

r500','-opengl ')

end

%% Ascending aorta en 49

if save == 1 || save ==2

artery = [1 49];

T_start = 9;

t_plot = t(t>= T_start);

index_t = length(t)-length(t_plot)+1: length(t);

y_label = {'$u$ (cm/s)' '$A$ (cm/s)' '$w_2$ (cm/s)' '$w_1$ (cm/s)'

};

x_label = {'$t$ (s)'};

y_lim = [-27 27; 5.8 7.3; -1440 -1350; 1357 1440; -0.6 0.8;

0.059975 0.060045; -4212.65 -4211.37; 4211 4213.5];

axis_lim = [ones(length(artery)*4,1)*T_start ones(length(artery)

*4,1)*T_end y_lim];

for i=1: length(artery)

close(figure(i))

figure(i)

index_x = sum(cells (1: artery(i) -1))+1;

data = [squeeze(U(index_x ,2,index_t)) squeeze(U(index_x ,1,

index_t)) squeeze(U(index_x ,2,index_t)) - 4*c(squeeze(U(

index_x ,1,index_t)),index_x) squeeze(U(index_x ,2,index_t)) +

4*c(squeeze(U(index_x ,1,index_t)),index_x)];

size(data)

for j=1:4

subplot (4,1,j)

plot(t_plot , data(:,j),'k','linewidth ', linewidth)

ylabel(y_label(j),'Interpreter ','LaTeX ','fontsize ',font)

xlabel(x_label ,'Interpreter ','LaTeX ','fontsize ',font)

set(gca ,'fontsize ',font)

axis(axis_lim(j+4*(i-1) ,:))

if j==1

POS = get(gca ,'position ');

POS = POS + [0.05 0.0045 -0.01 0];

delta_y = [0 -0.235 0 0];

end

set(gca ,'position ', POS + delta_y *(j-1))

end

set(gcf , 'PaperUnits ', 'centimeters ');

set(gcf , 'PaperPosition ', [0 0 15 30]);

if save ==1

print(fullfile(figs_path ,['network_55_artery_ ' num2str(

artery(i)) '_4']), '-dpng','-r500','-opengl ')

elseif save == 2

print(fullfile(figs_path ,['network_55_artery_ ' num2str(

artery(i)) '_4_R_t ']), '-dpng','-r500','-opengl ')

end
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end

end

%% Make 2d tree structure

%load('U_55_art.mat ');

d = 0.6;%0.8 of 0.9 |0.5

s = 0.5; %0.3 en 0.7|0.4

width = zeros(1,length(parent_p));

rel_width = zeros(1,length(parent_p));

%----------- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55

direction = [-1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1];%;[(-1) .^(1:25) -(-1)

.^(26:55)] - Switch (28); % (-1).^(1: length(parent_p))

direction = direction (1: length(parent_p));

% ONLY BIFURCATIONS

%Aslang as there are zero width vessels:

while ~all(width (2:end)) %excluding the first vessel cuz zero width

for j=2: length(parent_p)

if width(j)==0

childs = [];

childsHaveWidth = true;

for i=1: length(parent_p)

if j== parent_p(i)

%i.e. j is connected to i

childs = [i childs ];

if width(i)==0

%not assigned yet

childsHaveWidth = false;

end

end

end

if isempty(childs)

% no childs or a leaf

width(j) = direction(j)*d;

rel_width(j) = width(j) + direction(j)*s/2;

elseif childsHaveWidth

%bifurcations -> 2 childs only

if direction(j) == -direction(childs (1))

width(j) = -rel_width(childs (1));

rel_width(j) = rel_width(childs (2)) - rel_width(

childs (1));

else %-1

width(j) = -rel_width(childs (2));

rel_width(j) = rel_width(childs (1)) - rel_width(

childs (2));

end

end

end

end

end

L_e = max((cells -1)*dx ,abs(width));
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phi = asin(width./L_e);

x_off = 0;

y_off = 0;

for i=2: length(parent_p)

x_off = [x_off x_off(parent_p(i)) - L_e(parent_p(i))*sin(phi(

parent_p(i)))];

y_off = [y_off y_off(parent_p(i)) + L_e(parent_p(i))*cos(phi(

parent_p(i)))];

end

z_off = zeros(size(parent_p));

%% plots of part of 3d network

if save ==1|| save ==2

close(figure (5))

res = 10;

stretch = 30;

t_stamp = [0 0 0.1 0.2 0.3 0.4 0.5];

terminal_ves = (sum(ADJ ,2) ==0) ';

normal_ves = ones(size(parent_p))-terminal_ves;

for i=1: length(t_stamp)

t_index = find(t>t_stamp(i) ,1);

x2 = [];

y2 = [];

z2 = [];

c2 = [];

for j=1: length(parent_p)

x_i = sum(cells (1:j-1))+1:sum(cells (1:j));

[x1, y1, z1, c1] = makeVessel(U(x_i , 1, t_index), A_0(x_i),

beta(x_i), res , phi(j), dx , stretch);

x2 = [x2; nan(1,res +1); x1 + x_off(j)];

y2 = [y2; nan(1,res +1); y1 + y_off(j)];

z2 = [z2; nan(1,res +1); z1 + z_off(j)];

c2 = [c2; nan(1,res +1); c1 / p(A_max_ves(j), sum(cells (1:j

-1))+1 )]; %new

end

figure (5)

%K=flipud(gray);%gray;

%colormap(K(3:end -23,:))

%colormap('JET ')

K=jet;

%colormap(K(30:end ,:))

surf(x2 , y2 , z2 , c2 , 'LineStyle ', 'none', 'FaceColor ', 'interp '

)

shading interp

light

lighting phong%gouraud ;%

%material shiny

caxis ([-1 1])

axis equal

if i==1
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view (55 ,90)

frac = normal_ves *1/2 + terminal_ves *0.9;

text(x_off (1:9) - frac (1:9).*L(1:9).*sin(phi (1:9)) , y_off

(1:9) + frac (1:9) .*L(1:9) .*cos(phi (1:9)), sqrt(res*max(

A_0_s)/pi) + ones(size(parent_p (1:9))), num2str ((1:9) '),

'fontsize ',7,'FontName ','FixedWidth ', 'fontweight ','bold

', 'VerticalAlignment ','middle ', 'HorizontalAlignment ','

center ');

text(x_off (10: end) - frac (10: end).*L(10: end).*sin(phi (10:

end)) , y_off (10: end) + frac (10: end).*L(10: end).*cos(phi

(10: end)), sqrt(res*max(A_0_s)/pi) + ones(size(parent_p

(10: end))), num2str ((10: length(parent_p))'),'fontsize '

,7,'FontName ','FixedWidth ', 'fontweight ','bold', '

VerticalAlignment ','middle ', 'HorizontalAlignment ','

center ');

zoom (1.3)

set(gcf , 'PaperUnits ', 'centimeters ');

set(gcf , 'PaperPosition ', [0 0 15 13]);

else

view (90 ,90)

axis ([-13 3.7 0 33 0 100])

text (-11.5, 33/2 -3.5, 0, ['$t=' num2str(t_stamp(i)) '$ s']

,'Interpreter ','LaTeX ','fontsize ',font ,'

VerticalAlignment ','middle ');

set(gcf , 'PaperUnits ', 'centimeters ');

set(gcf , 'PaperPosition ', [0 0 15 7]);

end

xlabel('x')

ylabel('y')

zlabel('z')

axis off

grid off

set(gca ,'position ' ,[0 0 1 1]);

if save == 1

print(fullfile(figs_path ,['network_55_virtual3d_ ' num2str(i

)]),'-dpng', '-r500','-opengl ')

end

end

%%

close(figure (6))

figure (6)

set(gca ,'visible ','off');

caxis ([-1 1])

h = colorbar('SouthOutside ');

set(h, 'Position ', [0.05 .45 0.9 .3])

set(gcf , 'PaperUnits ', 'centimeters ');

set(gcf , 'PaperPosition ', [0 0 20 1.5]);

if save == 1

print(fullfile(figs_path ,'network_55_virtual3d_colorbar '),'-

dpng', '-r500','-opengl ')

end

end

%% virtual -3d netwerk test
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close(figure (4))

res = 10;

stretch = 30;

%local collering

for i=1: length(parent_p)

index = sum(cells (1:i-1))+1:sum(cells (1:i));

A_max_ves(i) = max(max( U( index , 1 , : ) ));

end

A_max = max(max(U(:,1,:)));

tic

for i=1:15: length(t) %163 for 1:1 secs

x2 = [];

y2 = [];

z2 = [];

c2 = [];

for j=1: length(parent_p)

x_i = sum(cells (1:j-1))+1:sum(cells (1:j));

[x1 , y1 , z1 , c1] = makeVessel(U(x_i , 1, i), A_0(x_i), beta(x_i)

, res , phi(j), dx , stretch);

x2 = [x2; nan(1,res +1); x1 + x_off(j)];

y2 = [y2; nan(1,res +1); y1 + y_off(j)];

z2 = [z2; nan(1,res +1); z1 + z_off(j)];

c2 = [c2; nan(1,res +1); c1 / p(A_max_ves(j), sum(cells (1:j-1))

+1 )]; %new

end

%plotting

if i==1

figure (4)

pause (0.00001);

frame_h = get(handle(gcf),'JavaFrame ');

set(frame_h ,'Maximized ' ,1);

pl = surf(x2 , y2 , z2 , c2 , 'LineStyle ', 'none', 'FaceColor ', '

interp ');

view(90, 90);

colormap('JET')%summer

shading interp

light

lighting gouraud;%phong

%material shiny

axis equal

caxis ([-1 1])%[ -0.1*10^4 0.8*10^4]

zoom (3)

text(x_off - 1/2*L.*sin(phi) , y_off + 1/2*L.*cos(phi), sqrt(

A_0_s/pi) + ones(size(parent_p)), num2str ((1: length(parent_p

)) ') );

%xlabel('x')
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%ylabel('y')

%zlabel('z')

axis off

grid off

colorbar

end

set(pl , 'XData ', x2 , 'YData ', y2, 'ZData ', z2 , 'CData ', c2);

%text(min(xlim), mean(ylim) ,['t = ' num2str(t(i)) ', i = ' num2str(

i)])

title(['t = ' num2str(t(i)) ', i = ' num2str(i)],'Position ',[min(

xlim)+80 min(ylim)+10 1])

%hold off

drawnow

end

toc

%% p and/or u

if 1==1

q=4 ;%1 2 3 4

figure (10)

x_pos2 = reshape(bsxfun (@times , cumsum(L), ones(3,size(L))) ,1,[]);

y_pos = repmat ([ p_min p_max nan], 1,length(L));

y_pos2 = repmat ([ u_min u_max nan], 1,length(L));

subplot(q,1,1)

%adj -> parent_p

% parent = [0];

% for i=1: length(A_0_s)

% parent = [parent i*ones(1,sum(ADJ(i,:)))];

% end

treeplot(parent_p)

[x_c ,y_c] = treelayout(parent_p);

text(x_c ,y_c , num2str ((1: length(x_c))'));

for i=1:5: length(t) %10

if q >= 2

subplot(q,1,2)

%plot(x_pos2 ,y_pos ,':k', x_pos ,A_0 ,'r', x_pos ,squeeze(U

(:,1,i)),'b')

plot(x_pos2 ,y_pos ,':k', x_pos ,p(squeeze(U(:,1,i)) ,1:N),'b')

text(cumsum(L)-L,((p_max -p_min)*0.9+ p_min)*ones(1,length(L)

), num2str ((1: length(x_c)) ') );

xlabel('x')

ylabel('p')

title (['t = ' num2str(t(i)) ', i = ' num2str(i)])

axis ([0 sum(L) p_min p_max])

end

if q >= 3

subplot(q,1,3)
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plot(x_pos2 ,y_pos2 ,':k', x_pos ,squeeze(U(:,2,i)))

text(cumsum(L)-L/2,((u_max -u_min)*0.9+ u_min)*ones(1,length(

L)), num2str ((1: length(x_c)) ') );

xlabel('x')

ylabel('u')

title (['t = ' num2str(t(i)) ', i = ' num2str(i)])

axis ([0 sum(L) u_min u_max])

end

if q >= 4

subplot(q,1,4)

plot(x_pos2 ,y_pos2 ,':k', x_pos ,squeeze(U(:,1,i)))

text(cumsum(L)-L/2,((A_max -A_min)*0.9+ A_min)*ones(1,length(

L)), num2str ((1: length(x_c)) ') );

xlabel('x')

ylabel('A')

title (['t = ' num2str(t(i)) ', i = ' num2str(i)])

axis ([0 sum(L) A_min A_max])

end

drawnow

%pause (100/1000)

end

end
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