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Abstract

Reefers are refrigerated containers commonly used for transporting perishable goods
such as meat, fish, vegetables and fruit. Nowadays, reefers are responsible for 40% of
the total energy consumption of container terminals, when connected to the
electricity grid on shore. Every time when a large number of reefers is plugged-in
after arrival, peaks in energy consumption occur. As container terminals purchase
energy using a demand-based fee, exceeding the reserved capacity during peak
times increases the energy costs of the terminal significantly. So far the literature has
not dealt with the root causes of peak energy consumption of reefers, or ways to
reduce these peaks. The aim of this paper is to identify the root causes and to
quantify their importance. We use data of energy consumption of reefers at a large
container terminal, over the period of 1 year. In order to identify the importance of
factors, we apply a sequential multiple regression analysis approach with backwards
feature selection. Variations in energy demand are explained for 77% by the arrival
pattern of containers, for about 5% by dwell time and for 2% by other factors, such
as container temperature at plug-in. Promising approaches to reduce peak energy
consumption of reefers includes dynamic pricing, energy management and specific
peak shaving strategies.

Keywords: Reefers, Energy consumption, Container terminals, Data analysis, Regression
analysis

Introduction and motivation
With the continuous increase of population and welfare across the globe, ports become

increasingly important for the trade and supply of goods and support a continuous

worldwide demand for fresh food, throughout all seasons of the year. To ensure the

availability of fresh products, specialised refrigerated containers are used. The usage of

refrigerated containers (or reefers) has grown together with the world population and

global container usage, at a compound annual growth rate of 3.1% between 2012 and

2017. Also, factors play a role like healthy eating habits and change of weather condi-

tions (Dekker 2014). The United Nations Conference on Trade and Development

(UNCTAD 2015) reports a refrigerated cargo share of the total dry cargo of 1.5% for

the years 2000 to 2015, with an annual growth rate of 45%. The proportion of reefers

in total conditioned shipping transport increased from 47% in 1990 to 75% in 2014; it

is expected that in the coming 5 to 10 years global growth of the reefer market will be

around 8% per year (Rodrigue and Notteboom 2014).
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Not only the energy consumption of deep-sea transport increases but also the energy

consumption of container terminals. Wilmsmeier et al. (2014) found that reefers account

for as much as 40% of the total energy consumption of a container terminal. The other

60% is assigned to ship-to-shore cranes (40%), terminal lightning (12%), and administra-

tion and workshops (8%). The large proportion of electrical energy usage of reefers at con-

tainer terminals shows the importance of smart and active energy use systems.

Global containerization has led to increasingly larger ships being built and used. This

increase in ship size, together with seasonality effects, lead to high peak energy con-

sumption at container terminals. The seasonality effects are determined by the outside

temperature combined with the harvest season of fruit. Also, with the use of larger

ships, peaks increase in amplitude, due to the high volume of simultaneous reefer ar-

rivals. The operational nature of terminal processes with large simultaneous reefer ar-

rivals presents significant costs for the container terminal. The container terminal is

required to unload, and temporarily store the incoming reefers before they can be

transported further. During the temporary storage of reefers, the core temperature

must remain within the set bandwidth. Thus the reefers are continuously powered

when stacked. The container terminal must purchase the required energy at an energy

utility company in advance. Often container terminals purchase electricity using a

demand-based fee; billing is based on a specific capacity which is reserved by the utility

company for the terminal. Any (temporary) peak above the reserved capacity will have

a significant impact on the total energy costs (ABB 2017). These costs are high as the

energy utility company must ensure the continuous supply of electricity. Therefore,

they must supply the exact amount of required energy across their entire network. The

extra costs of delivery are passed on to the terminal. The exact height of the additional

rate varies with each contract and supplier. The measured maximum peak consump-

tion is then also applied in the billing for the next 12 months (Heij 2015). Currently the

container-terminal charges the additional costs to the shipping company. Via the ship-

ping company and importer, the consumer eventually pays for the high electricity costs

(ECT Delta terminal 2017). This way, the terminal does not notice the added costs.

However, with the current trend of companies looking to become more sustainable,

there is increasing attention for ways to reduce electricity consumption. If the electri-

city cost decrease, the cost of operations also will decrease, leading to a more competi-

tive transhipment price for reefers.

One can observe many studies with a technology-focused view regarding the power

consumption of reefers. There is extensive research into advanced and smart control

systems which regulate cooling of reefers based on weather, energy price (Barzin et al.

2015; Barzin et al. 2016) or control systems that throttle the fans such as QUEST II

(Lukasse et al. 2013). However, the focus of these studies has mostly been on the saving

potentials of individual reefers (Lukasse et al. 2013; Sørensen et al. 2015). The complete

reefer system at the container terminal has been investigated in previous research of

van Duin et al. (2018). Although these approaches are a logical steps, when research

aims to reduce energy consumption and peak energy consumption, these approaches

can also be considered to be symptom management.

To date, no research can be found that attempts to explain and break down the en-

ergy consumption of reefers into the causal factors, although partial studies on aspects

of the problem are available. A literature review was carried out using sources indexed
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in Scopus, with the key words ‘energy use’ and ‘reefer’. Vanek and Sun (2008) introduce

an optimization model to explore the trade-off between the energy consumption for

food distribution activities and the loss of energy in terms of nutritional values resulting

from food spoilage. Fitzgerald et al. (2011) show that the power consumption of refrig-

erated containers on site may vary by approximately 60% compared to the base value

of 2.7 kW/TEU. Defraeye et al. (2014) use computational fluid dynamics to show the

influence of cooling conditions for orange fruit precooling on the cooling rate and sys-

tem energy consumption. Gwanpua et al. (2015) designed a tool to assess the impact of

alternative technologies, plants, and cold rooms on the overall energy costs and the

quality of the supplied perishable products. Gallo et al. (2017) proposes a mixed integer

linear programming model to minimize the total energy consumption associated with

the cold operations experienced by perishable products. The model supports oper-

ational decisions about which route and transport mode to choose and also aids stra-

tegic considerations on where to locate a logistics node or infrastructure along a cold

chain. Mc Carthy et al. (2018) define in their review the four Pillars of Food Security.

One of the important pillars is storage, with related high energy cost. More technical

research was carried out by Budiyanto et al. (2019), who investigated the effect of azi-

muth angle (installation of roof shade) on the energy consumption of refrigerated con-

tainers. Like Vrat et al. (2018) conclude in their literature review on sustainable cold

chains for perishable food products, there are many different areas that are not ad-

equately addressed by academia despite an urgent need for practicing world. They en-

courage future research to study the role of proper stacking systems, material handling

equipment, and advanced technologies for assuring the quality of perishable products

during transportation. Studying the power consumption of these systems is essential

for keeping up the cold conditions.

In sum, the underlying causal factors of peak energy consumption and their influence

remain unclear. In this research we aim to break down variations in energy consump-

tion into the multiple contributing factors. Such a breakdown allows for improvements

on the root causes to reduce peak energy consumption. The following research ques-

tion is addressed:

What are the root causes of peak energy consumption by reefers at container terminals?

To answer this question a schematic view on the reefer process is presented in “Reefer

terminal operations: a process view” section. “Identification of factors and data

specification” section identifies the root cause factors in peak energy consumption.

“Measuring the process” section shows the outcomes of the capability tests on the

selected group of critical factors. “Regression analysis on the energy consumption” section

shows the main results of the regression analysis. Conclusions and recommendations are

given in “Conclusions” section.

Reefer terminal operations: a process view
A process-based view focuses on the reefer operations and the risks following reefer

handling. A large risk of reefer handling is long periods of no power supply. For ex-

ample Fig. 1 shows the registration of a temperature logger during transport from the

plant to the end-destination, i.e. the transport of a reefer from the Dominican Republic
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to the port of Rotterdam. Figure 1 (Left side) shows that the cargo was not pre-cooled

before transport; instead the reefers were first plugged in at the departing port. If the

cargo was pre-cooled, the cargo would be within the bandwidth from the start of the

temperature log. This late plug-in leads to a high energy consumption at the departing

terminal. This is a trend often occurring in shipments from South America (Groente

en Fruithuis 2017). It is essential that the temperature inside the reefer be controlled to

ensure the quality of the perishable goods inside. Failure can result in a costly loss of

cargo. If failure results in loss of cargo, the port is required to compensate the owner of

the cargo for its losses. Reefers always are filled with valuable cargo thus compensation

can cost the port large sums. Therefore, it is essential that reefers are plugged in as

quick as possible after the arrival of the ship.

Filina and Filin (2008) have shown that power-out periods of reefers are often 2–4 h,

which can climb to 6–8 h due to human factors, technological factors, and environmental

factors. These power-outs occur twice when reefers are handled in the port. The first time

is when the ship arrives in the port, the reefer is disconnected from the ships power-net

to prepare it for ship-to-shore transfer. The reefer may be transported to a customs check

(see ‘GPKW’ in Fig. 2) before it is transported further to the reefer stack. The reefer is

plugged in again when it arrives at a reefer stack of the container terminal where it can be

plugged into the power-net of the terminal. The second time happens when the reefer is

transported further from the container terminal. The transport activities of a reefer within

a typical European port are shown in Fig. 2 (Filina and Filin 2008).

When the reefer is plugged into the power-net of the container terminal the onboard

refrigeration unit can control the temperature of the unit. The container terminal then

continuously monitors the correct operation of the reefer. Some reefers can be monitored

on distance; other reefers do not have the capability of sending data to the control centre.

These reefers are checked manually three times a day (Delta reefer care 2017).

Filina and Filin (2008) state that the temperature control of reefers is compromised

on many occasions due to human factors. As an example, the extended plugged-out

period can be caused due to an early plug-out on the ship before the arrival of the ship.

An early plug-out stimulates a quick ship offload, however it increases the off-line time

and power consumption of the terminal. Another common factor is the failure of

Fig. 1 Temperature development during transport of bananas (De Geest 2015)
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plugging the reefer in the power net, as it is known that the reefer will be moved within

a short time frame.

Identification of factors and data specification
To determine the possible factors causing high peaks in energy use, firstly a brainstorm

was conducted to gather as many causal factors as possible. The brainstorm was held

with 6 field experts from an energy technology company, a major container terminal

and a technical university, all with a working experience of 7 years on average in the

reefer sector. By selecting these experts, different perspectives on the process were in-

cluded. TU Delft provided factors based on theoretical knowledge, while the experts

from the ECT Delta terminal and ABB could provide inputs based on close experience

with reefers and the energy systems in place. The experts were asked to list a minimum

of 5 factors which they suspected to influence the energy consumption of reefers and,

subsequently, to rank these in order of importance. All experts returned with a list of

minimally 7 factors (ABB 8; ECT Delta terminal 7; TU Delft 9).

After all the factors were gathered, they were filtered on duplicates based on double

mention or similarity of the metric used. Next, the factors were organised in a root

cause diagram (Ishikawa diagram). This supports further brainstorming for root cause

factors as it follows the 6M principle of Six-sigma (Eckes 2005). The 6M principle di-

vides the root cause diagram is six categories: Manpower, Machine, Mother-nature

(environment), Method, Measurement, and Materials. The resulting Ishikawa diagram

is shown in Fig. 3. The principle of an Ishikawa diagram is that for every branch of the

fishbone, at least one factor must be identified. This forces the brainstorm session to

think about every aspect of a process.

Not all factors that are described in Fig. 3 can be measured directly. Some of the fac-

tors must be quantified by using an indirect method of measurement. The number of

arriving reefers, sun-hours, set-point temperature, thermal insulation, and mass of

cargo are operationalised by measuring the exact factor. These are referred to as the

variables No_arr_reefers, Sun-hours, T_set_point, Thermal_iso, and Weight respectively.

Fig. 2 On-shore reefer transportation (Filina and Filin 2008)
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The ambient temperature is operationalised by using the ΔT between the set-point

temperature and the average ambient temperature. This difference is referred to as the

variable Delta_T_ambient. The plug-in temperature is operationalised by using the ΔT

between the plug-in temperature and the set-point temperature. This is referred to the

variable Delta_T_plugin. The offline time is calculated using the equations developed

by Tran (2012) and referred to variable Offline_time. The calculation of the Dwell time

is the difference between the plug-in and plug-out time of the reefer and referred as

the variable Dwell_time. The type of cargo can be operationalised using two methods.

It can be either represented by the set-point temperature or the specific heat. In this re-

search, we chose to represent the cargo type using the specific heat of the cargo. The

specific heat is referred to variable Specific_heat. The power availability is difficult to

operationalise as no data is known regarding this factor. Therefore this factor will not

be considered in this research.

The dataset used for this research was provided by utility company ABB. The data is

measured and collected from a container terminal over the course of 1 year and 1month.

The inputs of the original dataset as supplied by ABB states a container number, container

size, plug-in time, plug-out time, set-point temperature, and weight. These inputs were

measured over the period between 01 and 01-2014 and 23-01-2015. During this period

65,732 measurements were collected, each measurement for a single container.

Measuring the process
To measure the performance level of a process, a standard must be available. The

Critical-To-Quality (CTQ) requirements of the customer must be translated to per-

formance standards so that current performances can be measured against this bench-

mark. For each of the CTQ requirements it is asked what specifications the customer

demands. The following process standards are specified (Table 1).

The requirements and allowed deviations for the temperature control are deducted

from the set-point temperature of the reefers. Reefers can be set to maintain any

temperature between − 30 °C and + 30 °C (Hamburg Sud 2016), thus for all reefers, the

exact specification of the temperature requirement can be different. There are some

reefers capable of maintaining a temperature of − 60 °C. However, these reefers are not

Fig. 3 Ishikawa diagram for energy consumption of reefers (own research)
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standard practice and not often used. Table 1 shows the allowed temperatures for

standard temperature ranges.

The maximal offline time is calculated using the approach of Tran (2012). The

temperature bandwidth per reefer is known; thus the ΔT (t) between the set-point

temperature and bandwidth limit is used to calculate the time the reefer takes to warm

up to the bandwidth limit. Using this information the maximum offline time is calcu-

lated for each reefer. These equations assume that the temperature increase follows a

linear pattern and that the reefer is at its set-point temperature when the reefer is

plugged out. The value of the maximum offline time can differ for each reefer. Short

transhipment time criteria are measured by the dwell time per reefer. If the dwell time

is short, then the entire transhipment period is short, and the customer can transport

the reefer to the hinterland quicker. Also, if the dwell time exceeds the “demurrage free

time”, the customer is required to pay an additional fee.

For reefers, the additional cost can be up to €120 for the first 3 days above the free

time and €180 for four or more days above the free time (ZIM 2017; APL 2016; CMA

CGM 2017; OOCL 2016). Plus additional electricity costs are billed to the customer

(LLC Maher Terminals 2016). Typically the free time can vary between different termi-

nals and different customer contracts. However, larger terminals often handle a free

time period of 3–5 days (LLC Maher Terminals 2016; APM terminals 2018). Therefore,

the transhipment time is specified at 1 day with an allowed deviation of 2 days. This

time limit ensures that the customer does not have to pay additional fees.

The peak energy bandwidth of the container terminal differs for each terminal due to

individual contracts of the container terminals with the energy utility company. There-

fore a maximum allowed peak load is assumed. The maximum allowed peak consump-

tion is assumed to be 80.000 kWh.

The analysis on the current process capability gives an insight into the operation of

the process and an indication of what parts CTQ requirements are out of control.

Temperature control capability

No accurate bandwidth data is available as the specific bandwidth is different per reefer.

Therefore the bandwidths for the specific temperatures as mentioned by Rodrigue

Table 1 Reefer performance standards

Requirement Customer Specification Allowed deviation

Temperature control

Deep Frozen −29 °C +/- 2 °C

Frozen −18 °C =/- 2 °C

Chilled 2 °C +/- 1 °C

Bananas 13 °C +/- 0.5 °C

Maximum Offline time

Offline time 4 h + 1 h

Short transhipment time

Dwell time 1 day 2 days

Energy peak load

Peak power 80,000 kWh 0

van Duin et al. Journal of Shipping and Trade             (2019) 4:1 Page 7 of 17



(2014) are four categories. Therefore the data is split up into four categories:

deep-frozen (− 66 °C to − 29 °C), frozen (− 28°to − 10 °C), chilled (− 9 °C to 10 °C), and

bananas (11 °C to 27 °C). The corresponding bandwidth is assumed to be + 2 °C, + 2 °C,

+ 1 °C, and + 0,5 °C respectively. The result of the analysis is shown below in Table 2.

In this table “defects” stands for the number of times that the temperature inside the

reefer exceeds the allowed bandwidth. Dpu is the average number of defects per unit,

the FTY is the First Time Yield (FTY equals to e-DPU¡), P(d) is the probability of a de-

fect (equals to 1-FTY). The Z factor is an important indicator for the process capability

and indicates the sigma score of the process (equals to (SL-Xavg)/ σ). The standard devi-

ation is given by σ, the median is the center of each category.

Table 2 shows that the temperature control of all reefers in every category is rarely

out of the allowed bandwidths. In almost all cases 99% of the reefers stays within the

allowed temperature range. The deep-frozen reefers score relatively lower with 93% of

the reefers that stay within the allowed specification. The high performance of the

temperature control is confirmed by multiple Dutch importers of meat, fish, fruit, and

vegetables who indicated that their temperature loggers rarely show that the

temperature has been outside the specified bandwidth.

Minimal offline time

To guarantee continuous temperature control, the offline time per reefer must be min-

imal. Hence, the reefer must be plugged out as late as possible, then offloaded, stacked,

and plugged in as quick as possible. In this process, the terminal attempts to unload

the reefers, as soon as the ship is docked, within 1–2 h (ECT Delta terminal 2017).

However, according to the terminal, it often occurs that the reefers are unplugged at

sea due to lack of personnel or to save money by not using more expensive fuel to

power the reefers (a higher quality of fuel is required when the ship enters European

waters). In the ideal situation, the reefer would be plugged out when the ship is docked

and plugged in 1 h later on the shore. However, modern large container ships only have

a crew capability of approximately 13 people (Maersk Emma 2017). This means that it

takes often longer to unplug all reefers. According to the Port of Rotterdam (PoR) the

time it takes to get from the north-sea to dock the ship at the terminal is on average 1

h. Assuming that all crew must be available to dock the ship, the reefers must be un-

plugged before entering the port. Furthermore, when 500 reefers must be unloaded

from a ship, the quay cranes are capable of unloading these in 3.1 h. Thus, the reefers

must be plugged in after approximately 5.5 h. This is the total sum of the times it takes

Table 2 Temperature control performance

Deep frozen Frozen Chilled Bananas Total

Defects 2 5 5 43 55

Dpu 0.065 0.001 0.001 0.001 0.001

FTY 93.7% 99.9% 99.9% 99.9% 99.9%

P(d) 6.3% 0.1% 0.1% 0.1% 0.1%

Z 1.534 3.708 3.319 2.331 3.132

σ 11.03 2.276 3.801 3.064 12.342

Median −59.316 −19.823 4.049 14.959 −19.432
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for the ship to dock (1 h), the offloading period of 3.1 h, and a deviation of 1.4 h. With

this specification limit, the capability of the offline time is calculated and is shown in

Table 3.

Table 3 shows that 58% of the reefers is plugged in at the reefer stack within 5.5 h. As

expected, there is no large difference between the different categories. This was ex-

pected since the terminal is not able to select which reefer types are unloaded first. It

must be noted that the low Z-score of the offline time performance has no apparent in-

fluence on the temperature control. As shown in Table 2, the temperature of the reefers

is rarely out of the selected bandwidth at plugin. Hence the poor offline time perform-

ance has little risk of damaging the value of the perishable goods. However, the high

average offline time can influence the energy consumption at the terminal.

Transshipment time

For the determination of the transhipment time capability a limit of 1 day with an

allowed deviation of 2 days is used. Thus a defect is reported when the transhipment

time exceeds 3 days. This specification is chosen based on a large container terminal

(APM terminals 2018; LLC Maher Terminals 2016) as they often have a so-called “de-

murrage free time” of 2 days. Large customers can negotiate longer free times at the

terminal using contracts which are not publicly available. Therefore, during this re-

search a general maximum demurrage free time of 3 days is considered to be a defect.

Table 4 shows that the transhipment time has a 43% chance to exceed the free time

period of 2 days. This coincides with a low Z-score of 0,17. This high transhipment

time could contribute to a high energy consumption.

Peak energy

The same analysis is performed for the peak energy performance of the process. For

this analysis, a defect is considered to occur when the peak energy consumption ex-

ceeds 80.000 kWh. The value of 80.000 kWh is chosen as this is a clear cut-off value.

The exact value of the limit is highly dependent on the contract between the container

terminal and the energy utility company. Considering this upper limit there are 19 mo-

ments when the power consumption exceeds 100.000 kWh. This results in a Z-value of

1,64. For the individual reefer categories, it is considered to be a defect when the energy

consumption exceeds the proportional limit. I.e. Frozen reefers account for (45,896/

61320)*100 = 74.85% therefore the combination of frozen reefers is not allowed to ex-

ceed 59,877 kWh.. The results are shown in Table 5.

Table 3 Offline time performance

Deep frozen Frozen Chilled Bananas Total

Defects 16 25,692 5508 1900 33,116

Dpu 0.516 0.560 0.498 0.439 0.540

FTY 59.7% 99.9% 60.8% 64.5% 58.3%

P(d) 40.3% 0.1% 039.2% 35.5% 41.7%

Z 0.245 0.180 0.274 0.371 0.209

σ 4.415 4.501 8.333 18.129 7.052

Median 5.765 6.255 5.845 4.836 6.109
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Findings

The current process capability was determined by calculating the Z-score. When con-

sidering the current performance of the temperature control, transhipment time, and

the peak energy performance it can be said that the current process rarely exceeds the

allowed temperature bandwidth. However, it occurs regularly that the offline time is

longer than 5 h. The exceeding offline time was expected as reefers are often unplugged

at sea. Also, the complete transhipment process often takes longer than the customer

specifications of 3 days. Finally, the amplitude of the peaks also often exceeds the re-

quired maximum. It is especially remarkable that frozen reefers often exceed the

allowed peak consumption.

Regression analysis on the energy consumption
The regression analysis will show if the found capability limitations of the dwell time

and the offline time performance add to the energy consumption.

Correlation analysis

Prior to the regression analysis the brainstormed factors are explored using the IBM

SPSS statistical package. The first step in the exploration is to investigate the complete

dataset for correlations and trends. For every day of the measurement period

(01-01-2014 to 31-01-2015). the average is calculated for each factor. The average of

each factor is analysed with respect to the total energy consumption. If a factor has an

impact on the total energy consumption, it shows that the total energy consumption in-

creases or decreases with a change in the factor. The Pearson correlation matrix indi-

cates the direction. Strength and significance of the bivariate relationships of between

all above-brainstormed factors. The summary of the matrix is shown in Table 6.

Table 4 Transshipment time performance

Deep frozen Frozen Chilled Bananas Total

Defects 15 28,476 4317 1694 34,502

Dpu 0.484 0.620 0.390 0.391 0.563

FTY 61.6% 53.8% 67.7% 67.6% 57.0%

P(d) 38.4% 46.2% 32.3% 32.4% 43.0%

Z 0.296 0.095 0.459 0.457 0.176

σ 1.364 2.058 2.171 2.202 2.132

Median 2.888 3.510 2.213 2.446 3.290

Table 5 Energy performance

Deep frozen Frozen Chilled Bananas Total

Defects 25 25 0 0 29

Dpu 0.893 0.064 0.000 0.000 0.080

FTY 41.0% 93.8% 100.0% 100.0% 92.4%

P(d) 59.1% 6.2% 0.0% 0.0% 7.6%

Z −0.229 1.541 6.2 6.2 1.430

σ 24.679 19,041,787 1604.419 267.407 28,554.872

Median 0.0 12,031.317 443.637 179,901 21,246.5
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Table 6 indicates that seven factors have a statistically significant correlation with energy

consumption (flagged with *). The largest correlation is between the total energy con-

sumption and the number of arriving reefers. Furthermore the dwell time, delta plug-in

temperature (ΔT), cargo type (specific heat), thermal insulation, weight. and ambient

temperature appear to be correlated with total energy consumption. It is noticeable that

the factor “Sun-hours” is not-significant where this was not expected. The offline time is

not directly statistically correlated with the total energy consumption, although it often as-

sumed that this has a considerable influence on the energy consumption of reefers.

Regression analysis

After the exploration of the data, a general idea of the influence of certain factors on

the total energy consumption is made visible using a correlation matrix. The next step

is to perform a multiple regression analysis. Such an analysis enables us to predict the

total energy consumption per day. A sequential multiple regression analysis, using the

IBM SPSS package, is selected for the analysis. This selection is made based on the de-

cision tree presented by Tabachnick and Fidell (2013, p.29) as there is one continuous

dependent variable, multiple continuous independent variables, and there might be co-

variates. Also, the goal of the analysis is to find the optimal combination of influencing

variables to predict the dependent variable. These characteristics lead to the sequential

multiple regression strategy. To perform a proper regression analysis, the appropriate

factors which are included in the analysis must be selected. This is done by using an

automatic model for the selecting of factors. An overflow of factors in the regression

analysis can lead to an inaccurate analysis. The model can be selected using different

automated methods. These automated selection methods can be used if there is no

large collinearity, no large number of variables compared to the number of observa-

tions, and no ordinal/nominal data is used. The data used in this research complies

with these requirements thus the automatic model selection methods can be used. The

dataset used for this regression analysis has 393 observations (1 year and 1 month),

nine possible independent predictors, and no collinearity problems. The Backwards se-

lection method is used with an α-boundary of 0.05. Backwards (step down) selection is

the most straightforward method of model selection. In backwards selection, all

Table 6 Correlation of the factors to the energy consumption

Energy consumption

No_arr_reefers 0.886***

avg_dwelltime 0.146**

avg_deltaT_plugin 0.199***

avg_T_setpoint −0.030

avg_specific_heat −0.225***

avg_thermal_iso 0.200***

avg_weight 0.388***

avg_DeltaT_ambient −0.163**

Sun-hours 0.050

Offline_time −0.011
**p < 0.01, ***p < 0.001
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predictors are initially entered in the regression. Next, the predictor with the highest

P-value above the threshold of a chosen α is removed, and the model is refitted with

the remaining predictors. Again, the predictor with the highest P-value is removed. The

procedure is repeated until all predictors have a P-value of less than the chosen α. The

outcome of the backward sequential regression analysis is shown in Table 7.

Table 7 immediately shows that the backward selection removes four factors from

the regression analysis. Three of the removed factors are expected as these were found

to be insignificant in the shown correlation matrix (Table 6, i.e. Set-point temperature,

Sun-hours, and Offline time). However, the fourth removed factor is the avg_Delta-

T_ambient factor which has an α < 0,05 after removing the average temperature

set-point, sun-hours, and offline time from the regression analysis. Therefore, the

model with the highest R2 contains five root cause factors. As expected the number of

arriving reefers explains a significant portion of the variance. The dwell time, plug-in

temperature, specific heat, and thermal insulation are the other factors included in the

model. Together the model explains 83% of the total variance.

Cross validation

According to Tabachnick and Fidell (2013) cross-validation with a second sample is

highly recommended for stepwise regression methods. The method of cross-validation

is based on the principle that ‘If a model can be generalised, then it must be capable of

accurately predicting the same outcome variable from the same set of predictors in a

different group of people.’ (Field 2013). Cross-validation of the developed model is done

through some steps. Initially, the data is split up into two sections to create ‘the differ-

ent group of people’ to which Field refers. The larger section is used for the develop-

ment of the model (model training), and the smaller section is used for cross-validating

the model (model testing). Tabachnick and Fidell (2013) suggest that using an 80% and

20% division of the data is appropriate for cross-validation. However, in this research, a

division of 60% and 40% is used. Meaning that a random 60% is used for the develop-

ment of the model as mentioned above and the remaining 40% is used for the

cross-validation model testing. The ratio between the training and test section of 60%

and 40%, respectively, is selected as this ratio puts an higher emphasis on the testing of

the strength of the prediction.

Table 7 Outcomes backward sequential regression analysis

Model 6 R R2 Adjusted R2 Std. Error of the Estimate

.911 .830 .827 12,333

Unstandardized Coefficients Standardized Coefficients

β Std. error β t-value

(Constant) 41,088.919 30.417 1.35

No_arr_reefers 174.390 5.7 .850*** 30.43

avg_dwelltime 6,855.187 959 .198*** 7.15

avg_specif_heat −22,775.935 8475 −.81** −2.69

avg_thermal_iso 15,218.523 7423 .062* 2.08

deltaT_plugin 14,190.340 6503 .061* 2.18
*p < 0.05, **p < 0.01, ***p < 0.001
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During this research, the cross-validation of the identified factors is more important

than the accuracy of the prediction. Thus, a ratio of 60% and 40% is chosen. Secondly,

the developed regression equation is used to predict the value of the energy

consumption of the smaller cross-validation sample. After this, the predicted energy

consumption and actual energy consumption are correlated to find the correlation co-

efficient (R). The correlation coefficient is squared to obtain the R2 for the smaller

sample (R2
40, N = 157). In this correlation analysis, a significant discrepancy between

the R2 between the 60% sample (R2
60) and 40% sample indicates a lack of

generalizability of the estimated model (Tabachnick and Fidell 2013; Field 2013). Besides

comparing the R2 the Mean Squared Error (MSE) for both samples are also compared.

To be able to compare the predicted energy consumption values with the actual

values, first, the energy consumption has to be predicted. The prediction is made using

Eq. (1). This equation is developed with the unstandardized coefficients as developed

by the multiple regression analysis (see Table 7).

Y cons ¼ 41088:919þ 174:39X1 þ 6855:187X2−22775:936X3 þ 15218:523X4 þ 14190:34X5

ð1Þ

Where,

Y cons: Predicted total consumption (kWh)

X1: Number of arriving reefers

X2: Average dwell time of arriving reefers (hours)

X3: Average specific heat of arriving reefers (J/kg *K)

X4: Average thermal insulation of arriving reefers (W/m2 *K)

X5: Average delta temperature between plug-in and set point (°C)

First, let us visually investigate the predicted total energy consumption versus the total

energy consumption as determined by Nafde (2015). Both these values are found in Fig. 4.

The Figure shows that both the predicted values and the actual values follow the same

trend and seem to be correlated. In two instances the regression equation produces a false

and impossible negative consumption value. In these two instances, there are few arriving

reefers, and the dwell-time is low, leading to an over-representation of the specific heat

which results in a negative power consumption. These outliers are not representative and

have a strong negative influence on the analysis. As it occurs only in two instances, these

instances can be observed as outliers and therefore removed from the cross-validation set

to get a more accurate view of the model’s accuracy.

Table 8 shows the descriptive statistics for both the total consumption that was devel-

oped by Nafde (2015) and the predicted total consumption using Eq. (1). Considering the

values in Table 8 it can be concluded that the differences between the minimum, max-

imum, mean, and standard deviation are small. Further strengthening the possibility that

the model accurately predicts the energy consumption based on the five factors identified.

When correlating the consumption predicted using Eq. (1) with the actual consump-

tion it shows that the predicted and actual values have a high and significant correl-

ation with an R-value of 0,877 (P < 0.001). The correlation between the actual and

predicted values is squared so that it can be compared to the R2 of the training sample
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(R2
60). The R2

40 of the test sample is R2 = 0.769. It is to be expected that R2
40 is lower

than R2
60 (0.830), in this case the difference is 0.061. As the model is developed to fit

60% of the total available data, it is logical that the remaining 40% of the data fit the

same data, albeit less. Comparing the R2
40 to R2

60 doesn’t show a large discrepancy,

which indicates that the model correctly and consistently predicts the total energy

consumption.

The mean squared errors for both the training sample and the test sample are large.

High MSE are logical as the values of total energy consumption are large; thus it is

likely that errors are large as well.

The MSE for the training sample is MSE60 = 152,099,083 and for the test sam-

pleMSE40 = 98,521,931. When considering these MSEs, it shows that MSE40 is lower

than the MSE for the training sample by − 35%. A lower MSE indicates that the model

would predict the energy consumption for the test sample more accurately than for the

training sample which is remarkable. The difference between both MSE’s is significantly

large, however as there is no large discrepancy among R2 and the MSE changed posi-

tively, we conclude that the model predicts correctly and consistently predicts the total

energy consumption.

Conclusions
In the global race against energy consumption, the consumption of reefers is a highly

important research topic. Previous research shows a focus on technical improvements

of reefers and its control systems, but no systematic study of the underlying causes of

Fig. 4 Predicted values vs actual values of total energy consumption

Table 8 Descriptive statistics between actual and predicted consumption (kWh)

(kWh) Minimum Maximum Mean Std. Deviation

Actual consumption 2169 139,457 30,533 27,155

Predicted consumption 1619 136,641 33,092 25,746
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energy consumption is found. In this paper we investigate the root cause factors of high

peak energy consumption of reefers in terminals. We estimate a regression model on

possible root causes, using a large dataset of reefer energy consumption at a terminal,

and identify the relative importance of each factor.

The model is able to explain variations in energy consumption very well (R2 = 0,83 p < 0.001).

The regression analysis shows that the number of arriving reefers effects the total energy

consumption the most, as this factor can explain 76.6%. The influence of the other factors

are as follows: Dwell time accounts for 4.6%, Specific heat for 1,1%, plug-in temperature

0.4%, and thermal insulation 0.3%. In total this explains 83%, the remaining 17% is ex-

plained by other factors that are currently unknown. The plug-in temperature, thermal

insulation of the reefers, and the cargo type have a negligible impact on energy consump-

tion. The temperature set-point, offline time, weight, ambient temperature, and sun-hours

are found to be non-significant. Following the identification of the root cause factors, im-

provements are suggested to reduce peak consumption. It does not seem feasible to re-

duce the highest contributing factor to energy consumption: the number of arriving

reefers. This relates to the core business of a terminal and is very likely to continue in-

creasing in the coming decades (Dekker 2014; World Cargo News 2017, https://www.

worldcargonews.com). As soon as issues of shore power are considered additionally, the

topic of peak energy consumption increases dramatically, which is also related mainly to

the number of containers transhipped in the port.

The difference in plug-in temperature compared to the set-point temperature, ther-

mal insulation, and type of cargo are also not considered for improvement as these

contribute minimally, and any improvements would provide minimal yield. Addition-

ally, current international legislation regarding the insulation factor of reefers is suffi-

cient to keep the core temperature of reefers within the set bandwidth during the

offline time, without adding significantly to the energy consumption.

Therefore, the main improvement suggested based on the root cause factors identi-

fied is a reduction of the dwell time. However, reducing the dwell time is likely to result

in lower revenue for the container terminal, due to decreased demurrage costs. These

are fees charged when a reefer exceeds the demurrage-free time, which is a predeter-

mined time that the reefer is allowed to be plugged in at the terminal without add-

itional costs. As such the terminal has little incentive to implement measures to reduce

the dwell time of reefers. For terminals to accept energy consumption reduction mea-

sures, these should be at least revenue neutral for the terminal. Further improvement

can be sought in revenue management methods such a dynamic pricing scheme and a

peak pricing fee. van Duin et al. 2018 also show that peak shaving strategies provide

opportunities for cost reduction. Also Lam et al. (2017) show a way to reduce peak en-

ergy consumption by implementing an energy management system in container termi-

nals. Dynamic pricing is a complex method which is increasingly applied in a range of

industries. Dynamic pricing continuously determines the price of a product or service

based on the current demand. From a scientific perspective this could be a challenging

research topic; in practice, however, high demurrage costs make the current business

model attractive. Two other downsides of a dynamic pricing scheme have to be named.

First, a dynamic pricing model assumes that demand can be accurately predicted, which

is still difficult for ship arrivals. Second, a dynamic pricing model assumes that the de-

mand for goods or services has a sufficiently high price elasticity. However, the five
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Dutch importers of meat, fish, vegetables, and fruit consulted in the study have indi-

cated that this is not the case. Considering these two downsides, a peak pricing scheme

promises a better yield, and can be considered to be a more suitable solution. Peak pri-

cing introduces an additional fee when a peak in energy consumption is expected and

does not require a price-sensitive demand or a highly accurate demand forecast. Bank

(2017) showed that efforts to reduce the dwell time of the reefer using the introduction

of a peak pricing scheme will lead to a significant energy reduction. If the dwell time

reduces to an average of 3 days, the total energy consumption will reductions of be-

tween 5,5% and 11%. Although this is a promising result, the effects have yet to be

proven in practice.
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