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ARTICLE OPEN

Discovering plasticity models without stress data
Moritz Flaschel 1, Siddhant Kumar2 and Laura De Lorenzis 1✉

We propose an approach for data-driven automated discovery of material laws, which we call EUCLID (Efficient Unsupervised
Constitutive Law Identification and Discovery), and we apply it here to the discovery of plasticity models, including arbitrarily
shaped yield surfaces and isotropic and/or kinematic hardening laws. The approach is unsupervised, i.e., it requires no stress data
but only full-field displacement and global force data; it delivers interpretable models, i.e., models that are embodied by
parsimonious mathematical expressions discovered through sparse regression of a potentially large catalog of candidate functions;
it is one-shot, i.e., discovery only needs one experiment. The material model library is constructed by expanding the yield function
with a Fourier series, whereas isotropic and kinematic hardening is introduced by assuming a yield function dependency on
internal history variables that evolve with the plastic deformation. For selecting the most relevant Fourier modes and identifying
the hardening behavior, EUCLID employs physics knowledge, i.e., the optimization problem that governs the discovery enforces the
equilibrium constraints in the bulk and at the loaded boundary of the domain. Sparsity promoting regularization is deployed to
generate a set of solutions out of which a solution with low cost and high parsimony is automatically selected. Through virtual
experiments, we demonstrate the ability of EUCLID to accurately discover several plastic yield surfaces and hardening mechanisms
of different complexity.

npj Computational Materials            (2022) 8:91 ; https://doi.org/10.1038/s41524-022-00752-4

INTRODUCTION
Data-driven and machine-learning-based methods are currently
pushing forward the frontiers of material modeling. What started
with simple regression on uniaxial tensile data has rapidly
expanded into high-dimensional and big-data-based surrogate
modeling of basically all types of materials of technical interest,
including metals, polymers, composites, and more. While conven-
tional material modeling was based on the a priori assumption of
a constitutive law of which the unknown parameters were
identified through best-fitting with experimental (or, within
multiscale settings, lower-scale computational) results, current
data-driven and machine-learning methods give up the usage of
an analytical constitutive law altogether. In doing so, they avoid
the modeling errors arising due to, e.g., the largely experience-
based modeling assumptions and the choice of experimental (or
computational) tests being too restrictive to describe the true
physics.
Despite the achieved progress, currently available methods are

still problematic due to their data-hungry and black-box nature.
The state-of-the-art techniques1–9 that either bypass (directly use
data as look-up tables in a model-free fashion) or surrogate
(encode in, e.g., artificial neural networks (ANNs) or Gaussian
processes) material models are rooted in a supervised learning or
curve-fitting setting. Hence, they need a large amount of data
consisting of input–output, i.e., strain-stress pairs. Since experi-
mental stress data are only obtainable in the simplest situations,
e.g., uniaxial tensile or bending tests, the comprehensive
observation of strain-stress relations relying on these tests is
nearly impossible. Additionally, stress tensors are challenging to
measure experimentally, while force measurements only provide
incomplete data in the form of boundary-averaged projections of
stress tensors. Multiscale simulations can generate training data
sets with tensorial stress–strain pairs, but their computational cost
is still too expensive to probe the entire high-dimensional

stress–strain space. Recognition of this issue is very recent. Within
the constitutive-model-free paradigm, it motivated the develop-
ment of the data-driven identification method10,11, which
formulates the inverse problem associated with the approach in
ref. 3. Likewise recognizing the issue of limited stress data
availability, a mathematical framework is proposed in ref. 12 to
calculate stress fields from deformation fields under the assump-
tion of the alignment of the principal directions of stress and strain
or strain rate. Within the stream of research on surrogating
constitutive models with ANNs, recent attempts to use only
displacement and global force data have been performed13–15,
but are limited to very simple cases (constitutive models of known
form with unknown parameters or unknown constitutive models
but for one-dimensional cases). At last, the uninterpretability of
stress–strain relations in both paradigms is a standing challenge: it
implies significant difficulties in enforcing or verifying the
satisfaction of physics constraints and it hinders the
extrapolation power.
From the perspectives of both the labeled data requirement

and uninterpretability, the treatment of path-dependent material
behavior, such as plasticity, is even more challenging as the stress
state at a material point is not solely defined by its strain state, but
is additionally dependent on the history of that material point,
which is traditionally described using internal variables. Also in
this context, the idea of constitutive-model-free approaches is to
bypass the formulation of a path-dependent constitutive law and
hence any assumptions on the material behavior, by solving
forward problems that are directly informed by the given data
16–21. The other stream of approaches describes the path-
dependent constitutive behavior based on ANNs7,22–27, support
vector machines28, symbolic regression29, or use the information
gained from the data to correct material models known from
traditional theories30. Being supervised, all these methods require
for the training process a tremendous amount of labeled data in
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form of stress–strain paths, i.e. stress–strain couples at each time
over each possible loading history. In other words, it is no longer
sufficient to sample data from the stress–strain space; instead,
stress–strain increments for several - theoretically infinite - loading
histories are required. This makes the coverage of the sampling
space basically impossible and the supervised learning task
unfeasible. This conclusion applies regardless of whether the data
are meant to come from experiments (in which case, as
mentioned earlier, already path-independent sampling is highly
problematic) or from multiscale simulations (whose computational
cost, which is already prohibitive in the path-independent case,
becomes now orders of magnitude larger).
In this light, we propose EUCLID (Efficient Unsupervised

Constitutive Law Identification and Discovery), an unsupervised
discovery framework that bridges the advantages of data-driven
and traditional modeling approaches. EUCLID does not require the
a priori choice of a material model and thus is flexible to describe
a variety of different material behaviors, and it only relies on
unlabeled data, i.e., full-field displacements (obtained e.g., via
Digital Image Correlation (DIC)) and global reaction forces but no
stress data, generated by a single experiment. EUCLID was recently
successfully demonstrated for hyperelastic material model dis-
covery31–33 and is here extended to the significantly more
challenging problem of path-dependent elastoplasticity. The idea
is to formulate a large library of interpretable candidate material
models (also referred to as features) and to automatically discover
the most relevant features in the library based on the given
unlabeled data using only physics constraints (as opposed to
stress labels). The inspiration for this approach comes from the
dynamics community, where sparse regression from a library of
candidate features has been used to discover the nonlinear
dynamics of physical systems34, albeit in a strictly supervised
setting.
Our objective here is to discover fully general and evolving

plastic yield surfaces, which characterize the material behavior of
three-dimensional elastoplastic solids, purely based on two-
dimensional displacement field and reaction force measurements
from only one experimental test on an arbitrarily shaped
specimen. The material model library is constructed by expanding
the yield function with a Fourier series containing a potentially
large number of terms. Yield surface growth and translation, i.e.,
isotropic and kinematic hardening, are introduced by making the
yield function dependent on the accumulated plastic multiplier
and the back stress, which are internal history variables that
evolve with the plastic deformation. For selecting the most
relevant Fourier modes and identifying the hardening mechan-
isms, EUCLID employs physics knowledge, i.e., the optimization
problem that governs the discovery is formulated based on the
balance of linear momentum, compensating for the unavailability
of stress data. The step-by-step schematic of EUCLID is illustrated
in Fig. 1 and described below.

RESULTS
Material model library
In this work on path-dependent material behavior, we focus on
homogeneous, isotropic materials for which linear elastic behavior
is followed by associated, pressure-insensitive plastic behavior
with isotropic and/or kinematic hardening. We also assume small
strains and plane stress conditions. In the theory of elastoplasti-
city, the infinitesimal strain tensor, which is obtained from the
spatial gradient of the displacement field u, is additively split into
an elastic contribution and a plastic contribution ϵ= ϵe+ ϵp, with
the plastic strain acting as internal (or history) variable. The elastic
properties of the material are characterized by the stiffness tensor
C, which determines the linear relation between the elastic strain
and the Cauchy stress tensor σ ¼ C : ϵe, whereas the plastic

properties are described through the yield function f(σ, γ, σback),
which is here assumed to be dependent on the stress tensor, the
accumulated plastic multiplier γ, and the back stress tensor σback.
The zero level set f= 0 defines the yield surface, i.e., the material
deforms elastically if f < 0, and plastic yielding occurs at f= 0.
Further, the yield function governs the evolution of the plastic
strain through the plastic evolution law

_ϵp ¼ _γ
∂f ðσ; γ;σbackÞ

∂σ
; (1)

where the superposed dot denotes the derivative with respect to
time. The plastic multiplier and the yield function need to fulfill
the Kuhn-Tucker loading and unloading conditions as well as the
consistency condition (see Supplementary Methods). For details
on the theory of elastoplasticity, the reader is referred to35,36.
The construction of a suitable material model library, i.e., a large

catalog of potential candidate models, builds the basis for the
unsupervised discovery framework. As the elastic material proper-
ties can be identified independently from the plastic material
properties in a preprocessing step (for example, based on the full-
field measurements of the first load steps, see refs. 31,37), the
elastic stiffness tensor is assumed to be known here and the main
focus lies on the discovery of the yield function (see Table 1). The
material model library is constructed by choosing a Fourier series
ansatz (See refs. 38,39 for other Fourier-type expansions of the yield
surface).

f ðr; α; γÞ ¼
ffiffiffi
3
2

r
r � HisoðγÞ

Xnf
i¼0

θi cosð3iαÞ; (2)

where θi are the unknown components of the material parameter
vector θ and (nf+ 1) is the number of features in the library. The
Lode radius r and the Lode angle α are invariants of the relative
stress tensor σrel= σ−σback, and are related to the relative
principal stresses σi, i.e., the eigenvalues of σrel, through

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π21 þ π22

q
; α ¼ atan2ðπ2; π1Þ; with

π1 ¼
ffiffiffi
2
3

r
σ1 �

ffiffiffi
1
6

r
σ2 �

ffiffiffi
1
6

r
σ3; π2 ¼

ffiffiffi
1
2

r
σ2 �

ffiffiffi
1
2

r
σ3;

(3)

where atan2ð�; �Þ is the four-quadrant inverse tangent and the
eigenvalues are taken in increasing order, i.e., σ1 ≤ σ2 ≤ σ3. Sine
terms as well as certain cosine terms are excluded from the library
Equation (2) to fulfill isotropy requirements (see Supplementary
Methods).
Isotropic hardening is considered in Equation (2) through the

nonlinear isotropic hardening function Hiso(γ), whereas kinematic
hardening is incorporated by letting the back stress evolve
nonlinearly with the plastic deformation. We here assume Voce
isotropic hardening40,41 and Armstrong-Frederick kinematic hard-
ening42 by defining

HisoðγÞ ¼ 1þ Hiso
1 γ þ Hiso

2 1� expð�Hiso
3 γÞ� �

;

_σback ¼ Hkin
1 _ϵp � Hkin

2 _γσback;
(4)

where H ¼ ½Hiso
1 Hiso

2 Hiso
3 Hkin

1 Hkin
1 � is a vector containing the

unknown hardening parameters that are here assumed to be
non-negative.
By choosing different combinations of active features in the

Fourier series, Equation (2) can be used to describe smooth yield
surfaces of arbitrary shape. The representation of the yield
function as a closed-form mathematical expression (in contrast
to black-box models or constitutive-model-free approaches)
facilitates physical interpretation of the material model. E.g., it
becomes straightforward to verify whether the yield surface is
convex or whether the material behavior is tension-compression
symmetric (see Supplementary Methods). The closed-form
description also enables interpretable constraints on the para-
meters θ based on physical requirements. E.g., assuming a
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vanishing stress state and that no hardening has occurred (σ= 0,
γ= 0, σback= 0), the material is expected to behave elastically
(f < 0),

f ðσ ¼ 0; γ ¼ 0;σback ¼ 0Þ ¼ f ðr ¼ 0; α; γ ¼ 0Þ< 0 ) θ0>
Xnf
i¼1

jθij: (5)

The numerical implementation of the model library presented
in this section, either for forward finite element simulations (used
to generate the artificial data) or for the inverse discovery
algorithm (EUCLID), requires the formulation of a stress update
procedure. Given the strain ϵt at the current time step t, the history
variables ht�1 ¼ fϵt�1

p ; γt�1; ðσbackÞt�1g of the previous time step
(All history variables are assumed to vanish at t= 0, i.e., H0= {0, 0,
0}.) and the material parameters θ and H, the current stress σt(ϵt,
ht−1, θ,H) is calculated via a classical elastic predictor-plastic
corrector return mapping algorithm (see Supplementary
Methods).

Optimization problem
To compensate for the unavailability of stress data, we employ
physics knowledge to identify which features in the feature library

should be active and to find the values of the corresponding
active parameters within θ and H. Under quasi-static loading of a
two-dimensional domain Ω with boundary ∂Ω, the linear
momentum balance (∇ ⋅ σ= 0) in its weak formulation is given byZ

Ω

σtðϵt;ht�1; θ;HÞ : ∇vdA ¼
Z
∂Ω

t̂
t � vds; (6)

for all admissible test functions v, where t̂
t
denotes the boundary

tractions. The available data consists of displacement measure-
ments {ua,t: a= 1, …, nn; t= 1, …, nt} at nn points and nβ net

reaction force measurements fR̂β;t : β ¼ 1; ¼ ; nβ; t ¼ 1; ¼ ; ntg
on some boundary segments, both for nt time steps. Our objective
is to determine θ and H such that Equation (6) is satisfied by the
data. We emphasize that, although a two-dimensional inverse
problem is formulated here, the discovered plasticity models are
valid for three-dimensional stress states. This means that we
exploit a two-dimensional data set to automatically find plasticity
models applicable to three-dimensional solids.
We create a mesh connecting the points, each point being

associated with finite element shape functions {Na(X): a= 1,…, nn}
such that the strain field is obtained as ϵt(X)= ∑asym(∇ Na(X)⊗
ua,t), and consequently the stress field σt(X, ϵt, ht−1, θ,H) is

(a) Deformation (b) Displacement data (d) Displacement field (e) Strain field

(h) Nodal force residual 

on free dofs*

(i) Reaction force residual

on displ. contr. dofs*

(c) Mesh nodal points

(f) Hidden material model

*dofs: degrees of freedom

(g) Stress update

Joint minimization
(j) Solution set generation

and threshold-based selection

Cost

Discovered model

Sparsity promoting

regularization

R
ea

ct
io

n

Fig. 1 Step-by-step schematic of EUCLID. In a single experiment with complex geometry (a), point-wise displacements (b), and global
reaction forces (i) are measured. A quadrilateral finite element mesh is constructed (c) to interpolate the displacement data. The resulting
displacement field (d) is differentiated to arrive at the strain field (e). The material model library (f) is constructed (here based on a Fourier
ansatz). Based on this library and for given material parameters θ and H, the stresses can be calculated by applying a classical elastic predictor-
plastic corrector return mapping algorithm at each load step in the data set, while the history variables are updated at each step (g). Based on
the stresses, the internal and external virtual works and hence the internal (h) and external (i) force imbalances are calculated, contributing to
the cost function C. Finally, the cost function is minimized jointly with a sparsity promoting regularization term (j) to generate a set of
solutions out of which a solution with low cost and high parsimony is automatically selected. Details are provided in Supplementary Figure 1.
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determined for each time step via the elastoplastic constitutive
law described by θ and H. Using the same set of shape functions
for the test functions, the nodal internal forces are computed as

Fa;tðθ;hÞ ¼
Z
Ω

σtðX; ϵt;ht�1; θ;HÞ∇NaðXÞdA: (7)

Equilibrium dictates that the internal forces corresponding to all
free degrees of freedom (grouped in the set Dfree) be zero at each

time step, which naturally leads to the cost function

Cfreeðθ;HÞ ¼
Xnt
t¼1

X
ða;iÞ2Dfree

Fa;ti ðθ;HÞ�� ��2: (8)

At the same time, for each set of constrained degrees of
freedom Ddisp;β, equilibrium requires that the sum of the internal
forces be balanced at each time step by the corresponding

Table 1. Yield functions of the (true) hidden and discovered material models (γ= 0, σ in mm, parameters in kNmm−2).

Benchmark Noise Yield function f

VM Truth
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2400

σ= 0
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2400

σ= 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2437

σ= 3 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2493

σ= 5 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2377

F2 Truth
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2350þ 0:0050 cosð6αÞð Þ

σ= 0
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2350þ 0:0050 cosð6αÞð Þ

σ= 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2349þ 0:0055 cosð6αÞð Þ

σ= 3 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2329þ 0:0047 cosð6αÞð Þ

σ= 5 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2333þ 0:0041 cosð6αÞð Þ

TR Truth maxðjσ1 � σ2j; jσ2 � σ3j; jσ3 � σ1jÞ � 0:2400

TR* Truth*
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2181þ 0:0127 cosð6αÞ þ 0:0035 cosð12αÞ þ 0:0016 cosð18αÞ þ � � � þ 0:0001 cosð60αÞð Þ

σ= 0
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2129þ 0:0175 cosð6αÞ þ 0:0033 cosð18αÞð Þ

σ= 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2165þ 0:0184 cosð6αÞ þ 0:0036 cosð18αÞð Þ

σ= 3 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2290� 0:0055 cosð3αÞ þ 0:0208 cosð6αÞ � 0:0013 cosð12αÞ þ 0:0046 cosð18αÞð Þ

σ= 5 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1388þ 0:0106 cosð6αÞ þ 0:0017 cosð12αÞ þ 0:0021 cosð18αÞð Þ

SI Truth maxðjσ1 � ðσ2 þ σ3Þ=2j; jσ2 � ðσ3 þ σ1Þ=2j; jσ3 � ðσ1 þ σ2Þ=2jÞ � cosðπ=6Þ0:2400
SI* Truth*

ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2518� 0:0146 cosð6αÞ þ 0:0041 cosð12αÞ � 0:0018 cosð18αÞ þ � � � þ 0:0002 cosð60αÞð Þ

σ= 0
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2260� 0:0124 cosð6αÞ þ 0:0028 cosð12αÞð Þ

σ= 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2271� 0:0125 cosð6αÞ þ 0:0028 cosð12αÞð Þ

σ= 3 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2374� 0:0132 cosð6αÞ þ 0:0030 cosð12αÞð Þ

σ= 5 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2275� 0:0130 cosð6αÞ þ 0:0034 cosð12αÞ � 0:0011 cosð18αÞð Þ

F1 Truth
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2200þ 0:0200 cosð3αÞð Þ

σ= 0
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2200þ 0:0200 cosð3αÞð Þ

σ= 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2225þ 0:0199 cosð3αÞð Þ

σ= 3 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:2177þ 0:0210 cosð3αÞð Þ

σ= 5 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1915þ 0:0177 cosð3αÞð Þ

IV Truth maxððσ2 þ σ3Þ � 2σ1; ðσ3 þ σ1Þ � 2σ2; ðσ1 þ σ2Þ � 2σ3Þ � 0:2400

IV* Truth*
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1509þ 0:0415 cosð3αÞ þ 0:0157 cosð6αÞ þ 0:0081 cosð9αÞ þ � � � þ 0:0009 cosð30αÞð Þ

σ= 0
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1458þ 0:0417 cosð3αÞ þ 0:0157 cosð6αÞ þ 0:0083 cosð9αÞ þ 0:0048 cosð12αÞ þ 0:0032 cosð15αÞ þ 0:0018 cosð18αÞð Þ

σ= 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1490þ 0:0422 cosð3αÞ þ 0:0165 cosð6αÞ þ 0:0088 cosð9αÞ þ 0:0054 cosð12αÞ þ 0:0029 cosð15αÞ þ 0:0016 cosð18αÞð Þ

σ= 3 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1544þ 0:0421 cosð3αÞ þ 0:0160 cosð6αÞ þ 0:0084 cosð9αÞ þ 0:0050 cosð12αÞ þ 0:0025 cosð15αÞ þ 0:0015 cosð18αÞð Þ

σ= 5 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1439þ 0:0427 cosð3αÞ þ 0:0181 cosð6αÞ þ 0:0094 cosð9αÞ þ 0:0039 cosð12αÞ þ 0:0018 cosð15αÞð Þ

MA Truth maxðσ1 � ðσ2 þ σ3Þ=2; σ2 � ðσ3 þ σ1Þ=2; σ3 � ðσ1 þ σ2Þ=2Þ � cosðπ=3Þ0:2400
MA* Truth*

ffiffiffiffiffiffiffiffi
3=2

p
r � 0:3018� 0:0830 cosð3αÞ þ 0:0315 cosð6αÞ � 0:0162 cosð9αÞ þ � � � þ 0:0017 cosð30αÞð Þ

σ= 0
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1539� 0:0404 cosð3αÞ þ 0:0146 cosð6αÞ � 0:0071 cosð9αÞ þ 0:0048 cosð12αÞ � 0:0034 cosð15αÞ þ 0:0019 cosð18αÞð Þ

σ= 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1574� 0:0424 cosð3αÞ þ 0:0167 cosð6αÞ � 0:0083 cosð9αÞ þ 0:0054 cosð12αÞ � 0:0034 cosð15αÞ þ 0:0017 cosð18αÞð Þ

σ= 3 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1641� 0:0445 cosð3αÞ þ 0:0163 cosð6αÞ � 0:0074 cosð9αÞ þ 0:0043 cosð12αÞ � 0:0035 cosð15αÞ þ 0:0023 cosð18αÞð Þ

σ= 5 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1664� 0:0445 cosð3αÞ þ 0:0177 cosð6αÞ � 0:0092 cosð9αÞ þ 0:0052 cosð12αÞ � 0:0029 cosð15αÞ þ 0:0018 cosð18αÞð Þ

NC Truth
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1700þ 0:0700 cosð3αÞð Þ

σ= 0
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1702þ 0:0699 cosð3αÞð Þ

σ= 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1734þ 0:0638 cosð3αÞ � 0:0023 cosð6αÞ þ 0:0013 cosð9αÞð Þ

σ= 3 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1875þ 0:0615 cosð3αÞ � 0:0041 cosð6αÞ � 0:0039 cosð9αÞ þ 0:0052 cosð12αÞ þ 0:0039 cosð15αÞ � 0:0048 cosð18αÞð Þ

σ= 5 ⋅ 10−4
ffiffiffiffiffiffiffiffi
3=2

p
r � 0:1958þ 0:0457 cosð3αÞ � 0:0038 cosð6αÞ � 0:0031 cosð9αÞ þ 0:0109 cosð12αÞ � 0:0022 cosð15αÞ � 0:0028 cosð18αÞð Þ
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reaction force R̂
β;t
,

Cdispðθ;HÞ ¼
Xnt
t¼1

Xnβ
β¼1

R̂
β;t �

X
ða;iÞ2Ddisp;β

Fa;ti ðθ;HÞ
������

������
2

: (9)

We combine the two costs in a single cost function

Cðθ;HÞ ¼ Cfreeðθ;HÞ þ λrC
dispðθ;HÞ; (10)

with the balancing hyperparameter λr > 0. For details, see
Supplementary Methods.
The key difference between EUCLID and traditional (supervised

or unsupervised) parameter identification methods is the fact that
the form of the material model is not known a priori. In the
context of yield surface discovery, the number and combination of
active features in Equation (2) is unknown. Directly minimizing the
cost function in Equation (10) would result in a dense solution
vector θ, i.e., a highly complex material model with many non-zero
material parameters. Such material models are not desired as their
calibration and implementation are impractical and they bear a
high risk of overfitting the data, possibly resulting in physically
inadmissible material behavior. For these reasons, we promote
sparsity in the solution vector by formulating an ℓp-regularized
minimization problem as

fθopt;Hoptg ¼ arg min
fθ;H�0g

Cðθ;HÞ þ λpkθkpp
� �

; where kθkp ¼
Xnf
i¼1

jθi jp
 !1=p

(11)

For the hardening models, we assume a mathematical form that
is parsimonious at the outset but flexible enough to describe a
large class of different hardening mechanisms. To achieve
parsimony in the yield surface, we apply ℓp-regularization to the
parameter vector θ. The regularization with hyperparameters λp >
0 and p ∈ (0, 1] is a generalization of the LASSO (least absolute
shrinkage and selection operator)43 which is recovered for p= 1.
Smaller values of p and higher values of λp promote sparsity more
aggressively, but on the other side increase the degree of the non-
convexity of the function to be minimized. Here, as in our previous
work31, we use p= 1/4, while the choice of λp is discussed in the
Supplementary Methods. Note that in order to fulfill Equation (5),
the parameter θ0 corresponding to the constant Fourier mode is
purposefully not considered in the ℓp regularization. Further, we
highlight that applying the ℓp regularization shrinks the absolute
values ∣θi∣ for i∈ {1,…, nf} and hence reinforces the fulfillment of
the physical constraint in Equation (5). A similar correlation
between sparsity of the material model and fulfillment of physical
requirements has been observed by31,34, supporting the hypoth-
esis that sparse models are more likely to fulfill physical
requirements.
Equation (11) is a nonlinear and non-convex optimization

problem. As there exists no closed-form expression for the
stress–strain relation σt(ϵt, ht−1, θ,H), it is not feasible to differ-
entiate the cost function in closed form. For this reason, we use a
trust-region reflective Newton solver44 with gradients computed
via a finite difference approximation; however, other optimization
techniques may also be feasible to use. To tackle the issue of non-
convexity, which leads to multiple local minima, we optimize for
multiple randomly chosen initial guesses and operate an
automatic threshold-based selection that favors a solution with
low cost and high parsimony. All details regarding the optimiza-
tion procedure are provided in the Supplementary Methods.

Benchmarks
We benchmark EUCLID on eight largely different elastoplastic
material models with different hardening parameters (see Tables 1
and 2 and Fig. 3 for yield function expressions, hardening
parameters, and yield surface plots, respectively)45,46:

● VM: Von-Mises yield function
● F2: Yield function in Equation (2) with only θ0, θ2 ≠ 0
● TR*: Smooth approximation of Tresca yield function47
● SI*: Smooth approximation of Schmidt-Ishlinsky yield

function48,49
● F1: Yield function in Equation (2) with only θ0, θ1 ≠ 0
● IV*: Smooth approximation of Ivlev yield function50
● MA*: Smooth approximation of Mariotte yield function51
● NC: Yield function with non-convex yield surface

The first four material models VM, F2, TR*, SI* exhibit tension-
compression symmetry, while the others are tension-compression
asymmetric. Material models VM, F2, F1, NC are obtained by
choosing different combinations of active and inactive parameters
in Equation (2). While yield surfaces in classical plasticity are
convex and despite the issues connected with the thermodynamic
consistency of non-convex yield surfaces, we deliberately choose
model NC to evaluate the capabilities of our approach also in the
rare case of non-convexity52. The original Tresca, Schmidt-
Ishlinsky, Ivlev, and Mariotte models are characterized by non-
smooth yield functions which require complex stress update
procedures36 beyond the scope of this work. Therefore, and in
order to verify the flexibility of the chosen yield function library,
the models with non-smooth yield functions are approximated by
the Fourier-type expansion in Equation (2) and denoted by
superscript (⋅)*. Each of the approximated models contains eleven
active features with nf up to 20 in Equation (2), see Supplementary
Table 1. The validity of such approximations is proved in the
Supplementary Methods.
EUCLID takes full-field displacement and global reaction force

measurements as input. DIC data are emulated by generating
artificial data via the finite element method (FEM) based on the
material models illustrated above. The chosen domain is a square
plate with two elliptic holes (as schematically shown in Fig. 2) in-
plane stress conditions and meshed with bilinear quadrilateral
elements. The plate is deformed under displacement-controlled
tension, followed by displacement-controlled compression. In the
tension phase, the prescribed vertical displacement δ is linearly
increased from 0 to δ= 0.5 mm, and subsequently decreased to
δ=−0.5 mm in the compression phase. The nodal displacements
are recorded from the FEM solution at a total of nt= 2250 load
steps, 750 load steps in the tension phase, and 1500 load steps in
the compression phase. The total horizontal and vertical reaction
forces on the top boundary are also recorded. Note that we
purposefully choose a complex specimen geometry, in contrast to
the simple geometry of traditional coupon tests, with the
objective to obtain a strain field that is rich enough to solve the
ill-posed problem of identifying the yield surface with no stress
data and just one experiment.
As real DIC data are unavoidably affected by noise in the

measured displacement field, we add independent Gaussian noise
with zero mean and standard deviation σ > 0 to the synthetic
displacement data coming from the FEM simulations (see
Supplementary Methods). We consider noise levels σ∈ {0 μm,
0.1 μm, 0.3 μm, 0.5 μm}, where σ= 0.1 μm is considered a reason-
able upper limit for modern DIC setups53,54. Pushing EUCLID to its
breaking point, we further test it for a noise level of σ= 0.5 μm.
The effect of the noise on the yield surface discovery can be
reduced by temporal and spatial smoothing. Here, we restrict
ourselves to temporal denoising by applying a Savitzky-Golay
filter55 based on quadratic polynomial fitting with a moving-
window length of 50-time steps.
With EUCLID, discovery can proceed from a potentially very large

model library—e.g., in our previous work31 a library with 43
features was used for the discovery of hyperelastic strain energy
functions. However, it turns out that with the chosen Fourier ansatz
a relatively small number of features is already sufficient to provide
a remarkably flexible and general yield surface description. Thus,
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we consider here only seven features (nf= 6) in the model library,
i.e., cosine terms with frequencies up to 18

2π. The closed-form
expressions of the yield functions discovered by EUCLID from the
data with different noise levels are reported in Table 1, in
comparison to the true expressions. Table 2 shows the correspond-
ing hardening parameters. A comparison of the yield surface plots
in the π plane of the true models and the discovered models after
hardening (γ= 0.1) is presented in Fig. 3. As the π plane depends
on the relative stresses and not on the absolute stresses, the yield
surface plots in Fig. 3 do not capture kinematic hardening. To this
end, yield surface plots in the absolute stress component space are
shown in Fig. 4 for an exemplary material model at the end of
three different deformation paths in the data set. Similar plots for

the other material models are shown in Supplementary Figures 6
and 7.
In the case of displacements without noise (σ= 0), material

models VM, F2, F1, NC are discovered exactly, i.e., both the
mathematical form of the yield function and the parameters are
correctly identified. For increasing noise, the discovered para-
meters deviate from the true parameters as expected. In the non-
convex case (NC), false-positive predictions (features that appear
in the discovered formula but are not present in the true model)
are observed. Material models TR*, SI*, IV*, MA* on the other hand
cannot be described exactly by the chosen model library which
makes the exact discovery of the yield function form impossible.
However, for the tension-compression symmetric models (TR*, SI*)

Table 2. Hardening parameters of the (true) hidden and discovered plasticity models (σ in mm).

Benchmark Noise Hiso
1 Hiso

2 Hiso
3 Hkin

1 Hkin
1

VM Truth 40.00 2.00 900.00 150.00 600.00

σ= 0 40.00 2.00 900.00 150.00 600.00

σ= 10−4 39.18 2.00 846.40 148.38 626.33

σ= 3 × 10−4 38.01 1.99 778.13 155.19 650.66

σ= 5 × 10−4 39.48 1.98 958.57 171.20 678.39

F2 Truth 120.00 0.00 0.00 300.00 1000.00

σ= 0 120.00 0.00 35.46 300.00 1000.00

σ= 10−4 121.21 1.21 5.18 294.86 1014.55

σ= 3 × 10−4 118.65 0.02 108.71 321.29 1050.95

σ= 5 × 10−4 117.56 0.01 12003.28 323.39 1040.07

TR* Truth 0.00 1.00 500.00 50.00 500.00

σ= 0 0.00 0.98 525.88 56.52 545.59

σ= 10−4 0.00 0.97 498.77 52.45 563.99

σ= 3 × 10−4 0.00 0.82 468.30 56.45 536.35

σ= 5 × 10−4 0.00 1.58 2859.78 74.47 579.36

SI* Truth 30.00 0.50 650.00 150.00 900.00

σ= 0 30.38 0.49 570.95 140.70 813.81

σ= 10−4 30.14 0.51 519.93 139.01 833.54

σ= 3 × 10−4 27.39 0.50 432.26 129.30 767.45

σ= 5 × 10−4 30.79 0.45 500.98 174.01 881.25

F1 Truth 50.00 0.50 750.00 200.00 900.00

σ= 0 50.00 0.50 750.00 200.00 900.00

σ= 10−4 48.80 0.53 601.81 199.89 928.35

σ= 3 × 10−4 48.98 0.50 782.71 210.84 911.34

σ= 5 × 10−4 58.27 0.60 2321.07 218.22 894.79

IV* Truth 75.00 1.50 1300.00 250.00 800.00

σ= 0 82.61 1.66 1192.04 257.64 824.56

σ= 10−4 78.93 1.76 1024.17 257.66 912.86

σ= 3 × 10−4 72.88 1.68 1101.21 249.33 865.48

σ= 5 × 10−4 71.87 1.66 1380.94 255.90 838.28

MA* Truth 40.00 1.50 800.00 200.00 850.00

σ= 0 41.79 1.64 861.47 191.87 845.45

σ= 10−4 40.26 1.58 757.54 199.24 895.49

σ= 3 × 10−4 38.38 1.50 766.04 196.12 844.04

σ= 5 × 10−4 36.34 1.46 742.06 208.52 833.68

NC Truth 60.00 2.00 500.00 175.00 700.00

σ= 0 59.60 2.00 498.66 174.99 694.38

σ= 10−4 55.93 1.85 475.22 234.90 890.36

σ= 3 × 10−4 6.44 2.24 481.16 154.28 739.98

σ= 5 × 10−4 34.26 1.95 598.01 195.75 897.60
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it is observed in many cases that tension-compression symmetry-
breaking features (e.g., cosð3αÞ, cosð9αÞ and cosð15αÞ) are
automatically discarded by EUCLID, which increases the interpret-
ability of the discovered models. For the tension-compression
asymmetric models (IV*, MA*) the considered ground truth models
are not sparse and consequently, EUCLID discovers dense models.
This indicates that there is no concise and interpretable model in
the library that can describe the provided data accurately. Hence,
a trade-off between model accuracy and interpretability is
observed in this situation. This could in future studies be mitigated
by expanding the feature library, e.g., by including (in addition to
the trigonometric features) non-smooth yield surfaces in the
ansatz space.
Whenever EUCLID fails to discover the correct yield function

form, parameters (θi) corresponding to false-positive features are
observed to be considerably smaller than the other parameters
and hence have a small influence on the material behavior.
Further, false-negative feature predictions (features that are not
discovered although active in the true model) do not seem to
have a high impact on the material behavior either, which is
corroborated by the high accuracy observed in the yield surface
plots for all models and noise levels except higher noise TR* and
NC (see Figs. 3 and 4). Hence, for the models and noise levels for
which EUCLID does not find the correct closed-form expression of
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Fig. 3 Yield surface plots of the (true) hidden and discovered plasticity models for different noise levels σ (in mm). Yield surfaces are
shown for γ= 0.1, which is an upper limit of the accumulated plastic multiplier in the considered data sets. Coordinates π1, π2 are in kNmm−2.
For the tension-compression symmetric models, the symmetry axes are indicated by black dotted lines.

Fig. 2 Geometry and boundary conditions of the chosen domain:
a plate with two elliptic holes under displacement-controlled
vertical tension followed by vertical compression. All dimensions
are in mm.
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the yield function, accurate surrogate models are discovered that
mimic the behavior of the true yield function. The Tresca yield
surface is the only benchmark for which non-optimal fitting results
are observed in shear stress regions even in the case without noise
(see Fig. 3). The reasons for this are discussed in detail in the
Supplementary Methods, where we also show that enriching the
data with shear deformation drastically improves the results.

DISCUSSION
We show that EUCLID is able to discover interpretable plasticity
models from displacement and net reaction force data only and
without using any stress data. The method hence provides a
physics-constrained, data-efficient alternative to supervised data-
driven and machine-learning methods, which require an enor-
mous amount of labeled data and thus are most often
inapplicable. The sparse regression enables parsimonious model
selection in contrast to an a priori choice of the plasticity model
such as in the traditional material model calibration techniques.
Hence, after having demonstrated EUCLID for hyperelasticity31

and for plasticity, we aim at pursuing its extension to the discovery
of more general cases of plasticity with pressure sensitivity and
anisotropy in future work. Further extensions of interest may
include other categories of material behavior such as visco-
elasticity, visco-plasticity, damage, and general combinations
thereof. Another important future goal will be the employment
of EUCLID on experimental data in the two- and three-
dimensional settings using digital image and volume correlation
data, respectively.

An important question raised by EUCLID is how to choose the
specimen geometry and loading conditions to maximize the
richness of information in the data. While it is qualitatively clear
that more complex setups hold the promise of a richer resulting
data set, a quantitative answer requires specific investigations
which are an important future research direction. A related
question is on the range of strains and loading histories within
which the outcome of EUCLID should be trusted. According to our
experience, the discovered material model performs accurately
not only in interpolation within the range of the data; as EUCLID
ensures physical admissibility of the material model, good fitting
accuracy, as well as physically sound material behavior, can be
observed even beyond the range of the training data. However, as
in any other scientific application, extrapolation has its limits and
the discovered material model should be used with caution too far
outside of the range of the training data set.

METHODS
Detailed descriptions of the numerical implementation of the material
model library, the data generation, the formulation of the objective
function, and the optimization procedure are provided in the Supplemen-
tary Methods.

DATA AVAILABILITY
The data generated during the current study are available in the ETH Research
Collection56.

Fig. 4 Yield surface plots of the (true) hidden and discovered Schmidt-Ishlinsky material model (lower row of plots) at the end of three
different deformation paths (A, B, C) corresponding to characteristic points in the specimen domain. The locations of the points are
illustrated in the upper left part of the figure and the strain histories at the different points are shown in the upper right plot. A noise level of
σ= 10−4 mm was considered and the yield surfaces are plotted at σ12= 0. Coordinates xi are in mm and σij are in kNmm−2.
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