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Executive summary

The GRACE mission (2002-2017) provided unprecedented insights into mass redistribution in the Earth sys-
tem. Following a strong call for continuation of the mass observations, the GRACE-Follow On mission was
launched in May 2018, leaving a coverage gap of ca. 1 year between GRACE and GRACE-FO. Geopotential
solutions derived from data of the Swarm mission (2013-present) are candidate data to bridge this gap. This
report presents a study comparing GRACE and Swarm observations of the gravity trend induced by glacial
isostatic adjustment (GIA). Mantle viscosity studies suggest the Hudson Bay area GIA-induced gravity trend
is linear on the multi-decadal time scale, which suggests we can extrapolate the GRACE-derived GIA observa-
tions into the Swarm time period. The goal of this study is to use the mass change rate induced by glacial iso-
static adjustment to examine the continuity between time series of mass change inferred from the GRACE
and Swarm satellite missions. Such a continuity would validate the sensitivity of the Swarm measurement
system to mass rates, a key requirement for Swarm to successfully bridge the GRACE gap.

We identify three steps required to successfully extract an agreeing GIA-induced gravity trend estimate from
the GRACE- and Swarm-derived geopotential solutions. First, all observations must be carefully weighted
in the least squares regression. Especially the Swarm-derived Stokes coefficient time series show substantial
heteroscedasticity, presumably due to the sensitivity of the Swarm measurement system to plasma gradients
in the ionosphere [86, 122], and to a lesser extent due to the sub-optimal GPS-receiver settings aboard the
Swarm satellites in the period before May 2015 [104]. We use the RMS of the post-fit residuals as uncertainty
estimates [114], that we find after subtracting a 1-year moving mean and (semi-)annual components esti-
mated from a 2-year moving window from the Stokes coefficient time series. Second, the gravity fields must
be truncated to a maximum degree of 13. In degrees above 13, increased noise levels complicate inferring
true geophysical signal from the Swarm-derived gravity fields. To avoid a discrepancy in spatial resolution,
the GRACE fields are truncated accordingly. Third, all Stokes coefficients below degree 4 must be truncated.
We suspect that long-wavelength leakage from the mass change rate induced by ice mass loss on the Antarc-
tic continent affects the mass change rate that we observe in North America. As the Antarctic mass loss is
non-stationary Shepherd et al. [89], the magnitude of the long-wavelength leakage likely also varies across
the time periods of respectively the GRACE and Swarm mission.

In a novel experiment we analyze the spatial distribution of the variability of the GRACE-derived gravity trend
and show that the Hudson Bay area positive trend anomaly coincides with an area of minimal trend variabil-
ity. Nonetheless, we show that the difference between the highest and lowest trend in this area from any
5-year window of GRACE data equals ca. 0.7 µGal a−1. This is high w.r.t. the amplitude of the GIA-induced
trend (ca. 2 µGal a−1). We argue the inter-annual variability is due to hydrology variations. A correction based
on GLDAS-NOAH deteriorates the agreement, where we should make the side note that we have identified
irregularities in the GLDAS source data. We assess the influence of undulations induced by ice mass loss in
Greenland and Alaska and find negligible effects.

We find a latitude-weighted mean residual of 0.0629 µGal a−1 between the GRACE- and Swarm-derived grav-
ity trends of the positive gravity trend anomaly around Hudson Bay, when we define the limit of this anomaly
at >+1.0 µGal a−1 as computed from the GRACE data. In the same area, we find a latitude-weighted mean
standard error of the GRACE- and Swarm-derived gravity trends of 0.0153 and 0.400 µGal a−1, respectively.
The mean misfit equals 0.426 standard errors of the Swarm error Accordingly, we conclude that there is strong
evidence of a secular gravity signal in the Hudson Bay area that shows continuity between its GRACE- and
Swarm-derived observations.

Finally, we validate our conclusions via the GRACE-FO geopotential solutions. The results are difficult to in-
terpret, most likely due to the limited amount of available GRACE-FO data. Nonetheless, we find that Swarm
and GRACE-FO observe various large scale inter-annual mass change processes in a similar way. We con-
clude that the GRACE and Swarm measurement systems have a similar sensitivity to mass change trends of
a spatial scale up to ca. 1500 km. This newfound continuity between GRACE and Swarm is a step towards a
multi-decadal record of mass change observations.
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Preface

Many space flight students are drawn to the subject because of an innate curiosity for exploring the deep,
unknown void that is space. I used to be no different. Yet, I slowly learned that the concreteness of studying
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teractions that govern the dynamics of the Earth system is more important than ever. Less than two decades
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are only at the beginning of a new and exciting era in understanding our home planet, a notion I suspect
aforementioned pioneers felt too in their respective days. May this newly fueled interest in mother Earth be
forwarded to any reader of this document.

First and foremost, I am very thankful for the guidance, motivation, and support of dr. ir. Bart Root. In
one of my first lectures at the TU Delft Faculty of Aerospace Engineering, I was struck by Bart’s passion for
satellite geodesy, and I am glad to admit that part of this enthusiasm has transferred to me in the last year.
The majority of the research of this study was executed during a stay at The Center for Space Research of
the University of Texas at Austin (CSR). This opportunity was kindly offered to me by dr. Srinivas Bettadpur,
the director of CSR. I am very grateful for all the help I have received from dr. João de Teixeira da Encarnação
and dr. Mark Tamisiea, both with arranging my stay and with realizing my research ambitions after arriving in
Austin. It has been an honor and a pleasure to work in a place that has such a rich history of accomplishments
in the field of space research. I would like to thank dr. ir. Wouter van der Wal, who kindly shared an idea that
became the foundation for this study, and later provided assistance that shaped the research outlined in this
report.

The TU Delft STIR Fund and the Van der Maasfonds have kindly provided financial aid that allowed me to
travel to Austin to stay at CSR. Besides the aforementioned benefits for my master’s thesis project, this trip
has left me with many new friends and memories that I will cherish for years to come.

Finally, I want to express my greatest gratitude to my loving parents, who have been there for me during every
minute of the roaring years that were my college career. Their personal and financial support allowed me to
flourish as a person and as a scholar, and most importantly, to do so while living the best days of my life.

I am excited about what the future will bring, and what better way to describe my sentiment than to let the
song that served as a wake-up call for the astronauts aboard the Apollo 10 mission do so:

"The best is yet to come"

Ol’ blue eyes

Sander W. L. Vermeulen
Austin, Texas, July 2019
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1
Introduction

"Circling the Earth in my orbital spaceship, I marveled at the beauty of our planet.
People of the world, let us safeguard and enhance this beauty - not destroy it."

Yuri Garagin, after returning to Earth as the first person in space on 12 April 1961 [45].

1.1. A new Earth observable

The NASA/DLR Gravity Recovery And Climate Experiment (GRACE) marked an important milestone in Earth observation.
For the first time, mass movements in the Earth system could be studied directly by observing the induced changes
in the Earth’s gravity field. These time-resolved gravity observations meant a new and unique addition to the existing
suite of Earth observables. Initially a pioneering geodesy experiment, the GRACE measurements are now regarded as a
reliable mass transport product that has been used to study a wide range of geophysical processes including ocean mass
changes [44] ice mass changes [89, 111], terrestrial water storage changes [85, 100], response of the solid Earth to the
growth and decay of ice sheets (glacial isostatic adjustment; GIA) [98, 108, 115, 119], and a number of other processes.
Studies on changes in fresh water storage basins vital to communities in the local area [69, 73], or studies that link GRACE
observations to the complex interactions and transitions associated with today’s changing climate [101] have potential
for substantial impact. Tangible societal benefits can already be seen in the improvements of service applications such
as the United States Drought Monitor that GRACE data helped realize [6], or the European Gravity Service for Improved
Emergency Management (EGSIEM), which aims to use mass redistribution measurements to warn the public for future
hydrological extremes [39].

Table 1.1 gives a rough estimate of the amplitude, spatial scale, and temporal scale of the gravitational variations induced
by various geophysical processes. The table is shown to give the reader a general idea on what kind of gravitational vari-
ations to expect. Figure 1.1 shows an example analysis of the Earth gravity observations of GRACE. The left side of Figure
1.1 shows the gravitational acceleration trend. Note how processes like GIA (e.g., around Hudson Bay), and ice melt (e.g.,
Greenland) are observable in this signal component. Via Newton’s law of universal gravitational the magnitude of the
observed gravity trend can be correlated to the magnitude of the mass change rate, which allows for direct quantification
of aforementioned geophysical processes. The right side of Figure 1.1 shows the amplitude of yearly variation in grav-
itational acceleration. Note how high-precipitation areas (e.g., the Amazon) can be differentiated from areas with low
annual rainfall (e.g., Sahara Desert). Again, the GRACE data can be used to directly quantify how these mass transport
processes develop through time.

To compute the results in Figure 1.1, a trend, annual, and semi-annual component are estimated from the CSR RL06
geopotential solutions spanning April 2002 to June 2017 via least-squares regression. This approach will be elaborated
upon in Section 2.5. The geopotential solutions we use are published as a set of Stokes coefficients, which can be used to
weigh a Fourier series of spherically-defined orthogonal basis functions called the spherical harmonics to find the spatial
maps shown in Figure 1.1. This report assumes a working knowledge of the decomposition of a function defined on the
sphere or a potential field into a set of spherical harmonics. For additional information about spherical harmonics we
refer the reader to Heiskanen and Moritz [37].
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Geophysical process Amplitude [m s−2] Spatial scale [km] Temporal scale [y]
Min Max Min Max Min Max

Mass transport in
atmosphere and oceans

3×10−10 7×10−9 20 1×104 1×10−3 2

Hydrological mass redistribution in
or on the terrestrial surface

3×10−9 2×10−7 ≈ 0 1×104 2×10−2 10

Time evolution of glaciers 4×10−9 4×10−7 ≈ 0 1×103 8×10−2 100
Glacial isostatic adjustment 4×10−10 4×10−8 500 1×104 1×104 1×105

Mass transport due to earthquakes 9×10−9 4×10−6 ≈ 0 2×103 ≈ 0 0.5

Table 1.1: Overview of typical values of amplitude (in terms of gravitational acceleration), spatial scale, and temporal scale of the gravita-
tional variation induced by selected geophysical processes. Table contents adapted from de Teixeira da Encarnação [22] with the author’s
permission.

Figure 1.1: Example of time-variable gravity analysis via GRACE data. Left side: gravitational acceleration trend. Right side: amplitude
of yearly variation in gravitational acceleration. Computed by fitting a trend, annual, and semi-annual component via least-squares
regression to the CSR RL06 Stokes coefficients, which span April 2002 to June 2017. We apply a 300 km half-width Gaussian filter for
smoothing (will be covered in Section 2.4.1.

1.2. Continuing GRACE

The GRACE mission was operational from 2002 to 2017. As the GRACE mission results were accepted by the scientific
community, there was a strong call for continuation of the time series of mass transport observations [13, 54]. In fact,
the 2017 NASA Decadal Survey1 [54] placed a mass change continuity mission among the top five priorities for continued
Earth observations. The GRACE Follow On (GRACE-FO) mission was launched in May 2018, which prioritized prolonging
the measurements over revolutionizing the mission concept and therefore employs roughly the same mission configura-
tion.

Uninterrupted continuation of the time series of mass transport observations that GRACE started would require bridging
the data gap of ca. 1 year between GRACE and GRACE-FO (the GRACE gap). This is currently a subject of broad interest in
the field of satellite gravimetry, as many users would benefit from longer time series. In the last two decades we have seen
that the insights from satellite gravimetry extend far beyond our innate curiosity for planet Earth. Continued monitoring
of variations in the hydrological cycle of the Earth system can aid humankind in predicting and managing the effects of
large-scale weather phenomena, and in understanding the processes that constitute what has been called the defining
problem of our generation: anthropogenic climate change [101]. As such, a continuous, multi-decadal record of Earth
mass transport observations is a project with potential for considerable scientific, societal, and political impact.

Various methods have been proposed to bridge the GRACE gap. Geopotential solutions based on surface loading inver-
sion seem ineffective due to the sparsely and heterogeneously distributed ground-based GPS stations [71, 126]. For simi-
lar reasons, in addition to the relatively high orbit of the used satellites, inversion of satellite laser ranging (SLR) position
observations of Earth orbiters is limited to very coarse resolutions (degrees < 5, ca. 5000 km at the equator) [11, 91, 125].
The altitude of the orbiter affects the spatial resolution as the decay of gravitational potential with altitude is inversely
related to the wavelength of a particular harmonic [37]. The limited resolution of SLR-derived results makes it hard to
invert to reliable mass transport estimates [14].

Using satellite position observations of the Global Positioning System (GPS; also described as high-low satellite-to-satellite
tracking [hl-SST]) yields more promising results. Here, the ESA Swarm satellites are particularly interesting for three rea-

1http://science.nasa.gov/earth-science/decadal-surveys
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sons. The Swarm mission time frame (active since late 2013) covers the GRACE gap, the satellites are equipped with
geodetic quality GPS-receivers, and the satellites fly at a low orbital altitude (ca. <500 km) [35]. Numerous authors have
computed gravity fields from GPS position observations of the Swarm satellites at intervals short enough to assess the
time dependency of Earth’s gravity field on a monthly temporal scale [10, 24, 38, 124]. Combining the geopotential so-
lutions with results derived from SLR further improves the geopotential solutions, especially during periods of increased
ionospheric activity when the Swarm fields notably degrade [49, 91, 126].

At the moment, various groups routinely compute gravity fields from Swarm satellite data. We focus on solutions that are
part of an ongoing project of de Teixeira da Encarnação et al. [23], where individual Swarm-derived gravity fields of groups
at the University of Bern (AIUB), the Czech Academy of Sciences (ASU), Graz University of Technology (IfG), and The
Ohio State University (OSU) are combined with weights derived from variance component estimation (i.e., combination
on the solutions level). It is worth noting that these four individual solutions use different approaches to invert the GPS
position observations into Earth gravity fields, namely the celestial mechanics approach [8], the decorrelated acceleration
approach [9], the short-arcs approach [50], and the improved energy balance approach [88], respectively. It is believed
that combining the four solutions best exploits the particular sensitivity of each of the four approaches, yielding the
highest quality gravity fields [23]. These combined Swarm solutions do not contain SLR-derived information. Weigelt
et al. [117] offer a data product that does combine hl-SST and SLR, but for reasons that will be given in Section 2.1.4 we
mainly focus on the combined Swarm fields.

Like the Swarm-derived fields, the GRACE field are also based on inverting observations of the kinematic motion of the
respective satellites into potential fields. The primary source of these observations are micrometer-level measurements
of the inter-satellite distance [99]. For Swarm, these source data are centimeter-level GPS position observations [124].
Understandably, this accuracy discrepancy manifests itself as a substantial difference in quality of the respective geopo-
tential solutions. Most notably, an increase in non-geophysical noise in the short-wavelength coefficients of the Swarm
fields reduces the spatial resolution of the usable signal to ca. 1500 km (vs. ca. 300 km for GRACE). Nonetheless, Lück et al.
[46] derived time series of ocean mass from Swarm-derived gravity fields, and Meyer et al. [51] investigated cryospheric
mass change in this way.

Figure 1.2 shows the same time-dependent components of the Earth’s gravity fields as Figure 1.1 (i.e., gravity trend and
amplitude of annual variation), but now comparing these components across GRACE- and Swarm-derived gravity fields.
We have applied a 1000 km Gaussian filter to decrease aforementioned high-degree noise [112] (this method will be elab-
orated upon in Section 2.4). Note how the amplitude of the annual component shows good agreement between Swarm
and GRACE. The results are less congruent when comparing global maps of the gravity trend. For a great part, this is
explained by the fact that the GRACE and Swarm missions cover mostly different time frames and that most geophysical
processes observable in the gravity trend component (e.g., ice loss [52, 89], terrestrial water storage changes [83]) do not
have a linear time dependence, but instead show substantial inter-annual variability.

Some geophysical processes induce a secular gravity signal that shows little inter-annual variability. An example of this is
glacial isostatic adjustment, a term used to define the deformation of the Earth’s crust in response to ice mass redistribu-
tion. The viscoelastic response of the solid Earth to changing loads, coupled to motion of mass underneath Earth’s crust,
induces both positive and negative gravity trends across the Earth [92]. For two reasons, we focus on the gravity trend
around Hudson Bay (this area is also referred to as Laurentia). First, as the magnitude of the GIA-induced mass change
rate is the largest here, this location gives us the best chance of successfully isolating the GIA-induced gravity trend from
the relatively noisy Swarm fields. Second, studies using various GIA-related observations (e.g., relative sea level change,
GPS-observations of surface deformation, [time-variable] gravity, etc.) to infer estimates of the (local) mantle viscosity
yield viscosity results high enough to allow the exponential time-dependence of the mass change in the Hudson Bay area
to be approximated as linear on a multi-decadal scale [42, 60, 98]. For more information on GIA studies we refer the
reader to Whitehouse [119]. This linear time-dependency is a key assumption in our study, as it allows measurements of
the GIA-induced gravity trend to be extrapolated on said multi-decadal scale. Figure 1.3 shows a close-up of the GRACE
observations of the gravity trend in Laurentia. This figure was computed from the GRACE CSR RL06 Stokes coefficients
spanning April 2002 to June 2017 by estimating a trend, annual, and semi-annual component via least squared regression
after applying a 300 km half width Gaussian filter.

A requirement for Swarm to successfully bridge the GRACE gap is similar sensitivity of the measurement system to ter-
restrial mass change. This study focuses on sensitivity of the respective measurement systems to the mass change rate.
We use the mass change rate induced by GIA to assess the continuity between time series of gravity observations inferred
from GRACE and Swarm satellite data. The fact that the Laurentian GIA-induced gravity trend may be approximated
as linear on a multi-decadal time scale suggests that a similar gravity trend should be retrievable from the GRACE and
Swarm gravity observations, regardless of the fact that their observations cover mostly different time frames (2002-2017
vs. 2013-present). Identifying a continuity between the GRACE- and Swarm-derived gravity trend observations, and fur-
ther establishing Swarm as the solution to the GRACE gap, would mean moving one step closer to a multi-decadal record
of mass transport in the Earth system.
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Figure 1.2: Comparison of the gravity trend (top panels) and the amplitude of the yearly gravity variation (bottom panels) between CSR
GRACE RL06 (spanning April 2002 to June 2017, shown in left panels) and the combined Swarm fields (spanning December 2013 to March
2019, shown in right panels). Computed by fitting a trend, annual, and semi-annual component via least squares regression. We apply a
1000 km half-width Gaussian filter for smoothing. NB: these are different filter settings, along with different color scales, as compared to
Figure 1.1.

Figure 1.3: GRACE-derived gravity trend in Laurentia. Computed from CSR GRACE RL06 data by fitting a trend, annual, and semi-annual
component via least squared regression. We apply a 300 km half-width Gaussian filter for smoothing. General scientific consensus is
that the positive gravity trend anomaly visible around Hudson Bay is dominated by GIA.
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1.3. Research question

We summarize our research objective in the following main research question:

Does a continuity of the gravitational signal induced by glacial isostatic adjustment exist between time series of mass
change inferred from GRACE and Swarm satellite data?

Our hypothesis is confirmed if the difference between the GRACE-derived and the Swarm-derived observation of the
GIA-induced trend is smaller than the uncertainty of the computed trends. This makes error and uncertainty analysis an
important part of this research. The time span of the data that we use is April 2002 to June 2017 for GRACE, and December
2013 to March 2019 for Swarm.

We split the main research question into the following sub-questions:

Q.1 What is the mass change rate in Laurentia as observed by GRACE and Swarm?
We compute mass change rate estimates via gravity fields solutions based on GRACE and Swarm satellite data.
These results will contain the GIA-induced gravity trend, but also trend signals caused by other geophysical pro-
cesses.

(a) What is the magnitude and spatial distribution of the gravity trend in the area around Hudson Bay?

(b) What truncating or Gaussian filtering parameter settings are required to remove the most noise from the
gravity field solutions, while leaving the GIA-induced trend estimate untouched?

(c) What is the influence on the trend result of including the S2, K1, and K2 tidal aliases as components in the
fitted model?

(d) What is the uncertainty of the gravity trend estimates?

(e) What is the influence of weighting the observations when computing the trend?

(f) What is the influence of the length of the gravity field time series on the trend estimate?

Q.2 What is the influence from other geophysical signals on the observed mass change rate in the Laurentian area?
The common procedure to isolate the GIA-induced component from gravity observations involves correcting these
observations for other influences from other geophysical processes.

(a) What is the variability between gravity trends computed from different time windows?

(b) What is the influence from inter-annual hydrology variations, and how can this be corrected?

(c) What is the influence from signal leakage and undulations caused by mass change in Greenland and Alaska,
and how can this be corrected?

(d) What is the influence from long-wavelength leakage caused by mass change in other areas of the Earth, and
how can this be corrected?

Q.3 How do the GRACE- and Swarm-derived mass change rates in Laurentia compare?
We use the results from the previous two sub-questions to evaluate the differences between the GRACE and Swarm
observations of the GIA-induced gravity trend in the Hudson Bay area.

(a) What is the difference in magnitude and spatial distribution between the GRACE- and Swarm-derived gravity
trends in the area around Hudson Bay?

(b) Is the difference between the GRACE and Swarm observations of the Hudson Bay area gravity trend statisti-
cally significant?

Q.4 Can data inferred from observations of the GRACE-FO satellite mission be used to validate the conclusions derived
from the combined Swarm fields?
In this final research question, we aim to validate our findings via geopotential solutions derived from the successor
of GRACE: GRACE-FO.

(a) How to the mass observations after the GRACE period of Swarm and GRACE-FO compare?

(b) How does adding Swarm resp. GRACE-FO information to the GRACE time series affect the mass rate esti-
mates?

1.4. A note on the structure of the thesis

The remainder of this report is structured as follows: Chapter 2 and Chapter 3 cover the methodology of this study,
coarsely distinguishing between general gravity field processing methods and methods specific to GIA study, respectively.
Note how this aligns with the difference between research sub-questions Q.1 and Q.2. Readers familiar with the applica-
tion of satellite-derived gravity fields to geophysical study might want to skip Chapter 2, but do note our error estimation
method in Section 2.6.1 as it diverts slightly from traditional practice. Similarly, readers experienced with the applica-
tion of GRACE data to GIA study might want to skip the first sections of Chapter 3. Exceptions are our interpretation of
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an existing method to quantify the total influence of all non-GIA processes on the observed gravity trend in Section 3.1,
and Section 3.2.3, where we identify and correct inconsistencies in the commonly used GLDAS-NOAH hydrology model.
We also suggest reading Section 3.3 while anticipating that the application of Swarm-derived gravity fields happens at a
drastically lower maximum degree, compared to modern-day GRACE applications, which amplifies the unwanted effects
described in that section. Furthermore, we think that Section 3.6, where we explain how we will use the recently released
GRACE-FO geopotential solutions to validate our conclusions, are worthwhile for any reader as this is a first-of-a-kind
experiment.

Note that when we show an application of a particular method in the methodology chapters, this is only to motivate
our choice for this technique, to show how various techniques compare, or to verify correct implementation. We do not
intend to perform any analysis related to our research question in Chapter 2 and Chapter 3.

Chapter 4 shows and discusses the results of our experiments. We would like to highlight the results of our trend variability
experiment, covered in Section 4.5, as we believe it proves the feasibility of the central idea of this study: extrapolating
the GRACE observations of the GIA-induced gravity trend in North America into the Swarm era (and vice versa). Section
4.9 combines all of the study’s findings at that point and presents a quantitative assessment of the discrepancy between
the GRACE- and Swarm-derived gravity trend observations, in light of the uncertainty of the trend estimates. As such,
this section could be regarded as a quantitative summary of the study. Finally, we would like to point Section 4.10, where
present the results of aforementioned GRACE-FO-based validation exercise.

To aid the readability of our figures and to align with literature, we will mostly use the non-SI unit of microGal (µGal)
to describe (gravitational) acceleration, where 1 µGal = 1× 10−8 m s−2. Traditionally in geodesy, gravity refers to the
resultant force of the gravitational attraction in accordance with Newton’s law of universal gravitation and the centrifugal
acceleration due to the rotation of the particular body [34]. In this report we use an Earth-fixed reference frame (as
per GRACE RL06 processing standards [123]), which means the centrifugal component reduces to 0. We will therefore
use gravity and gravitational acceleration interchangeably in this text. Similarly, we will not cover nor discern between
the various gravity differentials commonly used in geodesy (e.g., gravity anomaly, gravity disturbance), as we are almost
exclusively studying gravity trends.



2
Data and general processing methods

This first methodology chapter covers general processing, regression, and uncertainty computation methods applied to
the geopotential solutions. At the end of this chapter we have covered all necessary methodology to answer research
sub-question Q.1. Processing steps applied to Stokes coefficients are only shown for the cosine coefficient Cl ,m , but are
identical for the sine Stokes coefficient Sl ,m .

Definitions of acronyms are given in the List of Acronyms on page xiii. Symbol definitions and units, and values used for
constants can be found in the List of Symbols on page xv.

2.1. Gravity field solutions

The main data source for the experiments in this study are satellite-derived solutions of the Earth’s gravity field. This
section introduces the geopotential solutions that we use. Auxiliary data sets used for, e.g., corrections to metrics de-
rived from the geopotential solutions or data sets used for verification or validation purposes will be introduced when
applicable.

2.1.1. GRACE

Unless noted otherwise, we use the GRACE CSR RL06 geopotential solutions in Stokes coefficient format [102]. All gravity
solutions that we denounce as GRACE data are derived using the K-band ranging (KBR) observations as primary data
source. We use the solutions with a maximum spherical harmonics degree of 60. For more background information
on GRACE data processing we refer the reader to Bettadpur [7]. All GRACE geopotential solutions in Stokes coefficient
format that we use, including older releases we sporadically use for verification purposes, are publicly available via the
NASA Physical Oceanography Distributed Active Archive Center (PODAAC)1.

At certain points in this study we will use the GRACE CSR RL06m mascon solutions [80, 82] for illustrative or correctional
purposes. These solutions are also computed with the KBR observations as primary data source but use a different in-
version scheme that is based on estimating local mass concentrations on a geodetic grid (the mascons) directly from the
GRACE KBR measurements. This method was first applied to GRACE by Luthcke et al. [47]. The CSR RL06m mascon
solutions are publicly available via the CSR GRACE website2.

2.1.2. GRACE-FO

We use the GRACE-FO CSR [103], JPL [53], and GFZ [19] RL06 geopotential solutions in Stokes coefficient format. Similar
to the GRACE solutions we use, these solutions are derived using the K-band ranging (KBR) observations as primary data
source. We use the solutions with a maximum spherical harmonics degree of 60. We refer readers interested in more
background information about GRACE-FO data processing to Yuan [123]. The CSR, JPL, and GFZ solutions all cover June
2018 to April 2019, not including August and September 2018.

In an attempt optimally use all available data, we do not use the individual solutions but instead take the arithmetic

1http://podaac-tools.jpl.nasa.gov/drive/
2http://www2.csr.utexas.edu/grace/
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mean of the CSR, JPL, and GFZ data products. As the epochs line up perfectly this does not require any interpolation.
For GRACE, this approach was shown to be effective in the early days of the mission when data was scarce [114]. All
GRACE-FO geopotential solutions that we use are also publicly available via the NASA PODAAC3.

2.1.3. Swarm

We use geopotential solutions in Stokes coefficient format derived from GPS position observations of the ESA Swarm
satellites. In a project managed by de Teixeira da Encarnação et al. [23] four independently computed time series of
gravity fields are combined at the solutions level, as was mentioned in Section 1.2. The combined Swarm fields have a
maximum spherical harmonics degree of 40. The combined Swarm solutions are publicly available via the ESA Swarm
Mission website4. Readers interested in more background information about these fields or this project are also referred
to aforementioned website. With the exception of Appendix B, we do not use the individual Swarm solutions anywhere
in this study. As such, we will refer to the combined Swarm fields as simply the Swarm fields hereafter.

2.1.4. GeoQ

The final satellite-derived geopotential product that we use are the 2019 GeoQ geopotential solutions of Weigelt et al. [116,
117]. These solutions are computed from GPS position observations of 27 different Earth orbiters using the accelerations
approach [9]. The combination is done on the normal equations level with weights derived from variance component
estimation. In degrees ≤ 6, the authors combine the GPS-derived Stokes coefficients with counterparts derived from SLR
observations of 9 satellites. The GeoQ fields are publicly available via the International Center for Global Earth Models
(ICGEM) FTP server5. Weigelt et al. [117] showed that the observations of the positive trend anomaly around Hudson
Bay derived from these solutions show very good agreement with GRACE observations after applying a 750 km half width
Gaussian filter (virtually identical spatial distribution, discrepancy in trend amplitude <1%).

It is important to note that the publicly available GeoQ fields have had substantial post-processing applied to them,
most importantly a temporal filtering process that includes a Hodrick-Prescott filter (a deseasoning filter commonly used
in macroeconomic studies) and a Kalman-type filter. This means the epochs are no longer independent observations,
which makes them fundamentally different from the GRACE- or Swarm-derived fields. In this study we are not arguing
in favor or against such processing, but we do reason that comparing independent GRACE or Swarm observations to
the GeoQ solutions would be a faulty comparison. Additionally, the GeoQ fields contain GPS position observations and
accelerometer data of the GRACE satellites. Both these data will not be available during the GRACE gap, which makes
it hard to extend any conclusions derived from the full GeoQ data set to its use as a GRACE gap filler. For these two
reasons, we will not focus on the GeoQ fields in this study. Instead, we will use a version of the GeoQ solutions that did
not have the temporal filter applied to them as an auxiliary data set to investigate how a longer time series of GPS-derived
geopotential solutions compares to the combined Swarm fields6. The filtered GeoQ fields are not used anywhere in this
study, and therefore we will refer to the unfiltered GeoQ fields as simply the GeoQ fields hereafter. For more background
information about the GeoQ fields we direct the reader to Weigelt et al. [116, 117].

2.1.5. Pre-processing

In early GRACE studies it became apparent that the second-degree zonal coefficient, C2,0, of the GRACE-derived gravity
fields has a particularly high error [e.g. 43]. Cheng and Ries [17] executed an analysis of cross-track forces acting on
GRACE, and the cross-track accelerometer data, and concluded that a systematic, temperature dependent error in the
accelerometer data could be the cause of this problem with this particular coefficient. Most GRACE application studies
replace C2,0 with results derived from SLR position observations of other Earth orbiters. However, as the goal of this study
is to infer the continuity between observations of specifically the GRACE and Swarm mission, we choose not to introduce
any outside information into the geopotential solutions. We therefore set C2,0 to 0 in all geopotential solutions that we
use, regardless if they are based on GRACE, Swarm, or any other observation source.

The origin of our reference frame is the Earth’s center of mass [123], which means the degree 1 coefficients all reduce to
0. Even though Chambers et al. [15] showed that the degree 1 coefficients have a non-negligible effect on the results of
mass transport inversions, we choose to keep the 0 values as a correction would again require introducing external data
sources [121].

3http://podaac-tools.jpl.nasa.gov/drive/
4http://earth.esa.int/swarm/
5ftp://icgem.gfz-potsdam.de/
6These data are not publicly available, but were kindly provided to us by dr. Matthias Weigelt at the Institute of Geodesy of the Leibniz

University in Hannover, Germany.

http://podaac-tools.jpl.nasa.gov/drive/
http://earth.esa.int/swarm/
ftp://icgem.gfz-potsdam.de/
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2.2. Dimensionalizing and expanding Stokes coefficients

The satellite-derived Earth gravity fields that we use are distributed in the form of sets of non-dimensional Stokes co-
efficients Cl ,m and Sl ,m . These coefficients can be dimensionalized into various gravity functionals. We choose to use
gravitational acceleration, and not the geoid height, as gravitational acceleration provides a higher spatial resolution [55].
Equivalent water height (EWH), a unit where the gravitational change is converted into a fictitious water layer of a certain
height, is often use in literature. We use comparison to results from literature as a verification method throughout this
report, and when applicable we convert our results to EWH to match the literature.

Even though Ditmar [26] showed using an oblate reference spheroid yields more accurate mass estimates, we choose to
use a spherical reference Earth. The goal of this study is to compare mass rate estimates inferred from different satellite
data sets, not to find the most accurate estimate in the absolute sense. As it simplifies computations, we therefore opt to
use a spherical reference Earth. We dimensionalize the Stokes coefficients via:

For gravitational acceleration in m s−2: C
(g )
l ,m = GM

R2
(l +1) ·Cl ,m (2.1)

For equivalent water height in m: C (EW H)
l ,m = R

3

ρE

ρw ater

2l +1

l +kl
·Cl ,m (2.2)

where GM is the standard gravitational parameter of the Earth, R is the mean radius of the Earth, and l and m are respec-
tively the degree and order of the particular Stokes coefficient. ρE and ρw ater are respectively the mean density of the
Earth and the density of water in kg m−3. Finally, kl is the Love number corresponding to degree l . The Love numbers
define how the Earth deforms elastically under a changing surface load. Equation 2.2 is based on the work of Wahr et al.
[112], who use Love numbers computed from the PREM Earth model of Dziewonski and Anderson [29]. We use the same
numbers, which are listed in Table A.1 in Appendix A.1. To use the method of Wahr et al. [112] we make three assumptions:

• We assume the Earth to be spherically symmetrical, i.e., its material properties are only a function of the distance
w.r.t. the center of the Earth.

• We assume the Earth’s mantle and lithosphere to behave viscoelastically, as governed by Maxwell’s viscoelastic
constitutive law.

• We assume the displacements of the Earth’s surface to be small, which means we may use a linear relationship
between strain and displacement.

We expand the spherical harmonic coefficients into a spatial map of gravitational acceleration or EWH at the surface of
our spherical reference Earth via [37]:

f (θ,λ) =
∞∑

l=0

l∑
m=0

Pl ,m (sinθ)
(
Cl ,m cosmλ+Sl ,m sinmλ

)
(2.3)

where f (θ,λ) is a gravity functional of which the unit is defined by the unit of the Stokes coefficients. Pl ,m (x) denotes
the associated Legendre functions, for which the reader is referred to Appendix A.2. The geopotential solutions that we
use employ normalization conventions as defined in IERS 2010 [62]. These conventions are given in Appendix A.3. The
main text of the report always refers to normalized Stokes coefficients or Legendre functions, therefore we leave out the
common bar notation (e.g., C̄l ,m , P̄l ,m , etc.).

Most figures of a spatial map of (information derived from) a gravity field solution in this study are computed using one or
more of the equations in this section. All other verification plots can therefore simultaneously verify our implementation
of the relations in this section, and therefore we will not do so in this section separately.

2.3. Field-derived quantities

For a quantitative, concise comparison of (gravity) fields, spatial maps of expanded Stokes coefficients are sometimes an
unpractical tool. For this reason, we will define a number of quantities that allow us to assess various gravity fields more
purposefully.

2.3.1. Degree root-mean-square

Similar to how the root-mean-square (RMS) is a measure of the average power of an alternating current, this metric
can be used to quantify the power of a particular degree of a spectral decomposition of a field. Here, it is important
to know that the degree of a particular Stokes coefficient correlates with the spatial artefacts it describes in the spatial
domain. In practice, this means two things. First, the maximum degree lmax of a spectral decomposition governs its
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Figure 2.1: Degree RMS of the GGM05C static Earth gravity model of Ries et al. [70].

spatial resolution (≈ 20000 km
lmax

), and second, the correlation between the degree RMS (dRMS) and the degree number
tends to be negative for real geophysical signals. This makes sense, as gravitational potential is positively correlated to
mass, which is in general positively correlated to size (of course, exceptions apply). We define the degree RMS of degree l
as the RMS of all orders in degree l , i.e.:

dRMSl =

√√√√∑l
m=0

(
C 2

l ,m +S2
l ,m

)
2 · (l +1)−1

for l ≥ 1 (2.4)

As an example, Figure 2.1 shows the dRMS of the GGM05C static Earth gravity field model of Ries et al. [70]. Note how,
generally speaking, the dRMS and degree number are negatively correlated. The static part of the gravity field dominates
any gravity observations that we use (see also Table 1.1). To focus our analysis on the time-variable part of the epochs, we
subtract a static gravity field model such as GGM05C before computing a particular field-derived quantity. We will show
this for GRACE and Swarm in Section 2.4.

2.3.2. Degree correlation coefficient

Comparing the dRMS of two potential solutions can infer some conclusions about their differences in signal spread across
the various degrees, but not about how this difference is spread across the various orders in each degree. In Tapley et al.
[99, supporting online material] we find a more effective way of comparing two fields by using the Pearson correlation co-
efficient of each particular degree (from hereon: degree correlation coefficient). This coefficient is defined as the fraction
of the shared variance within a degree (i.e., the covariance) and the root product of the individual variances of two sets of
Stokes coefficients. The degree correlation coefficient is a value between 1 and -1, where 1 means perfect correlation be-
tween the two fields, -1 means perfect anti-correlation, and 0 means no correlation. Tapley et al. [99] use this method for
validation of early GRACE-derived fields w.r.t. a hydrology model and Bezděk et al. [10] use it to validate Swarm-derived
fields w.r.t. GRACE [10]. We compute the degree correlation coefficient rl of degree l between field A and B via:

r (A,B)
l = 1

σ(A)
l σ(B)

l

l∑
m=0

(
C (A)

l ,mC (B)
l ,m +S(A)

l ,m S(B)
l ,m

)
for l ≥ 1 (2.5)

where σl is the square root of the degree variance of degree l , that is defined as:

σ2
l =

l∑
m=0

(
C 2

l ,m +S2
l ,m

)
for l ≥ 1 (2.6)

Martinec [48] gives a method to assign a confidence interval to the degree correlation values. This method assumes the
observations uncertainties come from a normal distribution. We will test this assumption in light of the available GRACE

and Swarm data in Section 2.6.1 and Section 4.2. The critical correlation coefficient for degree l , r (cr i t )
l , is given by:

r (cr i t )
l = T (α,ν)

ν+T (α,ν)2
(2.7)

where T (α,ν) denotes the Student’s T statistic for ν degrees of freedom and confidence level α. We use α= 5% and ν= 2l .
We can find T (α,ν) via the inverse cumulative distribution function of a Student’s T distribution. This function is given in
Appendix A.6. Evaluating this function is done conveniently via MATLAB’s tinv function. The critical correlation coeffi-
cient for α = 5% can be interpreted (and computationally verified, which we do not show) as the correlation coefficient
that has a 5% probability of occurring if the true correlation coefficient of the data at hand is 0.

tinv
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Figure 2.2: Degree RMS of the difference between the January 2016 fields of GRACE CSR RL06 (black line) and Swarm (red line) and
GGM05C.

The degree correlation coefficient is a versatile tool, as it provides an opportunity to quantitatively assess not only the
difference between individual gravity fields [24], but also the difference between quantities derived from those fields. For
example, aforementioned GRACE validation study of Tapley et al. [100] assesses the annual periodic component w.r.t. a
hydrology model, and Sasgen et al. [79] compare gravity trends from a GIA model to gravity trends derived from GRACE
data.

2.4. Noise reduction

Section 1.2 explained how the source data of the GRACE and Swarm gravity fields are multiple orders of magnitude apart
in terms of accuracy, and how this translates in an increase in high-degree noise in the Swarm fields w.r.t. the GRACE
fields. To illustrate this, we compute the degree RMS difference of the GRACE and Swarm fields w.r.t. a static background
gravity model. We use GGM05C [70] again. Note that this is a different background model than is used in the computation
of the Swarm gravity fields. For this analysis the influence of using two different background models is negligible.

The results for an arbitrarily chosen month are in Figure 2.2. The difference between GRACE resp. Swarm and the static
models is caused by either the time-varying gravity signals or noise. We postulate that the negative correlation w.r.t. the
SH degree also holds for time-variable gravity signals, which suggest GRACE is observing (mostly) real signal. We see that
for degrees up to 10, Swarm follows GRACE reasonably well. However, where the GRACE degree RMS difference continues
to be negatively correlated to the SH degree after degree ca. 13, we see a positive correlation between the SH degree and
the dRMS of the Swarm-derived gravity field. This suggests noise in the Swarm-derived fields is dominant in the degrees
past that point.

2.4.1. Gaussian filtering

A very widely used method to reduce the influence from high-degree noise is Gaussian filtering, introduced to GRACE
data by Wahr et al. [112]. The gravity observations are weighted according to a Gaussian function, which can be applied
in either the spatial or the spectral domain. From the convolution theorem we know that the Fourier transform of a
convolution of two signals equals the point-wise product of their Fourier transforms, and vice versa. Having said that,
applying the Gaussian filter in the spectral domain is in general computationally more efficient, and therefore our pre-
ferred method. We multiply each Stokes coefficient observation with a Gaussian scale factor sg , which is a function of the
coefficient’s degree l :

sg (l ) = exp

[
−4ln(2)

(
l

2l f whm

)2]
(2.8)

where l f whm is a constant defining the Gaussian function’s full width at half maximum, expressed as a Stokes coefficient
degree. It is more common to express this parameter in units of length, i.e., as the radius rg of the Gaussian function in
the spatial domain. We define:

rg =π R

2l f whm
(2.9)

where R is the radius of the Earth. As Gaussian filtering is a very common technique, it is part of various other spatial plots
that we show later in this report to compare to literature for verification of other methods. This means the correctness of
our implementation of Gaussian filtering can be derived from those plots.

Figure 2.3 shows the effect of Gaussian filtering on the degree RMS difference w.r.t. GGM05C of the January 2016 Swarm
gravity field. Note how the reduction in degree RMS scales exponentially while the filter radius scales linearly. Also, note
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Figure 2.3: Effect of Gaussian filtering on the degree RMS difference w.r.t. GGM05C of the Swarm fields. Filter radii were chosen arbitrar-
ily, only to give the reader an impression of the general effect of this filter type.

how the higher degrees are affected the most, but the lower degrees, which we postulate are mostly real signal, are also
suppressed to some extent. This signal attenuation is a key issue when applying the Gaussian filter to a geopotential
solution in a geophysical study. The configurations shown here are not necessarily the configurations that we will use
in our research and are only shown here to give the reader a general idea of how Gaussian filtering affects the spectral
representation of a (gravity) field.

Over the years, a number of intricate filters have been designed for the GRACE data. Many of these filters are non-
isotropic, i.e., they are a function of more than just the degree number, to account for the correlation between the GRACE
errors and using that correlation to optimize the filtering process [41, 96]. This correlation of the errors is apparent from
the striping pattern that is seen when expanding GRACE gravity fields, which is caused by the anisotropic sensitivity of
the GRACE measurement system [101]. As this sensitivity is different for the GPS-derived Swarm gravity fields, it is un-
likely that the filters that are designed specifically for the GRACE correlated errors will yield good results when applied to
Swarm data. For that reason, we will not look into those filters here. Note that this does not mean that anisotropic filtering
in general cannot be applied to GPS-derived gravity fields. We will elaborate on this in Chapter 4 when we inspect the
Swarm errors.

2.4.2. Truncation

Instead of applying a Gaussian filter, we can also choose to discard all coefficients past a particular degree. This is called
truncation. When a (gravity) field is truncated, the degree RMS plots of Figure 2.2 and 2.4 would simply stop after a certain
maximum degree. As this is trivial, we will not show these graphs. We can define the truncation scale factor st , which is
again a function of the coefficient’s degree l , as:

st (l ) =
{

1, if l ≤ ltr unc

0, if l > ltr unc
(2.10)

where ltr unc is a constant equal to the degree of the shortest wavelength harmonic to not be truncated.

Truncation has the advantage that it leaves the often less noisy lower degree coefficients untouched. On the contrary,
truncation of a gravity field does reduce its spatial resolution, as shorter wavelength signals can only be represented
by higher degrees. This means small-scale artefacts are no longer discernible from the expanded Stokes coefficients.
Decreasing the number of harmonics in a Fourier series also decreases the series capabilities of representing strong signal
gradients and increases unwanted undulations in the spatial expansion. We will cover this in Section 3.3.

2.5. Signal decomposition via least squares regression

To isolate the GIA signal from the satellite-derived time-varying gravity fields, we start with extracting the secular compo-
nent (the gravity trend) from the time series of gravity observations. This is commonly done via least squares regression
[100]. Principal component analysis (PCA; also referred to as empirical orthogonal functions) [65] is sometimes used as a
complimentary technique [106]. We decide to include only least squares regression for two reasons. First, PCA extracts
the most dominant components in the data - not necessarily the linear one. Second, most authors agree that there are no
substantial differences in the quality of the results of either approach when it comes to GIA study [107].

The least squares regression can be done either in the spectral domain, where a model is fitted to time series of the Stokes
coefficients, or in the spatial domain, where a model is fitted to time series of the gravitational signal at each particular
grid point. The least squares estimates of the model parameters can in turn be converted back and forward too, which
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means there is no difference in results from either approach. It should be noted that working in the spectral domain tends
to be computationally heavier, because the number of grid points increases faster than the number of Stokes coefficients
for an increasing spatial resolution.

2.5.1. Linear least squares

Least squares regression is based on minimizing the sum of squares of the residuals after subtracting a model, f (t ), from
the observations y. To do so, we estimate weights for the various components of the model, which consists of a polynomial
of degree (n −1) and m periodic components. We define:

f (t ) =
n∑

i=1

[
Ai · t (i−1)

]
+

m∑
j=1

[
B j sin

(
2π

T j
t

)
+C j cos

(
2π

T j
t

)]
+ε (2.11)

where t is the time, Ai , B j , and C j are the weights of polynomial component i and periodic component j , and T j is the
period of periodic component j . ε are the residuals, which contain noise and unmodeled effects. We start by sequencing
the weights of Equation 2.11 to form the parameter vector x, so that:

x = [
A1 A2 . . . An B1 C1 B2 C2 . . . Bm Cm

]T
(2.12)

Our observation vector, y, with k observations is defined as follows:

y = [
y(t1) y(t2) . . . y(tk )

]T
(2.13)

Finally, we construct our design matrix A, which is based on our model Equation 2.11 and has time variable tk that
corresponds to each observation yk , as follows:

A =



(t1)1−1 (t1)2−1 . . . (t1)n−1 sin
(

2π
T j=1

t1

)
cos

(
2π

T j=1
t1

)
. . . sin

(
2π

T j=m
t1

)
cos

(
2π

T j=m
t1

)
(t2)1−1 (t2)2−1 . . . (t2)n−1 sin

(
2π

T j=1
t2

)
cos

(
2π

T j=1
t2

)
. . . sin

(
2π

T j=m
t2

)
cos

(
2π

T j=m
t2

)
...

...
...

...
...

...
...

(tk )1−1 (tk )2−1 . . . (tk )n−1 sin
(

2π
T j=1

tk

)
cos

(
2π

T j=1
tk

)
. . . sin

(
2π

T j=m
tk

)
cos

(
2π

T j=m
tk

)

 (2.14)

We can now state our least squares problem as:

x = Ay+ε (2.15)

where ε is the residual vector. We seek to minimize our cost function J , which we rewrite using Equation 2.15 as:

J = εT ε (2.16)

J = yT (y− Ax)−xT (y− Ax) (2.17)

We minimize J by seeking an x̂ that minimizes the second term on the right side of Equation 2.17, since the first term on
the right side cannot be minimized when Ax̂ approximates y. We exclude the trivial solution x̂ = 0 and define the least
squares estimate of our parameter vector as:

x̂ = (AT A)−1 AT y (2.18)

Finally, we define the post fit residuals

ε̂= y− Ax̂ (2.19)

The residuals constitute all signal from the observations that is not captured by the model we defined in 2.11. Generally,
this is either due to noise in the observations, or due to an inadequate model. For that reason, the residuals can be used in
assessing the observation uncertainty, as well as the model fit. We will use the residuals to compute the standard deviation
of the satellite-derived gravity observations in Section 2.6.1.

The amplitudes of the cosine and sine parts (i.e., B j and C j ) are used to compute the amplitude U j and phase ω j of



14 2. Data and general processing methods

periodic component j via:

U j =
√

B2
j +C 2

j (2.20)

ω j = 0 if B j = 0∧C j = 0 (2.21)

ω j = 0 if B j = 0∧C j > 0 (2.22)

ω j =
T j

2
if B j = 0∧C j < 0 (2.23)

ω j =
T j

2π
·arcsin

B j

U j
if B j 6= 0∧C j > 0 (2.24)

ω j =
T j

2π

(
π−arcsin

B j

U j

)
if B j 6= 0∧C j < 0 (2.25)

2.5.2. Weighted least squares

In some collections of observations, the uncertainty of the observations changes with time. This is known as observation
heteroscedasticity (from Greek hetero; different, and skedasis; dispersion). If left unaccounted for, heteroscedasticity can
deteriorate the parameter estimates of the least squares regression. By weighing the observations w.r.t. their uncertainty,
this risk can be (partially) mitigated [118]. We define the covariance matrix of the observations Py y as follows:

Py y =


σ2

y1
σ2

y2
. . .

σ2
yk

 (2.26)

The diagonal of this matrix contains the variances (i.e., squared standard deviations) of observations y1 to yk . By def-
inition, the off-diagonal entries of a covariance matrix contain the covariance values of the observations. However, as
covariance parameters are much harder to determine and Wahr et al. [114] suggest their impact on the propagated un-
certainty of the expanded Stokes coefficients is negligible, we have decided to neglect the observation covariances in this
study. We cover our method to populate the diagonal of Py y in Section 2.6.1. We define our weighted cost function as:

J = εT P−1
y y ε (2.27)

Similarly to Equation 2.17, we substitute Equation 2.15 and minimize J by finding x̂ (excluding the trivial solution x̂ = 0)
via:

x̂ = (AT P−1
y y A)−1 AT P−1

y y y (2.28)

Finally, we compute the covariance matrix of the parameter vector Px̂ x̂ , which contains the variances of the elements in
the parameter vector, via error propagation:

Px̂ x̂ = (AT P−1
y y A)−1 (2.29)

2.5.3. Comparing regressions via the F-test

Equation 2.11 showed the model that we will fit to the time series of Stokes coefficients. The second summation of the
right side of the equation allows us to include periodic components in this model. Commonly, authors include an annual
and a semi-annual component (T = 1 y, 0.5 y, respectively), which makes sense in light of the periodicity of most climate
cycles. Ray et al. [68] suggest that the S2, K2, and K1 tides alias into the GRACE solutions. Steffen et al. [94] warned that
not including such a periodic alias in the regression model could affect the trend estimate when the data set at hands
spans a non-integer number of cycles of the periodic alias. Other authors trying to isolate the GIA-induced gravity trend
from GRACE data assume this influence is small and neglect it in the regression model [79].

Even though [87] showed the amplitude of the aliases differs per Stokes coefficient, we aim to use the same regression
model for all coefficients for the sake of computational simplicity. Before we define our definitive regression model, we
will assess the reasonableness of aforementioned assumption by testing the Stokes coefficient time series for statistically
significant periodic components with a period corresponding to aforementioned tidal aliases. We apply this test per
Stokes coefficient time series and will include the particular periodic components into our regression model for all coeffi-
cients if this leads to a significant improvement in fit in more than 50% of the coefficients in both GRACE and Swarm. We
take period values that are also used to de-alias the CSR RL06m mascon solutions, which equal 161, 1400, and 2800 days
for respectively the S2, K2, and K1 aliases7. In the Swarm case, comparing these periods to the length of the data (5.25 y
= 1916 d) warns us to be critical of the results for especially the K1 alias.

7Dr. Himanshu Save, personal communication.
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We test for significant periodic components via an F-test. This test compares a restricted model A to a full model B . Model
A must be nested in model B , i.e., model B contains all terms of model A and at least one term more. This test requires
the post-fit residuals to be approximately Gaussian-distributed. We will examine the reasonableness of this assumption
for the GRACE and the Swarm data in Section 4.2. We define the hypotheses:

• HF 0: the coefficients in B that are not in A are all not statistically significant.

• HF a : at least one coefficient in B that is not in A has a significant, non-zero value.

In literature HF a is often interpreted as model B having a statistically improved fit w.r.t. model A. We compute the F-
statisticΦA,B by dividing the variance reduction after going from model A to model B by the variance of model A, where
all variances are standardized w.r.t. the degrees of freedom in the particular model. We define [57]:

ΦA,B =

(
χ2

A −χ2
B

νA −νB

)
χ2

B

νB

(2.30)

where χ2 is the post-fit unit weight residual sums of squares (also referred to as chi-squared statistic) [20], ν is degrees of
freedom each model, defined as the number of observations minus the number of estimated parameters. We define χ2

as:

χ2 =
i=k∑
i=1

(
yi − ŷi

σi

)2
(2.31)

where y , ŷ , and σ are the observed value, the modeled value, and the standard deviation of the observed value, respec-
tively. If HF 0 is true, F-test statistic ΦA,B will follow a F-distribution with νA degrees of freedom in the numerator and
νB degrees of freedom in the denominator [57]. This means we can calculate the probability pΦ of observing a Φ within
the interval [0,ΦA,B ] when HF 0 is true via the cumulative distribution function of the F-distribution. Going back to A
and B , this translates into the probability of observing a reduction in residuals (standardized to ν2 −ν1) equal to what we
compute from comparing A and B , or smaller. However, we are more interested in the complementary event: observing
a certain or greater χ2 reduction if HF 0 is true, of which the probability is 1−pΦ. This would imply that the χ2 reduction
is due to random chance, i.e., that the additional components in model B are zero or not significant.

We predetermine our significance level at 5%, which means we reject HF 0 when pΦ > 0.95 and deem the improvement
of the fit of the particular model B w.r.t. model A statistically significant. Note that we never prove that a component is
significant. We compute the probability of observing the current statistic under the null hypothesis, and if this proba-
bility is below our confidence level we accept the alternative hypothesis (i.e., reductio ad absurdum) [25]. Our choice of
significance level therefore means we have a 5% chance of deeming a model’s particular increase in reduction of residuals
significant, even though it happened due to chance (i.e., we reject HF 0 even though it is true - a Type I error).

In Appendix B we present a case study of an experiment where we apply inferential statistical analysis in an attempt to
extract geophysical signal from the noisy high-degree Stokes coefficients. Instead of including all coefficients in Equation
2.3 when we expand a particular model parameter’s least squares estimate, we include only the coefficients for which that
estimate is statistically significant in that particular Stokes coefficient time series [20, 78, 79]. Readers with an interest in
statistics might want to visit this part of the report.

2.6. Observation uncertainties

Section 2.5.2 explained how we weigh the observations w.r.t. they uncertainty in the regression process. In Equation 2.29
we saw how to propagate the observation uncertainties into the trend error. The following section covers the method
we use to first find those observation errors, and then assess their probability distribution. The errors we estimate are
the sum of measurement errors, processing errors, and errors in the geophysical models used to de-alias the satellite
measurements prior to constructing gravity fields [113].

2.6.1. Magnitude and spatial distribution

Many GRACE data products include the standard deviation per Stokes coefficient per epoch. These error estimates are
referred to as the calibrated errors, and are equal to the diagonal components of the covariance matrix, scaled by the
GRACE processing centers to match certain characteristics in the gravity fields [114]. Applying any filtering to the gravity
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fields yields these uncertainty values invalid. Additionally, some authors suggest that the calibrated errors underestimate
the true error [e.g. 105]. Taking all this into account, we decide to recompute the uncertainty of the GRACE observations.

Calibrated errors for the combined Swarm fields are not provided by de Teixeira da Encarnação et al. [23]. Computing
these from the individual Swarm gravity fields would be a cumbersome task as the combination is done using weights
derived via variance component estimation (VCE). Firstly, this would require insight into the VCE methodology, and
secondly, we would have to take into account that the errors of the individual fields are not independent. For these
reasons, we also compute the Swarm observation uncertainties from the observations.

Wahr et al. [113] first suggested using the RMS of the post-fit residuals, the RMSE, as the error estimate of a particular
Stokes coefficient. The RMSE is defined from Equation 2.19 as:

RMSEi =

√√√√∑i=k
i=0

(
yi − Ax̂i

)2

k
=

√
ε̂T ε̂

k
(2.32)

where all parameters are as defined before.

To retain the dependence of the error on the Stokes coefficient order, Wahr et al. [114] opt to take the calibrated errors and
scale them per degree with the degree RMS of the residuals. While we agree that this likely yields more realistic results,
we decline to use this method as we do not have calibrated errors for our Swarm fields. We will therefore approximate the
Stokes coefficient error as simply the RMSE of that particular Stokes coefficient time series.

The method of Wahr et al. [113] is based on the assumption that a certain model captures all signal from the observed
mass transport processes, and that the residuals are thus all noise. Initially, Wahr et al. [113] used only a constant and
an annual component. Over time, other authors extended this method to account for gravity trends [111] or variation of
the amplitude of the yearly cycle [106]. We further expand the method of Wahr et al. [114] by subtracting a moving mean
component of 1 year, taking into account the variable spacing of the GRACE epochs, to account for long-term variability
of the Stokes coefficient. We choose a 1-year window because this would leave the annual- and semi-annual components
intact. We base this approach on Velicogna and Wahr [109], who use the RMS of the difference between the observations
and "temporally smoothed version of those coefficients" (no more information is given by the authors). After subtracting
the moving mean, we subtract an annual and semi-annual cycle computed from a 2-year moving window, as in Van der
Wal et al. [106]. Finally, we compute the RMS of the remaining residuals (i.e., the RMSE). The RMSE results need to be
scaled by a constant to account for the RMS reduction due to subtracting the fitted model. We determine this constant
by computing the RMS reduction after fitting our model to an arbitrarily selected high number (n > 2000) of randomly
sequenced time series of gravity observations of a length equal to that of the GRACE or Swarm data products [106, 114].
We summarize this entire method via:

RMSEi =
√√√√ 1

n

k∑
t=0

[
yi −M A1yr (yi )−Θi

]2 · sRMS (2.33)

where yi is the vector containing k observations of Stokes coefficient i spanning time t(y) = [1,2,3, ...,k], next, M A1yr (yi )
denotes the moving average of yi computed from a 1-year window, sRMS is the scaling factor to account for RMS reduc-
tion, andΘi denotes the vector containing the sum of all modeled periodic components of yi , as estimated from a 2-year
moving window. We defineΘi as:

Θi =
m∑

j=1

γk∑
γ=0

[
x̂

(γ)
U j

sin
2π

T j

(
tγ− x̂

(γ)
ω j

)]
(2.34)

where
∑m

j=1 denotes the summation of m periodic components with respective periods T1 to Tm (see Equation 2.11), γk

is the number of consecutive 2-year windows that fits in the time span of the observations (rounded up to the nearest
integer), and tγ is a subset of t(y), the time vector of the observations. We define:

γk =
⌈ t

(y)
k − t

(y)
0

[2 y]

⌉
(2.35)

tγ =
{

ti ⊆ t(y) |
(
t

(y)
0 +γ · [2 y]

)
≤ ti <

(
t

(y)
0 + (γ+1) · [2 y]

)}
for i = 1,2,3, ...,k (2.36)

In the case of unevenly spaced epochs we do not interpolate but rather use the closest available epoch, taking care not

to include epochs twice. Finally, x̂
(γ)
U j

and x̂
(γ)
ω j

are the least squares estimates of the amplitude and phase of periodic

component j (see Equation 2.20 to 2.25), computed from only the epochs in temporal subset tγ.

Figure 2.4 compares our method to a method subtracting a bias, trend, and an annual component. We use the S5,1
coefficient from the CSR GRACE RL06 fields as an example, as it has a long-term variability that we postulate is real signal.
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Figure 2.4: Left: time series of GRACE CSR RL06 observations of an exemplary Stokes coefficient (S5,1), fitted model consists of a bias,
trend and annual cycle, post-fit residuals, and RMSE estimate. Left: same but using a model consisting of a 1-year moving mean and
an annual cycle from a 2-year moving window. Note how the subtracted model on the left does not capture all signal, and how this
propagates into a higher RMSE result.

Note how the model on the left clearly captures less signal than the model on the right. This translates into an RMSE of
0.109 µGal (left) versus 0.0546 µGal (right).

The window length of 1 year for our moving average and (semi-)annual periodic component means that S2 tidal alias
(period 161 d) that exists in the GRACE solutions may affect our error estimate [94]. In Section 4.1 we will investigate
how many GRACE and Swarm Stokes coefficient time series contain a significant S2 (and K2, K1) alias, and decide if a
correction to the error model is required.

We can expand the RMSE of the Stokes coefficients into the uncertainty of the gravity or mass estimates (see Section 2.2)
via [114]:

σ(θ,λ) =
√√√√ ∞∑

l=0

l∑
m=0

P 2
l ,m (sinθ)

(
δC 2

l ,m cos2 mλ+δS2
l ,m sin2 mλ

)
(2.37)

where δCl ,m and δSl ,m are the RMSE of the particular Stokes coefficients. To take into account the time-dependency
of the Stokes coefficient errors, we follow Wahr et al. [114]. We compute a map of the gravity errors by inserting the
residuals of a particular epoch in Equation 2.37 and take the global, latitude-weighted mean of that map. As we are using
a spherical reference Earth, this latitude-weighing is done by simply multiplying the result with the cosine of the latitude
of the center of the grid point. Next, we take our error estimate that we computed via the RMSE of the whole time series,
and scale it w.r.t the monthly mean error. We verify our computation routines by recomputing Feng [32, Figure 9b], who
uses the method of Wahr et al. [114], only with newer data (CSR RL05). As our method is largely based on the same idea
(using the residuals), but uses a model that aims to subtract more geophysical signal before computing the RMS. We thus
expect that the spatial error distribution is the same, but the overall magnitude is lower. A visual comparison with the
results of Feng [32] should verify this.

The left panel of Figure 2.5 shows the spatial distribution of the computed errors of the November 2003 epoch of the
CSR GRACE RL05 fields, computed via the method of Wahr et al. [114]. We invite the reader to compare this to Feng [32,
Figure 9b], as the virtually identical results verify our correct implementation of the error computation method of Wahr
et al. [114]. The right panel of Figure 2.5 shows the errors for the same GRACE epoch, as computed via our method. Note
how the spatial distribution is the same, while the overall amplitude is slightly reduced. The latitude-weighted RMS of
the left map is 5.053 cm EWH, and for the right map 4.877 cm EWH. This slight reduction in amplitude is exactly what
we expected, and thus we conclude that we have also successfully verified the implementation of our own observation
uncertainty estimation method.
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Figure 2.5: Verification of our error estimation method. Left shows the method of Wahr et al. [114], as shown in Figure 9b in Feng [32].
Shown here that our error estimation method yields the same spatial distribution, but a slightly lower amplitude. The latitude-weighted
RMS equals 5.053 cm EWH (left) vs. 4.877 cm EWH (right).

2.6.2. Probability distribution

To use our error estimates to assign confidence levels to the mass change results computed from the Stokes coefficients,
we need to investigate their probability distribution. Also, normally distributed residuals are a prerequisite for statistical
tests such as the F-test in Section 2.5.3. Note that in the latter case we are referring to the post-fit residuals of the least
squares regression (Equation 2.19), not the RMSE mentioned in the last section. This section describes the computation
of the probability distribution of the RMSE but the same can be applied to the post-fit residuals.

We use a histogram of the normalized residuals to assess their distribution. To compute this histogram, we first use the
method from the last section to compute the post-fit residuals of each Stokes coefficient. For each time step, we convert
the Stokes coefficient residuals into a map of gravity variations via Equation 2.3. We normalize the gravity variations by
dividing each map by a map of the expected error, that we find by expanding the RMSE (Equation 2.33) of each coefficient
time series in Equation 2.37. Finally, we plot a histogram of the latitude-weighted, normalized residuals and compute the
best-fitting normal distribution N (µε̄,σ2

ε̄) from the mean µε̄ and variance σ2
ε̄ of the normalized residuals [25]:

µε̄ = E [ε̄] = 1

n

n∑
i=0

ε̄i (2.38)
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σ
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2π
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[
−1

2

(
ε̄−µε̄
σε̄

)2]
for −∞< ε̄<∞ (2.40)

where E denotes the expected value operator.

To verify our computation routine we recompute the results of Wahr et al. [114, Figure 4], who apply aforementioned
method to the first 22 GRACE months, smoothed with a 750 km radius Gaussian filter, to show their residuals follow a
normal distribution. Aiming to use as much of the same data as possible, we use the first 22 months of the GRACE CSR
RL01 Stokes coefficients. First, we scale the coefficients to EWH via Equation 2.2. We exclude the degree 1 and C2,0
coefficients and apply a 750 km radius Gaussian filter. Figure 2.6 shows the histogram of the normalized residuals. Note
how it follows the normal distribution well. This is in good accordance with the results of Wahr et al. [114, Figure 4]. We
attribute the small discrepancies between our results and the results in Wahr et al. [114] to the fact that the authors use
the formal errors scaled to match the RMSE, whereas we use the RMSE itself (see Section 2.6.1).
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Figure 2.6: Histogram of normalized mass residuals of the first 22 epochs of the CSR RL01 GRACE Stokes coefficients and fitted normal
distribution. Shown here to verify our residual distribution test routine by recomputing Wahr et al. [114, Figure 4]





3
Isolating and assessing the GIA-induced

gravity trend

One of the key limitations of the GRACE measurement principle, and of using gravimetry for geophysical study in gen-
eral, is that there is no vertical resolution. The geopotential observed at a given location is the result of all mass in the
vertical column encompassing that point. In our case, this means that the gravity trends that we compute will contain
the GIA-induced gravity signal, but also various other signals layered on top of it. Common practice to isolate the GIA-
induced trend component includes reducing the observed gravity trends with modeled gravity trends of the other signals.
However, our research is slightly different from other GIA studies in the sense that we are trying to isolate a congruent
GIA-induced gravity trend observation from two independent data sources, and not necessarily strive for the most accu-
rate or cleanest GIA measurement. This means the time dependency of any of the diluting signals is more important than
its absolute magnitude. Constant errors factor out once we subtract the GRACE and Swarm observations. This increases
the potential impact of, for example, surface hydrology variations, but decreases the impact of approximations such as
the spherical Earth mentioned in Section 2.1.5.

In the following chapter, Section 3.1 introduces a novel method to assess the variability of the gravity trend due to all non-
linear influences combined. Section 3.2 presents our correction for inter-annual surface hydrology variations, Section 3.3
does this for interference from Greenland and Alaska mass change, and Section 3.4 does this for other long-wavelength
leakage. At this point, we have covered all necessary methodology to answer research sub-question Q.2. Next, Section 3.5
shows the methods we use to quantitatively assess the discrepancy between the GRACE- and Swarm-derived observations
of the GIA-induced gravity trend and answer research sub-question Q.3. Finally, Section 3.6 explains how we will validate
our results using the recently released GRACE-FO geopotential solutions to answer research sub-question Q.4.

Definitions of acronyms are given in the List of Acronyms on page xiii. Symbol definitions and units, and values used for
constants can be found in the List of Symbols on page xv.

3.1. Quantifying trend variability

Van der Wal et al. [106] compared maximum gravity rates in Laurentia computed from 29 temporal subsets of a 3-year
length from the GRACE CSR RL04 coefficients. The authors found that the trend maxima increase from ca. 1.2 µGal a−1

(using data from October 2002 to August 2005) to 1.9 µGal a−1 (using data from April 2003 to March 2006). This showed
that the observed gravity trend in the area was not constant through time, as one would expect from the nature of the GIA
process, which suggests mass change signals of other geophysical processes are layered on top of the GIA-induced trend.
In this study, we hypothesize that this variability of the gravity trend is a function of the spatial resolution of the data at
hand and the length of the data from which the trend is computed (i.e., the inter-annual variations roughly cancel out
over time).

To investigate this, we will repeat and expand the experiment of Van der Wal et al. [106]. First, we will repeat the experi-
ment using the latitude-weighted mean of the grid points bounded by a >+1.0 µGal a−1 gravity trend in GRACE CSR RL06
(lmax = 13). This region will be elaborated upon and shown in Section 3.5. We argue that using the mean trend is less
susceptible to outliers than the maximum gravity trend, although we do acknowledge that this could provide an under-
estimation of the trend variability as the amplitudes of very local inter-annual hydrology variations are likely reduced by
the averaging process. Also, we will experiment with different window lengths to test the hypothesis that inter-annual

21
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Figure 3.1: The concept of the trend variability experiment explained. Red line indicates a time series of the Earth’s gravity signal (GRACE
CSR RL06, 300 km Gaussian filter), centered around 0, at an arbitrary location (51◦N; -77◦W). Black lines indicate the trend in the gravity
signal in a particular time window.

hydrology signals cancel out over increased lengths of time. Next, we expand the experiment to the spatial domain. In-
stead of computing the Laurentian mean gravity rate of each individual temporal subset, we will create spatial maps of
the difference between the minimum and maximum observed gravity trend in any of the subsets. We call this value the
trend variability. To account for outliers, we will discard the single lowest and single highest trend estimate. We will use
30 temporal subsets, evenly spaced across the entire span of the data set. We will again experiment with various window
lengths to validate our findings of the first experiment regarding the canceling out of inter-annual signals diluting the GIA
signal for time series of increased length.

Figure 3.1 explains the nature of these experiments by looking at a time series of an arbitrarily chosen grid point in the
GRACE CSR RL06 data [7]. Only in this example we use 4 windows and take a window length of 4 years, to increase
the readability of the figure. Note how the slope of the line starting in late 2009 is slightly steeper than the slope of the
other lines. This suggests that there are inter-annual components superposed on the underlying secular component,
which makes isolating that secular component non-trivial. For the first trend variability experiment, we will plot the
slope of each of the black lines vs. their mid-point in the time domain. The second experiment will find the black line
with the highest slope and subtract the black line with the lowest slope (after aforementioned outlier correction) for each
individual grid point. This difference will then be plotted on a spatial map. Naturally, this means the outcome of this
experiment will be highly dependent on the spatial resolution of the data we use, which is important to take into account
once interpreting the results.

This experiment should help towards gaining a number of insights:

1. We will gather information about spatial distribution of the variability of the satellite-derived trend. This can help
identify locations where the variability is low, i.e., where the trend is (relatively) constant through time. These
locations would make ideal candidates for comparing data sets that cover different time frames (i.e., GRACE and
Swarm). As was mentioned before, this conclusion will be restricted to the spatial resolution of the data used in
this experiment.

2. We can compare the trend variability of the various satellite missions. A difference in trend variability, while using
the same time span, window length, and data pre-processing steps, suggests that there is an influence on the trend
that is specific to a measurement principle or data set (e.g., noise levels).

3. We will be able to assess if computing the trend from a longer time span results in less variability of the data,
i.e., if the inter-annual influences on the gravity trend cancel out over time. It should be noted that comparing
results from this experiment across window lengths should be done carefully, as the samples that we take are not
independent of each other. Note how the trend lines in Figure 3.1 partially overlap. This will happen if the number
of windows multiplied with the window length is more than the length of the entire data set. While we agree
that the standard deviation of the trends of the particular windows would be a very interesting result, this sample
dependence means that any statistics computed via generic methods are invalid. While we are aware that statistical
methods for dependent data samples exist, we decide not to pursue these results for conciseness sake and leave
this objective for future work.

The limited length of our time windows means we cannot include tidal aliases into our fitted curve, as their periods are
far longer than our time window length. This means the tidal aliases, and thus their influence on the trend results we get
from the GRACE data, could lead to an overestimation of the trend variability. For this reason, we will first compute the
statistical test described in Section 2.5.3, before proceeding with the experiment described here.
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3.2. Inter-annual hydrology variations

In the last section we learned how Van der Wal et al. [106] showed that the gravity trend in Laurentia is not constant
through time. In their publication, the authors tied the trend increase to an increase in land water storage in the period
2003 to 2006 that they had identified in three different hydrology models. That authors concluded that surface hydrology
variations have a non-negligible influence on the gravity trend observed by GRACE. Earlier studies using GRACE data to
observe the GIA-induced gravity trend already identified that the GIA gravity signal was obscured by inter-annual hydrol-
ogy variations (and had corrected for this, which will be covered later), but also claimed that the hydrology influence was
minor [98] or less than 10% of the GIA-induced signal [55]. This latter statement does need the qualification that inter-
annual hydrology variation in the time period and location used by Tamisiea et al. [98] was linear, and thus very hard to
discern from a GIA-induced gravity trend. This illustrates how deriving a trend from a comparatively short (studies men-
tioned in this paragraph used 44 mo to 59 mo) can lead to spurious results. This warns us to be careful when interpreting
the results of the Swarm-derived trends, as the Swarm time series spans 64 mo.

The most common way to correct for these influences is by subtracting gravity trends derived from a surface hydrology
model from the satellite-derived trends [119]. Currently there is much debate in the scientific community about the
usefulness of model-computed long-term total water storage (TWS) trends for correcting satellite gravity data. Both inter-
comparison of hydrology models and comparison with GRACE measurements show substantial differences in results.
Scanlon et al. [83] identify four main factors impacting the discrepancy between GRACE and the hydrology models: initial
conditions and spin-up (number of years the model is run - this can be insufficient for the model to equilibrate with
climate forcing), inaccuracies relating to model structure and water storage compartments, precipitation uncertainty,
and model calibration.

The limited agreement between GRACE and continental hydrology models found by Scanlon et al. [83] is in line with the
conclusions of authors who applied the hydrology models to isolate the GIA-induced trend from GRACE gravity obser-
vations, and found that the hydrology models were the Achilles heel of their study [60, 77, 92, 106]. Given the limited
hydrological constraints and the large differences in methodology Roy and Peltier [77] observe between two prominent
surface hydrology models (GLDAS and WGHM), the authors suggest that the current hydrological models are simply not
robust enough to correct GRACE gravity measurements in order to isolate the GIA signal at this time.

Global hydrology models can be grouped into global Land Surface Models (LSM) or Global Hydrological and Water Re-
source Models (GHWRM). LSMs are integrated into general circulation models and aim to accurately estimate the fluxes
between land surface and climate [83]. This makes long-term trends derived from LSMs susceptible for errors, as a small
discrepancy in the estimated flux leads to a large inaccuracy once this flux error accumulates over time [30]. In theory,
GHWRMs are better suited for this application as they use in-situ data to estimate basin sizes. An example of a GHWRM is
the WaterGAP hydrology model (WGHM) [27], which has been used to isolate the GIA signal before [79, 93]. Some authors
use an LSM and a GHWRM (often GLDAS and WGHM) and compare results [76]. Unfortunately for us, WGHM does not
cover the Swarm mission time frame.

3.2.1. GLDAS-NOAH

In fact, the time frame of the Swarm data that we use (ending in March 2019) constrains our model choices to the point
where options are very scarce. Additionally, we set out to use a model that has been used to isolate the GIA signal by
previous authors, as it is not the goal of this study to assess the applicability of hydrology models not used in for GIA
study before. Taking both these factors into account, we find that only the GLDAS-NOAH v2.1 [74] provides sufficient
coverage to correct the Swarm derived trend and has been tried and tested in a GIA-context [60, 98, 106, 108]. GLDAS is
an LSM, which warns us to be careful when interpreting inter-annual results. Including other hydrology models, either
for a plain comparison of the results [77], or to estimate the error in the hydrology model used to correct the satellite data
[106] would have been an informative addition to this study. Unfortunately, the time frame of the Swarm data makes this
not possible. We intend to (partially) fill this void with the results from our trend variability experiment described in the
last section.

To compute the hydrology-induced gravity trend, we first compute the vertical sum of various hydrology components in
the GLDAS model, the total water storage TWS. We find the TWS of the column at longitude λ and latitude θ, at time t via:

TWS(λ,θ, t ) = SWC(λ,θ, t )+SWE(λ,θ, t )+CWS(λ,θ, t ) (3.1)

where SWC is the soil water content, SWE the snow water equivalent, and CWS is the canopy water storage. GLDAS
provides these components in kg m−2, on a 0.25◦ grid.

We compute monthly mean TWS grids from the daily GLDAS data files. In the case of GRACE, we exclude days from
GLDAS that are also excluded from the GRACE fields. These days are listed in the GSM geopotential coefficient text files
distributed by the GRACE processing centers. Next, we trim the GLDAS data set to the same end and start dates as the
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Figure 3.2: GLDAS TWS trend in the period January 2003 to October 2013. Shown here to verify our GLDAS processing routine by
recomputing Roy [76, Figure 4.26].

satellite data set we are trying to correct. Finally, we apply the same processing (i.e., truncation, Gaussian filtering) as we
do to our satellite-derived gravity fields to achieve equal comparison. We do this in the spectral domain and decompose
the GLDAS grids into a degree 719 (NB: GLDAS-NOAH v2.1 is published as a series of 0.25◦-grids) spectral representa-
tion. Using a water density of 1000 kg m−2 and Equation 2.1 and 2.2 we convert mass change into gravity change. The
methodology behind spectral decomposition is briefly covered in Section A.4.

We verify our implementation of the GLDAS-NOAH results by comparing to literature. We invite the reader to compare
Figure 3.2 to Roy [76, Figure 4.26]. Here, we see the trend in GLDAS in the period January 2003 to October 2013, after
truncating the model to degree 60 and applying a Gaussian filter with a 300 km radius. We see good agreement with the
results of Roy [76] and conclude that our implementation of the GLDAS TWS trend computation is correct.

3.2.2. GLDAS pre-processing

To get more accurate long-term TWS trend from GLDAS, we apply a number of pre-processing steps. We start by following
the advice on the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) FAQ1 regarding long
term trends derived from GLDAS. There is no ice sheet model that melts/displays snow over glaciers in GLDAS, which
can lead to non-geophysical trends in SWE. To mitigate this risk, we mask all grid points that have a non-zero SW E value
for 90% of the epochs during our period of interest. This percentage was an arbitrary choice to give the correction some
margin of error. Figure 3.3 shows the area that we mask due to permanent snow cover in white. Simply setting the masked
points to zero would likely lead to strong gradients in our trend map, which could cause unwanted undulation effects
(more in Section 3.3). For this reason, we set the grid points that are masked by the SWE mask equal to the arithmetic
mean of the eight surrounding grid points.

Mostly due to ice mass loss, Greenland, Alaska, and some areas in western Canada show strong trends in TWS. This is
visible in both the GRACE- and the Swarm-derived gravity trends in Figure 1.2 on page 4. These areas are mostly masked
by our SWE-based mask, which means our GLDAS correction will not correct the strong trends shown in Figure 1.2. Even
though they are not directly in our area of interest, we need to correct for these mass changes due the nature of the
spherical harmonic decomposition. We will cover the reason for this and the correction that we propose in Section 3.3.
As these are separate corrections, we must set the corresponding areas in GLDAS to zero to not end up with a double
correction. GLDAS does not include Greenland (as defined by its coastlines), but as we also correct for Alaska separately,
we must exclude the corresponding area there. We compute a mask from the GRACE CSR RL06m mascon solutions, as
these are relatively free of long-wavelength leakage and have been corrected for GIA [80]. We define the limits of our mask
as a < 0 µGal a−1 gravity trend as computed from the 4/2002-6/2017 epochs of RL06m, along with latitude and longitude
bounds [45◦N, 70◦N] and [-160◦W, -118◦W], respectively. Figure 3.3 shows the areas in Greenland and Alaska that we
mask in also white.

3.2.3. Irregularities in GLDAS-NOAH

During the first iterations of this study we noted that the GLDAS model, even after applying aforementioned pre-processing
steps, yielded high-amplitude trends in a small number of very localized areas. Upon closer inspection, we found out this
was caused by likely non-geophysical SWC jumps around the second half of 2016. We observe the same results in NASA’s

1http://disc.gsfc.nasa.gov/information/faqs

http://disc.gsfc.nasa.gov/information/faqs
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Figure 3.3: Mask that we apply to the GLDAS grid data before computing the GLDAS TWS trend. White grid points are masked because
of a non-zero SWE in GLDAS in 90% of the epochs in aforementioned period, or because they are in Alaska or Greenland. Red points are
masked because their RMS in 2016 is greater than 3 times their RMS in 2014. Points that are masked in both the SWE and the RMS mask
are white. Blue points are not masked. Dashed orange line indicated the area where the gravity trend derived from GRACE CSR RL06
(lmax = 13) >+1.0µGal a−1. Asterisks indicate locations of the time series on the top row of Figure 3.4. NB: the grid points of the POIs fall
under the RMS mask (obscured by asterisk markers in the figure). We recompute the mask for each analysis to correspond to the time
frame of the satellite data that is being corrected. This particular mask applies to the period December 2013 to March 2019.

online data display tool Giovanni2, ruling out processing errors on our side. The top row of Figure 3.4 shows two exam-
ples of such signal jumps. The geographical locations of these time series are shown as Points Of Interest (POIs) marked
by black asterisks in Figure 3.3. The bottom row of Figure 3.4 shows time series of nearby grid points that show no jump,
which suggests the jumps are non-geophysical as such a substantial increase in SWC would surely affect neighboring grid
points. Note how the jumps are of a magnitude multiple times the pre-2016 variability of the TWS estimate, and how the
variability of the TWS estimate increases substantially after the 2016 jump. Given alongside the GLDAS TWS estimates in
Figure 3.4 are the mass change estimates from the GRACE CSR RL06m mascons. We choose the mascons for this Figure
and not the spherical harmonics solutions as the mascons have been corrected for GIA (by subtracting the model of Peltier
et al. [61]), which means they should correlate better to the GLDAS TWS estimates. Note how the mass observations as
given by the mascons do not indicate any notable jumps. This further argues that the TWS jumps in GLDAS-NOAH are
unlikely to correlate to real geophysical mass redistribution.

Other than finding out that these jumps are in the SWC component of GLDAS, we have been unable to find the source of
this error. The Hydrological Sciences Laboratory at NASA Goddard Space Flight Center (GSFC), responsible for GLDAS-
NOAH, acknowledged that the jumps were likely erroneous and identified that they are caused by a switch in precipitation
forcing data on 31 October 20153. GSFC is currently reprocessing GLDAS-NOAH v2.1 using updated precipitation data for
the entire model. The results are expected in September 20194. This means we are forced to apply an ad-hoc correction,
i.e., a correction based on our observation of the available data. For each grid point, we compute the RMS of the year
before the jump (2014) and the RMS of the year after the jump (2016). We now mask all grid points where RMS2016 :
RMS2014 > 3 : 1, where 3 is an empirically determined coefficient. Like the SWE correction described in Section 3.2.2, we
set the masked grid points equal to the arithmetic mean of the eight surrounding grid points. Using the fraction of the
pre-jump and post-jump RMS could lead to irregularities in locations where the pre-jump RMS is close to zero, i.e., very
dry areas. Here, a small increase in RMS across 2015 could lead to the point being labelled as faulty. However, we believe
this shortcoming of this method will minimally affect our results, as our area of interest is not a dry area.

The mask that we have computed is shown in red in Figure 3.3. When comparing this mask to the location of the GIA-
induced gravity trend, which is shown in, e.g., Figure 1.3 on page 4, note how most of the excluded grid points fall outside
of the area that is dominated by the GIA signal. The dashed orange line in Figure 3.3 indicates the areas where the gravity
trend derived from GRACE CSR RL06 (lmax = 13) >+1.0µGal a−1. This means that any hydrology corrections directly
located in the GIA region will be minimally affected by the mask. Mostly, the mask will reduce long-wave leakage.

3.3. Long-wavelength leakage and ringing

In this study we use a spectral representation of the Earth’s gravity field. While this approach has many advantages in
terms of computational efficiency and opportunities for insight into the spectral distribution of various signals, it also

2http://giovanni.gsfc.nasa.gov/giovanni/
3Personal communication between dr. Mark Tamisiea at CSR and dr. Matthew Rodell at GSFC.
4Ms. Hiroko Kato Beaudoing, personal communication.
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Figure 3.4: Time series of TWS results from GLDAS-NOAH v2.1 and mass change observations from the GRACE CSR RL06m mascons.
Values are given as anomalies relative to a January 2004 to December 2009 mean baseline. Shown here on the top row are two arbitrarily
selected grid points that show the jumps (also indicated as POI A and B on Figure 3.3). On the bottom row are two grid points located
nearby the points of the top row, but that show no jump.

Figure 3.5: Left: arbitrary step function. Middle: reconstruction of the step function of the right panel using 60 harmonics. Right:
reconstruction of the step function of the right panel using 13 harmonics. The dotted vertical lines in the middle and right panel indicate
the time of the step of the input function.

has some disadvantages. The decomposition of a potential field into a set of spherical harmonics shares some similar-
ities with a Fourier transform of a continuous function into a Fourier series of weighted sines and cosines. To better
understand the particular limitations of spectral harmonics that we are trying to introduce in this section, we will there-
fore these limitations in the context of a 1-dimensional Fourier series first.

3.3.1. The Gibbs phenomenon

The Gibbs phenomenon is a general term used to describe the peculiar behavior of a Fourier series near a strong gradient.
We illustrate this effect using an arbitrary step function. This function can be seen in the left panel of Figure 3.5. Next, we
reconstruct the step function via a Fourier series, using amplitude-frequency pairs that we get from a Fourier transform
of the step function. The middle panel in Figure 3.5 shows the reconstructed signal from a Fourier series of 60 harmonics,
and the right panel shows the reconstructed signal when we use 13 harmonics. To fully recover the step function, one
would need an infinite number of harmonics. In reality, the number of harmonics in a Fourier sum will always be finite.
The Gibbs phenomenon is related to this discrepancy.

Two elements in Figure 3.5 are important for this study. First, note the vertical black line in the middle and right panel.
This line indicates the location of the original step function. Especially in the right panel it is apparent that the recon-
structed signal does not have the same infinite gradient as the step function. Rather, the gradient is drastically reduced.
If we regard the area under the curve as the power of the signal, note how some power has leaked out to time steps before
the time of the step function. Note the oscillations in the middle and right panel before and after the step at t = 0.5. This
is another element of the Gibbs phenomenon. Note how, when we reduce the number of harmonics, the amplitude and
the wavelength of the Gibbs oscillations increase.
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Using 60 and 13 harmonics to reconstruct the signal in Figure 3.5 was not a completely arbitrary choice. Application of
GRACE gravity fields to geophysical study typically happens with a maximum model degree of 60, albeit often with some
Gaussian filtering. If we go back to Figure 2.2, we see that the noise in the Swarm fields starts rapidly increasing after
degree 13. The authors responsible for the combined Swarm fields recommend to only use the fields up to degree 12-15
for geophysical study5. In other words, the mid panel of Figure 3.5 is indicative of the magnitude of the signal leakage
and Gibbs ringing in a typical GRACE study, whereas the right panel shows this for a typical Swarm study. To not create
a resolution discrepancy, we will bring GRACE down to the same maximum degree as Swarm once we compare the two,
which means the ringing and leakage in the expansions of both the GRACE- and Swarm-derived Stokes coefficients will
be substantial.

3.3.2. Applied correction

Even though there will most likely not be a gradient in the Earth’s gravity field as steep as the step function in Figure
3.5, signal leakage has always been a matter of concern in GRACE application studies [112]. Figure 3.5 also suggests that
unwanted ringing effects will likely be even more pronounced in our study than in a typical GRACE study. As we are
mostly working in the gravity trend domain, ice mass loss is a matter of concern as it induces substantial gravity trends.
Additionally, locations with a GIA-induced gravity trend are often close to areas of ice mass loss, which makes sense as
GIA itself is caused by growth and decay of ice sheets. Both of these characteristics of the gravity trend induced by the
Greenland ice mass loss can also be seen in Figure 1.3. As was explained in Section 3.2.2, a secondary area of our interest
due to ice mass loss is Alaska and western Canada. Both the gravity trends induced by ice mass loss in Greenland and the
Alaska area can be seen in the GRACE- and Swarm-derived gravity trend maps in Figure 1.2. Remember that our GLDAS-
based correction excludes Greenland, as the results of GLDAS-NOAH are not accurate there, and how we masked Alaska
to make room for the correction proposed here.

For the goal of this study, the comparison between two satellite-derived gravity trends, one could argue that the influences
of long-wavelength leakage cancel out once we subtract the two trend results from each other. However, the ice mass
loss in Greenland has recently slowed down [14, 52, 64], which means there is a difference between the ice mass loss
in Greenland during the GRACE period and the ice mass loss in the Swarm period. This means we must account for
Greenland signal interference in our comparison between GRACE and Swarm, because the difference in ice mass loss
between the two periods should translate into a different influence on the observed GIA-induced gravity rate. Alaska is
of secondary interest, as it has also experienced accelerating ice mass loss in the last decades [3] but is further away from
our region of interest.

Greenland

Various correction methods have been proposed to correct GRACE-derived GIA observations for ice mass loss in Green-
land, either based on the GRACE data itself [5], independent data sources such as altimetry [33, 90], or filtering [31, 75].
Corrections computed independently from GRACE data have our preference, as we know in this case that we are not cor-
recting for any other components in the GRACE observations of the Greenland area (i.e., the same ringing and leakage
effects described in this section). However, just like we saw for the hydrology correction in the last section, the fact that
we use very recent Swarm data (up to March 2019) greatly constrains our choices of usable independent data sets.

Sørensen et al. [90] showed that satellite altimetry-based Greenland mass change estimates correlate best to GRACE es-
timates, but these are not available for the Swarm time frame. This means we have to settle for potentially less accurate
mass loss estimates, but keep in mind that eventually we will be looking at the differential trend between the GRACE and
Swarm observations, and that any constant error therefore has very limited influence on our final results. We use results
from Mouginot et al. [52], who employ a survey of thickness, surface elevation, velocity, and surface mass balance of 260
glaciers in Greenland to calculate the total Greenland mass balance. The online supplement of Mouginot et al. [52] gives
the mass balance rate estimates per year, from which we derive -261.9 ±57 GT a−1 for the GRACE period and -219.7 ±57
GT a−1 for the Swarm period (defining the periods as 2002-2017, and 2014-2018, respectively). As was mentioned earlier
in this section, only the differential mass loss rate is relevant for our study, as we are trying to isolate a congruent GIA
signal from GRACE and Swarm, and not trying to isolate the most accurate signal in the absolute sense. For this reason,
we will not verify these mass loss rates further.

Next, we apply the method of Sørensen et al. [90] to convert this mass balance rate estimate into a gravitational trend, by
placing a uniform mass rate signal on the Greenland area and subsequently decomposing this into spherical harmonics.
The methodology for spherical harmonics decomposition is outlined in Section A.4. The area where we place the mass
rate signal is shown in the left panel of Figure 3.6. Note how this area correlates to the area that we set to 0 in our GLDAS-
based hydrology correction (see Figure 3.3). The final corrections, and their effects on the trend estimates of the satellite
data sets, will be shown in Section 4.7.

5Dr. João de Teixeira da Encarnação, personal communication.
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Figure 3.6: Earth surface area used for the long-wavelength leakage correction as described by Sørensen et al. [90].

Alaska and western Canada

Acquiring recent mass balance estimates of Alaska and western Canada (hereafter: Alaska) proved even harder than for
Greenland, and for that reason we will not apply the same methodology as for the Greenland correction. Instead, we
propose a correction based on the GRACE mascon solutions. Root et al. [75] uses a similar approach, but with different
mascon solutions. Mascons are attractive for this purpose, as they are less affected by unwanted effects of a spherical
harmonics reconstruction such as leakage or ringing. We use the GRACE CSR RL06m mascons solutions [80, 82], which
are distributed as a 0.25◦ grid. We derive the trend via least squares regression of a bias, trend, and (semi-)annual com-
ponent, weighted via the methods of Section 2.6.1. Next, we isolate all gravity trends <0 µGal a−1 between latitude and
longitude bounds [45◦N, 70◦N] and [-160◦W, -118◦W]. The right panel of Figure 3.6 shows the area we use. Note that this
is exactly the same area that we masked in GLDAS, as described in Section 3.2.2. We compute the degree 719 spherical
harmonic decomposition of the trend grid (see Section A.4) and apply the same processing as we do the satellite-derived
trends we are trying to correct (i.e., truncation, Gaussian filtering, etc.).

The question now arises how we should extrapolate this result to the Swarm period. We use the Fluctuations of Glaciers
(FoG) Database of the World Glacier Monitoring Service (WGMS) [120] to estimate the change in Alaskan ice mass loss

rate between the period 2002-2017 (ṁ(AL)
1 ) and 2014-2018 (ṁ(AL)

2 ). This data is publicly available via the WGMS website6.
We find 65 mass balance records of the Gulkana and Eklutna glaciers between 2002 and 2018, and compare the means of
the available yearly mass loss records of the period 2002-2017 and of the period 2013-2018. We use the fraction of these

means to estimate ṁ(AL)
1 : ṁ(AL)

2 = 1 : 1.4326. Even though we must acknowledge that this is a very crude estimation
method, this accelerating mass loss is in line findings of other authors [3, 40]. We use this factor to linearly scale the
GRACE mascon-derived correction before we apply it to the Swarm-derived gravity trend.

The correct implementation of both the Greenland and the Alaska correction can be verified once they have been applied
to the satellite-derived gravity trends, as there should be little residual trend left. This does not mean the residual trend is
0, as some real geophysical signal due to GIA can be expected [119]. In Sørensen et al. [90] we learn that the residual trend
in Greenland typically is ca. ±< 0.5 µGal a−1.

3.4. Reducing very low-degree coefficients

To further focus our research on the Laurentide gravity signal, we aim to reduce the influence of long-wavelength leakage
from ice mass loss signals coming from Antarctica. We experiment with doing this via two ways. First, we construct a
Gaussian filter that reduces the very low-degree coefficients, similar to the approach of Root et al. [75]. Second, we follow
Sasgen et al. [79] who simply reduce the very low degree coefficients to 0. Note that these two approaches are essentially
the same methods as described in Section 2.4 but applied in such a way that the low-degree coefficients are reduced or
discarded. We define the high-pass Gaussian scaling coefficient, shp,g and the high-pass truncation scaling coefficient
shp,t as:

shp,g (l ) = 1− sg (l ) (3.2)

shp,t (l ) = 1− st (l ) (3.3)

where sg and st are the low-pass Gaussian and truncation scaling factor, as defined by Equation 2.8 and Equation 2.10,
respectively, that are both a function of degree l . To distinguish between low-pass and high-pass truncation and Gaussian
filtering, respectively, we will use lmax and rg for low pass processing, and lmi n and rhp,g for high-pass processing.

6http://doi.org/10.5904/wgms-fog-2018-11

http://doi.org/10.5904/wgms-fog-2018-11
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Figure 3.7: Degree correlation between GRACE CSR RL06 gravity trend (4/2002-6/2017) and gravity trend results of the ICE-6G_D GIA
model of Peltier et al. [61] and the GIA model of A et al. [1]. Dashed line indicates the 95% confidence level.

Sasgen et al. [79] use the degree correlation between the GRACE-derived gravity trends and gravity trend results from a GIA
model to motivate their choice of cutting all coefficients l ≤ 4. Since we use newer GRACE data and a longer time series
(CSR RL04 8/2002-8/2009 vs. CSR RL06 4/2002-6/2017), we have decided to repeat their degree correlation experiment.
Additionally, we compare two GIA models to assure that any conclusions we derive are not driven by characteristics
particular to any specific GIA model. We use the results of the ICE-6G_D GIA model of Peltier et al. [61] and the GIA
model of A et al. [1]. We choose these model results because they have been shown to have good agreement with GRACE
gravity observations but are computed independently from any GRACE data. ICE-6G_D and the model of A et al. [1] are
also used for the GIA corrections to the GRACE CSR RL06m [80] and RL05m [82] mascon solutions, respectively. Gravity
trend results of both GIA models are publicly available via the NASA PODAAC7. For conciseness sake, we will not cover
the methodology behind the GIA models, but we refer the reader to Peltier et al. [58, 59, 61] and A et al. [1]. Like we did for
the satellite-derived gravity fields (see Section 2.1.5), we set the degree 1 and C2,0 coefficients in the GIA models results to
0. We subtract the corrections for ice mass loss in Greenland and Alaska outlined in Section 3.3 from the GRACE-derived
gravity trends. Finally, we mask the Southern Hemisphere in the GIA model and the GRACE trend results, to focus our
analysis on the Northern Hemisphere where our GIA region of interest is located.

Figure 3.7 shows the results of this experiment. Both GIA models yield a similar pattern of degree correlation w.r.t. GRACE.
The correlation is <0.25 for degrees 2 and 3. The correlation between the GRACE-derived trend and ICE-6G_D is statisti-
cally significant for degrees 4-16, and for the model of A et al. [1] this is the case for degrees 4-15. For some degrees higher
than 16 resp. 15 there is sporadic significant correlation. The erratic behavior of the degree correlation seen in the higher
degrees (ca. l > 35) can be explained due to the fact that masking the Southern Hemisphere leads to strong gradients in
the spatial expansion of the GIA model results and the Stokes coefficient trends, which induces ringing (see also Section
3.3).

We are most interested in the apparently uncorrelated low degrees. We believe this is likely caused by long-wavelength
leakage (largely) induced by mass transport near the West Antarctic Ice Sheet, as this is a substantial trend signal (see,
e.g., Figure 1.1) that we had not masked in this analysis. In this location, both ice mass loss and GIA affect the gravity
trend. The GIA component (here: the GIA model) is positive, but the net gravity trend (i.e., the GRACE observations)
is negative due to the contribution of ice mass loss. The Antarctic ice mass loss process is not stationary [89]. This
means any leakage that influences the observations of the GIA-induced trend are not stationary either. Because the goal
of this study is comparing two data sets that cover different time frames, any non-stationary corrections are especially
important. For now we conclude that we will experiment with high-pass cut-offs at lmi n = 3,4,5, where lmi n is the lowest
degree harmonic not to be truncated. We convert to filter radii via Equation 2.9, which yields 3340, 2505, and 2004 km,
respectively.

3.5. Analysis of the differential trend

In the final part of our comparison between GRACE and Swarm, we quantitatively assess the respective observations of
the gravity trend in North America. For conciseness sake, we name the misfit between the GRACE- and Swarm-derived
trend of Stokes coefficient or grid point i the differential trend ∆ of i , that is defined as:

∆i = x̂(GR AC E)
t ,i − x̂(Sw ar m)

t ,i (3.4)

where x̂t ,i are the least squares estimates of the trend of i derived from GRACE and Swarm, respectively.

7http://podaac-tools.jpl.nasa.gov/drive/
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Figure 3.8: Mask used to isolate the positive trend anomaly around Hudson Bay, which is dominated by a GIA-induced trend. Mask is
computed by identifying all areas in the North American continent with a >+1.0 µGal a−1 gravity trend as computed from GRACE CSR
RL06 (lmax = 13), respectively.

3.5.1. Latitude-weighted GIA-region mean and RMS

To further aid comparison, we reduce the GRACE- and Swarm-derived trend, and any other derivatives, to a single number
at selected points in the report. We use the latitude-weighted mean of the observations of the positive trend anomaly
in the Hudson Bay area. To achieve optimal comparability of the results of this experiment, we need to define exactly
which area we define as dominated by a GIA-induced trend. For this we take the GRACE CSR RL06 geopotential solutions
spanning 4/2002-6/2017, truncate to lmax = 13 (will be motivated in Section 4.3), and determine the area on the North
American continent where the expanded trend of the Stokes coefficients is >+1.0 µGal a−1. Figure 3.8 shows this region,
that is also used by masking function M (G I A)(θ,λ). We will always use the same mask, i.e., this exact definition of the GIA-
region. Even when we look at Swarm data (or any other data), we use the area bounded by a >+1.0 µGal a−1 gravity trend
as computed from aforementioned GRACE data. We will use the superscript ( )(G I A) to indicate the latitude-weighted
mean of the area in Figure 3.8, which may be computed from various gravity field derivatives. For an arbitrary function
defined on the sphere z(θ,λ), z(G I A) and z(θ,λ) are thus related as follows:

z(G I A) =
Ω∑[

M (G I A)(θ,λ) ·cos(θ) · z(θ,λ)
]

Ω∑[
M (G I A)(θ,λ) ·cos(θ)

] (3.5)

where M (G I A)(θ,λ) is the masking function shown in Figure 3.8 and
Ω∑

indicates the summation over the entire sphere:

Ω∑=
180◦∑

λ=−180◦

90◦∑
θ=−90◦

(3.6)

A case of Equation 3.8 that we will use often is the latitude-weighted mean gravity trend in the GIA-region. We will de-
note this metric as ġ (G I A). An exception to the method of Equation 3.8 applies when we want to reduce the outcome of
Equation 3.4 or any other set of residuals to a single number. Here, we use the RMS, and not the mean, as highly variable
residuals centered around zero would yield a zero mean, which could lead to the false conclusion that there is no dis-
crepancy between the two metrics at hand. Instead, the RMS would correlate to the variance of said residuals and would
likely yield a non-zero number in the case of variable residuals. Using ∆ as an example, we write:

∆(G I A) =

√√√√√√√
Ω∑[

M (G I A)(θ,λ) ·cos(θ) ·∆2
i

]
Ω∑[

M (G I A)(θ,λ) ·cos(θ)
] for i = 0,1,2, ...,k (3.7)

where all parameters are as defined earlier.

3.5.2. Normalizing the GRACE - Swarm misfit

In Equation 2.31 we saw the χ2-statistic, that normalized the residuals of a regression w.r.t. the uncertainty of the ob-
servations. In Section 2.5.3 we used the χ2-statistic as part of a larger analysis, but by itself the χ2-statistic can also be
used to assess the discrepancy between the GRACE- and Swarm-derived gravity trends. For observations with a Gaussian



3.6. Validation via GRACE-FO 31

uncertainty distribution, a χ2 of 1 suggests that the misfit is within a single standard error σ, and χ2 = 4 suggests that the
misfit is within 2σ. We will use the methods outlined in Section 2.6 to assess the distributions of the errors in the various
satellite-derived gravity fields.

In GIA study, the mean χ2-value is often minimized in an optimization process constraining a GIA model via observations
of, e.g., relative sea level (RSL), J̇2, GPS-derived surface elevation [56, 98, 106]. The authors use the test to assess the
difference between the GIA observation and the result from a GIA model. We employ it in a similar way, but instead of a
GIA model, we take the GRACE-derived trend as truth. To assess this assumption, we will first compare the propagated
trend uncertainty from GRACE and Swarm in Section 4.2. For now, we hypothesize that the GRACE uncertainty will be
substantially lower than the Swarm uncertainty. Building on Equation 2.31, we compute the χ2-statistic of grid point or
Stokes coefficient i via [63]:

χ2
i =

 x̂(GR AC E)
t ,i − x̂(Sw ar m)

t ,i

σi

2

(3.8)

where x̂t ,i is the least-squares estimate of the trend at grid point i derived from the Swarm or the GRACE data. We
hypothesize that the errors of Swarm are at least an order or magnitude bigger than the errors of GRACE, therefore we

take for σi the estimated uncertainty of x̂(Sw ar m)
t ,i .

For observations from potentially dissimilar Gaussian distributions, theχ2-operation reduces the probability distribution
of all observations to the same standard normal distribution, i.e., N (0,1) (see Equation 2.40). For independent observa-
tions, this means the mean of n number of χ2-values is distributed according to a χ2-distribution with n degrees of
freedom. This allows one to assign a confidence interval to the ensemble of observed data. We choose not to apply this
method as the grid points in the maps of the Stokes coefficients expansions are not independent data points. Instead, we
will show figures of the spatial distribution of the χ2-statistic, which allows us to address the distribution of the GRACE -
Swarm trend misfit, in light of the uncertainties of those trend estimates.

3.6. Validation via GRACE-FO

In the final set of experiments of this study, we validate our findings via data of the recently launched successor of GRACE,
GRACE-Follow On. The epochs of the GRACE-FO geopotential solutions are between June 2018 to April 2019, which
places them at the far end of the Swarm fields. In the first section, we will attempt to derive gravity trends from the
GRACE-FO data. Next, we will validate our results regarding the continuity between GRACE and Swarm in three ways.
First, we will compare time series of modeled gravity change at specific grid points, using the GRACE-FO results from
the first section. This allows us to assess how the three series of geopotential solutions compare independently from
each other. Next, we will compare spatial maps of gravity trends derived from individual missions fields to gravity trends
derived from sequences combining GRACE, Swarm, and GRACE-FO fields. Finally, we will append the GRACE data with
either Swarm or GRACE-FO observations, and assess how this affects trends estimated from the combined time series
w.r.t. trend combined from only GRACE. This latter experiment will help us understand the misfit between GRACE and
Swarm better. If the comparison GRACE - GRACE-FO yields a similar misfit, this argues the misfit of GRACE and Swarm
was caused by real geophysical signal and not noise. Note that all analyses in this chapter, either of GRACE, Swarm, or
GRACE-FO data, will be limited to the spatial resolution to which Swarm is sensitive (ca. 1500 km). We leave the analysis
of the GRACE-FO fields at resolutions beyond the senstivity of Swarm for future work.

3.6.1. GRACE-FO gravity trends

As the GRACE-FO data set is very short (9 mo), the chances that we will be able to successfully fit a (semi-)annual com-
ponent are low. This could affect the results we get for other components of our regression model, where we are most
interested in the trend. In an attempt to mitigate this issue, we test two additional regression approaches that reduce the
number of independent variables in the model that we fit to the GRACE-FO data. We test three cases: one where we use
only GRACE-FO data, one where we use the phase information from GRACE, and one where we use phase and amplitude
information from GRACE. The first case applies the methods of Section 2.5 and will therefore not be covered here.

The second case can be explained as inserting the GRACE phase estimates in 2.11 before fitting the model to the GRACE-
FO observations. This method is based on the assumption that the phases of the geophysical processes that induce the
semi-annual and annual periodic mass change have not changed between the GRACE and GRACE-FO time periods. We
rewrite Equation 2.11 as:

f (t ) =
n∑

i=1

[
Ai · t (i−1)

]
+

m∑
j=1

[
B j sin

2π

T j

(
t − ω̂(GR AC E)

j

)]
+ε (3.9)
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where ω̂(GR AC E)
j is the least square estimate of the phase of the periodic component j , as derived from the GRACE data

(see Equation 2.21 to Equation 2.25), and all other parameters are as defined earlier.

For the third method, we use the estimated amplitude and phase that we get from applying the least squares regression
to the GRACE data, to extrapolate these components into the GRACE-FO time frame. Next, we subtract the periodic
components from the GRACE-FO observations, and fit a model with only a bias and a trend term (i.e., choosing i = 2 and
j = 0 in Equation 2.11) via least squares regression. This method is based on the assumption that the phase and amplitude
of the mass change-inducing geophysical processes has not changed between the GRACE and GRACE-FO time periods,
which intuitively feels less realistic than the assumption we did for the first case.

3.6.2. Successive time series

In this first validation experiment, we expand the results of the regression of the GRACE, Swarm, and GRACE-FO gravity
fields into the spatial domain, and compute time series of the gravity variation at specific points on the map where we
know the GIA-induced trend is substantial. Ideally, the GRACE, Swarm, and GRACE-FO gravity observations should all lie
on the same line here. We compare the observations of GRACE, Swarm, and GRACE-FO to the trend line that we compute
via the regression.

While we agree that this is a rather trivial experiment, it does illustrate the central idea of the study, the GIA gravity signal
acting as a mutual baseline for multiple satellite missions, very well. Additionally, results from this experiment are easy
to understand for the less experienced reader, as we are not working in the domain of the first time derivative (i.e., the
trend) anymore, but simply in the time domain. This may add to the understanding of the rest of the report.

3.6.3. Adding Swarm to the combined GRACE time series

In this second validation experiment we compare trends derived from different (combinations of) satellite data. First, we
will compare the trends derived from the Swarm fields to trends computed from a combination of GRACE and GRACE-FO,
where we trim the latter combination to the start and end dates of the Swarm fields. We will use a weighted regression
with weights derived via the methods of Section 2.6.1 for both the Swarm fields and the combined GRACE / GRACE-FO
fields.

Next, we will compare the combination GRACE / GRACE-FO to the combination GRACE / Swarm / GRACE-FO. We will do
this for both an unweighted and two weighted cases. Our hypothesis is that the uncertainties of the Swarm observations
will be substantially higher than the GRACE and GRACE-FO observations, and therefore it is likely that the first weighted
case based on the weighing methods in Section 2.6.1 will yield a result where the Swarm observations contribute little to
none to the results. For this reason, we will also experiment with a second weighing scheme that only accounts for the
time evolution of the uncertainties. We do this by scaling the results from the methods of Section 2.6.1 in such a way that
the time domain mean uncertainty equals unity. We will denote this method as using trivial weights. Note that, for the
Swarm fields, we set the mean of the errors to the period after May 2015, as Van den IJssel et al. [104] suggests the accuracy
of the Swarm-derived fields is non-nominal before that period due to influences from increased ionospheric activity.

In this experiment we do not look at the Swarm or GRACE-FO data by itself, but rather how adding the observations to the
GRACE time series affects the trend results. As explained in Section 1.2, the goal of GRACE-FO is to continue the GRACE
observations, and the reason why we are interested in Swarm is to cover the gap between the end of GRACE and the start of
GRACE-FO. This makes this experiment very interesting, because it directly assesses if the Swarm observations could be a
valuable addition to the existing time series of mass change. Unfortunately, we must immediately add the comment that
correctly combining GRACE, Swarm, and GRACE-FO will likely require a more intricate weighing scheme than what we
described above to optimally use all available information from Swarm. We have decided that this combination strategy
is beyond the scope of this study, which means the results of this study should be regarded as tentative first steps in this
research area.

3.6.4. Differential trend of combined time series w.r.t. GRACE

In the third and final validation experiment we assess the differential trend between a GRACE-only time series, and a time
series that consists of either GRACE and Swarm data, or GRACE and GRACE-FO data. We rewrite Equation 3.4 as:

∆i = x̂(Comb)
t ,i − x̂(GR AC E)

t ,i (3.10)

where x̂Comb
t ,i is now the least squares estimate of the trend of Stokes coefficient or grid point i , as computed from either

one of the combined time series.

As there are 63 Swarm epochs, but only 9 for GRACE-FO, we must first account for this discrepancy before appending
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the time series. A weighing scheme would not make sense, as the Swarm observations cover a different time period than
the GRACE-FO observations. Mass change that occurred between August 2017 and June 2018 is simply not observed by
the combined GRACE - GRACE-FO time series but will have an effect on any metric we derive from a GRACE - Swarm
combination. Because of this, we have decided to only use 9 Swarm epochs for this experiment, that we have chosen so
that they line up as well as possible with the GRACE-FO fields. We use June 2018 to March 2019 but leave out September
2018.

We will be looking for two specific things in the expanded maps of the differential trends. First, we are interested in the
residual observations around Hudson Bay. If our assumptions of a stationary GIA-induced gravity trend and inter-annual
hydrology variations canceling out over time are correct, there should be no differential signal here. Second, we will
compare other artefacts of the differential trend map. Here, we are interested in whether Swarm observes the various
geophysical signals in a way similar to GRACE-FO.





4
Results

Similarly to the methodology chapters, this results chapter starts with the outcomes of more general experiments that we
have applied to the GRACE- and Swarm-derived gravity fields. Results from these experiments are then used to deter-
mine the optimal configuration of the following analyses, which in the end aim towards deriving the best possible trend
observations from the GRACE and Swarm geopotential solutions. This not only happens in the forward manner, but also
in an iterative fashion. Note that this report is restricted to describing the final results. Most notably, the maximum de-
gree configuration regarding gravity field truncation is derived in Section 4.3, but was already used in sections before that
(and even sporadically in the previous chapters). We aim to refer the reader to subsequent sections as little as possible to
increase the readability of the report.

This chapter starts by assessing the influence of the tidal aliases in the geopotential solutions to finalize the definition of
our regression model (Equation 2.11). Section 4.2 investigates the observation uncertainties of the GRACE and Swarm
solution and propagates the observation uncertainties into gravity trend uncertainties. Section 4.3 shows the gravity
trends we derive from GRACE and Swarm after reducing the influence from high-degree noise in the Swarm solutions.
Section 4.4 investigates the effect of the data set length on the gravity trend estimates. At this point, we have answered
research sub-question Q.1. Next, Sections 4.5 to 4.8 first investigate the variability of the gravity trend through time, i.e.,
the magnitude of the components other than the linear GIA-induced trend, and then present the results of correcting for
these signal dilutions. Now, we have answered research sub-question Q.2. Then, Section 4.9 contains the analysis of the
discrepancy between the GRACE- and Swarm-derived trends. This section answers research sub-question Q.3 and can be
regarded as a quantitative summary of the entire results chapter. Finally, Section 4.10 shows the validation of our results
and answers research sub-question Q.4.

Definitions of acronyms are given in the List of Acronyms on page xiii. Symbol definitions and units, and values used for
constants can be found in the List of Symbols on page xv.

4.1. Influence of tidal aliases

The S2, K2, and K1 tides have been shown to alias into the GRACE solutions [67], with periods of 161, 1400, and 2800 days,
respectively. Steffen et al. [94] suggest that not including a periodic component into the model of the least squares regres-
sion could lead to an incomplete cycle of that component affecting the trend estimate, as Section 2.5.3 also explained.
Other authors, e.g., Sasgen et al. [79], disregard the tidal aliases altogether, citing that their overall influence on the trend
estimate should be minimal. In this section we will assess the significance of the tidal aliases, and their influence on the
trends derived from GRACE and Swarm. There are four reasons why it is hard to predict if the same aliasing will affect
Swarm. First, remember how Section 1.2 explained how the Swarm solutions that we used are a combination of four in-
dependently computed solutions. The individual Swarm solutions do not all use the same tidal models, which makes it
likely that tidal aliasing does not affect the individual models in the exact same way. Second, the weights of the individual
solutions differ per epoch. Third, the Swarm time series could be too short (5.3 y) to retrieve a multi-year component.
The K2 and S2 alias periods are ca. 3.8 y and 7.7 y, respectively. Finally, the altitude of the Swarm satellites is differ-
ent from GRACE, leading to different ground track repeat patterns (NB: aforementioned periods have been computed to
correspond to the tidal aliases in GRACE).

We use an F-test to determine if there is a significant periodic component in each Stokes coefficient time series of both the
GRACE and the Swarm models. We use a 95% confidence level. As our current hypothesis is that the Swarm fields contain

35



36 4. Results

Geopotential solution Period of component
Name lmax 1 y 0.5 y 161 d 1400 d 2800 d 1 y + 0.5 y Tidal aliases*

GRACE CSR RL06 60 91% 49% 44% 53% 69% 91% 82%
GRACE CSR RL06 15 98% 61% 27% 49% 73% 100% 94%
Swarm 40 31% 24% 25% 29% 37% 28% 34%
Swarm 15 57% 29% 23% 39% 44% 55% 51%

NB: these are not percentages related to confidence intervals (see text or figure caption)!

Table 4.1: Percentage of Stokes coefficients, compared to total number of coefficients, that have significant periodic component at a 95%
confidence level. In all F-tests, the restricted model has no periodic components, except for the Tidal aliases* column. Here, a model
with (semi-)annual components and all three tidal aliases is compared to a model with only (semi-)annual components.

mostly noise above ca. degree 15, we execute this test for both the full GRACE and Swarm solutions (i.e., lmax = 60 and
lmax = 40, respectively), and a version truncated to degree 15, as we will likely reduce the higher-degree coefficients in a
later stage to reduce the influences of high-degree noise in Swarm.

Table 4.1 presents the percentage of the total number of Stokes coefficients that have a significant periodic component.
Note that the percentages do not refer to confidence levels. For GRACE, we see that including a single periodic com-
ponent generally does not lead to more coefficients having a statistically improved fit, with the exception of the annual
component. This makes sense, as many of the mass transport inducing processes related to climate follow an annual
pattern. Including both the annual and semi-annual component leads to a significant fit in the largest number of coeffi-
cients, especially when we truncate the fields. We find that the significant aliases are spectrally distributed (not shown) in
a way that reminds us of the GRACE uncertainty distribution: mostly the coefficients in the lower orders have significant
tidal aliases. Few sectoral coefficients have significant periodic components. We suspect that increased noise level in this
part of the coefficient spectrum is the reason for this.

For Swarm, there are two important observations. First, we see that in the full fields, none of the (combinations of)
components are significant in more than half of the coefficients. When we truncate to degree 15, we see that a model with
only an annual component allows for a significantly improved fit in slightly more (57% vs. 55%) coefficients than a model
with both the annual and semi-annual component. We also see that for slightly more than half (51%) of the coefficients
in the truncated field, adding all three tidal aliases leads to a significantly improved model fit w.r.t. a model with only
(semi-)annual components. When we look at the spectral distribution of which coefficients yield a significantly improved
model fit when including any (combination of) periodic component(s), this again seems to inversely correlate to degree
number, and thus noise levels. This leads us to conclude that at least part of the discrepancy between GRACE and Swarm
in the number of coefficients that have significant tidal components is due to higher noise levels in Swarm.

Table 4.1 might tell us something about the significance of the periodic component, but it does not tell us anything about
the (magnitude of the) influence on our signal of interest: the gravity trend in Laurentia. To assess this, we compare maps
of the gravity trend, one derived using a model with only a bias, trend, and (semi-)annual component, and the other also
including the tidal aliases. We use the GRACE data for this, as we know most Stokes coefficients of this data set have a
significant component with a period equal to those of the tidal aliases.

The results are in Figure 4.1. We see that the positive trend anomaly around Hudson Bay is practically unaffected by the in-
or exclusion of the tidal aliases. The residual trend between the top two panels is negligible. The RMS of the trend residual
in the area where the GIA-induced trend is dominant, ∆(G I A), (red ellipse in bottom panels in Figure 4.9, see Section 3.5)
equals 3.776× 10−4 µGal a−1. This result, the fact that the F-test did not seem to provide conclusive evidence for the
Swarm fields, and the fact that the Swarm fields are likely too short to retrieve very long-period components, lead us to
conclude that we will not include the tidal aliases in our fitted model. This means we also not correct for tidal influences
in our trend variability experiment described in Section 3.1. Even though Table 4.1 showed that including only an annual
component leads to a significantly better model fit in more coefficients than including (semi-)annual components, we
decide to use the same regression model for GRACE and Swarm to achieve an equal comparison between the two. We
define our model as:

f (t ) =
2∑

i=1

[
Ai · t (i−1)

]
+

2∑
j=1

[
B j sin

(
2π

T j
t

)
+C j cos

(
2π

T j
t

)]
+ε (4.1)

with T1 = 1 y and T2 = 0.5 y and all other parameters as defined in Section 2.5.
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Figure 4.1: Trend derived from GRACE CSR RL06 via least squares regression of a bias, trend, and (semi-)annual component (left), and
via regression of a bias, trend, (semi-)annual component, and the S2, K2, and K1 tidal aliases (right). Bottom panel shows the residual
between the top two panels. Only processing applied to the fields is a Gaussian filter with a 300 km half width, to reduce noise. NB:
∆(G I A) is defined in Equation 3.7.

4.2. Error estimates

In this section, we will look at our trend error computations for Swarm and GRACE. First, we will compare the magnitude
and spatial distribution of the trend error, as this is the signal component we are most interested in the end. Next, we will
address the probability distribution of the observation errors, as normal error distribution is a prerequisite for some of the
methods that we will be applying in the next chapter. Finally, we will address the temporal distribution of the observation
errors, as this is an important metric in the weighted least squares method that we use to estimate the trend.

4.2.1. Spatial and spectral distribution

Figure 4.2 shows the spatial distribution of the trend errors. We compute this by first finding the standard deviations of
the Stokes coefficient time series via the method of Section 2.6.1, and then propagating this into an uncertainty estimate
for the trend via the methods of Section 2.5.2. The errors in GRACE and Swarm are multiple orders of magnitude apart
and thus the spatial and spectral plots in this section do not use the same color scale. We truncate the fields at lmax = 13.
We will motivate this choice in the section hereafter.

When we look at the errors for the truncated GRACE fields, the band near the equator is reminiscent of what we have seen
in the lmax = 60 GRACE fields in Figure 2.5 on page 18. The anomaly near the poles does seem a little counter-intuitive,
as the GRACE mission had virtually no polar gap (i = 89.5◦ [99]), and the measurement density is highest at the poles.
This anomaly is not visible in the maps of the error of the degree 60 fields in Figure 2.5.

We believe that the answer can be found in the spectral distribution of the errors (left panel of Figure 4.3). We see that
the zonal coefficients up to degree 10, especially C3,0 and C4,0, have relatively high errors. This could explain the high-
latitude artefact, that is spread across all longitudes. A look at the spectral distribution of the errors of the degree 60 fields
(not shown) suggests that errors of the higher degree coefficients in these solutions compensate the errors of the lower
degree zonal coefficients, which could explain the fact why there is no high-latitude artefact in Figure 2.5. Figure 4.4
shows the spatial distribution of the GRACE and Swarm errors when we exclude the zonal coefficients from the analysis.
We see that the latitude-dependency of the errors reverses in the higher latitudes, which is more in line with what we see
in literature [32, 114]. This suggest that in lower-resolution GRACE and Swarm solutions the uncertainties of the zonal
coefficients indeed dominate the spatial distribution. These errors excluding the zonal coefficients were only computed
to complement the analyses in this section, and are not used anywhere in this study.

It is believed that this relatively low sensitivity to the low degree zonal coefficients is due to the GRACE orbital geometry
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Figure 4.2: Spatial distribution of the errors in GRACE CSR RL06 and the Swarm fields, as computed via the method outlined in Section
2.6.1. NB: as the errors are more than an order of magnitude apart, and as the goal of this figure is to illustrate the spatial distribution of
the errors, the panels use a different color scale.

Figure 4.3: Spectral distribution of the errors in GRACE CSR RL06 and the Swarm fields, as computed via the method outlined in Section
2.6.1. NB: as the errors are more than an order of magnitude apart, and as the goal of this figure is to illustrate the spectral distribution
of the errors, the panels use a different color scale. NB: degree 1 and C2,0 coefficients are set to 0 (as in all analyses in this study).

and short separation (ca. 200 km [99]) between the satellites [16]. For this reason, many authors replace the GRACE-
derived C2,0 with results from SLR observations [18]. Section 2.1.5 describes why we choose to remove C2,0 from our
analyses altogether.

Swarm shows a number of differences w.r.t. GRACE. First, there is no band around the equator. We believe that this is
due to the difference in orbital geometry (i = 87.4◦ for Swarm [35]) and the better anisotropy of the measurement system.
The GRACE KBR only measures the range-rate in the along-track direction. The GPS position observations of the Swarm
satellites are isotropic. Together, this leads to better (relative) sensitivity of Swarm to the sectoral coefficients.

Secondly, we see vertical artefacts in the spectral distribution of the Swarm error, which is shown in the right panel of
Figure 4.3. It seems that the Stokes coefficients with m = 0 or an even number for m have a higher errors. We observe
this pattern across the entire spectrum (also up to lmax = 40, not shown here). We propose that this characteristic of the
Swarm fields is an interesting topic for future research, as it could indicate that there is a correlation in the Swarm errors.
This could provide an opportunity for improved anisotropic processing of the Swarm fields.

Similarly to GRACE, we observe an increase in error near the poles in the spatial domain, which translates into increased
errors in the zonal coefficients in the spectral domain. However, unlike what we saw for GRACE, the spatial distribution
of the Swarm errors shown in Figure 4.2 holds when we increase lmax . Van den IJssel et al. [104] suggest that sensitivity of
the Swarm GPS receivers to ionospheric activity degrade the position observations near the geomagnetic poles. We will
further cover this sensitivity to increased ionospheric activity, and its effect on the Swarm errors, in Section 4.2.4.

4.2.2. Probability distribution

Section 2.6.2 outlined how we use a histogram of the normalized residuals to assess their distribution. We do this because
it allows us to assign confidence intervals to the satellite gravity observations and consequently the computed trends,
as well as investigate if we may apply certain statistical tests (see Section 2.5.3, Section 3.5). Here, we will first compare



4.2. Error estimates 39

Figure 4.4: Same as Figure 4.2, but after reducing all zonal (m = 0) coefficients to 0. NB: as the errors are more than an order of magnitude
apart, and as the goal of this figure is to illustrate the spatial distribution of the errors, the panels use a different color scale. NB: the errors
values shown here are shown only to illustrate our conclusion regarding the dominance of the low-degree zonal coefficients in the error
spectrum when truncating the fields to lmax = 13 (see text) and are not used anywhere in this study.

the probability distributions of the errors computed via the method of Wahr et al. [114] and the errors computed via our
method. We argue in Section 2.6.1 that the method of Wahr et al. [114] fails to account for real inter-annual signals, and
therefore overestimates the error. Additionally, this would imply that the resulting errors are not Gaussian distributed.
Conversely, this should mean that our method, which does account for long-term signals, yields errors that are (closer to)
normally distributed. The difference between the verification we did in Section 2.6.2 and what we will show here is that
we use the CSR RL06 GRACE data here. Next, we will compute and assess the residuals of the Swarm fields, after applying
our method.

Figure 4.5 presents the results of this experiment. When we compare the residuals from our method to those from the
method of Wahr et al. [113], we find that our method leads to residuals that are closer to a normal distribution. This
suggests that the additional steps in our method, a moving mean and periodic components estimates from a moving
window, are indeed removing more real geophysical signal than the simpler model of Wahr et al. [114]. Nonetheless,
even the residuals from our method are not an exact fit to the plotted Gaussian distribution with identical mean and
variance. This suggests that either the more intricate error estimation method that we considered does not remove all
real geophysical signal, or that the underlying distribution of the GRACE errors is non-Gaussian. The first argument
could be motivated by the fact that the periodic hydrology cycles on Earth do not exactly follow a sinusoidal shape, but
rather a more skewed periodic function [73]. Since we attempt to model this signal via a weighted combination of sines
and cosines, i.e. a model that does follow a sinusoidal shape, it can be expected that this model fails to capture all signal.

The observant reader might have noticed a discrepancy between the results shown in the left panel of Figure 4.5 and the
verification of the method of Wahr et al. [113] in Figure 2.6, page 19. Note that in the verification, we used a far shorter
time series of GRACE data, so the effect of failing to account for long-term components in the Stokes coefficient time
series was not as pronounced there. Nonetheless, the spiking artefacts we see around the middle of the graphs, where the
histogram locally extends above the fitted normal distribution, were also seen when we recomputed the results of Wahr
et al. [114] (and seen in the paper itself), albeit to a lesser extent. When we look at the residuals of the Swarm fields, we
see that they are even closer to being normally distributed than the GRACE residuals. This is an encouraging result for the
coming chapters of this report, where we will apply the inferential statistics to further analyze the continuity between the
observations GRACE and Swarm of the GIA-induced gravity trend.

4.2.3. Errors computed in the spatial domain

We can further motivate the conclusion that we can use the RMSE as standard deviation of the Swarm-derived Stokes
coefficients, by comparing the results of aforementioned experiment to results from repeating this experiment in the
spatial domain, i.e., applying the method of Section 2.6.1 to time series of gravity observations at a particular map location
(instead of time series of Stokes coefficients). Wahr et al. [114] showed that for GRACE this comparison suggests that
the correlation of the GRACE errors (which manifests itself as the spatial distribution shown in Figure 4.2) reduced the
reliability of the confidence intervals of this method. A simple way to show this is to compare Figure 4.2 to a map of the
RMS of the post-fit residuals computed in the spatial domain. Figure 4.6 shows such a map, and we can immediately
see that for GRACE (left panel) the spatial distribution of the errors is radically different. We see no band-shaped artefact
around the equator, and instead see error values that are concentrated in location where we expect substantial mass
variability (e.g., Amazon). On the contrary, we also see that the Swarm-derived errors are much more evenly spaced across
the map. It is clear the spatial distribution of the Swarm errors in Figure 4.6 is not as homogeneous as what we see in Figure
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Figure 4.5: Left panel: histogram of normalized GRACE CSR RL06 residuals, computed via method of Wahr et al. [113]. Middle panel:
histogram of normalized GRACE CSR RL06 residuals, computed via our method (see Section 2.6.1 on page 15). Right panel: histogram
of normalized residuals of the Swarm fields, computed via our method.

Figure 4.6: Spatial distribution of the errors in GRACE CSR RL06 (left panel) and the Swarm fields (right panel), as computed via the
method outlined in Section 2.6.1, this time applied in the spatial domain. NB: as the errors are more than an order of magnitude apart,
and as the goal of this figure is to illustrate the spatial distribution of the errors, the panels use a different color scale. Additionally, note
that for the same reason the color scales in this Figure are also slightly different from those in Figure 4.2.

4.2, but then again we cannot expect to fully recover the underlying RMS in the case of doing this in the spatial domain,
as we have only 64 observations per grid point. Furthermore, we see that the magnitude of the Swarm errors computed in
the spatial domain does not correlate to areas of high mass redistribution variability as much as GRACE does (i.e., Amazon
does not show an error peak for Swarm). This suggests that the sensitivity of the Swarm measurement system to mass
redistribution not well captured by the model we described in Section 2.6.1 (i.e., 1-y moving mean, periodicals from 2-y
window) is much lower than for GRACE.

To further substantiate this claim, we look at histograms of the normalized post-fit residuals again, this time computed by
applying our error estimated method of Section 2.6.1 in the spatial domain. True mass signals are smaller in magnitude
over the oceans than over land (see, e.g., Figure 1.1 on page 2), and therefore we do this analysis separately for the grid
points that are located on land and those that are located over the oceans. We define the land area as all grid points within
the coast line shown as a black line in, e.g., Figure 4.6. Some shallow water bodies still contain substantial signal [75], and
therefore we define the limit of the ocean area mask 800 km offshore from aforementioned coastlines.

The results are shown in Figure 4.7. When we look at GRACE, we see a substantial difference in how the two histograms
fit the Gaussian distribution. While both histograms appear to be slightly skewed to the left, the fit to the Gaussian dis-
tribution of the ocean area residuals is much closer. The skewness we see here also showed in the histograms in Figure
4.5. The spiking artefacts that we identified there indicated small-magnitude errors occurred more often than they would
if the errors where exactly Gaussian distributed. Going back to Figure 4.7, we see that both the land area and ocean area
residuals of Swarm are closer to being normally distributed. The land area histogram shows a slight skewness in a simi-
lar location to where the GRACE residuals showed such a feature, but the overall shape is still considerably closer to the
Gaussian distribution. This suggests that the Swarm fields also have, albeit limited, sensitivity to inter-annual land area
signals, likely hydrology variations. Also, this means our method of using the RMSE as standard deviation is more valid
for the Swarm-derived fields.

The conclusion we find is equal parts encouraging and discouraging: the Swarm errors might be substantially larger than
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Figure 4.7: Histogram of normalized GRACE CSR RL06 residuals, computed via our method Section 2.6.1, but this time applied in the
spatial domain, of GRACE CSR RL06 (left panel) and the Swarm fields (right panel).

the GRACE errors, but at least they are normally distributed. This in turn means that it is unlikely that we will be able
to retrieve small-scale geophysical signal from the Swarm data, but conversely it also means that we can assign reliable
confidence intervals to the signals that we do find and that inferential statistical tests are valid.

4.2.4. Temporal distribution

Following the approach of Wahr et al. [114], we assess the time-dependency of the observation errors of our gravity fields
by expanding the residuals of each particular epoch via Equation 2.3, and then computing the latitude-weighted global
mean of each epoch. Note that in this case we use the residuals of only this particular epoch, and not the RMS of the
residuals. Figure 4.8 shows the temporal distribution of the GRACE and the Swarm errors. The top plot is shown to give
an impression of the differences between the GRACE and the Swarm errors. Note that the x-axis of the top plot is set to
start in 2009, to increase the readability of the plot. The middle and bottom graph of Figure 4.8 show the time evolution
of the GRACE and Swarm errors relative to their mean. When we use the errors in a weighted least squares regressions, it
is the relative magnitude of the errors that weights the individual observations. A higher relative error will lead to a lower
weight (see also Section 2.5.2).

The GRACE errors (best seen in middle plot of Figure 4.8) mostly stay within a ±50% band of the mean error. The inter-
epoch variability of the GRACE error can for a great part be explained by different ground track distributions. The GRACE
error seems to increase substantially after ca. the second half of 2016. This is obviously correlated to the fact that one of
the GRACE accelerometers was turned off due to power issues in September 2016 [101]. The solutions produced there-
after use data from only one accelerometer for correcting the non-conservative forces [101]. As this affects roughly one
sixteenth of the total epochs, we believe the influence of this error increase is minimal. The accelerometer was briefly
turned back on in May 2017, allowing for the last two-accelerometer solution, as is clearly visible in Figure 4.8.

The bottom plot of Figure 4.8 shows that the errors in the Swarm field vary through time more substantially than their
GRACE counterparts. The Swarm errors in the beginning of the data set are roughly an order of magnitude larger than
the GRACE errors. Most authors agree that this is caused by increased ionospheric plasma irregularities during this time,
which are known to lead to satellite GPS signal loss (GPS blackouts). This error propagates into the derived gravity fields
[24, 86, 122]. Van den IJssel et al. [104] allow us to suggest that improved GPS receiver settings aboard the Swarm satellites
after 5 May 2015 also help improve the gravity solutions.

If one regards the period after ca. early 2016 as nominal performance, the error at the beginning of the time series are more
than twice the amplitude of the nominal errors. Moreover, almost half the Swarm time series (start to ca. 1/2016) have
errors that are larger than the errors in the period after 2016. This suggests that weighing the observations is particularly
important when performing a regression of the Swarm data. We assess this by comparing trend results of an unweighted
and weighted least squares regression of the Swarm data. We truncated the fields at lmax = 13. We will motivate this
choice in the section hereafter.

Figure 4.9 shows the results of this comparison. It appears that weighing the observations in the least squares regression
has a negligible impact on the trend result from GRACE but brings the results from Swarm substantially closer to GRACE.
The RMS of the trend residual in the area where the GIA-induced trend is dominant,∆(G I A), (see Section 3.5) equals 0.2667
µGal a−1 for the unweighted regression and 0.1189 µGal a−1 for the weighted regression. We conclude that applying a
weighted least squares regression, and not an unweighted one, is particularly important for the Swarm-derived fields,
as their errors vary substantially through time (i.e., the observations show heteroskedasticity). Unless noted otherwise,
all regressions hereafter are computed via weighted least squares regression, using errors computed via the method in
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Figure 4.8: Temporal distribution of errors of the GRACE CSR RL06 fields and the Swarm fields. Markers in the top plot indicate individual
fields, to illustrate the data gaps in GRACE. This figure shows latitude-weighted global means of the errors as computed via the method
in Section 2.6.1. The middle and bottom panel show the same data as the top panel, only relative to their respective means. NB: time
axis in the top plot is set to start in 2009 to increase the readability of the figure - the middle panel shows the full GRACE time series.
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Figure 4.9: Trends computed from GRACE CSR RL06 (left panels), and Swarm fields (right panels). All fields are truncated to lmax = 13.
The top row uses an unweighted least squares approach, and the middle row uses a weighted least squares approach, with weights
derived via the method in Section 2.6.1. The bottom row shows the residual trend after subtracting the Swarm trend from the GRACE
trend for unweighted regression (bottom left) vs. weighted regression (bottom right). NB: ∆(G I A) is defined in Equation 3.7. NB: red
ellipse indicates the area where the GIA-induced trend is dominant, see Section 3.5.
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Figure 4.10: Degree correlation between GRACE CSR RL06 and the Swarm fields. Solid black line indicates the arithmetic mean of the
degree correlation of the months July, August and September 2015, February and July 2016, and May 2017, and grey lines indicate the
individual months. Dashed line indicates the 95% confidence level.

Section 2.6.1.

4.3. Noise reduction

The following section shows and discusses results of the noise reduction approaches described in Section 2.4. First, we
will do another generalized comparison of the GRACE- and Swarm-derived gravity fields to find a general starting point for
the configuration of the noise reduction routines. Then, we simplify the problem to a few key metrics to derive tentative
conclusions about the effects of truncating or Gaussian filtering the fields. Finally, we will dive deeper into the full spatial
representations of the truncated and filtered geopotential solutions.

4.3.1. Choosing a starting point

From Figure 2.2 in Section 2.4 showed that simply expanding the Swarm-derived Stokes coefficients via Equation 2.3 and
plotting the results on a map will most likely not yield workable results, as the noise in the higher degrees overpowers the
true signal in the lower degrees. Before examining the fields, we need to reduce the influence of high-degree noise, which
we will do via either truncation or Gaussian filtering.

To complement the analysis in Figure 2.1 on page 10, we look at the degree correlation between a selection of GRACE
and Swarm epochs to determine a starting point for the values of the truncation and Gaussian filtering parameters. The
epochs are selected on basis of three criteria aimed at finding an equal comparison of nominal performance. First, the
epochs of GRACE and Swarm must be derived from data collected during the same time period. Especially near the end
of the GRACE mission the fields do not always cover exactly 1 month [102]. Second, we want months with normal levels
of ionospheric activity, as increased ionospheric activity leads to a deterioration of the Swarm-derived fields [e.g. 86, 122].
Finally, we select months where GRACE had two functioning accelerometers (i.e., before September 2016 or May 2017),
as the single-accelerometer fields show a slight deterioration [102]. We have chosen July, August and September 2015,
February and July 2016, and May 2017. Similar to the approach in Section 2.4, we subtract the GGM05C static gravity
model [70] before computing the degree correlation to focus our analysis on the time-variable part of the geopotential
solutions.

Figure 4.10 shows a plot of the degree correlation between GRACE CSR RL06 and the Swarm fields of these 5 months.
As the goal of this experiment is not to study individual months, but to get a feeling of the correlation between GRACE
and Swarm as a whole, we are primarily interested in the mean degree correlation, which is shown in black. We see that
the correlation is above 0.7 up to degree 10, but decreases sharply after degree 12. The correlation is significant at a 95%
confidence level through degrees 13. From degree 19 on the correlation is under 0.2. We conclude that we will likely
find good agreement between GRACE and Swarm through degree 13. This is in line with the conclusion of other authors
[10, 24].

Note that there is no perfect test to determine to what degree the Stokes coefficient of a particular field contain true signal,
and at what degree they are mostly noise. However, from this experiment we learn that the coefficients above degree 20
are likely to be dominated by noise. Together with conclusions we derived from Figure 2.2 we can now argue that the
region between degree 10 - 20 are worth examining in terms of Gaussian filter and truncation configurations.
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4.3.2. Signal-to-noise ratio

The most intuitive way of assessing the effects of truncation and/or Gaussian filtering on the trends derived from the
gravity field time series would be to make spatial maps of the trend in the expanded Stokes coefficients, and compare
those visually. However, it is hard to precisely quantify the effects via comparison of spatial maps. For this reason, we will
first reduce the maps of the expanded Stokes coefficient trends to two key metrics: the latitude-weighted mean trend er-
ror and the latitude weighted gravity trend, both computed in the region that is shown in Figure 3.8 (Section 3.5 described
how the limits of this region are found). We have chosen these metrics as the purpose of the truncation or Gaussian filter-
ing is to reduce the noise, while leaving the true geophysical signal untouched as much as possible. Reducing each map
of the results to two numbers greatly aids the comparison. We compute the trend via weighted least squares regression of
the model in Equation 4.1, with weights as computed via the method in Section 2.6.1. We use all available data, i.e., April
2002 to June 2016 for GRACE and December 2013 to March 2019 for Swarm.

We compute the two aforementioned metrics from the GRACE and Swarm fields truncated to a maximum degree that
decreases from 20 to 8. The red lines Figure 4.11 show the results of these experiments, where the top left plot shows the
latitude-weighted mean gravity trend in the GIA-region (i.e., ˙̄g (G I A) as defined in Section 3.5), and top right plots shows
the latitude-weighted mean trend error. Swarm is shown as a solid line and GRACE is shown as a dash-dotted line. We
have also included the gravity trend from the ICE-6G_D GIA model of Peltier et al. [61] in the analysis (shown as dashed
lines). For conciseness sake we include only one GIA model. Next, we repeat the experiment, but apply a Gaussian filter
instead of truncation. We choose filter half-widths that that correspond to the maximum degrees chosen for the last
experiment (20 to 8). Equation 2.9 describes how the degree number and filter half width are related. The black lines
Figure 4.11 show the results of these Gaussian filtering experiments. Finally, both bottom plots in Figure 4.11 show the
signal-to-noise ratio (SNR) of the maximum trend in the GIA region, which is defined as the square of the signal (i.e., top
right plot squared), divided by the square of the error (i.e., top left plot squared). As the SNR results span ca. 5 orders
of magnitude they are spread across two graphs, where the left panel shows Swarm and the right panel shows GRACE.
Again, the red line indicates the SNR for various lmax of the fields, and the black line indicates various Gaussian filter half
widths. Note that the red axes in Figure 4.11, indicating the truncation degree, are linear but the black axes indicating the
Gaussian filter radius correspond to the red axes via the inverse relation in Equation 2.9.

All graphs in Figure 4.11 should be interpreted carefully, as we have reduced a complete expansion of a series of Stokes
coefficients to just a few data points. For this reason we only aim to derive a tentative direction, and not a definitive
conclusion, in terms of truncation and filtering configuration for our next section, where we will look at the complete
spatial map.

The GRACE-derived ˙̄g (G I A) (top left in Figure 4.11) is barely affected by truncation until lmax = 12, after which we see
an accelerating decrease in amplitude. The trends from the GIA model show a similar behavior, albeit with a less abrupt
drop. The signal attenuation of the Gaussian filter (the distance between the black and red line can be interpreted as
such) is clearly visible in the satellite data, but appears to be limited in the GIA model case. As the filter radius increases,
˙̄g (G I A) decreases at an increasing rate. For Swarm, we see a similar behavior as far as the Gaussian filter. When we look
at truncation of the Swarm fields, we see a rather erratic behavior of ˙̄g (G I A) for truncation with lmax > 15. We argue that
this is caused by spurious trend results due to increased noise levels in the higher degrees. The amplitude of the Swarm-
derived trend is always higher than for GRACE, and is closest to GRACE for maximum degrees 11, 12, and 15. The flat
red line in the top left plot suggest that degrees > 12 add little to the trend derived from the GRACE fields, although the
results of the GIA model suggest that this limit lies slightly higher, as ca. degree 16. For the Swarm fields the opposite is
true, which suggests that this increase in magnitude of the trend derived from the Swarm fields is caused by noise in the
degrees > 12.

The top right panel in Figure 4.11 shows that the trend error is ca. two orders of magnitude larger for Swarm than for
GRACE for lmax = 20 or a corresponding Gaussian filter, and that this decreases to ca. one order of magnitude for lmax = 8
or a corresponding Gaussian filter. For GRACE, the trend error shows similar response to lowering the maximum degree
truncation or increasing the half width of the Gaussian filter show a similar decrease in trend error as the field is truncated
to a lower maximum degree or if the filter half-width is increased. Gaussian filtering appear to lead to a lower trend error
than truncation at corresponding rGauss and lmax . For Swarm, truncation leads to a lower trend error than Gaussian
filtering for lmax > 10. is a more effective means of noise reduction than Gaussian filtering until degree 10. As the error in
the Swarm fields is substantially higher than the errors in the GRACE fields, and as we are expecting to use the fields at a
higher spatial resolution than lmax = 10, we conclude that this experiment suggests that truncation is a more appropriate
method of noise reduction for this study.

The highest SNR (bottom plots in Figure 4.11) differs for both data sets and both noise reduction methods. For truncation,
the GRACE SNR maximum is at lmax = 12, whereas for Swarm this is at lmax = 9. For the Gaussian filter, the Swarm
SNR increased close to exponentially for increasing filter half width. For GRACE, there is a maximum SNR for 770 km.
Truncation yields a SNR that is ca. one order of magnitude higher for both data sets, for all lmax or corresponding rGauss .
We conclude that truncation is likely to be the more appropriate choice for this study, as heavy noise reduction is required
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Figure 4.11: Top left: the effect of truncation (red line) and Gaussian filtering (black line) on the latitude-weighted mean gravity trend
in the Laurentian GIA region, computed from the Swarm gravity fields, GRACE CSR RL06, or the ICE-6G_D GIA model of Peltier et al.
[61]. Top right: the effect of truncation (red line) and Gaussian filtering (black line) on the latitude-weighted mean of the trend error in
the Laurentian GIA region, computed from the Swarm gravity fields and GRACE CSR RL06. Bottom: signal-to-noise ratio of maximum
gravity trend in GIA region for various truncation and Gaussian filtering configurations of the Swarm fields (bottom left) and GRACE CSR
RL06 (bottom right).
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to make the Swarm fields usable for geophysical study. This does mean that the spatial resolution of the fields is reduced,
and that any conclusion that we find regarding a continuity between GRACE and Swarm will be limited to the coefficients
not truncated.

4.3.3. Spatial comparison

In Section 4.3.2 we simplified the problem at hand to two metrics, one concerning the error and one concerning the signal
of interest, and deduced that truncating the fields to ca. degree 12-15 should allow us to optimally reduce gravity field
noise. Before making a final decision regarding noise reduction method and parameter configuration, we will compare
spatial maps of the Stokes coefficient trends derived from the GRACE and Swarm gravity field in this section. We will focus
on the latitude and longitude domains [35◦N, 75◦N] and [-120◦W, -50◦W], as we know the North American GIA-induced
gravity trend is most pronounced here. The data and trend computation method are all as outlined in the first paragraph
of Section 4.3.2.

The spatial maps are shown in Figure 4.12. Moving from lmax = 15 to lmax = 12, we see that there is only minimal change
in the spatial distribution and magnitude of the gravity trend observed by GRACE. The only observable change is a slight
increase in the north-south dimension of the positive trend anomaly around Hudson Bay, and a decrease in its east-west
dimension. For Swarm, we see much more effects of decreasing lmax from 15 to 12. For lmax = 15 there are two peaks in
the positive trend anomaly, one on each side of Hudson Bay. This pattern in somewhat reminiscent of the double bulls eye
pattern of the Laurentian GIA-induced gravity trend that is observed in GRACE solutions truncated to a higher degree [76]
or in results from GIA models [61]. The differences in spatial patterns of the lmax = 13 and lmax = 12 are minimal, both
in magnitude and in spatial distribution. The latitude-weighted RMS of the residual trend between GRACE and Swarm,
∆(G I A), (see Section 3.5) equals 0.1226 µGal a−1, 0.1567 µGal a−1, 0.1189 µGal a−1, and 0.2101 µGal a−1 for respectively
lmax = 15,14,13,12. One could be inclined to think this means lmax = 15 yields almost as good as an agreement between
GRACE and Swarm as lmax = 13, but Figure 4.12 clearly shows a discrepancy in spatial distribution of the trend between
GRACE and Swarm for this truncation setting. The fact that the same setting yields a low ∆(G I A) illustrates how limiting
an analysis to a single number can lead to false conclusions, i.e., why we choose to show both the spatial maps and a
quantitative analysis such as the ∆(G I A) or the results in Section 4.3.2. We conclude that lmax = 13 is the optimal setting
to achieve agreement between the spatial distributions of the gravity trend observations of the two satellite missions, and
truncate as little information from the field as possible.

Section 4.3.2 shows truncation leads to a higher SNR in both GRACE and Swarm, compared to Gaussian filtering. Nonethe-
less, this increased SNR comes at the price of a reduced spatial resolution, and as such Gaussian filtering remains a pop-
ular noise reduction approach in the scientific community. For completeness sake we also present the results of applying
a Gaussian filter to the Swarm-derived trends. First, we truncate the GRACE fields to degree 40, to match the Swarm
fields. The filter half width settings are chosen so that they roughly correspond to our choices for lmax in Figure 4.12, but
also cover filter half widths common in literature [24, 46]. We decide on 500, 668, 716, and 835 km, which corresponds
to degrees 20, 15, 14, 12, respectively. Finally, we compute the gravity trend via the same method as in the truncation
experiment.

Figure 4.13 shows the gravity trends from GRACE and Swarm after applying the Gaussian filter. For GRACE, we see that
the signal attenuation of Gaussian filtering becomes very apparent when we compare Figure 4.12 and Figure 4.13. ∆(G I A)

equals 2.763 µGal a−1, 0.2671 µGal a−1, 0.1864 µGal a−1, and 0.1299 µGal a−1 for respectively 500, 668, 716, and 835 km
half width settings. The∆(G I A) for rGauss = 835 km comes close to the∆(G I A) for lmax = 13 we found in the last paragraph
(= 0.1189 µGal a−1). Nonetheless, the clear discrepancy between GRACE and Swarm in spatial distribution of the trend
shown in Figure 4.13 leads us to conclude that the Swarm trend results are still substantially affected by high-degree noise,
which makes Gaussian filtering a less appropriate approach for this study than truncation.

Finally, we conclude by taking into account the findings so far and by comparing the GRACE- and Swarm-derived trend in
Figure 4.12 and Figure 4.13 that truncation yields better agreement between the trend observations of GRACE and Swarm.
We keep our earlier conclusion of applying truncation to lmax = 13 as a method of noise reduction. We apply the same
processing to GRACE and Swarm, even though the GRACE data contains less noise than the Swarm data, to achieve an
equal comparison.

4.4. Comparing Swarm to a longer time series of GPS-derived solutions

Before attempting to isolate the GIA-induced component from the gravity trends that we derived in Section 4.3, we will
apply the methodology used to far to a second time series of GPS-derived gravity fields. We use the GeoQ fields that were
introduced in Section C.

We motivate our substitution of the GeoQ fields for the Swarm fields in this experiment by studying the degree correlation
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Figure 4.12: Gravity trend computed from GRACE CSR RL06 (covering 4/2002 - 6/2017) or Swarm fields (covering 12/2013 - 3/2019) via
weighted least squares regression of a bias, trend, and (semi-)annual component, for fields truncated to a maximum degree of 15, 14, 13,
or 12.
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Figure 4.13: Gravity trend computed GRACE CSR RL06 (covering 4/2002 - 6/2017) or Swarm fields (covering 12/2013 - 3/2019) via least
squares regression of a bias, trend, and (semi-)annual component, for fields filtered with a Gaussian filter with a 500, 668, 716, or 835 km
radius.
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Figure 4.14: Degree correlation between the Swarm fields and the GeoQ fields. black line indicates the arithmetic mean of the degree cor-
relation of the months July to December 2017, and grey lines indicate the individual months. Dashed line indicates the 95% confidence
level.

of the time-variable part of the gravity fields again (i.e., degree correlation after removing a static model). The experiment
shown in Figure 4.10, which compared GRACE and Swarm, followed a similar approach. For the comparison of Swarm
and GeoQ in this section we again take the mean correlation coefficients of months where we determine that the fields
show nominal performance. Here, we apply the additional constraint of choosing months where the GeoQ fields are
free of GRACE GPS position observations. We use all months from July 2017 to December 2018. Figure 4.14 shows that for
degrees 2-10 the correlation between Swarm and GeoQ is high (>0.8). The only exception is degree 3, where the decreased
correlations likely is due to the SLR information in the lower degree coefficients of the GeoQ fields. For degrees 11-13, the
correlation decreases but remains significant throughout the entire degree range. Be careful in comparing Figure 4.14 to
Figure 4.10, as the first compares Swarm and GeoQ (which we argue and show are very similar as Swarm dominates the
GeoQ epochs that we use), whereas the second compares GRACE and Swarm (two independent data sets). We conclude
that the GeoQ and Swarm field are sufficiently similar to allow substitution of the GeoQ fields for the Swarm fields for
this experiment. This conclusion needs the qualification that we have based it on only a part of the GeoQ solution, even
though we will be using the entire data set for this experiment.

4.4.1. GeoQ-derived observations of the GIA-induced gravity trend

The following section shows gravity trends derived from the GeoQ fields. We use the regression model described in Sec-
tion 4.1 with uncertainties computed via the method described in Section 2.6.1. The GeoQ uncertainties are very similar
to Swarm when it comes to their spatial, spectral, and probability distribution. We provide a brief analysis of the spatial,
spectral, and probability distribution of the GeoQ uncertainties in Appendix C. We use all 192 available monthly epochs
of the GeoQ time series, which means the GeoQ time series now contains GRACE GPS position observations and GRACE
accelerometer data (see also Section C). This, and the fact that GeoQ and the combined Swarm fields use different pro-
cessing approaches (again see Section C) means we should be careful in extending any conclusion we derive from the
GeoQ fields to GRACE. Similar to what was shown for GRACE and Swarm in Figure 4.12, we examine the gravity trend in
North America for various lmax . For conciseness sake we will not show the results of various Gaussian filter configura-
tions, but note that Weigelt et al. [117] recommends using a 750 km half width. In the second part of this section we repeat
this analysis for a subset of the GeoQ time series that is equal in length to Swarm.

Figure 4.15 compares the GeoQ-derived trends to GRACE-derived trends for equal, arbitrarily chosen lmax . Compared
to GRACE (i.e., in Equation 3.7 replace Swarm with GeoQ), ∆(G I A) equals 0.0567, 0.0119, 0.0142, and 0.0125 µGal a−1, for
respectively lmax = 25,22,19,16. Aiming to be as consequent as possible we still use the same area to compute the RMS
(i.e., Figure 3.8), even though we now analyze higher spatial resolution solutions. Note from Figure 4.15 and the ∆(G I A)

how, even for lmax = 22, both the spatial distribution and the amplitude of the gravity trend shows good agreement with
GRACE. For lmax = 25 the trend peak east of Hudson Bay appear to be overestimated by GeoQ w.r.t. GRACE. Of course,
a word of warning is warranted for the interpretation of these results as the two data sets in this experiment are not
independent. Additionally, the data from which we derived the trends in Figure 4.15 covers mostly the same time period
(4/2002 - 6/2017 for GRACE, 1/2003 - 12/2018 for GeoQ), which means any non-stationary inter-annual variability of the
gravity field (e.g., hydrology) will affect both trend estimates in mostly the same way.

Figure 4.16 shows the trend estimates for the subset of GeoQ fields equal to the length of the Swarm fields. We use Septem-
ber 2013 through December 2018. As expected, we had to apply more rigorous truncation to reduce the influence from
noise and find agreement between GeoQ and GRACE. The lmax at which we can recognize the positive trend anomaly
around Hudson Bay are similar to the results for Swarm. Note that Figure 4.12 shows GRACE- and Swarm-derived for the
same lmax . The GeoQ trends differ more from GRACE than Swarm does, both when it comes to the magnitude of the
trend component and the spatial distribution thereof. Note how the positive trend anomaly around Hudson Bay appears
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Figure 4.15: Gravity trend computed from GRACE CSR RL06 (covering 4/2002 - 6/2017) or the GeoQ multi-satellite fields (covering 1/2003
- 12/2018) via weighted least squares regression of a bias, trend, and (semi-)annual component, for fields truncated at various maximum
degrees.
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Figure 4.16: Gravity trend computed the GeoQ multi-satellite fields (covering 9/2013 - 12/2018) via weighted least squares regression
of a bias, trend, and (semi-)annual component, for fields truncated at various maximum degrees. NB: Figure 4.12 shows GRACE- and
Swarm-derived trends for identical processing steps.

to be shifted to the north-east w.r.t. GRACE or Swarm. For respectively lmax = 15,14,13,12, we compute ∆(G I A) (again
w.r.t. GRACE data 4/2002-6/2017, i.e., the comparison performed for Swarm in Section 4.3.3). These values are listed in
Table 4.2. Also given in this table are the values for ġ (G I A) and the maximum gravity trend ġ in the GIA-region (as in Figure
3.8). First, note how ∆(G I A) is larger for GeoQ, except when lmax = 12. Also, note how the values for ġ (G I A) of GeoQ and
Swarm are rather close, especially for lmax = 14,13. We argue that this is only because the peak of the GeoQ-observed
trend has shifted and we still use the same definition of the GIA-region. The fact that the maximum ġ (bottom row Table
4.2) are all substantially higher than those of GRACE supports this explanation. For every lmax shown in the table the
maximum ġ of Swarm is closer to GRACE than GeoQ.

In summary, we have seen that a 64 mo subset of the GeoQ fields yields roughly the same trend results as the Swarm
fields, albeit that Swarm is closer to GRACE in trend amplitude and spatial distribution. However, when we use the full
192 mo GeoQ data set, we find that we can derive trends that align with GRACE at much higher spatial resolutions, up
to degree 22 or ca. 900 km. We conclude that trends derived from a longer (i.e., 192 mo vs. 64 mo) GeoQ time series
agree with GRACE up to a higher spatial resolution. This suggests the influence of noise (in the higher degrees) reduces
for longer time series. When we extend this conclusion to Swarm, we can make the careful prediction that for a future,
longer time series of combined Swarm fields the maximum usable spatial resolution for gravity trends (that we now find

GeoQ (9/2013-12/2018) Swarm (12/2013-3/2019) GRACE (4/2002-6/2017)

lmax 15 14 13 12 15 14 13 12 15 14 13 12
∆(G I A) w.r.t.
GRACE

0.3581 0.2089 0.1803 0.1646 0.1226 0.1567 0.1189 0.2101 n/a n/a n/a n/a

ġ (G I A) 1.987 1.751 1.649 1.659 1.716 1.761 1.691 1.584 1.528 1.523 1.533 1.510
Maximum ġ
in GIA-region

3.175 2.566 2.617 2.555 2.330 2.333 2.398 2.327 2.169 2.142 2.158 2.133

NB: all units are µGal a−1.

Table 4.2: Amplitude metrics of the Hudson Bay gravity trend computed from GeoQ, Swarm, and GRACE. NB: ∆(G I A) and ġ (G I A) are as
defined in Section 3.5.
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Figure 4.17: Degree RMS difference of the Swarm fields (black line) and the GeoQ multi-satellite fields (red line) w.r.t. the GGM05G static
gravity model during the GRACE gap (July 2017 to May 2018).

equals lmax = 13 ∼= ca.1500 km) will likely increase.

4.4.2. Comparing Swarm and GeoQ during the GRACE gap

Much of the current interest in GPS-derived geopotential solutions is due to fact that they are likely to be (part of) the
solution to the GRACE gap. However, it is very likely that the majority of those interested in an Earth mass transport
product will resort to the GRACE fields for the period April 2002 to June 2017, and (in the near future) to GRACE-FO fields
for the period after June 2018. To a certain extent, this makes the bulk of the GPS-derived geopotential solutions obsolete
in the near future. Of course, there are some research areas (e.g, very low degree Stokes coefficients) where observations
from GPS (or SLR) seem to perform better than the ll-SST results of GRACE, and there will always be studies with a specific
research interest in GPS-derived geopotential solutions, but we will leave such highly specific applications out of account
for now.

As such, it really only makes sense to compare the Swarm fields and the multi-satellite solutions during the specific time
period of the GRACE gap (July 2017 to May 2018). Additionally, this yields a fairer comparison between the two as GeoQ
does not contain any position observations or accelerometer data of the GRACE satellites. In light of the research goal
of Weigelt et al. [116, 117] of computing the highest quality geopotential solutions free of ll-SST information including
GRACE GPS and accelerometer data makes sense, but it does give a somewhat biased view to anyone expecting that
solutions of this quality will be available when no GRACE data is available.

The top panel of Figure 4.17 shows the degree difference of the Swarm fields and the GeoQ multi-satellite fields w.r.t. the
GGM05G static gravity fields model during the GRACE gap. This is similar for what we showed for GRACE and Swarm
in Figure 2.2, but this time we take the arithmetic mean over all the epochs in the GRACE gap (July 2017 - May 2018).
To illustrate the fact that the GeoQ and Swarm solutions contain similar but not identical information, Figure 4.17 also
shows the degree correlation for the GRACE gap epochs. The degree difference discrepancies between Swarm and GeoQ
between degrees 2 to 6 are hard to interpret due to the fact that the GeoQ solutions also contain information derived
from SLR observations in those degrees. Similarly, the differences we see for degrees 7 to ca. 14 can both be caused by
increased noise or by an increased magnitude in the time-variable part of the gravity field that Swarm and GeoQ both
observe. We know those degrees contain predominantly real geophysical signal for both solutions, but we do not know
which solution is more accurate. Instead, the only valid conclusion we can draw from the degree RMS graph in Figure
4.17 concerns the higher degrees, where we see a small but consistent difference between Swarm and GeoQ that suggests
the GeoQ solutions contain more noise in those degrees. Of course, this conclusion needs the qualification that most of
these degrees have a signal-to-noise ratio below unity [23], which means the signal is unlikely to be usable for geophysical
studies. Nonetheless, the consistently lower noise does suggest that the method of combining Swarm fields derived via
various inversion procedures is a more effective approach than using position observations of other satellites than the
Swarm satellites and only using the accelerations approach.
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In conclusion, the results of the last section suggests that the length of a (GPS-derived) time series of geopotential so-
lutions has a substantial effect on the gravity trends that can be derived. Velicogna et al. [110] suggest the same applies
to GRACE, which the authors found when using GRACE data to quantify the acceleration of high-latitude ice loss pro-
cesses. Results from our experiments suggest that longer time series provide an opportunity to derive credible trends up
to a higher spatial resolution. Also, we confirm the findings of Arnold et al. [4], who suggest including position observa-
tions from other satellites into the solutions helps mitigate the errors due to the Swarm system’s sensitivity to ionospheric
plasma gradients. Nonetheless, we have also shown that in the period where there are no other geopotential products
available that can offer the spatial resolution of GPS-derived fields (i.e., the GRACE gap), the Swarm solutions show a
small but consistent improvement in high degree noise w.r.t. the GeoQ solutions. Any added benefit that the GeoQ fields
offer due to the information from SLR observations in the very low degree coefficients can be extended to Swarm by apply-
ing a similar methodology to combine hl-SST and SLR observations in a future study. Additionally, we suggests combining
the method de Teixeira da Encarnação et al. [23] (i.e., applying four different inversion procedures and combining solu-
tions) and the method of Weigelt et al. [116] (i.e., including other orbiters than Swarm and combining with SLR) as focus
of a second future study. We end this section by declaring that in the current configuration the Swarm solutions pose the
better solution to bridge the GRACE gap.

4.5. Trend variability

The following section covers the results of the trend variability experiment described in Section 3.1. We will first look at
the GRACE data by itself. As this data is substantially less noisy (see, e.g., Figure 2.2 or 4.11) than the Swarm-derived fields
and has a longer time coverage, it provides us the best chance of deriving any conclusions about the true trend variability
in the long term. We will then attempt to extend these conclusions to the Swarm data by comparing GRACE to the GeoQ
fields again. We use the GeoQ fields and not the Swarm fields as the length of the entire time series greatly affects our
trend variability experiment. For example, if we use a window length of 5 years, the GRACE or GeoQ data would yield ca.
3 non-overlapping subsets, whereas 5-year subsets from Swarm would approximately comprise the entire Swarm data
set. Figure 4.9 showed the importance of using weighted regression, especially in the case of the Swarm data. For the
trend variability experiments we therefore also use weighted least squares regression. The weights are derived once for
the entire time series, as described in Section 2.6.1.

4.5.1. Variability of mean GIA-region trend

For a more concise analysis, we will first apply the trend variability experiment and compute the latitude-weighted mean
trend of the area in Figure 3.8 (NB: same area as used for Figure 4.11 or ∆(G I A)). We use a 3-, 5-, or 7.5-year window
length. Note that this means having 5, 3, and 2 independent (i.e., free of overlap) time windows, respectively. Also note
how 3 years corresponds to the experiment of Van der Wal et al. [106] and 5 years corresponds roughly to the length of
the Swarm data set. Figure 4.18 shows the results. The top panel shows the results of using GRACE data and lmax = 60,
the middle panels shows GRACE data and lmax = 13 and the bottom panel shows GeoQ data and lmax = 13. To make
sure our results are not affected by short-wavelength noise in the lmax = 60 case, we apply a 300 km radius Gaussian
filter. For equal comparison we do the same to the other two panels. The data points indicated by the lines are time
stamped with the mean of the time stamps of the earliest and latest satellite epochs used in that particular window. E.g.,
for a continuous data set of monthly epochs, a data point on the 5-year window line marked mapped to 1 January 2010
in Figure 4.18 would be computed from satellite data of 1 July 2007 through 1 June 2012. For the same data set, a data
point of the 7.5-year window line mapped to 1 September 2014 in Figure 4.18 would be computed from satellite data of
1 January 2010 through 1 June 2017. Note how the time axes of the three plots are equal. Aforementioned time stamping
convention thus means that GRACE and GeoQ data points that are on the same vertical line in Figure 4.18 use the same
start and end date for the window from which the mean trend is computed for the particular data point.

The most striking conclusion from Figure 4.18 is that the trend variability is very clearly a function of the window length,
and that a longer window length reduced the trend variability considerably for all data sets and spatial resolutions. Even
though we use weighted averages and not trend maxima, we find similar differences between the smallest and largest
trend as Van der Wal et al. [106] for a 3-year window. Interestingly, this difference is almost equal for the GRACE lmax = 60
and the lmax = 13 case (0.756µGal a−1 and 0.736µGal a−1, respectively). In fact, when we move to longer window lengths,
we find that the difference between the smallest and the largest trend in any window is slightly higher for the lmax = 13
case. For a 5-year window we find 0.235 µGal a−1 vs. 0.329 µGal a−1 and for a 7.5-year window we find 0.196 µGal a−1

vs. 0.207 µGal a−1, both using lmax = 60 and lmax = 13, respectively. For the lmax = 13 GeoQ data these numbers are
substantially higher at 1.62 µGal a−1, 0.776 µGal a−1, and 0.410 µGal a−1 for respectively a 3-, 5-, and 7.5-year window.

Note how the lines of the middle and bottom panels in Figure 4.18 appear to have a positive slope, especially in the 5-
and 7.5-year window case. This would suggest that the gravity trend in the Hudson Bay area is accelerating (or at least
the trend of the coefficients up to degree 13), which would undermine our idea of extrapolating the GRACE observations
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Figure 4.18: Time evolution of latitude-weighted mean gravity trend in Hudson Bay area as derived from GRACE CSR RL06, (lmax = 60;
top panel and lmax = 13; middle panel) and GeoQ (lmax = 13; bottom panel). In all cases a 300 km radius Gaussian filter was applied.
All panels and all lines use the same area to compute the mean trend from, that is limited by a >+1.0 µGal a−1 gravity trend in the entire
GRACE CSR RL06 data set with lmax = 13, i.e., the area in Figure 3.8.
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Figure 4.19: Trend variability analysis of the GRACE CSR RL06 and the GeoQ GPS-derived satellite fields. The fields are truncated to
lmax = 13, and we use a moving window with a length of 5.25 years to estimate the trends. Red ellipse indicates the area where the
GIA-induced gravity trend is dominant, see Section 3.5. NB: color scale is not the same as in Figure 4.20, as increasing the window length
decreases trend variability.

of this trend into the Swarm time period. Also, for the first half of the data set, the 3-year window line appears to follow
a periodic behavior with a period of ca. 3 year. Taking into account the context of this study and the limited amount of
available data, we argue that both these conclusions need strong qualification. First, the trend variability seen in the 3-
and 5-year window plots, regardless of lmax , is likely well within the uncertainty limits of the Swarm data. In that case, any
time-variability of the gravity trend would be unlikely to lead to a statistically significant discrepancy between GRACE-
and Swarm-derived observations. Second, we argue that the data set at hand is too short to derive any conclusions
about the long-term variability (be it periodicity or acceleration) of data derivatives such as the trend. To derive such
conclusions, longer time series are needed. Third, keep in mind that the windows we use to compute the trends from in
this experiment are highly overlapping. This makes it hard to apply any inferential analysis that would allow us to derive
conclusions about the underlying processes that hold beyond the time span of the current data at hand. We conclude
that the trend variability is negatively correlated to the length of the data set, and that the spatial resolution of the data
has limited effect of the trend variability in this experiment where we use the latitude-weighted mean trends.

4.5.2. Comparing GRACE to GPS-derived gravity fields

In the second part of this section we assess the trend variability in the spatial domain, as described in Section 3.1. We
trim the GeoQ fields to the length of GRACE, but they do not completely overlap due to the later start date of the raw
GeoQ data (GRACE: 4/2002-6/2017 vs. GeoQ: 1/2003-3/2018). To align with how we plan to use the Swarm-derived fields
in this research, we have truncated all fields to lmax = 13. We have chosen a window length from which we estimate the
trends, roughly equal to the length of the Swarm time series (5.25 y). The left panels of Figure 4.19 show the results for
GRACE. Note that the areas of increased trend variability correlate to areas of known substantial inter-annual variation in
mass change. We see increased trend variability in the Amazon, where the year-to-year amplitude of the annual periodic
gravity component substantially varies [83]. Note the effects of non-stationary ice melt in Greenland [52] and Antarctica
[89]. Closer to our area of interest, we see influence from inter-annual surface hydrology variations in the North American
continent [106]. Interestingly, these variations seem to be minimal in the area where there is a substantial GIA-induced
gravity trend (red ellipse shows limits of Section 3.5). For the GeoQ fields (right panels of Figure 4.19) the trend variability
is substantially higher than for GRACE across the map. We interpret this as an effect of the increased noise levels in
the GeoQ fields (NB: lmax = 13 in this experiment). In fact, the noise levels in GeoQ are so high that they obscure the
trend variability due to surface hydrology variations in North America that we see GRACE. This leads us to conclude that
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Figure 4.20: Trend variability analysis of the Swarm fields and the GeoQ GPS-derived satellite fields. We trimmed the GeoQ fields to start
at September 2012 and end in December 2017, to match the length of the Swarm fields. The fields are truncated to lmax = 13, and we
use a moving window with a length of 2.5 years to estimate the trends. NB: color scale is not the same as in Figure 4.19, as decreasing the
window length increases trend variability. Red ellipse indicates the area where the GIA-induced gravity trend is dominant, see Section
3.5.

inter-annual hydrology variations will likely be retrievable from GPS-derived gravity fields to only a limited degree.

For our chosen configuration of lmax = 13 and a window length of 5.25 years, the variability of the trend signal around
Hudson Bay derived from GRACE is between 0.5-1 µGal a−1. The latitude-weighted mean variability of the area in the
red ellipse equals 0.6878 µGal a−1. For GeoQ this equals 2.258 µGal a−1, which is very close to the amplitude of the GIA-
induced trend of ca. 2 µGal a−1. Both the GRACE and GeoQ results seem high w.r.t. the results shown in Figure 4.18, but
keep in mind that we compared latitude-weighted mean values in that analysis, whereas we look at the difference between
the minimum and maximum of all windows here. To put this into perspective, we compute the latitude-weighted mean
of the ocean areas (defined as 1000 km offshore from coastlines in Figure 4.20) of the GRACE result, which equals 0.3368
µGal a−1. Comparing this to the RMS of the ocean area trend of 8.640×10−4 µGal a−1 (computed from the entire GRACE
time series) suggests that our experiment likely yields overestimated results. We argue that this is due to the fact that we
use the difference between the maximum and minimum trend as our result, which is likely very susceptible to outliers
even with the ad-hoc correction we applied (see Section 3.1). We conclude that this experiment gives interesting insights
into the spatial distribution of the trend variability, but likely overestimates its amplitude.

To better extend our conclusions to the Swarm fields, we repeat the experiment of Figure 4.19 using the Swarm fields and
an overlapping subset of the GeoQ fields. Due to the shorter length of the data at hands, we use a window length of 2.5 y
(this yields 2 independent subsets). Again, we truncate the fields to lmax = 13. Figure 4.20 shows that the trend variability
of Swarm and GeoQ is comparable, both in magnitude and in its spatial distribution. The latitude-weighted mean is
3.974 µGal a−1 for Swarm and 3.494 µGal a−1 for GeoQ. When compute this from only the ocean areas (again defined as
1000 km offshore), we find 3.981 µGal a−1 vs. 3.474 µGal a−1. We conclude that we should be careful in extending the
GeoQ-derived conclusions to the Swarm fields, as the Swarm fields appear to show a slightly higher trend variability.

4.6. Correcting for inter-annual hydrology variation

Section 3.2 described how inter-annual hydrology variations can obscure a GIA-induced gravity trend, and how we plan
to correct for this via results of the GLDAS-NOAH v2.1 model [74]. This section shows the corrections that we compute
and the GRACE- and Swarm-derived trends after applying the corrections. Figure 4.21 shows that the trends in TWS, as
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Figure 4.21: Top row: trends in the TWS, as computed from a spherical harmonics decomposition (lmax = 13) of GLDAS-NOAH results,
for the period covering the GRACE mission (left), and the Swarm mission (right). Values in the contour lines correspond to the gravity
rate in µGal a−1. Red ellipse indicates the area where the GIA-induced gravity trend is dominant, see Section 3.5. Bottom row: gravity
trend in GRACE CSR RL06 and the Swarm fields, both truncated to lmax = 13, after subtracting GLDAS trends on the top row.

computed from GLDAS, are very low in the GRACE period. The GIA-region latitude-weighted mean, ġ (G I A), (see Equation
3.5) equals -0.07860 µGal a−1. We suspect two factors influence the near-zero results in the top left plot of Figure 4.21.
First, these results argue in favor of a theory that was already postulated by, e.g., Van der Wal et al. [106] and Roy [76]:
most inter-annual hydrology variations reduce to zero over longer periods of time. Secondly, we argue that the low spatial
resolution that we use reduces the overall amplitude of the correction. Computing the GLDAS correction for a lmax = 60
GRACE trend (not shown) yields a ġ (G I A) of -0.09493 µGal a−1. Comparing the bottom left panel in Figure 4.21 to the
corresponding panel in Figure 4.12, we see that the influence of the GLDAS-based hydrology correction on the GRACE-
derived trend is minimal.

The GLDAS-derived TWS trends in the Swarm period (Figure 4.21 top right) are larger in amplitude than what we saw
for GRACE. ġ (G I A) equals 0.2423 µGal a−1 (0.3212 µGal a−1 in a hypothetical lmax = 60 case). The higher amplitude of
the TWS trend in the Swarm period w.r.t. GRACE makes sense in light of the first argument stated in the last paragraph.
Comparing Figure 4.21 to Figure 4.12, we see that the GLDAS-based correction does make a difference for the Swarm-
derived trend. We see that the positive trend anomaly centered around Hudson Bay is slightly decreased in magnitude.
Additionally, a negative trend anomaly at the edge of the map (ca. 60◦N; -120◦W) seems to increase in magnitude. How-
ever,∆(G I A) (see Equation 3.7) increases to 0.2707 µGal a−1, compared to 0.1189 µGal a−1 without the GLDAS correction.
While this is a discouraging result, it is in line with findings of various other authors who concluded that model-based
TWS trends are often not suited to isolate a GIA-induced trend [60, 77, 92, 106].

When interpreting the results of the GLDAS-based gravity trend correction, we account for the fact that our empirical
RMS-based correction for the irregularities in GLDAS TWS estimates described in Section 3.2.3 may fail to filter out all
erroneous grid points. In this case, the TWS trends in the Swarm period would be more affected than those in GRACE, as
the signal jumps all occurred around the middle of the Swarm period. This provides an additional explanation as to why
GLDAS-derived trends are especially hard to interpret in this study.

4.7. Correcting for leakage and ringing

In Section 3.3 explained how reconstructing a signal from a finite number of harmonics introduces ringing into the so-
lution when the signal has large gradients. The same section explained how ice mass loss will induce such undulations
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Figure 4.22: Far-left: gravity trend (4/2002 - 6/2017) computed from the GRACE CSR RL06 spherical harmonics solutions, with lmax = 13.
Middle-left: our proposed correction for the Greenland ice loss, computed from a mass rate estimate of Mouginot et al. [52] and using
the implementation of Sørensen et al. [90]. Middle-right: results of our mascon-based correction for Alaskan ice loss. Far-right: residual
GRACE trend after subtracting both corrections. NB: the color scale of these plots has been adjusted to highlight the ringing effects.

in the gravity trend domain. Figure 4.22 shows the ringing artefacts induced by ice mass loss. The far-left panel shows
the trend in the GRACE CSR RL06 spherical harmonics solutions, truncated to lmax = 13 as this is how we will be using
the Swarm data. We do not show this for the Swarm data as the ringing will be obscured by noise in those fields. By far
the strongest signal in the trend map of the GRACE data is the negative anomaly associated with ice melt in Greenland.
Note how the ringing artefacts form concentric circles around the Greenland trend anomaly. The positive circular artefact
closest to Greenland itself passes right through the middle of our area of interest around Hudson Bay. This suggests the
trend value we find in that area is an overestimation of the true gravity trend, as the results shown in the far-left panel
of Figure 4.22 are the sum of the ringing artefacts and the true signal. The middle-left panel of Figure 4.22 shows the
gravity trend computed from the estimate of mass loss during the GRACE period of Mouginot et al. [52] via the method
of Sørensen et al. [90]. Note how the spatial pattern of concentric circles agrees well with the left plot. The middle-right
panel of Figure 4.22 shows the correction we apply for long-wavelength leakage from the ice mass loss signal from Alaska.
Again, note the spatial pattern of concentric circles. Since the (spatial) magnitude of the Alaskan signal is smaller, it is
harder to discern the ringing artefacts induced by the Alaskan trend gradient from the GRACE data. The far-right panel
shows the residual trend after subtracting both corrections. Note how the rings around the Greenland ice mass loss signal
have reduced.

Figure 4.23 shows the amplitude and spatial distribution of the leakage corrections in our area of interest around Hudson
Bay. We see that the Greenland correction is ca. 0.2 µGal a−1 in the area where the GIA-induced trend in dominant (red
line in Figure 4.23, indicates limit of area shown in Figure 3.8). The magnitude of the Alaska correction is roughly an order
of magnitude lower. Compare the third row in Figure 4.23 to the lmax = 13 panels in Figure 4.12 to see the difference
between applying and not applying both the Greenland and Alaska correction. We see that the GRACE trend decreases
the most, going from ˙̂g (G I A) equals 1.533 µGal a−1 to 1.186 µGal a−1 (no correction vs. both corrections). For Swarm, this
equals 1.691 µGal a−1 and 1.372 µGal a−1, respectively (lmax = 13). Even though the amplitude of the correction is small,
it reduces the agreement between GRACE and Swarm in both trend amplitude and trend spatial distribution.

The bottom row of Figure 4.23, which shows the residual GRACE and Swarm trend after applying both corrections, verifies
that we have successfully removed most of the signal trend in Greenland and Alaska. The residual Alaskan signal in GRACE
and the Greenland signal in Swarm ≤ 0.5 µGal a−1. Conversely, it appears that there is more residual signal in Greenland
in the GRACE-derived gravity trend near the Greenland south-west coast, which could be explained by the homogeneity
of the correction (our modeled Greenland ice mass loss does not vary across the area shown on the right in Figure 3.6).
We know the true ice mass loss on the west coast has a higher amplitude than on the other parts of Greenland during the
GRACE period [52]. For Swarm, the residual trend could be related to noise in the gravity fields. If we look south of Alaska,
we see an alternating pattern of artefacts over the oceans in the Swarm map, which are likely noise. The residual Alaskan
signal that we see in the Swarm map seems to coincide with a trough of this alternating pattern.

When comparing the corrected GRACE- and Swarm-derived trends, only the amplitude of the differential correction will
be relevant. The∆(G I A) (see Equation 3.7) of the Greenland and Alaska corrections are very small at 1.230×10−3 µGal a−1

and 5.579×10−4 µGal a−1, respectively. This leads us to conclude that ringing will likely have a negligible impact on any
discrepancy between GRACE- and Swarm-derived trends.
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Figure 4.23: Magnitude of the ringing induced in the Hudson Bay area by mass change in Greenland (top panels) and Alaska (second
row), as computed from our correction methods, and the corrected GRACE- and Swarm-derived gravity trends (third and bottom row).
NB: the third row is a close-up of the bottom row. Red ellipse indicates the area where the GIA-induced gravity trend is dominant, see
Section 3.5. NB: Figure 4.12 shows the lmax = 13 trends without the corrections applied.
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Figure 4.24: Caption

4.8. Reducing very low degree coefficients

Section 3.7 discussed the degree correlation of the GRACE-derived gravity trend and the gravity trend as computed by the
ICE-6G_D GIA model of Peltier et al. [61] and the GIA model of A et al. [1]. Degrees ≤ 3 yielded no significant correlation
between GRACE trends and the GIA models. Sasgen et al. [79] suggests this is because of the ice melt in Antarctica, and
more importantly, that this long-wavelength signal affects the trend estimates in Laurentia.

This section presents the results of truncating the very low-degree coefficients or applying a high-pass Gaussian filter,
the latter as in Root et al. [75]. These methodology of this section is very much like the methods outlined in Section 2.4
(corresponding to results in Section 4.3), only now applied to the very low degrees instead of the high degrees. Note that
the reason why we apply the truncation or Gaussian filtering does differ between Section 2.4 and this section. In Section
2.4 we aim to reduce the influence from high-degree noise, whereas in this section we aim to reduce the influence of
non-GIA signals. From Figure 3.7 we determine the truncation setting lmi n = 4, where lmi n refers to the lowest degree
harmonic that is not truncated. Before showing the trend maps, we will first look at a generalized case like in Figure 4.11.
We will again show the latitude-weighted mean trend of the Hudson Bay area (i.e., ˙̄g (G I A), but instead of the error and
SNR we will plot the value for ∆(G I A) (see Equation 3.7).

Figure 4.24 shows the results of this experiment. Note how, generally speaking, reducing more coefficients (either by
truncation or filtering) tends to reduce the ∆(G I A). However, this is a trivial solution as it reduces the amplitude of the
entire trend signal. Also, one could be accused of cherry-picking if one chooses the cutoff point based on an analysis like
Figure 4.24. As such, we decide to aim for a conservative setting of which very low degrees to reduce. Rather than basing
our analysis on the results in Figure 4.24, we go back to Figure 3.7 and keep the truncation setting lmi n = 4. Note that this
is one degree lower (i.e., we keep more coefficients) than what Sasgen et al. [79] used.

We decide not to further pursue high-pass Gaussian filtering. Root et al. [75] successfully used this technique in the
Barents Sea, but note that the GIA-induced gravity trend there is concentrated in a much smaller area and of a much
smaller amplitude. From Root et al. [75, Figure 1a, Figure 1b] we estimate the positive GIA-induced trend anomaly in
the Barents Sea to be ca. <500 km in diameter, while this is >2000 km for the Hudson Bay trend anomaly (see, e.g.,
Figure 1.3). This makes it likely that our GIA-induced signal extends to lower SH degrees than the signal in the Barents
Sea. For amplitude, Root et al. [75] cites typical values of 0.1-0.2 µGal a−1 whereas we find >2 µGal a−1 (see, e.g., Figure
4.12). This makes it likely that our signal will dominate obscuring signals that would have to be filtered to retrieve the
Barents Sea GIA-induced trend. Finally, we argue that truncating instead of Gaussian filtering would aid the validity
of any conclusion we derive regarding the GRACE - Swarm continuity, as truncation leaves the remaining coefficients
completely untouched.

Figure 4.25 compares GRACE and Swarm trends derived from degrees 2-13 (we never use degree 1, see Section 2.1.5)
to trend derived from degrees 4-14. Note how high-pass truncating reduced the amplitude discrepancy of the observed
trends. ∆(G I A) reduces from 0.1189 µGal a−1 to 0.06290 µGal a−1. This is caused by both an increase in the amplitude
of the GRACE trend and a decrease in the Swarm (when comparing lmi n = 2 to lmi n = 4). We find ˙̄g (G I A) values of
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Figure 4.25: Left column: GRACE- and Swarm-derived gravity trend and residuals for lmax = 13 and lmi n = 2 (NB: degree 1 in not used
in this entire study, see Section 2.1.5). Right column: GRACE- and Swarm-derived gravity trend and residuals for lmax = 13 and lmi n = 4.
NB: lmi n denotes the lowest degree not reduced to zero.

1.5331 and 1.6911 µGal a−1 (GRACE vs. Swarm for lmi n = 2), and 1.6203 and 1.5730 µGal a−1 (GRACE vs. Swarm for
lmi n = 4). Postulating that GRACE and Swarm observe the exact same GIA-induced trend, this would suggest that any
long-wavelength leakage in degree 2 and 3 had a different amplitude in the GRACE period than in the Swarm period.

4.9. Analysis of the misfit between GRACE and Swarm

Section 4.3 explained why we argue that truncation to lmax = 13 is the optimal noise reduction approach for this study.
Section 4.8 presented the results of truncating the degree 2 and 3 coefficients from the GRACE and Swarm fields. This
decreased the ∆(G I A) to 0.06290 µGal a−1, where we concluded that this is due to the fact that the influence from (non-
stationary) long-wavelength leakage is reduced. In this section we present the results of a quantitative analysis of ∆(G I A)

in light of the observation uncertainties found in Section 4.2. This analysis based on the χ2 methodology as presented in
Section 3.5.2, and will show in what areas the discrepancy between GRACE and Swarm is statistically significant, where
we define significant as >2 Swarm trend standard errors.

We will execute this analysis for four scenarios. First, we take the lmax = 13, lmi n = 4 trend results. Second, we apply the
GLDAS-based hydrology correction of Section 4.6. Third, we will apply the undulations correction of Section 4.7. Fourth,
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Figure 4.26: χ2 statistic of the misfit between the trends computed from GRACE CSR RL06 and the Swarm fields, both truncated to
lmax = 13 and lmi n = 4. Ocean areas are masked to increase the readability of the plots. The top left panel has no further correction
applied. The top right panel shows the same, but with a correction for inter-annual hydrology variations based on the GLDAS-NOAH v2.1
model (see Section 3.2 and 4.6). The bottom left panel shows the same as the top left, but with a correction for undulation effects based
on the RL06m mascon solutions (see Section 3.3 and 4.7). The bottom right shows the same as the top left, but with both corrections
applied. NB: red line indicates the area where the GIA-induced gravity trend is dominant (see Section 3.5).

we apply both corrections. We have decided to use the errors of Swarm for σ in Equation 3.8. Section 4.2 shows that the
errors of GRACE are ca. a factor 20 lower. We assume the error of the ringing correction of Section 4.7 to be negligible, as
the magnitude of this correction is also negligible. For the GLDAS-based correction, Van der Wal et al. [106] cites a mean
error of the GLDAS-derived gravity trend of 0.13 µGal a−1. We are unable to recompute this error for our study as we do
not have access to other hydrology models that cover the Swarm data set (Van der Wal et al. [106] bases the error estimate
on the differences between various hydrology models). Secondly, we choose not to copy the result of Van der Wal et al.
[106] as that study likely used an older version of GLDAS. The authors do not give a version number, but the publication is
from 2008, when GLDAS-NOAH v2.1 was not yet available. We decide to neglect the GLDAS uncertainty, but acknowledge
that this likely leads to an underestimation of the true error.

Note that in the following section, we will apply the high-pass truncation setting of Section 4.8 (i.e., lmi n = 4) to all gravity
solutions, but also to aforementioned corrections. The corrections in Section 4.6 and Section 4.7 did not use a high-pass
correction (apart from taking out degree 1 and C2,0). For conciseness sake will not show the recomputed corrections or
how they affect the gravity trend, but only focus on the χ2-statistic (which, of course, is computed from the gravity trend,
see Equation 3.8).

Figure 4.26 shows the spatial distribution of the χ2-statistic for the four scenarios. Note how even without the hydrology
or leakage correction the agreement between GRACE and Swarm is striking (NB: constraints in this panel are lmax = 13
and lmi n = 4). In the area where the GRACE-derived trend is >+1 µGal a−1, the latitude-weighted mean χ2 (i.e., (χ2)(G I A)

equals 0.4259, indicating that the mean misfit is below one standard error (SE) of the Swarm trend (NB: χ2 = 1 =̂ 1 SD,
χ2 = 4 =̂ 2 SD, see Section 3.5). The top right panel in Figure 4.26 shows the results of applying the GLDAS correction
but not the undulations correction. Note how the misfit west and south of Hudson Bay increases, but the misfit north
of Hudson Bay slightly decreases. (χ2)(G I A) increases to 1.604, indicating the misfit is more than one Swarm SE but less
than two Swarm SE. Note that the substantial increase in misfit west of Hudson Bay seems to correlate to the areas where
we had identified irregularities in the GLDAS SWC time series (see Section 3.2.3, Figure 3.3). The bottom left panel of
Figure 4.26 shows the results of the undulations correction. In Section 4.7 we had already found that the magnitude of
this correction in negligible (ca. four orders of magnitude lower than the GIA gravity trend). As such, we find that is hard
to tell exactly where the misfit increased or decreased, except for a small misfit decrease north of Hudson Bay. (χ2)(G I A)
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slightly increases w.r.t. using no corrections to 0.4633. Finally, it seems that applying both corrections (bottom right panel
Figure 4.26 results in a misfit increase ((χ2)(G I A) = 1.628, almost fully attributable to GLDAS.

We conclude, even without any corrections, there is a strong similarity in both magnitude and spatial distribution of the
GRACE- and Swarm-derived gravity trends in around Hudson Bay. The mean χ2 values of the region where the GIA-
induced trend is dominant indicates that the misfit is well below our confidence level of two Swarm SE. In fact, only 6 of
the 641 (0.9%) of the grid points that we identify as GIA-region (see Figure 3.8) yield χ2 ≥ 4, i.e., a statistically significant
misfit. These points are all located in the area west of Hudson Bay.

Applying either the hydrology correction, the leakage correction, or both, deteriorates this agreement. We argue that this
is likely caused by errors in the data that we have used for the corrections. The hydrology correction is based on GLDAS,
even though Section 3.2.3 shows that these data contain irregularities. Additionally, various authors suggest no current
hydrology model is sufficiently accurate to correct GRACE-derived gravity trends [60, 77, 92, 106]. NASA GSFC aims to
publish reprocessed GLDAS results in September 20191, and we argue that recomputing the GLDAS correction with the
reprocessed results could lead to a decrease in GRACE - Swarm misfit. The undulations correction is based on Greenland
mass balance estimates based on a survey of glacier thickness, surface elevation, velocity, and surface mass balance [52],
even though Sørensen et al. [90] suggested satellite altimetry estimates correlate to GRACE better. This suggests we should
repeat this experiment when altimetry-derived mass balance estimates are available for the Swarm time frame.

4.10. Validation of results

In this final section of the results chapter of this study, we first assess the trend results from the GRACE-FO geopotential
solutions individually. Next, we execute three experiments using the GRACE-FO data to verify the conclusions we derived
so far from comparing GRACE and Swarm and assess the benefits of adding Swarm information to the combined GRACE
and GRACE-FO time series.

4.10.1. GRACE-FO gravity trends

This section shows gravity trends derived from GRACE-FO data, using either the least squares regression method of Sec-
tion 2.5, or either one of our approaches using GRACE data presented in Section 3.6.1. Figure 4.27 shows the gravity
trends. Note that the color scale in this Figure is twice the range of color scales in most other trend maps in this report.
We see that either one of our methods greatly reduces the amplitude of the expanded trends. Adding more (i.e., amplitude
and phase vs. only phase) GRACE data decreases the amplitude of the derived trends shown in Figure 4.27. We also see
that none of the expansions show a clear positive trend anomaly around Hudson Bay - the place where we would expect
a GIA-induced gravity trend. Of course, taking into account the amplitude of the trends that we do see, this could be due
to the fact that the GIA signal is obscured by TWS fluctuations.

We know that the time-variable gravity signals observed by GRACE-FO over the oceans should be substantially lower
than over land [114]. Comparing the latitude-weighted RMS of the ocean vs. the land area yields 2.329 vs. 7.344 µGal a−1,
1.144 vs. 4.664 µGal a−1, and 0.5839 vs. 3.382 µGal a−1, for respectively the top left, top right, and bottom plot in Figure
4.27. We define the land area by the coastlines of Figure 4.27 and the ocean area as >1000 km offshore. The difference
between land and ocean area suggests that (at least part of) the trend results are caused by real geophysical signal. As
the ocean area RMS and land area RMS both decrease when we include more GRACE data, we argue that the limited
amount of available GRACE-FO data yields to an overestimation of the trend, and that including GRACE information in
the regression reduces the magnitude of this overestimation. We will therefore use the GRACE-FO trends derived using
GRACE phase and amplitude information in our successive time series presented in Section 4.10.2 (i.e., bottom plot of
Figure 4.27).

We attempt to both further explain the gravity trends we retrieve from GRACE-FO and potentially isolate the GIA-induced
trend by subtracting TWS estimates from GLDAS-NOAH v2.1 (see Section 3.2.1). Again, we test three approaches similar
to what we applied to the GRACE-FO data. In the first case, we derive the TWS trend from only the June 2018 to April 2019
GLDAS data (GRACE-FO time frame; we exclude days not in the GRACE-FO solutions). The second case uses the phase
estimate from the GLDAS TWS results of January 2017 to April 2019, but computes the trend from only the data in the
GRACE-FO time frame. This start date was chosen as it minimizes influences from the irregularities identified in Section
3.2.3. The third case subtracts (semi-)annual component estimates from the January 2017 to April 2019 GLDAS data, then
computes the TWS trend of the results in the GRACE-FO time frame.

Figure 4.28 shows the GLDAS TWS results of July 2018 to April 2019 derived via the three aforementioned methods in the
left column. Where the GRACE-FO trends (Figure 4.27) decreased in amplitude when we moved from simple least squares
regression to a method using external phase or amplitude data, the GLDAS TWS trends appear to show different behavior.

1Ms. Hiroko Kato Beaudoing, personal communication.
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Figure 4.27: Gravity trend computed from mean of the CSR, JPL, and GFZ RL06 GRACE-FO fields, using the least squares regression
method of Section 2.5 (top left), using the regression model which includes the GRACE phase estimates (top right), and after subtracting
the (semi-)annual components estimated from GRACE data (bottom). NB: color scale is twice the range of most of the other figures
showing gravity trends.

Especially in the case where we use phase data of an earlier period, we see that the ocean areas yield spurious results (NB:
GLDAS TWS model data equals 0 for all ocean areas). The right column shows the GRACE-FO trends after subtracting the
GLDAS TWS trends. We compare the latitude-weighted RMS of the ocean vs. the land area again and find 2.307 vs. 6.693
µGal a−1, 1.193 vs. 2.896 µGal a−1, and 0.5314 vs. 1.714 µGal a−1, for respectively the top, middle, and bottom plot in
the right column of Figure 4.28. We interpret the fact that the ocean and land RMS values approach each other when we
include more GRACE data as a confirmation that we are indeed reducing the effect of spurious trend results by including
the GRACE data. Nonetheless, the fact that there is still a substantial RMS difference between the land and ocean area
illustrates that we have not removed all land signal or that some results are still of spurious origin. Note that the land area
latitude-weighted RMS of all GIA-induced gravity trends (as computed from ICE-6G_D [61]) equals 0.02540 µGal a−1, and
is thus far too small to explain the observed difference between the land and ocean area RMS in the GRACE-FO trends.
We conclude that GLDAS likely removed part of the TWS trends, therefore makes the GIA-signal more pronounced in the
gravity trend, but that there is still residual trend signal that we cannot explain. Nonetheless, we decide that we will repeat
the experiment described in Section 4.10.2 with a GLDAS-corrected GRACE-FO derived trend.

4.10.2. Successive time series

In this section we will look at independently derived gravitational acceleration results of GRACE, Swarm, and GRACE-FO
at different points of interest (POIs) in the region on interest. We choose points that are evenly spaced across the GIA-
dominated positive gravity trend anomaly around Hudson Bay. Figure 4.29 shows the POIs, as well as the gravity trends
derived from GRACE and Swarm, using lmax = 13 and lmi n = 4. Note that these are the same gravity trends as shows on
the second row of Figure 4.25, only now with the added information about the location of our POIs. Also note how POIs
A, B, C, and D are approximately evenly spaced along the northwest-southeast axis of the trend anomaly, and POIs E, F, G,
and H are spaced along the northeast-southwest axis.

The left column of Figure 4.30 shows the observations of GRACE, Swarm, and GRACE-FO of the gravitational acceleration
at the POIs. All gravity fields are truncated to lmax = 13 and lmi n = 4. To increase the readability of the graphs, we have
centered all gravity fields to the mean of the Swarm fields and trimmed the GRACE data to start in 2012. Note how the
Swarm derived-time series show substantially greater variability than the GRACE- or GRACE-FO derived time series. Also
note how this variability changes through time - especially the first two years show increased variability. This illustrates
the heteroskedasticity of the Swarm observations, which can be explained by the sensitivity of the Swarm measurement
system to increased ionospheric activity, as described in Section 4.2.4. It is hard to derive sound conclusions from only
9 data points, but the GRACE-FO observations are where we would expect them if we roughly extrapolated GRACE. Ad-
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Figure 4.28: Left column: TWS trend computed from GLDAS in GRACE-FO time frame, using the least squares regression method of
Section 2.5 (top), using a regression model which includes the GLDAS-NOAH phase estimates since January 2017 (middle), and after
subtracting the (semi-)annual components estimated from GLDAS data since January 2017 (bottom). Right column: GRACE-FO-derived
trends of Figure 4.27 minus GLDAS-derived TWS trends on the left side of this figure. NB: color scale is twice the range of most of the
other figures showing gravity trends.

Figure 4.29: Gravity trends derived from GRACE CSR RL06 and the Swarm fields, with lmax = 13 and lmi n = 4. White marks indicate the
locations of the 8 POIs A to H. NB: this figure shows the same gravity trends as the second row of Figure 4.25, only now with the added
information about the location of our POIs.
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ditionally, the GRACE-FO observations seem to be located around the mean of the Swarm observations, generally. This
illustrates well how, even from 9 months of GRACE-FO data, we can see that Swarm and GRACE-FO observe roughly
the same signal, albeit with higher noise levels for Swarm. Also note how, for POI A and B, the gradient of the Swarm
observations seem to decrease after ca. early 2018, and how GRACE-FO seems to follow this pattern.

The right column of Figure 4.30 shows trend lines derived from GRACE, Swarm, and GRACE-FO for the gravitational
acceleration at the four POIs. The lines were computed from a least-squared regression of the full data sets, using a
model consisting of a bias, trend, and (semi-)annual component. For GRACE-FO, only a bias and trend were fitted, after
subtracting GRACE-derived (semi-)annual components (see also Section 3.6.2). The dotted lines indicate ±2 standard
deviations of the observations w.r.t the trend line, where we derived the values for the standard deviations via the methods
described Section 2.6.1. Comparing the trend lines, the GRACE-FO derived trends are obviously not on the same line
as GRACE and Swarm. However, as less than a year’s worth of data is available, we argue that it was always unlikely
that we would be successful in deriving a credible trend from GRACE-FO. Nonetheless, we do see that the Swarm- and
GRACE-FO derived lines connect reasonably well, given that the gradient of the GRACE-FO line is off. More encouraging
is the comparison of the GRACE- and Swarm-derived trend lines. We see that for all four POIs, the lines line up (almost)
perfectly. POIs A and D seem to have a small bias discrepancy, where Swarm is below GRACE in both graphs. In POIs B
and C we see that there is a small discrepancy between the gradients of the trend lines, where is appears that the gradient
of the Swarm line is slightly higher in both graphs. Nonetheless, we see that the trend lines are well within the error
margins, regardless if we use the Swarm or the much narrower GRACE margins. We conclude that the observations of the
GIA-induced trend show near perfect continuity between GRACE and Swarm. For GRACE-FO, we conclude that there is
currently not enough data available to successfully derive a gravity trend.

Finally, we repeat the experiment, but revise the GRACE-FO trends for inter-annual TWS variation via GLDAS-NOAH.
Figure 4.32 shows the results of this experiment. We see that, compared to Figures 4.30 and 4.31, the GRACE-FO-derived
trend is closer to what we see in GRACE and Swarm. Nonetheless, the agreement between GRACE and GRACE-FO and
Swarm and GRACE-FO is nowhere near as close as the agreement between GRACE and Swarm. We conclude that, while
the TWS correction improves the agreement between GRACE-FO and the other two missions to some extent, the results
are still sub-optimal due to the scarcely available GRACE-FO data.

4.10.3. Adding Swarm to the combined GRACE time series

This section shows trend maps derived from various (combinations of) satellite data, as outlined in Section 3.6.3. Figure
4.33 compares the gravity trend derived from the Swarm field and from the combination GRACE / GRACE-FO. We have
truncated all fields to lmax = 13 to limit our analysis to the resolution that Swarm is sensitive to, and we find the gravity
trend via weighted least squares regression using weights derived via the method of Section 2.6.1.

In Figure 4.33 we see that the Swarm fields yield substantially higher trend amplitudes over the oceans. We interpret this
as an effect of the increased noise levels in the Swarm fields. Apart from that, the spatial distribution and magnitude
of the Swarm and combined GRACE / GRACE-FO trend seems to correlate reasonably well. A notable exception is east
Antarctica, where the negative trend anomaly in Swarm is larger in spatial size and amplitude. Similarly, the amplitudes
of the gravity trends in South America seems higher in Swarm. Keep in mind that South America has highly variable
inter-annual gravity signals (see, e.g., Figure 4.19), and that Rignot et al. [72] recently identified east Antarctica as an area
of accelerating ice mass loss. Both these reasons, of course along with the increased noise levels in Swarm, could explain
the discrepancy between Swarm and GRACE / GRACE-FO that we see here.

Next, we compare the combination GRACE / GRACE-FO and GRACE / Swarm / GRACE-FO. We do this for an unweighted
case, a case using weights based on the RMSE (i.e., Section 2.6.1). In Section 3.6.3 we predicted that using the RMSE weighs
would substantially reduce the influence on the Swarm data as the absolute uncertainty of the Swarm observations is ca.
a factor 20 higher than for GRACE (see, e.g., Figure 4.2). For this reason, we include a third case where we only take the
heteroskedasticity of the observations into account and reduce the mean of the errors to unity (the trivial weights). For
Swarm, we compute this mean from the period after May 2015, as we had identified the period before that as abnormally
high in uncertainty. The resulting weights have a standard deviation of 0.2433 for GRACE, 0.4358 for Swarm, and 0.3042
for GRACE-FO (NB: these are dimensionless numbers). This once again illustrates the heteroscedasticity of Swarm.

The latitude-weighted global RMS of the residual trend between the combined GRACE / GRACE-FO and the GRACE /
Swarm / GRACE-FO data sets confirms this, and is equal to 0.0520, 0.0086, and 0.0534 µGal a−1, for respectively the
unweighted and two weighted cases described above. Note how all residual RMS values are also very low, and for that
reason we will not show the absolute trend maps in the section (they look almost identical), but only the residual maps.
Figure 4.34 shows these residual maps. Note how the unweighted case and the trivial case are almost identical, this makes
sense as the only substantial difference here is that we have down-weighed the high-uncertainty Swarm observations
before May 2015. The RMSE-based weighs yield a vastly different result. Note how the influence of adding Swarm to the
GRACE - GRACE-FO time series now is ca. one order of magnitude smaller. Also, the areas where the trend is influences by
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Figure 4.30: Left column: time series of gravitational acceleration at POIs A to D, as observed by GRACE, Swarm, and GRACE-FO. For all
fields, lmax = 13 and lmi n = 4. Results are normalized to the mean of the Swarm fields. Right column: trend line, as computed from a
least-squared regression of a bias, trend, and (semi-)annual component at POIs A to D. For GRACE-FO, only a bias and trend were fitted,
after subtracting GRACE-derived (semi-)annual components. Dotted lines indicate ±2 standard deviations of the observations w.r.t the
trend line. NB: the time axis is set to start in 2012 to increase the readability of the plots.
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Figure 4.31: Same as Figure 4.30, but for POIs E to H.
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Figure 4.32: Same as the right columns of Figure 4.30 and Figure 4.31, but after correcting the GRACE-FO-derived trends via GLDAS-
NOAH, as described in Section 3.6.2.
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Figure 4.33: Gravity trend derived from the combined Swarm fields (12/2013-3/2019; top left), and the combination GRACE / GRACE-
FO (trimmed to also 12/2013-3/2019; top left). All fields are truncated to lmax = 13 and we apply a weighted regression using weights
derived via the method of Section 2.6.1.

the Swarm data seem to be much less localized. Note the peak over the Amazon, where we know inter-annual variability
of the gravity signal is high, and where it is therefore likely that Swarm adds real observations that were mission from
GRACE - GRACE-FO due to the GRACE gap.

We conclude this experiment by arguing that we have found the first tentative signs that Swarm can add relevant infor-
mation to (trend results of) the GRACE - GRACE-FO time series. It appears that weighing the observations in crucial in
extracting all relevant information from Swarm, and therefore we recommend this as a topic for future study.

4.10.4. Differential trend of combined time series w.r.t. GRACE

Section 4.10.2 that the observations of GRACE and Swarm of the GIA-induced gravity trend in North America showed a
striking continuity. Extracting a trend from the short GRACE-FO time series proved difficult, and for that reason GRACE-
FO was largely left out of the discussion in the Section 4.10.2. The following experiment is more suited for the short
coverage of GRACE-FO. Since we are appending the Swarm and the GRACE-FO data to the existing time series, we could
theoretically even assess the influence of adding a single epoch. For conciseness sake, we will focus on the entire available
data set at once, and compare it to a similarly trimmed Swarm-derived time series, as described in Section 3.6.4.

The results of this experiment are shown in Figure 4.35. Immediately, we see that the combination of GRACE and Swarm
yield a noisier result than the combination of GRACE and GRACE-FO. However, we can also identify various artefacts
in the maps that are likely to be real geophysical signals. As differential results are harder to interpret than an absolute
ones, we advise the reader to briefly revisit Equation 3.10 before studying Figure 4.35. Additionally, we have printed an
interpretation aid in Table 4.3.

The most striking artefact in Figure 4.35 is the strong negative structure in the Greenland area. GRACE measured a strong
mass rate here, but studies after the end of the GRACE mission suggest this rate has decelerated since [e.g. 51, 52]. The
fact that we see a negative residual rate of a rate that was negative in the first place, confirms that the rate must have
decelerated. This relation is illustrated by the seventh column in Table 4.3. Other artefacts shared by the GRACE-Swarm
and GRACE-GRACE-FO combination are the positive differential trend anomaly in India, which seems to be surrounded
by areas of a negative differential trend, and positive differential trend structures in Australia, Antarctica (ca. 90◦E), and
western Canada. In the latter case, note that this positive trend anomaly seems to correlate to an area of increased GRACE
- Swarm misfit (best shown in Figure 4.26). This positive differential trend anomaly implies that the gravity trend after
the GRACE-period increased (see columns 3, 4, 6 of Table 4.3). Accordingly, this suggests that the GRACE-Swarm misfit
over the North American continent was caused by real geophysical signal. Finally, note how the area around Hudson Bay,
where the GIA-induced positive trend anomaly is the strongest, remains constant across both maps. This suggests that
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Figure 4.34: Residuals of the gravity trend derived from GRACE / GRACE-FO and the gravity trend derived from GRACE / Swarm / GRACE-
FO. We use all available data and three different weighing approaches (see text). NB: color scale is different per panel to best illustrate
the spatial distribution of the residuals (magnitude can be compared via RMS values in text).

Figure 4.35: Differential trend between a time series of GRACE and Swarm, and GRACE (left), and differential trend between a time series
of GRACE and GRACE-FO, and GRACE (right).

the GRACE observations of this trend have converged to the underlying secular GIA-induced signal, and that influences
for inter-annual hydrology signals have canceled out at this observation series length.

We finish this chapter by stating that this last GRACE-FO-based experiment successfully validated our conclusions con-
cerning the capabilities of the Swarm measurement system to observe gravity trends. Additionally, we have shown that
adding Swarm observations to a time series of GRACE observations yields similar results to appending GRACE with
GRACE-FO. This result strongly argues that Swarm has the potential to make significant contributions in the bridging
of the GRACE gap.
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Trend in combined time series 0 0 0 + + + - - -
Trend in only GRACE 0 + - 0 + - 0 + -

Differential trend 0 - + + 0 + + - - - 0

Table 4.3: Aid to interpret the sign of the differential trend shown in Figure 4.35. Top row indicates a zero, positive or negative trend
computed from the time series combining GRACE and Swarm or GRACE and GRACE-FO data, middle row indicates the sign of the trend
computed from only GRACE, and bottom row given the sign of the resultant differential trend.





5
Conclusion and Recommendations

The final chapter of this report first concludes the results presented in the last chapter. We return to the research ques-
tion and sub-questions posed in Section 1.3, and decide if we have been able to answer them. Next, we build on these
conclusion to provide recommendations for future studies concerning the use of Swarm-derived geopotential solutions
to bridge the GRACE gap.

NB: typical results or typical values in this chapter refer to the latitude weighted mean (or RMS; will be explicitly noted) of
all signal in the area limited by a GRACE-derived gravity trend of >+1.0 µGal a−1, as shown in Figure 3.8 (i.e., ġ (G I A) and
∆(G I A) in the main text).

5.1. Conclusions

Following the success of the pioneering GRACE mission, there was a strong call from the scientific community to continue
the time series of mass change observations that this mission started. A successor mission, GRACE-FO, was launched
in 2018, which leaves a data gap of roughly one year between GRACE and GRACE-FO. The optimal method to fill the
GRACE gap is currently a topic of debate, with many authors arguing for geopotential solutions derived from GPS position
observations of the ESA Swarm mission. In this study we aim to use the gravitational trend induced by GIA to show a
continuity between time series of mass change inferred from GRACE and Swarm satellite data. Past studies using GIA
observations (relative sea level change, GPS-derived surface deformation, [time-variable] gravity, etc.) to constrain Earth
rheology found a relatively high mantle viscosity for the area around Hudson Bay [92, 119]. This suggests GIA-induced
gravity trends can be approximated as linear on a multi-decadal timescale, which means GRACE (’02-’17) and Swarm
(’13, active) should observe a similar gravity trend in the area. Such a continuity would validate similar sensitivity to mass
change trends of the GRACE and Swarm measurements systems, which is a key requirement for Swarm to successfully
bridge the gap between GRACE and GRACE-FO.

We extracted the gravity trend from the satellite data via least squares regression. Steffen et al. [94] warned that a failure
to account for the S2, K1, and K2 tidal aliases in the fitted model could affect the computed trends. In Section 4.1 we
show via an F-test that significant periodic components with periods corresponding to aforementioned aliases exist in
94% of the GRACE Stokes coefficients and in 51% of the Swarm Stokes coefficients up to degree 15. Nonetheless, we
also show that including said aliases in the regression model has a negligible effect on the gravity trend estimated from
GRACE (Figure 4.1). The short length of the Swarm data set (64 mo) w.r.t. the periods of the aliases (longest: K1 ∼ 92 mo)
decreases the chance of successfully isolating these components from the Swarm data. This, together with the fact that
the GRACE trends was virtually unaffected by the inclusion of the tidal aliases into the regression model, made us decide
to neglect the aliases altogether. Our final regression model consisted of a bias, trend, and (semi-)annual component, as
given in Equation 4.1.

A sound quantification of the observation uncertainties is vital if we want to successfully propagate to an uncertainty of
the estimated trend parameter, which is required for a quantitative assessment of the discrepancy in trend observations
of GRACE and Swarm. We combined work of Wahr et al. [114], Van der Wal et al. [106], and Velicogna and Wahr [109], and
constructed a method to use the residual RMS (the RMSE) as uncertainty estimate. We found the RMSE by subtracting
a 1-year moving mean, and periodic components from a 2-year moving window (see Equation 2.33) from time series of
Stokes coefficients and taking the RMS of the residuals. Section 4.2 shows our analysis of the uncertainties of the GRACE
CSR RL06 and the Swarm fields. In the spatial domain, the GRACE errors show a familiar distribution with a band shaped
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artifact around the equator [114] and the Swarm errors are much more homogeneously distributed. Typical values for the
1σ uncertainty of the gravity trend in the Hudson Bay area are 0.0153 µGal a−1 for GRACE and 0.400 µGal a−1 for Swarm
(using lmax = 13). In the spectral domain, the relative increase in uncertainty of the sectoral GRACE coefficients was
also a familiar result. Swarm yielded a peculiar spectral pattern where the Stokes coefficients from even orders appear
to have a relative increase in RMSE. The normalized residuals from Swarm follow a Gaussian distribution and for GRACE
they are close to doing to. Finally, Figure 4.8 shows that the Swarm observation uncertainty varies substantially through
time. Figure 4.9 shows that not accounting for this heteroscedasticity in the regression (i.e., using unweighted vs. using
weighted regression) leads to an overestimate of the Swarm-derived gravity trend.

Where the primary source of observations for the GRACE gravity fields are micron-level range rate measurements of the
inter-satellite KBR system, these are centimeter-level GPS position observations for the Swarm fields. Understandably,
this leads to substantially more noise in the Swarm fields, especially in the higher degrees. We experiment with both
Gaussian filtering and truncation of the maximum degree to reduce the influence of the high degree noise. Section 4.3
shows how we aim to reduce noise as much as possible, whilst not losing (too much) signal amplitude of the gravity
trend. We found that Gaussian filtering leads to substantial attenuation of the gravity trend, and decide that truncation at
lmax = 13 provides the optimal trade off between aforementioned criteria. This yields typical values for the gravity trend
in the Hudson Bay area of 1.533 µGal a−1 for GRACE and ca. 1.691 µGal a−1 for Swarm. The typical residual RMS equals
0.1189 µGal a−1. This, together with the findings of the last three paragraphs, answers research sub-question Q.1.

The observed mass change at a location is the net sum of all mass change in that particular vertical column. This means
the GIA-induced gravity trend is obscured by other mass change processes. Section 4.5 shows the results of an experiment
where we aim to compute the net magnitude of all the influence that dilute the GIA-induced gravity trend. Interestingly,
the area where this magnitude is at its minimum seems to coincide with the area where the positive gravity trend anomaly
in North America is at its maximum. In that area, we found a difference of <0.5 µGal a−1 for trends derived from 5-year
windows of the GRACE data. Isolating the GIA-induced component from gravity trend observations requires correcting
these observations for mass change due to inter-annual surface hydrology variations. The near real-time coverage of
the Swarm-derived gravity fields restricts the hydrology models we can use. We settle on GLDAS-NOAH v2.1. During
pre-processing, we mask the Greenland area and Alaska area as shown in Figure 3.6. Additionally, we mask areas under
permanent snow cover. Section 3.2.3 described irregularities in the GLDAS SWC that we identified during the first itera-
tion of this study. The behavior described in that section also exists in the GLDAS source data, and thus we are forced to
apply an ad-hoc correction. We choose to mask all grid points where the RMS of the TWS in 2016 equals 3 times or more
the RMS of the 2014 TWS. Section 4.6 described the results of correcting the GRACE- and Swarm-derived gravity trends
via GLDAS. The typical magnitude of the correction in the Hudson Bay area is -0.07860 µGal a−1 for GRACE and +0.2423
µGal a−1 for Swarm. Note that we use all available data in both cases, which suggests hydrology influences reduce in
amplitude for longer time scales. Applying the correction decreases the agreement between GRACE and Swarm of the
Hudson Bay area gravity trend observations. For the GLDAS-based hydrology correction, we conclude that this is either
due to the irregularities in GLDAS that we had identified earlier, or due to the known low agreement between GRACE
mass observations and any hydrology model [83]. For the ice mass loss corrections, we conclude that we have used sub-
optimal data to base our mass rate estimates on (glacier survey studies mostly based on in-situ velocity measurements
and airborne data). Sørensen et al. [90] suggest satellite altimetry-derived mass estimates correlate best to GRACE, but
these are not (yet) available for the Swarm period.

As the application of the GRACE- and Swarm-derived gravity fields in this study happens at a drastically lower maximum
degree w.r.t. typical GRACE studies (13 vs. 60), leakage and ringing effects are amplified. Section 3.3 schematically illus-
trated this. Furthermore, many geophysical processes at the origin of the leakage and ringing effects (mainly ice mass
loss) are not stationary across the GRACE and Swarm periods, which means they could lead to an increase in misfit be-
tween the two. We apply separate corrections for leakage and/or ringing induced by ice mass loss in Greenland, and ice
mass loss in Alaska. For Greenland, we apply the leakage correction of Sørensen et al. [90] with a mass loss estimate from
Mouginot et al. [52]. For Alaska, we subtracted the Alaskan gravity trend isolated from the CSR RL06m mascons, that we
scale via glacier mass balance estimates [120] in the case of Swarm. We find that the magnitude of the corrections is neg-
ligible. The amplitude of the differential correction (which is most relevant when comparing GRACE and Swarm) equals
1.230×10−3 µGal a−1 and 5.579×10−4 µGal a−1 for respectively Greenland and Alaska. Further long-wavelength leak-
age can theoretically be expected from Antarctic ice mass loss [79]. Figure 3.7 shows the degree correlation between the
Northern Hemisphere results of the GRACE-derived gravity trend (after applying the Greenland and Alaska corrections)
and the results of the ICE-6G_D GIA model of Peltier et al. [61]. We found no significant correlation for degrees below
4. Section 4.8 shows the results of high-pass Gaussian filtering and truncation, where we concluded that truncating all
coefficients below degree 4 yields a substantially increased agreement between GRACE and Swarm. Typical values for the
gravity trend in the Hudson Bay area are now ca. 1.6203 µGal a−1 for GRACE and ca. 1.5730 µGal a−1 for Swarm, with
a residual RMS of 0.06290 µGal a−1. Figure 4.25 shows how the agreement in spatial distribution of the gravity trend is
striking. This answers research sub-question Q.2.

In Section C we introduced a second GPS-derived time series of gravity fields, to infer conclusions about the influence
of the data set length on the derived gravity trends. We use the GeoQ fields of Weigelt et al. [116, 117], that are based
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on kinematic orbits of 27 different satellites inverted via the accelerations approach [9]. Section 2.1.4 outlined why we
did not focus on these fields in the first place. Figure 4.15 shows how trends derived from 192 months of GeoQ fields
show good agreement with GRACE up to degree 22. However, Figure 4.16 shows how subset of the GeoQ fields of a length
comparable to the Swarm fields (64 mo) yields an overestimation of the gravity trend around Hudson Bay area w.r.t. to
GRACE. Finally, we show that the high-degree noise in the GeoQ fields is higher than the noise in the Swarm fields for the
epochs in the GRACE gap (July 2017 to May 2018). We conclude that the Swarm fields yield result closer to GRACE for the
64 mo subset, and that it is therefore likely that the Swarm-derived gravity fields will allow for higher spatial resolution
trends to be derived when the data set length grows in the future.

We use a χ2-test to assess the discrepancy between the GRACE- and Swarm-derived gravity trends w.r.t. the trend un-
certainty we found earlier. Section 4.9 shows and discussed the results of this experiment, where we found that all of
the GRACE - Swarm misfit of the >+1µGal a−1 gravity trend anomaly around Hudson Bay is well within the 1σ bound of
the Swarm trend results, with a typical χ2 value of 0.4259. This answers research sub-question Q.3. The uncertainty of
the GRACE-derived trend observation is neglected here as it is more than an order of magnitude smaller than its Swarm-
derived counterpart. The only region where the GRACE - Swarm misfit exceeds the 1σ bound is near the Canadian Rocky
Mountains. Here, Swarm observes a positive trend anomaly, whereas GRACE does not. We hypothesize that this signal
is induced by inter-annual variations in continental water storage. We are unable to reduce the misfit in this area via a
GLDAS-derived correction, but it should be noted that aforementioned SWC irregularities that we identified in GLDAS
are prevalent in this area and that some of this area is masked out in out pre-processing of GLDAS due to permanent
snow cover. We conclude that we have been successful in identifying a continuation between GRACE and Swarm of ob-
servations of the GIA-induced gravity trend in North America. This suggests that both systems have a similar sensitivity
to gravity trends at the spatial scales at which the Swarm-derived gravity fields contain mostly real signal, which is ca.
1500 km. Also, note that we have only looked at the highest amplitude GIA signal on Earth, and not at gravity trends with
a lower amplitude. As such, we must add that strictly taken our conclusion is limited to high amplitude (>+1.0 µGal a−1)
gravity trends. This answers our main research question.

We end the report by validating our recommendations via the recently GRACE-FO fields in Section 4.10. We do this
in two steps. First, we study time series of modeled mass change at specific locations carefully chosen to give a cross
section of the positive gravity trend anomaly near Hudson Bay, that are independently regressed from GRACE, Swarm, or
GRACE-FO data. As the GRACE-FO data set is too short (9 mo) to successfully retrieve a (semi-)annual component, we
subtract GRACE-derived results before fitting a bias and trend term to the GRACE-FO data, as was described in Section
3.6. We found that the time series of mass change of GRACE and Swarm line up near perfectly for all grid points. The
GRACE-FO-derived time series yield less satisfactory results, likely due to the very limited amount of available data. The
latitude-weighted ocean area RMS of the GRACE-FO trends equals 0.5839 µGal a−1 (NB: for a trend derived from a longer
GRACE time series this number equals 8.640× 10−4 µGal a−1). We repeat the experiment after correcting GRACE-FO
for TWS variations via GLDAS, which yields trends in the Hudson Bay area that are positive, but still far from GRACE
observations in amplitude and spatial distribution.

In the second experiment we investigate the effect of adding Swarm observations to the GRACE / GRACE-FO combined
time series. Section 4.2 showed the GRACE and Swarm errors are more than an order or magnitude apart, and thus
correct weighing of the observation is a key issue in combining these data. We experiment with an unweighted case, our
RMSE-based error estimates, and a third case where we set the RMSE errors to a mean of 0 (to only take into account the
relative time evolution of the observations uncertainties of the three data sets). The first and third case both yield noisy
results, but the RMSE-based case finds that Swarm adds gravity trend information in areas where we expect substantial
inter-annual gravity variability during the GRACE gap (e.g., the Amazon). Here, it should be added that the influence from
Swarm on the GRACE / GRACE-FO combinations was of a very low amplitude (max. ±0.3 µGal a−1).

In the third experiment we look at the differential trend between GRACE and a time series of either chronologically se-
quenced GRACE and Swarm fields, or sequenced GRACE and GRACE-FO field. To achieve equal comparison we use only
the last 9 Swarm epochs in the first case. We found that appending the GRACE time series with Swarm observation yields
roughly the same results as doing so with GRACE-FO observations, albeit at a higher noise level. The deceleration of
Greenland ice mass loss, acceleration of Alaskan ice mass loss, and ground water depletion in Australia are just three ex-
amples of geophysical processes after the GRACE period that can be resolved once the data is combined with Swarm (or
GRACE-FO). Additionally, aforementioned misfit near the Canadian Rocky Mountains is also observed in the Swarm data.
This suggests that this misfit was caused by real geophysical signal, which argues that the Swarm measurement system
can be used to infer conclusions about terrestrial water storage. We conclude that, in general, results from GRACE-FO
align well with results from Swarm. This validates our earlier conclusion: at spatial scales up to ca. 1500 km, the GRACE
and Swarm measurements systems have similar sensitivity to gravity trends, which further establishes geopotential ob-
servations derived from Swarm satellite data as the solution to bridge the data gap between the GRACE and GRACE-FO
satellite missions. The conclusions derived from these three validation experiments answer research sub-question Q.4.
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5.2. Recommendations for future work

5.2.1. Trend continuity in higher degrees

We have shown that the main obstacle in extracting geophysical signals from GPS-derived gravity fields, whether or not
to compare with GRACE, is noise in the values for the Stokes coefficients. This noise (partially) originates in the errors
in the GPS observations of the satellite’s location, which propagate into the resulting estimates of the Stokes coefficients.
GPS data reprocessing is a subject of current debate, and could be applicable to anyone trying to increase the quality of
the Swarm-derived fields.

In this study, we have applied generic methods to reduce this noise. If we look back on the past two decades of GRACE
gravity observations, we see a substantial increase in both processing strategies and processing complexity. Anisotropic
filtering, as briefly mentioned in Section 2.4, was successful when applied to the GRACE data in the right configuration.
We make an attempt at anisotropic filtering in Appendix B, applying a filter that is based on the statistical significance
of the trend component in a particular Stokes coefficient time series. An interesting starting point for more advanced
processing of the Swarm fields could be the vertical artefacts in the spectral distributions of the trend, as shown in Figure
4.3. We conclude by recommending that any user of the Swarm data can get a head start carefully studying relevant
lessons learned from GRACE.

We have found that the length of the available data set also influences how high-degree noise propagates into the trend
results. In Section 4.5 and Section 4.4 we saw that deriving a trend from a longer time series reduced influences from
both noise and other inter-annual mass transport processes. In Section 4.4.2 we saw that we were able to successfully
derive trends from coefficients up to ca. degree 22 from the 192-month GeoQ gravity fields, whereas in Section 4.3 we
saw that for the 64-month Swarm this was only possible up to ca. degree 13. Nonetheless, when we performed a limited
analysis of the Swarm and GeoQ solutions during the GRACE gap in Section 4.4.2, and found that the Swarm solutions
show less high-degree noise. Together, these findings suggest that it is likely that we will be able to derive higher resolution
conclusion from the Swarm fields in the future, when there is more data available. It would be interesting to repeat the
experiment of this study at that point, and see if our conclusion of a GIA-induced gravity trend observation that continues
between GRACE and Swarm still holds.

5.2.2. Combining Swarm observations with other data

Various authors have shown that time series of Stokes coefficients derived from SLR position observations of Earth or-
biters can add valuable information to the low degrees of (Swarm-derived) gravity fields [e.g. 51, 116, 117] and that in-
creasing the number of used orbiters increases the quality of the results [e.g. 11, 12, 49]. Additionally, a limited amount
of studies have looked at using DORIS-observations for this [97]. This suggests that the optimal geopotential solution
to bridge the GRACE gap uses both Swarm and (most likely) SLR information. SLR for the low degrees, and Swarm for
the moderate to higher degrees. The reader should keep in mind that our conclusion regarding the continuity between
GRACE and Swarm is not valid for degrees 1-3, as we had truncated these (see Section 4.8). We motivated this decision
by our hypothesis that these degrees would be affected by leakage and undulations caused by ice mass loss in Greenland
and Antarctica (see Figure 3.7) which, as they are not stationary mass transport processes, affect GRACE and Swarm dif-
ferently. However, there is always the option that the decrease in discrepancy between the trends derived from GRACE
and Swarm after high-pass truncation was caused by inaccurate low-degree Stokes coefficients in either data set. After all,
the GRACE measurements system has already been shown to have limited sensitivity to the very low degree coefficients
[e.g. 17, 43].

Sun et al. [95] shows potential in using deep learning via convoluted neural networks to extend time series of the mis-
match between GRACE observations and the GLDAS-NOAH land surface hydrology model. In this study, we have shown
a continuity between the lower to moderate degrees of the Swarm fields (lmax = 13), and GRACE. The results of Sec-
tion 4.4 suggested that this resolution can likely be increased once longer Swarm time series are available. We have also
shown that for the higher degrees (ca. l ≥ 22), noise dominates the GPS-derived fields which means we cannot isolate any
geophysical signal from the observations. We believe the work of Sun et al. [95] shows potential for complimenting the
Swarm- and SLR-derived Stokes coefficients in those higher degrees. Sun et al. [95] have shown that machine learning-
based propagation of GRACE observations is possible in the spatial domain. As we have credible observations in the
lower degrees, it would be interesting to see if these can be included in the extrapolation process. Some qualification of
this methodology is required, as it would lead to results that are based on past data, instead of new observations. This
would likely decrease the credibility of the resulting products in the eyes of researchers interested in using those products
for geophysical study.
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5.2.3. Using GIA as a baseline for GRACE-FO

Section 4.5 shows that the area where the positive gravity trend anomaly in North America is most dominant (i.e., the
ellipse in Figure 3.8) seems to coincide with the area that shows minimal variation in gravity trends derived from different
time frames. This argues that influences from other inter-annual mass transport processes mostly cancel out over time,
and that the gravity trend around Hudson Bay is linear on a multi-decadal time scale. We used these findings to illustrate
that there is a continuity between GRACE and Swarm. This finding could very well be extended to GRACE-FO, which
suggests that the GRACE-derived gravity trend in that area could be used as a baseline for the GRACE-FO data products.
This would mean a real geophysical signal can be used to cross-calibrate the two missions, which is an attractive option as
this approach is close to most applications of the GRACE and GRACE-FO solutions. Using GIA as a baseline for GRACE-FO
is a research topic currently under review of various GRACE-FO science teams1

5.2.4. Weighing GRACE / Swarm / GFO

Section 4.2 showed that the GRACE and Swarm observation uncertainties are multiple orders of magnitude apart. This
means weighing the observations will be a crucial but non-trivial step in extracting as much information from the data
sets as possible when they are combined with each other and with GRACE-FO. In Section 4.10 we attempted to combine all
three data sets. It appeared that weighing via the RMSE (Section 2.6.1) yields results that correspond to expectations (e.g.,
concentration of inter-annual gravity variability in the Amazon). Nonetheless, we believe that a more thorough study into
the optimal weighing approach for the GRACE / Swarm / GRACE-FO combination could be beneficial in extracting the
most amount of available data.

1Dr. Byron Tapley, personal communication.





Appendices





A
Auxiliary parameters and functions

A.1. Love numbers

The Love numbers are dimensionless parameters that define the rigidity of a (planetary) body. We use numbers for the
PREM Earth model as given in Wahr et al. [112], which are printed below. Love numbers for degrees not in this table are
found through linear interpolation.

Degree l [ ] Love number kl [ ] Degree l [ ] Love number kl [ ]

0 0.000 12 -0.064
1 0.027 15 -0.058
2 -0.303 20 -0.051
3 -0.194 30 -0.040
4 -0.132 40 -0.033
5 -0.104 50 -0.027
6 -0.089 70 -0.020
7 -0.081 100 -0.014
8 -0.076 150 -0.010
9 -0.072 200 -0.007
10 -0.069

Table A.1: Love numbers for the PREM Earth model [29] as given in Wahr et al. [112].

A.2. Legendre functions and polynomials

The associated Legendre functions Pl ,m (sinλ) of degree l and order m, are defined as [37]:

Pl ,m (x) = (1−x2)m/2 dm Pl (x)

d xm (A.1)

with the Legendre Polynomials defined as:

Pl (x) = 1

(−2)l l !

d l

d xl
(1−x2)l (A.2)

Various recursive methods exist for computationally efficient evaluation of the Legendre Functions. We will not cover
those here but refer the reader to, e.g., Rapp [66].

A.3. Normalization conventions

For numerical reasons, the data products used in this thesis are distributed as normalized Stokes coefficients. We define
the normalization factor, Nl ,m , the fully-normalized Legendre function, P̄l ,m (x), and for completeness sake the normal-
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ized spherical harmonic coefficients, C̄l ,m and S̄l ,m , as [62]:

Nl ,m =
[

(2n +1)(2−δ0m )
(l −m)!

(l +m)!

]1/2
(A.3)

P̄l ,m (x) = Nl ,m Pl ,m (x) (A.4)

Cl ,m = Nl ,mC̄l ,m (A.5)

Sl ,m = Nl ,m S̄l ,m (A.6)

(A.7)

with Kronecker delta δ0m defined as:

δ0m =
{

1, if m = 0

0, if m 6= 0
(A.8)

Note how Equation 2.3 on page 9 yields the same result, as long as one uses either all normalized, or all non-normalized
Stokes coefficients and Legendre functions.

A.4. Spectral decomposition of a function on a sphere

Let f (θ,λ) be a function that is defined on a sphere, using longitude λ and latitude θ. Surface spherical harmonics form
a complete orthogonal set on a sphere, which means f (θ,λ) can be uniquely represented as a Fourier series of surface
harmonics [37]:

f (θ,λ) =
∞∑

l=0

l∑
m=−l

C̄l ,m Ȳl ,m (θ,λ) (A.9)

where Ȳl ,m is the normalized surface spherical harmonic, that is defined as:

Ȳl ,m (θ,λ) = P̄l ,m (cosθ)

{
cosmλ, if m ≥ 0

sin |m|λ, if m < 0
(A.10)

The normalized associated Legendre functions P̄l ,|m| are as shown in Section A.2. Next, we multiply both sides of Equa-
tion A.9 with normalized surface spherical harmonic, Ȳl ′,m′ (θ,λ) and take the integral over the unit sphere. As the surface

spherical harmonics are orthogonal, the inner product any Y (1)
l ,m and Y (2)

l ,m equals 0 unless l1 = l2 and m1 = m2. Finally,

we use the normalization definition [62]:

||Ȳl ,m ||2 = 4π (A.11)

which yields:

C̄l ,m = 1

4π

Ï
Ω

f (θ,λ)Ȳl ,m (θ,λ)dΩ (A.12)

This relation can be evaluated in a computationally efficient way by dividing both sides into a real and an imaginary part,
and employing a Fast Fourier Transform algorithm. This will not be covered here but we refer the reader to Driscoll and
Healy [28]. For a more comprehensive description of spherical harmonics, we refer the reader to texts such as Heiskanen
and Moritz [37].

A.5. Spectral decomposition of a Dirac delta function

The derivation given in this section build on the relations given in Section A.4. Given the Dirac delta function δθ,λ, on a
sphere at longitude λδ and latitude θδ, the normalized Stokes coefficients of the spherical harmonics decomposition are
found by integrating the following equation over the unit sphere [37]:

C̄δ
l ,m = 1

4π

Ï
Ω
δθ,λȲl ,m (θ,λ)dΩ (A.13)

as the integral of a Dirac delta is equal to unity, this simplifies to:

C̄δ
l ,m = 1

4π
Ȳl ,m (λδ,θδ) (A.14)

where Ȳl ,m is a normalized surface spherical harmonic that is as defined earlier.
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A.6. Cumulative distribution functions

We use MATLAB’s tcdf function to calculate the probability p of observing T-test statistic T and use the tinv function
to compute the critical T statistic, Tα, for a given confidence level α. The tcdf evaluates the cumulative distribution
function below [2], and tinv is defined in terms of the inverse of this cumulative distribution function:

p = FT (T |ν) =
∫ x

−∞

Γ

[
(ν+1)

2

]
Γ

[ν
2

] 1p
ν ·π

1[
1+ t 2

ν

]ν+1

2

d t (A.15)

Tα = F−1
T (p|ν) ={

T : FT (T |ν) =α}
(A.16)

where ν is the degrees of freedom and Γ(x) is an ordinary Gamma function, which is defined as:

Γ(x) = (x −1)! for x > 0 (A.17)

We calculate the probability p of finding an F-test statistic within the interval [0,Φ] from a single observation via the
cumulative distribution function [2]:

p = FF (Φ|ν1,ν2) =
∫ Φ

0

Γ

[
(ν1 +ν2)

2

]
Γ

(ν1

2

)
Γ

(ν2

2

) (
ν1

ν2

)ν1

2 t
ν1−2

2[
1+

(
ν1

ν2

)
t

]ν1 +ν2

2

d t (A.18)

where ν1 is referred to as the degrees of freedom in the numerator and ν2 is referred to as the degrees of freedom in the
denominator.

tcdf
tinv
tcdf
tinv




B
Case study: statistical filtering of

Swarm-derived gravity trends

Introduction

In Figure 4.3 on page 38 we saw how the spectral distribution of the Swarm errors shows a peculiar pattern of vertical
artefacts. In this appendix, we attempt to adapt our noise reduction methods to this apparent heterogeneous error distri-
bution, with the goal of deriving trends of a higher spatial resolution than we found possible with the earlier methodology
of this study.

The correlation that we derived from Figure 4.3 was that the noise magnitude was higher in Stokes coefficients with an
even order number. Intuitively, one might now argue that we should just filter these coefficient more aggressively than
the unevenly numbered order. However, it is not the absolute magnitude of the error that warrants a particular amount of
filtering, but the magnitude of the noise relative to the magnitude of the real signal. Assessing the magnitude of a signal
in relation to its uncertainty is in a nutshell what statistics is about, and for that reason we will attempt to use the power
of inferential statistics to anisotropically filter the Swarm gravity fields.

Approach

In Section 2.6 we made the assumption that each time series of the satellite-derived Stokes coefficient observations con-
sists of deterministic signal and stochastic noise, and that we can accurately describe the deterministic signal with a
model consisting of a bias, trend, annual, and semi-annual component. However, when we fit such a model to the obser-
vations via least squares regression, both the signal and the noise affect our estimated model parameters. Consequently,
the expansion of the estimated parameters into a spatial map of, e.g., the gravity trend shows artefacts due to real trends
in the Stokes coefficients trends and due to noise. We reduce the risk of a Stokes coefficient trend caused by noise prop-
agating into our final spatial map of the gravity trend, by computing that map from only those coefficients that have
a statistically significant trend. Because the trend result is affected by the results of the other model components, we
expand this method and test for significance for all model components, before including them in our final model.

This method was first applied to the annual component in the GRACE observations by Davis et al. [21], and later extended
to the secular component by Davis et al. [20] and Sasgen et al. [78]. Since then, various authors have shown the benefits of
statistical filtering, often combining the statistical filter with Gaussian filtering or another anisotropic destriping method,
to study TWS trends [e.g. 36] or GIA [e.g. 79]. The authors suggest statistical filtering is effective at reducing noise (or
striping in GRACE context), with less attenuation of real signal compared to Gaussian filtering.

It should be noted that over time other anisotropic processing routines have been proven to be more effective in reducing
GRACE errors, e.g., regularization [e.g. 81]. However, those methods are not as trivial for us to apply to the Swarm data. For
this reason, we choose to apply the method of Davis et al. [20]. This approach is different from the method of Sasgen et al.
[78] or Sasgen et al. [79] in the sense that is uses statistical tests weighted by the standard deviation of the observations.
Given the heteroscedasticity of the Swarm data, we believe this will be beneficial in our case.

We can describe the statistical filter as an extension of Equation 2.3, where we now add a term Mp,l ,m , that is a function of
degree l , order m, and parameter p, where the parameter is any one of the modeling parameters (e.g., trend, bias, annual
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component, etc.). We write:

f (p)(θ,λ) =
∞∑

l=0

l∑
m=0

Pl ,m (sinθ)
(
M

(p)
l ,m · Ĉ (p)

l ,m cosmλ+M
(p)
l ,m · Ŝ

(p)
l ,m sinmλ

)
(B.1)

where f (p)(r,λ,θ) is the value for the particular modeling parameter p at longitude λ and latitude θ. Note that Ĉ
(p)
l ,m and

Ŝ
(p)
l ,m are not the Stokes coefficients from the gravity models. Rather, they are the least squares estimates of the particular

parameter in the time series of Stokes coefficient Cl ,m and Sl ,m , respectively. Note that this means that the statistical
filter essentially means expanding only the Stokes coefficients that passed the significance test, and rejecting all other
coefficients.

We compute the entries for Mp,l ,m separately per model parameter, per Stokes coefficient. We use a Student’s T-test
to determine the statistical significance of the bias and trend component, and an F-test to determine the significance
of the periodic components. Both tests follow roughly the same outline. First, we define a null hypothesis that states
our estimated parameters are not significant. In other words, the result we derived from our data can be attributed
to random chance. We will try to reject the null hypothesis by proving its probability of occurring is low. For this we
use a predetermined confidence level of 95%. This means there is a 5% probability of falsely concluding a parameter is
significant. When we reject the null hypothesis, we accept the alternative hypothesis, which states our parameter estimate
is significant (i.e., reductio ad absurdum). Note that this means we never prove our alternative hypothesis; we only show
the null hypothesis is very unlikely.

Sasgen et al. [79] suggested a more restrictive version of the statistical filter, which the authors suggest is more effective at
reducing noise. The authors performed the significance tests separately for the CSR, JPL, and GFZ GRACE geopotential
solutions, and only the coefficients that passed the significance test in all three of the solutions were included in the
final expansion. We will experiment with applying this methodology using the various components of the combined
Swarm solutions: the AIUB, ASU, IfG, and OSU Swarm-derived geopotential solutions1. We implement this by expanding
only those coefficients from the combined Swarm solutions that pass the significance test for each of the four individual
solutions.

Statistical tests

The Student’s T-test is executed separately for the least-squares estimate of the bias and the trend parameter. However, it
is defined the same for both parameters, which we will therefore both denote as x̂p,i here. We define the hypotheses:

• HT 0: there is no significant bias or trend in the observations of Stokes coefficient i , i.e., x̂p,i = 0.

• HTa : there is a significant, non-zero bias or trend in the observations of Stokes coefficient i , i.e., x̂p,i 6= 0.

The first step is computing the T-statistic of x̂p,i , which is defined as follows:

Tp,i =
x̂p,i

SE x̂p,i

∼ τν (B.2)

where SE x̂p,i
is the standard error of x̂p,i . As the methods described in Section 2.6.1 were based on using the RMS of the

post-fit residuals (i.e., the RMSE which is equal to the standard error) as an error measurement for our observations, we
can take the corresponding entry in the parameter covariance matrix (see Equation 2.29) for SE x̂p,i

.

T will follow a Student’s T-distribution with ν degrees of freedom, as is denoted by ∼ τν in Equation B.2. Just like in Section
2.5.3, we can therefore calculate the probability of HF 0 occurring given the current data via the cumulative distribution
function of the F-distribution. We do this via MATLAB again, using the tcdf function [2]. The mathematical background
of tcdf is also in Appendix A.6. We have predetermined our confidence interval to be 95%. Since the least-squares
estimate of the bias or trend can be both lesser than or greater than 0, we use a two-tailed test. This means we reject HT 0
when p > 0.975 or p < 0.025.

The F-test for the periodic components follows the F-test described in Section 2.5.3 on page 14. We will therefore not
repeat the theoretical background here. We compare a model with a bias and trend component to a model with a bias,
trend, and annual component to determine the significance of the annual component. In a second, analogical F-test we
do this for the semi-annual component. In earlier iterations of this research we included the S2, K1, and K2 tidal aliases.
However, in Section 4.1 we will show that these aliases, while being statistically significant, have a negligible impact on
the estimated trends, and are therefore omitted from the least squares problem.

1These data are not publicly available, but were kindly provided by dr. João de Teixeira da Encarnação at the CSR in Austin, Texas.

tcdf
tcdf
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Assessing spatial distortion

Filters for (gravity) fields can be split into isotropic and anisotropic filters. Isotropic filters affect all Stokes coefficients of
a particular order in the same way, whereas anisotropic filters discriminate between orders within a degree. An example
of an isotropic filter is the Gaussian filter. Here, the scaling factor from the filter is only a function of the Stokes coefficient
degree (see also Equation 2.8). Anisotropic filters have proven to be very useful in reducing the GRACE striping problem
[e.g. 96].

The degree of a Stokes coefficient correlates with the spatial size of the field artefacts described by that coefficient. All
order of a particular degree are needed to reconstruct every artefact at a particular spatial size. This means an isotropic
filter, that does not filter every order equally, will affect the spherical harmonic model’s capability to reconstruct certain
spatial structures. This a problematic, because the goal of filtering is to suppress noise, but not alter the magnitude,
let alone the spatial distribution, of real geophysical signals. This complicates the interpretation of the results of the
statistical filter.

We independently assess the spatial effect of the statistical filters we compute from the GRACE and Swarm data via meth-
ods shown in, e.g., Davis et al. [20] or Sasgen et al. [79]. We create a synthetic field solution of the spectral decomposition
of a Dirac delta function δ at longitude λδ and latitude θδ. The derivation of the Stokes coefficients of these field are
given in Appendix A, Section A.5 on page 84. Next, we exclude the same coefficients from the spectral decomposition of
our synthetic field, as the statistical filter removes from our gravity fields. Finally, we assess the expansion of the reduced
synthetic field to learn about the influence of our statistical filter on the spatial signal distribution. As the anisotropic
statistical filter is a function of the signal location, we place the Dirac delta function near our signal of interest, which is
the GIA signal around the Hudson Bay.

Verification

The most straightforward verification of this method would be to compare our results to the results in Davis et al. [20],
in terms of exactly which coefficients we deem significant. Unfortunately the authors do not provide this information
in their text. Sasgen et al. [79] do provide this information, the only difference being that their method uses unweighted
statistical tests. For this reason, we repeat our computations with unweighted statistical tests, recompute Figure 4 in Sas-
gen et al. [79], and compare to our method using weighted tests. Implementing the unweighted test is done by replacing
the standard errors SE x̂p,i

in Equation B.2 with the corresponding entries from the aposteriori estimate of the covariance
matrix:

Pp = εT ε

ν
·
(

AT A
)−1

(B.3)

where all parameters are as defined earlier.

We are careful to use the same data and time span as the authors used, which is the GRACE RL04 product from the
German Research Centre for Geosciences (GFZ), spanning August 2002 to August 2009 [84]. The results of this are shown
in the top left panel Figure B.1. Comparing this to Figure 4 in Sasgen et al. [79] shows an exact match, which leads us to
conclude we have implemented the T-test part of statistical filter correctly. The T-test is the most important part of this
filter, as it directly governs which coefficients are used to compute the trend map. The other parts of the filter routine (i.e.,
determining significance of annual component) have only a secondary influence, and therefore we do not execute any
further verification.

The top right panel of Figure B.1 shows the results of applying the method of Davis et al. [20] (i.e., the method we propose
to use) to the data Sasgen et al. [79] used. We have computed the errors in the GRACE GFZ RL04 fields with the method
of Section 2.6.1. Note how this method passes more coefficients than the method of Sasgen et al. [79] (1090 vs. 843 out of
possible 3721). Also note how the high-degree coefficients passed by Davis et al. [20] are more located towards the zonal
coefficients and less is the sectoral domain, where the GRACE solutions are known to be dominated by noise [96].

The bottom panel of Figure B.1 compares degree RMS graphs of the trend computed from the raw GFZ RL04 data, this
data after applying the method of Davis et al. [20], and this data after applying the method of Sasgen et al. [79]. We see
that, with the exception of degrees 44, 45, and 47, the method of Davis et al. [20] is more effective at suppressing high-
degree noise. Also note how the method of Davis et al. [20] is more effective at suppressing the degree RMS variance in
the degrees past l = 50.

As a final measure of verification in the spatial domain, we compare the latitude-weighted RMS of the ocean area grid
points of the expanded Stokes coefficient trends. We find a value of 0.44948 µGal for the method of Sasgen et al. [79], and
a value of 0.29518 µGal for our method. This is substantially closer to the 0.11389 µGal we get when we compute the same
metric from the newer and lower noise CSR RL06 solutions. Finally, to test if we are not just repressing all signals, we
compute the latitude-weighted mean of the trend in the GIA region (as in Figure 4.11). We find 1.1467 µGal a−1 (method
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Figure B.1: Left: blue indicates statistical significance of the trend in time series of Stokes coefficients from GRACE GFZ RL04 spanning
August 2002 to August 2009. Confidence interval is set at 95%. Shown here to verify our statistical filter. Compare this figure to Figure 4
in Sasgen et al. [79]. Right: same as left, but now including the uncertainty estimates of the Stokes coefficients in the statistical tests.

of Sasgen et al. [79]) and 1.1905µGal a−1 (our method). We conclude that the method of Davis et al. [20] is likely to remove
more noise, while leaving more GIA signal, compared to the method of Sasgen et al. [79].

Results

Figure B.2 shows the coefficients in the GRACE CSR RL06 and the combined Swarm fields have a statistically significant
trend in blue. For GRACE, we see that 1332 (79.5%) coefficients pass the test, and that the known spectral distribution of
the coefficients without a significant trend component resembles the noise distribution: noise is more pronounced in the
high-degree and high-order coefficients Swenson and Wahr [96]. Note that we have truncated the fields to lmax = 40 to
match the Swarm fields.

The results for the combined Swarm fields as a whole are discouraging: only 124 coefficients have a significant trend
(7.4%). We see that most of the coefficients passing the test are concentrated in the lower degrees, where we had already
determined that noise levels are lower. Only looking at degrees up to 13, the number of coefficients passing the signifi-
cance test increases to 26.3%, but remains low compared to 90.2% for GRACE. The rest of the passing coefficients indicate
some spurious trend components that are arbitrarily spread across the spectrum, not indicating any correlation. When
we look at the spatial distribution of the Swarm-derived trend after applying the statistical mask in Figure B.4, we see that
the statistical filter is effective in reducing the magnitude discrepancy between the GRACE- and Swarm-observed trends
for max = 13,14,15. However, we also note that the statistical filter suppresses the Swarm trend result so much that it is
now lower than the GRACE result. Regarding the positive trend anomaly around the Hudson Bay as a whole, we see that
the statistical filter substantially affects its spatial distribution. The center seems to shift to the north-east, and its shape
transforms from elliptical to round for the max = 13 case, to an elongated shape for max = 14,15. Above this degree, the
GRACE- and Swarm-derived statistically filtered trend clearly diverge.

In more restrictive case of the statistical filter, as described by Sasgen et al. [79], we only include coefficients in the final
expansion that have passed the significance test for each individual solution. When we apply this to the four components
of the combined Swarm solution, we find 169 (10.1%), 187 (11.2%), 166 (9.9%), and 196 (11.7%) coefficients with a signifi-
cant trend in respectively the AUIB, ASU, IfG, and OSU solutions, as is shown in Figure B.5. Only 17 (1%) coefficients have
a significant trend in all four solutions. Needless to say, expansion of these 17 coefficients does not lead to any reasonable
results, and therefore this expansion is not shown. We conclude that the Swarm-derived fields contain too much noise to
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Figure B.2: Coefficients with a significant trend (95% confidence interval) in GRACE CSR RL06 (left) and the combined Swarm fields
(right).

apply the more restrictive statistical filter of Sasgen et al. [79].

Interpretation of results

In Section B we explained how anisotropic filtering can distort the spatial distribution of the reconstructed fields, and that
interpretation of the results from the statistical filter is difficult for that reason. Here, we apply the statistical filters that
we have computed from the gravity data (Figure B.2) to the synthetic fields consisting of a Dirac delta function at either
the south-east coast of the Hudson Bay (58◦N; 88◦W), or on a point on the equator along the same meridian (0◦N; 88◦W).
Further explanation of this experiment is in aforementioned section. As close to all GRACE coefficients up to degree 13
pass the statistical test, and Figure B.4 showed little to no impact of the statistical filter on the GRACE-derived trends, we
will only execute this experiment for the Swarm-derived statistical filter.

Figure B.6 shows the result applying the Swarm-derived statistical filter to the spectral decomposition of the Dirac delta
function. Both the Dirac function at the equator and the Dirac function near the Hudson Bay are spatially distorted after
applying the filter. For the point at the equator, the east-west axis is elongated w.r.t. the north-south axis. The point near
the Hudson Bay seems to have slightly increased in length in the north-south direction. This agrees with the observations
of Davis et al. [20] and Sasgen et al. [79], who executed this experiment with a GRACE-derived mask.

Additionally, it seems like the function at the equator has shifted westward, and that the functions near the Hudson Bay
has shifted to the northwest. This agrees with what we saw in Figure B.4, where the positive trend anomaly observed by
Swarm around the Hudson Bay also shifted northeast after applying the spatial mask.

Conclusion

The power of the statistical filter, when applied to GRACE, is that is suppresses the high-degree noise to such an extent
that further processing is no longer needed [79]. For Swarm, we find that there is too much high degree noise to derive
statistically significant trends. A very substantial part of the Swarm-derived coefficients is filtered out, with only sporadic
coefficients past degree 13 passing the statistical tests. The statistical mask clearly indicates an error correlation between
the high-degree-high-order coefficients of GRACE, but fails to show any correlation in the Swarm errors. Finally, the
anisotropic nature of the statistical filter then leads to spatial distortion of the expanded Stokes coefficients, which makes
the results harder to interpret. This greatly reduced the applicability of the statistical filter for geophysical study.

We conclude that, at time moment, we are unable to extract more geophysical signal from the Swarm-derived gravity
fields using an anisotropic filter based on statistical significant of the trend component. Longer time series could make
it easier to derive statistically significant parameters from the Swarm gravity fields, and therefore we do not rule out the
statistical filter could be useful for application to the Swarm data in the future.
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Figure B.3: Results of applying the statistical filter to the GRACE CSR RL06 fields truncated at various maximum degrees.
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Figure B.4: Results of applying the statistical filter to the combined Swarm fields truncated at various maximum degrees.



94 B. Case study: statistical filtering of Swarm-derived gravity trends

Figure B.5: Coefficients with a significant trend (95% confidence interval) in the individual components of the combined Swarm solutions
(left and middle columns), and coefficients with a significant trend in all four solutions (right panel).

Figure B.6: Statistical filter computed from the trend estimates in the Stokes coefficients of the combined Swarm fields, applied to a Dirac
delta function at 58◦N; 88◦W (left), and 0◦N; 88◦W (right).



C
Error analysis of the GeoQ solutions

In this appendix we will apply much of the same processing that we applied to the Swarm field in the main text of this
thesis to the unfiltered GeoQ fields. Similar to Section , we do this for both the entire GeoQ data set, and a subset that we
have trimmed to match the length of the combined Swarm fields of 64 months.

Errors computed from Stokes coefficient RMSE

In this section we apply the methodology of Section 2.6 to the time series of GeoQ fields that is trimmed to the length
of the combined Swarm solutions. We compute the spatial, spectral, and probability distributions of the observation
uncertainties. First, we do this from RMSE results computed in the spectral domain, i.e., from Stokes coefficient time
series. Second, we do the same but use RMSE results computed in the spatial domain, i.e., from time series of gravity
change. For comparison with the GRACE- and Swarm-derived results in Section 4.2, we truncate the fields to lmax = 13.

Figure C.1 shows the results for the GeoQ fields trimmed to 64 months length, and Figure C.2 shows the results for the full
GeoQ time series. When it comes to the spatial, spectral, or probability distribution we see very similar results for both
the full and the trimmed data set to what we saw for the Swarm series in Figures 4.2, 4.3, and 4.5 (pp. 38 to 40). Spatially,
we see a relatively homogeneously distributed errors with again a substantial increase near the poles. In Chapter 4 we
explained this via the spectral distribution of the errors. As the spectral distribution of the errors in the Swarm-derived
and multi-satellite fields are

Errors computed from gravity RMSE

Here, we repeat the experiments of the last section, but apply the methods of Section 2.6 to gravity time series of a partic-
ular geographical location, instead of time series of Stokes coefficients observations.

Figure C.3 shows the results for the GeoQ fields trimmed to 64 months length, and Figure C.4 shows the results for the
full GeoQ time series. For the trimmed series, we see a relatively homogeneous error distribution in the spatial domain.
Nonetheless, the peaks in South America and India, along with the clearly non-Gaussian distribution of the land area
residuals suggest that we have not been able to retrieve all of the geophysical signal from the observations. This is much
like what we saw for GRACE in Section 4.2. For the full time series we see slightly different results. Spatially, the errors
seem to increase for lower latitudes. This could be related to the fact that the ground track density, and thus the obser-
vation density, it higher at higher latitudes. Also, Figure C.4 seems to shows a relatively higher errors over the Southern
Hemisphere. The probability distribution of the residuals of the full GeoQ data set also shows a peculiar pattern: the
ocean area residuals diverge from the Gaussian distribution near the mean of the residuals. We have been unable to find
a conclusive explanation for this behavior, but as the pattern is reminiscent of two overlapping normal distributions the
origin is perhaps related to the fact that the GeoQ fields combine GPS and SLR observations.
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Figure C.1: Error analysis in the spectral domain for the GeoQ time series of GPS-derived geopotential fields, trimmed to September
2013 to December 2018. NB: color scales in this Figure do not match Figure C.2, nor any of the Figures in Section 4.2 where GRACE- and
Swarm-derived error estimates are described.

Figure C.2: Same as for Figure C.1, but using all available epochs in the GeoQ data set. NB: color scales in this Figure do not match Figure
C.1, nor any of the Figures in Section 4.2 where GRACE- and Swarm-derived error estimates are described.
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Figure C.3: Spatial distribution of the errors in the September 2013 to December 2018 subset of the GeoQ fields, as computed via the
method outlined in Section 2.6.1, this time applied in the spatial domain. NB: color scale in this Figure does not match Figure C.4, nor
any of the Figures in Section 4.2 where GRACE- and Swarm-derived error estimates are described.

Figure C.4: Same as for Figure C.3, but using all available epochs in the GeoQ data set. NB: color scale in this Figure does not match
Figure C.1, nor any of the Figures in Section 4.2 where GRACE- and Swarm-derived error estimates are described.
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