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Introduction

Due to the ongoing trends towards lower supply voltages and low-power oper-
ation, the area of analogue integrated filters is facing serious challenges. The
supply voltage severely restricts the maximum dynamic range achievable us-
ing conventional filter implementation techniques, such as opamp-MOSFET-C,
transconductance-C and switched-capacitor. In ultra-low-power environments,
linear resistors become too large for on-chip integration. The situation is even
further complicated by high-frequency demands and the fact that the filter trans-
fer function often has to be tunable.

In the area of continuous-time filters, a promising approach to meet these
challenges is provided by the class of “Translinear Filters’. Due to the encourag-
ing expectations, research efforts have increased rapidly and TransLinear (TL)
filter design has become a trend. This is illustrated by Fig. 1.1.

Translinear filters were originally introduced by Adams in 1979 [1]. Since
Adams at the time did not recognise the TL nature of these circuits, he coined
the term ‘log-Domain Filters’, based on the logarithmic relation between the
voltages and currents. For many years, the idea of log-domain filtering was to
gather dust. In 1990, Seevinck independently reinvented the TL filter concept,
which he called ‘Current-mode Companding’ [2].

The filters presented by Adams and Seevinck were first-order. Interest in TL
filters really took off in 1993, when Frey published a synthesis method enabling
the design of higher-order log-domain filters [3]. In addition, Frey proposed
a more general class of TL filters, which he termed ‘Exponential State-Space
Filters’ [4].

From that time, many other researchers began to investigate these circuits.
Toumazou et al. published an implementation in weak inversion MOS, showing
the potential for low-power operation [5]. The first experimental results were
published by Perry and Roberts [6]. In addition, they proposed an alternative

1
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Figure 1.1: Publications on dynamic translinear circuits.

synthesis method based on the simulation of LC ladder filters. The first experi-
mental results in subthreshold MOS were presented by Ngarmnil et al. [7]. Pun-
zenberger et al. demonstrated the suitability for low-voltage applications [8] and
the favourable dynamic range specification resulting from class-AB operation:
65 dB at a 1.2 V supply voltage [9]. Different synthesis methods were proposed
by various researchers [10-15]. A general analysis method was published by
Mulder et al. [16], who also coined the term ‘Translinear Filter’. Alternative
analysis methods were described in [14,17,18]). Application of the underly-
ing design principle to non-linear dynamic functions was proposed by various
researchers. These applications include oscillators [19-21], RMS-DC convert-
ers [22,23], mixer-filter combinations [24,25] and phase-locked loops [26~28]. A
generalisation to strong inversion MOS was proposed independently by Mulder
et al. [29] and Payne et al. [30]. At present, there are many research efforts in
the area of noise analysis [31-39] and other second-order effects [40, 41].

Translinear filters are based on the ‘Dynamic Translinear Principle’ [42],
which is a generalisation of the conventional ‘Static Translinear Principle’ for-
mulated by Gilbert in 1975 [43]. Both Static TransLinear (STL) and Dynamic
TransLinear (DTL) circuits exploit specific properties of the exponential func-
tion. In STL circuits, the equivalence relation:

e® b = ettt (1.1)

is used to realise a multiplication in the current domain by an addition in the
voltage domain. In DTL circuits, the feature:

de*® . dz(t)
— o2(8)
T e Tt (1.2)
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is used to implement the time derivative of a current by means of a product of
currents, which in turn is realised by means of eqn (1.1).

Static translinear circuits

The multiplication properties of the exponential function are fundamental to
conventional TL circuits. The first TL circuits, a current amplifier and a mul-
tiplier, were proposed by Gilbert in 1968 [44,45]. Gilbert also formulated the
(static) “Translinear Principle’ in 1975 [43]. In 1979, Hart formulated a slightly
more general form of the TL principle by including PTAT? voltage sources in
the TL loops [46].

It was soon realised that STL circuits can be used to implement a wide
variety of both linear and non-linear static transfer functions. Successively,
many new circuits were published including: amplifiers [44], multiplier/dividers
[45,47-49], square function [50], square-root function [50], cross quads [51],
digital signal processing [52-54], absolute value function [50], sine approximation
[43], geometric and harmonic mean functions [50,55], RMS-DC conversion [56,
57), vector magnitude circuits [43, 58] and frequency-doubling circuits [59, 60].

The design of most of these circuits was based on a heuristic approach. A
systematic approach to the analysis and synthesis of STL circuits was developed
by Seevinck [50]. Next to [50], overviews on STL circuit design can be found
in [61-65].

Most theory and circuit designs were developed during the seventies. In more
recent years, STL circuits have experienced a revival due to the trend towards
low-voltage and low-power operation. Especially in the area of analogue VLSI
(neural) networks, where a high functional density is of primary importance,
STL circuits implemented by MOS transistors operated in the weak inversion
region have found wide employment, see, e.g., [65,66].

Voltage-translinear circuits

Translinear circuits are based on the exponential characteristics of the bipolar or
subthreshold MOS transistor. In the strong inversion region, the MOS transistor
is (approximately) described by a square law. More or less analogous to the class
of TL circuits, the square law is the basis of the class of ‘Voltage-TransLinear?
(VTL) circuits.

Static voltage-translinear circuits Translinear networks consist of closed
loops of base-emitter junctions. Likewise, VTL circuits are characterised by

!Proportional-To- Absolute-Temperature

2The term ‘Voltage-Translinear’ proposed in [63,64] is used throughout this thesis as it
clearly distinguishes between TL principles based on the exponential law and VTL principles
based on the square law, as opposed to the term ‘MOS Translinear’ proposed in [67].
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closed loops of gate-source voltages, and can be used to realise a variety of
transfer functions based on the large-signal quadratic behaviour of the MOS
transistor, see, e.g., [67-70]. Time-multiplexing techniques can be used to sim-
ulate VTL loops owing to the favourable properties of the MOS transistor to
implement switches [71,72]. A formal description of the underlying fundamen-
tal design principle was described by Seevinck and Wiegerink in 1991 [67]. The
structured analysis and synthesis of VTL circuits was treated in [70].

Dynamic voltage-translinear circuits The class of ‘Dynamic Voltage-
TransLinear Circuits’ offers continuous-time dynamic transfer functions. These
dynamic VTL circuits are based on a generalisation of the DTL principle to
strong inversion MOS. This class of circuits was proposed independently by
Mulder et al. [29] and Payne et al. [30] in 1996. Experimental results were
published in [73].

Background of the thesis

Since 1986, the Electronics Research Laboratory of the Delft University of Tech-
nology, Faculty of Information Technology and Systems, Department of Electri-
cal Engineering, has had a project group for ‘low-voltage low-power electronics’.
As TL circuits and subthreshold MOS transistors are especially useful in this
area of analogue electronics, a project was initiated to explore the use of sub-
threshold MOS transistors in TL circuits. In particular, the application of the
back-gate was to lead to additional possibilities for low-voltage operation and
to result in TL circuits with a higher functional density.

During the course of this project, DTL circuits became an active field of
research, see Fig. 1.1, and investigations were extended in this direction. As a
result, this thesis now deals with structured methodologies for the analysis and
synthesis of both STL and DTL circuits.

Some of the work described in this thesis has been published in various
papers, which are listed on page 283.

Outline of the thesis

The TL and VTL principles are explained in Chapter 2 using a current-mode
approach. Dynamic translinear and dynamic voltage-translinear filters are mem-
bers of a more general class of ‘externally-linear internally-non-linear’ circuits,
which is therefore discussed first.

Chapter 3 discusses the analysis of TL circuits. First, the analysis of STL
circuits is reviewed. Based on this theory, two methods, called ‘global analy-
sis’ and ‘state-space analysis’, are developed for the analysis of DTL circuits.
Alternative analysis methods for DTL circuits proposed in the literature are
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described as well. In addition, the characteristics of the three different classes
of DTL circuits published to date are analysed.

The reverse process of analysis is synthesis, which is treated in Chapter 4.
Based on the synthesis theory of STL networks, a generalised design method-
ology is presented covering the synthesis of both STL and DTL circuits. A
comparison is made with a number of alternative synthesis methods for TL
filters described in the literature. Further, the concept of class-AB operation,
which is closely related to synthesis, is treated.

The synthesis method described in Chapter 4 is based on ideal transistor
behaviour. In Chapter 5, the deviations introduced by second-order effects are
discussed. Methods to reduce or even eliminate the influences of these non-
idealities are reviewed.

Noise is the topic of Chapter 6. The signal-to-noise-ratio and dynamic range
properties of TL circuits are discussed and methods for the analysis of noise
in both STL and DTL circuits are proposed. These methods incorporate the
non-linear and non-stationary aspects of noise in TL circuits.

Chapter 7 is devoted to VTL circuits. Arguments are given to show that
VTL circuits do not have much practical value.

Several realisations of TL and VTL circuits are presented in Chapter 8.

Finally, Chapter 9 concludes the thesis.






Design principles

The continuing trend towards lower supply voltages has increased interest in the
application of companding® techniques [2,8,29,31,74-78]. This chapter discusses
the design principles that are fundamental to the realisation of companding
signal processors. In Section 2.1, an abstract approach is pursued to describe
the general principle of distortionless companding. At a less abstract level,
Sections 2.2 and 2.3 are geared toward the inherent companding characteristics
of TransLinear (TL) and Voltage-TransLinear (VTL) circuits, respectively.

2.1 A general approach to companding

In a system employing companding, the Dynamic Range? (DR) of the signal
being processed is different at various points along the signal path. The DR
is altered by compression and expansion stages. The traditional set-up of a
companding system is shown in Fig. 2.1(a). The input signal is first compressed,
in block C, before it is applied to #, where the actual signal processing is
performed. At the output of H, the DR of the original input signal is restored
through an expansion in block £.

The benefit of companding is that a signal with a certain DR can be pro-
cessed in a system block with a smaller DR than the signal [74]. This is illus-
trated in Fig. 2.1(b). The DR of a signal processing block # is limited on two
sides. At the upper level, the maximum amplitude of the input signal is limited
by the generation of distortion for too large signals. At the lower level, the noise
floor of the block determines the smallest signals that can be processed. Since
the DR is limited on two sides, the influence of companding on the signal being

! Companding is a combination of compressing and expanding.
2The exact definitions of the dynamic range and the signal-to-noise ratio used throughout
this thesis are formulated in Section 6.1.
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signal
compressor rocessing expander
inppt—» C H E * output
(@)
P ~ - v Ed
~ .
-~ ’,
~ Ed
Input signal Dynamic range

dynamic range of H

(b)

Figure 2.1: (a) Traditional set-up of a companding system. (b) The dynamic range
of the signal along the signal path.

processed can be explained from two points of view. At the upper level, large
input signals are attenuated by the compressor C down to a level where they
can be processed by ‘H without causing excessive distortion. At the lower level,
small input signals are amplified by C to a level well above the noise floor of H,
making the signal less susceptible to noise and interference.

Syllabic and instantaneous companding

Companding systems can be divided into two major classes: syllabic and instan-
taneous. These two classes differ with respect to the nature of the compression
and expansion functions.

In a syllabic companding system, the transfer function of C is determined
by a compression signal, which is a function of some measure of the average
strength of the signal being processed. The compression signal can be derived
from the processed signal at any stage of the signal path, e.g., from the input
or output, or even from a companion system with scaled signals [75]. A simple
example of a compression signal is the envelope of the input signal, which can
be generated through rectification followed by low-pass filtering.

In an instantaneous companding system, the output of C is a function of the
instantaneous value of the input signal. In other words, the transfer function
of the compressor is static and non-linear. An example is the logarithmic I-V
conversion performed at the input of a TL filter.




2.1 A general approach to companding 9

Distortion

Companding methods cannot be applied without due caution. In the compres-
sor, the DR of the input signal is decreased. This is a non-linear function and as
a result harmonics of the input signal are generated. Nevertheless, the linearity
of the overall transfer function of the complete signal path, shown in Fig. 2.1,
can still be retained. A linear overall transfer function is obtained if the trans-
fer function of H is linear and frequency-independent, and the compression and
expansion functions are inverse functions, i.e., Co & = 1.

In practice, not only the DR, but also the bandwidth of H will be limited,
resulting in a frequency-dependent transfer function. This limited bandwidth
can be unwanted when it is caused by parasitic reactive elements. It can also be
intentional, e.g. when the function of the complete system is to filter the input
signal in the frequency domain. The frequency-dependent transfer function of
‘H does not comply with the redistribution of the input signal information across
the frequency spectrum by C. As a result, distortion arises, even when Co& = 1.

The generation of distortion can also be explained with respect to the mem-
ory elements present in A [76,79]. In the memory elements, the history of the
signal is stored. The state of 7 not only depends on the course of the processed
signal, but also on the value of the (small-signal) gain of the compressor. If the
compression gain changes in time, which is the case in a companding system,
the coherence between the state of # and the history of the processed signal is
lost.

Updating the state variables

To prevent the generation of distortion, the one-to-one relation between the
state of H and the processed signal has to be re-established. This is realised
by updating the state variables in H as a function of the time-variant compres-
sion gain [76,79]. This applies both to syllabic and instantaneous companding
systems.

The theory on distortionless syllabic companding is closely related to early
work in control system theory (see [31] for an overview). The application of
this theory at circuit level was first proposed by Blumenkrantz in 1994 in [76,
79], where the idea of updating the state variables, the ‘Analog Floating Point
Technique’, is described. Implicitly, distortionless instantaneous companding at
circuit level was described earlier, by Adams in 1979 in [1], where log-domain
filters are introduced.

In [75], a general model for distortionless companding systems is described by
Tsividis. The model incorporates both syllabic and instantaneous companding,
showing that both types of distortionless companding are in fact based on the
same mechanism of updating the state variables.
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In the following, a general model of distortionless companding systems is
described. The approach will be somewhat different from the one presented
in {75).

A first-order model

For a signal processor having a frequency-dependent transfer function, two ba-
sic functions are required to describe the process of distortionless companding,.
First, a dynamic transfer function is required because the distortion is caused
by the frequency-dependent transfer function of . To gain insight, it is con-
venient to consider a first-order dynamic system. Further on, the results are
generalised to higher-order dynamic systems. A first-order dynamic transfer
function can be modelled by a single linear integrator.® The input and output
signals of this internal integrator are denoted by # and z, respectively, where
the dot represents differentiation with respect to time.

Secondly, compression and expansion functions are required. It is sufficient
to model only the expansion function F, since the accompanying compression
function can be derived from E. The input signal of E is the output signal z of
the integrator. The output signal of E is denoted by y. The basic model thus
obtained is shown in Fig. 2.2.

X —» I —> E >y

Figure 2.2: The two basic functions of a companding integrator.

The expansion function E is directly related to the type of companding.
Therefore, in order to obtain a general model, both instantaneous and syllabic
expansion functions have to be accommodated.

In an instantaneous companding system, the output signal y is a function
of the instantaneous value of the integrator output z. Since all signals are
implicitly a function of time ¢, the output y can be described as: y(t) = E(z(t)).
For example, in a log-domain filter, the expansion function is given by y(t) =

exp z(t).
In a syllabic companding system, the expansion function is controlled by
one or more time-variant signals g;(z(t),t), where ¢ € [1,...,N], which can

be represented by the column vector §. Thus, §(z(t),t) is a vector function.
For example, in a traditional set-up, the expansion block is a variable gain
amplifier, controlled by a single time-variant expansion factor g(z(t),?), ie.,

y(t) = g(=(t), 1) - 2(2).

31n principle, other first-order dynamic transfer functions, such as a differentiator, can be
used here just as well. The choice of an integrator complies with the general application of
the integrator as the basic building block for filters [80,81].
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The general model for the transfer function E of the expander £, including
both instantaneous and syllabic companding, is given by:

y(t) = E (z(t), §(=(2), 1)) - (2.1)

In principle, E = E(x(t),?) is an equally valid representation. However, eqn
(2.1) clearly distinguishes between the two different types of companding.

The possible choices of E are restricted by the fact that, at all times, i.e., for
all possible values of the signals ¢;, F has to be a strictly monotonous function
with respect to z. Otherwise, when different values of z are projected onto the
same value of y, information is lost, resulting in irrecoverable distortion. As a
consequence, at all times the function E has an inverse function E~! given by:

o) = B (y(t), §lz(t),1)) - (2.2)

The correct input signal

At the input of the internal integrator, shown in Fig. 2.2, the signal  has to be
supplied. The question is what this signal should look like in order to obtain a
system with a linear transfer function from y to y, the input and output signal,
respectively, of the complete companding integrator. The correct signal ¢ can
be calculated from the expansion function.

An expression for § can be derived from eqn (2.1) by calculating the first
derivative with respect to time. Since E is only implicitly a function of time,
the chain rule has to be applied. This yields:

. _O0E . 9 . -
y—azx—i-VgE (%z+g), (2.3)

where

oF OF
VVE=|—,...,— ).
7 (391 391\/)

From eqn (2.3), the signal &, to be applied to the internal linear integrator, can
be found:
'  _VE.§
e + 9 " Bz
Figure 2.3 shows the system level implementation of this equation, resulting in
a theoretically distortionless companding integrator.
Alternatively, applying the inverse function theorem, & can be calculated

from eqn (2.2). The first-order time derivative yields:

dE~! . -1, =
9By GEL.
o YT W7 9 (2.5)

- 3
1-VvE-1.%
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.t . X X
y‘—>®——> N ol | Exg) [—>Y
x_ —»
: oE
ox
+
e
VgE ox
IR
g N
i

Figure 2.3: Realisation of a theoretically distortionless companding integrator.

This equation results in a different system level implementation.

An n*P-order model

In general, the dynamic transfer function to which companding is applied is
of order n. The dynamic behaviour of the internal signal processing block can
now be represented by n integrators. The inputs and outputs of these internal
integrators are described by the column vectors & and Z, the elements of which
are z; and z;, respectively, where j € [1,...,n]. In principle, expansion can be
applied to each of these integrators, resulting in n output signals y;, represented
by the vector . The expansion function does not have to be identical for each
of the outputs z;. In general, n different expansion functions E;, represented
by the vector function E, can be defined. Each expansion function can depend
on the complete state of the system, i.e., on all n state variables ;. In general,

the expansion vector E can be described by:

#(t) = E (2(t), §(Z(1), 1)) - (2.6)

The correct input vector

The input vector Z, to be supplied to the n internal integrators, in order to
realise a system of n linear companding integrators, can be derived from eqn
(2.6) by calculation of the first-order time derivative. This yields:

7 =E.i+E, (Gz:? + 5’) , 2.7)
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where E;, E,, and G, are Jacobian matrices given by:

r OF, OFE; 1 AE, OF;
oz cre 0zn 391 T g
E, = e Eg= Sl
OE, OF, 3E, OFEn
L8zy °°  Baed Bgr '° Bgn
ron 9917
O, tr Oxn
Go=| : :
agN 821\1
L 8z, Oz 4

Expression (2.7) is a linear system in the n derivatives ;. The system can be
solved for the vector Z:

7= (B, +E,G.) " (§- ), (2.8)

«—1

where denotes the inverse matrix operation.

Examples

The practical applicability of the distortionless companding principle cannot
be derived from the general and abstract approach used above. The specific
choice of the expansion function(s) and of the dimensions of the signals being
processed will strongly influence to what extent a companding system is suitable
for on-chip implementation. To conclude this section, some practical examples
of distortionless companding systems are mentioned.

Dynamic translinear circuits Translinear filters, or Dynamic TransLinear
(DTL) circuits in general, form a good example of instantaneous companding. In
DTL circuits, the internal integrator, shown in Fig. 2.2, is a linear capacitor. The
output of this integrator is expanded by exploiting the large-signal exponential
transfer function of the bipolar transistor or the MOS transistor in the weak
inversion region. The expansion function is different for the various classes of
DTL circuits. For example, it is given by y(t) = exp z(t) [1], y(¢) = tanh z(¢)
and y(t) = sinh z(¢) [10] for log-domain, tanh and sinh filters, respectively. The
principle behind DTL circuits is treated in more detail in Section 2.2.2.

Dynamic voltage-translinear circuits Another example is given by the
class of Dynamic Voltage-TransLinear (DVTL) circuits, which are also instan-
taneous companding. In DVTL circuits, again, the internal integrator is a linear
capacitor. The output of this integrator is expanded by exploiting the large-
signal quadratic behaviour of the MOS transistor in the strong inversion re-
gion. For a common-source output stage, the expansion function is given by
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y(t) = [z(t) — a]? [29], where a is a constant. The principle behind DVTL
circuits is treated in more detail in Section 2.3.2.

Syllabic companding Examples of syllabic companding systems are
described in [75, 76,79, 82], where the expansion function is given by y(t) =
g(t)z(t). The systems differ mainly in the way the signal g(t) is generated.
In [76,79], where syllabic companding is applied to a LA analogue-to-digital
converter and an operational-transconductance-amplifier-based filter, g(t) is
switched between different ranges. Within each range, g(t) is constant. At
the switching instants, the state variables are updated by a compensation term,
which has the shape of an impulse function. This impulse function can be
implemented by a switched capacitor. A syllabic companding filter with a con-
tinuously varying compression factor g(t) is described in [75,82].

Instantaneous and syllabic companding Combinations of instantaneous
and syllabic companding within one circuit are also possible {78,83,84]. An
example is the syllabic companding TL filter described in Section A.1. Since TL
filters are inherently instantaneous companding, the two types of companding
are co-existent in a syllabic companding TL filter. Hence, the expansion function

is given by y(t) = g(t) exp z(t).

Non-linear capacitor The last case described here considers a non-linear
capacitor. Virtually, in a non-linear capacitor, the two functions of integration
and expansion, shown in Fig. 2.2, are performed in one device. The relation
between the input current I.,, and the charge @ on the capacitor is linear and
is given by I.ap = Q. This equation describes a linear integration. The non-
linear behaviour of a non-linear capacitor only applies to the relation between @
and the voltage V.,p across the capacitor. Consequently, the transfer function
of a non-linear capacitor can be split into two functions: a linear integrator
followed by a non-linear static transfer function, the differential capacitance
C(Veap) = 0Q/0Viap. This static function can be regarded as the expansion
function shown in Fig. 2.2.

An interesting example of a non-linear capacitor is the base-emitter capac-
itance C, of a bipolar transistor in the region where the base-charging capac-
itance is dominant [85]. In this region, the logarithmic non-linearity of the
diffusion capacitance is cancelled by the exponential V-I transfer function of
the bipolar transistor, resulting in a theoretically linear integrator.
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2.2 Translinear principles based on the
exponential law

Both Static TransLinear (STL) and DTL circuits exploit the exponential large-
signal transfer function of the bipolar transistor or the MOS transistor in the
weak inversion region. The term ‘translinear’ is derived from the equation for
the small-signal transconductance g, of a bipolar transistor, given by:
_ 0l Ic
9m = Vag = Ug’
where I¢ is the collector current, Vg is the base-emitter voltage and Uy is the
thermal voltage k7/q. Equation (2.9) shows that the transconductance is linear
in the collector current.

The conventional, i.e., static, TL principle [43] can be used to implement
a wide variety of linear and non-linear static transfer functions [50]. The STL
principle is reviewed in Section 2.2.1.

The DTL principle [22] can be used to implement both linear and non-
linear, frequency-dependent functions, i.e., linear and non-linear Differential
Equations (DEs). The DTL principle can be regarded as a generalisation of the
STL principle. In a broader context, DTL circuits are based on the theory of
distortionless companding described in Section 2.1. The dynamic element is the
capacitance. The exponential function, or a composite exponential function, is
employed as the expansion function, which expands a capacitance voltage into
a transistor current. In Section 2.2.2, the DTL principle is described using a
current-mode point of view.

(2.9)

2.2.1 Static translinear principle

Although invented as early as 1968 [44,45], the (static) TL principle was first
formulated by Gilbert in 1975 [43]. Translinear circuits are based on the expo-
nential relation between voltage and current, characteristic for several semicon-
ductor devices, such as the bipolar transistor, the diode and the MOS transistor
in the weak inversion region.

In this section, the STL principle is explained using the expression for the
collector current Ic of the bipolar transistor. The important difference between
bipolar transistors and MOS transistors in the weak inversion region is the slope
of the exponential characteristic. The slope of the MOS transistor is charac-
terised by the process-dependent parameter n [86], whereas the slope of the
bipolar transistor is almost process-independent. With some minor modifica-
tions, the following theory is equally applicable to subthreshold MOS transistors.

The collector current of a bipolar transistor in the active region is given by:

\%
Ic = M,e?r, (2.10)
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where ) is the emitter area scale factor and I is the saturation current of the
unity transistor.

The STL principle applies to loops of semiconductor junctions with an ex-
ponential V-I relation. The slope of the exponential function has to be the
same for all devices. A TL loop is characterised by an even number of junc-
tions. The number of devices with a clockwise orientation equals the number of
counter-clockwise oriented devices. Further, all devices have to operate at the
same temperature.

An example of a four-transistor TL loop is shown in Fig. 2.4. It is assumed
that the transistors are somehow biased at the collector currents I; through I.
As the four transistors are connected in a loop, Kirchhoff’s Voltage Law (KVL)
can be used to describe the loop:

VBE, + VBEs = VBE, + VBE,- (2.11)

T

Figure 2.4: A four-transistor translinear loop.

Current-mode

Translinear circuits are typical examples of current-mode circuits [87]. That is,
the behaviour of a TL circuit can be described best in terms of currents. The
voltages are only of secondary interest. The voltage-mode description (2.11)
can be transformed into a current-mode description using the exponential law
(2.10) describing the bipolar transistor. This yields:

I

I I3 I,
1 In — = In — —_— 12
Ur n)\1Is+UT n)\sIs Ur n)\gIs+UTln)\4Is (2 )

where ); are the emitter area scale factors of the four transistors.

Since all transistors are supposed to operate at the same temperature, the
slope of the exponential function, represented by Ur, is the same for all tran-
sistors. Therefore, the factor Ur can be eliminated from eqn (2.12). Further,
the sum of two logarithmic functions equals the logarithm of the product of the
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two arguments of these functions. Eqn (2.12) can thus be simplified to:

LI LI
=In

1 .
YA W

(2.13)

The logarithm is easily eliminated from eqn (2.13).

The saturation current I is equal for all transistors, owing to the identical
operating temperature.? The powers to which I is raised in the denominator
at both sides of eqn (2.13) are equal to the numbers of devices in the TL loop
connected clockwise and counter-clockwise, respectively. As these numbers are
equal, I; can be eliminated. This finally yields the familiar representation of TL
loops in terms of products of collector currents:

LIz = Aeqlaly, (2.14)

where Aeq = A2A4/(A13) is the equivalent area ratio of the TL loop.

Application

Equation (2.14) shows that the STL principle can be used to implement the
arithmetic operations of multiplication and division. The operations of addi-
tion and subtraction are easily implemented in the current-domain. Using the
addition and subtraction operations, linear combinations of the input and out-
put currents can be forced through the transistors comprising a TL loop. In
combination with the multiplication and division operations supplied by the TL
loop, a wide variety of polynomials P,,, rational functions P,, /P, and nt"-order
root functions can be realised.

Some of the major advantages of TL circuits follow directly from eqn (2.14).
During the derivation of the STL principle, all temperature-dependent and
process-dependent constants, i.e., Ur and I, are eliminated. As a consequence,
the transfer function implemented by a STL circuit is theoretically tempera-
ture and process-independent. Further, a multiplication is implemented using
a very simple circuit, the TL loop shown in Fig. 2.4. Thus, TL circuits are
characterised by a very high functional density.

To conclude, the STL principle can be summarised in the following definition
due to Gilbert [43]:

“A translinear circuit is one having inputs and outputs in the form of currents
and whose primary functions arises from the exploitation of the proportionality
of transconductance to current in certain electronic devices so as to result in
fundamentally exact, temperature-insensitive algebraic transformations.”

4In principle, paired matching of the saturation currents is a sufficient condition.
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2.2.2 Dynamic translinear principle

Though very versatile, the STL principle, derived in Section 2.2.1, is limited
to frequency-independent transfer functions. By admitting capacitors in the
TL loops, the TL principle can be generalised to include frequency-dependent
transfer functions. To name the principle on which this new class of circuits is
based, the term ‘Dynamic Translinear Principle’ was coined by Mulder et al.
in [22]. This term was chosen to emphasise the TL nature of these circuits.

As a consequence of the exponential behaviour of the transistor, TL circuits
are inherently instantaneous companding. The voltages in a TL circuit are
logarithmically related to the currents. Due to this non-linear behaviour, adding
a capacitor to a TL loop will in most cases result in severe distortion.

Current mirror

As an example, the generation of harmonic distortion is illustrated for the most
simple TL circuit: the current mirror. Figure 2.5 shows a current mirror in
which a capacitor C is connected in parallel with the diode-connected input
transistor. The capacitor can be regarded as the internal integrator and the
output transistor as the expander of a companding system, as shown in Fig.
2.2. The current mirror is biased in class A by a dc bias current I4c; the ac
input current I, is superposed on Igc.

Idc"‘linl

ldc‘*’lin - lcapl

Figure 2.5: A capacitor added to a current mirror.

For very small values of Ii,, the transconductance g, of each of the two
transistors comprising the current mirror is approximately constant. In that
case, the transfer function from the capacitance voltage swing to the ac output
current oy is linear. Consequently, the transfer function of the current mirror
is described by a linear DE:

CUr ;

"‘I‘—Iout + Lout = fin. (2.15)
dc

The transfer function described by eqn (2.15) is that of a first-order low-pass
filter.
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For large input signal swings, the exponential expansion realised by the
output transistor cannot be approximated by a linear transconductance. As
a result, to accurately describe the transfer function of the current mirror, a
non-linear DE is required. A general analysis method is presented in Chapter
3. For the circuit shown in Fig. 2.5 this results in:

CUrIout + (Ide + Toue) Tour = (Tde + Tour) Fin- (2.16)

Figure 2.6 shows a large-signal ac simulation of the transfer function of
the current mirror, and HD2 and HD3, the second and third-order harmonic
distortion components, respectively. The simulation is based on a harmonic
balance method. In the simulation, the amplitude of [, is 90% of I, Igc is
50 uA and C is 300 pF. Significant distortion is evident from the results shown.
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Figure 2.6: Large-signal simulation of the transfer function, HD, and HDs3 of the
current mirror shown in Fig. 2.5.

Distortionless companding

To prevent distortion in DTL circuits, the general principle described in Sec-
tion 2.1 has to be obeyed. The DTL principle is a special case of this general
principle, which applies to TL circuits. Instead of the abstract approach used in
Section 2.1, a more practical approach is used here to derive the DTL principle.
More specifically, a current-mode approach is used.

The exponential function has two very favourable characteristics. First,
multiplication of two exponential functions e® and e® is equivalent to addition
of the two arguments a and b, see eqn (1.1). This characteristic is exploited in
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the STL principle. Second, the derivative of an exponential function equals the
exponential function itself, see eqn (1.2). This characteristic is the basis of the
DTL principle.

To calculate the derivative of eqn (2.10) for Ic with respect to time, the
chain rule has to be applied, as Vg is a function of time. This results in:

k:kﬁﬂ (2.17)
Ur

The derivative Vg of the base-emitter voltage is very similar to the constitutive
law describing a capacitance C. The relation between the capacitance current
I..p and capacitance voltage Ve,p is given by:

Icap = CVcap~ (218)

When Vi in eqn (2.17) is multiplied by C, the product CVsg can be regarded
as the current through a capacitance C' with a voltage Vgg applied across it.
This is illustrated in Fig. 2.7. Note that the dc voltage source Vionsy does not
influence the capacitance current. Thus, egn (2.17) can be written as:

CUrlc = Ic - CVag, (2.19)
= I¢ - Teap- (2:20)
Note that the dimension of both sides of eqn (2.20) equals [A?].
| I
! C
: Veconst

Vcap I VBE
Figure 2.7: Principle of dynamic translinear circuits.

Equation (2.20) directly states the DTL principle [22]: “A time derivative of
a current is equivalent to a product of currents.” At this point, the conventional
STL principle comes into play. The product of currents on the Right-Hand Side
(RHS) of eqn (2.20) can be realised very elegantly by means of this principle.

Equation (2.20) was derived for the structure shown in Fig. 2.7, which is
typical for the class of log-domain filters. For these filters, the derivative is
equivalent to the product of a capacitance current and one collector current.
The principle is equally valid for other classes of TL filters, such as tanh and
sinh filters. As shown in Section 3.3, these cases differ with respect to the
currents comprising the product at the RHS of eqn (2.20).
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Application

The DTL principle can be used to implement DEs. A wide variety of signal
processing functions is described by DEs. For example, filters are described by
linear DEs. Examples of non-linear DEs for signal processing are harmonic and
chaotic oscillators, PLLs and RMS-DC converters.

Addition, multiplication and linear derivatives are basic functions in DEs.
The additions are easily implemented in the current domain. The multiplica-
tion operation can be implemented using the STL principle. To implement the
derivatives, the DTL principle can be applied. A derivative is replaced by a
product of currents, which is implemented by means of the STL principle.

Equation (2.20) reveals yet another characteristic of DTL circuits. In gen-
eral, TL loops can be described by current-mode polynomials [50]. As shown in
detail in Chapter 3, the relation between these current-mode polynomials and
the DEs describing the transfer functions of DTL circuits is given by equations
like (2.20). If the RHS of eqn (2.20) is implemented by (part of) a TL loop then
the Left-Hand Side (LHS) is (part of) the DE describing the dynamic transfer
function realised, which implies that the term CUr is part of the DE. As a con-
sequence, the transfer function becomes temperature-dependent through Ur.
Fortunately, this temperature-dependence can be cancelled by making (some
of) the currents in the DTL circuit PTAT® [1,2].

Inductance

For theoretical completeness, it is interesting to investigate the possible appli-
cation of an inductance instead of a capacitance as the dynamic element in a
TL circuit. When an inductance L is used, egn (2.17) has to be compared to
the constitutive law of inductance given by:

Up=L1I, (2.21)

where Uy, and Iy, are the inductance voltage and current, respectively.

In this case, the derivative I of the collector current can be identified with
the derivative I, of the current through the inductance. Applying this identifi-
cation to eqn (2.17) yields:

==L (2.22)

This equation states that the derivative of a voltage is equivalent to the divi-
sion of a voltage by a collector current. As the RHS of this equation is not
current-mode, it cannot be implemented by TL circuitry. The only solution is
to convert Uy into a current using a transconductance. However, in that case,

5Proportional-To- Absolute-Temperature
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the inductance and the transconductance operate in the ‘linear domain’, not in
the ‘translinear domain’.

2.3 Voltage-translinear principles based on the
square law

In the strong inversion region, the MOS transistor can be modelled by a square
law. The validity of the square law model is not as good as the exponential law
for the bipolar transistor. Especially not in modern sub-micron IC processes,
where velocity saturation dominates almost the entire strong inversion region.
This issue is treated in more detail in Section 7.1.

In IC processes where the square law is still valid, the MOS transistor can
be used to implement a second type of TL circuits. In [64], the term ‘Voltage-
Translinear’ was proposed. This term is derived from the equation for the
small-signal transconductance g,, of the MOS transistor in the strong inversion
region, given by:

_ 0OIps

m = s = B (Vas — Vin), (2.23)

where Ipg is the drain-source current, Vgs is the gate-source voltage, 8 is the
transconductance factor and Vi, is the threshold voltage. Equation (2.23) shows
that the transconductance is linear with the gate-source excess voltage.

Voltage-translinear circuits can be regarded as another special case of the
general theory on distortionless companding treated in Section 2.1. In DVTL
circuits, the dynamic element is the capacitor. The square law of the MOS
transistor is applied as the expansion function. The DVTL principle can also
be regarded as a generalisation of the conventional Static Voltage-TransLinear
(SVTL) principle. Therefore, the SVTL principle is first reviewed in Section
2.3.1. The DVTL principle is derived in Section 2.3.2.

2.3.1 Static voltage-translinear principle

The VTL principle was first formulated by Seevinck and Wiegerink in 1991
[67]. Circuits based on this principle were however reported earlier. A linear
transconductance is reported by Nedungadi in [68], published in 1984, which
is based on a loop of four MOS transistors operating in the strong inversion
region. The input of this transconductance circuit is a voltage and not a current.
However, whereas current-mode input and output signals are fundamental in
TL circuits based on the exponential function, voltage-mode input and output
signals are allowed in VTL circuits. This is due to a fundamental difference
between the exponential function and the quadratic function. The exponential
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function is transcendental, whereas the quadratic function is a polynomial. As
a consequence, it is impossible to obtain a linear relation between voltage and
current using only exponential devices. For quadratic devices such a linear
relation can be realised.

In general, the SVTL principle applies to loops of MOS transistors operated
in the strong inversion region. A VTL loop is characterised by an even number of
devices. The numbers of transistors connected clockwise and counter-clockwise
are equal. Further, the transistors have to operate at the same temperature.
Figure 2.8 shows an example of a four-transistor VIL loop. The transistors are
assumed to be biased by currents I; through Iy.

b g
LM

Figure 2.8: A four-transistor voltage-translinear loop.

The circuit shown in Fig. 2.8 can be described by the KVL as the four
gate-source voltages Vg, through Vg, are connected in a loop:

Vas, + Vas, = Vas, + Vas, - (2.24)

The MOS transistors comprising the loop are characterised by a quadratic
relation between the gate-source voltage Vg and the drain current Ipg. The
square law model is given by:

Ins = = (Vas — Vin)®. (2.25)

D™

The transconductance factor 3 is given by:

B =0

where g is the unity transconductance factor and W/L is the aspect ratio.
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Current-mode

A current mode description of the loop shown in Fig. 2.8 can be obtained by
substitution of eqn (2.25) in (2.24). This yields:

21
Vm,/ +vm+,/ = Vin + ,/ +Vth+\/ﬂ“ (2.26)
4

Since the numbers of devices connected clockwise and counter-clockwise are
equal, the threshold voltage can be dropped from eqn (2.26). Further, the com-
mon term g in the transconductance factors 3; through 84 can be eliminated.
This leaves a current-mode expression describing the loop:

I
w1 /L, + W3/L3 \/Wz/L2 \/7 /L4 (2.27)

Hence, VTL loops can be described by the sums of square-roots of the drain
currents. The drain currents are weighted by the aspect ratios of the transistors.

Equation (2.27) demonstrates an interesting characteristic of SVTL circuits:
the transfer function of an SVTL circuit is both temperature and process-
independent.

Application

In the current domain, additions and subtractions are easily realised. Using
these operations, linear combinations of the input and output currents can be
forced through the MOS transistors comprising the VIL loop. In combina-
tion with the non-linear operation described by the general VIL loop equa-
tion (2.27), various linear and non-linear static transfer functions can be imple-
mented.

2.3.2 Dynamic voltage-translinear principle

The conventional SVTL principle, described in Section 2.3.1, can only be used
to implement static transfer functions. By admitting capacitors in the VTL
loops, dynamic transfer functions can be realised. The term ‘Dynamic Voltage-
Translinear’ is proposed to describe this new class of circuits.

Due to the quadratic behaviour of the MOS transistor in the strong inversion
region, the voltages in a VTL circuit are related to the drain currents through
square-root functions. This implies that instantaneous companding is an inher-
ent characteristic. As a consequence, in general, a capacitor cannot be added
to a VTL circuit without causing distortion.

R




2.3 Voltage-translinear principles based on the square law 25

Current mirror

The generation of distortion is illustrated with respect to the most simple VTL
circuit. Figure 2.9 shows a current mirror where a capacitor C' is added in
parallel with the input transistor. The capacitor can be regarded as the internal
integrator and the output transistor as the expander of a companding system,
as shown in Fig. 2.2. The current mirror is biased in class A by a dc bias current
Ii.. The ac input current I, is superposed on Ig4.

Idc + Iinl l]dc + lout

Figure 2.9: A capacitor added to a strong inversion MOS current mirror.

When the amplitude of i, is small with respect to Iy, the transconductance
gm of the output transistor is approximately constant. Therefore, the relation
between the capacitor voltage and the output current I,y is almost linear. The
transfer function of the current mirror can be described by a linear DE:

c .
———TIout + Iyt = Iin. 2.28
V2814 ¢ foue ( )

Equation (2.28) describes a first-order low-pass filter.

When the amplitude of I, is close to the value of the bias current Iy, g
cannot be approximated by a constant. Consequently, the transfer function of
the current mirror has to be described by a non-linear DE:

C .
"\/2_—ﬁjout + Idc + Ioutlout = Idc + IoutIin- (229)

Figure 2.10 shows the result of a large-signal harmonic balance simulation of
the current mirror using a realistic transistor model from a 2 um process. In the
simulation, the amplitude of Ly, is 90% of I4c, I4c is 50 pA, Vin = 0.8 V and 3
= 50 pA/VZ2. The plots of HD; and HDj3 show that the distortion is significant.
In comparison with Fig. 2.6, the distortion generated in the bipolar transistor
current mirror is much higher than for the MOS transistor current mirror. This
is explained by the fact that the square function is far less non-linear than the
exponential function.
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Figure 2.10: Large-signal simulation of the transfer function, HD2 and HDj3 of the
current mirror shown in Fig. 2.9.

Distortionless companding

The generation of distortion can be prevented by applying the general principle
described in Section 2.1. For strong inversion MOS transistors, this results in the
DVTL principle, which is described here with reference to the circuit structure
shown in Fig. 2.11. The MOS transistor shown in this figure is described by the
square law, eqn (2.25). The derivative with respect to time of the drain current
is given by:

Ips = 8 (Vas — Van) Vas. (2.30)

The excess gate-source voltage (Vgs — Vin) in this expression is quite inconve-
nient. It does not comply with the current-mode nature of VTL circuits. This
factor can be replaced by a current-mode expression. Application of eqn (2.25)
yields:

Ips = /2BIpsVas- (2.31)

In Fig. 2.11, the voltage Vs is applied across the capacitor C. Therefore, the
constitutive law of the capacitance, eqn (2.18), describes the relation between
the capacitance current Ic,, and the derivative Vas. As a result, Vgs can be
replaced by Icap and a completely current-mode expression for Ips is obtained:

C .
ﬁIpsz Instcap. (2.32)
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Figure 2.11: Principle of dynamic voltage-translinear circuits.

C

Equation (2.32) directly states the DVTL principle: “A time derivative of a
current is equivalent to a multiplication of & current and the square root of a
current.” The current-mode algebraic expression on the RHS of eqn (2.32) can
be realised by applying the SVTL principle.

A linear derivative is a basic function of any DE. Consequently, the DVTL
principle can be used to implement both linear and non-linear DEs.

Equation (2.32) reveals yet another important characteristic of DVTL cir-
cuits. Since the RHS of eqn (2.32) is implemented by (part of) a VTL loop,
the LHS is (part of) the DE describing the dynamic transfer function of the
loop. This implies that the factor C/+/23 is part of the DE. Hence, the transfer
function is process and temperature-dependent through .

In the above, the VTL principle was derived for the one-transistor structure
shown in Fig. 2.11. It is shown in Section 7.4 that the principle can easily be
generalised to structures of two or more transistors, in analogy with the generic
output structures of tanh and sinh TL filters.






Analysis of translinear
circuits

Although synthesis is more powerful than analysis, it must go together with a
generally applicable analysis method in the same domain. This is a prerequisite
for structured electronic design. This chapter therefore explores the possible
analysis procedures that can be applied to investigate the behaviour of Static
TransLinear (STL) and Dynamic TransLinear (DTL) circuits, before synthesis
methodologies are surveyed in Chapter 4.

The analysis of STL circuits is reviewed in Section 3.1. The various methods
for the analysis of DTL networks are treated next, in Section 3.2. Finally,
Section 3.3 is devoted to the characteristics of the three different classes of
TransLinear (TL) filters proposed in the literature, i.e., log-domain, tanh and
sinh filters.

This chapter is concerned with the ‘ideal’ behaviour of TL circuits; ideal
transistor models are assumed in all calculations. The analysis of second-order
effects is deferred until Chapter 5. Throughout this chapter, the application of
bipolar transistors is assumed. With some minor modifications, all theory pre-
sented is similarly applicable to TL circuits comprising alternative exponential
devices.

3.1 Analysis of static translinear circuits

Two types of equations are involved in the analysis of the ideal behaviour of
STL circuits. First, the TL loop equations describe the multiplicative relation
between the collector currents of the transistors comprising the loops. Secondly,
the KCLs (Kirchhoff’s Current Law) express the relation between the transistor

29
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currents and the independent current sources applied to the circuit. Owing
to the current-mode nature of both the TL loop equations and the KCLs, a
relatively simple analysis method results.

In the analysis of STL circuits, three successive steps have to be performed:

¢ Determine the fundamental translinear loops;
e Calculate the collector currents;

e Solve the system of loop equations.

Determine the fundamental translinear loops

The STL principle, explained in Section 2.2.1, uniquely defines the character-
istics of a TL loop. Based on this definition, the transistors comprising the
TL loops can be separated from the transistors serving other purposes, such as
buffering of base currents.

A TL circuit may consist of more than one TL loop. In general, TL circuits
are characterised by a set of L fundamental loops [50]. These loops can be
translated directly into a set of L TL loop equations, applying the well-known
expression [43,50]:

[ = 2] Tc.@us (3.1)
i %

where ) is the emitter area scale factor of the loop, Ic g, represents the col-
lector currents of the transistors comprising the loop, and the products on the
Left-Hand Side (LHS) and Right-Hand Side (RHS) are over the clockwise and
counter-clockwise connected transistors, respectively.

In this context, simple current mirrors are not accounted for in the set of L
fundamental loops. This is due to the fact that the TL loop formed by a current
mirror is trivial as it contains no multiplications of collector currents. In other
words, a current mirror can only realise a linear transfer function.

Different loops in a TL circuit can either be disjunct or coupled. Coupled
loops can be coupled directly or indirectly. These three situations are illustrated
in Fig. 3.1. Two TL loops are said to be coupled direcily if they have one or
more base-emitter junctions in common. Thus, the base-emitter junctions span
a non-separable graph. Two loops are said to be coupled indirectly if they are
part of the same non-separable graph, but have no base-emitter junctions in
common. Two loops are called disjunct if they are part of two unconnected
graphs.

If coupled loops exist in a circuit, more than L different TL loops can be
identified. However, only L loops are fundamental. Note that the set of funda-
mental TL loops is not uniquely determined.

For the analysis of the circunit to succeed, it is important to find a complete
set of fundamental TL loops, while excluding all loops that are not fundamental.
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Figure 3.1: A circuit comprising four translinear loops. Loop 1 and 2 are coupled
directly. Loop 1 and 3 are coupled indirectly. Loop 1 and 4 are disjunct.

For TL circuits where the base-emitter junctions span a non-separable planar
graph, the number of fundamental loops is related to the number of base-emitter
junctions B and the number of circuit nodes N by [50]:

L=B-N+1. (3.2)

In large circuits containing many coupled TL loops, eqn {3.2) can be used to
confirm whether the complete set of fundamental loops has been found.

Calculate the collector currents

The TL loop equations (3.1), resulting from the first analysis step, describe the
TL loops in terms of products of collector currents. The second analysis step
comprises the calculation of the collector currents in terms of the input and
output currents,! denoted both by I j, where 7 € N. These calculations are
based on the KCLs derived for each node of the circuit. Since the resulting
system of KCL equations is linear, it is easy to solve, i.e., to obtain the collector
currents in terms of the input and output currents. Often, the collector current
expressions can even be obtained directly by inspection of the circuit schematic.
In general, the collector currents are thus described by:

Ioq. =Y ¢, (3.3)
i

where ¢; are constant coefficients.
An important distinction has to be made between single-loop and multiple-
loop TL circuits. In a circuit comprising only one TL loop, all collector currents

IFor simplicity, dc bias sources are considered as being input currents.
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can be expressed as linear combinations of the input and output currents. In
general, this is not true for multiple-loop circuits. If a multiple-loop circuit has
Z linearly independent output currents, where Z < L, then a maximum of L—Z
currents are possibly non-linearly related both to the input currents and to the
Z output currents. Consequently, if Z < L, it is not possible, based on the
KCLs only, to express all collector currents as linear combinations of the input
and output currents.

For example, consider a two-loop circuit with one input current f;,, and one
output current o, as shown in Fig. 3.2. The first loop generates a current I,
which is applied to the second loop. Consequently, I, acts as an intermediate
‘input’ and ‘output’ current. Without solving the TL loop equations, it is not
possible to determine whether I, is linearly or non-linearly related to Iin or Ioye.
Thus, I, cannot be eliminated from the set of KCL equations.

L, —{ TL loop 1 I TL loop 2 — L,
P

Figure 3.2: Generation of an intermediate current I in a two-loop translinear cir-
cuit.

As a result, in analysing TL circuits, it is convenient to appoint some of the
collector currents, which cannot be expressed (a prior:) as linear combinations
in the input and output currents, as intermediate currents. All intermediate
currents, denoted by I,;, where j € N*, are chosen to be mutually indepen-
dent. This way, all collector currents can be expressed as linear combinations of
the input, output and the intermediate currents. The number of intermediate
currents to be defined equals L — Z.

Note that, at this point, it is possible to check whether all fundamental TL
loops have been obtained during the first analysis step. If more than L — Z
intermediate currents have to be defined to express all collector currents as
linear combinations of the input, output and intermediate currents, it is likely
that the set of fundamental TL loops is not yet complete.

Solve the system of loop equations

Substitution of the collector current expressions, obtained from the KCLs, in
the TL loop equations, results in a system of polynomials in the input, output
and intermediate currents. In general, the TL loop equations are thus described
by:

JIDICTLERY | DI =N 2 (3.4)
i g i g
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This set of equations can be solved for each of the unknowns. To solve the
system for one of the output or intermediate currents, the other unknowns have
to be eliminated. Finally, this will result in a single polynomial in the unknown
current, denoted here by I,,;. The various ‘coefficients’ of the polynomial in Iy
are formed by the (known) input currents. In general, the polynomial can be of
higher-order in I,,:. Consequently, it might be necessary to resort to numerical
methods to find the roots of the equation for Iy.

For an n'-order polynomial in I, there are n roots. Not all of these
roots represent physically meaningful solutions, resulting in negative or even
complex collector currents [50]. Furthermore, not all of the physical solutions
result in stable operation of the circuit. The stability of a solution for I,y can
be investigated using small-signal or numerical analysis methods. Alternatively,
the stability analysis method described in [50] can be applied. A similar method
can be used to calculate the sensitivity of the roots to variations of the circuit
parameters [50].

Example: Analysis of a squaring circuit

To illustrate the analysis procedure for TL circuits, consider the circuit shown
in Fig. 3.3 [50], where I, and I,,; denote the input and output current of the
circuit, respectively, and I is a dc bias current. The collector currents of Q1-Qs
are denoted by I; through Is.

ly

Figure 3.3: A squaring circuit [50].

The first step is to identify the set of fundamental TL loops. Excluding the
current mirror Q-Q-, a trivial TL loop, the circuit includes only one TL loop,
Q1-Q3-Q4-Qs. The corresponding TL loop equation is given by:

Il . I3 = %14 B %Is (35)

The two factors 1 in eqn (3.5) are due to the emitter area scaling of Q4 and Q.
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The second step is to derive the collector currents in terms of the input and
output currents. Since the circuit embraces only one TL loop, no intermediate
currents have to be defined. The expressions for the collector currents of Q4
and Qs are evident from the circuit:

14 - ICH (3'6)
Is = I — Ioys. (37)

The collector currents of @; and Q3 can be calculated from the KCLs for
nodes @ and @, which are given by:

L+ 13 =1, (3.8)
I3 - Il - Iin- (39)

Since I; = I, this yields:
12,3 = % (Io F Im) . (310)

Note that eqn (3.10) directly yields a condition for correct operation of the
circuit. Only when |I;y| < I,, are all the collector currents strictly positive, and
the TL circuit operates correctly.

Substitution of eqns (3.6), (3.7) and (3.10) in (3.5) yields the TL loop equa-
tion in terms of Ij,, I, and Igy:

% (Io - Iin) * % (Io + Iin) = %Io : % (Io - IOut) . (311)
Equation (3.11) is a first-order polynomial in Iou,. Solving it for Ioy, yields:

2
Iin

T (3.12)

Towt =
As a final result, eqn (3.12) reveals that the circuit shown in Fig. 3.3 implements
the squaring function, for |fin| < I,.

Example: Analysis of a frequency-doubling circuit

As a more complicated example, consider the circuit depicted in Fig. 3.4 [60],
comprising two coupled TL loops: Q1-Q2-Q3-Q4 and Q4-Qs-Qs-Q7. The two
loops have one base-emitter junction, of transistor Q4, in common. Transistors
Qs and Qg are not part of the TL core of the circuit; they merely serve as
buffers for the base currents of Q2-Q3 and Q5-Qs, respectively. The TL core
of the circuit comprises seven junctions and six nodes. The collector currents
of Q,-Q7 are denoted by I; through Ir. According to eqn (3.2), the circuit
contains two fundamental TL loops. Consequently, the third loop, formed by
Q1-Q2-Q3-Q5-Q6-Q7, is not a fundamental one.
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The circuit has two input currents, Iy, and f;,, and one output current Ioys,
which equals the difference of the collector currents I3 and Is. The collector
currents of Q1, Q2, Q¢ and Q7 are readily expressed in terms of the input
currents:

Il = Iz = Iin11 I6 = 17 = Iinz- (313)

However, I3, I and I5 cannot be expressed as linear combinations of Ly, , fin,
and Ioyt- Therefore, one intermediate current I, is introduced. If, by definition,

Figure 3.4: A frequency-doubling circuit [60].
‘ I equals I, I3 and I5 can now be written as linear combinations of I,y and

I:
Iiys =5 (Ip % Lout) - (3.14)
Using eqns (3.13), (3.14), and Iy = I, the two loop equations can be de-
scribed by:
=3+ Lw) I, (3.15a)
L, =3Up = Lw) I (3.15b)

Both polynomials are first-order in Ioy, and second-order in I,.

To solve eqns (3.15a) and (3.15b) for Ioyu, I, has to be eliminated. Expres-
sions for Ig and I, are obtained, respectively, by addition and subtraction of
eqns (3.15a) and (3.15b). This yields:

2= +1I%,, (3.16a)
IIow = I2, — IZ,. (3.16b)

Now, I, can be eliminated by subtraction of eqn (3.16a) multiplied by 12,, from
the square of (3.16b). The resulting polynomial has a degree of four:

+12 )= (12 - 12)°. (3.17)
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Equation (3.17) is second-order with respect to Io,. Hence, the two roots are
readily found. Only one of these two roots is physically meaningful; the other
results in negative collector currents. The correct solution is given by:

2 _J2
Lowt = — (318)
R+
If In, = In|coswt| and Lin, = In|sinwt|, the output current equals Ioy =

I, cos2wt. Thus, the circuit shown in Fig. 3.4 implements an amplitude-
conserving frequency doubling [60].

This circuit is probably the best example to demonstrate the high functional
density that can be obtained using TL techniques. With only seven transistors,
a complicated function (3.18) involving squaring, addition, subtraction, square
rooting and division is realised.

3.2 Analysis of dynamic translinear circuits

Most publications on DTL circuits have emphasised the synthesis rather than
the analysis of these circuits. Nonetheless, a number of different analysis meth-
ods have been proposed. Static translinear circuits have always been analysed
in terms of currents, as described in Section 3.1. In Section 3.2.1, this method
is generalised to facilitate the investigation of DTL circuits [13,16,88]. The
resulting current-mode analysis method yields the global transfer function, i.e.,
the Differential Equation (DE) describing the circuit being examined.

A variant of the global analysis method is described in Section 3.2.2 [17,18].
It is shown that a state-space approach can significantly simplify the analysis
of higher-order TL filter circuits.

The operation of electronic circuits is always an interplay of voltages and
currents. Consequently, instead of a description in terms of currents, a voltage-
mode approach to the analysis of DTL circuits can be followed [1]. The global
and state-space variants of this method are reviewed in Section 3.2.3, along
with two other analysis procedures: small-signal analysis and analysis based on
Bernoulli’s DE [14].

3.2.1 Global current-mode analysis

In developing a general analysis method for DTL networks, it is necessary to
get a clear picture of the difference between STL and DTL circuits. In other
words: why is it not possible to apply the analysis method developed for STL
networks to the analysis of DTL networks? The answer to this question lies in
the system of equations describing the circuit in question.
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Together, the TL loop equations and the KCLs, obtained from the first two
analysis steps, comprise a complete set of equations necessary to unravel the
circuit behaviour. Now, the difference between STL and DTL circuits emerges
when writing down the KCL equations. In dynamic networks, the KCLs are
linear equations not only in the collector currents, input currents and output
currents, but also in the capacitance currents. In this context, a capacitance
current can be viewed as a special kind of ‘bias current’, which is derived from
the input, intermediate and/or output currents. This capacitive ‘current source’
can be single-ended or floating.

During analysis, the capacitance currents are unknown, and therefore the
system of equations cannot be solved unless additional expressions can be found
for these capacitance currents. This is exactly the problem to be solved in order
to obtain a general analysis method for DTL networks. In order to eliminate an
unknown variable from a system of equations it is, in general, necessary to have
at least two independent expressions in the unknown variable. A first expression
for the capacitance currents is found from the KCLs. An independent second
expression has to be found from a third type of equations, next to the TL loop
equations and KCLs. Accordingly, the analysis method for STL networks has to
be supplemented with one extra step to facilitate the analysis of DTL circuits.
The analysis method for DTL circuits thus becomes:

¢ Determine the fundamental translinear loops;

Calculate the collector currents;

Obtain expressions for the capacitance currents;

Solve the system of equations.

The first two and the last step are treated in Section 3.1. Consequently, this
section only deals with the procedure to obtain expressions for the capacitance
currents.

Analysis of a first-order log-domain filter

For the first-order log-domain filter shown in Fig. 3.5 [1], the first TL filter ever
published, an expression for the capacitance current I..p is readily obtained.
The situation of the capacitor C is very similar to the sub-circuit shown in
Fig. 2.7. Diode Dj3 is biased by a dc current I, and therefore complies with
a constant voltage source. The output current flows through diode D4, which
is an exponential device, exactly like the bipolar transistor shown in Fig. 2.7.
Accordingly, I.,p satisfies eqn (2.20). This yields:

_ jout
Iap = CUT TR (3.19)

where the dot denotes differentiation with respect to time.




38 Analysis of translinear circuits

Figure 3.5: A log-domain first-order low-pass filter {1].

Together, the four diodes, D1—Dj,, constitute a TL loop. The op amps are
merely used for V-I and I-V conversion at the input and output, by means of
the resistor R, and to force the appropriate currents through each of the diodes.
The resistors Rg4. are simple current source implementations adding a dc current
I4. to the input current I, and the output current Io;.

For the circuit shown in Fig. 3.5, the capacitance current appears in the
KCL applied to node @. The current through D> equals (I, + Icap). The other
diode currents are obvious. Hence, the TL loop equation is given by:

(g + Lin) I, = (Lo + Icap) (Tac + Lout) - (3.20)

In order to solve eqn (3.20) for the output current, ¢, has to be eliminated
using (3.19). In addition, the additive term I,J3c, common to both sides of eqn
(3.20), can be deleted. Finally, this yields the linear DE describing the linear
dynamic transfer function of the circuit:

CUTjout + L Ious = Iofin. (3.21)

A general expression for the capacitance current

The foregoing example of the analysis of Adams’ filter has demonstrated that
TL filters, or at least log-domain filters, can be analysed in a TL fashion. The
current-mode expression (3.19) for the capacitance current proves to be the
key to TL analysis of DTL networks. To generalise this method of analysis
to arbitrary n*f-order DTL circuits, a general method is required to provide
expressions for the currents fowing through all the capacitors in a DTL circuit.
Another way of putting this is that eqn (3.19) has to be generalised.

In a TL filter, each capacitor Ck, where k € [1,...,n], is always connected
in series with a certain number of base-emitter junctions. This is illustrated
in Fig. 3.6. Most often, these junctions are part of a TL loop, in which case
the capacitance is connected between two circuit nodes of that loop. Though
any TL loop comprises an even number of junctions, the number of junctions
in series with the capacitor may be odd or even. Moreover, the junctions in
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this loop may be connected in the same direction, in opposite directions or in a
combination of the two. Thus, the loop shown in Fig. 3.6 does not have any of
the characteristics of a TL loop.

Figure 3.6: A capacitance in (a part of) a translinear loop.

As the capacitance and the junctions together comprise a loop, the capaci-
tance voltage Vi, can be expressed in terms of the junction voltages, using the
KVL:

Vo, = *Veeq., (3.22)

_ Ic,q.
—UTZi:ﬂzln(AiIs ) (3.23)

where I¢ g, are the collector currents corresponding to the base-emitter voltages
VBE,@; and A; are the relative emitter area ratios. The sign of each voltage
VBE,@; in eqn (3.23) is dependent on the orientation of the base-emitter junction
in the loop.

The current I, through the capacitance is equal to the derivative Vc,, mul-
tiplied by the value Cj, of the capacitance. Differentiating eqn (3.23) and mul-
tiplying it by C} thus yields the capacitance current:

Ico,
Ic, =CiUr Yy i%%. (3.24)

Equation (3.24) is the basis of the general analysis method for DTL circuits!
Note that A; and I; have no influence whatsoever on the capacitance currents.

Equation (3.24) gives an expression for each of the capacitance currents that
is independent from the TL loop equations and KCLs comprising the rest of the
system of equations. With the aid of these additional equations, the system can
be solved, i.e., the transfer function of the circuit can be obtained.
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Like the TL loop equations and the KCLs, the expressions resulting from
eqn (3.24) are current-mode. Hence, a DTL circuit can be described by a system
of equations completely in terms of currents.

Each capacitor comprises at least two loops with the junctions in a TL
circuit. Therefore, more than one expression for a capacitance current can
always be derived. With respect to the other equations necessary to describe
the circuit, these capacitance current expressions are dependent. Consequently,
eqn (3.24) has to be applied to each capacitance just once. The other possible
capacitance current expressions are superfluous. The most intelligent choice is
to apply eqn (3.24) to the loop in which none of the collector currents contains
the capacitance current under consideration. This prevents the capacitance
current, and its derivative, from appearing at the RHS of eqn (3.24), which
would complicate the elaboration of the system of TL loop equations.

It is interesting to note that dc collector currents flowing through some of
the transistors in a capacitance-junction(s) loop are automatically eliminated
from eqn (3.24), since the derivative of a constant equals zero.

To demonstrate the application of the proposed analysis method, two TL
filters are analysed. The first example describes the analysis of a second-order
log-domain filter. Then, a first-order filter is used to explain the impact of
different choices for the capacitance-junction(s) loops, which have to be made
in order to apply eqn (3.24). Later on, the analyses of a tanh and a sinh filter
are described in Sections 3.3.2 and 3.3.3, respectively.

Example: Analysis of a second-order low-pass filter

As an illustration of the proposed analysis method, a second-order low-pass
filter, see Fig. 3.7 [3], is analysed. All transistors comprising the TL loops are
compound transistors, but for analysis purposes they can simply be treated as
single transistors, as explained in Section 4.5.2, changing Ur in eqn (2.10) into
2U7.

The filter consists of two coupled TL loops. The first loop comprises tran-
sistors Q1-Q2-Q3-Q4+-Q7-Qs. The second loop comprises Q3-Q¢. A TL loop
equation can be derived for both loops.

Solving the system of KCLs for the collector currents, it follows that I, and
I5, the collector currents of @» and Qs, cannot be expressed as linear functions
of the input current Ij,, the output current I,., the dc bias current I,, and
the capacitance currents I, and Ig,. Therefore, an intermediate current I, is
introduced, which is chosen equal to I>. Now, direct substitution of the KCLs
in the TL loop equations yields:

PLn = I, (Ig, + I,) Lo, (3.25a)
212 = (Ig, + L) (I, + I, = Ic,), (3.25b)
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Figure 3.7: A second-order low-pass filter [3].

where the factor 2 in eqn (3.25b) is a consequence of the emitter area scaling of
Qs.

Next, two expressions for I, and I¢, are derived. In order to apply eqn
(3.24), two loops have to be chosen. For I¢, the loop C1-Q7-Qs is used, as
the collector currents of @7 and Qs do not contain I¢,. Likewise, for I, the
loop C2-Q3-Q4-Q7-Qs is used, since the corresponding collector currents do
not contain I¢,. This particular choice for the two capacitance-junctions loops
leads to relatively simple expressions for I¢, and I¢,. Other choices result in
the appearance of the derivatives I, and/or I¢, in the equations for Ic, and
Ic,. The capacitance currents are therefore expressed by:

Ic, = 2C1 Uy Lout , (3.26a)
Iout
I Iou
Ic, = 2C,Ur (Tﬁc— + }°—°) , (3.26b)
o 1 out

where the factor two in both equations is a consequence of the use of compound
transistors.

The collector currents I3 and Ir, of Q3 and @, are equal to the constant
bias current I,. Since the derivative of a constant is zero, I3 and Ir do not
appear in the equations for I, and Ic,. The base-emitter junctions of Q3 and
Q7 can in this context be regarded as dc voltage sources.

Now, the system of eqns (3.25)-(3.26) has to be solved to obtain the transfer
function of the filter. To begin with, the intermediate current I, is eliminated
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from eqns (3.25a) and (3.25b), which are both linear in I;,. This yields:
Iow [Ie, oy — L) + Io (Ig, + Io)] = I3 Tin. (3.27)

Next, eqn (3.26a) and its derivative can be used to eliminate I, and Ie,
from eqn (3.26b). The capacitance current I, is now described in terms of the
first-order and second-order derivatives of the output current:

2C'I UTfout + Iojout
2C'lU‘TIout + IOIOU.t )

Ic, = 2CUr (3.28)

Finally, substitution of eqns (3.26a) for I, and (3.28) for Ic, in (3.27)
results in a linear DE, expressing the linear transfer function from the input to
the output:

4Clc2U%fout +2 (C2 - Cl) UTIojout + Ig-[out = I(%Iin- (329)
Equivalently, the Laplace-domain transfer function H(s) is given by:

I

- 452C1CoUZ + 25 (C, — C1) Url, + I (3.30)

H(s)

Clearly, the terms C; Uz and CoUr are part of the transfer function, as explained
in Section 2.2.2.
The cut-off frequency w, of this low-pass filter function equals:

1,
VCiCUr'

Equation (3.31) shows that w, can be controlled linearly through I,. This
is a general characteristic of TL filters. The quality factor @ of the filter is
determined by the factor (C; —C1) appearing in eqn (3.30). In [5], a modification
of this filter is described in which the Q-factor is electronically tunable as well.

(3.31)

We =

Example: Analysis of a translinear integrator

A capacitor C connected to the circuit nodes of a TL loop will always form
at least two different loops with the base-emitter junctions comprising the TL
loop. For example, in the TL integrator shown in Fig. 3.8 [2], two capacitance-
junction(s) loops can be identified. These are C-Q1-Q2-Q3 and C-Q4. Hence,
two different expressions can be derived for the capacitance current Icap. A
choice has to be made between the two of them, since only one expression is
necessary to analyse the transfer function of the integrator. The most convenient
choice is to use the loop C-Q4, since the collector current I, of Q4 does not
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Figure 3.8: A translinear integrator [2].

contain Ic,p. However, for illustrative purposes, the expression for Ic,p resulting
from the loop C-Q1-Q2-Q3 is used here to analyse the circuit.
Application of eqn (3.24) to the loop C-Q1-@2-Q3 yields:

(3.32)

'in ‘ u I
Lap = CUp (I T lowe Jea ) .

Iin + Iout B Io + Icap

Due to the presence of I, in the collector current of @3, Ic,p is now expressed
as a function of I, itself and its derivative icap.

Instead of using the expression for Ic.p in the TL loop equation, the approach
now must be to substitute the TL loop equation in eqn (3.32). The TL loop
equation is given by:

Io (Iin + Iout) = (Io + Icap) Iout- (333)

Equation (3.33) yields an expression for [.,p and, after differentiation with re-
spect to time, also for I ,p:

IoIin

Iout

IinIout — Iinjout
12 ’

out

Substitution of eqns (3.34) and (3.35) in (3.33) finally results in the transfer
function of the integrator:

, (3.34)

Icap =

Ieap = I, (3.35)

CUplous = I L. (3.36)

From the foregoing example it can be concluded that, in principle, a dif-
ferent choice for the capacitance-junction(s) loop does not hamper the correct
analysis of a DTL circuit. However, the total number of calculations to be
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made increases, as derivatives are generated during the analysis in intermedi-
ate expressions that are eliminated later on; Im and ICap in this example. It
goes without saying that for large DTL circuits the intermediate expression
swell, a well-known mathematical phenomenon, due to ‘wrong’ choices of the
capacitance-junction(s) loops can be impressive and will certainly diminish the
insight into the behaviour of the circuit.

3.2.2 State-space current-mode analysis

The global analysis method for DTL circuits, presented in Section 3.2.1, is
believed to be generally applicable, which makes it a powerful tool for analysis
and design purposes. Notwithstanding this major advantage, for large and high-
order DTL circuits, the procedure suffers from intermediate expression swell,
which can make the global analysis of TL filters a cumbersome occupation.
The complexity of the intermediate expressions encountered during the global
analysis of TL filters vanishes only in the final stage of the calculations when
the ultimate solution, a linear nt'-order DE, is obtained.

The intermediate expression swell is mainly associated with the equations for
the capacitance currents. In an nt'-order TL filter, n successive differentiations
have to be performed to express each of the n capacitance currents in terms
of the (derivatives of the) input and output current. The resulting expressions
tend to become very complex, due to the non-linear dynamic relation between
the capacitance currents and the input and output currents. For example, eqn
(3.28) is already more complex than (3.26a). Note that this difficulty does not
arise in conventional filters, since only linear components are employed.

State-space techniques have proven very effective in the area of conventional
filters, as they break down a higher-order DE into a system of first-order DEs.
With respect to TL filters, state-space, or equivalently, signal flow graph meth-
ods, can be applied beneficially as well. In fact, most synthesis methods for TL
filters published to date depend fully on these techniques [8,10,14,89].

This section serves to demonstrate that the state-space approach forms an
adequate means to the analysis of large TL filters. More precisely, since the
analysis result is a state-space description in which only first-order derivatives
are involved, the expressions for the n capacitance currents remain very simple,
thus preventing excessive intermediate expression swell.

Filter structure

In theory, every DE can be described by an infinite number of different state-
space descriptions. However, in order to transfer the (low) parameter-sensitivity
of a particular state-space description to the circuit realisation, most synthesis
methods for (both TL and conventional) filters constitute a one-to-one relation
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between the state-space description and the corresponding circuit implementa-
tion. Applying a state-space approach thus leads to the additional benefit that
the analysis also reveals information about the state-space description, or linear
filter structure, used to synthesise the filter.

Choice of the states

In order to find a state-space description of a filter, it is necessary to choose some
state variables. For conventional filters containing capacitors and inductors, it
is customary to choose the capacitance voltages and inductance currents to
represent the memory of the circuit.

For TL filters, the choice of the state variables is of crucial importance.
Capacitances are used exclusively as the memory elements in these networks.
Nevertheless, using the capacitance voltages to obtain a state-space description
is not the most suitable choice. Voltages do not comply with the current-
mode nature of TL circuits. Due to the instantaneous companding inherent to
TL circuits, the voltages are logarithmically related to the currents. Current
being the principal carrier of information, an analysis in terms of voltages will
inevitably result in complicated transcendental equations, impeding a thorough
understanding of the circuit’s operation.

Not surprisingly, the application of an exponential-like transformation to
each of the capacitance voltages restores the linear relation between the states
and the information being processed. This is illustrated in Fig. 3.9. It goes
without saying that the ‘exponential transconductance’ should not influence
the capacitance voltage. Hence, it must have a negligible input current.

Exponential transconductance

Figure 3.9: An exponential transformation of the capacitance voltages restores the
linear state-space.

Now, the key is to use additional (fictitious) transistors to implement the
transformations. The resulting transistor currents, denoted by I,,, where [ €
[1,...,n)], form the basis of subsequent state-space analysis. Except for a mul-
tiplicative constant, the state currents are uniquely related to the capacitance
voltages. The supplementary circuitry can be applied in such a way as to satisfy



46 Analysis of translinear circuits

the STL principle, i.e., all extra loops thus introduced are TL loops. Under this
condition, the TL analysis techniques described in Sections 3.1 and 3.2.1 can be
applied to obtain a state-space description of a TL filter.

Implementation of the exponential transformations

The nature of the non-linear relation between the capacitance voltages and the
transistor currents depends on the type of TL filter begin analysed. To date,
three different classes of TL filters have been proposed in the literature [10]: log-
domain, tanh and sinh filters. Different transformations (exp, tanh and sinh,
respectively) have to be applied for each of these filter types to obtain a set
of linear state variables I,. Consequently, the additional circuitry required to
facilitate TL analysis has to be tailored to the specific filter class.

Information about the exponential transconductance to be applied can be
deduced from the output section of a TL filter. As the output current can be
considered as being one of the state variables, the sub-circuit used to generate
the output current from a corresponding capacitance voltage reveals the nature
of the output expansion function. On condition that all first-order DEs compris-
ing the total state-space description have been implemented by the same class of
DTL circuitry, similar transconductance networks can be used to expand each
capacitance voltage. The output expansion circuits of log-domain, tanh and
sinh filters are shown in Figs 3.14, 3.19 and 3.23, respectively. Whereas the out-
put stage of a log-domain filter comprises a single transistor in common-emitter
configuration, tanh filters are characterised by a differential-pair output stage,
and sinh filters by a second-order TL loop implementing the geometric mean
function. Note that each of these output stages has an ideally infinite input
impedance and therefore does not disturb the capacitance voltage being sensed.

If 3 DTL filter comprises a mixture of log-domain, tanh and sinh techniques,
the foregoing procedure will fail. The remaining alternative is to apply the
global analysis method described in Section 3.2.1.

By applying additional (fictitious) circuitry to the filter under inspection,
new TL loops are created as the capacitances are connected between the nodes
of existing TL loops. In order for the STL and DTL analysis methods to be
applicable, these extra loops have to be TL loops. That is, the numbers of
clockwise and counter-clockwise oriented devices have to be equal. Hence, level
shifts, implemented by dc biased diodes are often required in addition to the
output stages shown in Figs 3.14, 3.19 and 3.23. The dc bias currents and
relative emitter areas of the level shifts are unimportant. They are simply
translated into multiplicative constants.

Further, the STL principle dictates the devices to be used in the additional
circuitry, as the exponential slope factors of all devices in a TL loop have to
be identical. For example, for a TL filter comprising compound transistors, the
exponential transconductances have to be implemented by compound transistors
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as well. Again, for a TL loop containing different devices, i.e., NPN and PNP
transistors, the numbers of clockwise and counter-clockwise oriented devices
have to be equal for both types of devices individually.

Translinear analysis of the state-space filter circuit

Having augmented the TL filter by additional output expansion stages, a state-
space analysis can now be performed. Basically, the method described in Section
3.2.1 has to be applied.

Due to the additional circuitry, the set of fundamental TL loops has increased
with respect to the original filter circuit. The number of extra fundamental TL
loop equations equals the number of additional expansion stages applied.

The expansion of the set of fundamental loop equations is counterbalanced by
a commensurate increase of intermediate currents, being the state variable cur-
rents I,. Applying the KCL equations, the collector currents can be expressed
as linear combinations of the input currents, the output current, the capacitance
currents Ic, and the intermediate currents, I,; plus I,,. These expressions are
substituted into the TL loop equations to obtain a set of current-mode polyno-
mials.

Now, the procedure to be followed is to solve the system of loop equations for
each of the capacitance currents I¢, . Elimination of the intermediate currents
I, and all the capacitance currents but one, yields expressions for I¢, in terms
of the input currents and the state variables I,,.

The main improvement of the state-space analysis method is the simplicity
of the expressions for the capacitance currents. Equation (3.24) is applied to
the loop formed by C} and the transistors ); comprising the transconductance
expansion stage. In most TL filter circuits, the currents I¢ o, are all related to
only one state variable, I,,, and possibly some dc bias currents. This results
in an elegantly simple equation for Ic, = I¢,(I,,,Iz,), containing only the
first-order derivative of I, .

Substitution of I¢, (I, , Iz, ) into the polynomial expressions for I¢, obtained
from the set of TL loop equations ultimately results in a linear state-space
description of the filter.

To illustrate the state-space analysis method, a fifth-order low-pass filter is
analysed next.

Example: State-space analysis of a fifth-order low-pass filter

Figure 3.10 shows a log-domain fifth-order Chebyshev low-pass filter designed
by Perry and Roberts [89]. This circuit is used here to demonstrate both the
intermediate expression swell of the global analysis method, described in Section
3.2.1, and the application of the state-space analysis method.
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Figure 3.10: State-space analysis of a fifth-order low-pass filter [89], with the aid of
some additional transistors (the dotted components).

Global analysis — Intermediate expression swell The TL filter com-
prises five fundamental TL loops of compound transistors, ¢J; through Q0.
For the moment we disregard the dotted transistors QJo1—@24. A possible set
of fundamental TL loop equations is given by the four second-order loops @3-
Qs, @7-Q10, @11—G14, and Q15—C1s, which are coupled by a sixth-order loop
Q1-Q2-Q6-Qs5-Q10-Qo-Q14-Q13-Q15-Q17-Q19-Q20-

To express the resulting TL loop equations in terms of the input, output
and intermediate currents, by direct substitution of the KCLs, four intermediate
currents I, j € [1,... ,4], have to be introduced, as indicated in Fig. 3.10. The
five fundamental TL loop equations are thus given by:

2=1I, (Ip;; +1c,,,) jelL,...,3), (3.37a)
=1, (In +Ig,) (3.37b)
IinIP1Ip2[P3[p4I = (Ios + Ip1 + Icl)IgIout, (3.37(2)

where I, is the input current, I, the output current, I,, I,s and I, are dc
bias currents, and I¢,, k € [1,...,5], denotes the current flowing through each
of the five grounded capacitances Cj.

The third step of the global analysis method, described in Section 3.2.1, is
to obtain current-mode expressions for the capacitance currents. Application of
eqn (3.24) yields:

Iou
Ic, = 2CsUp==2 (3.38a)

b
I out

Ic, = 2C4Ur (I"“t - Iﬁ) , (3.38b)

Iout Ip4
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I I, I
In =2 out  ‘ps _ P3 .38
oy = 2C5Ur ( L) (3.38¢)
Iowe I, I, I
Io, = 205Uy [ 2% — 2a _ ‘P3 Tz ) 3.38d
G T (Iout Ip4 Ips Ipz ( )
I L, I, I, I
Io, = 201U out P4 P3Pz _ P 3.38e
¢ T (Iout Ipq Ips Ipz IPl ( )

Equations (3.38a) through (3.38¢) already hint at the increasing complexity
of the expressions for the capacitance currents. To obtain the transfer function
of the filter, the currents I, have to be rewritten in terms of the output current
and its time derivatives.? The currents I, down to I, are treated successively,
Ic, being already in the right format. To obtain Ic, in terms of the output
current, first, eqn (3.38a) is substituted in (3.37b). This equation is then solved
for Ip,. Next, I, is calculated, which involves the calculation of the time
derivative Ic, of I,. Finally, substitution of the expressions for I, and I,
result in an equation I, = I¢, (Iout,fout, fout).

The currents I¢, down to I, are rewritten in a similar fashion. However,
the derivative operations that have to be performed on the intermediate cur-
rents become more and more cumbersome. The intermediate expression swell
is reflected in the capacitance currents, which become increasingly complicated.
Equation (3.38a) gives an elegant expression for I, but I, is already as com-
plex as:

204UT (QCSUT.}-V(.)ut + Ioljout) + Igjout
204Uz (2C5Urlous + Iadow ) + Bl

Ic, = 2C5Ur (3.39)

When all currents I, are expressed as functions of the output current, the
overall transfer function, a fifth-order DE, is obtained by elimination of the in-
termediate currents from eqn (3.37), followed by substitution of the expressions
for the capacitance currents I, .

Implementation of the exponential transformations Apparently, the
global analysis method is not very suitable for the analysis by manual calculation
of large TL filters. The large equations involved are cumbersome and error
prone. As discussed, a significant simplification can be obtained by using a
state-space approach.

2In general, the capacitance currents are expressed in terms of both the input current and
the output current (and their time derivatives). However, for an all-pole low-pass filter, only
the output current is required to describe the capacitance currents.

]
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Since the filter contains five capacitors, five currents I,,, where ! € [1,...,5],
have to be defined to represent the state of the filter. The type of circuitry
required to introduce I, is derived from an examination of the output section
of the filter. At the output, the voltage across Cs is expanded exponentially by
means of Qg into a current I,,.. Transistor Q19 only serves as a level shift.
The use of a single (compound) device to generate the output current reveals
that the circuit shown in Fig. 3.10 is in fact a log-domain filter. Consequently,
the same output structure has to be used to generate the currents I, through
I.,; I, is most favourably chosen to equal Ioys.

The voltages across the capacitances vary but a few milli-volts from ground
potential. As a result, the parallel connection of a (fictitious) compound transis-
tor with each of the capacitances C; through Cj requires a level shift in order to
satisfy the STL principle. Since level shifts are already connected to the capaci-
tances in the shape of @3, @7, @11 and @15, the additional compound transistors
Q21 through Q24 can be connected directly to the NPN-base-terminals of these
transistors. This is illustrated in Fig. 3.10 by the dotted components.

Translinear analysis of the state-space filter circuit By the connec-
tion of the four extra transistors, four additional fundamental TL loops are
introduced, corresponding to the introduction of four new intermediate cur-
rents I,,. The set of fundamental TL loops is completed by the addition of
the loops Q21-Q3-Q6-Q5-Q7-Q22, Q22-Q7-Q10-Qo-Q11-Q23, Q23-Q11-Q14-Q13-
Q15-Q24, and Q24-Q15-Q15-Q17-Q19-Q20. The corresponding loop equations
are given by:

I, = LI, le(l,... 4. (3.40)

1+1)

Elimination of the intermediate currents I, from eqns (3.37) and (3.40)
is straightforward. Solving the remaining system of five polynomials for the
capacitance currents yields:

IC1 Iz1 = LIy — IosIzl - IoIz27 (3.41&)
Io, Iy = I (Ioy — Is) (3.41b)
IogIng = 1o (I, —- I,), (3.41¢)
Ic 1oy = Io (Ing — Izg), (3.41d)
IcyIo; = LIy, — Loz, (3.41e)

Now, the improvement provided by the state-space analysis method is the
simplicity of the expressions for the capacitance currents. Equation (3.24) is
applied to express I¢, in terms of I, and fzk. For example, to obtain I¢,,
eqn (3.24) is applied to the loop C1-Q3-Q2;. The capacitance currents are thus
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readily attained as:

I
Io, = 20:Ur 7, kell,...,5). (3.42)
T

Finally, substitution of eqn (3.42) yields a current-mode linear state-space
description of the filter:

O, -Is -I, 0 0 0 I, IoLin
Cals, I, 0o -I, 0 0 I, 0
20r | Csl, | =) O 1, 0 —-I, O L,1+| 0 |,
Cyl,, 0 0 I, 0 -1 I, 0
CaIzs 0 0 0 Io —4o] I:cs 0
Touy = I (3.43)
Figure 3.11 shows the corresponding signal flow graph.
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Figure 3.11: Signal flow graph corresponding to eqn (3.43).

3.2.3 Alternative analysis methods

Next to the analysis methods proposed in Sections 3.2.1 and 3.2.2, a number of
alternative analysis methods for TL filters have been proposed in the literature.
Since most publications on TL filters have been geared towards synthesis, the
number of different analysis methods is smaller than the collection of synthesis
techniques.

Since different points of view can provide complementary information, this
section gives a short review of the various analysis methodologies. First of all,
TL filters can be analysed using a voltage-mode instead of a current-mode ap-
proach. Both a global voltage-mode analysis method [1] and the corresponding
state-space procedure are treated. Small-signal analysis of TL networks is de-
scribed next, followed by the analysis of log-domain filters based on Bernoulli’s
DE [14].
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Global voltage-mode analysis

In [1], Adams not only presented a synthesis method for log-domain filters,
but also proposed an analysis method to calculate the non-linear error terms
resulting from his synthesis procedure. The first step of the analysis method is to
write down the node equations from the large-signal ac model of the filter. Next,
the equations containing the derivative of a capacitance voltage are multiplied
by an exponential term. Using the chain rule of differentiation, the isolated
derivatives can be eliminated, as follows:

. Vca . VC& d VC&
Veap multiply by eTr . VcapeT'?E = UTaeTTP'. (3.44)

Now, the intermediate node voltages have to be eliminated from the system
of equations, such that a single one results expressing the relation between the
compressed input and output voltage. Unfortunately, according to Adams no
systematic method might exist for this step [1]. In the last analysis step, a DE
is obtained from this single equation by applying a logarithmic transformation;
the inverse of the transformation used during synthesis.

Implicitly, the voltage-mode analysis method has been applied in numerous
publications on log-domain filters to verify parts of transistor level implementa-
tions. In [15}, an example can be found of the analysis of a complete second-order
TL filter. Note that in most of these papers, the application of the voltage-mode
analysis method is simplified by direct substitution of the overall V-1 transfer
function of prevalent building blocks, thus reducing the number of intermediate
voltages and node equations.

An apparent drawback of voltage-mode analysis is the abundant usage of
transcendental equations, hindering a clear understanding of the circuit. Fur-
thermore, eqn (3.44) only applies to log-domain filters. Different functions are
required for other types of DTL circuits, such as tanh and sinh filters. The
transformation to be applied has to be derived from the circuit structure, which
might be a complicated task in some situations.

As an example of the voltage-mode analysis procedure, consider the circuit
shown in Fig. 3.5. The nodal equation for node @ is given by [1,3]:

VJ\ — Vcap
T
where V,p is the capacitance voltage and V], is the compressed input voltage,

i.e., the output voltage of the input op amp.
Multiplication of eqn (3.45) by exp Veap/Ur yields:
d Yeap V! Ve
C’UTae Ur = I epr;; — I, exp Uc;p.

Application of the logarithmic transformations Vii = Urln(Lin + I4c)/Is and
Veap = UrIn (Loyt + Iac)/Io, finally yields the linear DE given by (3.21).

CVeap = I exp -1, (3.45)

(3.46)
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State-space voltage-mode analysis

A considerable simplification of the voltage-mode analysis method can be ob-
tained using a state-space approach. Eliminating all intermediate voltages with
the exception of the capacitance voltages, a set of nodal equations results that
can be transformed directly into a state-space representation of the filter using
a logarithmic transformation. This method is the voltage-mode equivalent of
the current-mode state-space analysis method described in Section 3.2.2.

Small-signal analysis

A very basic way to calculate the transfer function of a complete filter is to
analyse the small-signal equivalent circuit, see, e.g., [5]. Since, by definition,
a small-signal analysis results in a linear transfer function, this method yields
the correct expression only when the overall transfer function of the TL circuit
under consideration is theoretically linear for large signals. Obviously, it is a
misconception to argue that large-signal linearity allows the use of a small-signal
analysis method [90], as the large-signal linearity is not known a priori. Using
small-signal analysis, the large-signal linearity cannot be proven and has to be
verified in another way. Obviously, this method cannot be applied to TL circuits
realising non-linear functions.

Analysis based on Bernoulli’s differential equation

An alternative current-mode analysis method has been proposed by Drakakis et
al. in [14]. This method can be used to analyse log-domain filters based on the
generic structure shown in Fig. 3.12. The currents I,,,, where k € [1,... ,n] and
n denotes the order of the filter, determine the transfer function of the filter.
The currents I,, are dc bias currents. For the moment, the dotted components
can be ignored.

The analysis is based on the ‘Bernoulli cell’, shown in Fig. 3.13, which is a
basic element of the generic structure shown in Fig. 3.12. The Bernoulli cell is
described by a DE:

. . I, Ty 1
T 7 k — 4
k ( B ck> Ur ~ CUr’ (3.47)

where Vg, is a base voltage and 1/T} a collector current, as shown in Fig. 3.13.
For the first cell, the derivative Vg, equals:

Ve, = Up 3 1 fn

T (3.48)
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Figure 3.12: Generic structure that can be analysed with the analysis method based
on Bernoulli’s differential equation [14].

Figure 3.13: Bernoulli cell [14].

where I, is the input current of the filter. Substitution of eqn (3.48) in (3.47)
for k = 1 yields:

d 1
—InfGj, wy = 4
ClUTdt In I, T1 + I 1 T1 (3 9)

Equation (3.49) can be generalised to:

1

d
LTy T+ I, = =, ,
CiyUr I IncplinTy ... Tk + Iu, T, (3.50)

where ¢ is a constant with dimension [A¥~1]. Note that the first term on the
LHS represents the capacitance current Ic, .
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Definition of a current Iy, = ¢ LinT1 ... Tk, where ¢} is a constant with
dimension [A¥], and substitution in eqn (3.50) yields:
J
. c
CoUrly, + L, I, = é-,k—lzk_l. (3.51)
k-1
By definition, I, equals [ip.
Application of eqn (3.50) to all capacitors yields a set of n first-order DEs; a
state-space description of the filter. It is interesting to note that the capacitance
currents in terms of I, are given by:

d Ck
ICk - CkUTaln ézlzk (352)

Elaboration of the logarithm yields an expression similar to eqn (3.42). Hence, it
can be concluded that, although the derivation is different, the analysis method
based on the Bernoulli DE is identical to the state-space analysis method de-
scribed in Section 3.2.2. However, the method by Drakakis et al. has been
derived only for log-domain filters. Finally, note that the currents I, are the
collector currents of the dotted components shown in Fig. 3.12.

3.3 Characteristics of different translinear
filter classes

Several types of DTL networks can be distinguished within the overall class of
DTL circuits, based on the variety of possible exponential-like relations between
the voltages and currents. In a TL filter, the specific transconductance equation
is reflected by the output stage. Here, the capacitor is considered to be a part
of the output stage. Hence, the output stage converts a capacitance voltage
into an output current. Alternatively speaking, from a current-mode point of
view, the relation between the capacitance current and the output current is
determined by a different capacitance-junction(s) loop.

This section is devoted to the analysis of the various types of TL filters.
The characteristics of each particular class of DTL circuits are derived from
the generic output stage and the corresponding expression for the capacitance
current. The discussion is limited to those types of DTL networks that have
been proposed in the literature: log-domain, tanh and sinh filters.> The char-
acteristics of these three classes are treated in Sections 3.3.1, 3.3.2 and 3.3.3,
respectively.

3Note that these names are not used consistently, for ‘log’ refers to an I-V transfer function,
whereas ‘tanh’ and ‘sinh’ refer to a V-I transfer function. Therefore, the extension ‘domain’
is not used here for tanh and sinh filters, where the voltages are processed in the tanh~?!
and sinh~! domains, whereas in log-domain filters, the voltages are indeed processed in the
log-domain.
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3.3.1 log-domain filters

From the perspective of circuit implementation, the most simple relation be-
tween the collector currents and the capacitance voltages in a TL filter is
the pure exponential function. Applying the exponential law describing the
(bipolar) transistor, this relation can be implemented by a single transistor, a
Common-Emitter (CE) stage, as illustrated in Fig. 3.14. This generic output
stage is identical to the sub-circuit shown in Fig. 2.7, as the level shift shown in
Fig. 2.7 does not have any influence on the capacitance current Io,,. Translinear
filters based on the single transistor output stage are called ‘log-domain filters’,
as the capacitance voltage Vi, is logarithmically related to the collector current.

I

: ildc+lout
Icapl }1
cap I

Figure 3.14: Generic output stage of a log-domain filter.

F \

The exponential V-I relation of a CE stage is highly non-linear. Hence,
this transconductance stage is not frequently applied in conventional filters to
implement a ‘linear’ transconductance. Instead, a differential pair is more likely
to be encountered as the differential operation implies the elimination of even-
order distortion components and hence a better linearity of the V-I conversion.
Linearity of the transconductances is not an issue for TL filters, as they are
based on the theory of distortionless companding described in Chapter 2.

Class-A operation

The collector current of the output stage has to be strictly positive for the tran-
sistor to work in the active exponential region. Consequently, class-A operation
is required to process a zero-mean output signal. That is, the actual bipolar-
valued output current I, is superposed on a dc bias current I4.. For the output
stage to operate correctly, the inequality I,y > —I4c has to be satisfied at all
times. Lower values of I,y result in clipping distortion.
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Instantaneous companding

The collector current of the log-domain output stage is exponentially related to
the capacitance voltage:

Vea
Tyc + Iouy = Is exp _(%_p (3.53)
T

This exponential function can be identified with the output expansion function
E(z), depicted in the general schematic of an instantaneous companding linear
integrator, see Fig. 3.17. Thus, the companding characteristics of log-domain
filters are directly related to eqn (3.53).

Applying a strict definition of companding, the function E(zx) should be
expanding. Without loss of generality, z = 0 is considered to be the quiescent
point. Then, a genuine expansion function is characterised by an increasing
value of the first-order derivative of E(z) with respect to z for increasing values
of z > 0. Consequently, the second-order derivative with respect to z is strictly
positive for z > 0. For z < 0, the first-order derivative of E(z) increases for
decreasing values of x, the second-order derivative is therefore strictly negative.

Figure 3.15 shows a plot of the exponential function expz. Of course, the
first-order and second-order derivatives with respect to z are equal to expz
as well. The quiescent point z = 0 complies with Veap = Urlnlyc/Is in eqn
(3.53). Now, a comparison of the second-order derivative, exp z, with the general
characteristics of a true expansion output stage, reveals that the generic output
function (3.53) of a log-domain filter is indeed expanding for z > 0. However, for
z < 0 the second-order derivative is positive as well. This implies a compression
for z < 0.

For a symmetrical output current, the overall behaviour of the CE output
stage implies a compression rather than an expansion of the peak-to-peak signal
swings [90]. For example, a sinusoidal output current with an amplitude of 0.1
I4c results in a peak-to-peak voltage swing of 0.20 Ur; an amplitude of 0.9 Iy,
results in a voltage swing of 2.94 Ur. Hence, the voltage swing increases by a
factor 14.7, whereas the current swing only increases by a factor 9.

Capacitance current

In correspondence with the current-mode nature of TL circuits, the expression
for the capacitance current is even more interesting than the capacitance volt-
age. The capacitance current is related to the collector current of the output
transistor and is given by:

I
Ieap = CUp—22 3.54
P TIdc + Iout ( )
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Figure 3.15: The normalised output-expansion function of log-domain filters.

The exponential transconductance of the log-domain output stage results in
a non-linear dynamic relation between Icap and Ioye. Figure 3.16 illustrates this
non-linear dynamic relation, eqn (3.54), under the assumption of a sinusoidal
output current, given by:

Iy = mlycsinwt, (3.55)

where m is the modulation index. The numerical values of the relevant param-
eters used in Fig. 3.16 are: C = 10 pF, Ur = 26 mV and w = 3.85 Mrad/s.

As shown in Fig. 3.16, I.ap is nearly sinusoidal for low values of m. With
reference to eqn (3.54), this linear behaviour can be explained through the
denominator of (3.54), which is approximately constant. The non-linearity of
IL.ap increases when m approaches the value of one, as the minimum value of the
denominator of eqn (3.54) then approaches zero. The denominator attains its
minimum value when I, is minimal. Hence, the maximal capacitance current
swings are obtained symmetrically around Ioy = —mlge. It is interesting to
note that the increasing non-linearity is related to the class-A operation of the
log-domain output stage. The characteristics of this mode of operation are thus
retained in the denominator of eqn (3.54) for Icap.

In a complete TL filter, the value of m is determined by the (modulus of
the) filter transfer function.

Global linearisation

Despite the non-linear nature of the capacitance currents in a TL filter, an
exactly linear transfer function can be realised in theory. The DTL principle




3.3 Characteristics of different translinear filter classes 59

2 T T T

lcup’ I()ul [HA]

Time {ps]

Figure 3.16: Generic capacitance current of a log-domain output stage.

states that a linear derivative can be obtained when a capacitance current is
multiplied by some other currents. In the case of a log-domain filter, I.op has
to be multiplied by the collector current to which Iap is related. Consequently,
the capacitance current shown in Fig. 3.14 has to be multiplied by Igc + Iy to
obtain a linear derivative I,y, given by:

CUTjout = Icap (Idc + Iout) . (356)

It is interesting to compare this result to the general schematic of a dis-
tortionless instantaneous companding integrator, see Fig. 3.17. Clearly, the
capacitance C performs the integration function shown in Fig. 3.17. The re-
sulting voltage T = Vi,p is expanded by the exponential law (3.53) into the
output current y = Iyc + Joue. The derivative y represents the linear derivative
CUrloye. Now the input current & = Io,p to the integrator is generated by di-
viding § = CUr I,y by OE(z)/0z = E(x), which simply equals y = Ious, owing
to the characteristics of the exponential function. Hence, Z is proportional to
Tous /Tous in correspondence with eqn (3.54).

Linear damping

A favourable property of log-domain filters is that a linear damping term can
be implemented by the connection of a dc current source I, in parallel to a
capacitor. This characteristic can be explained from eqns (3.54) and (3.56).
The linear derivative I, is obtained by multiplication of Icap by (Zac + out)-
If instead of Lcap, (leap + Io) is multiplied by this current, two additional terms
(Iodge + IoIout) are generated at the LHS of eqn (3.56). The first term I, 4.
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Figure 3.17: General block schematic of an instantaneous companding integrator.

represents a dc offset current. The second term I, Iy results in a finite negative
pole.

The creation of a linear damping term by means of a dc current source is
possible owing to the fact that the denominator of eqn (3.54) is a linear function
of I,y. This property is not valid for TL filters in general. For example,
the denominators of eqns (3.59) and (3.71), which are given by I3, — IZ,, and
VA4I3, + 12, respectively, are not linear in Ioy. Consequently, for tanh and
sinh filters a dc current source connected in parallel with a capacitor does not
result in a linear damping term.

Since in practice a capacitance current does not have a dc term associated
with it, and the collector currents in a TL circuit have to be strictly positive, a
dc term has to be added to I.,p for biasing purposes. For example, regard the
TL integrator shown in Fig. 3.8. To correctly bias @3, a current I, is added
to I.ap, which results in damping, as explained in the foregoing. To cancel this
undesired effect, the current mirror Q4-Qs provides positive feedback. As, in
theory, the effects of I, and Qs cancel out exactly, the ideal transfer function
of this circuit is a loss-less integration. This effect can be deduced from the TL
loop equation (3.33) as well: both sides contain a redundant term I, Ioys.

Class-AB operation

Typically, log-domain filters operate in class A. As a result, the output current
is limited by Iou; > —Iac. This restriction on the output signal swing is only
single-sided, which is advantageous if a-symmetrical wave forms have to be
processed. This fact can be exploited to enable class (A)B operation {2,91].
Naturally, not only the output stage, but all other parts of the complete filter
have to be subject to the same single-sided limitation.

Figure 3.18 shows the general set-up for class-AB operation. In this set-up, a
static non-linear current splitter is used at the input to divide the input current
I, into two currents Iy, and fip,, which are both strictly positive. These signals
are related to Iip by: fin = Lin, — Lin,- The two parts of the input signal are
now processed by two separate signal paths, with a transfer function F. The
resulting output currents oy, and oy, are subtracted to obtain the overall
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output current I,ys, the linearly filtered version of f;,. If the signal path F only
has a single-sided restriction with respect to the currents being processed, the
dynamic range of the log-domain filter is no longer theoretically limited by a
dc current Ij.. A more thorough treatment of class-AB operation is given in
Section 4.7.

Ii“l F Lout |
lin current Y
— i I
splitter o out
|
linz IouQ

Figure 3.18: General set-up for class (A)B operation [91].

3.3.2 tanh filters

Instead of a single transistor in common-emitter configuration, the class of tanh
filters is characterised by a differential pair output structure, see Fig. 3.19. The
name of this class of filters is derived from the well-known hyperbolic tangent
V-I transfer function of the differential pair. The capacitance voltage Vap is
the input voltage. The output current I, is the difference of the two collector

currents.
I l : +l IOU[ l—
cap | |
]

Figure 3.19: Generic output stage of tanh filters.

Class-A operation

The differential pair is biased by a dc current source I4.. The limited tail current
restricts the output current to the range —JIg. < Iut < Igc. Since this interval
is symmetrical, tanh filters cannot be operated in class AB.
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In conventional filters, the differential pair is often used as a simple imple-
mentation of an Operational Transconductance Amplifier (OTA). Due to its
symmetry, the transconductance of the differential pair is much more linear
than the transconductance of a CE stage. Nevertheless, the remaining non-
linearity restricts the operating range of the OTA. A typical Total Harmonic
Distortion (THD) level of -40 dB is obtained for a sinusoidal input voltage with
an amplitude of only 0.7 Ur. The corresponding amplitude of Ioy¢ is 0.34 I4c.

Whereas OTA-C filters based on the sub-circuit shown in Fig. 3.19 can only
use 34% of the dc bias current, tanh filters can exploit the complete class-
A operating range. The theoretically possible improvement of the dynamic
range can be calculated for a specified distortion level, when the influence of
the remaining circuitry of the tanh filter is neglected. For a THD level of -40
dB, the maximum improvement is 9.5 dB. This compares well with the 10 dB
improvement reported in [10], based on 2.6% intermodulation distortion.

Instantaneous companding

The transcendental relation between Ioy: and Veap is expressed by the hyperbolic
tangent function:

Iout = Igc tanh ;/Z;; . (3.57)

Figure 3.20 depicts the normalised hyperbolic tangent function tanh z, as well
as its first- and second-order derivatives. Obviously, the first-order derivative,
representing the small-signal transconductance, decreases for z moving away
from the quiescent point z = 0. Hence, the second-order derivative is strictly
negative for z > 0 and strictly positive for z < 0. Identifying the differential
pair with the output expansion stage E(z) shown in Fig. 3.17 and applying
the genuine definitions of compression and expansion, it is concluded that tanh
filters are not companding [92]. The relative output current swing is smaller
than the relative capacitance voltage swing.

This can be illustrated by a numerical example. For a sinusoidal output
current, eqn (3.55), with m = 0.1 and 0.9, the amplitude of the capacitance
voltage swing equals 0.20 and 2.94 Ur, respectively. Again, the voltage swing
increases by a factor of 14.6, while the current swing increases only by a factor
of 9.

Capacitance current

In the generic tanh output stage, the capacitance C forms a loop with the two
transistors of the differential pair. Using eqn (3.24), the capacitance current




3.3 Characteristics of different translinear filter classes 63
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Figure 3.20: The (derivatives of the) normalised output-expansion function of tanh
filters.

Icap is found to be:

jout - .out
L., = CU - , 3.58
P T (Idc + Iout Idc - out> ( )
IicTou
= 20UT72£2[§— (3.59)
de ~— “out

Note that the class-A characteristics of tanh filters can be derived from the
denominators of eqns (3.58) and (3.59).

Figure 3.21 illustrates the non-linear dynamic relation between Ic,p and Ioye.
In this figure, lou is given by eqn (3.55). Further, C' = 10 pF, Ur = 26 mV
and w = 3.85 Mrad/s. As could have been expected, the non-linearity of Iap
increases when the modulation index m approaches one. For values of m close
to zero, the denominator of eqn (3.59) is approximately constant, resulting in
a linear behaviour of I,,. The denominator reaches its minimum value when
Iout = *mlyc, and therefore, the maximums of I, are found symmetrically
around these two points. The compressing nature of the tanh output stage can
also be derived from these plots of I.,p, as the total area under the plot |/cap)
increases more than proportional to m.

Global linearisation

To obtain a linear tanh filter, Ic,p, has to be multiplied by the denominator
I3, — I2,, of eqn (3.59). This polynomial represents the output of the feedback
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Figure 3.21: Generic capacitance current for a tanh output stage.

block 0E/0z =1 — tanh® z, shown in Fig. 3.17. Thus, a linear derivative Tout
is obtained:

2C'UTIch.out = dcap (Idc + Iout) (Idc - Iout) . (3'60)

A comparison of eqns (3.56), (3.60) and (3.73) shows that the dimensions
of these equations are [A2], [A®] and [A?], respectively. This implies that a
third-order polynomial is required to implement a linear derivative in a tanh
filter, whereas only a second-order polynomial is required in log-domain and
sinh filters. Consequently, the circuitry required to realise a tanh filter is in
general more complex. In addition, a linear loss term cannot be implemented
by the connection of a dc current source in parallel with a capacitance, as
explained in Section 3.3.1.

Example: Analysis of a tanh first-order low-pass filter

Figure 3.22 shows an example of a tanh filter [4]. The output stage, see Fig.
3.19, is formed by transistors Q9 and Q1. A PNP current mirror is used to
obtain a single-ended output current Ioyq.

Apart from the current mirrors, the tanh filter comprises three second-order
TL loops. The first loop is formed by @1-Q4. The other two loops are coupled
and consist of @5-Qs and Qs-Q5-Qe-C10, respectively.

To calculate the transfer function of the filter, first the KCLs are used to find
expressions for the collector currents. Since the filter contains three TL loops,
two intermediate currents have to be introduced. By definition, the collector
currents of Qs and Qg are equated to I, and Ip,, respectively. Since the tail
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Figure 3.22: A tanh first-order low-pass filter [4].

current of the differential pair Q3-Q4 amounts to I, + I,, + I,,, while its output
equals Icap — Iy, + I,,, the collector currents I3 and I of Q3 and Qg4 are given
by:

= 1 (Lo + Ieap +2I,,), (3.61)
=1l — Ly +21,,) . (3.62)

Hence, the loop equations are readily found to be:

(Idc - in) (Io + Icap + QIpz) = (Idc + Im) (Io - Icap + 21p1) 5 (363&)
I2 =41, 1,,, (3.63b)
I, (Idc - out) = 2Ip1 (Idc + Iout) . (3-63(3)

Elimination of I, and Ip, from the system of TL loop equations yields a
third-order polynomial:

Icap (Iout. + Idc) (Idc - out) + 2IoIchout = ZIoIchirr (3-64)

In accordance with eqn (3.60), the first term on the LHS of (3.64) equals
2CUTIac oy Substitution of eqn (3.60) for I.ap finally yields the DE describing
the linear filter transfer function:

CUTjout + IoIout = IoIin- (365)

3.3.3 sinh filters

The third type of TL filters treated in this section is the class of sinh filters
(4,10,36,77,93]. The generic output structure of this class of TL filters, which is
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depicted in Fig. 3.23, comprises a complete second-order TL loop, @,-Q4. This
loop implements the function:

Igc = IOut1 Ioutzs (3.65)

where Iy, and Ioyg, are the collector currents of @, and Q3. The actual output
current Iy, is the difference of Loy, and Ioyt,-

o
Q
| Q
]“"lf N Tou
+ —
T o
Q
ae llt
out)

Figure 3.23: Generic output stage of sinh filters.

Class-AB operation

Transistors Q, and Q3 can be considered as being two separate signal paths for
the output current, similar to the set-up shown in Fig. 3.18. Equation (3.66)
forces Iy, and Iy, to have a constant geometric mean. The relation between
Iout, , and the actual output current I,y; is given by:

Tout, 2 = % ( 4I§c + Ifut + Iout) . (3.67)

Since the collector currents Iy,g, and oy, are strictly positive, the sinh output
stage operates in class AB. Naturally, for an entire sinh filter to operate in class
AB, not only the output stage, but also the various other parts of the filter have
to facilitate class-AB operation.

Instantaneous companding

The V-I transfer function of the sinh output structure is described by the hy-
perbolic sine function:

Iout = 2I4c sinh ‘I/JT" (3.68)
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The normalised hyperbolic sine function sinh z is plotted in Fig. 3.24, along
with the first-order derivative cosh z. The expanding characteristics of the sinh
output stage can be derived from the second-order derivative, which again equals
sinh z. Since the second-order derivative is strictly positive for z > 0 and strictly
negative for £ < 0, z = 0 being the quiescent point, the hyperbalic sine function
is a genuine expansion function.

30 T T T T 1 T
A : sinh, sinh”” ——
\ ' sinh' ~—-
L N : J
Ay
15 + \\\ -
- \\
2 e :
o O TTITnommmmmmm T -
215 -
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Figure 3.24: The (derivatives of the) normalised output-expansion function of sinh
filters.

This can be illustrated by a numerical example. For a sinusoidal output
current, eqn (3.55), with m = 1 and 9, the amplitude of the capacitance voltage
swing equals 0.48 and 2.21 Uy, respectively. Consequently, whereas the current
swing increases by a factor of 9, the voltage swing increases only by a factor of
4.59.

Capacitance current

Applying eqns (3.24) and (3.67), several equivalent expressions for the capaci-
tance current Ic,p associated with the sinh structure can be obtained:

I
Icap = CUT“%: (3.69)

Ioun

. IOut2

= -CUr 2, (3.70)
outs

- jout

= QUp—=20 (3.71)

T )
V 4Igc + Iogut
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I
=CUp— 2 72
TIouh + Iout,z (3 )

Figures 3.25 and 3.26 illustrate the relation between Ic,p and Ioy:. In order
to make a comparison possible between the capacitance currents of log-domain,
tanh and sinh filters, in Fig. 3.25 the same values of the modulation index
are used as in Figs 3.16 and 3.21. For the sinh output structure, even for a
modulation index of m = 0.8, the denominator of eqn (3.71) does not vary
much, and as a result, I.., approximately equals a cosine function. Only for
values of m well above one does the capacitance current become more non-linear,
as shown in Fig. 3.26. The denominator of eqn (3.71) is minimal for I,y = 0
and Ic,p therefore attains its maximum signal swing at this point.

2 T T

lcup’ [uul [nA]

Time [us]

Figure 3.25: Generic capacitance current for a sinh output stage, for small signal
swings.

Global linearisation

Application of the sinh output stage has also been proposed in the context
of conventional filter implementations [94]. For conventional filters, the non-
linearity of this transconductance implementation restricts the operating range.
For a typical THD level of -40 dB, a maximal sinusoidal input voltage swing of
0.5 Ur can be applied. The corresponding amplitude of Iy is 1.0 4.
Whereas only 1.0 times the dc bias current can be used in conventional filter
implementations, in TL filters, a theoretically infinite dynamic range is possible.
Equation (3.72) shows that a linear derivative Ioy, is obtained by multiplying
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Figure 3.26: Generic capacitance current for a sinh output stage, for large signal
swings.

Icap by Ioutl + Iout23
CUTjout = lcap (Ioutl + Ioutz) . (3.73)

With respect to Fig. 3.17, for the sinh filter, E(z) equals sinhz = I,yu.
The derivative OE/0x equals an hyperbolic cosine function, coshz. This cosh

function represents the transfer function from Veap to the denominator e, +
Iout, of eqn (3.72).

Example: Analysis of a sinh second-order band-pass filter

The generic sinh output structure, consisting of the compound transistors Q1-
Q12-Q13-G14 and connected to capacitor Ci, is readily recognised in the sinh
filter shown in Fig. 3.27 [10]. To facilitate a state-space analysis of this filter,
a similar output structure, Q2;-Q24, has been connected to Cs. Together, the
currents Ioy and I, represent the state of the filter.

Including the additional circuitry, the dotted components, the sinh filter
comprises nine fundamental TL loops. This number corresponds to the total
number of unknown currents; the output and intermediate currents, denoted in
Fig. 3.27 by finy, Iouty» Joutes Loy s Tog, Ipys Ipys Iy, and I,,. Based on the KCL
equations, all collector currents can be expressed in terms of the input currents
and the nine unknowns. The states Iy and I, are related to the nine unknowns
by Iout = Iout, — Iout, and I = I, — Ip,.

Apart from the two sinh output structures, the filter contains three other
geometric mean TL loops: Q1-Q4, @5-Qs, and Q15-Q1s. The corresponding
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Figure 3.27: A sinh second-order band-pass filter [10].
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five geometric mean TL loop equations are given by:

Iin, Iin, = 413, (3.74a)
Ip,Ip, =4I, (3.74b)
Lout, out, = 415, (3.74¢)
Io,Ig, = 415, (3.74d)
Iy I, = 412, (3.74¢)

where I3, and I, are dc currents.

These five loops and the differential pairs Q¢-Q10 and Q19-Q2 are coupled
by four other fundamental loops. The first loop comprises Q1-Q2-Q5-Qe-C11-
Q12. The second loop, Qg-Q10-Q11-Q11-Q12-Q12, is a little tricky as it contains
both compound transistors, 17 and Q;2, and single NPN transistors, Q¢ and
@10. The slope of the exponential law differs by a factor of two for single
and compound transistors. Consequently, in this context, the NPN and PNP
transistors of J1; and @12 have to be treated as separate transistors, and there-
fore, their collector currents have to be included twice in the TL loop equation.
The third loop, Q12-Q11-Q16-Q15-G@21-Q22, comprises only compound transis-
tors. However, the fourth loop, Q19-Q20-Q21-@21-Q22-Q22, is again a mixture
of compound and single transistors. The four loop equations are respectively
given by:

85, In, Tous, = LI, (3.74f)
AIoI2,, = ToI3,, (3.74)
2o, Iout, = Lol (3.74h)
4no 12, = Inol},, (3.74i)

where Ig, I19, I19 and Iy are given by:

I
19,10 = % IPI + Ipz +IQ1 +IQ2 - '@0 + (Ipl - Ipa + IQI - Icu - IC'x) ’

119’20 = % [Iq1 + ICI2 + (Icz - Icu + qu)] .

The dynamic part of the filter transfer function is contained in the two
expressions for the capacitance currents Ic, and Io,. As indicated by eqns
(3.69)—(3.72), several equivalent equations can be derived. Application of eqn
(3.69), and C; = C> = C, yields:

Ic, =2CUr Louy , (3.75a)
IOUtl
Ic, = QCUTZ”—‘. (3.75b)

I,
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To arrive at the state-space formulation of the filter transfer function, all
variables except I, Iy and I;, have to be eliminated from the set of equations.
To begin with, eqn (3.74h) yields an expression for /g, in terms of I, and Ioy, .
A similar expression can be found for I, using eqns (3.74c), (3.74d) and (3.74e).
Substitution of the expressions for I, , and eqn (3.75b) in (3.74i) yields:

20UTI, = —IoIout- (3.76a)

To obtain the second part of the state-space description, eqns (3.74f), (3.74a),
(3.74b) and (3.74c) are used to obtain equations for I, and I,, in terms of
Iin, , and Loy, ,- The expressions for I, , and I, , along with eqn (3.75a) are
substituted in (3.74g), which yields:

: I
2CUr Iy = —5°Iout + LI, ~ I, (3.76b)

The transfer function H(s) of the sinh filter is easily derived from the state
space description (3.76a) and (3.76b):

—2SCUTIO

H(s) = .
)= ez 1 2s0Ur 5 +

(3.77)

This equation finally reveals that the filter shown in Fig. 3.27 implements a
second-order band-pass transfer function.




Synthesis of translinear
circuits

A structured design methodology for Static TransLinear (STL) circuits has been
available for many years [50]. This chapter basically describes an extended
version of this method, applicable to the design of both STL and Dynamic
TransLinear (DTL) circuits [13,17,18,21,27,28,88]. The high level of similarity
between STL and DTL circuits, which is evident from Chapter 3, is beneficially
exploited. A major advantage resulting from this approach is that the existing
theory and experience on STL circuits can be employed directly for the design
of DTL circuits.

A general characteristic of synthesis methods is that they are divergent,
and the method presented here is no exception. That is, many different circuit
realisations, all implementing the desired electronic function, can result when
following one and the same design trajectory, simply because many different
design choices can be made during each stage of the synthesis procedure. The
resulting realisations will all differ, more or less, with respect to properties
like signal-to-noise ratio, dynamic range, bandwidth, minimum supply voltage,
power consumption and sensitivity to component spread. These specifications
are mainly determined by second-order effects, which are discussed in Chapters
5 and 6. Ideally, a structured synthesis method incorporates these effects in
order to select the most favourable design choice at each stage of the design
trajectory. However, at present only a limited amount of theory is available
concerning this issue. Therefore, the aim of this chapter is to provide a general
synthesis theory, based on ideal transistor models, encompassing all possible
circuit solutions. The next step, the selection of the most suitable design choices,
is mainly beyond the scope of this chapter. Further research in this direction

73
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is required to obtain a completely structured theory on the synthesis of high-
performance STL and DTL circuits.

For clarity, an overview of the current-mode synthesis method is given first,
in Section 4.1, before the various design steps are treated in detail in Sections 4.2
through 4.5. In the literature, next to the method described in this chapter, sev-
eral alternative synthesis methods for DTL circuits have been proposed. These
are briefly reviewed in Section 4.6, and compared with the method presented
in Sections 4.1 through 4.5. An issue closely related to synthesis is class-AB
operation; this topic is discussed in Section 4.7.

4.1 Overview of the synthesis method

A considerable amount of theory on conventional, i.e., static, TransLinear (TL)
circuits already exists in the open literature, ranging from a large number of
circuit realisations to a complete formal analysis and synthesis theory (50]. Since
DTL circuits are basically just a special kind of TL circuit, the aim of the
synthesis method described in detail in Sections 4.2-4.5 is to unite the design
of STL and DTL circuits in one all-encompassing theory. This way, the existing
knowledge on STL circuits becomes directly applicable to DTL circuits, which
obviously constitutes an important advantage.

A similar effort, but limited to the subclass of log-domain filters, is reported
in [14], where Bernoulli’s non-linear differential equation (DE) [95] is used as
the basis of a current-mode synthesis method for DTL circuits. This method is
briefly discussed in Section 4.6.3.

The design trajectory of both STL and DTL circuits is depicted in Fig.
4.1 and demonstrates the high level of similarity between these two classes of
circuits.

The starting point of the synthesis method is an equation. Equations suitable
for implementation by STL circuitry are polynomials P,,, rational functions
P /Pr and nth-order root ({/) functions. Transcendental equations can only
be implemented after approximation by one of the former types of equations.
For DTL circuits, the time derivative operator is added as a primitive function.

The function to be implemented can be described by a dimensionless equa-
tion. That is, all variables, parameters, and even time are represented by di-
mensionless quantities. This dimensionless equation first has to be transformed
into an equation with the proper dimensions for a TL implementation to be pos-
sible. The possible transfer functions and the required signal transformations
are discussed in Section 4.2.

After the appropriate signal transformations, the synthesis of STL circuits
starts with a current-mode multivariable polynomial [50], representing the func-
tion to be implemented. The only difference between this polynomial and the
current-mode DE, which is the starting point of DTL circuit design, is formed
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Figure 4.1: Synthesis path of (a) static and (b) dynamic translinear circuits.

by the time derivatives. To bridge this gap, all time derivatives are eliminated
through the introduction of capacitance currents. This process is described in
Section 4.3. From this point on, the design trajectory is largely identical for STL
and DTL circuits, since both are now described by a current-mode multivariable
polynomial.

The next synthesis step, treated in Section 4.4, is called ‘translinear decom-
position’. During this stage, the polynomial has to be rewritten as a difference
between two products of collector currents. The resulting equation, given by
(3.4), is called a ‘translinear loop equation’.

Once a TL decomposition is found, it has to be projected onto a TL topology.
Additionally, the circuit has to be biased, i.e., the required collector currents
have to be enforced. The topic of hardware implementation is treated in Section
4.5. Once the prototype TL circuit is ready, the next design step, not shown
in Fig. 4.1, is the analysis and elimination or reduction of second-order effects.
This is the topic of Chapter 5.
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4.2 Translinear transfer functions

The starting point of the design of a TL circuit is a dimensionless equation.
Section 4.2.1 discusses the variety of functions suitable for implementation by
STL circuits. Likewise, DTL circuit technology can be used to realise a variety
of DEs, which is discussed in Section 4.2.2. Next to the types of functions,
the dimensions of the signals have to allow for a TL implementation. As the
starting point is a dimensionless equation, several dimension transformations
are required to obtain a ‘translinear equation’. A detailed treatment of the
required transformations is given in Section 4.2.3.

4.2.1 Static transfer functions

Static translinear circuits can be used to realise a wide, yet limited, range of
transfer functions. Not all types of equations can be integrated in a theoretically
exact way by means of TL circuit technology. As TL circuits are described by
products of current, the variety of transfer functions is restricted to algebraic
equations.

More specifically, STL can be used to implement polynomials P,,, rational
functions P,, /P, and n®-order roots ({/ ), each of which can have multiple
inputs. Denoting the output signal by z and the inputs by = and y, some
examples are respectively given by the squaring operation z = z2, the divider
z = r/y, and the geometric mean function z = \/zy.

Approximations

Often the function to be realised is already given by an algebraic equation.
Alternatively, a curve, a set of data points or a transcendental function can
be specified, in which case the first step is to find an approximating algebraic
function.

Several interpolation and approximation methods can be applied, and dif-
ferent accuracy criteria can be used. Often, simple methods, such as described
in [50,96], suffice to find a suitable approximation. More sophisticated methods
of approximation by polynomials and rational functions can be found in the
literature, see, e.g., [97]. A treatment of the various approximation techniques
is beyond the scope of this thesis.

Due to the non-idealities of the bipolar or weak inversion MOS transistor,
which are treated in Chapter 5, the accuracy of TL circuits is limited, as a rule
of thumb to 0.1 to 1%. Consequently, approximations usually do not have to
be better than this.

Of primary importance is the simplicity of the approximating function. The
coefficients in the approximating algebraic function must have a low number of
significant digits, at most two, and preferably one.




4.2 Translinear transfer functions 77

Equally important, because of mismatch, is the sensitivity of the transfer
function with respect to these coefficients. In this context, rational functions are
known to perform better than polynomials. Unless a polynomial is a constant,
it will always diverge rapidly outside the specified input signal range and it can
be difficult to suppress this tendency within the interval [97]; this complies with
a large sensitivity with respect to the coefficient values. Rational functions do
not have this disadvantage.

Rational functions are also the better choice with respect to accuracy [97].
For a given degree of the numerator and denominator polynomials, P,, and P,
the total number of coefficients is larger than for a single polynomial function
having the same degree as P,, or P,.

Multiple solutions

A general characteristic of polynomials and rational functions is that they can
have several roots. Some roots may be physically impossible, but it is quite
possible to have several physically correct roots. For example, before the square
root function z = 1/Z can be implemented by a TL circuit, it has to be converted
into a polynomial, i.e., 22 = z. However, in squaring the original equation,
information is lost. As a result, the new polynomial has two roots: z = £+/7.
To implement only the desired solution, the other root has to be made physically
impossible by means of a suitable biasing arrangement.

Though only one solution can be correct at a certain point in time, it is
possible to switch between different solutions. In principle, this method can be
used to implement piece-wise linear or piece-wise polynomial functions [50, 98,
99]. For example, the absolute value function z = |z| can be implemented this
way. Squaring the equation results in a polynomial, 22 = 2. The two solutions
of the polynomial are z = £z. A biasing arrangement has to be found such that
z=gforx >0and z = —z for £ < 0. A detailed treatment of biasing is given
in Section 4.5.1.

Inverse realisations

A technique which can be used for the implementation of a strictly monotonous
function is an inverse realisation. A TL circuit realising the inverse function
is placed in the feedback path of a high-gain amplifier [98]. Alternatively, it is
sometimes possible to exchange the input and output currents of a TL circuit
[50]. An example of the former technique is the Wilson.current mirror [100,101].
This circuit can be regarded as a simple two-transistor current mirror placed
in the feedback path of an amplifier implemented by a single common-emitter
(CE) stage.

Some care has to be taken when the inverse function F~! is an approxima-
tion. Depending on the function and the accuracy measure used, the accuracy
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of the approximation by F~! can be very different from the accuracy of the
resulting approximation by F'.

4.2.2 Dynamic transfer functions

Polynomials, rational functions and nt-order roots are the primitive functions
of STL circuits. Adding the time derivative operator as a primitive function
results in the class of DTL circuits. Thus, the DTL principle can be used to
implement a wide variety of DEs, based on these primitive functions.

At present, most publications on DTL circuits are concerned with linear
filters. However, application of the DTL principle is not limited to the imple-
mentation of linear filters, i.e., linear DEs. Using the STL principle it is possible
to implement non-linear static transfer functions. Combining these non-linear
static functions with the DTL principle, it is quite obvious that it is equally
possible to realise non-linear DTL circuits, which are described by non-linear
DEs.

In conventional designs, the dynamic and the non-linear part of a non-linear
dynamic function are usually separated at system level, and the non-linear part
is often implemented by STL circuits, see, e.g., [102,103]. Using the DTL
principle, it becomes possible to merge these functions into one functional block,
see, e.g., [22-25], resulting in a high functional density.

Non-linear DTL circuits can be applied to perform non-linear filtering, such
as phase-locked loops [26-28], adaptive filters [104], RMS-DC converters [22,23]
and mixer-filter combinations [24, 25], or for signal generation [19-21].

Linear filter transfer functions

For any filter implementation technique, the first design step is to obtain the
filter transfer function. Depending on the application, the transfer function
is usually determined by frequency-domain specifications, such as magnitude
and phase response, or time-domain specifications, such as step and impulse
response. The resulting transfer function is described by a linear DE, or equiv-
alently, by a set of poles and zeros with a gain factor.

State-space descriptions

Another useful alternative for describing a filter transfer function is the state-
space method. The original nt"-order DE is split up into n first-order DEs. The
general state-space description of a linear filter is expressed by:

# = AZ + Bi, (4.1a)
7= CZ + D&, (4.1b)
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where ¥ = (z1,... ,2,)7 is the state vector, i and § are the input and output
vectors, respectively, and A, B, C and D are matrices.

The state-space description is often represented graphically by means of a
signal-flow graph, which is completely equivalent.

Non-linear dynamic functions
Like linear filters, non-linear dynamic functions can be described by an nth-
order DE or by a set of n first-order DEs, the state-space description, which is

in general given by:

(
(

where F and G are, in general, non-linear vector functions of the states and the
input signals.
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4.2.3 Dimension transformations

In most cases, synthesis of a static or dynamic (transfer) function starts with a
dimensionless equation. That is, all signals and parameters, and even the time
variable in a DE, are dimensionless. However, as soon as the mathematical
domain is left and an electronic implementation has to be found, quantities are
bound to certain dimensions. These dimensions are dictated by the particular
circuit technique employed. In order to find a TL implementation of a cer-
tain equation, transformations have to be applied to the dimensionless equation
to arrive at an equation with the dimensions characteristic for the TL circuit
technique.

A number of fundamental characteristics of TL networks are related to the
required transformations, which are therefore treated explicitly in this section.

Time transformation

A static transfer function, characteristic for STL circuits, comprises only signals
and parameters. In addition, the time variable 7 is present in the dimensionless
DE describing a DTL circuit. As the DE will be autonomous in most cases, 7
will only be present implicitly through the derivative operator.

The dimensionless time variable 7 has to be transformed into the time vari-
able t with its usual dimension of seconds [s]. An important aspect of the time
transformation is that some factors (CUr)*, where k € N, have to be introduced.
Section 3.2 shows that these factors are always present in the DE describing a
DTL circuit. Every term (CUr)* in the DE is accompanied by a derivative
operator d*/dt*, i.e., the power k of the factor CUr equals the order of the
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derivative, and the highest power of the term CUr is equal to the degree n of
the DE. Therefore, k£ € [1,...,n]. This indicates that the terms CUr have to
be brought into the properly dimensioned DE through the time transformation.

The dimension of the term CUr being the coulomb [C], division by a dc
current I,, results in a fraction CUr/I,, having the required dimension [s].
Consequently, for DTL circuits a suitable time transformation from 7 to ¢ is
given by the equivalence relation:

4 _0ord (4.3)
dr I, dt
Note that neither side of eqn (4.3) has dimension.

Several fundamental characteristics of DTL circuits can be derived from eqn
(4.3). First of all, eqn (4.3) shows that time ¢ is inversely proportional to I, .
This explains the excellent linear frequency tuning capabilities of TL filters. It
is interesting to note that ‘bipolar g,,C’ filters, for which the transconductance
gm is implemented by bipolar transistors only, have identical tuning character-
istics. In fact, these bipolar g,,C filters are characterised by the same time
transformation.

Secondly, the frequency behaviour of a TL filter depends on the absolute
temperature through Ur. However, eqn (4.3) shows that this temperature de-
pendency can be cancelled by making I,, PTAT! [1].

Finally, though the variable I,, has the dimension [A], it does not necessarily
have to be a physical current. It is possible to replace I,, by a more complex
expression with the same dimension [A]. For example, in [105], I,, = I, I, /1.

Signal transformation

Translinear circuits are typical examples of current-mode signal processing. In
both STL and DTL circuits, information is carried by currents, whereas voltages
are only of secondary interest. This implies that all time-varying signals in the
dimensionless equation have to be transformed into currents. This is again
accomplished by introducing an equivalence relation. A dimensionless signal z
is transformed into a signal current I, through the equation:

I

g =z 4.4
i (44)

where I,, is a dc current. Again, note that neither side of eqn (4.4) has dimen-
sion.
In eqns (4.3) and (4.4), two different currents, I,, and I,,, are introduced as

both transformations are independent. The dc currents I,, and I,, determine
the absolute current levels of the DTL circuit to be realised. In principle, it is

1Proportional-To- Absolute-Temperature




4.2 Translinear transfer functions 81

possible to choose I,, = I,,. A disadvantage of this choice is the resulting de-
pendence of the absolute signal swings on current I,,, controlling the frequency
characteristics. On the other hand, second-order effects, e.g., finite base cur-
rents, are more difficult to manage when large magnitude differences in current
levels occur in a TL network. Further, it is often possible to restore the sig-
nal levels using a variable gain amplifier with a gain that is proportional to
Ioy /1oy [21].

Parameter transformation

Closely linked to the transformations is electronic controllability. In many sit-
uations, the equation to be realised contains some parameters that influence
its behaviour. Next to the filter cut-off frequency already encountered, some
interesting examples are the gain of an amplifier [44], the Q of a filter [5), the
amplitude of a harmonic oscillation [21] or a bifurcation parameter in a chaotic
DE.

A parameter in a dimensionless equation can either be transformed into a
current, using eqn (4.4), or remain dimensionless. In the first case, the parame-
ter becomes a signal and therefore will be tunable. Note that every interesting
parameter can be made (linearly) current controlled this way. In the latter case,
the parameter ends up as an area scale factor and will be fixed. Hence, dur-
ing the transformation synthesis step the need for the controllability of certain
parameters has to be considered.

Design example: A third-order elliptic low-pass filter

To illustrate the synthesis procedure proposed in this chapter, we consider the
design of a third-order elliptic low-pass filter. A customary method in ana-
logue filter design is to derive the transfer function and state-space description
from a passive LC ladder filter. For this synthesis example, consider the third-
order elliptic low-pass filter depicted in Fig. 4.2 [106]. All circuit elements are
normalised. The cut-off frequency is one. The values of the (normalised) ca-
pacitances and inductance are: ¢; = ¢3 = 1.6876, I3 = 0.5882 and ¢, = 0.8508.
Due to the presence of ¢y, the filter possesses a transmission zero at a frequency
of 1.4137. The pass-band ripple is 1.25 dB. The minimum attenuation is 20.41
dB and is first attained at a frequency of 1.2868.

Three state variables have to be chosen in order to derive a state-space
description of the LC filter. Suitable state variables are the (normalised) ca-
pacitance voltages z; across ¢; and x3 across cz, and the inductance current
z flowing through ls. The output signal y equals 2z3, where the factor two
compensates for the loss due to the unity resistances.
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Figure 4.2: Prototype third-order elliptic LC filter.

Next, a state-space description is found by solving the system of two nodal
equations and one mesh equation for the derivatives &, Z; and £3. This yields:

_a (u-’rl’l +£L‘2)+CQ(U+$1 +Is)
c (e1 + 2¢3)

Gy = 2 . =, (4.5b)

¢ (T2 —x3) —ca (u + 1 + 23)

g = , 4.5
s (4] (Cl + 202) ( C)

) (4.5a)

I

where u is the input signal.

It is convenient to scale zo by a factor (c; + ¢2)/c1. This results in more
coefficients of the A-matrix being equal, which, in turn, yields a simpler circuit
implementation.

The state-space description comprises normalised signals. Application of
eqn (4.4) transforms x;, z2, 3, u and y into the currents I, Ip,, Ip;, Iin
and Iou. It is interesting to note that the normalisation current I,, can be
eliminated completely. Due to the fact that the filter is linear, each additive
term in the state-space description contains only one of the signals x1, z3, z3, u
or y. Hence, in the transformed state-space description, I,, occurs exactly once
in each additive term and can therefore be eliminated. Application of eqn (4.3),
with I, = I,, finally yields a properly dimensioned state-space description:

2.25 CUpl,, = —Io (I, + I, +0.335 I, + L), (4.6a)
0.885 CUrly, = I, (I, — I,), (4.6b)
2.25 CUrl,, = —1,(0.335 I, — I, + I, +0.335 I,), (4.6¢)

where the numerical values of ¢;, ¢2, c3 and ls have been substituted; only three
significant digits are shown. The example is continued on page 88.
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4.3 Definition of capacitance currents

Capacitance currents are the key to DTL circuits. From a current-mode point of
view, they bridge the gap between STL and DTL circuits. Whereas STL transfer
functions are described by multivariable polynomials, in which the variables are
formed by the input and output currents, DTL functions are described by DEs,
containing not only currents, but also time derivatives of currents, as well as
some terms CUr. Obviously, the theory presented in this section is exclusively
related to DTL circuits. Static translinear designs directly continue with the
next step, TL decomposition, described in Section 4.4.

The DTL principle, explained in Section 2.2.2, states that a time deriva-
tive of a current can be implemented by means of a capacitance current. As
illustrated in Fig. 4.1(b), through the introduction of capacitance currents, all
derivatives can be eliminated from the DE, as well as the terms C'Ur, resulting
in a current-mode multivariable polynomial. The variables in this polynomial
are the input, output, and capacitance currents. As both STL and DTL circuits
are now described by a polynomial, from this point on the subsequent synthesis
steps, starting with TL decomposition, are roughly the same for STL and DTL
networks.

The capacitance currents are introduced by appropriately defining them.
Section 4.3.1 gives a general model for a TL capacitance current, based on a
state-space approach, and describes its properties. Obviously, valid capacitance
current definitions have to satisfy these properties. The various classes of capac-
itance current definitions are treated in Sections 4.3.2, 4.3.3 and 4.3.4. These
sections display an increasing degree of complexity in the capacitance current
definitions. Basically, Section 4.3.2 is concerned with log-domain filters, Section
4.3.3 with definitions for TL filter classes like tanh and sinh filters, and Section
4.3.4 with the most general form of capacitance current definitions.

4.3.1 State-space approach

State-space methods form a very powerful and efficient approach in the syn-
thesis of both conventional filters and TL filters [3]. In particular, for DTL
circuits, capacitance current definitions can be derived from the states, which
are represented by the vector of state currents f;. = (Ipyy---, I:)T.

The general state-space description of a linear single-output TL filter, ob-
tained by applying transformations (4.3) and (4.4) to (4.1), is given by:

CUrI, = Al + BI,, (4.72)
Iow = CI; + DI, (4.7b)
where I, = (I,,,...,I,.)T, I, is the vector of input currents, Ioy; the output

current, and A, B, C and D are matrices. Note that the dimension of the
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coeflicients comprising A and B is now [A], whereas the coefficients of C and
D are dimensionless.
The n first-order DEs have to be converted into n ‘state-space polynomials’.

Through application of the DTL principle, the n derivatives CUrI,, shown on
the Left-Hand Side (LHS) of eqn (4.7a), have to be replaced by products of
currents. To this end, n capacitance currents,? denoted by the vector I_;ap =
Ioy,. .. ,IC"]T, have to be defined. As the capacitance currents are used to

eliminate 7, z, in the definition of ﬁap the derivatives present in the state-space
description have to be used. Consequently, I_;ap is a vector function of the states
and the first-order time derivatives of the states,® that is (compare with eqns
(2.7) and (3.24)):

Feap = Teap(L 1) (48)

To eliminate I, from eqn (4.7a), (4.8) has to be solved to yield expressions

for I = T, Z(I_;ap,I;). Substitution of the resulting expressions in eqn (4.7a}
yields a set of state-space polynomials.

Characteristics of the capacitance currents

In a TL filter, a capacitance always forms a closed loop with one or more base-
emitter junctions, as illustrated in Fig. 3.6. Equation (3.24) gives the general
expression for a TL capacitance current. It has two important characteristics.
First, all denominators on the Right-Hand Side (RHS) are collector currents.
This implies that these currents have to be strictly positive. Secondly, the
numerators on the RHS are the time derivatives of the corresponding denomi-
nators. With these two characteristics in mind, eqn (3.24) can be used to define
the capacitance currents.

Analogy with conventional filters

It is interesting to make a comparison between TL and conventional filters re-
garding the introduction of the memory elements. In conventional filters, equa-
tions for the capacitance currents and inductance voltages are used to implement
the derivatives present in the state-space description. The only difference with
respect to TL filters is that the capacitance currents and inductance voltages

2In principle, more than n capacitances can be used to implement an ntP-order filter.
However, this option requires more chip area than absolutely necessary and is therefore not
explicitly considered here.

3The treatment given here is limited to instantaneous companding TL filters. In syllabic
companding TL filters, see Section A.1, the gain control signals represent additional states,
which have to be included at the RHS of eqn (4.8).
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are now linear functions of the time derivatives of the states. As a consequence,
elimination of the derivatives from the state-space description yields linear ex-
pressions. These KCL and KVL equations can be implemented directly by
connecting linear circuit elements, possibly with the aid of some amplifiers.

State-space transformations

State-space descriptions are not unique. One single DE can be represented
by infinitely many different, yet equivalent, state-space descriptions. From a
given state-space description, alternative descriptions are obtained through the
application of state-space transformations. In general, both linear and non-
linear transformations can be used, which are represented by:

I,=L(%), (4.9)

where ]_';, is the new state vector. This vector function can be used to rewrite

eqns (4.72) and (4.7b) in terms of fy and T, y- An important condition is that
the Jacobian of the vector function fy is non-singular at all times.

Through the application of state-space transformations, it is possible to write
each capacitance current as a function of only one state current and its first-
order derivative, i.e.:

Ic, = Ick(ka,jyk) , kell,... . n]. (4.10)

In particular, it is possible to make each capacitance current dependent on one
single collector current I, . In other words, all possible capacitance current defi-
nitions can be mapped onto the log-domain output structure. This is illustrated
symbolically in Fig. 4.3. As the log-domain output structure is the most simple
one, it is convenient to refer all possible capacitance current definitions to this
structure. Hence, in general, the n capacitance currents can be expressed by:

Ic, = CkUT%, ke [1, NN ,n]. (4.11)
Y
Note that the capacitance value Cj, denotes an additional degree of freedom in
the definition.

An important consequence of this approach is that the state-space descrip-
tion in terms of I_;, is to a certain extent related directly to a circuit topology.
Likewise, this approach is used habitually in the design process of conventional
filters, see, e.g., [80,107]. Its advantages are that it enhances the designability
and, even more importantly, the sensitivity and dynamic range properties of
the particular state-space description are transferred, to a certain extent, to the
final filter realisation.
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ll)’k

Figure 4.3: Using (non-linear) state-space transformations, all possible capacitance
current definitions can be mapped onto the log-domain output structure.

4.3.2 Linear transformations

Linear transformations form an important class of state-space transformations.
The new state vector I is now a linear function of the previous state vector I:

I, =TI, (4.12)

where T is a non-singular matrix. The well-known process of scaling the state
variables complies with a matrix T having only non-zero coefficients at its di-
agonal.

The state-space description, eqns (4.7a) and (4.7b), can be rewritten as:

CUrl, = A'[, + B'I, (4.13a)
Iow = C'I, + DI,, (4.13b)
where
A’ = T7AT,
B =T 'B,
C' =CT.

Referring to the log-domain output structure, shown in Fig. 3.14, the capac-
itance currents are now described by eqn (4.11).
Strictly positive state currents

The state currents 1:; have to be strictly positive for eqn (4.11) to be a valid
capacitance current definition. Assuming class-A operation, this implies that
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appropriate dc bias currents have to be introduced. This can be accomplished
easily. In this thesis, dc bias currents are considered to be a special type of
input current to the circuit. Therefore, next to the actual input current [, the
vector I-; contains the dc current Iy.. That is:

Iy = [}d‘j . (4.14)

Now, choosing appropriate values for the coefficients in the second column of
B’ in eqn (4.13a) results in strictly positive currents fy for a given input signal
range of Ij,.

A different but equivalent method is to use I, = [Iin] and to include the dc
bias currents I, in the capacitance current definitions:

I
Io, = CUp——2 | 4,
Cr & TIde_*_ka (4.15)

This approach can be more suitable when non-linear DEs have to be realised.

Sensitivity

Different state-space descriptions can represent one and the same transfer func-
tion, and therefore, there seems to be no particular reason to favour one descrip-
tion. However, in electronic filter design, it is customary to use a one-to-one
mapping of the state-space description onto a certain filter topology. This ap-
proach enhances the designability, especially for higher-order filters.

Using this approach, the coefficients in the matrices A, B and C are mapped
directly onto component values in the final filter circuit. As a consequence, the
sensitivity properties of the filter transfer function with respect to small devi-
ations of the matrix coefficients are retained in the sensitivities with respect
to mismatches of the component values. Hence, an electronic filter implemen-
tation preferably originates from a state-space description with low sensitivity
characteristics. Note that the sensitivity properties are not always completely
retained, but practice shows that the sensitivities to the component values are
generally low [80,81,107]. Further, it is likely that the sensitivity optimum is
close to the DR optimal network [80].

Another important aspect of state-space realisations is the sparsity of the
matrix A. Eventually, the coefficients are implemented by connections in the
circuit. A matrix A without zero entries implies a fully-connected circuit, which
is undesirable as it results in a structure too large and difficult to implement on
a chip [80]. Therefore a sparse matrix is often preferable.
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Simulation of LC ladder filters

An often used method is to derive the state-space description from a doubly
terminated LC ladder filter. Figure 4.2 shows an example of an LC ladder
filter. It is well-known that at the so-called attenuation zeros the first-order
sensitivity of the transfer function of these filters to their component values
is zero [108]. Choosing the inductance currents and capacitance voltages to
represent the state of the filter, a state-space description with low sensitivity
properties is obtained. Active simulation of this state-space description yields a
low sensitivity filter implementation. In addition, the A-matrix is quite sparse
as it is tri-diagonal. For these reasons, LC ladder filters have been used as
prototypes in the design of many TL filter circuits [12,89,109].

Design example: A third-order elliptic low-pass filter

To illustrate the introduction of capacitance currents, we continue the design
example from page 81. Equations (4.6a)—~(4.6¢), describing the third-order ellip-
tic filter, have to be transformed into polynomials by defining three capacitance
currents I¢,, Ic, and I¢,. Different types of capacitance current expressions can
be used to define I, through I¢,, corresponding to different TL filter classes, as
explained in Section 3.3. The final network is at its most simple if a log-domain
filter is designed. In practice, log-domain filters are probably the most relevant
category of TL filters, and most TL filters described in the literature are in fact
log-domain filters. For these reasons, we choose to implement the elliptic filter
by a log-domain circuit.

Since the LC filter has a low-pass characteristic, the state currents Iy, , Iy,
and I, acquire a dc component when a dc current — Iy is added to ;. These
dc components I, |dc, Iz, |de and Ip4|ac are given by:

T4 c1lac

leldc = Iza ldC = ?7 IzZldc = m (416)

The state currents being strictly positive, eqn (4.11) can be used directly to
define I¢,~Ic,. Suitable definitions are:

I

Ic, = 2.25 CUTI’”—‘, (4.17a)
I,

Io, =0.885 CUr =, (4.17b)
T2
I,

Ic, = 225 CUr==. (4.17¢)

I,
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The capacitance currents implement the derivatives le, jZ2 and jx3~ Substitu-
tion of eqns (4.17) in (4.6) yields a set of three TL polynomials:

(Io + IC’l) le =-1I, (I.'Zz + %Izs + Iin) ’ (418&)
Igodyy = 1o (Iyy — Ipy), (4.18b)
(o + 1)) Ioy = Iy (A, — Ly + 1E), (4.18¢)

where 0.335 has been approximated by 3. Equations (4.18a) and (4.18c) demon-
strate that the linear loss, due to the termination resistances shown in Fig. 4.2,
can be implemented by a current I, in parallel with capacitances C; and Cs.

The next synthesis step, translinear function decomposition, is described on
page 106.

4.3.3 Single-state non-linear transformations

Next to the log-domain output structure, more complex output structures can
be used to define the capacitance currents. Examples are the tanh and sinh
output stages shown in Figs 3.19 and 3.23. With respect to the log-domain out-
put structure, these choices comply with non-linear state-space transformations,
described by:

ka = ka(I-Tk) . (419)

Note that in comparison with eqn (4.9), (4.19) does not represent the most
general class of non-linear state-space transformations. Hence, the class of ex-
ponential state-space filters introduced in [4] can be generalised even further, as
discussed in Section 4.3.4.

- In principle, eqn (4.19) can be used to rewrite the state-space description
terms of I:, However, in practice, this does not seem to be very useful as the
resulting set of equations is further away from the eventual implementation. In
practice, it is more likely that a new DTL output structure is derived in the first
instance from a transistor structure than from the corresponding mathematical
transformation.

Finally, it is interesting to note that the non-linear state-space transforma-
tions do not have an analogy for conventional filter implementations. In the
latter class of filters, non-linear components are not available to implement the
non-linear equations, which renders non-linear transformations useless.

Example: Non-linear transformation for tanh filters

To illustrate the non-linear state-space transformation resulting from a non-log-
domain output structure, consider the application of a tanh output structure to
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implement the derivative Iout in the integrator equation (3.36). The tanh sub-
circuit can be mapped onto the log-domain structure having a collector current
I, defined by:

I de + Iout
Idc — Lout
Note that I, is strictly positive for [Iout| < Igc. Thus, eqn (3.36) can be rewritten
as:

I, =1 (4.20)

Lo (Io + 1)
214c .
Clearly, the RHS of egn (4.21) is non-linear.

CUrl, = (4.21)

4.3.4 General non-linear transformations

The non-linear transformations treated in Section 4.3.3 are characterised by
the fact that each new state variable I, is a function of exactly one previous
state variable I, , see eqn (4.19). However, eqn (4.9) shows that in general
each new state variable can depend on all previous state variables. This is true
for the linear transformations treated in Section 4.3.2, but it is equally valid
for non-linear state-space transformations. These ‘generalised’ non-linear state-
space transformations result in a class of TL filters more general than the class
proposed in {4,10].

As an example, for a second-order circuit characterised by the states I, and
I,.,, two possible capacitance current definitions, denoted by Ic, and Ic,, are
given by:

Ic, =CUr (ﬁ—l - %&) ) (4.22a)
z1 2

I, = CUr (—?—1 + %3) . (4.22b)
T 2

A condition for these definitions to be valid is that I,, and I, are strictly
positive, which can be assured using the methods described in Section 4.3.2.
Figure 4.4 shows possible implementations of eqns (4.22a) and (4.22b).

With respect to the log-domain output structure, eqns (4.22a) and (4.22b)
comply with non-linear state-space transformations. The transformed state-
space is represented by the states I, and I,,, given by:

I

I, = I,52, (4.23a)
L.
I, = lle (4.23b)

Y2 I
o
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() (b)

Figure 4.4: Two capacitance current definitions based on general non-linear state-
space transformations.

where I, is a dc bias current.

It is interesting to note that the non-linear transformations (4.23a) and
(4.23b), in the linear domain of the state currents, are equivalent to lnear
transformations in the non-linear domain of the capacitance currents. Suppose
the capacitance currents I, and If, are defined by eqn (4.11), i.e., based on
the log-domain output stage:

It = CUT%—‘, (4.24a)
! j132

I, = CUr 7. (4.24b)
z2

Then, eqns (4.22a) and (4.22b) can be written as linear combinations of these
currents:

Ie, = Ip, — I, (4.25a)
To, = Ib, + 1L, (4.25b)

A design example of a second-order TL filter based on eqns (4.22a) and
(4.22b) is described in Section A.3.

4.4 Translinear function decomposition

For the STL design trajectory, shown in Fig. 4.1(a), the application of signal
transformations has resulted in a current-mode multivariable polynomial. Sim-
ilarly, for the DTL design trajectory, shown in Fig. 4.1(b), the introduction of
capacitance currents has ‘transformed’ the DE into a current-mode multivari-
able polynomial. Consequently, the remaining part of the synthesis method is
now basically identical for both STL and DTL circuits.

The next synthesis step to be performed is called ‘translinear decomposition’.
That is, the polynomial has to be mapped onto a TL loop equation, described by
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eqn (3.4). This step is fundamentally non-linear, and therefore not the easiest
part of the design trajectory.

Translinear decompositions can be divided into two main groups: non-
parametric and parametric TL decompositions. In the former group, a polyno-
mial is mapped onto a single TL loop equation. Non-parametric decompositions
are discussed in Section 4.4.1 and an algorithm for the automatic generation of
non-parametric decompositions is given in Section 4.4.2.

In the case of a parametric decomposition, the polynomial is mapped onto a
set of two or more TL loop equations. This class of TL decompositions is dealt
with in Section 4.4.3. An algorithm for the automatic generation of parametric
decompositions unfortunately does not yet exist.

4.4.1 Non-parametric decomposition

Each STL or DTL circuit can be described by a current-mode multivariable
polynomial. The variables comprising this polynomial are the input currents,
the output current and, for DTL circuits only, the capacitance currents. A poly-
nomial describing a TL circuit has a homogeneous degree r, i.e. the dimension
of all the terms of the equation is [A7], and is given by [110]:

Prlleys--ode) = D @, .. I =0, (4.26)
Jretin=r
where I, j € [1,...,n], are the n variables and a;, . j, are the coefficients.

Translinear loop equation

In order to implement a multivariable polynomial by a TL circuit, a valid TL de-
composition has to be found first. That is, the polynomial has to be rewritten as
a single TL loop equation (non-parametric decomposition) or as a set of TL loop
equations (parametric decomposition). For non-parametric decompositions, the
TL loop equation is generally described by:

(cl,lIzl +---F cl,nI:cn) s (C2r’—1,lIz1 +---+ CZr’—l,nIa:,.)
- (02,112:1 +--+ c2,nIa:n) .. (CZT',II:C] + -+ CZ'r’,nIzn) = 0, (427)

where ¢; j, ¢ € [1,...,7'], j €[1,...,n], are the coefficients, and 7' is the degree
of the TL loop equation.

As an example of a non-parametric decomposition, consider the current
squaring function (3.12). To implement this equation, a suitable TL decom-
position has to be derived. A possible non-parametric decomposition is given
by eqn (3.11).

The TL loop equation (4.27) does not have to be exactly identical to the
polynomial (4.26). The crucial point is that the functionality of the polynomial
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is retained in the TL loop equation. For example, multiplying eqn (4.26) by a
number A(# 0) does not alter the functionality.

Although in most practical situations, the degree ' of the TL loop equa-
tion (4.27) is identical to the degree r of the polynomial (4.26), this is not a
general characteristic of (4.27). It is possible to multiply (4.26) by a current-
mode polynomial P, _, of homogeneous degree r’ — r > 0 before the actual
TL decomposition is performed. As long as P,_, = 0 does not introduce any
new physical solutions, the behaviour of the previous polynomial is exactly re-
tained. An example is found in Section 8.1.3, where the current mirror function
Iin = Loy is implemented by Iqclin = Iaclous- A TL decomposition of the latter
equation is given by eqn (8.3).

Positive collector currents

The linear terms between brackets in eqn (4.27) represent the collector currents
of the transistors comprising the TL loop. Consequently, these factors have to
remain strictly positive under all operating conditions. It is an important part
of the TL decomposition process to guarantee this.

The factors in eqn (4.27) are linear combinations of the input, output and
capacitance currents. As the function to be implemented and the input signal
range are assumed to be known, it is straightforward to check whether a linear
combination of input, output and capacitance currents is strictly positive. This
is easiest for STL circuits, where the output current is determined only by the
instantaneous value of the input currents. Therefore, it is sufficient to specify
only the ranges of the input currents.

For DTL circuits, the situation is more complicated due to the frequency-
dependency of the dynamic (transfer) function. Not only the instantaneous
value of the input signals, but also the derivatives of the input signals come into
play as they determine the capacitance currents. Therefore, the wave form and
frequency range have to be specified as well. '

To calculate the output current, the DE has to be solved. This is simple
for filters, which are described by linear DEs. However, non-linear DEs will
often require a numerical approach as there is no general method for solving a
non-linear DE analytically.

The odds for finding a decomposition

For TL decomposition, an important question is whether a non-parametric de-
composition can always be found for any polynomial with an arbitrary degree r
and an arbitrary number of independent variables. The answer follows from a
comparison of the degrees of freedom, i.e. the number of coefficients, available
in the polynomial to be implemented and the TL loop equation onto which the
polynomial is to be mapped.
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An rtP-order TL loop contains 2r collector currents, each comprising a linear
combination of v input, output and capacitance currents. Consequently, the
number of coefficients in a TL loop equation, denoted by Fry, is given by:

Frp = 2rv. (4.28)

For a general polynomial of homogeneous degree r in v variables, the number
of coefficients Fp can be found from a recursive formula:

1 fr=0o0orv=1,

Fplv,r) = {E:=0 Fp(v—1,7r—1i)  otherwise. (4.29)
A comparison between the number of degrees of freedom can be made by
calculating the ratio Frp(v,r)/Fp(v,r). This results in the plots depicted in
Fig. 4.5, where the number of variables v is plotted on the z-axis and the degree
r is used as a parameter. The figure clearly shows that for both increasing v
and r, Frz is much smaller than Fp. Note that the condition of strictly positive
collector currents is not yet accounted for in this simplified comparison.

0.1

B /Fp

0.01

0.001

# variables

Figure 4.5: Comparison of the degrees of freedom in a polynomial and in a translin-
ear loop equation.

The important conclusion that can be derived from Fig. 4.5 is that non-
parametric decompositions are not likely to exist for polynomials of 7 > 3 and
v > 4. This is illustrated by the fact that in the literature on STL circuits, the
TL loop equations encountered are almost always second-order, see e.g. [50,61].
For polynomials with 7 > 3 and v > 4, parametric decompositions have to be
used in most cases. A parametric TL decomposition consists of a set of TL loop
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equations. As the number of coefficients in a set of equations is larger than for
a single TL loop equation, a parametric decomposition can always be found.

The facts described above can be illustrated by comparing the number of
TL loop equations that can be found for two different polynomials. The first
polynomial describes a TL multiplier:

IoutIo - Iim Iinz = O; (430)

where I, is a dc current, iy, and Iin, are the input currents, and Ioy is the
output current. Equation (4.30) has a degree of two and contains four variables.

The second function is an approximation of the sine function, which can be
used to design a TL sine shaper [43]:

Low (I3 + I2) — (I} - I3) =0, (4.31)

where I,, I, and I, denote, respectively, a dc current, the input current and
the output current. Equation (4.31) has a degree of three and comprises three
different variables.

If the input signal range of the multiplier is given by [fin,, fin,| < Io, and the
coefficients ¢; ; in the TL loop equation (4.27) are chosen from the set [-1,0,1],
nine non-parametric decompositions can be found. These are?:

l-z-y+2)1-(1-2)(1—y), (4.32)
(l-z-—y+2)1+z)—-(1-z2)(1+z-y—2), (4.33)
l-z-y+2)0+p)-1-z+y-2){(1-19), (4.34)
(l-z-y+2)l+z+y+2)-1-z+y—-2)1+z—-y—2), (4.35)
1-2)1+y)-Q-z+y-—2)1, (4.36)
Q-z2)l+z+y+2)—(1-z+y—2)(1+x), (4.37)
I-9)(1+2z)—11+z—y—z), {4.38)
I-y)(d+z+y+2)—1+y)(1+z—y-2), (4.39)

{l+z+y+2)— 1+y)(1+x), (4.40)

where 1, z, y and z represent the currents I, fin,, fin, and Iy, normalised
with respect to I,.

For eqn (4.31), with |L,| < I,, choosing the coefficients again from the set
[—1,0, 1) now results in only one valid non-parametric decomposition:

1+2)?Q-z-2)-(1-2)*(1+z+2), (4.41)

where 1, z and z are the normalised currents.

4The algorithm described in Section 4.4.2 was used to generate these non-parametric de-
compositions.
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Allowing a larger set of coefficients, e.g., [-6,...,6], results in only two
additional decompositions:

(l-z-2)2-2)3-2)—-(1-2)1(6 — 62 — 52), (4.42)
(1+z+2)2+z)(3+2)— (1+2)1(6 + 6z + 52). (4.43)
In contrast, using the set [—35,...,5] of coefficient values for the multiplier al-

ready results in a total of 1300 different non-parametric decompositions.

These numbers clearly illustrate that although the degree is only one higher,
it is much more difficult to find non-parametric decompositions for eqn (4.31)
than for (4.30). Hence, it can be concluded that parametric decompositions are
an absolute necessity.

4.4.2 An algorithm for non-parametric decomposition

Translinear decomposition is a fundamentally non-linear process and therefore
not the easiest part of the design trajectory. For polynomials having a high
degree and comprising a large number of independent variables in particular, it
is rather difficult to derive valid TL decompositions heuristically. Automation
of the TL decomposition process is the preferable solution for overcoming this
problem. Unfortunately, an integral solution does not yet exist. However, as a
start, this section describes an algorithm for the generation of non-parametric
decompositions. An algorithm for the generation of parametric decompositions
still remains to be developed.

In [50], considerable attention is paid to TL decomposition. In particular,
some methods for finding TL decompositions are described. These are ‘ratio
manipulation’ and ‘differential forms’ for non-parametric decompositions, and
‘continued products’, ‘partial fractions’ and ‘continued fractions’ for parametric
decompositions. However, these methods do not provide a fundamental solution
to the TL decomposition problem. They are either not generally applicable, or
cannot generate all possible TL decompositions. Therefore, a different approach
is used in this section.

Coefficients of the translinear loop equation

Ultimately, the coefficients ¢; ; in the TL loop equation (4.27) are implemented
by transistor scaling factors, and possibly by scaling the capacitance values
in DTL circuits. Matching of the transistors is an important aspect of TL
circuits, as discussed in Section 5.6. In practical IC processes, relatively good
matching can only be obtained when the transistors are scaled by integer values.
Consequently, as accuracy is an important specification in most analogue designs
and on-chip trimming is hardly ever available, the coefficients c; ; are restricted
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to numbers in Z.> This restriction does not completely exclude the use of
irrational coefficients. For example, a current I V2= v2I4c can be generated
from a TL circuit implementing I v2lye = 21414 (111]. The current I 2 has to
be regarded as an additional independent variable in the decomposition process.
In fact, as a second TL loop is required to generate I 2, this decomposition is
a parametric decomposition, where I, is an intermediate current.

In principle, all values in Z are allowed for the coefficients ¢; ;. Large num-
bers, however, result in large scaling factors and hence a large chip area. A
practical solution is to restrict the coefficient values to the set [=N,...,N],
where N is a maximum scaling factor. In practice, the value of N is chosen
well below 10. Most TL decompositions found in the literature, see, e.g., [50],
comply with this condition.

Due to the limited set of coefficient values, the number of possible non-
parametric TL decompositions is finite. Consequently, it becomes possible to
develop an algorithm that can generate all of these TL decompositions.

Efficiency of the algorithm

An apparently simple algorithm would be to test each combination of coeffi-
cients for the TL loop equation (4.27) within the set [~N,...,N]. Then a
check should be made as to whether the resulting polynomial equals the origi-
nal polynomial to be implemented, and whether all collector currents are strictly
positive. However, even for a low value of V the number of combinations is huge
and the required computation time unrealistic. For example, for 7 = 3, v = 3
and N =5, 5.6- 10'® combinations have to be tested. Consequently, an efficient
algorithm is required.

Overview of the developed algorithm

An algorithm has been developed that efficiently explores the finite space of po-
tential solutions. The algorithm beneficially exploits important characteristics
of the general TL loop equation (4.27). For clarity, a short overview is given
before going into detail of the algorithm; this is illustrated in Fig. 4.6. The
first characteristic of eqn (4.27) is the fact that the collector currents, which
are linear combinations of the input and output currents, are strictly positive.
This is used in the first stage of the algorithm to generate a set 7; of positive
collector currents. Some elements of 7; cannot be part of a non-parametric de-
composition. This is verified for each element using a division procedure, which
is based on the fact that eqn (4.27) comprises two products of linear factors.
The procedure results in a set 73, which is a subset of 7;. Next, a recursive
division procedure is applied to generate combinations of 2r elements from T2,

5Coefficients in Q are transformed to Z through multiplication by an appropriate integer
number.
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resulting in potential TL loop equations. This procedure is again based on the
specific form of eqn (4.27). The recursive division procedure cannot exclude
all erroneous combinations. Therefore, a final check is required to verify the
consistency of the potential TL loop equations generated by the procedure.

Generate positive Reduce T,; divide Generate combina- Check consistency
—>» P, by elements |—»! tions of 2r elements |—» o
currents = T from T, = T, T, from T, of the combinations

Figure 4.6: Overview of the non-parametric translinear decomposition algorithm.

Notation

A shorter notation is introduced to describe the decomposition algorithm. The
polynomial to be decomposed is denoted by P,. The other polynomials encoun-
tered are, in general, described by:

Pr.as (4.44)

where r is the degree of the polynomial P and different alphanumeric indices a
are used to distinguish different polynomials.

Positive collector currents

It is favourable to use the characteristic of strictly positive collector currents first
as this check has to be performed in any imaginable algorithm. Therefore, this
check comprises the first stage of the developed algorithm and results in a set of
positive collector currents, denoted by 77. As discussed in Section 4.4.1, gener-
ation of strictly positive linear combinations of the variables is straightforward.
The number of coefficient combinations for a single collector current is much
smaller than for a complete TL loop equation. Consequently, the computation
time of this part of the algorithm is short.

Division by one collector current

The second stage of the algorithm removes all the collector currents from 7y
which certainly cannot be part of a non-parametric decomposition. The result
is a set 73 € 71. To this end, another characteristic of the TL loop equation is
exploited.
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Suppose that the polynomial P, comprising n independent variables I 1,
7 €1[1,...,n], has a valid TL decomposition given by® (compare with eqn (4.27)):

APr=MP11---Prar-1 = XPi2... Prar, (4.45)

where A, A\; and X, are integers, and A; and A; have the same sign. The first
product term on the RHS of eqn (4.45) represents the clockwise connected tran-
sistors; the last product represents the counter-clockwise connected transistors.
The (linear) polynomials Py ;, where ¢ € [1,...,2r], are members of the set 7;
and represent the collector currents.

Then, division of eqn (4.45) by P11 and expansion with respect to one of
the variables I, yields:

AP, Pi2...Prar
=MP13... Prop.1 — Ag———7 4.46
Pia 1P13 1,2r—1 — A2 Pia (4.46)
’PTT
=P._ 2 4.47
PT l,q + rplyl 9 ( )

where P,_; 4 and P, are the quotient (‘q’) and the remainder (‘r’) terms re-
sulting from the division of P, by P, ;.

Hence, owing to the form of the second product term on the RHS of eqn
(4.46), the remainder P, , in (4.47), resulting from an elaboration of the division,
can be factored into r linear factors. This fact provides an interesting criterion
for a selection procedure, illustrated in Fig. 4.7. The polynomial P, is divided
by each of the collector currents comprising 7;. If the remainder of a particular
division does not consist of r linear factors, that collector current cannot be a
part of a non-parametric decomposition. Hence, that particular collector current
is not added to 73. Obviously, 72 C 7;.

An example can illustrate the above procedure. Consider the polynomial
(eqn (4.31)):

P3 = 131 + Iiilout - I(?Iin + I(?Ioub (4.48)

The currents (I, — fin) and (I, — Loyt ) are two elements of 7;. Division of P
by (I, — Iou:) and expansion with respect to I, yields:

P
3 = Io (Iout - Iin) - Iout (Im - Iout)
Io - Iout

Ii?q + IiQnIOUt — Iinlgut + Igut

Io - Iout

(4.49)

61t is assumed that the degree of the TL loop equation is equal to the degree of the
polynomial.
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'

Divide P, by
P ;eT

emainder compr.
r linear factors?

P

yes

Figure 4.7: Generation of the set 73 from 71.

Since the remainder term is not factorable, (I, — I,y ) cannot be part of a valid
non-parametric decomposition, i.e., (I ~ Ious) € T2

On the contrary, division of P3 by (I, — I;n) and expansion with respect to
I, yields:

P3 _ 2112;1-[0ut

Io_Iin - Io—Iin.

The remainder Iy, - [in - Iout consists of three linear factors. Hence, (I, —Iin) € 72.

For eqn (4.48) with N =1, 7; contains 9 elements: {(I, — fin — Lout), (Jo —

Iin), (Io - Iin + Iout,), (Io - Iout)a IO: (Io + Iout)y (Io + Iin - out)a (Io + Iin)7 (Io +

Lin + Iout)}. The second stage of the algorithm results in the set 75 containing

5 elements: {(I, — Lin — Iout)s (Io — Iin)s Lo, (o + Lin), (Io + Lin + Tout)}. The

reduction of the set of possible collector currents considerably speeds up the
remaining part of the algorithm.

Io (Iout - in) - Iin (I, - Iout) + (450)

Division by two collector currents

In the next stage of the decomposition algorithm, the polynomial P; is divided
by two collector currents from the set 7z.

Suppose that the polynomial P, has a valid TL decomposition given by eqn
(4.45). Division by two collector currents from oppositely connected transistors
then yields:

/\Pr _ "17)1,3 e Pl,Z'r—l A2P1,4 SN pl,?r

P1,1P1,2 P2 Pia
Pr-1n + Pr 12
b
Pia P2

where Pr_s 4 is the quotient term, and P,_; 1 and P,_; 2 are two remainder
terms. The elaboration of the division described by eqn (4.51) is accomplished

(4.51)

=Prlag+ (4.52)
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by partial fraction expansion with respect to a variable I,; that the two currents
P11 and P2 have in common. If no common variable exists, two different
variables can be used to perform the expansion.

If P11 and P; o are indeed part of a valid TL decomposition, both Pro1r1
and P,_; r2 can be factored into r — 1 first-order factors.

Furthermore, the two remainders in eqn (4.52) are polynomials of order r—1.
There is no remainder term of order r. This attribute provides another impor-
tant selection criterion, which is applied to each combination of two elements
from 7;. If a polynomial remainder term of order r does result from the di-
vision of P, by two currents Py ;, P12 € Ta, it can be concluded that P;
and Py ; cannot (together) form two oppositely connected transistors of a valid
non-parametric decomposition.

As an example, this characteristic is demonstrated for eqn (4.48). Division
of Pz by (I, +Iin)(Io ~ Iin — Iout), two currents in 73, and expansion with respect
to I,, yields:

Ps _

(Io + Iin) (Io —Iin ~ out) B
Igut (I'm + Iout) _ 2Ii2nI0ut

(Io - Iin - Iout) (2J}n + Iout) (Io + I‘m) (2Iin + Iout) -

Iout, - Iin +

(4.53)

Equation (4.53) contains third-order remainders. Hence, (I, + I;;) cannot be
combined with (I, — fin — Iout) to form a part of a TL decomposition.

Conversely, division of P3 by another pair of currents, (Io+Iin) (o +Iin+Iout),
and expansion with respect to I,,, yields:

Ps _
(Io + Iin) (Io + Iin + Iout) -

Iout - Ii

+ 2Ii2n _ Iout (Iin + Iout) (4 54)
Io + Iin Io + Iin + Iout . .

Equation (4.54) does not contain a third-order remainder. Therefore, the algo-
rithm can continue with this pair of currents, as described in the next section.

Recursive division by two collector currents

The division by two collector currents can be applied recursively. This is illus-
trated in Fig. 4.8. The division procedure can be applied to the two remainder
terms Pr_1 1 and Pr_1 ;2 in eqn (4.52). Note that the two fractions on the RHS
of eqn (4.52) are similar to the fraction on the RHS of (4.47). However, the
degree of P,_1 ;1 and P,_1 2 is lower than the degree of Prr. As the two remain-
ders, Py_1,1 and Pr_y r2, can be treated separately, the problem is effectively
split up into two identical sub-problems.




102 Synthesis of translinear circuits

Pr-3.ql pr-2.r4

Py

Pon P+ @ Pl Py --m--- P>+ P - Py
/ = P ar

P>+ (P Py )

Py,

1 Poia >+ Py P REPop —---= Pra = 5Py

Pr—Z.q j > P0,2r-l

Figure 4.8: Recursive division procedure.

Suppose that the polynomial P, has a valid TL decomposition given by eqn
(4.45). Then, division of P,_; 1 by two currents P13, P14 € T3 yields:

Pr-l,rl Pr—2,r1 + Pr~2,r4
3
Pi1P1a P11 P14

where P;_3 41 is the quotient, and Pr_2 1 and Pr_3 4 are the two remainders.
Both remainders can be factored into r — 2 linear factors. Likewise, division of
Pr—1,2 by two currents P o and P, 3 yields:

= Prosa + (4.552)

Pro1.r2 Pr_a2 + Proors
b
P12P13 P12 P13

where Pr_3 41 is the quotient, and P;_3 1 and Pr_2 4 are the two remainders.

Equations (4.55a) and (4.55b) do not contain a remainder term of order r—1.
This is an important attribute, which is used to check whether P; 3 and/or P; 4
can be part of a valid TL decomposition in combination with P;; and P s.

Next, the division procedure is applied to the remainders Pr_3 11 and Pr_2 12,
which are divided by Py 1 - P1 g and Py 2 - P15, respectively.

During each recursive cycle of the algorithm, the degree of the two remain-
ders is decreased by one. Ultimately, during the 7" cycle of the algorithm,
two zero-degree polynomials, i.e. two integers, remain. To check whether the
resulting set of 2r collector currents comprises a valid TL decomposition one
final check has to be performed.

First, however, the recursive division procedure is illustrated by means of
the eqn (4.48). Division of (4.48) by P11 = (I, — Iin) and Py = (I, + Iin)
yields:

(4.55b)

=Pr_3q2+

2P3 2IinIout 2Iinlout
= 2 (Lout — fin) + — . 4.56
P11P12 (out n) In—Ly I,+1p (4.56)
Clearly, the two remainders Py ;; = 2IinIoue and P2 ro = —2Li 1,y are second-

order. The quotient is Py q = 2(Jout — fin)-
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Next, division of Py ;1 by P11 and P14 = (I, + fin), and division of P x2 by
P12 and Py 3 = (I, — Lin), yields:

P2,r1 _ Iout Iout

= - , 4.57a
PiiPra Io—Ln Lo+ 1Iin ( )
P2 r2 Iout Iout
: = - . 4.57b
PraPrs  L+In I —In (4.570)
The remainders Py r1 = Tout, Pira = —lout, P12 = Joue and Py 3 = — Iy are

first-order. The quotients are Py q1 = 0 and Py q2 = 0.
Next, division of P11 by P11 and P16 = (Io — lin — Jout), and division of
Pl,r2 by P1,2 and ,P1,5 = (Io + Iin + Iout)y yields:

Pirl -1 1
PiPe  Io—Tm T I — I Iow’ (4.58a)
Preo 1 ! (4.58b)

P2P5 N Io + Iin B Io + I‘m + Iout '

The remainders Py r1, Po.r2, Pors and Pp e equal -1, 1, -1, 1, respectively.

Final check

The steps of the algorithm described up to now result in one or more sets of
2r collector currents. Each set is a potential non-parametric TL decomposition.
One final check is required to verify whether a certain set of 2r currents forms a
TL decomposition. During the recursive procedure, illustrated in Fig. 4.8, some
information is ‘lost’ for each cycle of the algorithm. Namely, the quotient poly-
nomials and some of the remainder polynomials are not used during subsequent
cycles of the algorithm. Therefore, the final check is required to verify whether
these disregarded polynomials are consistent with the corresponding set of 2r
currents.

Analytical elaboration of the TL decomposition algorithm for the second-
order case easily yields an expression linking Pg o, Po,3 and Py 4t

[PU,Q] - [pO,rS + 7)O,M] =0. (4.59)

The first pair of square brackets contains the result of the first cycle of the
algorithm; the second pair the result of the second cycle. Verification of whether
eqn (4.59) is satisfied is given by the final stage of the algorithm. If the result is
positive, it follows that A;P1,1P1,3P1,5—A2P1,2P1,4P1,6 is a valid non-parametric
TL decomposition, see eqn (4.45). Further, Po 1 equals —Az, and Py 2 equals
AL
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For third-order TL decompositions, the quotient and remainder polynomials
are linked by:

[Pral + [Pres + Prrs + P1,aPoq1 + P1,3Pog2] —
[P1,4Po1 + P13Por2] = 0. (4.60)

For the example polynomial (4.48), verification of eqn (4.60) for the set of
currents Py ) = (I, = Iin), P12 = (Io + Iin), P1,3 = (Io = Iin), P14 = (Io + Lin),
Pis = (Io + Iin + Iouw) and Py g = (Lo — Lin — Iout), yields a positive result.
Further, \; = A =1 and A = 2. Hence:

2P; = (Io - Iin)2 (Io + Iin + Iout) - (Io + Iin)2 (Io ~fin - Iout) : (4‘61)

The algorithm developed has been implemented in C and works satisfactorily.
Nevertheless, improvements are likely to be possible and further research in this
direction, also with a view to the development of an algorithm for parametric
TL decomposition, is highly recommended.

4.4.3 Parametric decomposition

In the case of a parametric TL decomposition, the polynomial (4.26) is mapped
onto a set of two or more TL loop equations. This is accomplished through
the introduction of one or more parameters I, called intermediate currents,
which are non-linearly related to the input and output currents. As discussed
in Section 4.4.1, parametric decompositions are an absolute requirement simply
because non-parametric decompositions do not always exist. A set of two TL
loop equations contains twice as many coefficients as a single TL loop equa-
tion and the chances of finding a suitable decomposition are therefore increased
significantly.

The introduction of one intermediate current I, is accomplished by equat-
ing the polynomial Pr(I;,,...,1;,) to be implemented to another polynomial
containing the parameter I,. That is:

Prllpyy-- - Iz,) =Pr(lpys-o Lo, Ip), (4.62)
Prlleyse oIz, Ip) =0. ’

Now, both equations have to be implemented by a valid TL loop equation. The
parameter [, introduced by eqn (4.62), represents a physical current. Therefore,
I, must be real, which forms an important condition for the possible polynomials
Pr(Izy,. .., 15, , Ip). Further, for polynomials of higher-order in I, care has to
be taken that multiple physical solutions for I, do not occur. This is partly a
biasing problem, as discussed in Section 4.5.1.
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An important characteristic of a parametric decomposition is that the in-
termediate currents are not uniquely determined. A certain parametric decom-
position can be described by different, yet equivalent, sets of equations. Linear
transformations (within the set of all input, output, capacitance and intermedi-
ate currents) applied to an intermediate current I,, e.g., I = 2I, + I, do not
fundamentally change a parametric decomposition.

As an example, consider the frequency-doubling circuit depicted in F ig. 3.4.
This circuit is described by eqn (3.15), which is based on the definition I, = I,.
The definition of I, is in fact quite arbitrary. Defining instead I, = I3, an
alternative, yet equivalent, description is obtained, given by:

112111 = I;’> (2-[}11 - out) (4.63a)
I, = (1)~ Tow) (215 ~ Iows) - (4.63b)

The two intermediate currents I, and I are related by the transformation
I, = (I + Lout)-

In non-parametric TL decompositions, all transistor currents are linear com-
binations of the input, output and capacitance currents. This is not true for
parametric TL decompositions, where the transistor currents are, in general, lin-
ear combinations of the input, output, capacitance and intermediate currents.
Since the values of the intermediate currents are not known in advance, the
decomposition algorithm described in Section 4.4.2 cannot be used for the gen-
eration of parametric TL decompositions. Lacking a proper algorithm, the most
systematic approach remaining is the application of the ‘continued products’,
‘partial fractions’ and ‘continued fractions’ methods described in [50].

Parametric decomposition for dynamic translinear circuits

As described in Section 4.3, the state-space approach is a powerful tool for the
synthesis of linear filters. Factually, a state-space description is already a form
of parametric decomposition since the state currents are intermediate currents.

Next to the TL loops, a second type of loop, occurring in DTL circuits only,
is the capacitance-junction(s) loop. The junctions in this loop are represented by
a product of linear factors, the collector currents. In principle, this factorisation
is unique. However, different factorisations can be constructed through the
definition of intermediate currents.

An example can illustrate this. In [112], a first-order high-pass log-domain
filter is described. The capacitance current in this filter is derived from the
second-order polynomial (Iin + Iac) (Lo + Io, ) — Ious Io. Through the introduction
of an intermediate current I,,, this polynomial is factored as Iy Iyys. As aresult,
the capacitance-junctions loop contains one transistor biased at a current I, and




106 Synthesis of translinear circuits

one transistor biased at Iy, i.€.:

I, o
Ieap = CUr (I—" + 7 ‘) : (4.64)
P out
.in o - jou
= CUp T o+ o) — Towo (4.65)

(Iin + Idc) (Io + Io;) - IoutIo '

Design example: A third-order elliptic low-pass filter

On page 88, a set of three current-mode polynomials (4.18a)-(4.18¢c) was ob-
tained for the elliptic log-domain filter to be designed. Translinear decompo-
sition is the next synthesis step to be performed. Suitable TL decompositions
have to be derived for each of the polynomials. In fact, eqns (4.18a) and (4.18c)
are already valid TL loop equations. A non-parametric TL decomposition of
eqn (4.18b) can be obtained through the addition of a term I,I., to both sides
of the equation. Biasing of the three TL loop equations thus obtained results
in an interconnection of linear first-order filter sub-circuits, comparable to the
network arrangements found in conventional filter implementations.

As well as the interconnection of linear sub-circuits, there are additional
possibilities for implementing TL filters. Most of the log-domain filters presented
in the literature are based on the set-up shown in Fig. 4.35 [9,10,12,14,15,89,90,
109,113). In this arrangement, I;, forms the collector current of a transistor to
implement current-to-voltage logarithmic compression. Exponential expansion
from voltage to current is only performed at the output. Hence, the state
currents I, and I, are not physically present within the so-called ‘log-filter’.

For illustrative purposes, we design the elliptic filter in accordance with the
set-up shown in Fig. 4.35. To accomplish this, parametric TL decompositions
have to be derived for each of the polynomials (4.18a)-(4.18c). These decom-
positions need to have a special form in order to comply with the set-up shown
in Fig. 4.35. In particular, in any TL loop equation each of the currents I,
I.,, I, and I, is only allowed to form a linear factor by étself. Only this way
can a biasing arrangement be derived where I, and I, do not have to be im-
plemented physically. Note that I;, and I, can be sensed using the analysis
method described in Section 3.2.2.

The RHS of eqn (4.18a) comprises three variables: I,, I, and fi,. Hence,
two intermediate currents, I,, and I;,,, have to be introduced to arrive at a suit-
able decomposition. This is accomplished by equating the RHS of eqn (4.18a)
to:

(Ipl + I + ICl)Izl - (Ipl - Ipz) le - Iszzl . (466)

A parametric TL decomposition is obtained from a comparison of eqn (4.66)
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with the RHS of (4.18a):

(Ipy + Lo + Ic,) Ity = —Iofin, (4.67a)
(Tpy = Ipy) oy = Loy, (4.67b)
3,1, = 1o 1,. (4.67c)

Note that I, I;,, I, and Iy only occur as linear factors by themselves.
Likewise, decompositions of (4.18b) and (4.18¢) are obtained by equating
the RHS of these polynomials respectively to:

(g +Icy) Iy — Iglay, (4.68)
and

(Iey + Lo+ Iey) Ipy — (Iey + 1) Iy + Iy Iy, (4.69)

where I, I;,and I, are intermediate currents.
A comparison of eqn (4.68) with the RHS of (4.18b) yields the second para-
metric decomposition:

(Iq + ICz) Iy, = L1, (4.70a)
Igl,, = Io1,. (4.70b)

A comparison of eqn (4.69) with the RHS of (4.18c¢) yields the third parametric
decomposition:

3 (Irl + IO + ICg) Izg = _Io-[in, (4713)
3 (Il‘l + IX‘Z) '[1'3 = IQICE11 (471b)
Ier:c;; = IoImg- (471(2)

An implementation of the parametric TL decomposition thus obtained is
designed on page 116.

4.5 Hardware implementation

Hardware implementation is the last synthesis task to be accomplished in order
to obtain a prototype TL circuit. The TL loop equation has to be mapped onto
a TL topology and the network has to be biased. In the context of TL circuits,
biasing means that currents have to be supplied to a network of TL loops such
that all transistors are forced to conduct the collector currents corresponding to
the TL decomposition. Convenient currents to be supplied to the network have
to be found by judicious addition and subtraction of the transistor currents.
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Involving only the operations of addition and subtraction, biasing is merely
a linear problem, in contrast to the issue of TL decomposition. Nevertheless,
the extensive number of possible solutions for a specific TL decomposition adds
to the complexity of this design step. Furthermore, the complexity increases
with the number of TL loop equations and independent variables involved.

A general description of the issues involved in topology selection and bias-
ing is given in Section 4.5.1. The theory is explained mainly in terms of NPN
transistors, which are the most prevalent TL devices. Nevertheless, several alter-
native devices can be used to implement a TL loop. The additional possibilities
opened up by these TL devices are discussed in Section 4.5.2.

4.5.1 Topology selection and biasing

The linear factors in a TL loop equation, see eqn (3.4), correspond to the col-
lector currents and therefore with the base-emitter junctions of the transistors
comprising the loop. Biasing means that the transistors are forced to conduct
the required collector currents, which are each linear combinations of the input,
output, capacitance and intermediate currents. Obviously, the node voltages
also have to be biased such that all transistors operate in the active region.
Figure 4.9 shows the three basic ways to force a collector current through a
transistor. The bias current source [p;as is connected either to the emitter or to
the collector terminal. The emitter is an active terminal as its voltage directly
controls the collector current. Hence, in Fig. 4.9(a), the transistor is forced to
conduct lnias. In contrast, the collector is not an active terminal; to a first-order
approximation the collector does not control the transistor current. Therefore,
a nullor has to be used to control the emitter or the base, which does control
the collector current, and thus, forces the transistor to conduct Iy;,s. The nullor
shown in Fig. 4.9(b) can, in principle, be replaced by a wire, resulting in a diode

connection.
Ibiaslé llbi as
—

(@) (b) ' ©

Figure 4.9: Three basic ways of current biasing of a transistor.
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The three basic ways of biasing depicted in Fig. 4.9 can also be used to bias
the transistors in a complete TL loop. To this end, currents are supplied to
the circuit nodes of the loop. In principle, these nodes comprise the base and
emitter terminals. However, as indicated by the possibility of diode-connected
transistors, some collectors can also be connected to these nodes. Consequently,
the currents to be supplied to the nodes of the TL loop are linear combinations of
emitter and collector currents (base currents are assumed to be negligible). The
process of biasing entails several degrees of freedom to manipulate these linear
combinations and biasing thus becomes a quest for ‘convenient’ node currents;
currents that are easily realised as current sources. An obvious example of a
convenient node current is a dc current.

The collector terminals

A first degree of freedom in the biasing process is formed by the collector termi-
nals. First of all, not all collector terminals are required to bias the transistors.
This is illustrated by Fig. 4.9(a). These collectors are available to modify the
node currents of the TL loop. The only restriction is of course that this should
not result in saturation of one of the transistors. Judicious choices for the col-
lector connections result in convenient node currents.

Secondly, for a diode-connected transistor, the collector is connected to the
base of the same transistor. In a complete TL loop, this is not the only option.
The collector terminal can often be connected to a different circuit node, as long
as the voltage gain from that circuit node to the base terminal is positive.

Those collectors not connected to a circuit node, in one of the above ways,
have to be connected to a suitable voltage source.

In principle, the biasing strategy of using the collector terminals to obtain
convenient node currents does not require any additional circuitry. Hence, it
results in efficient designs.

The ground connection

As a TL loop is not allowed to float completely, one (and only one) of the
nodes of the loop has to be connected to ground or another voltage source. In
principle, the designer is free to choose which node to connect to ground. Since
the ground node does not have to be biased by a current source, the current
flowing into the ground connection does not need to be convenient.

Arrangement of currents in the loop and the loop equation

The arrangement of the linear factors, i.e. the collector currents, in the TL loop
constitutes a third degree of freedom with respect to the biasing procedure. The
TL loop equation only determines the direction, clockwise or counter-clockwise,
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of the base-emitter junctions. However, within each product of currents, the
commutative properties of multiplication can be used to rearrange the linear
factors. Different arrangements result in different node currents in the TL circuit
implementation.

The topology of a translinear loop

Translinear loops can be implemented according to different topologies. The two
basic topologies, ‘folded’ and ‘stacked’, are depicted in Fig. 4.10." The choice
of a particular topology is part of the biasing process. Different loop topologies
result in different possibilities for the construction of node currents.

(a) (b)

Figure 4.10: Two basic translinear loop topologies: (a) stacked and (b) folded.

For the stacked TL loop, shown in Fig. 4.10(a), the TL loop equation can be
mapped onto the topology in four different ways. The emitter currents of the
two emitter-connected transistors are added. Their combined current cannot be
influenced by one of the collector currents. In contrast, the other node currents
can be influenced. The collectors of the emitter-connected transistors can be
connected to the emitters of the base-connected transistors to manipulate the
corresponding node currents. Obviously, the stacked topology facilitates sub-
traction points. The base node of the upper transistors however only provides
addition of currents since only collectors can be connected to it.

The folded topology, shown in Fig. 4.10(b), is more symmetrical than the
stacked topology. It entails two axes of symmetry. As a consequence, folded
topologies are less versatile when it comes to biasing. For a start, a second-
order TL loop equation can be mapped on a second-order folded topology in two
different ways only. Secondly, the structure only provides addition of transistor
currents. The node currents of the two nodes formed by the emitters cannot
be influenced by the collector currents. The nodes formed by the bases only
facilitate the addition of (collector) currents.

In higher-order loops, mixtures of folding and stacking are possible resulting in more than
two topologies. For example, nine different fourth-order TL loop topologies exist (50].




4.5 Hardware implementation 111

In general, it can be concluded that the stacked topology is more easily
biased using the methods discussed thus far. This is evidenced by the fact that
most known TL circuits are based on the stacked topology, see e.g. [50,61].

The choice for a stacked or folded topology depends not only on the possibil-
ities for biasing. When low-voltage operation is required, e.g. a supply voltage
of 1 volt is specified, the folded topology is often the only option.

Current mirrors

The absence of subtraction points in folded topologies is not a fundamental
limitation. It can be overcome by additional circuitry in the form of current
mirrors. These provide inversion and hence generate subtraction points. Both
PNP and NPN current mirrors are applicable. In many designs, current mir-
rors are a valuable means for finding a proper biasing scheme. Some different
applications of current mirrors to provide subtraction points are illustrated in
Fig. 4.11.

i R

=, + 14)l

Figure 4.11: Current mirrors provide subtraction points in folded loop topologies.

Scaling of currents and emitter areas

Another biasing option is scaling of the collector currents. The base-emitter
voltage is not changed if the collector current and the emitter area are both
scaled by the same factor. Through this simple means, the node currents can
be influenced so as to find different biasing solutions.

Level shifts and redundant transistors

In general, a pair of equal-valued oppositely-connected voltage sources can be
inserted in the loop without changing the TL loop equation. These level shifts
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can be used to change the circuit node voltages. Thus, collector connections
become possible, which were not allowed in the original loop due to the require-
ment of operation in the active region of all transistors. Obviously, insertion
of level shifts is a form of stacking, and therefore not suitable for low-voltage
applications.

A possible implementation of the voltage sources is the insertion of redundant
pairs of transistors into the TL loop. A redundant pair comprises two oppositely
connected transistors with an equal collector current density and hence does
not alter the TL loop equation. The redundant pair of transistors need not
necessarily be biased at a dc current. Figure 4.12 shows an arrangement in which
the current I, is one of the factors in the original TL loop equation [14,44,114].
The collector current of both redundant transistors equals Iyias — Ip. The exact
wave form of this current is irrelevant as long as its value is guaranteed to be
strictly positive at all times. If I, constitutes an inconvenient node current to
be sunk, this structure can beneficially solve the bias problem. Note that the
arrangement shown in Fig. 4.12 does alter the TL loop equation. It adds the
solution I, = Ipjas, but this is not a stable solution.

o o

Ibiasl
_Ip

Figure 4.12: Redundant pair of transistors in a translinear loop [44].

Nullor implementations

Feedback is frequently used in TL circuits for the purpose of biasing as it in-
troduces new possibilities. This is illustrated by Fig. 4.9(b,c), where nullors are
used to force the collector currents. In Fig. 4.9(c), the output current of the
nullor functions as a node current source. Now, the biasing process is simplified
by the fact that the output current does not need to have a convenient value as
it is determined by negative feedback.
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Practical nullor implementations for TL circuits are often as simple as a
single stage, e.g. a CE stage, a CC stage or a differential pair. In a complete
TL circuit, some transistors comprising the loops can also function as nullor
implementations. This is illustrated in Fig. 4.13.

Qz Q3 -

(a) )]

Figure 4.13: Part of the translinear loop functioning as a nullor implementation.

Figure 4.14 shows an example of the application of nullors to enable biasing
of a DTL circuit [115]. The TL filter consists of two coupled second-order loops
in folded topology. The voltage Ve is a dc bias voltage; the ‘ground’ connection
of this circuit. Denoting the collector current of Q3 as the intermediate current
I, the two loop equations are described by:

Iinl IO = (Ip - Icap) Iouta (472&)
Iinz[o = IpIOut' (4.72b)

The tail currents of the three differential pairs equal (fin, +Ip — Ieap), (Tin, + L)
and (J, + Ioyt). Obviously, these currents cannot be supplied by bias current
sources. However, the inconvenient tail currents are readily realised by means of
negative feedback. The nullors are implemented by the common-source stages
Ml, M2 and Mg.

Implementation of functions having multiple solutions

In Section 4.2.1, functions with multiple solutions were discussed. Implementa-
tion of the correct solution, or switching between different solutions dependent
on the input signal is a biasing issue. The biasing arrangement has to be made
so that only one solution is physically possible at each instant of time. The
characteristic used to realise this is the fact that a transistor can only conduct
positive currents. This is explained by means of an example circuit.
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linli

Figure 4.14: Biasing of a translinear integrator with the aid of nullor implementa-
tions {115].

Consider the modulus circuit depicted in Fig. 4.15. The TL loop equation
is given by:

(Io + Iin) (Io - Iin) = (Io + Iout) (]0 - Iout) . (4-73)

The solutions of eqn (4.73) are I,y = +Iin. The key to a proper biasing
arrangement for eqn (4.73) is transistor Q7. Its collector current I; equals
I,u:. Since I7 can only have positive values, I,y necessarily switches between
the solutions I,y = Iin, for Lin > 0, and Iowy = —Iin, for Lip < 0, resulting in
the absolute value function.

Q

Figure 4.15: Modulus circuit [50].
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Implementation of parametric translinear decompositions

Until now, this section has only been concerned with the biasing properties of
a single TL loop circuit. For parametric decompositions, however, multiple TL
loops are necessarily involved. These loops interact by means of the intermediate
currents, as illustrated in Fig. 3.2.

In this context, the term ‘topology’ has to be placed in a wider context. A
distinction can be made between disjunct and coupled TL loops, see Fig. 3.1.
Parametric decompositions that have certain collector currents in common can
be implemented both by coupled and disjunct TL loops. However, recall from
Section 3.1 that the set of fundamental TL loops is not uniquely defined. Dif-
ferent sets of independent loop equations exist, which result in different biasing
arrangements when an implementation by means of disjunct loops is designed.
As an example, consider the parametric decomposition given by [116]:

2Iout (I(Jl + Io) Ip = Iinfga (4.74a)
2 (Ip - ICz) (ICH + IO) = Ig: (474b)

which can be rewritten as:

IoutIp = Iin (Ip - ICg) 3 (4753.)
2L - Iy) (Ie, + 1) = I2, (4.75b)

Implementation of eqn (4.74a) by means of disjunct loops yields a circuit other
than the implementation of (4.75a).

Biasing of dynamic translinear circuits

The fundamental difference between STL and DTL circuits is, respectively, the
absence and presence of capacitance currents. In the context of biasing, the
capacitance currents can be considered to be a special kind of current source.
Naturally, the voltage across a capacitor is fixed since the capacitance voltage
determines the capacitance current. This voltage is generated by the collector
currents occurring in the definitions of the capacitance currents, see Section 4.3.

In most published TL filters, the capacitors are connected to nodes of the TL
loops. However, this is not necessary, as evidenced, e.g. by the substructure C-
@s shown in Fig. 8.10. The TL loop, comprising Q;-Q4, generates the current
Icap, which is supplied to the capacitor. Integration of I ., yields the output
current Io,¢, which is again fed back to the TL loop by means of a current
mirror.
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Implementation of non-parametric decompositions using
multiple translinear loops

Multiple TL loop circuits are not exclusively related to parametric decomposi-
tions. It is equally possible to implement a non-parametric decomposition by
means of multiple loops. These loops are described by equal or different non-
parametric TL loop equations. All loop equations represent the same transfer
function and are therefore linearly dependent. To bias the circuit, convenient
node currents have to be derived for all loops simultaneously, using the methods
described earlier in connection with single TL loop circuits. Since more collec-
tor terminals are available, additional possibilities arise to find convenient node
currents.

An example is the well-known ‘six-pack’ four-quadrant multiplier shown in
Fig. 4.16 [45]. This circuit contains two fundamental TL loops, ;-Q4 and
Q1-Q5-Qe-Q4, described by eqns (4.33) and (4.37). Since eqns (4.33) and (4.37)
do not contain intermediate currents, this is obviously a non-parametric decom-
position. This is evidenced further by the linear dependence of eqns (4.33) and
(4.37) and the fact that all collector currents can be expressed as linear combi-
nations of I, Lin;, fin, and Ioy. In this circuit, the output current is obtained
from a judicious interconnection of the collectors of ¢}3 through Q.

Figure 4.16: The ‘six-pack’ four-quadrant multiplier [45].

Design example: A third-order elliptic low-pass filter

Biasing is the last design step to be performed in order to obtain a prototype
TL circuit implementation of the third-order elliptic filter. As discussed on
page 106, it is possible to find a biasing arrangement of the parametric TL
decomposition, comprising eqns (4.67a)-(4.67c) and (4.70a)—(4.71c), based on
the set-up shown in Fig. 4.35. Each of the currents I, I,,, I, and [, is
implemented by a single collector current. Figure 4.17 shows a realisation of
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the fractions Ioui/lo (= 2I.,/1,), fin/Io, Iz, /I, and I, /I,. The tail current
of each differential pair is sunk by a CE transistor stage. The bases of all
the transistors biased at a current I, are connected to a dc voltage Vy.. The
capacitance voltages are denoted by Vi,, Ve, and Vi,. Since I, and I, are
not physically required, the dotted transistors do not have to be implemented
physically. They can be used however to sense I, and I,,, as explained in
Section 3.2.2.

Figure 4.17: Implementation of the input compression, the output expansion and
the state currents I, and I,,. The dotted components are fictitious;
they do not have to be implemented physically.

Figure 4.18 shows a biasing arrangement for the elliptic filter based on the
stages depicted in Fig. 4.17. The interconnection wires between the various
sub-circuits are not depicted for convenience. The current (I, + I, ), see eqn
(4.18a), is formed by the collector currents of Q1 and Q3 and the emitter current
of Qs, which equal I,,, (I, — I;,) and (I, + I, + I¢, ), respectively; compare
with eqns (4.18a) and (4.66). In accordance with eqn (4.67c), Q; is scaled by a
factor of three. The transistor currents of Q11, Q14, @2, Q23 and Q24 are equal
to Iy, (Iq + Ic,), Iy, (I, + I,) and (I, + I, + Ic,), respectively. Transistors
Q24 and Q35 are scaled by a factor three as well.

Simulations verify the correct operation of the elliptic filter. Transistor non-
idealities are beyond the scope of this chapter; they are dealt with in Chapter 5.
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Figure 4.18: Biasing arrangement for the third-order elliptic low-pass filter.
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Therefore, ideal transistor models are used in the simulations. Figure 4.19 shows
the small-signal ac transfer function. With I, = 1 pA, C; = C3 = 22.5 pF and
Cy = 8.85 pF, the simulated cut-off frequency is 642 kHz. The transmission zero
is located at 872 kHz. The maximum pass-band ripple of 1.25 dB is attained at
358 kHz. The minimum attenuation of -20.5 dB is realised at 1.35 MHz.

1
0.75 | -
3 N -
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10k 100k IM 10M
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Figure 4.19: Small-signal transfer function of the third-order elliptic low-pass filter.

Due to the companding nature of TL filters, correct operation of the designed
log-domain filter cannot be proven by small-signal analysis. The transient sim-
ulations of I,y depicted in Fig. 4.20 do demonstrate the externally linear be-
haviour of the TL filter. Simulations are shown for different frequencies f of
the input signal fi, = —I4c(1 + 0.25sin 27 ft). The z-axis is normalised. For
sinusoidal signals, the maximum amplitude of the input signal is 0.30 Iy, due
to the maximum internal gain of 3.4 from u to z2. An amplitude of 0.25 Iy
corresponds to 85% of this maximum.

4.5.2 Translinear devices

Next to the NPN transistor, several other devices are characterised by an ex-
ponential V-I relation. This section discusses the TL devices depicted in Fig.
4.21.

Diodes

In principle, TL loops can be constructed using only diodes. However, the
limited number of terminals of the diode severely restricts the possibilities for
biasing a TL loop comprising only diodes. Both terminals of each diode being
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Figure 4.20: Transient analysis of the third-order elliptic low-pass filter for different
frequencies.
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Figure 4.21: Translinear devices: (a) diode, (b) PNP transistor, (c¢) compound
transistor, (d) subthreshold MOS transistor, and (e) floating-gate
MOS transistor.
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connected to the nodes of the TL loop, no collector terminals are available to
manipulate the node currents.

Due to this limitation, a proper biasing scheme can often only be found
by the application of additional circuitry. In particular, including a diode in
the feedback path of a nullor results in a virtual device with more than two
terminals, and hence additional biasing options. An example of this approach
is formed by the TL filter shown in Fig. 3.5, where D; and D3 are connected in
the feedback path of two op amps.

Lateral and vertical PNP transistors

New topologies arise when mixtures of NPN and PNP transistors are used to
create TL loops. An example of such a mixed loop is the well-known class-
AB output stage used in many op amp realisations. In modern processes, where
vertical PNP transistors are available, high-frequency operation of the TL circuit
is not impeded. The use of lateral PNP transistors in the TL loops is restricted
mainly to low-frequency applications.

Since the saturation currents of NPN and PNP transistors cannot be ex-
pected to match, in a single TL loop, both the NPN and the PNP transistors
have to satisfy the STL principle in order to obtain a process and temperature-
independent loop equation. That is, both for the NPN and the PNP transistors,
the number of clockwise and counter-clockwise oriented transistors have to be
equal.

For second-order TL loops, five mixed topologies can be derived; two folded
topologies, depicted in Fig. 4.22, and three stacked topologies, depicted in Fig.
4.23. These mixed topologies allow different biasing arrangements in comparison
with the all-NPN topologies depicted in Fig. 4.10. Hence, the availability of
(high-frequency) PNP transistors provides additional biasing possibilities.

(a) ®)

Figure 4.22: Mixed translinear loops in folded topology.
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(a) (b (©)

Figure 4.23: Mixed translinear loops in stacked topology.

The MOS transistor in weak inversion

In the subthreshold region, the MOS transistor is often characterised by an
exponential V-I relation. In the saturation region, the drain current Ips is
given by [86,117]:

Ve n— 1)V
Ips = Ipexp n;‘i exp( nUl B

(4.76)
where n is a constant representing the process-dependent subthreshold slope.
Recently, the exponential behaviour in the subthreshold region has led to a
strong revival of TL circuits in the context of MOS analogue VLSI (neural)
networks, where the high functional density offered by TL technology is very
much welcome, see, e.g., [65,66].

For DTL circuits, some care has to be taken with respect to the subthreshold
slope factor as it influences the capacitance current expressions. For a capac-
itance connected to the gate terminal, the ‘equivalent thermal voltage’ Ur,,,
to be used in eqn (3.24), equals nUr. The connection of a capacitance to the
source and back-gate respectively yields Ur,, = Ur and Ur,, = nUr/(n ~1).

Additionally, the different process-dependence of the subthreshold slope for
NMOS and PMOS devices prohibits the application of most mixed TL loops.
An exception is the loop depicted in Fig. 5.10(b).

Application of the back-gate

A simple way to design a subthreshold TL circuit is to translate a bipolar circuit
design, replacing the base-emitter junctions by gate-source voltages. However,
the MOS device finds wider use in TL technology.

In weak inversion, the body terminal can be used as an active gate as well
as the front gate [118,119]. As a result, many new TL loop topologies become
feasible. First of all, consider the circuit depicted in Fig. 4.24. Instead of the
usual loop of gate-source voltages, this TL network comprises a second-order
(folded) loop of gate-bulk voltages.
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M, M, L
Vrcl'
Figure 4.24: Translinear loop of gate-bulk voltages.
The gate-bulk voltage Vg can be found from eqn (4.76):
I
VGB = TLUT In -BS— - nVBs. (4.77)

Iy

Due to the TL loop configuration, the sum of the gate-bulk voltages is zero.
Using (4.77), the circuit can be described by:

-11 12 13 14
— ~In==+1n==— =
nUT (ln IO n Io n IO hl Io)

- n(Ves, — VBs, + VBs, — VBs,) = 0. (4.78)

Note that the voltage Vier, depicted in Fig. 4.24, does not influence eqn (4.78).
The constants n and Iy can be dropped from eqn (4.78). The back-gate voltages
can be eliminated as well, since the back-gates of M and M3, and of M; and
My, are connected, resulting in:

11[3 V52 - VSI + V54 — VS3

LI, xp Ur

In Fig. 4.24, all sources are connected to ground. Consequently, the RHS of eqn
(4.79) equals 1 and (4.79) simply reduces to (2.14), with A = 1.

The fact that all sources of the MOS transistors are connected to the same
voltage is advantageous in low-voltage low-power environments. A difference
with respect to bipolar transistor TL loops is that the MOS circuit needs a
gate or back-gate voltage to be biased. In the circuit shown in Fig. 4.24, two
gates are biased at a voltage Vier. In theory, this can be done without power
consumption, since the gate and back-gate draw no current.

An application of the circuit is described in [118], where it is used in the
feedback path of an amplifier to realise a y/z-function. A DTL application is
proposed in [105], where a TL integrator is described.

Figure 4.25 depicts another MOS TL loop. The loop is constructed from
gate-source voltages; the back gates have not been connected yet.

Applying eqn (4.76), the loop satisfies:

(4.79)

LI; exp VBs, — VBs, + VBs, — VBs,

Ll _ , 4.80
LI, nUr (4.80)
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e el

Figure 4.25: A folded loop of gate-source voltages with floating back-gates.

where 1/n =1 — 1/n. The source voltages of M; and My, and of M> and M3,
are identical. As a consequence, they cancel out and an equation very similar
to (4.79) is obtained. Instead of connecting all the back-gates together, which
would again result in eqn (2.14), it is also possible to add the back-gate voltages
of M; and M3, and of M and My, simply by connecting them. Equation (4.80)
thus becomes:

Ll _ 2V, ~ 2V,
LI nUr

(4.81)

Now, if the back-gates of M; and M, are connected to the back-gates of two
supplementary MOS transistors, M5 and Mg, respectively, and M5 and Ms have
the same gate voltage, a theoretically process and temperature-independent
transfer is obtained. The resulting circuit, depicted in Fig. 4.26, is described by
an equation structure containing two squared currents:

Ll I
—_— = =, 4.
LT (482)

This equation structure is different from the equations that can be realised with
bipolar TL networks. An application of eqn (4.82) is described in Section 8.1.2.
M6

i

Figure 4.26: Circuit realising equation structure (4.82).

The topology of the circuit shown in Fig. 4.26 actually consists of two loops
of gate-bulk voltages. The first loop is formed by M;-M,-Mg-Ms; the second
by M3-M4-M6-M5.

A more complex equation structure with four squared currents can be ob-
tained by inserting a bulk-connected pair between the gates of M5 and Mes,
grounding the sources of these two extra transistors. The resulting topology is
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described by:

LI; I
LI, LRI

(4.83)

An equation structure with two cubed currents is also possible, starting with
a loop of six gate-source voltages in folded configuration. If the back-gates of the
transistors with the same orientation in the loop are tied together and the two
remaining back-gate voltages are connected to the bulk voltages of two extra
transistors My and Mg with the same gate voltage, the resulting topology is
described by:

LI I}
LILile I}

(4.84)

As a conclusion, using the back-gate in MOS TL circuits, new equation
structures are realised. In theory, these additional equations might result in
more area-efficient realisations. However, in practice, TL decompositions will
hardly ever require the full functionality offered by these equations.

Triode region operation

In the triode region, in weak inversion, the voltage at the drain terminal is
exponentially related to the drain current:

Ing = Iyexp Vos exp —Vss -~ exp —Vbe
pS = U, Ur Ur )’

Consequently, the gate-drain voltage Vgp can be employed as well as Vgg as
part of a TL loop [120]. This results in new TL loop topologies.

In [121], an MOS differential pair is described based on triode region opera-
tion. Figure 4.27 depicts both the conventional and the triode region differential
pair. In Fig. 4.27(b), transistor M, 3 operates in the triode region. The transfer
function from the input voltage Vi, to the single-ended output current oy, is
exactly equivalent to the V-1 transfer function of the conventional differential
pair, provided that the back-gates of M; and M, 3 are both grounded. The tail
current of the new differential pair is controlled by the bias voltage Vijas. In
addition, the tail current can be altered by connecting a current source to the
source of M.

Folded TL loops are essentially built up from series-connected differential
pairs. Hence, new TL topologies can be derived by the series connection of new
and conventional MOS differential pairs. For NMOS second-order TL loops,
this results in three new topologies, depicted in Fig. 4.28. Note that for each
triode region operated MOS transistor, one source terminal remains floating.

(4.85)
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+
vbiasz
Vb E
1as

Figure 4.27: (a) Conventional and (b) triode region single-ended differential pair.
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Figure 4.28: Translinear loops based on triode region operation of (some of) the
NMOS transistors.
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Figure 4.29: A harmonic mean circuit [65,122].

Connection of these terminals to an appropriate voltage is part of the biasing
process.

The TL topologies shown in Fig. 4.28 can be described by current-mode loop
equations, based on the fact that the drain current, see eqn (4.85), can be split
up into a forward current Ir, which is a function of Vg, and a reverse current,
determined by Vp:

Ips = Ir — In. (4.86)

In the resulting TL loop equations, the triode region operated transistors are
not represented by their drain current, but by their reverse current Ig.

Figure 4.29 shows an example of a TL circuit using the topology depicted in
Fig. 4.28(a) [65,122]. The floating source terminal is connected to the common-
source node of the conventional differential pair. Moreover, this is the ground
connection of the loop. Transistors M; and M, are biased by the input signals
Iin, and Iip,, respectively. The drain current of Mz, and M3, is the output
current Iou¢. Translinear analysis of the circuit reveals that I, is given by:

Iin1 Iinz

- 487
Iiny + Iin, (487)

Iout =

Hence, the circuit calculates the harmonic mean of [;,, and Iy,

An application of the loop depicted in Fig. 4.28(b) is described in Section
8.1.3. The circuit described in [120] is based on the topology shown in Fig.
4.28(c).

Compound transistors

The number of terminals per transistor can effectively be increased using com-
pound transistors. Figure 4.30 depicts a bipolar compound transistor, compris-
ing an anti-series connection of a PNP and an NPN transistor, as well as the
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(subthreshold) MOS equivalent. A compound transistor can be regarded as a
single equivalent transistor, albeit one with four terminals, which can be used
to implement TL loop equations.

JE [t

+0— I-
+

\%
BE, l
. Vas.eq

Co] |
g i

(a) (b)

Figure 4.30: Compound transistors: (a) bipolar and (b) MOS.

The equivalent collector current I of a compound bipolar transistor is given

by:
e VB, — Wi
IC = IsnIsp exp ————-—B 2UT Be , (488)

where I and I, are the saturation currents of the NPN and PNP transistor,
respectively, and V, and Vg, are the base voltages. As a result, the compound
transistor can be regarded as a single transistor with an equivalent base-emitter
voltage Vg, — VB,, an equivalent saturation current L., = /I, I, and an
equivalent thermal voltage Ur,, = 2U7.

If the back-gate terminals of both the NMOS and PMOS are connected to
the common source, a similar equation can be derived for the subthreshold MOS
compound transistor, based on eqn (4.76), which yields:

Vo, — Ve
Ips = Iy, exp ———%, 4.89
ps = lo,, exp negUr (4.89)
where
nn  p
IOeq = Io':,eq Iov::q ’

Neq = Nn + Ny,

and n,, np and neq are the NMOS, PMOS and equivalent subthreshold slope
factors; Iy, , Io, and Iy, are the respective zero-bias currents. The equivalent
thermal voltage is given by Ur,, = (nn + np)Ur.
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The different equivalent thermal voltage of the compound transistor has no
influence on the TL loop equations. However, it does influence eqn (3.24) for
the capacitance currents. The capacitance currents are increased by a factor
Ur,/Ur.

In TL loops comprising compound transistors, two collector terminals per
transistor are available for biasing purposes. This represents an increase in the
degrees of freedom in comparison with single transistor implementations. In con-
ventional STL circuits, compound transistors have hardly ever been employed
due to important disadvantages: the hardware is doubled; the required volt-
age room is doubled; using lateral PNPs, the frequency performance is severely
degraded. In contrast, many DTL circuits comprising compound transistors
have been presented in the literature, despite the disadvantages [5,10]. Some
synthesis methods even rely completely on the application of compound transis-
tors [12,89,113]. This is entirely due to the fact that the biasing of DTL circuits
is, in general, more complex than the biasing of STL circuits, as explained in
Section 4.5.1. If the use of nullors is excluded, some biasing arrangements can
only be realised using compound transistors. For example, compare the two
differential pairs depicted in Fig. 4.31. To bias the differential pair shown in
Fig. 4.31(a), the tail current has to be supplied by a current source. An incon-
venient value of this tail current source can frustrate this biasing arrangement.
This problem is not encountered for the differential pair shown in Fig. 4.31(b),
as both transistors can be biased individually.

i

(a) (b)

Figure 4.31: Biasing of a differential pair: (a) based on single transistors, (b) based
on compound transistors.

Floating-gate MOS transistors

The multiple-input Floating-Gate MOS (FG-MOS) transistor, depicted in Fig.
4.32, is the ‘centipede’ of these devices, having lots of terminals. In the sub-
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threshold region, the FG-MOS transistor behaves exponentially and can there-
fore be used to implement TL loops [65,123].

ViV, Vn
ViV, VN
C, --- /=Cy
G G G )
Q Vl'g
oX T Ch
vd — Vs \ys I
lds CdcpI
() ()

Figure 4.32: A floating-gate MOS transistor: (a) symbol and (b) capacitive
model [65,123].

The drain current is determined by the floating gate voltage, which is in
turn determined by the N gates. The N gate-source voltages V; are capacitively
coupled into the floating gate, as illustrated by the capacitive model shown in
Fig. 4.32(b). In the subthreshold region, ignoring parasitic capacitances and
other second-order effects, the drain current in the saturation region is given
by [123]:

N . .
Ins = Ay exp ( [1JT Z%TC’V’) , (4.90)

where n is the subthreshold slope factor, C; are the gate capacitances, I is zero-
bias current and A accounts for the aspect ratio W/L and for the net charge
stored on the floating-gate. The source and back-gate are connected to each
other. The capacitance Ct equals:

COXCC
2y 4
Cr = COX+CC + E C; (4.91)

=
where Cyy is the gate-oxide capacitance and C. the capacitance of the bulk.
Since additions in the voltage domain, which are evident from eqn (4.90),
are equivalent to powers in the current-domain, these devices can be used to
generate powers in TL circuits.
To analyse a TL circuit comprising FG-MOS transistors, it is convenient to
rewrite eqn (4.90) into a current-mode expression (65]:

N
s =[] 577, (4.92)
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where:

CiV;
nCTU ’

Equation (4.92) facilitates the current-mode analysis of FG-MOS TL circuits
[65]. For example, consider the circuit shown in Fig. 4.33. Nodes @ and @ are
associated with the currents I,, and I,,,, respectively. Hence, the drain currents
of My, My and M3 can be written as:

I; = Iyexp

Iref = /\lIm, (493&)
L = M I3 I3, (4.93b)
Lpus = AsId, I, (4.93¢)

Solving the set of equations for Ioy., by eliminating I,,, and I,,, yields:

V /\1/\3 ]in Vv Iin
Ly = — = , 4.94
T Ve Ve (4.54)

for Iinyjref > 0.
éilrcf éllin
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Figure 4.33: A subthreshold floating-gate MOS translinear circuit [123].

It is interesting to note that certain compound transistor structures, com-
bining the voltage-mode additive properties of the FGMOS transistor with the
superior exponential characteristics of the bipolar transistor, allow the opera-
tion of FGMOS TL circuits at higher current levels and hence at higher fre-
quencies [124].

Non-translinear elements

In some special cases, it can be interesting to insert non-translinear elements
into a TL loop. In low-voltage applications, the supply voltage is often made
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part of the TL loop, see e.g. [125]. Since a supply voltage is, in general, not
PTAT, another voltage source has to track the supply voltage source, so that
the remaining net voltage is zero or PTAT. The tracking voltage source can be
implemented, e.g., by a resistor biased by an appropriate current.

Resistors can be included in TL loops for yet another reason. If a TL de-
composition is insensitive to parasitic resistances, intentional resistors can be
added to improve the noise and matching performance. A well-known example
is the emitter degeneration applied to a current mirror.

4.6 Alternative synthesis methods for dynamic
translinear circuits

As well as the synthesis method for STL and DTL circuits described in Sections
4.1 through 4.5, several alternative synthesis methods for DTL networks have
been proposed in the literature.

Frey proposed a synthesis method based on exponential mappings applied
to linear state-space descriptions [3]. This method is a generalisation to higher-
order filters of the method initially proposed by Adams [1]. Additionally, Frey
described a general class of exponential transformations in [10).

Several researchers have proposed the use of component substitution based
methods to synthesise TL filters from LC or g,,C prototype filters [6,11,12,126].

Finally, Drakakis et. al. proposed a synthesis method based on Bernoulli’s
DE [14]. Whereas the two former design methods use a voltage-mode approach,
Drakakis’ synthesis method uses a current-mode approach, thus emphasising
the TL nature of DTL circuits.

As all of these synthesis method yield DTL circuits, they have to be sim-
ilar to a certain extent. Consequently, it is interesting to make a comparison
between the design steps required in each of these methods. In Section 4.6.1,
the method described in Sections 4.1-4.5 is compared with the method based
on exponential mappings. Likewise, comparisons with the component substitu-
tion based methods and the method based on Bernoulli’s DE are described in
Sections 4.6.2 and 4.6.3, respectively.

4.6.1 Synthesis based on exponential transformations

Synthesis of first-order TL filters based on exponential transformations was in-
troduced by Adams in {1]. Using a state-space approach, Frey was able to gener-
alise this synthesis method to filters of arbitrary order [3]. In addition, Frey gen-
eralised this method to allow different exponential-like transformations [4]. This
section gives a short overview of the synthesis method based on exponential-like
transformations.
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Figure 4.34 shows the design trajectory. The starting point is a state-space
description of the filter to be realised, see eqn (4.7). The general synthesis theory
as proposed in the literature [10] does not incorporate the design of non-linear
DTL circuits and this review therefore only deals with the synthesis of linear
filters.

non-linear (algebraic manipulation &)
transformation circuit implementation
| I
I I
linear ' voltage-mode i
| : I
non-li rototype
state-space : near ——» P o
o state-space circuit
description description

Figure 4.34: Design trajectory of the synthesis method based on exponential trans-
formations.

Instead of the collector currents I, , the voltages Vi, across the capacitances
C; are used to represent the state of the filter. To arrive at a voltage-mode state-
space description, an exponential-like transformation is applied to the states and
to the input signal I;,. In general, this transformation is described by:

L, = fi(Vo,), kel,...,n], (4.952)
Iin = f(Vin), (4.95b)

where the functions f; and f are strictly monotonous. Different choices can be
made for the functions fy. Those published are [10]:

I, = Liexpalg,, (4.96a)
I,, = Iy tanh %aVck, (4.96b)
I, = Iy sinhalg,, (4.96¢)

where It and « are constants with dimensions [A] and [V~!], respectively.
These three functions comply with the classes of log-domain, tanh and sinh
filters, respectively.

The choice of the functions f;, corresponds to the definition of the capacitance
currents, described in Section 4.3. Note that the form of fj, eqn (4.95a), is not
as general as the corresponding form of (4.8). Consequently, eqn (4.95a) does
not cover the complete class of TL filters.

For log-domain filters, the states I, have to be strictly positive at all times.
This is accomplished first of all by adding a dc¢ current to I, and restricting
the ac input signal swing. The latter limitation is also necessary for tanh fil-
ters. However, for an arbitrary state-space description, these measures cannot
guarantee the states I, are strictly positive at all times. The solution proposed
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in [127] is to use another state-space description, which can be obtained through
linear transformations, eqn (4.13). An additional option is formed by the intro-
duction of a second dc input current {10]. The latter option is also described
in Section 4.3.2, where it is shown that linear state-space transformations are
never fundamentally required to solve the problem of negative collector currents
I,,. Hence, any state-space description can be used to design a TL filter.

Based on eqns (4.95a) and (4.95b), the next synthesis step is to rewrite
the state-space description in terms of Vi, and Vj,. This yields a non-linear
state-space description:

.\ f(V) f(Vin)
CVg, = ;aklfl(vk)UT +b“f'(Vk)UT’ kell,...,n], (4.97)

where ay; and by represent the elements of the matrices A and B, and f'(V¢,)
is the first-order derivative of f(Vc, ) with respect to V¢, .

Next, eqn (4.97) is interpreted as a set of nodal equations. The LHS of
eqn (4.97) equals the current flowing through the capacitance C;. Each of the
terms on the RHS of eqn (4.97) takes the form of a controlled exponential-
like transconductance. These controlled transconductances are mapped directly
onto a circuit implementation, resulting in the prototype filter circuit. Often,
standard building blocks are used to implement eqn (4.97) [4,10,12,90]. For
example, E*, E~, T, S and S2 blocks are introduced in [10]. By comparing
the known V-I transfer functions of these building blocks with the terms on the
RHS of eqn (4.97), a circuit implementation is derived.

It is sometimes difficult to implement the non-linear transconductance terms
directly. Then, it is required to rewrite the RHS of (4.97) using algebraic ma-
nipulations {4,10].

With respect to the synthesis method described in Sections 4.1 through 4.5,
mapping the RHS of eqn (4.97) onto a circuit implementation corresponds to
both TL decomposition and biasing. Rewriting the RHS of eqn (4.97) corre-
sponds to TL decomposition. An important disadvantage is that transcendental
equations have to be manipulated, which is more difficult and hinders clear in-
sight into the behaviour of the circuit designed.

4.6.2 Synthesis based on component substitution

Another approach to the synthesis of TL filters is based on component substi-
tution of prototype LC [12,15,89] or g, C filters [109,113]. The general idea
is to replace elements from a prototype filter by parts of TL loops. Within the
general class of TL filters, only methods for the design of log-domain filters have
been published.

All of these synthesis methods are based on the set-up depicted in Fig. 4.35,
consisting of three essential parts. At the input, a single transistor is used to
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compress the input current I,,, resulting in a logarithmically related voltage Vi,.
Next, this voltage is filtered by means of a so-called ‘log-filter’. The resulting
output voltage V5, is expanded exponentially, again by a single transistor, into
the output current I .

I A2 1 \% Tout
LIENEN B o8 out exp() f—
filter

Figure 4.35: Prevalent log-domain filter set-up.

Most of the design effort goes into the design of a ‘log-integrator’. Basically,
the first-order building blocks to be designed are an inverting and a non-inverting
integrator, which are then used as substitutes for the integrator elements in the
signal-flow graph. Within a higher-order filter network, the internal compres-
sion and expansion stages of the first-order building blocks cancel, and hence,
these can be omitted [89], leaving only a single compression stage at the input
and an expansion stage at the output of the complete filter. Linear losses, i.e.
resistances, can simply be implemented by a dc current source in parallel with
a capacitor, as explained in Section 3.3.1.

Application of these component substitution based design methods is simple.
Yet, an important disadvantage seems that the designer cannot make any choices
along the synthesis path. In general, for each LC or g,C prototype filter,
exactly one TL filter results. Therefore, the applicability of these methods is
restricted.

4.6.3 Synthesis based on Bernoulli’s differential equation

The synthesis method for log-domain filters proposed in [14] is based on the
generic circuit structure shown in Fig. 3.12. The analysis of the structure has
shown that it is described by the state-space description (3.51). To synthesise
a TL filter, eqn (3.51) is simply compared with a state-space description of the
filter to be realised. This yields the necessary form of the currents I,,, . The task
of the designer is to find ways to generate the currents I,,, using conventional
TL techniques.

In comparison with the synthesis theory outlined in Sections 4.1-4.5, the
method proposed in [14] starts with the TL decomposition and hardware im-
plementation of a part of the TL filter circuit, i.e., the structure depicted in
Fig. 3.12. This sub-circuit implicitly ‘defines’ the capacitance currents as well.
Next, the generation of the currents I,,, corresponds to the design stages of TL
decomposition and hardware implementation. A disadvantage of the method
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described in [14] is that it introduces restrictions that are not fundamental.
These restrictions arise from the choice for the sub-circuit depicted in Fig. 3.12.
In addition, the method is limited to the design of log-domain filters.

4.7 Class-AB operation

Parallel signal processing arrangements can yield very elegant analogue circuit
solutions in many situations. Some examples are differential filters, multi-path
op amp implementations {128], full-flash or folding analogue-to-digital converters
[129], multi-tanh transconductance cells [130,131] and analogue VLSI neural
networks [65,66]. In the area of TL circuits, class-AB operation is another
example of parallel processing, which enables the signal currents to be much
larger than the dc quiescent currents. This, in turn, entails a larger dynamic
range and a reduced average current consumption. The price paid is often an
increase in circuit complexity.®

Generic class-AB set-up

Figure 3.18 shows a general set-up for class-AB operation [91]. In this set-up,
a current splitter is used at the input to divide the input current Ji, into two
currents Jjn, and Iij,,, which are both strictly positive. These signals are related
to Ij, by:

Iin = 1in, — Iinz- (498)

The two parts of the input signal are now processed by two separate signal
paths, denoted by Fy and F5. The resulting output currents Ioyt, and Ioye, are
subtracted to obtain the overall output current I .

In TL circuits operated in class A, the signal current swings are limited di-
rectly by some dc bias currents. However, this restriction being single-sided only
in many (but not all) TL circuits, asymmetrical wave forms can advantageously
be processed. This fact is exploited in class-AB operated circuits. The current
splitter, shown in Fig. 3.18, generates two asymmetrical output currents Iip,
and Iip,, both strictly positive. On condition that the two signal paths F; and
F, can process signals in the range < 0, co >, the dynamic range of the class-AB
set-up is theoretically infinite.

In general, there are several possibilities for defining the two functions Fy
and F>. Naturally, the restriction is that the overall transfer function of the
system equals the desired input-output transfer function. For linear transfer

8Note though that class-AB processing is not restricted to genuine TL circuits. Interesting
examples of non-TL forms of class-AB operation are also found in the area of conventional
filter implementation techniques {81,132].
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functions F', a very simple solution is to choose F} and F» equal to F' [91]. This
choice is possible both for static and dynamic linear transfer functions.

Static translinear circuits

For STL circuits, class-AB operation is simply a special kind of parametric TL
decomposition. Strangely enough, in the past class-AB operation has never
been widely used for the realisation of STL circuits. Only a limited number
of examples, such as op amp output stages, or class-AB current mirrors (133]
can be found in the literature. Nonetheless, class-AB operation can yield very
elegant and interesting circuit solutions for STL circuits. As an example, Fig.
4.36 shows a four-quadrant multiplier comprising four one-quadrant multipliers
and operated in class AB by means of two input current splitters.

Iq
" multiplier
L current lq
i splitter I——J multipliec
L current Iq
n splitter multiplier
1q
multiplier

Figure 4.36: A class-AB four-quadrant multiplier.

Dynamic translinear circuits

An interesting example of class-AB operation in DTL circuits is formed by the
integrator depicted in Fig. 4.37 [2]. In this circuit, the two signal paths are both
described by non-linear DEs:

CUTjoutl + Iouh Ioutz = IoIinl, (4.993)
CUTjoutz + Iout1Iout2 = IoIing, (4.991))

where C1 = Cy = C, Iyt = loue, — Iout, and Iy, = Ly, — Iin,. Clearly,
subtraction of eqns (4.99a) and (4.99b) results in the DE describing a linear
integrator, see (3.36).

The two signal paths F; and F, comprising the integrator exhibit interaction
due to the non-linear term Ioyut, Jout, in eqns (4.99a) and (4.99b). This product
results from the subtraction of a current I,,;, from the capacitance current Ic,




138 Synthesis of translinear circuits
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Figure 4.37: A class-AB translinear integrator [2].

and Iy, from I¢,. These subtractions have been implemented to obtain strictly
positive collector currents. To verify this for a given input signal, it is necessary
to revert to numerical investigations as the wave forms of Iy, and Ioye, result
from non-linear DEs.

Current splitters

Several equations can be applied to implement the input current splitter func-
tion in the class-AB set-up shown in Fig. 3.18. Three different current splitter
functions have been proposed in the literature: the class B current splitter, the
splitter based on a constant geometric mean and the splitter based on a constant
harmonic mean.

The two output currents Ji,, , of a class B current splitter are given by:

in, = Iin: Iirlz =0, Iin >0,
{I 1 for Iin 2 0 (4.100)

Iin1 = 0, Iin2 = —I,, for I;, < 0.

The relation between the actual input current fin and Iiy, , is illustrated in Fig.
4.38. All currents are normalised with respect to a dc current fy.. For reference,
the situation of class-A operation is also depicted.

An important disadvantage of class B operation is that one of the currents
Lin, , is always zero. This results in a turn-on delay and distortion during the
zero-crossings of ;. The class B splitter is even less suitable for DTL circuits,
as the resulting capacitance currents can become quite large, as suggested by
Fig. 3.26.

The geometric mean control law, or product law, is used more often to
implement the current splitter. This control law forces the currents I, and
I, to have a constant geometric mean, equal to Iqc. That is:

I3, = Lip, Iin,- (4.101)

.
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Figure 4.38: The currents resulting from different current splitters.

Using the geometric mean control, the two currents Iiy, ,, given by:

I'ml‘2 = % (\/4I§C + Ii2n + Iin) , (4.102)

are never turned off completely, as illustrated in Fig. 4.38.
An even better alternative is an implementation based on the harmonic mean
function [55]:

IdC (Iinl + IiHQ) = 2Iin1]in2; (4103)

which forces Iin, , to have a constant harmonic mean equal to Ig.. Just like eqn
(4.101), (4.103) is already a valid TL decomposition. In an implementation of
this TL loop equation, the transistors conducting I, ,, which are given by:

Ln, =% (,/Igc + 12+ I £ Im) , (4.104)

are always biased at a minimum current %Idc, as illustrated in Fig. 4.38. Con-
sequently, the transit frequency fr of these transistors does not tend to zero for
large signal swings, which reduces an important source of distortion in class-AB
circuits.
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Device non-idealities

The analysis and synthesis methods discussed in the previous chapters are based
on the exact exponential behaviour of the circuit elements. Nonetheless, many
second-order effects influence the accuracy of a TransLinear (TL) circuit and in
general result in distortion. Fortunately, many techniques have been developed
in the past to overcome these problems. For example, this is demonstrated by
the TL multiplier reported in [49], which provides a total harmonic distortion
level of -95 dB.

This chapter discusses the second-order effects associated with the bipolar
and the MOS transistor and gives an overview of methods for reducing the
influence of these device non-idealities. The discussion in this chapter is limited
to circuit level techniques. The designer should be aware, however, that very
elegant solutions can often be found at the system level. A well-known example
is the use of differential operation, which results in a significant reduction of
even-order distortion components.

The most important error sources in bipolar designs are the finite current
gain and the parasitic base and emitter resistances associated with the bipolar
transistor. These error sources are discussed in Sections 5.1 and 5.2, respec-
tively. The body effect, which is discussed in Section 5.3, is an error source
in subthreshold MOS designs. The next three second-order effects discussed in
this chapter apply both to the bipolar and the subthreshold MOS transistor.
In Section 5.4, the Early effect is discussed. Next, the influence of parasitic
capacitances is treated in Section 5.5. Finally, device mismatches are the topic
of Section 5.6.
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5.1 Base currents

The finite current gain of the bipolar transistor is one of the major error sources
in TL circuits; especially in networks exhibiting large differences in the collector
current levels, such as class-AB operated circuits or high-gain TL amplifiers. In
general, without the application of appropriate measures, the finite current gain
reduces the useful current range from approximately eight to only one or two
decades of collector current. However, the exact nature of Br-induced deviations
strongly depends on the topology of the TL loop, the TL loop equation and the
specific biasing arrangement.

In this respect, subthreshold MOS designs obviously have a fundamental
advantage over bipolar designs, as the gate current of the MOS transistor is
negligible at low frequencies. Likewise, in BiICMOS designs, current mirrors and
nullor implementations can be implemented beneficially using MOS transistors,
while bipolar transistors are used to implement the TL loops [9].

The finite base current Ig of the bipolar transistor is modelled by the current
gain factor By:

Ip =S (5.1)

where I¢ is the collector current. In modern IC processes, By is relatively
constant over many decades of current. This is illustrated by Fig. 5.1, showing
a measurement of the Gummel plot for a minimum-sized NPN transistor in the
DIMES02 process, and Fig. 5.2 showing the corresponding plot of Br versus
Ic. The temperature-dependence of Br is small and has a negligible influence
in most TL circuit designs [50]. The matching of Br between adjacent devices
is generally better than £ 5% [61].

The analysis of the influence of finite base currents is straightforward. The
base current directly fits into the current-mode analysis methods discussed in
Chapter 3. The analysis can often be simplified using the assumption that
Br is equal for all transistors. For Static TransLinear (STL) circuits, the dis-
tortion can be examined analytically. In case of Dynamic TransLinear (DTL)
circuits, large-signal analysis frequently results in a non-linear Differential Equa-
tion (DE), and a numerical approach is therefore often the only remaining option
to gain insight.

Several techniques can be applied to reduce the influence of finite Brp. A well-
known method is compensation, which is illustrated in Fig. 5.3. This method
relies on the matching properties of Br. Transistor Q» senses the collector
current of @;. The base current of @2 is fed back to the base of @1 by means
of a current mirror and approximately compensates the base current of Q.
Especially the bandwidth of the PNP current mirror is of crucial importance
for this technique to work at high frequencies.
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Figure 5.1: Gummel plot of a minimum-sized NPN transistor.

For some TL circuit structures, depending on the specific TL decomposition
implemented, compensation by means of small independent dc current sources
is possible [50]. A major advantage over the aforementioned methods is the
wide-band character of this technique.

Finally, a generally applicable technique is the use of nullors to provide the
base currents, which is described in Section 4.5.1.

5.2 Parasitic resistances

At the upper end of the collector current range, the validity of the exponential
law is deteriorated by the parasitic base resistance Rp and the emitter resistance
Rg. The resulting deviations increase exponentially as a function of the collector
current. Hence, these parasitic resistances can easily become the dominant error
sources and introduce gross distortion. For small transistors, typical values
of Rg and Rp are in the region of some ohms and some hundreds of ohms,
respectively. In addition, the parasitic collector resistance can sometimes cause
saturation of the bipolar transistor at high current levels [50].

To analyse the effect of Rg and Rg, an equivalent resistance Ry in the
emitter lead can be used [40, 50, 134]:

Ry = R + 2. (5.2)

This simplified equation assumes constant values of Bp, Rg and Rg. For a sin-
gle transistor, the influence of Rf, on the base-emitter voltage is negligible when
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Figure 5.2: Current gain factor as a function of the collector current.
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Figure 5.3: Base current compensation.

Ic « Ur/Rg. Using large transistors, this condition can always be accom-
plished. However, the use of large transistors to prevent R-induced distortion
often conflicts with high-frequency demands.

In subthreshold MOS TL circuits, parasitic resistances are not an issue due
to the low current levels employed.

In a TL circuit, the effect of Ry is determined by the contribution of all
transistors comprising the loop. The emitter and base resistances scale in inverse
proportion to the emitter area A;. The TL loop equation, including the influence
of Ry, is thus given by:

I2;—1 Io; ’
Hi YLy _ (Zl /\22.'—1 - Zi Xg;.-) Rg

N P VRA el L 3
| PRV TSy LY P Ur (5:3)
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By definition, eqn (5.3) can be written as:

1L L2 AIRg
At —ex ,

1L I2ia P Ur
where A is the area ratio []; Asi/[]; A2s—1 of the TL loop. Equation (5.4) is

transcendental, which frustrates the analysis. However, if AIR; < Ur, a first-
order Taylor approximation yields a more accessible expression:

L L: AIRY,
Az =1+ .
I1; I2ia Ur

(5.4)

(5.5)

To a certain extent, the exact deviations introduced by Ry depend on the
TL decomposition implemented. For some TL loop equations, the voltage drops
over the parasitic resistances are even cancelled out completely. A trivial exam-
ple is a current mirror with emitter degeneration resistors. A second example
is eqn (4.103), which implements a harmonic mean current splitter. For this
circuit, A amounts to Iy, assuming equally-sized transistors. Hence, only the
quiescent current is affected, but the two output currents I,,;; and I,z are not
distorted. A final example, is the ‘six-pack’ four-quadrant multiplier, depicted
in Fig. 4.16 [45).

In a TL circuit, the individual emitter areas A; of the transistors are not
important; only the area ratios of the complete loops comprising the circuit
are found back in the transfer function of the circuit. This fact provides some
freedom with respect to the scaling of the individual emitter areas. Different
values can result in the same A, and hence do not influence the Left-Hand Side
(LHS) of eqn (5.3). Nevertheless, they do influence the error term on the Right-
Hand Side (RHS) of eqn (5.3). A proper choice of the individual A; values can
minimise Al across the input signal range [56].

Using other circuit techniques, the influence of Ry can even be eliminated
in a theoretically exact fashion. A possible method is described by Schmook
in [48]. A resistance Re, equal to R, is introduced in the loop and biased by
the current AI. As a result, the voltage drops across R, and Rj, cancel exactly.
It is important that R. tracks Ry over wide variations of temperature and IC
process variables.

An alternative method, reported by Opris in [134], uses three transistors
to emulate a single transistor with zero emitter-resistance. The principle is
illustrated in Fig. 5.4. The voltage drops across the three emitter resistances
cancel exactly. The equivalent base-emitter voltage VaE eq equals:

Ic

VBE,eq = UT In ZI— (56)
s
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Figure 5.4: Emulation of a single transistor with zero emitter-resistance [134].
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Dynamic translinear circuits

Next to the TL loops, the capacitance-junction(s) loops in DTL circuits are
affected as well by Rp. For example, for the log-domain output stage, the
distorted capacitance current I, is given by:

i (Ur 1
Icap - CIC (IC + RE) . (57)

Both the methods of Schmook [48] and Opris [134] can be used to eliminate
Ri-induced errors in the capacitance-junction(s) loops.

5.3 Body effect

In the subthreshold region, the drain current Ips of the MOS transistor approx-
imately exhibits an exponential relation with respect to the gate voltage Vg.
A measurement of the Vg versus InIps plot is shown in Fig. 5.5. The mea-
surement shows that the MOS transistor is approximately exponential across 3
to 4 decades of drain current. In the measurement, the source voltage Vs and
the back-gate voltage Vg are fixed. The dimensions of the measured transistor,
from a 2 pm CMOS process, are W = 108 pm/um and L = 7 pm/um.

Often the drain current is approximated by a pure exponential model, see
eqn (4.76). However, even when the MOS transistor is operated well below the
moderate inversion region, it only behaves approximately exponentially. There-
fore, some attention has to be paid to the differences in large signal behaviour
between the bipolar and the weak inversion MOS transistor.
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Figure 5.5: Measurement of the drain current as a function of the gate voltage.

The derivative of the Vg-In Ing plot is often modelled by 1/n, where n is the
subthreshold slope factor. Figure 5.6 shows a measurement of 1/n for different
values of Vg. The figure shows that it is only approximately constant, even
within the subthreshold region. However, in general, the distortion introduced
by this body effect is overshadowed by the deviations resulting from the poor
matching characteristics of the MOS transistors in the weak inversion region.
For reference, Fig. 5.7 depicts a measurement of the normalised derivative of
the Vpg-In I¢ relation, corresponding to Fig. 5.1. A comparison of Figs 5.6 and
5.7 furthermore shows that the slope of the Vgg-In Ins plot is less steep than
the slope of the Vgg-In I plot.

In a more complex subthreshold MOS model, the slope factor is weakly de-
pendent on the gate-bulk voltage Vog. When a positive gate-bulk voltage Vggp
is applied to an n-channel MOS transistor, a positive charge —Qc¢ accumulates
on the gate. This charge is balanced by a negative charge Q¢ in the substrate.
The substrate charge can be divided into the depletion charge @Qp, resulting
from ionised acceptor atoms, and the inversion charge Q, resulting from free
electronics in a thin layer close to the oxide-silicon interface. In subthreshold,
the surface channel potential 5, found at the oxide-semiconductor interface,
is constant along the channel due to the fact that Q1 < @p [135]. The drain
current, which results from a diffusion process, is determined by the difference
of the inversion charge at the source and the inversion charge at the drain.
These inversion charges are (exactly) exponentially related to the voltage dif-
ferences Vs — #s and Vp — )5, respectively. Due to the negligible influence of
@1, the voltage 95 can be said to be generated by the capacitive voltage divider
formed by the oxide capacitance C,x and the bulk semiconductor capacitance
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Figure 5.7: Measurement of the normalised derivative of the Vgg-ln I relation of a
bipolar transistor.




5.3 Body effect 149

Cc. Consequently, deep in weak inversion, the subthreshold slope factor is given
by [117,136]:

1 Cox
;7: - Cox + CC’ (58)
= 1/2 (5.9)

=1~ ,
V34 + Vgs — Veg - Ur

where Vrp is the flat band voltage. The slope factor of the back-gate is given by
(1-1/n). An intuitive, though physically not completely correct model of the
subthreshold MOS transistor is depicted in Fig. 5.8, illustrating that the weak
inversion MOS transistor is a ‘bipolar transistor in disguise’ [137]. A zero base
current is assumed for the bipolar transistor.

i/f T
COX
Jios
Vs
cc.l_.
Vg Vs

Figure 5.8: Intuitive model of the subthreshold MOS transistor.

By integration of eqn (5.9) with respect to Vgg, a more accurate expression
than (4.76) can be obtained for Ips:

Vo — /712 /4+ Vo — Vs — Ur exp Ves

1
- s, (5.10)

IDS = Io exp

where Iy is the integration constant introduced.

The subthreshold slope factor n does not vary strongly with Vgg and the
voltage swings in a TL circuit are small. Nonetheless, the factor n is present
in the argument of an exponential function. Hence, even a small difference in
n between transistors in a TL loop can result in significant deviations over the
entire input signal range. Manual calculations are difficult due to the voltage-
mode dependence of n. This results in transcendental equations. Unfortunately,
simulation might be a problem as well, since most circuit simulators simply
model the weak inversion region by an exact exponential function [138].
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Folded topologies

Fortunately, some TL topologies are fundamentally insensitive to the body ef-
fect. Equation (5.9) shows that in the weak inversion region the subthreshold
slope factor n is only dependent on the voltage Vgp. The exact dependence
is different for devices with ion implantation, but the Vg dependence and Vs
independence are preserved [117]. Due to this fact, the body effect can be
eliminated completely by choosing the right TL topologies. Figure 5.9 shows
combinations of two transistors with equal Vgp voltages. At the unconnected
source and drain terminals, these structures provide an exact exponential re-
lation, equal to the exponential law of the bipolar transistor. This is due to
the equal Vgg voltage and hence the equal subthreshold slope factor n of the
devices. Using the structures shown in Fig. 5.9 to construct complete TL loops
results in body effect independent topologies. Necessarily, these are all folded
loops, which complies very well with low-voltage operation. Figure 5.10 shows
some possible second-order TL loops. Note that the back-gate voltages of the
two parts of each loop do not have to be equal.

Urln 12

lnI

Figure 5.9: Body effect independent structures.

vy

(@)

Figure 5.10: Body effect independent translinear loops.

In contrast, all stacked TL topologies are vulnerable to the body effect.
In these loops, the body effect can be minimised by connecting the back-gate
of each transistor to its source. This however has a frequency penalty due
to the well capacitance. If two transistors have the same gate potential, the
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back-gates can both be connected to the source of only one transistor. This
might be interesting for DTL circuits if the back-gates can be connected to a
node where an intended capacitor is already present. A final alternative is to
connect the back-gates to a bias voltage, generated by diode-connected and dc
biased transistors. Nevertheless, these methods are not fundamentally exact
and distortion analysis is difficult for the reasons given above.

Capacitance currents

In DTL circuits, the subthreshold slope factor influences the capacitance cur-
rents as well. The three different subthreshold slope factors for the gate, the
back-gate, the source, and/or the drain determine the equivalent thermal voltage
Ur,eq in eqn (3.24). The capacitance current is process-independent and Ugeq
equals Uy only when a capacitor is connected to a source or drain terminal.

5.4 Early effect

The collector current of the bipolar transistor is influenced by base-width mod-
ulation; the Early effect. Owing to the small voltage swings, the influence of
the Early effect is relatively small in TL circuits.

The Early effect is modelled by the forward and reverse Early voltages,
denoted by Var and Vg, respectively [139]:

Ic=1, (1 _ Yo _ ‘—/‘ﬁ> exp LBE (5.11)

A similar equation is often used to model channel-length modulation for sub-
threshold MOS transistors.

Typical values of VuF for high-frequency transistors are in the range of 5 to
50 V [61]; Var takes on values in the order of several volts [139]. The Early
voltage is essentially independent of temperature [61].

For the moment assuming that the effect of Vg is negligible, the effect of
Var on a TL loop is described by:

Vi [
1_’_ BC,2i~1

[1; s II; ( “—A‘F)
IL f2i-1 =X T1, (1 _ _‘£0_2_> ' (5.12)

Var

Equation (5.12) reveals that Vap results in a modulation of the area factor
A. Pair-wise matching of the Vsc voltages is the most obvious solution to
counteract the Early effect. Nullor implementations can be used to accomplish
this. However, exact pair-wise matching cannot always be (easily) achieved.
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For small values of the collector-base voltages, with respect to Var, the
condition of exact pairs-wise matching can be relaxed as eqn (5.12) can be
approximated by [50]:

—HH%Q_’—I = [1 ~ Vi (Z VBc2i-1 — ZVBCz.)] . (5.13)

i

Hence, the influence of Vf is minimised if the sums of the Vpc voltages in both
directions of the loop are made equal.

The modulation of X can be divided into a dc term and an ac term. In TL
circuits, the voltage swings are often very small. Of course, considerable care
has to be taken if the output consists of a resistive load. Due to the small voltage
swings, the ac modulation of X is often negligible. For example, a voltage swing
of 50 mV of Vg is required for 1% ac modulation of A for Vag = 5 V. This
translates into a current swing of a factor of 6.8. Hence, the ac part of the Early
effect is only important for high-precision applications. The effect of the dc part
of the modulation of ) is similar to the effect of mismatch. The exact influence
of a mismatch of A on the transfer function of the TL circuit depends very much
on the specific TL loop equation employed.

The reverse Early voltage Var is typically lower than Vap. As the Vag
voltage swings are small, the modulation of A can be approximated by eqn (5.13),
exchanging Vec by Vg and Var by Var. Since a TL circuit, by definition,
comprises closed loops of base-emitter junctions, the sum of Vg voltages in
both directions of the loop are always exactly equal. Hence, the effect of Var
is nearly always negligible.

5.5 Parasitic capacitances

Translinear circuits operate at fundamentally the lowest impedance possible at
a given bias current level. This low-impedance characteristic facilitates high-
frequency operation, see, e.g., [24,44], and an almost complete freedom of slew-
rate limitations [61]. Further, due to the small voltage gains in TL circuits, the
Miller effect with respect to the base-collector capacitance C,, is small [50,61].
However, operation of TL circuits not well below the fr frequency can easily
give rise to significant distortion.

As the parasitic capacitances of the transistors comprising a TL loop influ-
ence the bandwidth, the relative bandwidth of the circuit is optimised when
the transistors have the same value of fr [50]. This is accomplished by biasing
the transistors at equal current densities. Obviously, the lateral PNP transis-
tor is a harmful dissonant. It goes without saying that the availability of a
complementary-bipolar process constitutes an important advantage. This is es-
pecially true for low-voltage (< 1 V), class-AB operated circuits, in which PNP
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current mirrors, which require stacked TL loops [140,141], cannot be applied
and class-A biased NPN mirrors are also not an alternative.

In an absolute sense, the bandwidth is optimised by biasing the transistors
at high current levels. Unfortunately, the accuracy of the exponential relation
deteriorates in this biasing range due to the parasitic base and emitter resis-
tance. Consequently, the design of TL circuits with a high absolute bandwidth
is a serious challenge. Note that the exponential behaviour is not important for
transistors outside the TL loops. Consequently, these transistors can be biased
at higher current densities, and hence a higher fr, than the transistors compris-
ing the actual TL loop. As a result, amplifiers can often be used beneficially to
buffer (some of) the parasitic capacitances of the TL core.

In MOS technology, subthreshold operation of the transistors is restricted
to low current levels. Since the fr is low at low current levels, application of
subthreshold MOS TL circuits is necessarily restricted to low-frequency appli-
cations.

Analysis

In principle, the general analysis method presented in Section 3.2.1 can be used
to calculate the influence of the parasitic capacitances. The voltage-dependence
of the junction capacitances is negligible due to the small voltage swings. The -
signal dependence of the diffusion capacitance is easily accommodated in the
analysis method.

Nevertheless, the merits of large-signal analysis methods with respect to par-
asitic capacitances are small. In general, the analyses result in non-linear DEs,
see, e.g., eqn (2.16) for the current mirror. This hampers insight and is not
very useful for design purposes. Hence, small-signal and numerical analyses are
better alternatives to gain insight into the influence of parasitic capacitances.
Further, methods are being studied to analyse the behaviour of non-linear dy-
namic circuits using a linear time-varying approach [142,143).

In DTL circuits, those parasitic capacitances connected in parallel with the
intended capacitor do not significantly influence the circuit operation. In fact,
it has even been proposed to use parasitic capacitances as the effective capac-
itances in DTL circuits [19,144]. However, in practice, this method results in
a large spread of the absolute capacitance values and can only be used when
appropriate tuning circuits are used.

5.6 Mismatch

Mismatch is an important and often dominant source of errors in TL circuits.
The mismatch of the bipolar transistor can be modelled by a mismatch of the
saturation current Is. Typically, values of I, match within 1% [61]. The MOS
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transistor suffers from two sources of mismatch: mismatch of the threshold
voltage Vin and of the transconductance factor 3, which are almost uncorrelated
in practice [145]. Due to the (approximately) exponential behaviour in the weak
inversion region, both effects can be modelled as a mismatch of the zero-bias
current Ip [146,147].

In general, the matching properties of MOS transistors are inferior to those
of bipolar transistors. This is a major disadvantage of subthreshold MOS TL
circuits. Typical values of 2 to 4% mismatch are reported for 20/20 pm/um
NMOS devices, scaling inversely proportional to the square-root of the transis-
tor area [146-148]. The matching of PMOS devices is generally worse due to
the additional threshold adjust implant [145]. Fortunately, since Vi, mismatch
decreases for thinner gate oxide [148], it can be expected that the matching
properties of MOS devices will improve in the future.

In the weak inversion region, the Vi,-mismatch is dominant [147]. This
can be exploited in MOS current mirrors by operating the transistors in the
moderate or strong inversion region to minimise the current mirror mismatch
(149].

In TL circuits, the matching of all transistors comprising the loops is rel-
evant. The total mismatch can be modelled by a mismatch of the area ratio
A. Optimum matching can be achieved by following the well-known rules sum-
marised in Table 5.1 [150]. The common-centroid arrangement also effectively
reduces the effect of mismatch caused by thermal gradients on the chip [50].

Table 5.1: Rules for optimum matching [150].
Same structure

Same temperature

Same shape, same size
Minimum distance
Common-centroid geometries
Same orientation

Same surroundings
Non-minimum size

The effect of mismatch on the transfer function of a TL circuit depends
on the particular TL decomposition used. This criterion can be used to select
those TL decompositions that are least sensitive to variations of A, or for which
mismatch does not result in harmonic distortion, but, e.g., in scaling errors.

It is interesting to note that transistor mismatch does not influence the
expressions for the capacitance currents, see eqn (3.24).

For high-precision applications, the measures summarised in Table 5.1 are
not sufficient and the only option left at circuit level is trimming. Elimination
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of mismatch across a wide temperature range is accomplished by trimming a
PTAT voltage source connected in series in the TL loop. This PTAT source
can be approximated by an aluminium resistor biased at a temperature-stable
current [61]. Highly specialised trimming methods are required to obtain ulti-
mate precision [49]. More exotic forms of trimming include programmable MOS
transistor structures [151] or charging of the floating-gate of floating-gate MOS
transistors [152].

Class-AB operation

The possibility of class-AB operation is an important characteristic of TL cir-
cuits. In general, mismatch between the separate signal paths, shown in Fig.
3.18, results in harmonic distortion of the overall transfer function. To a lesser
extent this effect also occurs in differential (TL) circuits [153,154]. As an il-
lustrative example, Fig. 5.11 shows the simulated THD of a class-AB current
amplifier as a function of a mismatch AX between the gains of the two signal
paths. The figure also shows that for an increasing value of the modulation
index m of the input signal, the THD saturates.
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Figure 5.11: Distortion in a class-AB amplifier due to a mismatch factor A\,

Mismatch of capacitors

In DTL circuits, another error source is mismatch of the capacitors. The match-
ing of passive components is generally better than of active components. A
typical value is 0.2% mismatch for 20/20 um/um capacitors [155], which can be
improved further by clever layout techniques [156].
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It is important to note that mismatch of capacitors in TL filters most often
only results in a deviation of the linear transfer function, but does not result
in harmonic distortion. An exception is class-AB operated log-domain filters,
where two capacitors are used for the implementation of the same pole.




Noise

Noise is an important non-ideal aspect in most electronic circuits. A discussion
of the noise properties of TransLinear (TL) circuits is therefore of fundamental
importance. Furthermore, Static TransLinear (STL) circuits do not have a
particularly good reputation when it comes to noise [47,81] and it is likely that
Dynamic TransLinear (DTL) circuits inherit these noise characteristics.

The Dynamic Range (DR) and the maximum Signal-to-Noise-Ratio (SNR)
are important measures for describing the noise behaviour of analogue circuits.
To avoid ambiguity, the exact definitions of the DR and SNR used throughout
this thesis are given in Section 6.1.

The analysis of noise in TL circuits is not trivial. Since TL circuits are
explicitly based on the exponential behaviour of the transistor, they are inher-
ently non-linear, even when they exhibit an externally-linear transfer function.
This results in intermodulation of the signals being processed with noise and
interference [9,24,31-33].

The situation is further complicated by the fact that the internal noise
sources, dealt with in Section 6.2, are non-stationary. The transistor currents in
a TL circuit are signal-dependent. As a consequence, the transistor shot noise
sources are modulated by the signals being processed [126,157].

A number of noise analysis methods for STL and DTL circuits have been
proposed previously [32,50,158]. However, since the approach used in these pub-
lications is quasi-linear and quasi-stationary, these methods cannot adequately
account for the non-linear and non-stationary properties of noise in TL cir-
cuits. It is also important to note that most circuit simulators do not facilitate
non-linear noise analysis.

In the area of non-linear signal processing theory, a lot of effort has been
devoted to the topic of noise analysis. Results from this field of research can
be applied to the analysis of noise in TL circuits as well. Section 6.3 provides
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a short review of some important results, which have been used to develop a
non-linear noise analysis method for STL circuits, dealt with in Section 6.4, and
DTL circuits, dealt with in Section 6.5 [33,35,38]. The noise analysis method
for DTL circuits is however limited to linear TL filters. The analysis of noise
in non-linear DTL circuits is beyond the scope of this thesis. The interested
reader is referred to [34].

6.1 Definitions of dynamic range and
signal-to-noise ratio

In the literature, several definitions for the DR and the maximum SNR are in
common use. Therefore, to clarify the discussion, this section explicitly defines
these quantities.

By definition:

e The (maximum) SNR equals the (maximum) ratio of the signal power to
the noise power at the same time;

e The DR equals the ratio of the maximum signal power to the minimum
acceptable signal power; the latter is usually taken to be equal to the noise
power in the absence of any signals, and this convention is adopted in this
thesis.

In conventional amplifiers and filters, based on linear circuit elements, the
DR and the maximum SNR are equal since the noise floor is constant. Hence,
the maximum SNR is obtained for the maximum value of the signal power,
which is determined by a certain specification of the distortion level, e.g. < 1%
total harmonic distortion.

As pointed out in [31], a single noise figure cannot adequately describe the
noise behaviour of TL filters, or companding filters in general. Due to signal x
noise intermodulation, the maximum SNR can be much smaller than the DR.

In TL circuits a complication arises with respect to the definition of the
SNR. Due to non-stationary noise sources and signal x noise intermodulation,
the equivalent input noise spectrum is time-dependent. The easiest way to
define the SNR of a circuit with a non-stationary noise spectrum is to give a
stationary interpretation to the noise spectrum. Several possibilities can be
thought of. A logical and practical choice is to use the average noise spectrum
to define the SNR [159] and this convention is adopted in this thesis. The
use of an average spectrum complies with the results obtained from common
measurement instruments.

Occasionally, special weighting functions have to be applied to the noise
spectrum, e.g., in audio applications, where the physiological properties of the
human ear play an important role. However, these aspects are beyond the scope
of this thesis.
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6.2 Transistor noise sources

Although both the bipolar transistor and the MOS transistor in the subthreshold
region are characterised by an exponential V'-I transfer function, there are some
important differences between these two devices regarding their application in
TL circuits. This applies both to the ‘ideal’ operation and to the noise properties
of these transistors.

In Sections 6.2.1 and 6.2.2, the noise sources of the bipolar and the MOS
transistor in subthreshold are reviewed briefly and the relative influence of the
various noise sources in TL circuits is discussed. The convention used through-
out this thesis is to preserve the lower case letter ‘¢’ for noise currents and the
upper case letter ‘I’ for signal currents. Indices are used to distinguish between
different noise or signal currents.

6.2.1 Bipolar transistor

The noise behaviour of the bipolar transistor is characterised mainly by four
statistically independent noise sources. First, the collector current is accom-
panied by a current shot noise source ic, connected between the collector and
emitter terminals. The double-sided power spectral density function S, of the
collector shot noise, which is flat since i¢ consists of white noise, is given by:

Sic(w,t) = qlc (1), (6.1)

where ¢ is the unity charge.

The second and third noise sources are often described in one equation, as
both are connected between the base and emitter terminals. The base current
I causes a current shot noise source, which has a flat frequency spectrum. The
1/f noise, or flicker noise, which is the product of a process-dependent noise
mechanism, is usually characterised by a frequency f; at which its contribution
equals the contribution of the white noise. For decreasing values of Iy, fi
decreases [160]. The combined power spectral density function S;, of the white
noise and the 1/f noise is given by:

Sin (w0, 8) = ala(t) (1 + -27;—’11> , (6.2)

Normally, with respect to noise calculations, the collector and base currents
are approximated as dc currents. In that case, all noise sources are stationary.
However, this approximation is not accurate for TL circuits, where the transistor
currents are often strongly signal-dependent. Therefore, the shot noise sources
in a TL circuit are principally non-stationary, which explains the time variable ¢
in eqns (6.1) and (6.2). The non-stationary representation of the 1/ f noise lacks
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a sound theoretical and experimental foundation, but is commonly adopted in
the absence of an established alternative [161,162].

For noise analysis purposes, it is convenient to represent each non-stationary
collector (or base) noise current source ic(t), as a modulated stationary noise
source, i.e.:

ic(t) = a(t)n(t), (6.3)

where n(t) is a stationary noise source and a(t) is the modulation function
[162-164]. This way, the modulation of the noise spectral density function can
be absorbed into the circuit equations. If, by definition, the spectral density of
n(t) equals:

Sn(w) = qlo, (6.4)

where I, is a dc current, the modulation function a(t) is given by:

a(t) = —Cjii) (6.5)

The fourth noise source is the thermal noise generated by the base resistance
Rp of the bipolar transistor. By good approximation, this voltage noise source
vpp has a white spectrum. Its power spectral density function Sg, is given by:

Sry(w) = 2kT R, (6.6)

where k is Boltzman’s constant and T is the absolute temperature.

Comparison of the noise sources

By comparing the three noise sources, it is possible to determine their relative
influence in TL circuits under various operating conditions.

Both the base and the collector shot noise are represented by current sources.
Since TL circuits are most elegantly described in terms of currents, these two
noise sources can be compared directly. Translinear circuits are characterised
by the collector currents flowing through the transistors. The collector currents
are forced through the transistors using either diode-like connections or (simple)
amplifier implementations, as illustrated in Fig. 6.1. In the diode connected
transistor, shown in Fig. 6.1(a), i and ic are connected in parallel. Since the
noise power of ic is By times higher than the noise power of ig, the latter is
negligible. If an amplifier is used to force the collector current, as illustrated in
Fig. 6.1(b), the influence of ip is further decreased, since the noise source i is
divided by the current gain G of the amplifier when transformed to the collector
terminal. The amplifier is assumed to have an infinite transconductance gain.
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(@) (b

Figure 6.1: Biasing of a transistor in a translinear circuit using (a) a diode connec-
tion or (b) an amplifier.

Some simple amplifier implementations often encountered in TL circuits are the
common-collector (CC) stage and the differential pair. Often, the CC stage is
simply just another transistor in the TL loop, thus having a double functionality.

The only situation in which ig can become important in a TL circuit is when
large magnitude differences of the collector currents exist, of at least a factor Br.
However, in practice, the errors introduced by the finite base currents in such a
situation will be very large and will have to be eliminated. If amplifiers are used
to this end, the influence of i is likewise eliminated. Only when feed-forward
error compensation methods are used instead of negative feedback to cancel the
influence of finite base currents can ig become important.

The flicker noise of the bipolar transistor is characterised by the corner
frequency f;. In common bipolar IC processes, f; is usually quite low, typically
a few hertz, and decreases when the base current decreases. Due to the very
small influence of base current shot noise in TL circuits, the relative influence
of 1/f noise in a TL circuit is characterised by a much lower corner frequency
of about f;/Br. Consequently, in most applications the flicker noise will have a
negligible influence. It is interesting to note though that in TL circuits the 1/f
noise is not only situated at low frequencies, but is copied to other frequency
bands due to signal x noise intermodulation.

The influence of the thermal noise generated by the base resistance cannot be
compared directly to the shot noise sources. The noise voltage vg, first has to
be transformed to a noise current source in parallel with ic.! Since vrs K Ur,
the (small-signal) transconductance g,, = Ic/Ur can be applied to transform
YRy t0 ic. Note that in TL circuits, the signal-dependence of I often cannot be

!In principle, this transformation of VRy yields besides a noise current source between
the collector and emitter terminals also a noise voltage source in series with the collector
terminal. However, the influence of the latter on the collector current is negligible, due to the
high transistor output impedance.
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ignored. The power spectral density Sip, of iRg, which has been transformed
to the collector terminal, is thus found to be:

2RpIc(t)

o (6.7)

Sigg (W, 1) = qlo(t)
Comparing eqns (6.1) and (6.7), it can be concluded that vg, is negligible
when the transistor is operated at low current levels, where Ip < %UT /RB.
Conversely, at high current levels, where Ic > %UT/RB, vRg 1s the dominant
source of noise. For moderate current levels, both noise sources have to be
included in the noise calculations.

Signal-to-noise ratio

Some conclusions regarding the maximum SNR of a TL circuit can be derived
by calculating the SNR of a single bipolar transistor. The signal power that
can be processed by a single transistor is proportional to the square of I¢. For
simplicity here, the dc value of I¢ is considered to be the processed signal, in
which case all noise sources become stationary. Division of the signal power by
the noise power in an equivalent noise bandwidth B (in [Hz]) yields the SNR of
a single bipolar transistor. The SNR is thus given by:

Ic

SNR = o B+ 2Rslo/Un)

(6.8)

Figure 6.2 shows a plot of eqn (6.8) for Rg = 600 {2 and B = 1 MHz. For low
current levels, the SNR increases linearly proportional to the collector current.
At high current levels, the SNR saturates to 78.3 dB, due to the thermal noise
of the base resistance, to the asymptote given by:

lim SNR = —2L

Ic oo 4qRpB’ (6.9)

A TL circuit consists of one or several TL loops. Each of these loops can
often, but not always, be regarded as a cascade of transistors. In such a TL
loop, as a rule of thumb, the SNR of the complete loop is limited to the SNR
of the transistor with the lowest (average) collector current, assuming that the
equivalent noise bandwidth is the same for all noise sources. If all the transistors
operate at high current levels, i.e. Ic > %UT/RB, the SNR of the circuit is
fundamentally limited to the value expressed by eqn (6.9).

6.2.2 Subthreshold MOS transistor

The symmetry of the MOS transistor is re-discovered in its noise properties [165].
The drain current shot noise can be modelled by two statistically independent
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Figure 6.2: The signal-to-noise-ratio of a bipolar transistor, for Rg = 600  and
B =1 MHz.

noise sources in parallel, characterised by the forward and reverse current com-
ponents respectively, Ir and I in eqn (4.86). The power spectral density func-
tion S;¢ is given by:

Sins(w, ) = q[Ir(t) + Ir(8)], (6.10)
= glp(t) [1+ e7Yosl0/Ur] (6.11)

If the MOS transistor is operated in the saturation region, which is, as yet, the
most prevalent situation for TL circuits, Si,s simplifies to S;, = gIps [166].
However, for TL circuits comprising MOS transistors operating in the triode
region, both noise sources, accompanying Ir and Ig, have to be considered.

Next to the white noise, the MOS transistor exhibits yet another noise com-
ponent: the 1/f noise. It is shown in [166], that 1/f noise is negligible at
low current levels. Consequently, only white noise has to be considered in TL
circuits based on the exponential behaviour of the MOS transistor in the sub-
threshold region. Note, though, that the signal x noise intermodulation copies
the 1/ f noise to other frequency bands.

6.3 Noise in non-linear circuits

To calculate the noise behaviour of an electronic circuit, it is customary to
transform the internal noise sources to the input or output. An equivalent
output noise source can be calculated, which can be compared with the signal
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being processed to obtain the SNR. In linear systems, the transformations to
be applied are relatively simple. Owing to the superposition principle, the noise
sources and signals can be analysed individually. There is no mutual influence.
All transfer functions of the internal noise sources to the output are linear. For
example, in an amplifier, each noise source is transformed by a gain factor. As
another example, in linear filters, the state-space description, used to analyse
the signal behaviour of the filter, can also be applied to calculate the linear
frequency-dependent gain of each noise source to the output.

The situation is more complicated in non-linear circuits. The superposi-
tion principle no longer applies, therefore the noise sources cannot be treated
separately from the signals being processed. Intermodulation between signals,
noise and interference results in aliasing effects. The noise and interference are
transformed to other frequency bands due to this modulation.

Intermodulation effects not only occur in systems with a non-linear transfer
function, but also in circuits with a linear transfer function, which behave non-
linear internally. Here, we distinguish two important classes of such circuits.

First, in discrete-time circuits, e.g., switched-capacitor (SC) filters, the noise
sources are multiplied by the clock signal causing clock x noise intermodulation.
Noise analysis techniques for SC circuits are based on the fact that the clock is
known a priori, see, e.g., [167-169].

The second class is linear circuits based on non-linear devices. An important
example is the class of TL circuits. Due to the fundamental dependence on the
exponential characteristic of the transistor, TL circuits exhibit a strongly non-
linear behaviour, causing signal x noise intermodulation. Whereas the clock
is known in a discrete-time circuit, the signals being processed in a TL circuit
are not known a priori. This constitutes a fundamental difference with respect
to noise analysis. For TL circuits, an extra complication is the non-stationary
nature of the transistor noise sources.

A combination of the characteristics of these two classes is also possible. For
example, switched-current filters are both discrete-time and based on non-linear
devices. Moreover, these circuits also exhibit non-stationary noise sources.

Non-stationary processes

The Wiener-Khintchine theorem relates the autocorrelation function R(7) to the
power spectral density function S(w) via the Fourier transformation, defined by:

S(w) = /_ ” R(r)edr. (6.12)

When dealing with non-stationary processes, the autocorrelation function be-
comes a function of the absolute time ¢ and can only be calculated using en-
semble averages. In [159], Lampard showed that the Wiener-Khintchine theo-
rem can be generalised to non-stationary processes. By calculating the Fourier
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transform of an autocorrelation function R(r,t) with respect to the variable 7,
a time-dependent frequency spectrum S{w,t) is obtained. That is:

0

S(w,t) = / R(r,t)e %7 dr. (6.13)
-0

As a consequence of this generalised theorem, non-stationary processes can also

be described in terms of (time-varying) frequency spectra.

6.4 Noise in static translinear circuits

Large-signal analysis methods for TL circuits are required to be able to utilise
the results described in Section 6.3 for the calculation of signal x noise inter-
modulation in TL circuits. A structured large-signal analysis method for STL
circuits was described in [50]; see Section 3.1 for a brief review. This method
has been used to develop a noise analysis method for STL circuits, described
in Section 6.4.1. Several illustrative analysis examples are discussed in Section
6.4.2.

6.4.1 Noise analysis method

The non-linear behaviour of TL circuits is due to the exponential nature of
the transistor. Since the properties of the exponential function are used in a
very specific way, the non-linear properties of TL circuits can be made more
explicit. In fact, four different appearances of non-linear behaviour can be dis-
tinguished, which all result from the exponential device characteristics. F irst,
the multiplication of collector currents, see eqn (2.14), introduces signal x noise
intermodulation. Secondly, the signal-dependent transformation of the base re-
sistance thermal noise introduces a multiplicative non-linearity, see eqn (6.7).
Thirdly, the noise current sources are, in general, non-stationary. Finally, in
DTL circuits, the incorporation of capacitances may result in non-linear dy-
namic (transfer) functions.

Using an approach in the current domain, TL loops are described by prod-
ucts of collector currents. These collector currents consist of both signals and
noise components. The collector current shot noise sources are already ‘current-
mode’ and are easily incorporated into the TL loop equation. For example,
consider the second-order TL loop shown in Fig. 6.3. It is supposed that the
four transistors are somehow biased at the currents I; through I;. Each of these
collector currents is accompanied by shot noise, the sources i; through 4,. For
the moment, the base resistance noise voltage sources vs-vg are ignored. The
power spectral density of each of the shot noise sources is determined by the
instantaneous value of J;~Iy, respectively. In principle, additional noise sources
might exist, originating from current source implementations or interference.
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These noise sources can be considered to be part of i;—¢4. Including i;—i4, the
TL loop equation is given by:

(I +i1)(I3 +13) — (T2 +i2) ({4 + i4) = 0. (6.14)

This equation contains both signals and noise, and is the basis for the non-linear
noise analysis. It is important to note that the noise behaviour of a circuit to be
designed can already be evaluated (approximately) once a TL decomposition is
derived. Consequently, the synthesis path does not have to be completed before
the noise performance of a potential circuit can be calculated.

Figure 6.3: A translinear loop in the presence of noise.

The presence of 7;~74 in the TL loop equation results in products of signals
and noise. Elaboration of eqn (6.14) results in a second-order polynomial. In
general, an n**-order polynomial is obtained for an n'"-order TL loop. Each
separate term of the fully expanded loop equation comprises signal and/or noise
components. As long as the noise is much smaller than the signals, products of
noise components are negligible. Hence, only those product terms containing at
most one noise component are relevant. Expansion of eqn (6.14) thus yields:

LIz — LIy + Iig + I3ty — Ipiq — 1472 = 0. (615)

An interesting result of this simplification is that the noise sources have no
mutual influence. Therefore, in principle, the transfer function of uncorrelated
noise sources to the output can be calculated individually.

The next step is to solve eqn (6.15) for the output current I, of the circuit,
which is present in (some of) the currents I;~I4. The resulting equation for oy
is a polynomial, a rational function or an expression containing n**-order root
functions.

Next, a first-order Taylor series approximation is made with respect to all the
noise sources, which is allowed as the noise is assumed to be always much smaller
than the signals. It is important to note that this approximation preserves the
signal-dependence of the noise.

Now, the expression for I, can be divided into a noise-free part, comprising
a deterministic component C(t):

C(t) = E[Lous(V)]s.5, (6.16a)
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and a signal component S(t):

S(t) = Ellow(8)|5(8)]5 — C(8), (6.16b)
and a part 7T (t) representing the total output noise [170):

T(t) = Lout(t) — S(t) — C(t), (6.16¢)

where 3(t) denotes the vector of input signals, 7i(t) is the vector of stationary
noise sources, see eqn (6.3), and E[] denotes the mathematical expectation, i.e.,
the ensemble average at a certain time ¢, with respect to 3(t) and/or 7i(t), as
denoted by the indices. The signals C(t), S(¢) and T (t) are completely uncor-
related. Hence, from these time-domain expressions, the autocorrelation func-
tions Re(7,t), Rs(7,t) and R7(7,t), and the power spectral density functions
Se(w,t), Ss(w,t) and S7(w,t) can be computed directly.

In principle, 7 (t) can be separated further into a signal-independent noise
term A/(t) and a signal-dependent noise term Z(t) [170]. However, due to the
signal-dependent nature of the noise current sources in TL circuits, the calcu-
lations involved are cumbersome and do not provide additional insight into the
noise behaviour.

Due to the first-order Taylor approximation with respect to all noise sources,
each separate noise term in 7 (t) consists of a noise current source 7;(¢) multiplied
by a noise-free factor G;(t). Using the modulated noise source representation,
see eqn (6.3), the term 7:(t) = #;(¢)Gi(t) can be split into two statistically
independent factors:

Ti(t) = 4:(t)Gs(2), (6.17)
=n;(t) - [a:(t)Gi()]- (6.18)

Equation (6.18) shows that the functions a;(t) and G;{t) have an equivalent
influence on the noise behaviour of a circuit. In STL circuits, the noise vector
7i comprises only uncorrelated zero-mean noise sources. Hence, the autocor-
relation functions Ry, (r,t) of the terms 7;(t) can be calculated individually.
As n;(t) and [a;(t)G;(t)] are independent, and n;(t) is a white noise process,
R7;(7,t) equals: »

Ry (7m,t) = Ry, (7) - [ai(8)Gi (). (6.19)

The term a;(t)G;(t) being independent, of 7, the power spectral density function
St:(w,t) of Ry;(r,t) is found to be:

S7:(w, t) = S, (w)[a: ()G (1), (6.20)
= qlc, (t)Gi(t)*. (6.21)
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Base resistance thermal noise

In the above discussion, the thermal noise generated by the base resistance was
omitted. As mentioned earlier, this is in fact the second source of signal x noise
intermodulation in TL circuits, next to the multiplications of currents.

In a TL circuit, see Fig. 6.3, the base-emitter junctions are connected in
series. Consequently, the noise voltages vs—vg are series connected and can be
combined into one equivalent noise source v,. This resulting noise source can be
placed freely in series with one of the base terminals of the transistors comprising
the TL loop. Next, eqn (6.7) is used to transform v, into an equivalent noise
current source i,. Equation (6.7) shows that v, is multiplied by Ic(t). Thus,
another non-linear characteristic, responsible for signal x noise intermodulation
is identified. In principle, the collector current Ic(t) in eqn (6.7) is signal-
dependent. However, as v, can be shifted freely through the TL loop, it is
possible to choose which transistor, and hence which collector current is used
in eqn (6.7) to calculate 7,,. Obviously, the simplest choice is to use a transistor
biased at a constant current, which is a prevalent situation.

6.4.2 Analysis examples

In this section, the proposed noise analysis method is applied to some generic
STL circuits. Except for the noise sources all transistor non-idealities are ig-
nored in the analyses. The simplest example is the current mirror. Although no
collector currents are multiplied in a current mirror, signal x noise intermod-
ulation is introduced due to the base resistance thermal noise. Two examples
of second-order TL loops, analysed next, are the square circuit and the square
root circuit. The last circuit analysed is the geometric mean current splitter.
Its noise behaviour is very relevant, since the current splitter is used in many
TL filters to increase the DR through class-AB operation.

Current mirror

The current mirror is the simplest TL circuit. In fact, it is a trivial exam-
ple. Whereas, in general, TL circuits are described by products of currents, the
current mirror is described by a first-order polynomial, which contains no mul-
tiplications. Previously, two mechanisms of signal x noise intermodulation in
STL circuits have been identified. Since no multiplications of collector currents
are present, the only source of signal x noise intermodulation in the current
mirror is the transformation of the noise voltage vg, into an equivalent noise
current ¢gy.

Figure 6.4 shows a two-transistor current mirror, biased in class A by a
dc current Iq.. The zero-mean input current [;;, and output current I, are
superposed on Ij.. Three relevant noise sources are present within the circuit.
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These are the shot noise sources i; and iy, and the thermal noise source vs,
which represents the sum of the noise power of the base resistance thermal
noise sources of 1 and @s.

Figure 6.4: The relevant noise sources in a current mirror.

To find a current-mode description of the current mirror, the voltage source
vz first has to be transformed into an equivalent noise current source. The
transconductance g, of Q1 can be applied to calculate an equivalent noise
source 43 in parallel with ¢;. The transconductance is not determined by the
quiescent current Iy., but by the time-varying collector current of Q,. Thus,
9m, equals (Igc + Iin)/Ur, and 43 is found to be:

i3 = (Lo + Ii,,);—;. (6.22)

Equation (6.22) clearly demonstrates the occurrence of intermodulation. The
noise source %3 comprises two uncorrelated terms. The first term, Iycvs/Ur, only
depends on the statistics of v3. However, the second term, the multiplication of
Iin by w3, represents the signal x noise intermodulation.

The collector currents I; and I of transistors Q; and Q, are directly found
from the currents applied at the collector nodes. Neglecting all transistor non-
idealities, the TL loop equation states that the collector currents are equal, i.e.,
I = I>. An expression for the output current is obtained simply by rearranging
the terms. This yields:

.. v
Towe = Iin + i1 = 02 + (fac + Fin) 3 (6.23)
T
The output current of the current mirror can be divided into three compo-
nents using the method described in the previous section [170]. Application of

eqns (6.16a)—(6.16¢) is straightforward and yields:

c=0, (6.24a)
S(t) = Ly, (6.24b)
Iac + Iin

Ur

T() =i —d2+ v (6.24c)
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Due to the absence of multiplications of collector currents in the current mirror,
i1 and iy do not introduce any signal x noise intermodulation. Alternatively,
this is intuitively clear since i; and is are situated at the input and output,
respectively, and the overall transfer function of the circuit is linear.

To calculate the power spectral density of the total output noise, first the
autocorrelation function R7 has to be derived. Application of eqn (6.19) yields:

Tae + Iin (t)
I,

Idc + Iout (t)

Rr(r,6) = Ruy(7) T

+ Ry, ()

Hae + Tin (O I;“(t)]?, (6.25)

+ Ry, (1) [ 02

where Ry, (), Rn,(7) and R,,(7) are the autocorrelation functions of ni, ns
and vs, respectively.

The power spectral density function of the total noise component 7 can be
found by applying the Fourier transform to eqn (6.25). Using expression (6.21),
we find:

4kT Rp[lac + Lin(t)]?

o (6.26)

Sr(w,t) = 2q[Iac + Lin(t)] +

As explained in Section 6.1, to define the SNR the time averaged power spectral
density function, denoted by Sr, is used. Let I, be a sine wave at frequency
Wo, given by:

Iin = mlycsin (wot + ¢), (6.27)

where m is the modulation index with respect to the dc bias current I, and ¢
is a uniformly distributed stochastic variable, representing the arbitrary choice
of the origin of the time axis. Then, St is found to be:

_ 2 4P
S =2 [Idc + %(}TL-Q] , (6.28)
— 2l [1 4 Mol %m2)] . (6.29)
T

Note that the term including the input power Py, in eqn (6.28) would not have
been obtained if the equivalent output noise was calculated from the small-
signal equivalent circuit of the current mirror at its quiescent point. Expression
(6.29) shows that at high current levels, where the noise contribution of Rp is
dominant, the total output noise can increase by up to 1.8 dB (a factor of 1.5)
for m = 1, when a sinusoidal input signal is applied. At low current levels, only
linear noise can be observed.

o
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Square circuit

Next, consider the square circuit depicted in Fig. 6.5, which can be applied, e.g.,
as a frequency doubler. Each of the four transistors contributes a noise source,
i1~i4. The collector currents of Q1 and @5 consist of a dc bias current on which
the input current is superposed.

él‘dc + Iin

Figure 6.5: Translinear square circuit with internal noise sources.

The four base resistance noise sources can be combined into one source vs.
In this case, transformation of v; into an equivalent noise current source in par-
allel with ¢3 is very simple. Transistor (3 is biased at a constant current I,.
Therefore, this transformation does not introduce signal x noise intermodula-
tion. In the following calculations, to simplify the equations and without loss
of generality, vs will be assumed to be negligible.

Including ¢;—44, the TL loop equation reads:

(Idc + Iin + il)(Idc + Iin + 7:2) = (Io + i3)(10ut + 7:4)' (630)

To calculate the equivalent output noise, the output current I,,; has to be
isolated from eqn (6.30). Solving for I,,¢, the cross-products of noise sources
can be ignored. The factor (I, +43) on the Right-Hand Side (RHS) of eqn (6.30)
ends up in the denominator of the expression for I,,;. The noise source 73 can be
brought to the numerator by applying a first-order Taylor series approximation:
(Io +13)7 ! = (I, —i3)/(I2). Hence, the expression for I,,; becomes:

A ’ - \2
(ix +z2)§1dc +In) | _ 13)(1&%&)_ L. (6.31)
o o

Iout =

Since the transfer function of a square circuit is non-linear, all sources, except
i4 which is already at the output, cause signal x noise intermodulation. An
input signal has to be chosen to calculate the equivalent output noise. We
choose the sine function, eqn (6.27). Hence, E[-]; = E[-],. Equations (6.16a)—
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(6.16¢) can be applied to divide I, into three components. This yields:

— Igc 1,2
C= I, (14 3m?), (6.32a)
mi3 .
S(t) = TC [4sin (wot + ¢) — m cos (2wot + 2¢)], (6.32b)
Idc +Iin o (Idc +Iin)2 o

T(t) = (i1 +i2) (6.32¢)

IQ 13 Ig 4.
Equation (6.32c) reveals that i; and iy are modulated only by the fundamen-
tal frequency, whereas i3 is also modulated by the second harmonic frequency
component. Note that the dc level of the output transistor, equal to C, see eqn
(6.32a), is a function of the modulation index m.

Calculation of the autocorrelation functions and application of the Fourier
transformation yields the power spectral density functions of C, S and T

4
Se(w) = -2—% (1+ im?)* 5(w), (6.33a)
m2I}
Ss(w) = 4pdc {87 [6(w + wo) + d{w — wo)] (6.33b)
+3m’ [§(w + 2wo) + dw — 2wo)]}
. )3 . )4 - )2
Sr(w,t) = 29(Iyc + Iin) + g(Iac + Iin) + q(Iac + Iin) ‘ (6.33¢)

Iz I3 I

The SNR can be derived from the above equations. The average output
noise spectrum is given by:
—_— 2 1 2
5y = Hac (1+1m?) + =2 (24 3m?) + Lo (8 + 24m” + 3m*) | .
I, I, 812
(6.34)

Suppose the bandwidth of interest is [-B, B], B > 2w,/m. Integration of eqn
(6.33b) and (6.34), followed by a division yields the SNR:

I, I3 m*(m? + 16)
2Bq  I2.(3m3 + 24m? + 8) + 814 L,(3m? + 2) 1 4IZ(mZ 1+ 2)’
(6.35)

SNR =

An interesting conclusion can be reached if the SNR is calculated in the limit
Ic — oo

. I, m*m?+16)
1 NR = —_—
Toe Do S 2Bq 3m* +24m? + 8

e

(6.36)
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The second fraction on the RHS remains less than 1 for all possible values of m.
As I4c increases, the power of the collector currents of @1, Q2 and Q4 increases.
Only the collector current of Q3 remains fixed to I,. Hence eqn (6.36) illustrates
that when the input power is increased, the output SNR becomes proportional
to the SNR of ()3, which has the lowest collector current, see eqn (6.8).

A major advantage of the availability of symbolic expressions for the noise
behaviour is the possibility of performing optimisations. As an example, con-
sider the relation between I, and I4., which can be optimised for a given input
signal. If m = -12—, it follows from the derivative of eqn (6.35) with respect to I,

that the optimum value of I, equals 13.v/227/12.

Square-root circuit

Polynomials, rational functions and functions containing nt"-order roots can be
realised using the STL principle. For polynomial transfer functions, an example
of which is the square circuit, the different components C, S and T in the
output current can be identified directly. This is more complicated for rational
or ntP-order root transfer functions. Therefore, as an example, the noise of a
square-root circuit, shown in Fig. 6.6, is now analysed.

Figure 6.6: Translinear square-root circuit in the presence of noise.
An expression for the output current can be derived from the TL loop equa-

tion. The noise currents 4; and i, can be isolated from the resulting square-root,
using a first-order Taylor approximation. This yields:

1. I . e+ L
Tows = V(Tae + Tl + = 0 —ig—ia ).
out ( de + )Io + B (21 \/Idc - Iin + ZQ\/ Io 13 l4>

(6.37)

A complication arises if eqns (6.16a)-(6.16¢) are applied directly to (6.37).
It is not possible, or at least very cumbersome, to find an analytical expression
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for C. However, it is directly clear from eqn (6.37) that the first term on the
RHS equals C + S and the second term represents the total noise 7 = N + Z.

Using the proposed analysis method, the spectrum of the total equivalent
output noise is found:

ST = g' [Io + Idc + Iin + 2I()ut] . (638)

For the purpose of noise calculation, the average of the output current can be
approximated by vTolac(1 — {xm?). Thus, S7 becomes:

5= g [10 4 Iae +2v/ToIae (1 - %nﬁ)] . (6.39)

Class-AB current splitters

The current flowing through a transistor is always restricted to positive values.
To facilitate the processing of signals of both negative and positive polarity,
some kind of biasing is required. One possible solution is class-A operation,
where the actual signal is superposed on a dc bias current. The maximum
negative current signal swing is now limited to the dc value of the bias current.

Another option is class-B or class-AB operation, as explained in Section 4.7.
Often, the geometric mean function is used to split the input current I, into
two strictly positive currents Iy, and fin,, which can be implemented by the
circuit shown in Fig. 6.7. As class-AB operation can increase the DR of a TL
filter, the noise behaviour of the current splitter is very relevant.

Figure 6.7: A geometric mean current splitter in the presence of noise.

Ignoring all transistor non-idealities, the output current of the splitter equals
the difference of I;,, and I,,. Looking at the node at which the input current
source is connected, it is clear that the output current equals I, irrespective
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of the noise sources. This means that the splitter depicted in Fig. 6.7 does
not add any noise. The noise sources present in the TL loop equation of the
geometric mean circuit only result in common-mode noise in fi,, and fin,, which
is irrelevant. Note that not all possible current splitter implementations possess
this favourable property.

6.5 Noise in translinear filters

This section discusses the DR and SNR characteristics of TL filters. Though
DTL circuits find wider application than the implementation of linear differen-
tial equations (DEs), the discussions in this section are restricted to linear TL
filters. The analysis of noise in non-linear DTL networks is described in [34].

In Section 6.5.1, the DR properties of TL filters are compared with respect
to conventional filter implementation techniques.

The large-signal analysis method for STL circuits described in [50] has been
generalised to the examination of DTL circuits in [13,16-18]. Both a global
and a state-space analysis method have been developed, which are described
in Sections 3.2.1 and 3.2.2, respectively. Using these methods, the theory re-
viewed in Section 6.3 can be applied to the analysis of TL filters. The resulting
noise analysis method is presented in Section 6.5.2. Some illustrative analysis
examples are discussed in Section 6.5.3.

6.5.1 Dynamic range considerations

Since STL circuits have a poor reputation with respect to noise [47,81], it
is interesting to compare the DR properties of g,,C and opamp-MOSFET-C
filters, the most popular implementation techniques to date [171-173], with the
DR specifications of TL filters. The comparisons are made under the practically
relevant restriction of a low supply voltage. Note that a comparison is made
with respect to the DR and not to the maximum SNR, thus, due to the definition
of the DR, excluding the signal x noise intermodulation. This intermodulation
is the topic of Sections 6.5.2 and 6.5.3.

To obtain an indication of the DR properties of TL, g,C and opamp-
MOSFET-C filters, we compare the RC and the diode-C sub-circuits shown
in Fig. 6.8. The DR of a complete filter is strongly related to the DR of these
elementary building blocks. The low-pass transfer function L, — I,y is con-
sidered for both filter sections. Under certain assumptions, discussed later, the
circuit shown in Fig. 6.8(a) is representative of opamp-MOSFET-C filters. The
circuit shown in Fig. 6.8(b) represents both TL filters and ‘bipolar g,,C’ fil-
ters, for which the transconductances comprise bipolar transistors only. The
DR properties of the two filter sections are compared first based on a simpli-
fied approach. The influence of low-voltage implementation issues, tunability,




176 Noise

low-power operation, high-frequency performance and class-AB operation is dis-
cussed next.

2 Vop

1
2 Vop
(a) (b)

Figure 6.8: Comparison of the dynamic range properties of (a) RC and (b) diode-C
filter sections.

supply voltages, to Vpp/(2R). Assuming class-A operation, the signal swing in
the diode-C filter is limited by the dc bias current I4.

The only noise source in the RC filter is due to the resistor B. The double-
sided noise current power spectral density is given by 2k7'/R. The noise band-
width of the filter equals 1/(2RC). Hence, the equivalent noise power is found
to be kT'/(C R?).

In the diode-C circuit, when the signal x noise intermodulation is neglected,
the power spectral density of the shot noise in the bias point equals gl4.. In
comparing the two filters, both the capacitance value and the bandwidth of the

| filter are assumed to be equal. As a result, the relation between R and Iy
‘ is given by: RI3. = Ur, where Ut is the thermal voltage. Hence, the noise
\ bandwidth of the TL filter equals I4./(2CUr), and the equivalent noise power

For the RC filter section, the current signal swing is limited, due to the
\

is found to be ¢I3./(2CU7).

Dividing the maximum signal swing by the total amount of noise, we find the
dynamic ranges DRp¢ and DR, ¢ for the RC and the diode-C filter section,
‘ respectively. This yields:

‘ CVa

‘ DRpc = 0T (6.40)
DR, c = 2CqUT. (6.41)

|
i Equations (6.40) and (6.41) represent upper limits of the DR. In practice, these
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values have to be divided by the square of the crest factor? of the specific signal
being processed.
To compare the dynamic range properties, we divide DRg¢ by DR, ¢:

DRrc _ Vip

= : 6.42
DRy,.c 8UZ (6.42)

Obviously, in principle, application of filters based on linear resistors yields a
much better DR. For example, even for a low supply voltage of 1 V, and Uy =
26 mV, DRpc and DRy, ¢ differ by a factor of 185, or equivalently, 22.7 dB.
Since the minimum power consumption of a filter is fundamentally related to the
desired DR [172], the voltage swings should preferably be rail-to-rail [172, 174].
This is realised in the RC section, but not in the diode-C' sub-circuit, where the
voltage swing is only Ur, corresponding to a current swing of Ic. This explains
the large difference between DRr- and DR,,.c.

The conclusion drawn from eqn (6.42) is not absolute though. Many adven-
titious factors that affect the DR are not incorporated in eqns (6.40) and (6.41).
Their influence is discussed next.

Opamp-MOSFET-C filters

The opamp-MOSFET-C technique is the only method for realising filters with
rail-to-rail signal swings and low noise levels [172]. In opamp-MOSFET-C filters,
large voltage swings are possible, due to the fact that the quadratic behaviour
of the MOS transistor in strong inversion can be approximated quite accurately
by a first-order Taylor polynomial. Thus, the sub-circuit shown in Fig. 6.8(a)
can be used to represent this class of filters. Based on the simple MOS square
law equation, it is even possible, in theory, to obtain a perfectly linear transcon-
ductance that extends the voltage swings (175]. Consequently, these filters can
be made to approach the fundamental limit regarding the minimum power con-
sumption for a certain specified DR [172].

Unfortunately, at low supply voltages, opamp-MOSFET-C filters become
difficult to implement [171-173], resulting in a lower DR than indicated by eqn
(6.40). Due to the requirement for strong inversion operation, very low voltage
operation only becomes possible by using an on-chip charge pump to drive the
gate voltages high. In addition, the tuning range of these filters is quite limited;
it is only just enough to cope with process tolerances [171].

MOS g,,C filters

The class of transistor-only g¢,,C filters can be divided into the categories of
‘MOS ¢, C” and ‘bipolar g,,C’, based on MOS and bipolar transistor-only

2The crest factor of a signal is defined as the ratio between the peak value and the root-
mean-square value.
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transconductances, respectively. With respect to opamp-MOSFET-C filters,
the excess noise of the transconductors in MOS g,,C filters results in a factor
2 to 3 lower DR. Since most of the other characteristics of MOS g, C filters
are very similar to opamp-MOSFET-C filters, MOS g¢,,C filters will not be
discussed here.

Bipolar g,,C filters

The circuit shown in Fig. 6.8(b) can be used to represent bipolar transistor-
only g¢,,C filters, since the bipolar transistor is an exponential device. Equation
(6.42) shows that the DR of bipolar g, C filters is generally worse in comparison
to opamp-MOSFET-C filters, since the voltage swings are limited to Ur. In
practice, however, the voltage swings are even smaller due to the strongly non-
linear nature of the bipolar transistor. Therefore, most often, the differential
pair is used instead of a single transistor to eliminate even order distortion.
Nevertheless, the voltage swings remain limited to only 0.7 Ur for a THD of
1%. Application of emitter degeneration resistors is often not allowed as this
severely reduces the tuning range.

Transconductance linearisation techniques using linear combinations of col-
lector currents are not as effective for bipolar as for MOS transconductors and
cannot increase the maximum voltage swings above 100 mVy,;, (130]. Whereas,
exact linearisation is possible for MOS transconductors, as the square law is a
polynomial, exact linearisation of a bipolar transconductance, using only expo-
nential devices, is fundamentally impossible, since the exponential function is
transcendental.

Although the small voltage swings in bipolar g, C have a negative influence
on the DR properties, on the other hand, it makes them very suitable for op-
eration at low supply voltages [130,171,173]. The DR is, at the first order,
independent of the supply voltage. Further, bipolar g, C filters exhibit very
wide tuning ranges and potential for high frequency and low-power operation.

Translinear filters

Since the diode-C circuit shown in Fig. 6.8(b) represents both bipolar g,,C and
TL filters, these two types of filters have many characteristics in common, e.g.,
excellent tunability and potential for low voltage, low power and high frequency
operation.

A major difference is the possible signal swings. Owing to the application
of the DTL principle, in theory, TL filters offer a perfectly linear current-mode
transfer function. Hence, the maximum signal swings in TL filters are larger
than in bipolar g,,C filters. A DR comparison between a bipolar ¢,,C, a log-
domain and a tanh filter, reported in [10], shows that the latter two outperform
the ¢,,C filter by 13 dB and 10 dB, respectively.
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A very important aspect of log-domain filters is the possibility of class-AB
operation, which can be used to increase the DR. For example, in [9], a DR of
65 dB is reported, in connection with a maximum SNR of 52.5 dB. Class-AB
operation is possible due to the fact that the linearisation mechanism of TL
filters is theoretically exact. Since the two different signal paths only have to
process unipolar signals, no dc bias current is needed. Hence, the noise floor is
de-coupled from the maximum current signal swings, in contrast to the class-A
set-up shown in Fig. 6.8(b).

Summary

To conclude, in principle, opamp-MOSFET-C filters are the best choice for a
large DR in the area of tunable continuous-time filters. However, in low voltage
environments, or for applications where a large tuning range is required, TL
filters and bipolar g,,C are more suitable.

Owing to the theoretically exact linearisation mechanism, TL filters are an
interesting and competitive alternative to g,,C filters. Particularly when class-
AB operation is applied, the DR of TL filters, which is theoretically unlimited,
exceeds the DR obtainable with g,,C filters. At low supply voltages, the DR of
(class-AB) TL filters can even exceed the DR of practical opamp-MOSFET-C
filters.

6.5.2 Noise analysis method

To a large extent, the noise analysis method for DTL circuits is identical to the
method described in Section 6.4.1 for STL circuits. However, some complica-
tions arise due to the frequency-dependence of the capacitance currents.

The TL loop equation (6.14) is representative both for STL and DTL cir-
cuits. The only difference is the presence of capacitance currents. To find the
DE describing the transfer function of a DTL circuit, the expressions for the
capacitance currents have to be derived and substituted in the TL loop equa-
tion. Since the capacitance currents are related to collector currents incorporat-
ing noise, the resulting capacitance current expressions will include these noise
sources and their derivatives. These derivatives of noise sources are additional
elements in the noise vector 7, which are correlated to the noise sources from
which they originate [170].

The DE obtained through substitution of the capacitance current expressions
can contain complicated noise terms. Again a first-order Taylor approximation
is applied to simplify the expressions. The approximation is performed with
respect to all noise sources, thus including the time derivatives of noise sources
that are additional elements in 7.

Since correlated noise sources, with a coloured frequency spectrum, are in-
troduced in DTL circuits, each autocorrelation function R7; now has to be
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computed collectively for an entire group of correlated noise sources. Often,
a complete group of correlated noise sources can be rewritten into one single
expression of the form i;G;, where i; represents a white noise source and G;
contains no noise sources. If this situation is accomplished, eqns (6.19)—(6.21)
can be used once more to calculate the noise frequency spectrum.

In the DE, not all noise terms will be situated at the output of the filter.
Hence, once the power spectral density of a noise term is calculated, it has to
be transformed to the output of the filter through multiplication by a certain
frequency-dependent transfer function. For example, a noise term at the input
of the filter is transformed to the output through multiplication by |H(w)|?,
where H(w) describes the transfer function of the filter.

Base resistance thermal noise

In DTL circuits, a complication arises concerning the influence of the base re-
sistance thermal noise sources. A capacitance connected in a TL loop divides
the TL loop in two capacitance-junction(s) loops. As a result, only the noise
voltage sources within each of the two resulting loops are series connected and
can be combined into an equivalent noise source.

6.5.3 Analysis examples

In this section, some illustrative analyses of the non-linear noise properties of TL
filters are presented. First, a first-order class-A filter is analysed, which shows
that the influence of signal x noise intermodulation is quite small when class-A
operation is assumed. Secondly, the corresponding class-AB filter is examined.
In this mode of operation, the signal X noise intermodulation dominates for
large values of the input power. Finally, Seevinck’s class-AB filter circuit is
dealt with.

Class-A translinear filter

Figure 6.9 shows an already well-known DTL circuit. This first-order low-pass
filter operates in class A. Its cut-off frequency can be tuned by the current I,.
Basically, the filter consists of a second-order TL loop, comprising Q1~Q4, and
a capacitance C.

The filter can be described by its TL loop equation [16}, including i;—4:

(Idc + Iin + il + iS)IO = (Io + Icap + iZ)(Idc + Iout + i3,eq + i4 + ie),
(6.43)

where i5 and ig are the equivalent input and output noise currents originating
from the base resistance noise of Q;-Q2 and Q3-Q4, respectively, represented by
vs and vg, shown in Fig. 6.9. Due to the presence of C in the TL loop, vs and




6.5 Noise in translinear filters 181

Figure 6.9: Noise in a translinear first-order low-pass filter.

ve cannot be combined into one equivalent noise voltage. The shot noise source
i3 is transformed to an equivalent noise source i3 ¢q = —%3* (Jgc + Zout) /I, at the
output. This way, the capacitance current is only determined by the current
Iyc + Iy + 43,04 + 14 + 46 through Q4, which avoids the production of correlated
noise components in the equations.

Equation (2.20) can be used to eliminate I ,p, resulting in a DE. Ignoring
products of noise sources yields:

CUr |. da . ) . . . .
—I— Tout + d_t (ZS,eq + 124 + ’Le) + Tout + 13,eq T %4+ 1% =
o

. . . Iqe + 1,
Ly 4y +is — zzﬁ_]_ﬁ,
[o]

(6.44)
Equation (6.44) shows that ¢;, iz and is are situated at the input of the

filter, whereas i3 .q, t4 and ig are located at the output. Hence, two noise

spectra St;, (w,t) and S7,,,(w,t) can be distinguished, which are given by:

Iy + Iap)(Tac + Iow)?  4Rp(Iac + Iin)?
S7—in(w7t):Q|:Idc+Iin+( + cp)( de + t) + B( dc + ) },
N, e’

. i - Ur
" iz v
(6.45a)
Iac + Touw)® 4Rp(Iqc + Tout)?
Sri8) = g LTl g 1 4 2T o) | @
I, —_— Ur y
24 e
i3 )

The horizontal braces indicate the origin of the different terms.

To calculate the equivalent output noise, Sz, (w,t) has to be transformed to
the output. In principle, to obtain the resulting non-stationary output noise
spectrum, the application of two-dimensional Fourier transformations is re-
quired, instead of the one-dimensional transformation introduced in eqn (6.13).
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However, in the definition of the SNR the time-averaged spectrum is used. Since
the filter under consideration is linear, the sequence of the operations of filtering
and averaging can be exchanged, which simplifies the calculations. Hence, the
contribution of S, (w,t) to the average output noise spectrum St(w) is equal
to S (w)|H(w)|?. Thus, S7(w) is given by:

- _ Igc + Plout 4RBI§C 2
St(w)=q (Idc + A = (1 + |H(w)| )

49Rp
P,
+ Ur ( Tout

+ Pr, [HW)*) . (6:46)

Equation (6.46) shows that intermodulation of the noise sources with both
the input and the output signal occurs. It is important to note that the input
signal does not have to be in the pass-band of the filter to increase the noise
level. Consequently, a large out-of-band-signal will deteriorate the SNR of a
small in-band-signal at the output of the filter. The intermodulation noise is
higher for in-band signals as for out-of-band signals, though.

Using eqn (6.46) and applying the noise bandwidth of the filter to i3,eq;
is and ig as well, the SNR of the class-A TL filter can now be determined.
Considering a sinusoidal input current within the pass-band of the filter, see
eqn (6.27), the SNR as a function of m plotted in Fig. 6.10 is obtained. In this
figure, C = 10 pF, Rg =0 2, I3 = 5 pA and [, = 1 pA.

60 v —— T T —TTT T
=)
=)
z 40
Z
w2
Non-linear calculation ——
Linear approximation ——-
20 L N R T 1 Rt L1 i s 1 L 2t ) A
0.01 0.1 1

m
Figure 6.10: Signal-to-noise-ratio for a translinear filter operated in class A.
Since m < 1 for a class-A filter, the influence of signal x noise intermod-

ulation is very small. The difference between the non-linear calculation and
the linear approximation, shown for reference in Fig. 6.10, equals only 1.51 dB
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for m = 1. Hence, for class-A TL filters, the noise floor in the absence of any
signals can be used as a very good estimate of the noise. This is not the case in
class-AB filters, as is shown in the following section.

Class-AB translinear filter

To benefit from the DR improvement companding can provide, class-AB oper-
ation is required. A possible way to realise a class-AB first-order low-pass filter
is to use the geometric mean current splitter, shown in Fig. 6.7, and, with the
aid of some current mirrors, apply the currents iy, and Ii,, to the inputs of two
class-A log-domain filters, shown in Fig. 6.9. The dc bias current Iy, becomes
obsolete and is omitted. The output currents of the two class-A filters are de-
noted by Ioye, and Ioyt,. The SNR of the resulting class-AB filter is calculated
next. A sine wave input is assumed, see eqn (6.27).

It was shown in Section 6.4.2 that the current splitter does not contribute
any noise. Assuming the current mirrors between the splitter and two class-
A filters do not have a significant noise contribution, the equivalent output
noise power equals two times the equivalent output noise power of the class-A
filter. Neglecting the influence of Rp, computation of the (average) spectrum
ST I, (w) yields:

Srimt) = o (22 4 T ) (1+ 1), (6.47)

where Tout, (= Iin,) is the dc average value of Iou,, P,
and H(w) is the transfer function of the filter.

In class-AB TL filters, the noise floor increases due to two effects. First, the
signal X noise intermodulation causes the SNR to saturate. Second, the noise
level rises due to the increase of Io,¢,- The latter effect is less strong, however,
and cannot cause saturation of the SNR.

To calculate the SNR for a single signal in the pass band of the filter, Pp, ,
see eqn (6.47), can be replaced by Pr,, - In other words, the transfer function is
approximated as being frequency-independent. Using a geometric mean current

splitter, the power Py, is given by:

is the power of Ioys,

Pp, =2 =1I (1+3m?). (6.48)
An exact expression for the average value K; for the sine ‘wave input, see eqn
(6.27), cannot be computed. However, for noise purposes, L, can be approxi-
mated by:

. _{m ifm < 1, (6.49)

L EY if m > 1.
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The exact value of I;,, and the approximations, eqn (6.49), are illustrated in
Fig. 6.11.

v l L} l ¥ ‘l’ L
Exact —
6 |-  Approximation ---

<Iin II Idc>

Figure 6.11: The dc output level of a geometric mean splitter.

The total output noise power of the class-AB filter is found by integration
of eqn (6.47) over w, and multiplication by a factor 2 to account for the two
class-A filters. The noise bandwidth of the filter, which equals I,/(2CUr) for a
double-sided spectrum, is also applied to i3 and ¢4, shown in Fig. 6.9. For large
values of m, the SNR is given by:

b

C

SNR = gt (6.50)
CUr (2 + Iyc (14 §m?)]

The SNR is a function of the modulation index m of the input signal. Figure
6.12 displays the SNR, using the exact value of I,,. The parameter values used
in this plot are: Iy, = al,, where a = [0.1, 1, 10], I,=1 pA, C= 10 pF and Ur=
26 mV. The corresponding cut-off frequency is 612 kHz. The z-axis variable,
equal to m - g, represents the amplitude of [;,,, normalised to I,. For low values
of m - a, the SNR increases linearly, by 20 dB per decade. Eventually, the SNR
saturates to a value of 62.1 dB.

A higher value of the quiescent current Iy, constitutes a higher noise floor,
and hence, a lower SNR, as illustrated in Fig. 6.12. Whereas a low value of Iy
decreases the output noise, it also increases the distortion at a certain input
power level. These two effects will have to be mutually weighted during design.

For reference, we mention the DR at m= 15, which is an estimation of the
practical upper limit of the signal swing. For m = 15, and a = [0.1, 1, 10], the
DR equals [79.2, 86.6, 89.2] dB, respectively. The differences of [17.1, 24.5, 27.1]
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Figure 6.12: Signal-to-noise-ratio of a class-AB translinear filter.

dB, respectively, between the DR and the SNR demonstrates the beneficial in-
fluence of companding.

Maximum signal-to-noise ratio

The maximum value of the SNR equals the limit of eqn (6.50) for m — co:

lim SNR = 2UT.

Jim (6.51)
This limit leads to an interesting conclusion. The maximum SNR not only in-
creases linearly with the capacitance C, but also with the absolute temperature
T. This effect can be explained as follows. On the one hand, the shot noise
power is independent of the temperature. On the other hand, eqn (3.23) shows
that the capacitance voltage swings increase proportionally to 7', which is bene-
ficial with respect to the SNR. Note that, except for a constant factor, the result
of eqn (6.51) complies with (6.8), when Rg = 0, Ic = I, (the lowest collector
current value in the class-AB filter), and B is equal to the noise bandwidth,
1,/(2CUr).

For high current levels, where the base resistance thermal noise dominates,
the same conclusion is reached. In this region, for the class-AB filter the maxi-
mum SNR is given by:

. _CUr Ur
"}L’moo SNR = '—q— EB—I:. (652)
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The first fraction on the RHS corresponds with eqn (6.51). The second fraction
is temperature independent, since I, has to be a PTAT current to compensate
for the temperature dependence of the low-pass cut-off frequency [1,2].

The limited value of the maximum SNR can be explained intuitively from the
first-order TL filter depicted in Fig. 6.9, assuming class-AB operation. Figure
6.13 shows that this filter can be re-drawn as a cascade of two-ports. It is obvious
that the SNR of a chain of two-ports is limited by the element(s) having the
lowest SNR. A translation of this fact to the circuit shown in Fig. 6.13 indicates
that the maximum SNR of the class-AB TL filter is limited by the transistors
with the lowest SNR value, defined in Section 6.2.

1!

Figure 6.13: A translinear filter consisting of a cascade of two-ports.

In Fig. 6.9, for increasing input signal swings, and class-AB operation, the
average collector currents of Q1 and Q4 increase accordingly. Hence, the SNR
of Q; and Q4 increases. The average collector currents of @2 and @3, however,
remain equal to I,. Thus, for large signals, the SNR of these two transistors
dictates the maximum SNR value of the complete filter. For @3, Py equals IZ2.
The (double-sided) power spectral density of ic is equal to gl,, and the noise
bandwidth of the filter equals I,/(2CUr). Hence, P;. becomes ¢I2/(2CU7),
and the SNR of Q3 is found to be 2CUr/q. Since Q2 and Q3 have the same
SNR, the overall SNR is reduced by a factor of two. This again yields:

CUr

SNRumax = (6.53)

Noise due to out-of-band signals

A major advantage of the proposed analysis method is its comprehensiveness.
For example, eqn (6.47) incorporates the different influence of in-band versus
out-of-band signals being processed by the filter. Figure 6.14 displays the noise
power spectrum for a sinusoidal input signal, with m = 10, at the frequencies
w= [%5, 1, 10]we, we being the cut-off frequency of the filter. For reference, the
noise level in the absence of any signals is also depicted.

The co-existence of a large signal and a small signal in a companding TL
filter is an interesting situation. Suppose the small signal is the desired output




6.5 Noise in translinear filters 187

T T T
Quiescent

— loy, --—--
N I o, ------
jand K3 2t S < -
E F \\\\\ 10 @ oo
I S EE ~
E Sees
R e U O S S
22T T 7]
g e
s T
S
£~
s 1 =
=
=
Q

0 1 1 1

10k 100k IM 10M

Frequency {rad/s]

Figure 6.14: Influence of signal x noise intermodulation on the noise spectrum.

signal and the large signal is outside the pass-band. Now, in conventional filters,
the large signal will limit the maximum SNR at the output as it occupies a
large part of the available DR of the filter. Naturally, the same effect applies
to companding filters. However, in these filters, the SNR at the output will
be further decreased, as the large out-of-band signal will increase the internal
noise level [31]. This effect makes companding filters less suitable, e.g., for
intermediate-frequency filtering [172], unless some form of linear pre-filtering is
used [31].

Figure 6.15 displays the resulting SNR for an in-band signal as a function
of the amplitude of an out-of-band signal. The applied input signal equals
Iac(msinwit + nsinwat), where wy and we are the in-band and out-of-band fre-
quencies, respectively. The modulation index m of the in-band signal equals
[0.1,1,10], and n denotes the modulation index of the out-of-band signal. The
figure demonstrates the expected behaviour. Clearly, the effect is more pro-
nounced for in-band signals with a small amplitude, i.e. a low value of m.

Seevinck’s class-AB integrator

Although exhibiting an externally-linear transfer function, the class-AB inte-
grator proposed by Seevinck in [2], and shown in Fig. 6.16, is a non-linear DTL
circuit in a way as it implements two non-linear DEs, see eqns (4.99a) and
(4.99b). In Fig. 6.16, two current sources I, have been added in parallel to the
capacitances to give the circuit the same low-pass transfer function as the filter
shown in Fig. 6.9.



188 Noise

—— T T T T T T T T T
60 -
a - -."»
=, m= 10 —
¥ m= | ---
& 40 m=0.1
S _
20 1 Ll I_LIIIL 1 'l LJ_IIIIL L 1 ll_‘llll “I .
0.01 0.1 1 10 100

Figure 6.15: Signal-to-noise-ratio in the presence of an out-of-band signal.

Figure 6.16: Seevinck’s class-AB translinear filter in the presence of noise [2].

With respect to the class-AB filter treated previously, the most important
change is the addition of the output currents I,y:, and Iy, to the collector
currents of Q13 and @3, respectively. This addition ensures that these collector
currents are strictly positive when the circuit is used as an integrator, i.e.,
without the current sources I, connected in parallel to the capacitors, introduced
here.

The circuit basically comprises two TL loops, the inputs [, and fip, of
which are obtained from a (geometric mean) current splitter. The difference of
Iout, and oy, is the actual output current Io¢. In the presence of shot noise,
the overall DE is found to be:

CU. . di di . . . .
—701 (Iout’i'itg_'d%) + Ioue + 14 — 414 = Lin + 41 — i1
I R f . I . N/
+ iz—‘il- - Znﬂ + (Z15 - 1,3) outy + (213 - 15)__out2 . (6.54)
IO o IO IO

Taking into account the symmetry of the filter, when I, is stationary and
symmetrical, the average power spectral density function St of the total output
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noise can be expressed as:

Pfinl - PIoutl + 2Iin1-[0ut1
Io

S1(w) =2 (I_ + ) JHW)? + 2qTout, -

(6.55)

Since St is partly determined by Ioy, and fin, Loy, , to evaluate the exact noise
spectrum for a given input signal, the DEs (4.99a) and (4.99b) have to be solved.
Unfortunately, as these DEs are non-linear, there is no general way of doing so.
The only solution is to apply a numerical approach, i.e. to use a circuit simulator.
Common simulation programs can be used to find Lout, and iy, Loy, -
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Voltage-translinear circuits

TransLinear (TL) circuits are based on the exponential law describing the bipo-
lar transistor. Based on the square law model for the strong inversion MOS
transistor, a different type of TL circuits can be realised [67-70]. The formal
definition of the general principle behind these ‘Voltage-TransLinear’* (VTL)
circuits was published by Seevinck and Wiegerink in [67], see Section 2.3.

This chapter discusses the practical relevance of the VTL design principles,
and in particular of Dynamic Voltage-TransLinear (DVTL) circuits, the strong
inversion MOS analogue of Dynamic TransLinear (DTL) circuits. With the
possible exception of specialised non-demanding applications, it is concluded
that VTL circuits do not have much practical value.

Section 7.1 first discusses the validity of the square law model for the drain
current. Another important aspect, the designability of VTL circuits, is dealt
with in Section 7.2. Section 7.3 describes the general large-signal analysis of
DVTL circuits. Based on this analysis method, finally, in Section 7.4, a com-
parison is made between three possible DVTL output stages, the analogs of the
log-domain, tanh and sinh DTL output stages described in Section 3.3.

7.1 Square law conformance

The square law model of the drain current in the strong inversion region, eqn
(2.25), is a rough approximation of the MOS transistor’s behaviour in practice
[117). Whereas the exponential law, describing the bipolar transistor, is valid
across a current range of six to ten decades, the square law model is only valid
over approximately 1.5 decades of current [70]. This current range is even

1The term ‘Voltage-Translinear’ proposed in [63,64] is used throughout this thesis as it
clearly distinguishes between TL principles based on the exponential law and VTL principles
based on the square law, as opposed to the term ‘MOS Translinear’ proposed in [67].
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smaller for modern CMOS processes, due to down-scaling of the gate oxide
thickness. As a consequence, the square law region will ultimately vanish, and
with it the sole foundation of the VTL design principles.

The validity of the square law is further degraded by the body effect. This
second-order effect can be cancelled out by connecting the back-gate of each
transistor to its source, but this implies an important speed penalty. In folded
topologies, the effect is less pronounced but nonetheless present.

7.2 Designability

Another disadvantageous property of VIL circuits concerns the designability.
In principle, the synthesis path of VTL circuits [70,73] is very similar to the TL
design trajectory shown in Fig. 4.1. However, severe problems are encountered
at the stage of VTL decomposition.

In comparison with the TL loop equations, the VTL loop equations are much
more complicated and mathematically awkward. Hence decomposition is very
difficult for VTL. To date, the only existing structural method for finding VTL
decompositions is a numerical one, which can only be applied to four-transistor
single-loop circuits, having one input, one output and one bias current [70].

Furthermore, VTL circuits are far less versatile than TL circuits. An illus-
tration of this fact is given by the very limited number of different VTL loop
equations that can be found in literature, see, e.g., [70] for an overview.

In addition, the design of VTL circuits with true class AB VTL behaviour,
that is, having theoretically unlimited signal swings, is difficult. This is again a
consequence of the fundamentally different characteristics of TL and VTL loop
equations.

7.3 Analysis of dynamic voltage-translinear
circuits

In Section 2.3.2, the DVTL principle is explained with respect to the class of /-
domain filter networks. This class of DVTL circuits is characterised by the sub-
circuit depicted in Fig. 2.11, where the capacitance C forms a closed loop with
one gate-source voltage. In general, however, a capacitance in a DVTL circuit
is connected in series with a number of gate-source junctions, as illustrated by
Fig. 7.1, compare with Fig. 3.6. The corresponding capacitance current I,y is
given by:

I
Lap = 0\2 +—DSMi (7.1)

V2BiIps,m;
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where Ips as, and §; are the drain currents and transconductance factors, re-
spectively, of the transistors comprising the loop. The sign of each fraction in
eqn (7.1) is dependent on the orientation of the transistor in the loop.

Figure 7.1: A capacitance in (a part of) a voltage-translinear loop.

In combination with the VTL loop equations, see eqn (2.27), (7.1) is the key
to the large-signal analysis of DVTL circuits. The resulting analysis method
is used next in Section 7.4 to investigate the characteristics of three possible
DVTL output stages.

7.4 Characteristics of different
voltage-translinear filter classes

Replacing the bipolar transistors in the DTL output stages shown in Figs 3.14,
3.19 and 3.23 by strong inversion MOS transistors results in three possible DVTL
output stages, see Fig. 7.2.

dL
¢ ! b I
lcapl E lldc+[(1ul lcapl : l ou l \ cap vul
|
L L I
I I ildc
@ (b) flac

Figure 7.2: Three possible dynamic voltage-translinear output stages.
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v/~domain circuits

The first DVTL output stage, the common-source stage, is characteristic for
the class of y/-domain filters [29,30,73,176]. This sub-circuit can be used to
implement the derivative fout, given by eqn (2.32) with Ins = Iy A com-
parison of the log-domain and the 1/-domain output structures, based on egns
(3.56) and (2.32), shows that the latter class needs more circuitry to implement
the derivative Ioy;. Only four (bipolar) transistors are required to implement a
log-domain low-pass filter. On the other hand, the implementation of the /-
domain integrator described in Section 8.5.2 requires a square-root circuit and a
multiplier. The multiplier again comprises two square circuits. The /-domain
integrator published in [176] is a little more efficient as it requires a square-root
circuit and only one square circuit. Nevertheless, it is clear that /-domain
circuits require significantly more circuitry than log-domain circuits.

Differential pair output stage

Even more hardware is required to implement a linear derivative Iyt based on
the differential pair output stage, shown in Fig. 7.2(b). The capacitance current
I .p is now given by:

c . 1 1 )
P vV 2/3 out (\/Idc + Iout \/Idc ~ dout ( )

where § is the transconductance factor of the transistors comprising the differ-
ential pair.

The question arises whether the differential pair is a useful DVTL output
stage. The MOS differential pair is often used in conventional filter implementa-
tions. In these circuits, a total harmonic distortion of 1% in I,y is obtained for
a sinusoidal input voltage swing of 1.8 V,, (for 8 = 50 uA/V?, Vi = 0.7 V and
I4c = 1mA). This is equivalent to an output current modulation index m = 0.53.
Hence, application of the DVTL principle can yield a theoretical improvement
of the Dynamic Range (DR) of only 5.5 dB. However, the large amount of ad-
ditional circuitry required introduces additional noise and distortion, and will
reduce this 5.5 dB DR improvement.

Analog of the sinh output stage

More interesting is the output stage shown in Fig. 7.2(c), which is a direct
translation of the sinh DTL output stage. The capacitance current is now given
by:

C

Icap = 4\/"_%ﬁjout- (73)
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Note that I..p and Iy are linearly related. As a consequence, no additional
circuitry is required to linearise this output stage; it is already linear. Addi-
tionally, this stage allows a kind of class-AB behaviour as the maximum current
swing of I,y is four times as large as I4c.

The above comparison of the three possible DVTL output stages shows that
the two circuits shown in Fig. 7.2(a,b) are not practically useful, and only in-
teresting from an academic point of view. They require a significant amount of
additional hardware for linearisation purposes, which is not required at all for
the output stage shown in Fig. 7.2(c).

In fact, the output stage shown in Fig. 7.2(c) is a well-known circuit [69],
and many related implementations have been published, see, e.g., [68,177,178].
The linear V-I relation is possible owing to the fact that the MOS square law
is a polynomial function. An analog principle for DTL circuits is fundamentally
impossible since the exponential law is not a polynomial, but a transcendental
function.
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Realisations

This chapter describes realisations of both Static TransLinear (STL) and Dy-
namic TransLinear (DTL) circuits. In addition, one realisation of a Dynamic
Voltage-TransLinear (DVTL) circuit is described.

As STL circuits have been around for many years, the accent of this chapter
lies on DTL circuits. The STL circuits described in Section 8.1 [119,179] are
not conventional in that they use properties of the subthreshold MOS transistor
not available in TL designs using bipolar transistors.

Sections 8.2 [180] and 8.3 [93] discuss linear TransLinear (TL) filters. These
filters have been designed to operate at a low supply voltage down to 1 volt.
The filter described in Section 8.2 is operated in class A, the filter described in
Section 8.3 in class AB.

A non-linear application of the DTL principle is RMS-DC conversion, which
is the topic of Section 8.4 {22,42,181].

The last design example, discussed in Section 8.5 [73], is a current-controlled
oscillator, based on the DVTL principle.

Two other design examples demonstrating the application of the synthesis
theory proposed in Chapter 4, an oscillator and a phase-locked loop, can be
found in [21] and [27,28], respectively.

8.1 Subthreshold MOS translinear circuits

Application of the subthreshold MOS transistor opens up some extra possibil-
ities for the implementation of TL circuits, as described in Section 4.5.2. This
section describes realisations of STL circuits based on these additional options.

First, the application of the back gate-as an active terminal is used in Section
8.1.1 to implement a low-voltage current mirror. Another application of the
back-gate terminal is reported in Section 8.1.2, describing the design of a sine
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shaping circuit. Finally, operation of the MOS transistor in the triode region is
exploited in the cascoded current mirror dealt with in Section 8.1.3.

8.1.1 Bulk current-mirror

In a conventional current mirror, see Fig. 8.1(a), the input current Ij, forces
the gate voltage, while the back-gate is connected to the source. However, it is
equally possible to bias the gates at a constant voltage Vier and use the back-
gate to mirror the input current, as shown in Fig. 8.1(b). This principle can
also be applied in strong inversion [182]. For an NMOS mirror in a p-substrate
process, a double-well process will be necessary. The bulk-source junction is
biased slightly forwards. As a consequence, the input voltage Vi, is restricted
to about 350 mV to keep the back-gate leakage current small in comparison
with Iin. The input voltage has to be higher than about 100 mV for the input
transistor to remain saturated. The input voltage of the bulk current-mirror is
lower than the gate-source voltage of the conventional current mirror. Hence,
the bulk current-mirror might be useful for low-voltage applications.

Iinl

M,

(a)

Figure 8.1: {a) Conventional current mirror. (b) Bulk current-mirror. (c) Improved
bulk current-mirror.

The current mirrors were implemented using transistor arrays. The aspect
ratio of the NMOS transistors used is 108/7 pm/um. The gates are biased at
350 mV. The measured and ideal output current Iy, of the bulk current-mirror
are depicted in Fig. 8.2. For [;;, < 100 pA, the bulk voltage is less than 100 mV,
causing a deviation from the ideal transfer function. Above I, = 100 nA, the
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Figure 8.2: Measured and ideal output current of the bulk current-mirror.

bulk voltage is greater than 420 mV and the resulting leakage current reduces
the accuracy of the bulk current-mirror.

The main disadvantage of the bulk current-mirror is the small input current
range with respect to a conventional current mirror. First, this is caused by
the relatively small input voltage range of about 250 mV. Secondly, the slope
of the VBs versus In Ips characteristic is usually about twice as steep as the
slope of the Vigs-In Ing plot. The second effect can be cancelled out by driving
the gate as well as the back-gate, connecting them by a voltage source. Figure
8.1(c) shows the resulting current mirror, where M3 is a simple realisation of
the voltage source. The drain current Iy, of M3 is added to L. Therefore,
I has to be much smaller than Ij;,. Another possibility is to compensate for
I4c by subtracting Ig. from I,y:. The derivative of Viy-In I, of this mirror is
the same as the derivative for a bipolar transistor current mirror, which is 59
mV/decade, as shown by the measurements depicted in Fig. 8.3, where V;, is
plotted against [;;, for the current mirrors shown in Fig. 8.1. The increase of
the derivative of Vi,-In f;;, for the improved bulk current-mirror around 100 nA
is due to a protection diode between the gate and the back-gate, which causes
latch-up for higher bulk voltages.

The bandwidth of the bulk current-mirror is about four times lower than the
bandwidth of a conventional mirror. Both the input resistance and the input
capacitance are about twice as large. Hence, the price paid for low-voltage
operation is a reduction of the bandwidth.
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Figure 8.3: Measured input voltages of the conventional mirror, the bulk current-
mirror, and the improved bulk current-mirror.

8.1.2 A sinz-circuit in MOS technology using the back-
gate

A trivial application of the topology shown in Fig. 4.26, described by the new
equation structure (4.82), is the construction of a square-root circuit. A bread-
board version of the circuit, depicted in Fig. 8.4, was built using transistor arrays
to verify eqn (4.82). The drain currents of transistors My, M3, My and Mg are
all 1 nA (= I4.), and are supplied by the two current mirrors, implemented by
Mjy through Mig. The drain currents of My and Mj are the input current I,
and the output current I, respectively. The gates of M5 and Mg are biased at
Vier = 550 mV. Transistors M7 and Mg are two simple floating voltage sources,
which are used to keep M3 and M; in saturation for bulk voltages of less than
100 mV. The supply voltages Vpp and Vsg are 1 V. The aspect ratios of the
used NMOS and PMOS transistors are 108/7 and 108/7.5 pm/um, respectively.

Measurements were performed using an HP4142B Modular DC Source /
Monitor. In Fig. 8.5, the ‘transfer function’ I2, /I, of the square-root circuit
is plotted. The large errors at low and high values of the input current are
caused by leakage currents of the measurement set-up and by the transition
into the moderate inversion region, respectively. The main cause of error for
intermediate current values is mismatch, which is quite large due to the bread-
board realisation. The average mismatch between the drain currents of two
transistors at the same gate-source voltage is about 9%. As a consequence, the
influence of the restricted validity of the simple drain current model (4.76) could
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Figure 8.4: Application of the back-gate in a square-root circuit.

58

not be measured. Nevertheless, it is clear that the circuit will be quite accurate
when the transistors are properly matched.

Based on these results, a sine shaping circuit was designed using the general
topology shown in Fig. 4.26. The sine function cannot be implemented directly
using TL circuits. First, an approximation by a polynomial or rational function
has to be derived. The sine function can be approximated by a rational function,
eqn (4.31). Another way of writing this sine approximation is eqn (4.41), which
can easily be fitted on equation structure (4.82) by choosing I> = (I~ Ious—~Ln),
I; = (IO + Lout +Iin): Iy = (Io -+ Ijn), Ig = (Io — Iin) and I = I, where [,
and oyt are the input and output current, and I, is a dc bias current. The sine
shaped output current is obtained by:

2oy = I3 — I, — 21, (8.1)

The complete circuit is depicted in Fig. 8.6. Since the circuit is differential,
a gamn cell, implemented by Mg—M;y [44], is used to convert the input signal
into a differential signal. Current mirrors are used to supply the currents to the
actual sin z-circuit.

The measured output current is shown in Fig. 8.7. The gates of M5 and
Mg in Fig. 8.6 are biased at 350 mV, the bias current I, is 1 nA and the input
current I, varies from 0 to 2 nA. The drains of M, and M3 are loaded by two 500
mV voltage sources. Despite the rather large mismatch due to the breadboard
realisation, causing offset, asymmetry, amplitude, phase and frequency errors,
the result is clearly a sine function.
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Figure 8.5: Transfer function I2,/Iin of the square-root circuit.
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Figure 8.6: A sin z-circuit.
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Figure 8.7: Measured output current of the sin z-circuit.

8.1.3 High-swing cascode MOS current mirror

Due to the trend towards lower supply voltages in modern VLSI systems, many
well-known conventional circuit techniques are no longer applicable. An im-
portant example is the current mirror, a common basic building block. Es-
pecially for high-performance implementations, like the cascode, the standard
Wilson {100} and the improved Wilson current mirrors [183], the output voltage
swing is severely reduced.

A number of low-voltage high-swing cascode current mirrors have been pro-
posed, e.g., [184,185]. In these designs, voltage room is gained by operating the
grounded MOS transistors at the verge of saturation. An even higher output
voltage swing is obtained when the grounded MOS transistors are operated in
the triode region, as was recently proposed in [186].

In this section, another triode-region high-swing cascode current mirror is
presented. The proposed current mirror is shown in Fig. 8.8(a). Transistors
M3 and M, are operated in the triode region. The operation of the circuit
becomes intuitively clear if M3 and M, are regarded as active resistances, biased
at a constant gate voltage through the diode-connected transistor Mjs. Then
the circuit resembles a simple current mirror, comprising M; and M,, with
source degeneration. The degeneration resistors increase the output resistance
of the current mirror. As My operates in the triode region, the mirror provides
cascode-type output resistance for output voltages even lower than twice the
subthreshold MOS saturation voltage Vps,,,. The output resistance rqy; of the

sat *
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circuit is approximately given by:

1
Tout = GmaTos (__“_ ” 7'04) ) (82)
gm,D4

where gn, is the gate transconductance of Mz, g, p, is the drain transcon-
ductance of My, and r,, and r,, denote the output conductance of M; and
M.

(b)

Figure 8.8: Cascode current-mirrors using triode-region MOSTs.

An exact description of the circuit’s operation is obtained from a large-signal
analysis. A TL analysis can be performed by recognising that the current mirror
basically consists of a TL loop, comprising two MOS transistors operating in
the saturation region, M; and M3, and two MOS transistors operating in the
triode region, M3 and My. The drain currents of Ips, and Ips, equal Ij, and
Iyut, respectively. The forward currents I+, and Ir, both equal Ips, = Igc. As
the drain currents of M3 and M, equal I;;, and Iy, respectively, their reverse
currents are found from eqn (4.86): In, = Iqc — Iin and Ir, = Igc — Ioy:. Hence,
the TL loop equation becomes:

Iin (Idc - out) = Lout (Idc e in) . ' (83)

The solution of eqn (8.3) is indeed Iyt = fin.

The deviation from the ideal transfer function of the current mirror shown
in Fig. 8.8(a) was measured using a transistor array. The aspect ratio of the
used MOS transistors is W/L = 108/7 ym/um. The bias current is Iy = 100
nA. The results are shown in Fig. 8.9.

The input current of the current mirror shown in Fig. 8.8(a) is limited. As
the reverse current Ig of an MOS transistor is positive by definition, eqn (8.3)
shows that i, < Igc. This limitation can be overcome by using an adaptive
biasing method [184,185], which is illustrated in Fig. 8.8(b). By exchanging Iy,
in eqn (8.3) with A-Ioy,, where A > 1, I, and Iy, remain positive for all values
of Ii,. Correct operation was verified by simulation.
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Figure 8.9: Measured error in the transfer function of the current mirror shown in
Fig. 8.8(a).

The operation of the proposed current mirrors is not restricted to the weak
inversion region. The circuits only exploit the symmetric property of the triode-
region MOS transistor, which is equally valid in the moderate and strong inver-
sion region. Correct operation in the strong inversion region is easily validated
through a Voltage-TransLinear (VTL) analysis [70] and was verified by mea-
surements for the circuit shown in Fig. 8.8(a).

8.2 A translinear integrator for audio filter
applications

Especially in a low-voltage environment, the limited Dynamic Range (DR) of
electronic filters is a problem, see, e.g., [80]. If a (frequency) controllable transfer
function is also required and resistor values become too large for integration,
which is the penalty for going to lower and lower currents, the situation becomes
even more complicated [187].

In this section, a systematic approach to the design of a 1 volt, ‘ultra-low-
power’, i.e. resistorless, TL integrator, which can be considered to be a basic
building block of log-domain filters, is presented. Section 8.2.1 deals with the im-
plementation in a low-voltage environment. As an application example, Section
8.2.2 presents a controllable second-order low-pass filter for hearing instruments,
of which the measurements are given in Section 8.2.3.
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Much of the material in this section has been developed by, and in co-
operation with, Martijn Broest and Wouter Serdijn [180].

8.2.1 Design of the integrator

The starting point of the discussion is the TL integrator, as mentioned by
Seevinck in [2], see Fig. 3.8. The circuit basically consists of a second-order
TL loop that implements eqn (3.34). Although Seevinck’s integrator contains
only six NPN transistors, thus indicating its potential to operate up to high
frequencies, it also suffers from some major drawbacks. First, the integrator dc
gain Agc is a function of the current gain factor Sr of the output transistors
and the ratio Io/[in:

Age = ‘g}’“ ~ Br . (8.4)
in .\ /80pks +16

Equation (8.4) shows that the dc gain is small for small values of 8¢ and non-
linear for variations of the input current fi,.

Secondly, because of the two base-emitter voltages connected in series be-
tween the two supply rails, this integrator is not able to operate at very low
supply voltages.

The first disadvantage can be overcome by connecting a voltage follower in
series with the input of the output transistors. Overcoming the other disadvan-
tage implies the use of a different TL topology.

A different TL decomposition was derived to realise the low-voltage TL
integrator. Instead of eqn (3.33), a possible decomposition of (3.34) is:

I, (Iout + Iin) = lgut (Io + Icap) . (85)

At a supply voltage of one volt, four topologies can be used to implement
eqn (8.5). Either an all-NPN folded topology, see Fig. 4.10, or a mixed folded
topology, see Fig. 4.22, is used.

Of the various possible ways to implement eqn (8.5}, the TL loop depicted in
Fig. 4.22(a) has been chosen as it requires only one additional floating voltage
source, is symmetrically biased and — according to simulations, using realistic
transistor models — has a satisfying high-frequency behaviour. The resulting
circuit diagram, including the above-mentioned voltage follower, is depicted in
Fig. 8.10. The floating voltage source prevents transistor ¢J; from saturating.
The PNP current mirror with two outputs delivers the two output currents with
the correct sign to the TL loop. It can be seen that I, no longer determines
the maximum signal current the integrator can handle. These currents are
determined in the complete filter structure, as described in Section 8.2.2.
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Figure 8.10: Signal path of the 1-V translinear integrator with an ideal floating
voltage source and an ideal voltage follower.

Voltage follower

A suitable implementation of the voltage follower is an ordinary differential pair
of which the positive output and the negative input have been connected to
each other.

To be able to drive the output transistor @5 (and possible additional parallel-
connected output transistors), the collector bias currents, Iy, of the differential
pair should be larger than the maximum base current of the output transistor(s).
However, the base currents of the differential pair should be smaller than the
collector current I, of Q4. A very convenient value is the geometric mean of
these two boundaries which equals the geometric mean of the collector bias
currents of )4 and Q5. Hence:

Ibias =V IoIout- (86)

Floating voltage source

A suitable embodiment of the floating voltage source, which additionally reduces
the influence of base currents in the divider, is an ordinary emitter follower.
Again, for the value of its biasing current, lef, the geometric mean of I, and
Iyt is a suitable value. To create some room for the bias source of this emitter
follower and for the tail current source of the voltage follower, an additional
voltage source, Vyc, has been connected in series with the emitters of Q;, Qu
and (5. Note that the absolute value of this voltage source is not important
since it does not appear in the TL loop equation. A convenient value is 200 mV.
The circuit diagram of the complete 1-V TL integrator is depicted in Fig. 8.11.
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Figure 8.11: The complete signal path of the 1-V translinear integrator.

8.2.2 An application example for hearing instruments

Subsequently, the TL integrator is adopted for the design of a second-order But-
terworth low-pass filter for hearing instruments. In this filter, the requirements
shown in Table 8.1 have to be fulfilled [188].

Table 8.1: Filter requirements.

Quantity Value Comment

Supply voltage 1.1-16V

Bandwidth 100 Hz-8 kHz | -3 dB

Cut-off frequency | 1.6 kHz-8 kHz | linearly adjustable in octaves
Dynamic range > 56 dB THD < 2%

Total capacitance: | < 200 pF

The starting point is the second-order low-pass leapfrog filter as depicted
in Fig. 8.12. This filter operates in the current domain and consists of two
integrators. The input-output relation Hr of the filter is given by:

28

Hp= — 1
F T 142H +2HY

(8.7)

Hy being the transfer function of the integrator. With Hy = I,/(sCUr), this
yields a Butterworth low-pass filter with cut-off frequency f. = I,/(7v2CUr).
The filter circuit diagram is depicted in Fig. 8.13.

Only one bias current source, Ix, is necessary to ensure the correct biasing
of the complete filter. Its value determines the maximum signal current the
filter can handle and its DR. Since the circuit is biased in class A, the noise
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Figure 8.12: Second-order low-pass leapfrog filter operating in the current domain,
consisting of two integrators (Hji).
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Figure 8.13: Circuit diagram of the second-order low-pass filter.

sources inside the circuit can be considered to be almost independent of the
signal levels inside the filter. To estimate the DR of the filter, the major noise
sources inside the filter, i.e., the collector shot noise sources, are shifted to the
output. Then, the equivalent output noise power density spectrum is integrated
over the total frequency range (from 100 Hz to 8 kHz) and compared to the
maximum signal power. For sinusoidal signals, with Ix = 400 nA, Iy, = 80
nA, Ve = 200 mV, Iin max = 180 nA (peak value), C4 = Cp = 50 pF, T = 308
K (35 °C) and I, = 47 nA (f. = 8 kHz), this yields a DR of 59 dB. This value
has been confirmed by simulation. With respect to the 56 dB DR requirement,
this means that the bias sources are not permitted to produce more noise than
the signal path of the complete filter. Even in low-voltage applications this
requirement is easily met [189].

8.2.3 Measurement results

The control current I, is realised by a PTAT! current source with a scaled
indirect output [187]. The scaled output is generated by a controllable volt-

! Proportional-To-Absolute-Temperature
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age source in series with the emitter of the output transistor. This results in
the desired exponential relation between the control quantity and the cut-off
frequency of the filter.

All the other biasing currents are derived from two scaled current mirrors
with indirect outputs. The embodiment of the voltage source V3. was inspired by
the one used in [190] and adapted for our purpose. Its circuit diagram is depicted
in Fig. 8.14. Three saturated transistors, Qvi, @v2 and Qv3, generate a PTAT
voltage of approximately 200 mV. Transistors Qvs, Qvs and Qvs are connected
in voltage-follower configuration, to generate a low-impedance version of this
voltage. A PNP current mirror with multiple outputs delivers the necessary
bias currents. Note that since, in general, a saturation voltage is a function
of the ratio of the collector and the base current [189], the output voltage Vac
does not depend on the value of Iyv. Also noise originating from Iy does not
penetrate into V.. For Iy = 0.5 pA, the noise production of the voltage source
itself appears to be sufficiently small.

+ + o+ +

W
NG N

© Vdc
w P
Q

V6

QV]

Figure 8.14: Realisation of the voltage source V.. The output voltage is indepen-
dent of the value of Iv.

A semi-custom version of the active circuitry of the complete filter has been
integrated in a standard 2-um, 7-GHz process, fabricated at the Delft Institute
of MicroElectronics and Submicron technology (DIMES). Typical transistor pa-
rameters are: Bp npy & 100, frnen & 7 GHz, BrLpne = 80 and fripnp &
40 MHz. Experiments proved the correct operation of the filter. The filter char-
acteristic is second-order Butterworth with the specifications shown in Table
8.2
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Table 8.2: Filter specifications.

Quantity Value Comment
Supply voltage downtolV
Bandwidth 0-80 kHz
Pass-band transfer + 1.6 dB
Stop-band attenuation 30 dB
Cut-off frequency 1.6-8 kHz linearly adjustable
in octaves
Maximum signal current | 220 nA, THD < 2%, 100 Hz-8 kHz
Dynamic range 57 dB THD < 2%, 100 Hz-8 kHz
Supply current 6 uA
PSRR > 120 dBQ? | 100 Hz-8 kHz
Total capacitance 100 pF

Figure 8.15 depicts the measured output frequency spectrum with and with-
out a 1 kHz, 70 nA (peak value) sine wave input signal. The cut-off frequency
and supply voltage equal 8 kHz and 1.3 V, respectively. The plot clearly in-
dicates that since the integrator is biased in class A, the output noise is not a
function of the integrator input signal level.

Figure 8.16 depicts the measured output frequency spectrum for a 1 kHz,
220 nA (peak value) sine wave input signal using the same settings. The Total
Harmonic Distortion (THD) mainly results from the second-order harmonic and
equals 1.3%. Over the complete frequency range, i.e. from 100 Hz to 8 kHz, the
THD remains below 2%.

8.3 A 1-volt class-AB translinear integrator

An important feature of TL circuits is the possibility of class-AB operation,
which yields a larger dynamic range and a reduced average current consumption.
As discussed in Section 3.3.3, class-AB operation is an inherent characteristic
of sinh filters. The sinh output stage shown in Fig. 3.23 is not suitable for
low-voltage operation due to the stacked topology of the TL loop. This section
describes the design of a 1 volt sinh integrator, which is necessarily based on
folded topologies. The integrator can be used as an elementary building block
for the design of higher-order filters.

In Section 8.3.1, the block schematic of the integrator is described. Section
8.3.2 treats the design of the individual blocks. Finally, measurement results
are presented in Section 8.3.3.

Much of the material in this section has been developed by, and in co-
operation with, Paul Poort (1965-1997) and Wouter Serdijn [93).
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Figure 8.15: Measured output frequency spectrum with and without a 1 kHz, 70
nA (peak value) sine-wave input signal. The cut-off frequency and
supply voltage equal 8 kHz and 1.3 V, respectively.
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Figure 8.16: Measured output frequency spectrum for a 1-kHz, 220-nA (peak value)
sine-wave input signal. The cut-off frequency and supply voltage equal
8 kHz and 1.3 V, respectively.
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8.3.1 Block schematic of the integrator

Equation (3.36) describes the transfer function of a TL integrator. In sinh filters,
the derivative I,,; of the output current is implemented by eqn (3.72), which
yields a current-mode polynomial:

Icap (Ioutl + Ioutz) = IoIin- (88)
The current Icap to be supplied to the capacitance C is thus given by:

IoIin

_-otm 8.9
Iouh + Ioutg ( )

Icap =

A two-quadrant multiplier/divider is required to implement the Right-Hand
Side (RHS) of eqn (8.9). Since a class-AB implementation is pursued, this
two-quadrant multiplier/divider has to be realised by two one-quadrant multi-
plier/dividers. This is realised by splitting the input current into two strictly
positive signals fi,, and Ii,,, the difference of which equals I;,. Rewriting eqn
(8.9) yields:

I, I
I — odin; _ ofing ) 8.10
cap Ioutl + Ioutz Iout1 + Ioutz ( )

Equation (8.10) is the basis for the block schematic of the sinh integrator
depicted in Fig. 8.17. At the input, a current splitter generates Ly, and Iy,
from I,. Subsequently, the currents Iy, and fi,, are divided by Ioue, + Jout,
in two separate circuits. The current Ioye, + lout, i Obtained from the sinh
output stage, a geometric mean current splitter. The output currents of the two
multiplier/dividers are denoted by I4p and I..p2 and are respectively equal to
the first and the second term on the RHS of eqn (8.10). Hence, the current
supplied to the capacitance equals I.4p1 — Icap2. The use of a single capacitor
is an advantage over the class-AB integrator proposed in [2] as it eliminates the
necessity of matched capacitors. Finally, the capacitance voltage Vcop is applied
to the sinh output stage via a voltage buffer to prevent interaction between the
capacitance and the output stage.

8.3.2 Design of the individual blocks

The system blocks can be implemented by TL circuits, except of course the
voltage buffer. To facilitate low-voltage operation, only folded TL loop topolo-
gies are allowed. A bipolar IC technology is used to implement the individual
blocks.
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Figure 8.17: Block schematic of the class-AB translinear integrator.

Design of the input current splitter

A current splitter generates the currents lin, and fin, at the input of the inte-
grator. In principle, the type of current splitter to be used at the input is not
dictated by eqn (8.10). Hence, all possibilities discussed in Section 4.7 are valid
choices. As the output stage is a geometric mean current splitter, the same
function was chosen for the input current splitter.

The TL loop equation to be implemented is (4.101). Figure 8.18 depicts
a 1 volt realisation of this equation. The core of the circuit is the TL loop
formed by @Q; through Q4. Transistors 1 and Q3 are biased by a dc current
I4c,. Transistor @, conducts Iin,. This current is inverted by a PNP current
mirror and added to I;,. The resulting current Ii,, is conducted by Q4, which
is enforced by the Common-Collector (CC) stage Q5. Biasing of Q5 by means
of a dc tail current source of the differential pair Q2-Q3 requires a relatively
high dc current. This is disadvantageous with respect to the quiescent current
consumption. A solution is dynamic biasing. The tail current of Q»-Q3 is
generated by Qs, @7 and Qo, and equals 3]qc, + Iin,. Hence, Qs is biased at a
dc current equal to only 2J4, .

The voltage source Vy., is necessary to ensure that the Q7 does not saturate.
Note that this voltage source has no effect on the TL loop. A convenient value
for Ve, is 200 mV.

Design of the multiplier/divider

Once the bipolar input current I, is decomposed into two positive currents
L, ,, such that the difference of these currents equals I, the two-quadrant
multiplication of L, can now be performed by the individual division of I,
and I, by Iout; + Jous,, Dy means of two one-quadrant multiplier/dividers.
The output currents of the one-quadrant multiplier/dividers satisfy:

IOIinl,z

—_— 8.11
Iout; + Ioutz ( )

Icapl,z =
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Figure 8.18: Implementation of the input current splitter.

As all linear factors in eqn (8.11) are strictly positive, it is a valid TL decom-
position.

The 1 volt implementation of eqn (8.11) is shown in Fig. 8.19. The second-
order TL loop comprises @12—@Q;5. Transistors Q3 and Q4 are biased by
supplying respectively the currents Ioui, + lous, and fin, , to the emitters of
these devices. The collector current I, of ;2 is enforced by the CC stage Q16,
which is biased by a dc current I, .

A voltage source Vg, is necessary to ensure that the base voltages of Qi3
and @14 are always positive. Again, 200 mV is a convenient value.

The output of the multiplier/divider is the collector current of @i5. Sub-
traction of Jeap, and Icap, is performed by a PNP current mirror inverting Icap, .

Design of the voltage buffer

The current Icap, —Icap, is supplied to the capacitor resulting in the voltage Veap.
A voltage buffer is used to minimise the interaction between the capacitor and
the sinh output stage. The principle of the buffer amplifier is depicted in Fig.
8.20(a). Ideally, the buffering is performed by the nullor. A level-shift between
the input and the output of the buffer, represented by the voltage source Vy,, is
necessary to avoid saturation of Q15 in the first multiplier/divider circuit. The
output voltage is denoted by V.

The practical implementation of the nullor and the voltage source Vg, is
shown in Fig. 8.20(b). The nullor is implemented by two Common-Emitter (CE)
stages, (J19 and Q0. The level-shift is realised by the base-emitter voltage of
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Figure 8.19: Implementation of the one-quadrant multiplier/divider.
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Figure 8.20: (a) Principle and (b) implementation of the voltage buffer.

Q19. The output transistor Qog must be able to sink the input current of the
sinh output stage.

Design of the sinh output stage

The output stage has two functions. First, it enforces a geometric mean relation
between the two output currents Iy, and Iout,. Secondly, it must provide the
current Ioyut, + Iout, to each of the multiplier/dividers, as shown in Fig. 8.17.

The 1 volt realisation of the output stage is depicted in Fig. 8.21. The TL
loop comprising Q21-Q24 implements the sinh function given by:

V, - ‘/dC4

Iout = 2Id02 sinh capUT (812)

where Iy, is a dc current. Note that eqn (8.12) is equivalent to the geometric
mean function I3, = Lout, Jout, -

The current Ioyt, + Iout, is supplied to the multiplier/dividers by means of
PNP current mirrors. The output current Iy is generated by additional NPN
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Figure 8.21: Implementation of the sinh output stage.

current mirrors. The inverted output current — I,y is added to easily enclose the
integrator in a unity-feedback configuration by connecting — I, to the input of
the integrator, which results in a first-order low-pass filter.

The voltage source V., is necessary to ensure that the emitter voltages of
Q)22 and Q93 are always positive. Once again, 200 mV is a convenient value.

8.3.3 Measurement results

Now that all the individual system blocks have been designed at circuit level,
the sub-circuits can be linked together to form the integrator as depicted in
Fig. 8.17. For biasing purposes, the integrator is enclosed in a unity-feedback
configuration, as discussed previously. This results in a first-order low-pass
filter. Application of this filter in a hearing instrument was pursued. This leads
to the required filter specifications shown in Table 8.3 [187]. For measurement
purposes, the biasing current sources Iyc,, I4c,, Ip, and Iy, are realised by
simple current mirrors and high-valued resistors. The frequency control current
I, is realised with a PTAT current source.

To verify the operation of the filter in practice, a semi-custom version of
the active circuitry of the complete filter has been integrated in the DIMES02
process. The dc currents are set to Iqe, = Igc, = Ip, = 45 nA, and Thias, = 135
nA.

The capacitor has a value of 100 pF and is connected externally. The voltage
sources V¢, , , equal 200 mV and are implemented by a resistive voltage divider.
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Table 8.3: Filter requirements.

Quantity Value Comment

Supply voltage downtolV

Current consumption <5 pA Iinmax = 180 nA,

Cut-off frequency (f.) range | 1.6-8 kHz controllable

Dynamic range 68 dB 100 Hz-8 kHz

Total harmonic distortion < 2% f =1kHz, f. = 1.6 kHz,
Lin <130 nA,

< 7% f =1kHz, f. = 1.6 kHz,

Ly, > 130 nA,

The measurement results are summarised in Table 8.4 and are in good agree-
ment with the expectations.

Table 8.4: Filter specifications.

Quantity Value Comment
Minimal supply voltage 095V
Supply current 1.9 pA I, =180 nA,

Quiescent supply current | 1.6 pA
Cut-off frequency range 1- > 8 kHz

Dynamic range 73 dB 100 Hz-8 kHz
Total harmonic distortion | 2.7% fin =1 kHz, f. = 1.6 kHz,
Iin =180 nAp

8.4 A dynamic translinear RMS-DC converter

In the literature, the DTL principle has been used mainly to implement filters,
i.e. linear DEs. However, conventional (static) TL circuits are well-known for
the wide variety of non-linear functions they can implement. Obviously, the
DTL principle can be applied just as well to the implementation of non-linear
DEs, thus extending the applicability of the DTL principle.

A simple example of a non-linear dynamic transfer function is RMS-DC
conversion, which is a basic function used in many signal processing applica-
tions [191]. The RMS-DC function is used in this section to demonstrate the
applicability of the DTL principle to the implementation of non-linear DEs.
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The design of an RMS-DC converter based on the DTL principle is treated in
Section 8.4.1. Measurement results of a semicustom IC realisation are presented
in Section 8.4.2.

8.4.1 Design of the RMS-DC converter

The STL principle already plays a key role in conventional implementations of
RMS-DC converters [62,191]. A well-known block schematic of an RMS-DC
converter is shown in Fig. 8.22. The system consists of two separate functions:
a squarer-divider and a low-pass filter.
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Figure 8.22: Block schematic of a conventional RMS-DC converter.
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The core of the implementation of the squarer-divider is a second-order TL
loop. This loop calculates the current I2 /Iy, where Ij, and Ioy; are the input
and output current of the RMS-DC converter, respectively. The output current
Iout equals the mean value of I2 /Iy:

[2
km=<‘“> (8.13)

Iouc

where < - - > represents the averaging operation, i.e., the low-pass filter shown
in Fig. 8.22. By dividing I2 by I,u, instead of applying a square-root function
to the mean of 12, the requirements on the offsets in the system are relaxed
[191,192].

In most implementations of the system shown in Fig. 8.22, a squarer-divider
facilitating one-quadrant operation is used. In that case, the TL loop is preceded
by a full-wave rectifier.

The low-pass filter function is often just first-order. In most cases, it is
implemented by means of a simple RC section.

The key role of the TL technique could be enlarged by realising the low-
pass filter by a TL filter. However, as in that case both system functions are
implemented in the ‘translinear domain’, there is actually no reason why these
two functions have to be treated as separate system blocks. By merging the two
functions into one system block, a higher functional density can be obtained.
To this end, we start at a higher hierarchical level, describing the RMS-DC
function by means of a DE.

The current-mode description of a TL first-order low-pass filter is given by:

CUrl, + LI, = L1, (8.14)




220 Realisations

where 1, is a dc bias current and the current I, is the low-pass filtered version
of I,. For low frequencies, the transfer of this filter equals one. The cut-off
frequency w, of the filter is given by:

I

— o
We = TUr (8.15)

In the RMS-DC conversion given by eqn (8.13), the filtering operation is not
performed on the input signal I, but on the current I2 /I,y. That is, the
variable I, in eqn (8.14) equals I2 /I,,. The output current I, of the filter
equals the output current I,y of the RMS-DC converter. Applying these two
substitutions to eqn (8.14), the DE describing a first-order RMS-DC conversion
is found:

CUrIowiIout + L 12, = LT3 (8.16)

Obviously, this is a non-linear DE.
Higher-order RMS-DC converters can be designed by choosing a higher-order
low-pass filter, instead of eqn (8.14).

Definition of the capacitance current

According to the DTL principle, the derivative of a current can be replaced by
a product of currents. In other words, by introducing a capacitance current, the
derivative Iy can be eliminated from eqn (8.16). The capacitance current is
introduced through the circuit shown in Fig. 8.23, which is a slightly modified
version of the circuit shown in Fig. 2.7. In Fig. 8.23, the capacitance 3C is
connected in a loop with two base-emitter junctions. The two transistors have
a collector current equal to Joy¢. The capacitance current shown in Fig. 8.23,
which is described by eqn (2.20) with I = Iy, can be used to eliminate Io,;
from eqn (8.16). The result is a current-mode polynomial:

(Teap + L) I3y, = LI, (8.17)

Translinear decomposition and implementation

Since all factors in eqn (8.17) are positive, if the input current is full-wave
rectified, which is common practice [191], they can be mapped directly onto
the collector currents of & third-order TL loop, comprising six transistors. Two
possible implementations are shown in Fig. 8.24,2 where C' equals %C. In
both circuits, the TL loop is formed by transistors Q1-Qs. In Fig. 8.24(a), the
quadratic factor 12, is implemented by Q5-Qs. The structure C'-Q4-Q5-Qs is

2The circuit shown in Fig. 8.24(a) was invented independently by Frey [23)].
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|-

Figure 8.23: Output stage of the dynamic translinear RMS-DC converter introduc-
ing Icap.

identical to the sub-circuit shown in Fig. 8.23, except for Q4. Since Q, is biased
by a dc current, it acts as a dc voltage source and consequently does not change
the capacitance current introduced in Fig. 8.23.

Figure 8.24: Two implementations of a dynamic translinear RMS-DC converter.

Dynamic translinear circuits not only inherit the advantages of STL circuits,
but also the disadvantages and error sources. An important error source is the
finite current gain of the bipolar transistor. With respect to this problem, the
most sensitive point of the circuit shown in Fig. 8.24(a) is the node connecting
the bases of Q2 and Q3. The collector current (I, + I.p) of Q3 can be much
larger than |fi,]. Using a diode connection to force |fi,| through @, would
result in significant errors, as the base current of Q3 is not always negligible
with respect to |jn|. The problem can be solved by using a buffer amplifier. In
Fig. 8.24(a), Q7 is a simple implementation of this buffer. The other CC stage,
transistor Qg, buffers the bases of Q4 and Q5.

8.4.2 Measurement results

The RMS-DC converter shown in Fig. 8.24(a) was implemented on a semi-
custom IC in DIMES02, a 7 GHz bipolar process. The bias current sources I,
are implemented by simple current mirrors.
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Full-wave rectification and voltage-to-current conversion is accomplished by
means of the set-up shown in Fig. 8.25. An HP33120A Arbitrary Wave-form
Generator is programmed to supply a full-wave rectified output voltage, thus
excluding the non-idealities of the alternative, an on-chip full-wave rectifier. The
output voltage of the generator is converted to a current using a 47 k(2 resistor.
The combination of a discrete op amp and a discrete PNP transistor is used as a
current buffer. The output current of this buffer is the input current |fin| of the
RMS-DC converter. The output current of the RMS-DC converter is measured
across a 47 kQ resistor. To facilitate a sufficient voltage range across the output
resistor, a supply voltage of 4 V is used for the RMS-DC converter, though its
minimum supply voltage is only 2 V. The bias current I, has a value of 85 pA.

47kQ

2N3906

lh-ml

Figure 8.25: Measurement set-up.

HP33120A

In Fig. 8.26, the relevant currents flowing in the RMS-DC converter are
shown. The figure illustrates the non-linear relation between the capacitance
current Icap and the output current Ioyy. Further, it shows that Icap can have
much larger values than |L,|. In this figure, C’ is 47 nF, which yields a cut-off
frequency of 5.5 kHz. The input frequency is only 12 kHz, which explains the
ripple on I,y. The capacitance current is measured across a 4.7 k2 resistor.
The output voltage of the generator is 2 V.

For the next two measurements, a capacitor of 4.7 uF is used, which yields
a cut-off frequency of 55 Hz. Figure 8.27 shows the measured relative error for
a rectified sine wave at a frequency of 100 kHz, as a function of the amplitude.
In this figure, Vi, is the voltage supplied by the generator. For low values of
Vin, the error curve is dominated by offsets in the measurement set-up and the
RMS-DC converter, and by the limited bandwidth of the transistors at low
current levels. For intermediate input levels, the curve shows a scaling error
due to mismatches of the source and load resistors and of the transistors in the
TL loop. For values of Vi, above 4 V, the output transistor of the RMS-DC
converter starts to saturate.

The error of the output of the RMS-DC converter as a function of the fre-
quency is shown in Fig. 8.28 for various values of the input voltage Via-

The -3 dB cut-off frequency of the transfer function could not be measured
due to the limited frequency range (5 MHz) of the signal generator.
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Figure 8.26: Measurement of the currents |Iin|, Jcap and Iout.
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Figure 8.27: Measured error versus input voltage.
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Figure 8.28: Measured frequency response.

The worst-case wave form for an RMS measurement is a rectangular pulse
train, where all energy is contained in the pulses. The collector current of @3,
shown in Fig. 8.24(a), takes its maximum value I5 max during the peaks of the
input signal. The value of I3 ax can be derived from eqn (8.17), and is given
by:

I3 max = CF? I, (8.18)

where CF is the crest factor, the ratio between the peak value and the RMS
value of the input signal.

For high crest factors, I3 ma.x becomes quite large, and as a consequence,
transistor @3, which is minimum-sized, no longer behaves exponentially during
the peaks, due to parasitic resistances and Gr high-current roll-off. Therefore,
to perform a measurement of the error as a function of the crest factor, the
current [, is scaled down to 850 nA. The input resistor, shown in Fig. 8.25,
and the output resistor are scaled up by a factor 100. The input voltage Vi,
switches between a bias level of 0.15 V and a certain peak voltage Vyeqr. The
duty cycle and the peak voltage Vjeax are varied to obtain different crest factors
at a constant RMS value of 0.4 V. The pulse width of the peak is constant and
equals 200 us. Figure 8.29 shows the measured additional error as a function of
the crest factor. The error remains below 1% for crest factors up to 10.
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Figure 8.29: Additional error versus crest factor.

8.5 A 3.3-volt current-controlled
voltage-translinear oscillator

In MOS IC processes, TL filters can be realised by operating the MOS transistors
in the subthreshold region, see, e.g., [5]. However, subthreshold operation is
limited to low frequencies. Fortunately, the general companding principle on
which TL filters are based can be generalised to MOS transistors operating in
strong inversion, as discussed in Section 2.3.2.

In this section, the design of a /-domain current-controlled oscillator is
described. In Section 8.5.1, the square law conformance is verified for the MOS
transistors in the process used to the design the oscillator. Section 8.5.2 treats
the design of a VTL integrator. Based on the integrator, a current-controlled
harmonic oscillator is designed, described in Section 8.5.3. An experimental
prototype of the oscillator was realised in the DiMOS process. The measurement
results are presented in Section 8.5.4.

8.5.1 Square law conformance

Both the static and dynamic voltage-translinear principles, described in Section
2.3, rely on the quadratic behaviour of the MOS transistor operating in strong
inversion. However, the square law is quite a coarse simplification [117], as
discussed in Section 7.1. It is only valid across approximately 1.5 decades of
current {70]. At the low end, the square law is limited by the moderate inversion
region. At the high end, it is limited by carrier mobility reduction. The square
law is far less exact than the exponential law, describing the bipolar transistor,
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on which the TL principle is based. Therefore, it is advisable to check the range
of validity of the square law model beforehand.

Some measurements were performed on the DIMOS CMOS process, which
was used to implement the /-domain oscillator described in this section. In
Fig. 8.30, a measurement is shown for an MOS transistor having dimensions
W = L = 20 um. The drain current was measured for gate voltages from 0.7 V
to 3 V; higher gate voltages are not very interesting for low-voltage operation.
The measured drain current was fitted on the ideal square law, eqn (2.25). To
emphasise the difference between the measured and the fitted curve in the mod-
erate inversion region, the drain current is plotted on a logarithmic scale. The
fitted parameters are Vi, = 0.815 V and 3 = 56.8 pA/VZ. The corresponding
error curve, depicted on the second y-axis, shows that the fit is accurate to
within 1 % for drain currents ranging from 5.6 pA to more than 135 pA, which
corresponds to more than 1.4 decades of drain current. Although this range is
much smaller than the validity of the exponential law for the bipolar transistor,
which is valid across approximately six to ten decades, it is sufficient to justify
the application of the simple square law model.
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Figure 8.30: Measured and fitted drain current, and the error between the mea-
surement and the fitted square law.

8.5.2 Design of a voltage-translinear integrator

Any integrator can be described by the dimensionless DE:

=z, (8.19)
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where the dot represent differentiation with respect to the dimensionless time 7
and z and z represent the input and output signal, respectively.

In order to implement an integrator using the design principles discussed
in Section 2.3, eqn (8.19) has to be transformed into a DE with the proper
dimensions. As both the Static Voltage-TransLinear (SVTL) principle and the
DVTL principle are basically current-mode, it is obvious that z and z have to
be transformed into currents. This is accomplished by defining the equivalence
relations, see eqn (4.4):

Iin 2 = IOU‘Z
= ]_0 s

(8.20)

where Iip, and I, are the input and output current of the integrator, respec-
tively, and I, is an arbitrary dc current.

The dimensionless time 7 implicitly present in eqn (8.19) has to be trans-
formed into the usual time ¢ with dimension [s]. This can be done by applying
the transformation:

4 _Cvl d (8.21)
dr — 2pI,, dt’ '

where I,, and I,, are dc bias currents. From this equation, it follows directly
that frequency, the inverse of time ¢, is linearly controllable through I,,.

Applying the above transformations, a DE is obtained having the proper
dimensions for a DVTL implementation to be possible:

eV
vaB

The derivative I,y in eqn (8.22) can be eliminated by introducing a capaci-
tance current f.,p according to eqn (2.32) with Ing = I ¢, corresponding to Fig.
2.11. Using eqn (2.32) to eliminate the derivative Ioy; from (8.19) an algebraic
equation is obtained:

V IoutIol Icap = Ioinn- (823)

If we are able to implement this equation, we have actually implemented
the integrator described by eqn (8.22). To implement eqn (8.23), the SVTL
principle can be used. Equation (8.23) has to be mapped onto one or more VTL
loop equations, see (2.27). Unfortunately, no analytical synthesis methods for
mapping algebraic equations onto VTL loop equations exist [70]. The numerical
method described in [70] cannot be used either, since it is limited to single-loop
four-transistor circuits having one input, one output and one bias current. In
eqn (8.23), an input current, and output current, two bias currents I,, and

ut — Iozjin- (822)
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I,,, and a capacitance current are present. The only alternative is to split
eqn (8.23) into several simpler parts, which can be realised by existing VTL
circuits. The term 1/Toul,, can be realised by a square-root circuit (67]. Next,
a multiplier/divider can be used to realise the product I,,/in and divide it by
the output of the square-root circuit [69,70]. Then the output of the multiplier
is the capacitance current Ic,p. The output stage shown in Fig. 2.11 defines the
relation between Icap and Iyys. A block schematic of the solution thus obtained
is shown in Fig. 8.31.

7 zZ= V‘(xl Xq)
X3
Iin X) XyXy
I TN ‘
02 Xy C

Figure 8.31: Block schematic of a voltage-translinear integrator.

Square-root circuit

An SVTL square-root circuit was published in [67,70]. The circuit is depicted
in Fig. 8.32. Its loop equation is given by:

VI + VT =2 f%’i% +1, (8.24)

where I, and I, are two input currents and I, = 1/I., I, is the output
current of the square-root circuit. The relation between these currents and Fig.

8.31 is given by: I, = Ious, Ioy = Lo, and I, = 3/, Lout-

¢ 1+

Figure 8.32: Square-root circuit, stacked topology [67,70].
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A disadvantage of the circuit shown in Fig. 8.32 is that it is based on a
stacked VTL loop, which is sensitive to body effect [70]. Due to the body ef-
fect, the threshold voltages of the MOS transistors in a stacked loop differ. As
a consequence, errors are introduced in the general equation (2.27) unless all
transistors have individual wells connected to their sources, which is disadvan-
tageous with respect to bandwidth.

In folded topologies, the influence of the body effect is much smaller. There-
fore, a new square-root circuit is designed by mapping eqn (8.24) onto a VTL
loop in folded topology. The resulting circuit is shown in Fig. 8.33. Transistors
M,-M4 make up the VTL core. The dimensions chosen for M; through M, are
W =10 pm and L = 12 gm. The current mirror Ms-Mj is used to supply both
M, and M3 with the output current I,, see eqn (8.24). The aspect ratio of the
current mirror transistors is chosen to be quite large, to gain some voltage room
for the transistors of the VIL core at low supply voltages. The dimensions of
M; and Mg are W =200 ym and L = 8 pm.

Mjrhlff oty

Figure 8.33: Square-root circuit, folded topology.

Multiplier

Multiplier circuits are often based on the well-known quarter-square principle:
(a+b)? — (a—b)? = 4ab. Using this expression, a multiplier can be constructed
from two square circuits. In [69,70], four-quadrant VTL multipliers are pre-
sented, which are based on the quarter-square principle. The resulting circuits
have a kind of ‘differential difference’ input structure.

The multiplier described in [70] is based on VTL loops in folded topology,
which are insensitive to the body effect. This circuit is shown in Fig. 8.34.
The VTL core of the two square circuits is formed by M,-M, and Mi1—Mia.
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The output currents of the square circuits are subtracted by means of a PMOS
current mirror, yielding the output current I, of the four-quadrant multiplier,
which is given by I, = I, I, /(21,,). This current is supplied to the capacitor
shown in Fig. 8.31. The relations between the input currents I, I5, and Iy,
and the output current I, of the multiplier shown in Fig. 8.34, and the currents
in the block schematic shown in Fig. 8.31 are given by: I, = lin, Iz, = Io,,

Iy, = %V Io, Lous and I, = Icap.

B O MHFﬂ;T WO M
e s F—Eé o

%@6 e 5@’& aHiz

Figure 8.34: Four-quadrant multiplier/divider [70].

For reasons of voltage compatibility between the PMOS current mirror load
of the multiplier and the integrator output transistor, a PMOS output transistor
is used for the integrator. By choosing equal dimensions for the output PMOS
transistor as for the PMOS transistors comprising the current mirror, the two
output voltages of the square circuits, comprising the multiplier, are identical,
thus reducing the even-order distortion of the multiplier.

Complete voltage-translinear integrator

Employing the square-root circuit, shown in Fig. 8.33, and the multiplier, de-
picted in Fig. 8.34, in the block schematic, shown in Fig. 8.31, the complete
/-domain integrator thus obtained is depicted in Fig. 8.35. Note that the /-
domain output structure is not part of any VIL loop. The output of the inte-
grator has to be class-A biased. Therefore, a dc bias current source is connected
from the drain of the output transistor of the integrator to ground.

8.5.3 Design of the oscillator

The integrator described in the previous section was used to design a current-
controlled harmonic oscillator. By applying negative feedback to a cascade of
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Figure 8.35: A /-domain integrator.

two integrators, a two-integrator oscillator is obtained. The block schematic of
the realised oscillator is shown in Fig. 8.36. The oscillation frequency of the
loop equals the unity-gain frequency of the integrators, which is given by:

_ V28I,
VL,

The oscillation frequency can be tuned linearly by means of I,.
@+ | [ ]
-1

Multiplier Multiplier
e Xy -
z=x2+%,7 [
] +

X2

(8.25)

We

b

Figure 8.36: Two-integrator oscillator.

A loop of two integrators and an inverter is described by a linear DE, which
cannot posses a unique limit cycle. In other words, an amplitude control circuit
is required, which is also depicted in Fig. 8.36. A fixed amplitude is maintained
by controlling the amount of local feedback of the integrators. Negative feed-
back causes a decrease of the oscillation amplitude, positive feedback causes an
increase. To be able to apply both positive and negative feedback to the inte-
grators, a four-quadrant multiplier is required in the local feedback paths. The
VTL multiplier shown in Fig. 8.34 is used to this end.
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The integrator, shown in Fig. 8.35, has a differential input structure. There-
fore, it is not necessary to convert the output of the multiplier to a single output
current by means of the PMOS current mirror shown in Fig. 8.34. Since the out-
put voltage levels of My and M4, shown in Fig. 8.34, are not compatible with
the input voltage levels of the integrator, it is necessary to load the two square
circuits, comprising the multiplier, with two PMOS current mirrors. The differ-
ential output current of these two current mirrors is supplied to the differential
input of the integrator.

The amplitude is measured by adding the squares of the two quadrature
outputs of the oscillator, yielding the square of the amplitude [103]. Two VTL
square circuits, which were also employed in the multiplier shown in Fig. 8.34,
can be used to this end. The output currents of the square circuits are added by
connecting the output terminals. The square of the oscillation amplitude, thus
obtained, is compared with a reference current. The difference is applied to the
second input of the feedback multipliers, thus controlling the local feedback of
the integrators.

In the set-up shown in Fig. 8.36, the amplitude and the frequency can be
tuned independently [103], by means of I,, and A, respectively.

8.5.4 Measurement results

To verify the DVTL principle, the current-controlled /~-domain oscillator was
realised in DiMOS, a 1.6 pym n-well CMOS process, fabricated at the Delft In-
stitute of MicroElectronics and Submicron Technology. For measurement pur-
poses, the two capacitors of the oscillator are connected externally. All dc bias
and control currents are supplied externally as well. The oscillator occupies a
chip area of 0.65 mm?. Most of the area is consumed by the current mirrors,
which are operated in the moderate inversion region to gain some voltage room.
The oscillator is designed for a supply voltage of 3.3 V.

Figure 8.37 shows the quadrature output currents of the oscillator. The
output currents of the two integrators are measured across two 100 k(2 resistors.
The dc current used to bias the integrators in class A is 5 p#A. The oscillation
amplitude is 3.6 pA, which is 72% of the class-A bias current. The capacitors
have a value of 82 pF. The control currents I,, and I,, are 5 #A and 3.1 pA,
respectively. With eqn (8.25), this amounts to an oscillation frequency of 28
kHz. The measured oscillation frequency is 22 kHz.

Figure 8.38 shows the measured output spectrum of the oscillator. To pre-
vent distortion caused by the output voltage swing across the load resistor in
relation to the output conductance of the output MOS transistor, an external
common-base stage is used to buffer the output current. The harmonic distor-
tion is mainly caused by the second and third harmonics at -46 dB and -45 dB,
respectively.
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Figure 8.37: Measured output currents of the oscillator.

The frequency tunability as a function of I,, was measured for the same
values of the capacitors and the bias currents. The results are shown in Fig.
8.39. The figure shows that the oscillator is linearly tunable from about 2.6 kHz
to 53 kHz. For large values of the control current I,,,, correct operation of the
VTL integrator is prohibited by the limited supply voltage.
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Figure 8.38: Frequency spectrum of the oscillator.
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Figure 8.39: Frequency control of the oscillator.




Conclusions

The introduction of the capacitance as a basic TransLinear (TL) network ele-
ment significantly extends the applicability of these circuits. As a result, next
to the static transfer functions, both linear and non-linear, facilitated by con-
ventional ‘Static TransLinear’ (STL) technology, a wide variety of frequency-
dependent (transfer) functions can be realised. The resulting class of ‘Dynamic
TransLinear’ (DTL) circuits implements differential equations; both linear dif-
ferential equations, describing linear filters, and non-linear differential equations,
describing, e.g. oscillators, RMS-DC converters and PLLs can be realised.

Translinear filters are especially suitable for those applications that do re-
quire a large dynamic range, but do not need a high signal-to-noise ratio. Most
specifications obtainable with bipolar-transistor TL filters are comparable to
the specifications of bipolar-transistor-only g,,C filters. This applies, e.g., to
the signal-to-noise ratio, the bandwidth, the power consumption and the tun-
ability characteristics. However, a significantly better dynamic range specifica-
tion can be realised owing to the theoretical (external) linearity of TL filters.
The dynamic range of TL filters can even exceed the dynamic range of opamp-
MOSFET-C filters, especially at low supply voltages. Subthreshold MOS im-
plementations are particularly useful in the area of analogue VLSI (neural)
networks owing to the high versatility of TL technology, offering both linear
and non-linear, static and dynamic (transfer) functions, and the high functional
density.

Translinear circuits are typical examples of current-mode signal processing.
Information is carried primarily by currents, whereas voltages are only of sec-
ondary interest. As a consequence, TL networks are best described in terms
of currents. This applies both to STL and DTL circuitry. The current-mode
approach has the additional major advantage that the existing theory on STL
circuits becomes directly applicable to DTL circuits. In particular, the existing
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design methodology for STL circuits has to be supplemented by only one addi-
tional step, the definition of capacitance currents, to facilitate synthesis of DTL
circuits. This extension is based on the ‘Dynamic Translinear Principle’. As well
as the conventional STL principle, the DTL principle is a current-mode formu-
lation of the underlying fundamental design principle. It relates the capacitance
currents to the currents representing the memory of the circuit. The resulting
structured synthesis methodology is more general than alternative methods pro-
posed in the literature and covers the design of both linear and non-linear, STL
and DTL circuits.

A powerful synthesis method must go together with a general analysis
method in the same domain. Current-mode analysis of DTL circuits is sim-
ple. It is based on current-mode expressions for the capacitance currents. Both
a global and a state-space approach can be applied. The state-space method is
less general, but has the advantage of a limited intermediate expression swell.

The analysis method developed even facilitates the analysis of noise in both
STL and DTL circuits, which is non-trivial due to the exponential transistor
characteristics and the non-stationary nature of the transistor noise sources.
The resulting signal x noise intermodulation causes the noise level to increase
with the processed signal power.

In MOS technology, in weak inversion, additional design options arise from
the application of the back-gate, operation in the triode region and application
of floating-gate MOS transistors. On the other hand, the poor matching charac-
teristics and the low drain current levels restrict the utilisation of MOS designs
to non-demanding applications.

In the strong inversion region, the square law behaviour of the MOS tran-
sistor can be used to implement ‘Voltage-Translinear’ circuits. In addition
to the conventional (static) voltage-translinear principle, a ‘Dynamic Voltage-
Translinear Principle’ can be formulated. Though of academic interest, voltage-
translinear circuits are not very relevant in practice.

Dynamic translinear circuits are a promising and challenging approach for
overcoming the dynamic range and bandwidth limitations that conventional
analogue electronics techniques are facing due to ever lower supply voltages,
low power consumption and high-frequency demands. As a consequence, the
literature demonstrates an increasing interest for this rapidly developing circuit
paradigm. In recent years, the emphasis in the literature has been on synthesis
methods. At present, research efforts are shifted towards the investigation of
the specific merits and demerits of (D)TL circuits. In particular, many papers
appear on the investigation of noise and other second-order effects.

Ultimately, and this is the main recommendation for further research, the
results of these efforts have to be combined so as to result in an even more
powerful synthesis method. Disclosing the relations between important speci-
fications, such as noise, bandwidth and power consumption, and the possible
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choices along the design trajectory will provide feedback to the electronics de-
signer at an early stage of the design. This, in turn, will speed up the synthesis
process. In addition, this issue is of crucial importance for automation of (part
of) the design process. As evidenced by this thesis, the current-mode approach
is best suited to meet these challenges.
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A
Additional design examples

This appendix presents three additional design examples of Dynamic TransLin-
ear (DTL) circuits. As opposed to the realisations presented in Chapter 8, the
circuits described in this appendix have been verified only through simulation
and are not supported by measurements.

Section A.1 presents a TransLinear (TL) filter that uses syllabic companding
to increase the dynamic range [78,83]. A theoretically distortionless companding
scheme is implemented. Section A.2 shows that sinh filters are not necessarily
based on the geometric mean output stage. A sinh integrator based on a har-
monic mean output stage is designed. Finally, Section A.3 presents the synthesis
of a second-order low-pass filter to illustrate the generalised class of DTL circuits
proposed in Section 4.3.4.

A.1 A syllabic companding translinear filter

Since the voltages in a TL filter are logarithmically related to the currents, these
filters are inherently instantaneous companding. At current level, TL filters are
not companding; the input current [, is directly processed by the filter. As a
consequence, the current signal swing is limited by the dc bias current Ig. for
class-A operated TL filters, such as log-domain and tanh filters. For TL filters
operating in class AB, e.g., sinh filters, the current signal swing is limited, in
practice, by second-order effects, such as the finite transistor current gain factor,
the parasitic emitter resistance and the low value of fr at low current levels.
For both class-A and class-AB TL filters, the current signal swing, and
hence the dynamic range, can be enlarged through the application of syllabic
companding. The nature of syllabic companding is different from the instan-
taneous companding inherently present. In a syllabic companding set-up, the
input current I, is compressed by multiplying it by a non-negative signal g, re-
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sulting in a compressed current I} . This compressed current is supplied to the
core TL filter. When the signal g is a suitable function of the average strength
of L, the core TL filter will only have to process relatively small signals, i.e.,
I, irrespective of the amplitude of fi,.

In Section 2.1, it is shown that (syllabic) companding can be accomplished
theoretically without introducing distortion. To accomplish this, the state vari-
ables have to be ‘updated’ by a certain compensation signal as a function of
the compression signal g [76,79]. The particular appearance of the compensa-
tion signal is basically independent of the filter implementation used [75]. Only
the impact of the required compensation signal on the companding circuit is
different for different filter implementation techniques. For example, in g,,C
filters, (some of) the transconductances have to be tuned by this compensation
term [82].

This section describes the design of a (theoretically distortionless) syllabic
companding TL filter. Section A.1.1 explains the principle of distortionless
syllabic companding in the context of TL filters. The TL filter implementation
is described next, in Section A.1.2. Finally, Section A.1.3 presents simulation
results.

A.1.1 Distortionless syllabic companding

Figure A.1 depicts a simple TL first-order low-pass filter, which is described by
the Differential Equation (DE):

CUTjout + I Loyt = IoIin, (Al)

where C is a capacitance, Ur is the thermal voltage kT'/q, Lin, Iout and [, are
respectively the filter input current, the output current and a dc current. The
dot represents differentiation with respect to time.

Figure A.1: A first-order low-pass filter.

In a syllabic companding filter set-up, the input current I, is divided by a
(dimensionless) compression signal g # 0 and the resulting compressed input
current I} is applied to the actual filter. The output current I,y is obtained
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by multiplying the compressed output I}, by the same factor g. The relation
between Ii, and I} and between I,y and I3, is described by:

gL} = L, (A.2)
Iout out- (A3)

If the filter shown in Fig. A.1 is used in a syllabic companding set-up, the
uncompressed currents fi, and oy, are no longer available to this filter. There-
fore, eqn (A.1) has to be rewritten in terms of the compressed currents. Eqns
(A.2) and (A.3) can be used directly to eliminate I;; and oy, respectively. An
expression for the derivative Iout can be found from the time derivative of eqn
(A.3), given by:

jOUt = gIout Iout (A4)

In terms of the compressed currents, eqn (A.1) becomes:
CUrIZ, (10 + CUTg) I = LI | (A.5)

The term I5,,CUrg/g is in fact the compensation signal that ensures distor-
tionless companding. Without this term, significant intermodulation distortion
results when the frequency of the compression signal g is not well beneath the
signal frequency band.

Note that the compensation signal has the dimension of a current. Therefore,
we denote this signal by the current I¢:

I, = OUT!%. (A.6)

In eqn (A.1), the term I, I,y; accounts for the loss of the integrator shown in
Fig. A.1. This loss term is implemented by the current source I, in parallel with
the capacitor C. Comparing eqns (A.1) and (A.5), we see that the current I,
has to be added to the current source I, to establish distortionless compandmg

Higher-order filters

The above descrxptlon can be generalised to filters of n*"-order. In the general
case of an n*'-order filter, the state- space description is multiplied by a time-
varying n X n matrix G, of which all n? elements can, in principle, be different
functions [75]. An implementation of the general principle will however result
ina con51derable overhead. The result will be a fully connected filter topology,
requiring n? multipliers, dividers and generators of the different elements of
G. Furthermore, at present, the benefits of such an elaborate implementation
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over less general ones are not clear. Therefore, we will restrict ourselves to the
situation in which one multiplier is placed in front of the core TL filter. This
is equivalent to a matrix G = gl, where g is a single compression function and
I is the identity matrix of order n. For TL filters, in this special case, the
same compensation current I, has to be distributed to all the capacitors in the
nt-order filter.

Class-A operation

In TL filters operating in class A, the actual ac input current i, is always
superposed on a dc bias current Ig.. This bias current limits the maximum
input signal level, and hence, the dynamic range of the filter. The dynamic
range can be enlarged by compressing I, before entering the filter. Obviously,
I, should not be compressed. Otherwise, the input modulation index m does
not change, and hence the dynamic range does not improve. Consequently, the
compressed input current I}, instead of fin, should be superposed on Igc.
However, companding introduces local non-linear behaviour. As a conse-
quence, the superposition principle cannot be applied if fin is compressed, but
Iy is not. If a current Ig. + I3 is applied to Q2, shown in Fig. A.1, the com-
pressed output current I7,, will contain an error term. In particular, the relation

between I, and I}, is now described by:

CUT Ly + Iy (I + Ic,) + Ic, Jac = LI, (A7)

A comparison of eqns (A.5) and (A.7) reveals the error: the term Ic, Iyc on the
left-hand side of (A.7).

The error term depends on the compression signal g, but not on the input
signal I;,. Therefore, in a differential filter set-up, which is common practice,
the error term is a common mode signal and is eliminated in the differential
mode output current.

A.1.2 Translinear implementation

Next, we apply the above theory on syllabic companding to the TL filter shown
in Fig. A.2. The circuit comprises two TL loops, @1-Qs and Q7-Q10 and is
described by the DE:

C?URIous + 2CUr I Ious + R2loue = I2Iin. (A.8)

This equation describes a second-order low-pass filter with a cut-off frequency
given by we = I,/(CU7T) and a @ of two.

The filter shown in Fig. A.2 was used in the differential set-up shown in Fig.
A3.
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Figure A.2: A second-order low-pass translinear filter.

Multiplication

Multiplication and division by g can be performed by TL circuits, if g is equated
to a ratio of currents, see eqn (4.4):

og

where I, is a dc current.

The dynamic range of the multipliers and dividers are of crucial importance
with respect to the dynamic range of the complete companding filter. Therefore,
these circuits have to operate in class AB, see, e.g., Fig. 4.36. The second-order
effects of the multipliers and dividers introduce distortion and will therefore
limit the dynamic range of the companding filter. The set-up shown in Fig.
A.3 is favourable in comparison with class-AB TL filters or dynamically biased
class-A filters [84], as the requirements on the core TL filter are substantially
relaxed. In addition, the multipliers and dividers are simple static TL circuits
and therefore, the influence of second-order effects can be decreased more easily
by careful design.

Generation of the compression signal

The compression signal current I, has to be some measure of average strength
of the input signal. A possible implementation is depicted in Fig. A.3, where I,
is the output of a low-pass filter acting on the absolute value of I,.
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Figure A.3: Block schematic of a syllabic companding differential filter.

The accuracy of the circuit generating I, does not have to be high [82]. The
only constraint is that the relation between I, and I, is accurate. Hence, the
design of the absolute value circuit and the low-pass filter is not difficult. The
low-pass filter was implemented by cascading two of the low-pass sections shown
in Fig. A.1 and applying unity negative feedback, resulting in a second-order
Butterworth low-pass filter, shown in Fig. A 4.

[y nt 2x l(ml
? \ [ \ [ mimor 1,
[inL
Figure A.4: A second-order Butterworth filter.

Generation of the compensation current

The compensation current /¢, can be obtained from the TL sub-circuit shown
in Fig. A.5. If the collector current in this figure is Iy, and the base current is
negligible, the capacitance current is given by:

I

7 (A.10)

Ig, = CUr

which is exactly the required compensation current.

Since the current I, is the output current of the Butterworth filter and the
sub-circuit shown in Fig. A.5 equals the output structure of the Butterworth
filter, see Fig. A.1, no additional hardware is required to generate I¢,. Current
mirrors can be used to distribute the current (Ic, + I,), flowing through Qs,
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Figure A.5: Generation of the compensation current,.

shown in Fig. A.1, to all the capacitors in the actual TL filter. A constraint is,
of course, that the capacitor shown in Fig. A.1 is matched to the capacitors in
the actual TL filter depicted in Fig. A.2.

In [82], it is shown that the same compensation current Ip, = CUrg/g is
required in syllabic companding g.,C filters, where it is used to tune (some of)
the transconductances. Hence, the substructure shown in Fig. A.5 can be used
for companding g,,C filters as well.

A.1.3 Simulation results

Simulations using realistic IC transistor models were performed to verify the
correct operation of the syllabic companding set-up shown in Fig. A.3. The
value of the capacitors in the filters shown in Fig. A.2 and in Fig. A.1 is chosen
to be 1.2 nF.

For the bias current I, in the core filter, shown in Fig. A.2, a value of 2 A
is used, resulting in a cut-off frequency of 10 kHz. A dc current of 2 pA is added
to the input of the filter to facilitate class-A operation. Since the filter has a Q
of 2 and a differential set-up is used, the input current swing is limited to 2 pA.

The cut-off frequency of the Butterworth filter is designed to equal 5 kHz,
which is only a factor two below the cut-off frequency of the companding filter.
As a consequence, the envelope of the input current can be tracked very quickly.
A dc current of 0.5 A is added to the input to prevent I, from becoming zero
when no input is applied to the filter.

The value of Io, in eqn (A.9) is 0.7 pA. Thus, the amplification of very
small input signals is limited to 1.4; this is the ratio of I, and the dc input
current of the Butterworth filter. An ideal divider and multiplier are used in
the simulations.

First, the second-order filter shown in Fig. A.2 was simulated outside the
companding set-up. Without syllabic companding, the third-order harmonic
distortion of the filter, used in a differential set-up, is -76 dB at w., with an
input amplitude of 0.8 uA.
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To demonstrate the beneficial influence of the compensation current I¢,, a
large-signal ac analysis was performed with and without the addition of I¢, to
the capacitors in the filter. The results are shown in Fig. A.6. The input ampli-
tude is again 0.8 puA. Figure A.6(a) depicts the situation without compensation.
Clearly, the output current contains a very large third-order harmonic. When
Ic, is added to all capacitors in the filter, the result shown in Fig. A.6(b) is
obtained. The improvement with respect to Fig. A.6(a) is obvious.
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Figure A.6: Syllabic companding (a) without and (b) with compensation for dis-
tortion.

A transient simulation demonstrates the increase of the input current swing
due to syllabic companding. The input current used in the simulations shown
in Fig. A.7 is a sine wave with a switching amplitude. The input frequency is
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10 kHz. For reference, Fig. A.7(a) shows the output current without syllabic
companding. The amplitude of the input sine wave switches from 20 nA to 100
nA. In Fig. A.7(b), the amplitude switches from 20 pA to 100 pA. Although
this is a factor of 50 beyond the original input signal range, the same response
as shown in Fig. A.7(a) is obtained, except for some @ degradation, which
illustrates the significant improvement in DR range obtainable from applying
(theoretically distortionless) syllabic companding. The @Q degradation is caused
by the finite G of the circuit generating the compensation current, depicted in
Fig. A.5. For large input signals, I, becomes large. This is illustrated by Fig.
A.8, which corresponds to the simulation of Fig. A.7(b). Consequently, the base
current added to I¢, is no longer negligible. For I, = 40 pA, approximately 200
nA is added to I¢,. This extra current is distributed to all the capacitors in the
actual TL filter, where it causes deviations of @ and w.. A voltage buffer might
be used to improve the relation between I, and I, for large input currents.

A.2 A harmonic mean class-AB integrator

The general class of DTL circuits comprises several sub-classes, based on differ-
ent output stages, see Section 3.3. Three types of output structures have been
published to date, which are named after their V-7 transfer functions. These
are: log-domain, tanh and sinh filters [10).

In sinh filters, the output current I, is split into two strictly positive cur-
rents Iy, and Ioyt,, the difference of which equals the actual output current,
ie.:

Lot = Ioutl = Lout,- (A.11)

A second equation is required to determine Ioyt, and Iout, so that they are
strictly positive. The geometric mean control law, or product law, can be used
to this end:

Iout] Ioutz = 1(21(;1 ’ (A12)

where I4c, is the dc quiescent current. That is, when I,y is zero, both Loy,
and Iy, equal Iy, .

Figure A.9(a) shows an implementation of eqn (A.12) by means of a TL
loop comprising transistors @; through Q4. Transistors Q; and Q9 are biased
at Iyc,, whereas Q3 and Q4 conduct Iy, and Loy, , respectively. The value of
Iyt is determined by the capacitance voltage Veap via a hyperbolic sine relation.
The voltage follower sinks the emitter current of Q3.

Unfortunately, the geometric mean control law exhibits a serious disadvan-
tage. For |Iout| > Iqc,, either Iy, or Iy, tends to zero. As a result, the
circuit becomes more vulnerable to second-order effects: the transit frequency
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Figure A.7: Transient simulation (a) without and (b) with syllabic companding.
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Figure A.8: Compression signal Iy for a large input current.

fr of Q4 or Q3 decreases drastically and the influence of finite base currents
becomes more pronounced.

An interesting alternative is to use the harmonic mean control law instead.
In op amp circuits, this solution has proven to be very effective [55]. Instead of
eqn (A.12), a harmonic mean output stage is characterised by:

2-[out1-[out2 = (Ioutl + Ioutz) Idc; - (Al?’)

For large values of | Iout |, Jout; OF Iout, Now asymptotically approach the value of
%Id,;1 instead of zero. The harmonic mean function thus provides fundamentally
better performance.

A possible implementation of eqn (A.13) is depicted in Fig. A.9(b). The
collector currents of (;—Q4, which form a TL loop, are respectively given by
Tae,, outy + Touty)s Tous, and Iout, - The doubled emitter area of @, implements
the factor 2 shown in eqn (A.13).

A.2.1 Capacitance currents

Using the current-mode approach, the output stages of the different DTL sub-
classes are characterised by their generic expressions for the capacitance cur-
rents. For sinh filters, the capacitance current o, is derived from Ioy,, as
shown in Fig. A.9(a), and is given by eqns (3.69)—(3.69).

Using the harmonic instead of the geometric mean output stage, the question
arises how to define I;,p. One might be tempted to derive .., from Ioye, as in
eqn (3.69). In practice, this will work when |I,¢| is not much greater than I, .
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Figure A.9: Two sinh output stages: (a) based on the geometric mean, and (b)
based on the harmonic mean.

However, for |Ious| > lqc,, the corresponding capacitance voltage Veap becomes
constant and will fail to control I, effectively.
A more suitable (and symmetric) definition of Iap is given by:

Iap = CUT (——Im‘“ - ———I"“t?) . (A.14)

Ioutl Ioutz

This definition is implemented in the output stage shown in Fig. A.9(b) by the
loop C-Q5-Q4. Note that Qs is not part of the TL loop. Elaboration of eqn
(A.14) in terms of oy, using (A.11) and (A.13), yields:

Tout
Iop = CUT = . A15
cap Iout1 + Ioutz - Idcl ( )
Using a voltage-mode approach to analyse the output stage, it is easily verified
that Veap and Ioy are related by a hyperbolic sine function. Hence, the circuit
shown in Fig. A.9(b) is in fact also a sinh output stage, but now based on the
harmonic mean control law.

A.2.2 Design of the integrator

A possible application of the proposed output stage principle is a current-mode
integrator, which can be used for the construction of higher-order filters. Here,
we present the design of such an integrator for a 1-volt supply Vpp.

The DE of a TL integrator is given by:

CUrlyu = L1, (A.16)
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where I, denotes the integrator input current. Using eqn (A.15) to implement
the derivative CUrI,,, a current-mode polynomial is obtained:

Icap (Ioutl + Ioutz - Idcl) = IoJin. (A17)

Since (Louty + Lout, — ldc, ) and I, are strictly positive, while I.,p and Iy take
on bipolar values, a two-quadrant multiplier is required to implement eqn (A.17).
To facilitate class-AB operation of the complete integrator, the multiplier has
to operate in class AB as well. Class-AB two-quadrant multiplication can be
accomplished using two one-quadrant multipliers. To this end, using a current
splitter, Ii, is split into two strictly positive currents fin, and Iin,, where I, =
Iin, — Ln,. The currents [i,, , are applied to two one-quadrant multipliers, the
output currents of which equal I, and I¢,, respectively. The latter currents
are related to Icap by Icap = Ic, — Ic,. Hence, the one-quadrant multipliers are
described by the TL loop equations:

Ic, (Ioucl + Lout, — lac,) = Lol , (A.18a)
Ic, (Iout, + Lout, — Ie,) = Ly, (A.18b)

To implement the complete class-AB integrator, the blocks to be realised
are: the output stage, described by eqns (A.13) and (A.14), two one-quadrant
multipliers, described by (A.18a) and (A.18b), and an input current splitter.

Output stage

The circuit shown in Fig. A.9 is unsuitable for low-voltage environments due to
the stacked nature of the TL loop Q;-Q4. Figure A.10 shows an implementa-
tion based on a folded TL loop, which does enable 1-volt operation. Transistors
Q;: through @4 implement a second-order TL loop. The bases of Q; and Q4
are connected to a dc voltage Vy.. The collector currents of Q1—Q4 are re-
spectively given by (Ioue; + Touts)s Joutys Ide, and Ioye,. Biasing of Q; and
(s is accomplished by means of simple nullor constructions. That is, the two
common-emitter (CE) stages, which sink the tail currents of the differential
pairs §1-Q2 and Q3-Q4. The value of I,y is determined by Veap. Transistor
Qs conducts Ioue,. The collector currents of @4 and Q5 are added and supplied
to Q1 by means of PNP current mirrors. The loop formed by Qs, Q4 and the
capacitor C' implements eqn (A.14). Since C is connected to a base terminal,
in principle, a voltage follower, as shown in Fig. A.9(b) is not required.

Second-order effects introduce distortion and noise. Several techniques can
be applied to reduce their influence [50]. For example, it is better in practice to
connect the capacitor between the bases of 5 and Q4. In that case, Vy. is not
part of the capacitance-junctions loop and therefore noise and disturbances of
Vae do not influence Ic,p. In addition, the parasitic capacitance of C may help
to improve the quality of V.
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Figure A.10: Low-voltage implementation of the sinh output stage based on the
harmonic mean control law.

The finite current gain factor B¢ of the transistors constitutes another (dom-
inant) source of errors. In particular, the collector current of Q)3 is corrupted
by the base current of the CE stage. The error can be reduced by increasing
both the collector current and the emitter area of (5 by the same factor. Alter-
natively, two stage nullor implementations are an adequate means for reducing
Br-induced errors.

When the circuit specifications demand both 1-volt and class-AB operation,
the use of PNP current mirrors is inevitable. Obviously, the availability of a fully
complementary bipolar process or a BICMOS process is a major advantage in
this situation. In processes where only lateral PNP devices are available, their
limited fr will confine the bandwidth of the circuit. The bandwidth of the
PNP mirrors can be improved using an NPN buffer amplifier instead of a diode-
connection to drive the base terminals. This also helps to reduce the gain error
introduced by the finite base currents.

Two-quadrant multiplier

Figure A.11 depicts a 1-volt implementation of the class-AB two-quadrant mul-
tiplier. The circuit comprises two coupled TL loops: Q;-Q4 and Q1-Q2-Q5-Qs.
Again, CE stages are used to sink the currents of the differential pairs. The
common factors I, and (Ioyug, + Iout; — lde,) are implemented respectively by
Q> and @;. The latter current is obtained from the output stage, shown in
Fig. A.10, by means of the PNP current mirrors. Likewise, Ii, and f;,, are
copied from the input splitter, described next. The subtraction of I, and Ig,,
required to generate I ap, is accomplished by means of a PNP current mirror.
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Figure A.11: Low-voltage implementation of the class-AB two-quadrant multiplier.

Input current splitter

The type of current splitter used to generate Iin, and I, has not been consid-
ered yet, but is of key importance for the performance of the integrator. In a
complete filter, the relation between the input and output signals of the inte-
grator is determined by the complete filter structure. As a consequence, it is
possible that I,y is large while I, is zero. In that situation, Lin, , equal the
quiescent current level Iyc,, while Iy, + Jout, — Tae, 3> Iac,- Then, as can
be deduced from eqns (A.18a) and (A.18b), either I¢, or Ic, approaches zero,
which is clearly disadvantageous.

A possible solution is adaptive biasing of I4.,. While this method is not a
suitable option for the (geometric mean) sinh output stage (it distorts I.ap [84],
unless severe low-frequency filtering requirements are fulfilled), it can be applied
in the input current splitter. Adaptive biasing of I4., only results in common-
mode signals in [, , and in theory does not affect the circuit operation at all.
When Iy, is derived from the average value of (Lout, + Tout, — ldc, )s L, , will
never tend to zero. Since I4c, does not affect the circuit operation, the filtering
requirements are very modest; significant ripple and noise can be tolerated.

Figure A.12 shows a 1-volt embodiment of the input current splitter. Due to
the adaptive biasing arrangement, |i,| will not become much greater than Iy,
and therefore both a geometric and a harmonic mean current splitter can be
used. The circuit shown in Fig. A.12 is based on the geometric mean function,
which results in a more simple circuit realisation. Transistors Q1~Qg comprise
a TL loop, where @2, Q4, @5 and Qs are biased at Iy.,. A folded TL loop does
not provide subtraction points as the collectors cannot be connected to emitter
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nodes. The subtraction required in the equation Ly, = [in, — Iin, is implemented
by the current mirror Q7-Qs. The input current is connected to the emitters
of @, and Q3. The collector current of @, equals I;,,. Hence, Q7 conducts
(Igc, + Iin,). This is exactly the current needed at the common emitter node
of Q3 and Q4. This current is copied by Qs. Due to the 1-volt supply, it is not
possible to use a conventional current mirror having a diode-connected input
transistor. Instead, @7 is connected as a CE stage, controlled by the collector
voltage of Qs.

Vae

Figure A.12: Low-voltage implementation of the input current splitter based on the
geometric mean control law.

Interconnection of the input current splitter, the two-quadrant multiplier
and the output stage yields the complete TL integrator. Correct operation has
been verified through simulation using realistic IC transistor models.

A.3 A second-order low-pass filter

As discussed in Section 4.3.4, the class of ‘Exponential State-Space’ (ESS) filters
proposed in {10] can be generalised. As an illustration of the general class of
DTL circuits, this section treats the design of a second-order filter that does
not fit into the class of ESS filters proposed in [10]. Section A.3.1 describes the
synthesis of a second-order Butterworth low-pass filter. Simulation results are
presented next in Section A.3.2.

A.3.1 Design of the filter
A possible state-space description of a Butterworth second-order low-pass filter
is given by:
2CUrIout = Io (I — 2Lout) , (A.192)
CUrly = I, (Iin ~ Iowt) , (A.19b)

where I, is a dc current, Ii, is the input current and I, the output current.
The currents I; and I,,; are state variables.
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The cut-off frequency w, equals I, /(1/2CUr). It is assumed that I;, contains
a dc component [iy gc. As a result, Ioy; and I, contain dc components equal to
Iinac and 2L, 4c, respectively.

Possible definitions within the generalised class of DTL circuits of two ca-
pacitance currents I¢, and I, are given by:

Io, = CUp (32 4 2o (A.202)
Ia: Iout

Io, = CUp [ &~ Jow ) (A.20b)
Ia: Iout

Figure A.13 shows a possible implementation of eqns (A.20a) and (A.20b). Ob-
viously, eqns (A.20a) and (A.20b) do not fit into the framework suggested by
(4.19) as both Ic, and Ic, are functions of both state currents I, and I, .
Eqns (A.20a) and (A.20b) can be implemented by the structures depicted in
Figs A.13(b) and A.13(a), respectively.

(b)

Figure A.13: Two capacitance current definitions.

The capacitance current definitions (A.20a) and (A.20b) are used to imple-
ment the derivatives Iy and I.. Solving eqns (A.20a) and (A.20b) for Ioy:
and I, and substitution in eqns (A.19a) and (A.19b) yields two current-mode
polynomials:

Iout (Icl - ICz) = Io (Iz - 2Iout:) 3 (A-2la)
I: (Ie, + Ic,) = 21, (Iin — Iout) - (A.21b)
To implement eqns (A.21a) and (A.21b) using TL circuit techniques, suitable

TL decompositions have to be derived. Addition of a redundant term 21,1,y
to both sides of eqn (A.21a) yields a valid TL loop equation:

Lot (2Io + Ic, — Ig,) = L,I,. (A.22a)

The second TL loop equation is derived as follows: a term 21,1, is added to
both sides of (A.21b); next, (A.22a) is solved for I,; the resulting expression for
I, is substituted for I, appearing at the left-hand side of (A.21b). This yields:

Toue (21, + Ic, — Ic,) (21, + Ic, + Io,) = 212 (Lin — Lows + 1) . (A.22D)
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The linear factors in eqns (A.22a) and (A.22b) are strictly positive and
represent collector currents. Figure A.14 depicts a possible implementation of
these equations. In order of appearance, the linear factors in eqns (A.22a) and
(A.22b) are implemented by transistors Qe—Q2—Q1-Q10 and Qe—Q2-Q3-Q1-
Q4+—Qs. The factor 2 at the right-hand side of eqn (A.22b) is realised by the
scale factor of Q3. All other NPN transistors constitute simple nullor implemen-
tations. The PNP transistors implement current mirrors. The dc current 4.
equals 0.5 pA. In accordance with eqns (A.20a) and (A.20b), e, is derived from
the collector currents of Qg and Q7, whereas I, is derived from the collector
currents of Q¢ and Q19. The supply voltages are +2/-1.3 V.

PJ Vl)l)

Figure A.14: A Butterworth second-order low-pass filter.

A.3.2 Simulation results

Correct operation of the circuit was verified by means of simulation using re-
alistic transistor models. Figure A.15 shows a transient simulation at 40 kHz.
The amplitude of the input signal is 90% of Iin qc, Which equals 1 pA. With
C=C,=0Cy, =100 pF, Ur = 26 mV and I, = 1 pA, w, equals 43.3 kHz.
Clearly, the relation between I, and I,y is linear, despite the strongly non-
linear behaviour of /¢, and I¢,.
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Figure A.15: Transient simulation of the Butterworth filter.
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Summary

The introduction of the capacitance as a basic TransLinear (TL) network ele-
ment significantly extends the applicability of these circuits. The resulting class
of ‘Dynamic Translinear’ networks, also known as ‘log-domain’ circuits, can
be used to implement both linear and non-linear frequency-dependent signal
processing functions. In the area of analogue continuous-time filters, which is
facing serious challenges due to ever more stringent low-voltage, low-power and
high-frequency demands, the theoretically linear transfer function offered by TL
filters provides a useful alternative for those applications that do require a large
dynamic range, but do not need a high signal-to-noise ratio. Most specifications
obtainable with bipolar-transistor TL filters are comparable to the specifications
of bipolar-transistor-only g¢,,C filters. This applies, e.g., to the signal-to-noise
ratio, the bandwidth, the power consumption and the tunability characteris-
tics. However, a significantly better dynamic range specification can be realised
owing to the theoretical (external) linearity of TL filters. The dynamic range
of TL filters can even exceed the dynamic range of opamp-MOSFET-C filters,
especially at low supply voltages. Due to the promising expectations and en-
couraging results obtained thus far, research efforts have rapidly increased and
dynamic translinear circuit design has become a trend.

This thesis describes the structured analysis and synthesis of both Static
(i.e., conventional) TransLinear (STL) and Dynamic TransLinear (DTL) cir-
cuits. It is shown that log-domain filters, and DTL networks in general, are
closely related to the conventional class of STL circuits. Having established
this relation, it follows that a current-mode point of view is the most suitable
approach to the design of DTL circuitry. The current-mode approach has the
additional advantage that the existing theory and experience on STL circuits
becomes directly applicable to the analysis and synthesis of DTL networks.

After the general introduction of Chapter 1, Chapter 2 starts with a dis-
cussion of the design principles that form the foundation of the thesis. In a
general context, companding networks are considered that exhibit a theoreti-
cally linear frequency-dependent transfer function even though the signal path
contains non-linear processing blocks. A general model is developed, includ-
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ing both instantaneous and syllabic companding systems. Dynamic translinear
and Dynamic Voltage-TransLinear (DVTL) filters can be considered as special
cases of externally-linear internally-non-linear companding networks. Next to
the DTL and DVTL principles, the (conventional) STL principles are reviewed.

Although synthesis is more powerful than analysis, a synthesis method must
go together with a generally applicable analysis method in the same domain.
This is a prerequisite for structured electronic design. Chapter 3 therefore deals
with the analysis of TL circuits before synthesis is considered in Chapter 4. The
analysis of STL networks has been well established and is briefly reviewed in
Chapter 3. On the contrary, analysis methods for DTL circuits have not been re-
ported extensively in the literature. Large-signal analysis methods are however
of crucial importance as small-signal analyses cannot prove the externally-linear
transfer function of TL filters nor reveal the functionality of non-linear DTL net-
works. The existing STL analysis method uses a current-mode approach and
Chapter 3 shows that this approach is best suited to DTL circuit analysis as well.
The capacitance currents form the key to a general large-signal analysis method.
Identifying loops of capacitors and junctions, simple current-mode expressions
for the capacitance currents can be derived, which compose a supplement to
the KCL (Kirchhoff’s Current Law) equations and the TL loop equations. Two
methods have been developed for finding expressions for the capacitance cur-
rents. Using a global method, the final result of the calculations is a higher-order
DE describing the network. Alternatively, a state-space method can be applied,
which yields a set of first-order DEs, a state-space description, and diminishes
the intermediate expression swell. The latter method uses fictitious transistors
to convert the capacitance voltages to (collector) currents, which are chosen to
represent the state of the circuit. In addition, Chapter 3 explores the charac-
teristics of three different classes of DTL networks proposed in the literature.
These are log-domain, tanh and sinh filters.

Chapter 4 constitutes the core of this thesis. A structured synthesis method-
ology is developed for the design of both STL and DTL networks. Basically, the
method is a generalisation and extension of the existing synthesis method for
STL circuits and beneficially exploits the high level of similarity between STL
and DTL circuits. Synthesis takes off with a normalised, i.e., dimensionless,
polynomial, rational function, n*t-order root function or differential equation.
Next, dimension transformations are applied to arrive at an equation having
the proper dimensions to allow for a TL implementation. Several circuit char-
acteristics can be derived from the applied transformations. The subsequent
synthesis step is required only for DTL networks: the time derivatives are im-
plemented by means of capacitance currents, which are introduced by definition,
using state-space techniques. The possible definitions of the capacitance cur-
rents are linked to a classification of DTL circuits. The resulting framework is
found to be more general than the classifications described in the literature. As
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a result of this synthesis step, both STL and DTL designs are now described by
a current-mode multivariable polynomial and the succeeding design trajectory
is roughly identical. To implement the multivariable polynomial, it has to be
mapped onto one or more TL loop equations. This process is called ‘translin-
ear decomposition’, which can be divided into non-parametric and parametric
decomposition. Next to a description of the characteristics of both types of de-
compositions, an efficient algorithm is developed for the automatic generation
of non-parametric decompositions. Once a TL decomposition has been found,
the final design stage is the hardware implementation of the TL loop equations.
This process entails numerous different synthesis options and even more possi-
bilities arise from the employment of alternative exponential devices, such as
compound transistors and floating-gate MOS transistors, from operation of the
MOS transistor in the triode region, and from the application of the back-gate.
Next to the synthesis method developed in this thesis, several alternative meth-
ods have been proposed in the literature for the design of TL filters. Hence, a
comparison is made to elucidate the differences and similarities. The chapter
is concluded by a treatment of class-AB operation, which is an important issue
closely related to synthesis.

The analysis and synthesis methods dealt with in Chapters 3 and 4 are
based on ideal exponential devices. However, in practice, device non-idealities
introduce distortion. Chapter 5 treats the second-order effects involved with
the bipolar and the subthreshold MOS transistor. Methods are described to
reduce the distortion introduced by finite current gain, parasitic resistances,
body effect, Early effect, parasitic capacitances and mismatch. Nevertheless,
in general, considerable design efforts are usually required to realise a high-
performance TL circuit.

Noise is of fundamental importance in electronic circuits. Chapter 6 is con-
cerned with the analysis of noise in both STL and DTL circuits. Noise analysis
is not trivial due to the non-linear nature of the devices employed. Even for
externally-linear circuits, the exponential device characteristics give rise to in-
termodulation between signals and noise. The situation is further complicated
by the fact that the internal noise sources are non-stationary. For these reasons,
small-signal noise analysis methods do not suffice. Once again, it is shown that
the current-mode approach, in combination with known results from non-linear
circuit theory, facilitates an elegant solution to the challenge of large-signal noise
analysis.

Chapter 7 discusses the usefulness of VIL circuits and in particular of dy-
namic VTL networks. The conclusion is that VTL circuits are interesting from
an academic point of view, however, their practical value is very limited. The
decreasing validity of the square law in modern IC processes eliminates the sole
foundation of VTL circuits. Moreover, even for a perfect square law device,
the design of VTL networks is frustrated by the mathematically awkward equa-
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tions involved, which also diminish the versatility of these circuits. In the area
of DVTL, considerable amounts of hardware are required to linearise common-
source and differential pair output stages. In contrast, the strong inversion MOS
analogue of the sinh does not require any additional hardware for linearisation
purposes. The circuit is already linear and is in fact a well-known circuit. Its
linearisation is based on properties of the polynomial character of the square
law.

Chapter 8 describes several realisations, which illustrate and verify the devel-
oped theory. The emphasis is placed on DTL circuits. Some non-conventional
STL circuits have been designed as well; they are based on properties of the
subthreshold MOS transistor not available in bipolar designs. Two low-voltage
low-power TL filters are described next. The first filter, having a second-order
Butterworth low-pass characteristic, is operated in class A. The second filter,
an integrator, uses class-AB operation to increase the dynamic range. Next, a
non-linear application of the DTL principle is treated: an RMS-DC converter.
Starting from the DE describing the RMS-DC function, a suitable network is
synthesised. The final realisation example illustrates the design of (dynamic)
voltage-translinear circuits. A 3.3-V current-controlled oscillator is designed in
an IC process exhibiting a reasonable square law conformance.

Finally, Chapter 9 presents the conclusions of this thesis.




Samenvatting

Het ontwerp van dynamische translineaire en log-domein circuits heeft zich ont-
wikkeld tot een duidelijke nieuwe trend binnen de analoge elektronica. Het ge-
bruik van de capaciteit als een basis translineair-netwerkelement leidt namelijk
tot een aanzienlijke toename van de potentiéle functionaliteit van translineaire
circuits. Dynamische translineaire schakelingen kunnen worden toegepast voor
de realisatie van zowel lineaire als niet-lineaire frequentie-afhankelijke signaal-
bewerkingsfuncties. Met name op het gebied van de analoge tijdcontinue filters,
dat zich gesteld ziet voor serieuze uitdagingen door de steeds strengere eisen ten
aanzien van voedingsspanning, vermogensconsumptie en bandbreedte, vormen
translineaire (TL) filters een interessant en uitermate geschikt alternatief voor
die toepassingen die wel een groot dynamisch bereik vereisen, maar niet noodza-
kelijk een hoge signaalruisverhouding. Zo kan bij lage voedingsspanningen het
dynamisch bereik van TL filters gemakkelijk groter zijn dan het dynamisch
bereik haalbaar met opamp-MOSFET-C filters. Bandbreedte, vermogenscon-
sumptie en regelbaarheid van TL filters zijn vergelijkbaar met de specificaties
van g, C filters die opgebouwd zijn uit enkel bipolaire transistoren. Het is dan
ook niet verwonderlijk dat de onderzoeksactiviteiten op het gebied van TL filters
de laatste jaren snel zijn toegenomen!

Dit proefschrift beschrijft de analyse en synthese van zowel statische trans-
lineaire (STL) als dynamische translineaire (DTL) schakelingen. Hierbij wordt
veelvuldig gebruik gemaakt van de grote overeenkomsten die bestaan tussen
conventionele (statische) en dynamische translineaire netwerken. Eén van de
conclusies van dit proefschrift is dat voor de analyse en synthese van DTL
schakelingen het best gebruik kan worden gemaakt van beschrijvingen in termen
van stromen. Een bijkomend voordeel van deze methode is dat de bestaande
theorie en ervaring op het gebied van STL circuits direct toepasbaar zijn op
DTL netwerken.

Na de algemene introductie in hoofdstuk 1 worden in hoofdstuk 2 de ontwerp-
principes besproken die in dit proefschrift aan bod komen. Allereerst wordt een
algemeen model opgesteld voor dynamische circuits die opgebouwd zijn uit niet-
lineaire functies, maar die toch een lineaire frequentie-afhankelijke overdracht
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van ingang naar uitgang hebben. Het model omvat zowel ‘syllabic companding’
als ‘instantaneous companding’ filters. Dynamische translineaire en dynamische
spannings-translineaire filters zijn speciale gevallen binnen dit model. De ont-
werpprincipes van deze filters worden vervolgens behandeld op circuitniveau.
Daarnaast worden de conventionele TL principes kort beschreven.

Een gestructureerde synthesemethode kan niet zonder een bijbehorende ana-
lysemethode. Hoofdstuk 3 behandelt derhalve eerst de analyse van TL schake-
lingen, waarna hoofdstuk 4 ingaat op het eigenlijke ontwerpproces. Na een
korte samenvatting van de bestaande analysemethode voor STL circuits, wor-
den nieuwe methoden beschreven voor de analyse van DTL schakelingen. Deze
methoden zijn gebaseerd op grootsignaalmodellen omdat kleinsignaalmodellen
onbruikbaar zijn om de grootsignaallineariteit van een TL filter te bewijzen
dan wel om de functionaliteit van niet-lineaire DTL circuits bloot te leggen.
De sleutel] tot de analyse van DTL schakelingen wordt gevormd door de ca-
paciteitsstromen. Uitdrukkingen voor de capaciteitsstromen in termen van
de collectorstromen kunnen worden afgeleid uit de lussen die iedere capaciteit
vormt met een aantal transistorjuncties in serie. Twee nieuwe analysemethoden
worden beschreven. De eerste methode resulteert direct in een hogere-orde dif-
ferentiaalvergelijking die de schakeling beschrijft. Bij de tweede methode worden
fictieve transistoren aan het netwerk toegevoegd, waarna een toestandsbeschrij-
ving van het circuit kan worden gevonden. Voordeel van de laatstgenoemde
methode is een lagere rekenintensiteit. Tenslotte worden in hoofdstuk 3 de
karakteristieken geanalyseerd van een aantal typen DTL schakelingen die in de
literatuur zijn beschreven: log-domein, tanh en sinh filters.

Hoofdstuk 4 vormt de kern van dit proefschrift en behandelt het gestruc-
tureerd ontwerp van zowel STL als DTL schakelingen. De ontwikkelde syn-
thesemethode kan gezien worden als een generalisatie van de bestaande ont-
werpmethode voor STL circuits. Het ontwerp begint met een dimensieloze
wiskundige vergelijking: een polynoom, een rationele functie, een wortelfunctie
of een differentiaalvergelijking. Door de toepassing van eenvoudige transfor-
maties wordt een vergelijking gevonden met de juiste dimensies om een TL
realisatie mogelijk te maken. Een aantal eigenschappen van het uiteindelijke
circuit zijn direct terug te voeren op de gebruikte transformaties. Aangezien
STL schakelingen al beschreven worden door een polynoom is de volgende ont-
werpstap alleen van toepassing op DTL circuits. Deze stap betreft het vertalen
van de tijdafgeleiden in de differentiaalvergelijking naar capaciteitsstromen. Om
deze capaciteitsstromen te definiéren wordt een toestandsbeschrijving gebruikt.
De verschillende vormen van definities geven een klassificatie van TL filters die
breder is dan de bestaande klassificaties die bekend zijn uit de literatuur. Door
het vervangen van de tijdafgeleiden door capaciteitsstromen wordt de differenti-
aalvergelijking herleid tot een polynoom in meerdere variabelen. In dit stadium
van het ontwerpproces worden zowel de STL als de DTL functies door een poly-




277

noom beschreven. Het resterende ontwerptraject is daarom vrijwel identiek voor
zowel STL als DTL schakelingen. De eerstvolgende stap is TL decompositie; het
polynoom wordt afgebeeld op een (set van) TL lusvergelijking(en), waarbij on-
derscheid gemaakt wordt in niet-parametrische en parametrische decomposities.
Beide typen worden beschreven en een algoritme voor de automatische generatie
van niet-parametrische decomposities wordt ontwikkeld. Voor parametrische de-
composities ontbreekt tot nu toe een dergelijk algoritme. Wanneer een decom-
positie gevonden is, volgt de ‘hardware’-implementatie van de TL lusvergelij-
kingen. Dit proces bevat vele keuzemogelijkheden, zoals de lus-topologie en het
gebruik van alternatieve exponentiéle devices. Vervolgens vergelijkt hoofdstuk
4 de ontwikkelde methode met alternatieve synthesemethoden die beschreven
zijn in de literatuur. Ook worden in dit hoofdstuk klasse-AB implementaties
behandeld.

De theorie gepresenteerd in hoofdstuk 3 and 4 is gebaseerd op ideale ex-
ponentiéle devices. In de praktijk resulteren de diverse niet-idealiteiten van
de componenten in distorsie. Hoofdstuk 5 beschrijft de effecten van eindige
stroomversterking, parasitaire weerstanden en capaciteiten, ‘body effect’, ‘Early
effect’ en ‘mismatch’. Tevens worden methoden behandeld die de invloed van
deze niet-idealiteiten reduceren.

Hoofdstuk 6 gaat in op de ruiseigenschappen van zowel STL als DTL net-
werken. Translineaire circuits staan niet bepaald bekend om hun goede ruis-
eigenschappen. In klasse-AB schakelingen kan de signaalruisverhouding nog
verder verslechteren door signaal-ruis-intermodulatie, die het gevolg is van het
exponentiéle gedrag van de transistoren. Dit neemt niet weg dat het dynamisch
bereik van klasse-AB implementaties uitstekend kan zijn. De analyse van ruis in
TL schakelingen is niet-triviaal. Grootsignaalanalyses zijn nodig om de signaal-
ruis-intermodulatie en het niet-stationaire karakter van de interne ruisbronnen
mee te kunnen nemen in de berekeningen. Dit hoofdstuk beschrijft een elegante
ruisanalysemethode die gebruik maakt van de ontwikkelde TL analysemethoden
enerzijds en resultaten uit de niet-lineaire ruistheorie anderzijds.

Het gebruik van MOS transistoren in het sterke-inversiegebied, dat beschre-
ven wordt door een kwadratisch model, leidt tot de verwante klasse van span-
nings-translineaire circuits. Ook hier kan een onderscheid worden gemaakt
tussen statische en dynamische schakelingen. Hoofdstuk 7 bediscussieert het
praktisch nut van deze schakelingen, waarbij de nadruk ligt op dynamische
spannings-translineaire netwerken. Geconcludeerd kan worden dat spannings-
translineaire circuits weliswaar interessant zijn vanuit een academisch stand-
punt, maar vrijwel onbruikbaar zijn in de praktijk. Allereerst is dit te wijten
aan de zeer beperkte geldigheid van het kwadratische MOS-model. Daarnaast
wordt synthese bemoeilijkt door de onhandelbare wiskundige vergelijkingen.
Verder vereist de linearisatie van mogelijke dynamische spannings-translineaire
uitgangstrappen veel hardware, terwijl de theoretische toename van het dy-
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namisch bereik minimaal is. Het equivalent van de DTL ‘sinh’-uitgangstrap
vormt hierop een uitzondering. Dit circuit, feitelijk een welbekende schakeling,
is zelf reeds lineair en maakt gebruik van het feit dat het MOS-model een poly-
noom is, en geen transcendente functie zoals het exponentiéle transistormodel.

Om de ontwikkelde theorie te illustreren en te verifiéren worden in hoofd-
stuk 8 een aantal realisaties beschreven. De nadruk ligt hierbij op DTL circuits.
Eerst worden echter een aantal niet-conventionele STL circuits behandeld. Deze
maken gebruik van enkele specifieke eigenschappen van de MOS-transistor in
het zwakke-inversiegebied. Vervolgens worden twee TL filters beschreven die
ontworpen zijn voor een voedingsspanning van 1 volt en een minimale vermo-
gensconsumptie. Het eerste filter heeft een tweede-orde overdracht en werkt in
klasse A, het tweede filter (een integrator) werkt in klasse AB en realiseert dan
ook een aanzienlijk betere specificatie van het dynamisch bereik. De toepassing
van het DTL principe voor niet-lineaire dynamische functies wordt geillustreerd
middels het ontwerp van een RMS-DC converter. Als laatste voorbeeld wordt
een spannings-translineaire oscillator beschreven.

Hoofdstuk 9 bevat de conclusies van dit proefschrift.
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