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Abstract
Consider an arbitrary finite grid in some field 𝔽. How many hyperplanes are required so that every
point is contained in at least 𝑘 hyperplanes, except for one point that is not allowed to be contained in
any hyperplane? This problem is called the hyperplane grid covering problem and has a rich history,
throughout which it has been studied for multiple types of grids. In many of these settings, the polyno-
mial method has proven to be extremely useful in finding bounds on the optimal hyperplane covering
number. This has given rise to a second problem: the polynomial grid covering problem. This problem
considers the minimum degree of a polynomial such that every grid point is a root with multiplicity 𝑘,
except for one point where the polynomial does not vanish.
This thesis provides a thorough investigation of these two related problems. The first chapter derives
and analyses the most important polynomial bounds for grid coverings: the Alon-Füredi Bound and
the Ball-Serra Bound. Furthermore, we explore the link between grid coverings and two results from
algebraic geometry: the Footprint Bound and the Cayley-Bacharach Theorems. The second chapter
continues to focus on the Ball-Serra Bound. We apply the established theoretical framework to examine
the difference between hyperplane covers and polynomial covers for different grids and compare both
covers to the bound. Firstly, we consider the hypercube and show that the Ball-Serra Bound is never
tight. Secondly, we look at the binary field. In a new result, we prove its polynomial covering number
for multiplicity four. We also look at the distinction between polynomials and hyperplanes for a relaxed
version of the covering problem. Lastly, we investigate covers of grids in the Cartesian plane. In this
setting, a polynomial corresponds to a curve, and a hyperplane corresponds to a line. Since curve
covers in the Cartesian plane have not been studied before, we provide algorithms and techniques to
explore these covers. All proposed methods and findings suggest that curves provide more efficient
grid coverings than lines.
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1
Introduction

This thesis considers the broad topic of grid covering problems. Mathematical problems have a repu-
tation as being very difficult to understand, let alone to solve. But at the core of grid covering problems
lies a very easy question, which we will solve to embark on our journey in this topic. Consider the
(6 × 5)-grid, obtained by taking {0, 1, 2, 3, 4, 5} × {0, 1, 2, 3, 4}, as drawn below. How many lines do we
minimally need such that every point is covered at least once by a line?

1 2 3 4 5

1

2

3

4

It does not take long to see that this can be done using 5 horizontal lines, while it is impossible to use
fewer lines.

1 2 3 4 5

1

2

3

4

The question becomes a little more challenging when we add the constraint that the origin has to remain
uncovered. That is, there cannot be a line that passes through the origin. An intuitive way to cover the
grid now is to include every non-zero horizontal and vertical line once. It turns out that this is optimal.

1



2 1. Introduction

1 2 3 4 5
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4

But how do we know that this is optimal and that we could not have covered the grid with fewer lines,
while still avoiding the origin? This is where matters become more complicated, but also beautiful
and perhaps surprising. To prove the optimality of the cover, we will not use geometrical arguments.
Instead, we translate our cover to a problem involving polynomials. Each line in our cover can be seen
as a first-order polynomial. For instance, the vertical lines are of the form 𝑥 = 𝑖 for 𝑖 ∈ [5] and the
horizontal lines are of the form 𝑦 = 𝑗 for 𝑗 ∈ [4], where we let [𝑛] denote the set {1, 2, … , 𝑛}. With these
polynomials, finding a minimal line cover of the grid corresponds to finding a polynomial of minimal
degree that can be factorised into polynomials of degree 1, such that every non-zero point in the grid
is a root of the polynomial and the origin is not. The polynomial in our cover is

𝑓(𝑥, 𝑦) = ∏
𝑖∈[5]

(𝑥 − 𝑖) ⋅ ∏
𝑗∈[4]

(𝑦 − 𝑗),

and deg 𝑓 = 9, equal to the number of lines in the cover. The reason why we formulated the cover as a
polynomial is that there exist bounds on the degree of polynomials that vanish on grids. One of these
bounds is the Alon-Füredi Bound [2], stating that any polynomial 𝑓 that vanishes once on all points of
some grid 𝑆1×𝑆2×⋯×𝑆𝑛, except one point where it is non-zero, has degree at least deg 𝑓 ≥ ∑𝑖(|𝑆𝑖|−1).
In this case, 𝑆1 = {0, 1, 2, 3, 4, 5} and 𝑆2 = {0, 1, 2, 3, 4}, so we could not have used fewer lines for the
cover. This small example shows that changing one condition in the problem that we are considering
can have a considerable impact on the number of lines we require. What happens if we require that
every point is contained in at least two lines, rather than in just one? Then we are looking for a so-called
hyperplane 2-cover of the grid. In general, we define hyperplane 𝑘-covers as follows.

Definition. Let 𝑛, 𝑘 be natural numbers and consider an arbitrary grid Γ = 𝑆1 × 𝑆2 ×⋯ × 𝑆𝑛 such that
0 ∈ Γ. A hyperplane 𝑘-cover of Γ is a set of hyperplanes such that every non-zero point of Γ is contained
in at least 𝑘 hyperplanes, while there is no hyperplane that goes through the origin. The minimum size
of such a cover is called the hyperplane 𝑘-covering number of Γ.

Returning to the example, most points of the grids are already covered twice when we reuse the pre-
vious cover. We only need to add five more lines to find a hyperplane 2-cover, or since in this case a
hyperplane corresponds to a line, a line 2-cover.

1 2 3 4 5
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As before, to verify that there does not exist a line 2-cover of the grid with fewer lines, we turn to
polynomials. This time, our cover corresponds to the polynomial

𝑓(𝑥, 𝑦) = ∏
𝑖∈[5]

(𝑥 − 𝑖) ⋅ ∏
𝑗∈[4]

(𝑦 − 𝑗) ⋅ ∏
𝑘∈[5]

(𝑥 + 𝑦 − 𝑘).

The degree of 𝑓 is again equal to the number of lines. While the Alon-Füredi Bound still holds, the
lower bound can be increased by making use of the fact that the polynomial now has to vanish with
multiplicity 2 at every non-zero point. Thus, for covers with higher multiplicity we will use a different
lower bound, namely the Ball-Serra Bound [4]. This bound states that if 𝑓 vanishes at all points of an
(𝑛 × 𝑚)-grid, 𝑛 ≥ 𝑚, with multiplicity 𝑘 ≥ 2, except at one point where it is non-zero, 𝑓 has degree at
least 𝑘(𝑛 − 1) + (𝑚 − 1). We can always assume that 𝑛 ≥ 𝑚 because of symmetry. For 𝑘 = 2, this
shows that our line cover is optimal. Note that the Ball-Serra Bound does not assume anything on the
form of the polynomial. So, the next question that arises is whether there is a difference in the minimal
degree of polynomials that vanish with the right multiplicity on the grid and that are a hyperplane cover
– and hence can be factorised into polynomials of degree 1 – and the minimal degree of polynomials
that do vanish with the right multiplicity, but are not a hyperplane cover. The latter type of cover is called
a polynomial 2-cover.

Definition. Let 𝑛, 𝑘 be natural numbers and consider an arbitrary grid Γ = 𝑆1 × 𝑆2 ×⋯ × 𝑆𝑛 such that
0 ∈ Γ. A polynomial 𝑘-cover of Γ is a polynomial 𝑓 such that every non-zero point of Γ is a root of 𝑓 with
multiplicity at least 𝑘, while 𝑓(0) ≠ 0. The minimum degree of such a cover is called the polynomial
𝑘-covering number of Γ.

Note that a hyperplane 𝑘-cover always gives rise to a polynomial 𝑘-cover and hence the polynomial
𝑘-covering number of Γ is at most its hyperplane 𝑘-covering number. For grids in the plane, it turns
out that there can be a difference in the optimal degree of both covers once we consider covers with
multiplicity 𝑘 ≥ 3.

The main goal of this thesis is to provide a starting point and a framework to attack different flavours of
grid covering problems and highlight some of those problems that I found most interesting. While the
first chapter is more oriented towards literature, the second one combines the existing literature with
some of my own, new results together with remarks, thoughts and conjectures. To make it more clear
which results were already known and which are my own, new results are marked with stars i around
them.
Chapter 2 first fully revolves around the polynomial method. We start by rigorously introducing the
Alon-Füredi Bound. Instead of proving the bound directly, we shall derive it from a different bound: the
Footprint Bound. This bound makes use of Gröbner Bases: a particular set of multivariate polynomials
that generates an ideal in a polynomial ring, and that provides a simplified way to solve systems of
equations [20]. So not only does the Footprint Bound elegantly prove the Alon-Füredi Bound, it also
shows the link between grid coverings and different notions regarding polynomials that are less used
in combinatorics. On the subject of lesser-known theorems on polynomial methods in combinatorics,
the Alon-Füredi Bound is actually a direct result from an older theorem: one of the Cayley-Bacharach
Theorems. This set of theorems has its roots in the 19th century, but it can even be argued that its
most simple Cayley-Bacharach Theorem is a geometrical result that dates back to the 4th century
[13]. In Section 2.3, we travel through time to explore all the different results and investigate a modern
Cayley-Bacharach Theorem that immediately implies the Alon-Füredi Bound. We conclude the chapter
by looking at the polynomial method for covers with higher multiplicity. As said, for such covers there
exists a different bound, namely the Ball-Serra Bound. The proof of this theorem uses yet again different
polynomial arguments, like Alon’s Combinatorial Nullstellensatz. Hence, the first chapter gathers and
highlights a variety of polynomial methods, all with applications in grid covering problems.
Chapter 3 takes a closer look at the Ball-Serra Bound. For many grids and multiplicities, it is actually
not known whether the bound is tight. Moreover, there might be a difference in tightness for polynomial
covers and hyperplane covers. These covers are investigated for three types of grids. First of all, there
is the hypercube. Clifton and Huang [11] have shown that in this setting the Ball-Serra bound is only tight
for hyperplane covers with multiplicity 1 and 2 by showing a better lower bound for covers with higher
multiplicities. Sauermann and Wigderson [19] later improved this lower bound for multiplicity greater



4 1. Introduction

than or equal to three and have shown that their bound is tight for polynomial covers. For hyperplane
covers however, there is a gap between this best possible bound obtained by the polynomial method
and the conjectured value of the hyperplane covering number. Thus, if the conjectured value is true,
there is a clear distinction between the lowest degree of a polynomial cover and the smallest size of a
hyperplane cover. After the study of the hypercube we consider covers of the binary field. This setting
requires some more set-up to investigate the multiplicity of a root of a polynomial. In that regard, we
introduce Hasse derivatives. Using these derivatives, we determine the polynomial 4-covering number
of the binary field.

i Theorem i The polynomial 4-covering number of 𝔽𝑛2 is equal to 𝑛 + 4.

This result implies that the Ball-Serra Bound is not tight for polynomial 4-covers. Generalising this
result unfortunately turns out to be difficult and determining the hyperplane covering number forms a
substantial challenge too. But when allowing the origin to be covered strictly less than 𝑘 times in a
𝑘-cover, some results can be obtained. Bishoi et al. [9] have shown that in this setting there is indeed
a difference between polynomial covers and hyperplane covers. In the final part of the second chapter,
covers of grids in the Cartesian plane are investigated, just like the grid we have studied above. For line
covers, the threshold when the Ball-Serra Bound is tight for 𝑘-covers of an (𝑛 × 𝑚)-grid with 𝑛 ≥ 𝑚 is
known [8], namely when 𝑛 ≥ (𝑘−1)(𝑚−1)+1. Note that for 𝑘 = 2, this is always true, showing that it is
no coincidence that the cover we found above is tight with the Ball-Serra Bound. After having discussed
how to come up with this threshold, we shift our focus to polynomial 𝑘-covers of these grids. These
covers have not been studied before, so we have to come up with our own techniques to investigate
how they behave. At first, we come up with an algorithm to generate polynomial 3-covers of small grids.
This algorithm is based on partial derivatives that have to vanish at the grid points. We try to generalise
these polynomial 3-covers by looking at the slices of a grid. These do not yet provide a proof on when
the Ball-Serra Bound is tight for these covers, but provide a lot of support for the conjectured threshold.
After the review on 3-covers we also look at polynomial covers with higher multiplicity. Again, there is
quite some evidence that points towards a certain threshold, namely when 𝑛 ≥ 𝑚 + (𝑘 − 2).

i Conjecture i Let 𝑛,𝑚, 𝑘 be integers such that 𝑚 ≤ 𝑛 − (𝑘 − 2) and 𝑘 ≤ 𝑛. Consider two arbitrary
sets 𝑆1, 𝑆2 ⊆ ℝ≥0 such that 𝑆1 = {0, 𝑠1, … , 𝑠𝑛−1} and 𝑆2 = {0, 𝑡1, … , 𝑡𝑚−1}. Let Γ = 𝑆1 × 𝑆2. Then there
exists a polynomial 𝑓 of degree 𝑘(𝑛 − 1) + (𝑚 − 1) that covers every non-zero point of Γ 𝑘 times while
avoiding the origin.

In addition to analysing the conjectured threshold, we also consider the behaviour of the polynomial
𝑘-covering number for grids that do not satisfy the threshold. For these polynomials we conjecture
an upper bound on the covering number. In all cases, there seems to be a very clear difference in
behaviour between line 𝑘-covers and polynomial 𝑘-covers. The conjectured threshold for tightness for
the polynomial 𝑘-cover grows considerably slower than the threshold for the curve 𝑘-cover. But further
research on this threshold is needed to rigorously prove its behaviour.



2
The Polynomial Method for Grid Covers

In many combinatorial and optimisation methods where we minimise an objective function it is easier to
find an upper bound on the optimal value rather than a lower bound. That is often also the case for grid
coverings. To find an upper bound on the minimal cover size, we can simply provide a cover and its size
is immediately an upper bound. Proving that there does not exist a smaller cover requires some more
work. One of the methods to show that we cannot do better is the so-called polynomial method. As the
name suggests, this method translates the problem into a problem involving polynomials. Depending
on whether we want to cover all non-zero points in the grid once or multiple times, two lower bounds
can be derived with the polynomial method. These are respectively the Alon-Füredi Bound and the
Ball-Serra Bound. This section analyses both bounds. First, we look at the Alon-Füredi bound. For
the hypercube, this bound can be easily derived, but other settings are more complex. We prove the
bound using a different tool that involves roots of polynomials: the Footprint Bound. Secondly, we show
the link between the Alon-Füredi bound and the Cayley-Bacharach Theorem. This is a theorem with
a rich history, of which the first version was already formulated in the 19th century, but notions of its
statement were already made in the 4th century. Lastly, we look into the Ball-Serra Bound, for covers
with multiplicities. Its proof is directly linked to Alon’s Combinatorial Nullstellensatz and Hilbert’s Weak
Nullstellensatz.

2.1. The Alon-Füredi Bound
To introduce the Alon-Füredi Bound, it makes sense to look at hyperplane coverings of the hypercube.
Specifically, we would like to know how many hyperplanes are minimally required to cover 𝑄𝑛 = {0, 1}𝑛
while leaving the origin uncovered, for 𝑛 ∈ ℕ. As a possible cover, we could take the following 𝑛
hyperplanes: {𝑥 ∶ 𝑥𝑖 = 1} for 𝑖 ∈ [𝑛]. This clearly provides a cover that is of the right form, but how do
we ensure that there is no construction that requires less hyperplanes? The argument was given by
Alon and Füredi in [2]. They make use of a polynomial constructed from a cover.

Theorem 1 (Alon-Füredi for the Hypercube). Suppose that we have 𝑚 hyperplanes 𝐻1, … , 𝐻𝑚 in ℝ𝑛
that avoid the origin and cover all other 2𝑛 − 1 vertices of the hypercube 𝑄𝑛. Then 𝑚 ≥ 𝑛.

Proof. We write 𝐻𝑖 = {𝑥 ∶ 𝑎𝑖 ⋅ 𝑥 = 𝑏𝑖} for 𝑎𝑖 , 𝑥 ∈ ℝ𝑛 and 𝑏𝑖 ∈ ℝ for every 𝑖 ∈ [𝑚]. We construct the
multivariate polynomial

𝑝(𝑥) = ∏
𝑖∈[𝑚]

(𝑎𝑖 ⋅ 𝑥 − 𝑏𝑖) .

Out of 𝑝(𝑥) we obtain a new, multilinear polynomial 𝑓(𝑥) by replacing every occurrence of 𝑥𝑑𝑖 with 𝑑 ≥ 2
by 𝑥𝑖. Since 𝑝(𝑥) = 0 for all 𝑥 ∈ {0, 1}𝑛 ⧵ {0}, and 𝑥𝑑𝑖 = 𝑥𝑖 for all 𝑥𝑖 ∈ {0, 1}, we find that 𝑓(𝑥) = 0 for all
𝑥 ∈ {0, 1}𝑛 ⧵ {0} too. Similarly 𝑓(0) ≠ 0. Now we claim that

𝑓(𝑥) = 𝑐(𝑥1 − 1)(𝑥2 − 1)⋯ (𝑥𝑛 − 1),

5



6 2. The Polynomial Method for Grid Covers

where 𝑐 = 𝑓(0) for 𝑛 is even and 𝑐 = −𝑓(0) for 𝑛 is odd.1 To see that 𝑓 can be written in this form, let

𝑓(𝑥) = ∑
𝐼⊆[𝑛]

𝑐𝐼𝑥𝐼 ,

where 𝑥𝐼 = ∏𝑖∈𝐼 𝑥𝑖. Then we use induction on the size of 𝐼 to prove that

𝑐𝐼 = (−1)𝑛−|𝐼|𝑐.
For the base case, if 𝐼 = ∅, then 𝐶∅ = 𝑓(0) = (−1)𝑛𝑐. Now suppose we know that for all 𝐽 ⊊ 𝐼,
𝑐𝐽 = (−1)𝑛−|𝐽|. Then we consider the indicator vector 1𝐼 and plug it into 𝑓:

0 = 𝑓(1𝐼)

=∑
𝐽⊆𝐼
𝑐𝐽 (by def of 𝑐𝐼)

=∑
𝐽⊊𝐼

𝑐𝐽 + 𝑐𝐼

=∑
𝐽⊊𝐼
(−1)𝑛−|𝐽|𝑐 + 𝑐𝐼 (induction hypothesis)

= 𝑐 (
|𝐼|−1

∑
𝑗=0

(|𝐼|𝑗 )(−1)
𝑛−𝑗) + 𝑐𝐼

= 𝑐 ⋅ (−1)𝑛 (
|𝐼|−1

∑
𝑗=0

(|𝐼|𝑗 )(−1)
𝑗) + 𝑐𝐼

= 𝑐 ⋅ (−1)𝑛+|𝐼|−1 + 𝑐𝐼 (
|𝐼|−1

∑
𝑗=0

(|𝐼|𝑗 )(−1)
𝑗 + (|𝐼||𝐼|)(−1)

|𝐼| = 0)

= 𝑐 ⋅ (−1)𝑛−|𝐼|−1 + 𝑐𝐼 ,
and hence, indeed, 𝑐𝐼 = 𝑐 ⋅ (−1)𝑛−|𝐼|. To see that 𝑓(𝑥) = 𝑐(𝑥1 − 1)(𝑥2 − 1)… (𝑥𝑛 − 1), it suffices
to consider the coefficient of an arbitrary monomial on the right-hand side. Any 𝑥𝐼 has coefficient
𝑐 ⋅ (−1)𝑛−|𝐼|, which is exactly what we wanted. Thus, indeed 𝑓(𝑥) = 𝑐(𝑥1−1)(𝑥2−1)… (𝑥𝑛 −1) and in
particular deg(𝑓) = 𝑛. Therefore, 𝑛 = deg(𝑓) ≤ deg(𝑝) = 𝑚, which is what we wanted to prove.

This shows that it can be useful to use polynomials instead of staying in the original, geometrical setting
with hyperplanes. In the same paper [2], Alon and Füredi also prove a stronger theorem that implies the
one above, but its proof is more complicated and does not rely anymore on the setting of the hypercube.
In fact, they provide a bound on the number of points in a grid that a polynomial misses when it does
not cover the entire grid.
Theorem 2 (Alon-Füredi Theorem). Let 𝑆1, … , 𝑆𝑛 be subsets of an arbitrary field 𝔽 and let 𝑓 be a poly-
nomial of degree 𝑑 that does not vanish on the entire grid 𝑆1 × ⋯ × 𝑆𝑛. Then 𝑓 does not vanish on at
least min{∏𝑖 𝑐𝑖 ∶ 1 ≤ 𝑐𝑖 ≤ |𝑆𝑖| ∀𝑖, ∑𝑖 𝑐𝑖 ≥ (∑𝑖 |𝑆𝑖|) − 𝑑} points of the grid.
In our case, we consider a grid where we want to avoid exactly one point, for example the origin. That
is,min{∏𝑖 𝑐𝑖 ∶ 1 ≤ 𝑐𝑖 ≤ |𝑆𝑖| ∀𝑖, ∑𝑖 𝑐𝑖 ≥ (∑𝑖 |𝑆𝑖|)−𝑑} = 1. Hence, this theorem implies that if we want
to avoid vanishing at at least one point, each 𝑐𝑖 can be at most 1, and thus 𝑑 ≥ ∑𝑖 (|𝑆𝑖| − 1).
Corollary 3 (The Alon-Füredi Bound). Let 𝑆1, … , 𝑆𝑛 be subsets of an arbitrary field 𝔽. Consider a
polynomial 𝑝 such that 𝑝 vanishes on 𝑆1×𝑆2×⋯×𝑆𝑛 except at one point. Then deg(𝑝) ≥ ∑𝑖 (|𝑆𝑖| − 1).
Again, this bound is tight: suppose (𝑧1, … , 𝑧𝑛) ∈ 𝔽 is the point that we want to avoid. Then the collection
of hyperplanes {𝑥 ∶ 𝑥𝑖 = 𝑠 ∀𝑖 ∈ [𝑛], ∀𝑠 ∈ 𝑆𝑖 ⧵ {𝑧𝑖}} is a cover of size ∑𝑖 (|𝑆𝑖| − 1). Moreover, if we take
𝑆𝑖 = {0, 1} for all 𝑖 ∈ [𝑛], we recover Theorem 1. Rather than presenting the original proof of Theorem 2,
we will use the Footprint Bound. This is a tool that is able to estimate the number of common zeroes
of a set of polynomials.
1Note that this definition of 𝑐 fixes a small typo in the original proof.
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2.2. The Footprint Bound
To understand the Footprint Bound, we first dive into the world of Gröbner Bases. A Gröbner Basis
is a set of multivariate polynomials that generalises Gaussian Elimination and the Division Algorithm
for polynomials. But we are mainly interested in these bases because they enable us to find a bound
on the number of common zeroes of polynomials. This will let us prove the Alon-Füredi Theorem.
The following section bundles the ideas from a couple of sources and unifies their notation to create
an overview of the strengths of Gröbner Bases. For an introduction to Gröbner Bases, Strumfels [20]
provides a great starting point. Some of the more involved ideas and the intuition behind the Footprint
Bound can also be found in [12] and the link with Alon-Füredi is well explained in [7]. First, we need to
set up some notation.

Definition 4. Let 𝐾 be any field. Then we denote the ring of polynomials in 𝑛 variables 𝑥1, … , 𝑥𝑛 with
coefficients in 𝐾 by 𝐾[𝑥1, … , 𝑥𝑛]. Moreover, if ℱ is any set of polynomials, then the ideal generated by
ℱ is ⟨ℱ⟩, i.e.

⟨ℱ⟩ = {𝑎1𝑓1 +⋯+ 𝑎𝓁𝑓𝓁 ∶ 𝑓1, … , 𝑓𝓁 ∈ ℱ and 𝑎1, … , 𝑎𝓁 ∈ 𝐾[𝑥1, … , 𝑥𝑛]}.
An arbitrary ideal will be denoted by 𝐼.

To be able to define a Gröbner Basis, we need to define an order on the monomials. To this end, let 𝑥𝑎
denote 𝑥𝑎1 ⋯𝑥𝑎𝑛 .

Definition 5. A monomial order on 𝐾[𝑥1, … , 𝑥𝑛] is a total order ≺ on the set of monomialsℳ with the
following properties:

1. 𝑥𝑎 ≺ 𝑥𝑏 ⇒ 𝑥𝑎+𝑐 ≺ 𝑥𝑏+𝑐 for all 𝑎, 𝑏, 𝑐 ∈ ℕ𝑛.

2. Any nonempty subset 𝐴 ⊆ ℳ has a smallest element.

Example 6. There aremultiple ways of orderingmonomials. One classical example is the lexicographic
order. For this order, we say 𝑥𝑎 ≺ 𝑥𝑏 if the first nonzero entry of 𝑏 − 𝑎 is positive. Hence, 𝑥11𝑥52𝑥73 ≺
𝑥31𝑥12𝑥13 as the difference of the powers is (2, −4,−6). For a bivariate polynomial of degree two, we
have

1 ≺ 𝑥2 ≺ 𝑥22 ≺ 𝑥1 ≺ 𝑥1𝑥2 ≺ 𝑥21 .

Example 7. A second example is the graded lexicographic order. In this order we order say 𝑥𝛼 ≺ 𝑥𝛽
if ∑𝑖 𝛼𝑖 ≤ ∑𝑖 𝛽𝑖. In case of equality we use the lexicographic order described above. So for this order,
we in fact have 𝑥31𝑥12𝑥13 ≺ 𝑥11𝑥52𝑥73 . For a bivariate polynomial of degree two, we have

1 ≺ 𝑥2 ≺ 𝑥1 ≺ 𝑥22 ≺ 𝑥1𝑥2 ≺ 𝑥21 .

Observation 8. For every monomial order, 1 is the smallest element.

Proof. Consider an arbitrary monomial order on 𝐾[𝑥1, … , 𝑥𝑛] and suppose there is an 𝑎 ∈ ℕ𝑛 such that
𝑥𝑎 ≺ 1 = 𝑥0, where 0 denotes the all-zeroes vector. Then, by property one in Definition 5, 𝑥𝑎+𝑐 ≺ 𝑥𝑐
for all 𝑐 ∈ ℕ𝑛. Then we consider the subset of monomials 𝐴 = {𝑥𝑎+𝑖 ∶ 𝑖 ∈ ℕ𝑛}. By the second property
in the definition, 𝐴 has a smallest element, say 𝑥𝑎+𝑗, for some 𝑗 ∈ ℕ𝑛. But then 𝑥𝑎+𝑎+𝑗 ≺ 𝑥𝑎+𝑗. This
forms a contradiction.

Once we fix a certain monomial order, then every polynomial 𝑓 in 𝐾[𝑥1, … , 𝑥𝑛] has a unique leading
monomial 𝐿𝑀(𝑓). This leadingmonomial is the≺-largest monomial that occurs with non-zero coefficient
in the expansion of 𝑓. For a set of polynomials ℱ, we say that 𝐿𝑀(ℱ) = {𝐿𝑀(𝑓) ∶ 𝑓 ∈ ℱ} is the set of
leading monomials. Using this set for polynomials in an ideal, we can construct a new ideal.

Definition 9. Consider an arbitrary ideal 𝐼 of 𝐾[𝑥1, … , 𝑥𝑛]. Then the leading ideal ⟨𝐿𝑀(𝐼)⟩ is the ideal
generated by the leading monomials of all polynomials in 𝐼:

⟨𝐿𝑀(𝐼)⟩ = ⟨𝐿𝑀(𝑓) ∶ 𝑓 ∈ 𝐼⟩.

Now we are finally able to define a Gröbner Basis. In short, this is a basis of polynomials generated by
the leading monomial ideal for a given order.
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Definition 10. A finite subset of polynomials 𝒢 of an ideal 𝐼 is a Gröbner Basis with respect to a
monomial order on the monomials of 𝐼 if the leading monomials of the polynomials 𝑔 ∈ 𝒢 generate the
leading monomial ideal:

⟨𝐿𝑀(𝐼)⟩ = ⟨𝐿𝑀(𝑔) ∶ 𝑔 ∈ 𝒢⟩.
For every ideal, we know that there exists a finite Gröbner basis because of Hilbert’s Basis Theorem
(see e.g. Chapter 2 in [12] for a detailed explanation).

Theorem 11 (Hilbert’s Basis Theorem). Every ideal 𝐼 of 𝐾[𝑥1, … , 𝑥𝑛] is generated by a finite set. In
other words, 𝐼 = ⟨ℱ⟩ for some finite set of polynomials ℱ.
Moreover, note that the definition of a Gröbner Basis does not impose any restrictions on the size of
such a basis. If 𝒢 is a Gröbner Basis for 𝐼, then any finite subset of 𝐼 that contains 𝒢 is also a Gröbner
Basis for 𝐼. Hence, it makes sense to define a reduced Gröbner Basis that has some additional useful
properties.

Definition 12. Consider a Gröbner Basis 𝒢. We say that 𝒢 is a reduced Gröbner Basis if

1. For every 𝑔 ∈ 𝒢, the coefficient of the leading monomial of 𝑔 is 1.

2. For every 𝑔 ∈ 𝒢, no monomial of 𝑔 lies in ⟨𝐿𝑀(𝒢 ⧵ {𝑔})⟩.
So now that we have established what a (reduced) Gröbner Basis is, we are able to look into how we
can use such a Basis to estimate the number of common zeroes of a set of polynomials. We will call
such a set of common zeroes of polynomials a variety.

Definition 13. The variety 𝑉 of a subset ℱ of 𝐾[𝑥1, … , 𝑥𝑛] is the set of all common zeroes of polynomials
in ℱ:

𝑉(ℱ) = {(𝑧1, … , 𝑧𝑛) ∈ 𝐾𝑛 ∶ 𝑓(𝑧1, … , 𝑧𝑛) = 0 ∀𝑓 ∈ ℱ}.
A first link between the variety of an ideal and its reduced Gröbner Basis is given by Hilbert’s Weak
Nullstellensatz. Although Hilbert proved his Nullstellensatz already in 1893 [15], we will consider a
slightly more accessible and modern version [12].

Theorem 14 (Hilbert’s Weak Nullstellensatz). Let 𝐾 be an algebraically closed field and 𝐼 an ideal of
𝐾[𝑥1, … , 𝑥𝑛] satisfying 𝑉(𝐼) = ∅. Then 𝐼 = 𝐾[𝑥1, … , 𝑥𝑛].
We know that the variety does not change if we change the polynomials that generate an ideal ⟨ℱ⟩ of
𝐾[𝑥1, … , 𝑥𝑛]. That is because if ℱ and 𝒢 both generate some ideal 𝐼,

𝑉(ℱ) = 𝑉(⟨ℱ⟩) = 𝑉(⟨𝒢⟩) = 𝑉(𝒢).

The reason why we might prefer the reduced Gröbner Basis over another generating set of polynomials
of an ideal is because of its nice link with the Weak Nullstellensatz. Suppose that we have a set
of polynomials ℱ and that we would like to know whether these polynomials have a common zero.
That is, whether 𝑉(ℱ) ≠ ∅. Since 𝑉(ℱ) = 𝑉(⟨ℱ⟩), we know by the Weak Nullstellensatz that 𝑉(𝐹)
is empty if and only if 1 ∈ ⟨ℱ⟩. Since we can choose any set of polynomials that generate the same
ideal when considering the ideal, this actually implies that 𝑉(ℱ) = ∅ if and only if the reduced Gröbner
basis 𝒢 for ⟨ℱ⟩ equals {1}. To see why this holds, we show that {1} is the only reduced Gröbner Basis
of the ideal ⟨1⟩ = 𝐾[𝑥1, … , 𝑥𝑛]. Suppose {𝑔1, … , 𝑔𝑚} is a reduced Gröbner Basis of 𝐼 = ⟨1⟩. Then
1 ∈ ⟨𝐿𝑀(𝐼)⟩ = ⟨𝐿𝑀(𝑔1), … , 𝐿𝑀(𝑔𝑚)⟩, which means that one of the leading terms divides 1, say 𝐿𝑀(𝑔𝑖).
Since 1 in the smallest element in the monomial order, this specific 𝐿𝑀(𝑔𝑖) should actually be equal to
1. Since 𝑔𝑖 is included in the reduced Gröbner Basis, all other leading terms should be equal to 1 too,
which means that the Gröbner Basis is indeed {1}.
So, now we have a clear way of verifying whether the number of zeroes in a variety is equal to 0 or not.
Could we also say something about the number of such zeroes when the variety is non-empty? It turns
out that we can say something about this number using the notion of standard monomials. These are
the monomials that are not in the leading monomial ideal.

Definition 15. For an arbitrary ideal 𝐼 of 𝐾[𝑥1, … , 𝑥𝑛] we say that a monomial is a standard monomial
if it is not contained in ⟨𝐿𝑀(𝐼)⟩. The set of standard monomials is denoted by Δ(𝐼).
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This set is also sometimes called the deltaset of the ideal 𝐼, or its footprint, a term coined by Blahut
in 1991 [16]. Consider an arbitrary ideal 𝐼, generated by polynomials 𝑔1, … , 𝑔𝑛. We let Δ(𝑔1, … , 𝑔𝑛) =
{𝑥𝑢 ∶ 𝑥𝑢 ∉ ⟨𝐿𝑀(𝑔𝑖)⟩ ∀𝑖}. Then Δ(𝐼) ⊆ Δ(𝑔1, … , 𝑔𝑛). It follows from the definition that we have equality
if 𝑔1, … , 𝑔𝑛 forms a Gröbner Basis. We can also note that the number of elements in the footprint
is sometimes infinite. Suppose, for example, that 𝐼 is in an ideal in 𝐾[𝑥1, 𝑥2, 𝑥3] and that ⟨𝐿𝑀(𝐼)⟩ =
⟨𝑥21 , 𝑥42 , 𝑥1𝑥23⟩. Then |Δ(𝐼)| is infinite, as every monomial of the form 𝑥𝛼3 for 𝛼 ≥ 0 is a standard monomial.
Now suppose that ⟨𝐿𝑀(𝐼)⟩ = ⟨𝑥31 , 𝑥42 , 𝑥33⟩, then the standard monomials are of the form 𝑥𝑖1𝑥𝑗2𝑥𝑘3 with
0 ≤ 𝑖 ≤ 2, 0 ≤ 𝑗 ≤ 3 and 0 ≤ 𝑘 ≤ 2, so |Δ(𝐼)| = 16. This argument can be extended to prove a
characterisation of the cases where the size of the footprint is finite.

Lemma 16. Let 𝐼 be an ideal of 𝐾[𝑥1, … , 𝑥𝑛]. Then |Δ(𝐼)| is finite if and only if every 𝑥𝑖 appears to some
power in ⟨𝐿𝑀(𝐼)⟩ for 𝑖 ∈ [𝑛].

In the case where the footprint of an ideal is finite, its size can actually say something about the size of
its variety. Indeed, the size of the footprint upper bounds the size of the variety. This is known as the
Footprint Bound.

Theorem 17 (The Footprint Bound). If |Δ(𝐼)| is finite, then |𝑉(𝐼)| ≤ |Δ(𝐼)|.

To prove this inequality, we need another lemma.

Lemma 18. Let 𝐼 be an ideal in 𝐾[𝑥1, … , 𝑥𝑛]. Then Δ(𝐼) is a basis for the vector space 𝐾[𝑥1, … , 𝑥𝑛]/𝐼.

Proof. Let 𝒢 be a Gröbner Basis for 𝐼 with respect to the same monomial order used to find the footprint
Δ(𝐼) and let 𝑓 ∈ 𝐾[𝑥1, … , 𝑥𝑛]. Dividing 𝑓 by 𝒢 yields a remainder 𝑟𝑓 of the form

𝑟𝑓 =
𝑡

∑
𝑖=1
𝑎𝑖𝑀𝑖 ,

where 𝑎𝑖 ∈ 𝐾[𝑥1, … , 𝑥𝑛] and 𝑀𝑖 ∈ Δ(𝐼) for all 𝑖. Since the remainder 𝑟𝑓 of any polynomial 𝑓 is of this
form, we find that Δ(𝐼) generates 𝐾[𝑥1, … , 𝑥𝑛]/𝐼. We still have to prove that all 𝑀𝑖 ∈ Δ(𝐼) are linearly
independent modulo 𝐼. So assume that ∑𝑏𝑖𝑀𝑖 ∈ 𝐼 equals 0 for some non-zero 𝑏𝑖 ∈ 𝐾[𝑥1, … , 𝑥𝑛]. But
this means that there is an element in 𝐼 whose leading term is in Δ(𝐼). This is a contradiction. Thus,
𝑏𝑖 = 0 for all 𝑖 and Δ(𝐼) is indeed a basis for the quotient space.

Now we can prove the actual Footprint Bound.

Proof of Theorem 17. Let 𝑧1, … , 𝑧𝑚 be the distinct elements of 𝑉(𝐼). By the previous lemma, it suffices
to find a linearly independent set in 𝐾[𝑥1, … , 𝑥𝑛]/𝐼 of size 𝑚. To find these points, we will use the fact
that given points 𝑝1, … , 𝑝𝑡, there exists a polynomial 𝑓1 such that

𝑓1(𝑝1) = 1 and 𝑓1(𝑝2) = ⋯ = 𝑓1(𝑝𝑡) = 0.

To see why this is true, note that if 𝑝2 ≠ 𝑝1 ∈ 𝐾[𝑥1, … , 𝑥𝑛], these points have to differ in at least one
coordinate, say the 𝓁-th one. Then

𝑔2(𝑥1, … , 𝑥𝑛) =
𝑥𝓁 − 𝑝2𝓁
𝑝1𝓁 − 𝑝2𝓁

satisfies 𝑔2(𝑝1) = 1 and 𝑔2(𝑝2) = 0. This can of course be repeated for every 𝑝𝑗 ≠ 𝑝1 to obtain
𝑔3, … , 𝑔𝑡. Hence,

𝑓1 = 𝑔2𝑔3…𝑔𝑡
is the polynomial that we are looking for. So, for 𝑧1, … , 𝑧𝑚, we can find 𝑓1, … , 𝑓𝑚 such that 𝑓𝑖(𝑧𝑗) = 𝛿𝑖𝑗
for all 𝑖, 𝑗 ∈ [𝑚]. Now suppose that for these 𝑓𝑖, we have ∑𝑚𝑖=1 𝑎𝑖𝑓𝑖 ∈ 𝐼 equals 0 for some 𝑎1, … , 𝑎𝑚 ∈
𝐾[𝑥1, … , 𝑥𝑛]. Then we also have ∑𝑚𝑖=1 𝑎𝑖𝑝𝑖(𝑧𝑗) = 0, so 𝑎𝑗 = 0 for all 𝑗 ∈ [𝑚]. So indeed, {𝑓1, … , 𝑓𝑚} is a
linearly independent set in 𝐾[𝑥1, … , 𝑥𝑛]/𝐼 of size 𝑚.
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Example 19. Let us work out an example to see how we can use the Footprint Bound to get an estimate
on the size of a variety. Consider the ideal 𝐼1 = ⟨𝑥2𝑦3 − 𝑦, 𝑥3𝑦 − 𝑥, 𝑥4 − 𝑦3, 𝑦4 − 𝑥𝑦2⟩ of ℂ[𝑥, 𝑦].
Then using the graded lexicographic order yields ⟨𝐿𝑀(𝐼1)⟩ = ⟨𝑥2𝑦3, 𝑥3𝑦, 𝑥4, 𝑦4⟩. To find the size of its
footprint, we draw these leading monomials in Figure 2.1. One can see that there are 12 standard
monomials in this case and thus, the above polynomials have at most 12 common zeroes. In fact,
there are only 2 roots. There are also cases where the bound is better. Consider, for example, the
ideal 𝐼2 = ⟨𝑥 − 𝑦7, 𝑦12 − 𝑦2⟩ of ℂ[𝑥, 𝑦], where we use the lexicographic order. Then ⟨𝐿𝑀(𝐼)⟩ = ⟨𝑥, 𝑦12⟩,
which shows that there are 12 standard monomials of the form 𝑦𝑎 for 0 ≤ 𝑎 ≤ 11. So again, |Δ(𝐼)| = 12,
while |𝑉(𝐼2)| = |{(𝑦7, 𝑦) ∶ 𝑦10 − 1 = 0} ∪ (0, 0)| = 11.
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Figure 2.1: Depiction of the leading monomials of 𝐼1. All grey monomials can be obtained using linear combinations of the leading
monomials, the beige monomials are standard monomials.

As already mentioned, the footprint bound can actually be used to prove the Alon-Füredi Theorem. Let
us first restate the theorem:
Theorem 2. Let 𝑓 be a polynomial of degree 𝑑 that does not vanish on the entire grid 𝑆1×⋯×𝑆𝑛. Then
𝑓 does not vanish on at least min{∏𝑖 𝑐𝑖 ∶ 1 ≤ 𝑐𝑖 ≤ |𝑆𝑖| ∀𝑖, ∑𝑖 𝑐𝑖 ≥ (∑𝑖 |𝑆𝑖|) − 𝑑} points of the grid.

Proof of Theorem 2. Let 𝑓 ∈ 𝐾[𝑥1, … , 𝑥𝑛] be a polynomial that does not vanish on all points of a finite
grid 𝑆1×⋯×𝑆𝑛. We let 𝑔𝑖 = ∏𝑠∈𝑆𝑖(𝑥𝑖−𝑠) and say |𝑆𝑖| = 𝜎𝑖. Then we are interested in 𝑉({𝑓, 𝑔1, … , 𝑔𝑛}) =𝑉(⟨𝑓, 𝑔1, … , 𝑔𝑛⟩).
We order the monomials of 𝑓 using the graded lexicographic ordering. We first reduce 𝑓 to some
polynomial 𝑓∗ such that 𝐿𝑀(𝑓∗) is of the form ∏𝑖 𝑥

𝑢𝑖
𝑖 , where 𝑢𝑖 ≤ 𝜎𝑖 − 1 for all 𝑖. Suppose that there is

a term 𝜏 in 𝑓 of the form
ℎ(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) ⋅ 𝑥𝑢𝑖𝑖 ,

for some (𝑛 − 1)-variate polynomial ℎ and where 𝑢𝑖 ≥ 𝜎𝑖 for some 𝑖. Consider

𝑓′ = 𝑓 − ℎ(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) ⋅ 𝑥𝑢𝑖−𝜎𝑖 ⋅∏
𝑠∈𝑆𝑖

(𝑥𝑖 − 𝑠).

Since for any vanishing point (𝑎1, … , 𝑎𝑛) of 𝑓 on the grid we have 𝑔𝑖(𝑎𝑖) = 0, 𝑓′ vanishes at all the
vanishing points of 𝑓 on the grid. Moreover, 𝑓′ no longer has the term 𝜏, instead it has a term where
the degree of 𝑥𝑖 equals 𝑢𝑖 −1. So, if we keep repeating this process, we obtain a polynomial 𝑓∗ where
any term is indeed of the proposed form, which still vanishes at all the grid points where 𝑓 vanishes.
Now say deg(𝑓∗) = 𝑑∗, then we have 𝐿𝑀(𝑓∗) = 𝑥𝑢 = ∏𝑖 𝑥

𝑢𝑖
𝑖 such that ∑𝑖 𝑢𝑖 = 𝑑∗. Furthermore, for all

𝑖, we have 𝐿𝑀(𝑔𝑖) = 𝑥𝜎𝑖𝑖 . All standard monomials in Δ(𝑥𝑢 , 𝑥𝜎11 , … , 𝑥𝜎𝑛𝑛 ) are of the form ∏𝑖 𝑥
𝑣𝑖
𝑖 , where for

at least one 𝑖 we have 𝑣𝑖 < 𝑢𝑖. There are∏𝑖 𝜎𝑖 reduced monomials in 𝑓∗ (possibly with zero coefficient)
and ∏𝑖(𝜎𝑖 −𝑢𝑖) of them are multiples of 𝑥𝑢. Hence, there are ∏𝑖 𝜎𝑖 −∏𝑖(𝜎𝑖 −𝑢𝑖) standard monomials.
We let 𝑐𝑖 = 𝜎𝑖 − 𝑢𝑖, so that 1 ≤ 𝑐𝑖 ≤ 𝜎𝑖 for all 𝑖 and

𝑑∗ =∑
𝑖
𝑢𝑖 =∑

𝑖
𝜎𝑖 −∑

𝑖
𝑐𝑖 ⇒∑

𝑖
𝑐𝑖 =∑

𝑖
𝜎𝑖 − 𝑑∗.
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By the Footprint Bound, |𝑉(⟨𝑓∗, 𝑔1, … , 𝑔𝑛⟩)| ≤ ∏𝑖 𝜎𝑖 −∏𝑖 𝑐𝑖. Hence, 𝑓∗ does not vanish on at least ∏𝑖 𝑐𝑖
points of the grid, which implies that 𝑓∗ does not vanish on at leastmin{∏𝑖 𝑐𝑖 ∶ 1 ≤ 𝑐𝑖 ≤ 𝜎𝑖 ∀𝑖, ∑𝑖 𝑐𝑖 =
∑𝑖 𝜎𝑖 − 𝑑∗} points of the grid, so 𝑓 does not either. If we let deg(𝑓) = 𝑑, we know 𝑑 ≥ 𝑑∗, thus 𝑓 does
not vanish on at least min{∏𝑖 𝑐𝑖 ∶ 1 ≤ 𝑐𝑖 ≤ |𝑆𝑖| ∀𝑖, ∑𝑖 𝑐𝑖 ≥ (∑𝑖 |𝑆𝑖|) − 𝑑}.

2.3. Historical Intermezzo: The Cayley-Bacharach Theorems
So far, the polynomial method has given us the number of hyperplanes required to cover all points of a
grid except one, given by the Alon-Füredi bound. But actually, the bound is also a direct consequence
of an older theorem: the Cayley-Bacharach Theorem. This theorem has been reformulated in many
forms, such that Cayley-Bacharach has become an umbrella term for multiple theorems involving the
size of intersections of curves. For a more extensive analysis of the different Cayley-Bacharach The-
orems that exist, [13] is a great starting point. We will specifically trace the versions through history
that led up to the Cayley-Bacharach Theorem that implies Alon-Füredi, starting in the 18th century with
small excursions to even earlier times.
We first consider another theorem involving the variety of a set of polynomials that we need to introduce
the Cayley-Bacharach Theorems. Bézout’s Theorem gives an upper bound on the size of a variety of
a set of polynomials based on their degrees [5].

Theorem 20 (Bézout’s Theorem, 1779). Let 𝐾 be an algebraically closed field. Let 𝑝1 and 𝑝2 be poly-
nomials of respective degrees 𝑑1 and 𝑑2 in 𝐾[𝑥1, 𝑥2] such that they do not share a common component.
Then |𝑉({𝑝1, 𝑝2})| ≤ 𝑑1𝑑2. We have equality if the zeroes are counted with multiplicity.

Using Bézout’s Theorem, we can derive the theorem that commonly goes under the name Cayley-
Bacharach, but which is actually due to Chasles [10].

Theorem 21 (Chasles’ Theorem, 1865). Let 𝐶1 and 𝐶2 be two cubic curves that intersect over some
algebraically closed field 𝐾 in precisely 9 distinct points 𝑃1, … , 𝑃9 ∈ 𝐾2. Then any other cubic curve that
passes through any 8 of the 9 points must pass through the ninth point too.

In his blog post [21], Terry Tao has given an elegant proof of the above theorem, based on a text of
Husemöller [17].

Proof. Consider two arbitrary cubic curves 𝐶1 and 𝐶2 that intersect in precisely nine distinct points. Let
𝐶1 ∩ 𝐶2 = {𝑃1, … , 𝑃9} and let 𝑓1 = 0 and 𝑓2 = 0 be the equations of the curves 𝐶1 and 𝐶2. We want to
show that if 𝑓3 = 0 is the equation of a third cubic curve and 𝑓3(𝑃1) = ⋯ = 𝑓3(𝑃8) = 0, then 𝑓3(𝑃9) = 0.
To do so, it is sufficient to show that 𝑓3 is a linear combination of 𝑓1 and 𝑓2, i.e. there are constants 𝑎1
and 𝑎2 such that 𝑓3 = 𝑎1𝑓1 + 𝑎2𝑓2. In that case 𝑓3(𝑃9) = 𝑎1𝑓1(𝑃9) + 𝑎2𝑓2(𝑃9) = 0.
So, let us assume that 𝑓3 is linearly independent of 𝑓1 and 𝑓2. We will use Bézout’s Theorem to show
that the points {𝑃1, … , 𝑃9} have a nice structure that we will exploit. First of all, no 4 points of {𝑃1, … , 𝑃9}
can lie on some line 𝜆, because otherwise |𝑉({𝐶1, 𝜆})| = 4 > 3 ⋅ 1. Since 𝐾 is algebraically closed, this
would be a contradiction on Bézout’s Theorem unless 𝜆 is a component of 𝐶1. But with the exact same
argument, 𝜆 then also has to be a component of 𝐶2. Since 𝐶1 and 𝐶2 intersect in only 9 points, this is
impossible.
Secondly, we have that any 5 points of {𝑃1, … , 𝑃9} define a unique conic. Suppose 𝑄1 and 𝑄2 are two
conics that pass through the same 5 points of {𝑃1, … , 𝑃9}. Again, by Bézout’s Theorem 𝑄1 and 𝑄2 have
to share a common component. That is, 𝑄1 = 𝑄2, or they share a common line. Suppose the latter is
true. Since this line cannot pass through 4 points 𝑃𝑖, there has to be a line shared by 𝑄1 and 𝑄2 that
passes through exactly three of these points. The other two points define the second line in the conic
and therefore 𝑄1 = 𝑄2.
Thirdly, we can even prove that when only considering the first eight points {𝑃1, … , 𝑃8}, no 3 points are
collinear. Suppose without loss of generality that the first three points 𝑃1, 𝑃2, 𝑃3 lie on a common line 𝜇.
The remaining five points lie on a unique conic 𝑄′. Let 𝑃′ be another point that lies on 𝜇 and 𝑅′ be a
point that does not lie on 𝜇 nor on 𝑄′. We can pick constants 𝑏′1, 𝑏′2, 𝑏′3 such that 𝑓′ ∶= 𝑏′1𝑓1+𝑏′2𝑓2+𝑏′3𝑓3
vanishes on 𝑃′ and 𝑅′. This can be done by just solving the above equation, having evaluated the
equation in 𝑃′ and 𝑅′. Then 𝐹′(𝑃𝑖) = 0 for 𝑖 = 1,… , 8. Therefore, 𝑓′ vanishes on 4 collinear points
𝑃1, 𝑃2, 𝑃3, 𝑃′. Hence, Bézout’s Theorem shows that this line 𝜇 has to be a component of the cubic 𝐹′.
The other component of 𝑓′ is a conic that passes through the five points 𝑃4, … , 𝑃8. So, this conic has to



12 2. The Polynomial Method for Grid Covers

be equal to 𝑄′. But then 𝑅′ does not lie on 𝜇 nor 𝑄′, even though it is a vanishing point of 𝑓′. This is a
contradiction. This contradiction already proves the theorem for certain choices of 𝐶1 and 𝐶2, like, for
instance, the grid structure. In such a structure we clearly have 3 collinear points amongst {𝑃1, … , 𝑃8}
and thus 𝑓3 cannot be linearly independent from 𝑓1 and 𝑓2.
Fourthly, in case we have not encountered a contradiction yet, no conic can go through 6 points of
{𝑃1, … , 𝑃8}. Note that Bézout’s Theorem shows that no conic can go through 7 of the points {𝑃1, … , 𝑃8},
otherwise 𝐶1 and 𝐶2 share a component. Hence, suppose that a conic 𝑄∗ goes through exactly six
points, say 𝑃1, … , 𝑃6. Then there is a line 𝜈 going through the remaining two points 𝑃7 and 𝑃8. Let 𝑃∗ be
another point on 𝑄∗ and 𝑅∗ be another point that does not vanish on 𝜈 nor on 𝑄∗. Again, we can find a
non-trivial cubic 𝑓∗ = 𝑏∗1𝑓1 + 𝑏∗2𝑓2 + 𝑏∗3𝑓3 that vanishes on 𝑃∗ and 𝑅∗. As 𝑓∗ vanishes on seven points
of 𝑄∗, it has to consist of 𝑄∗ and a line that passes through 𝑃7 and 𝑃8, namely 𝜈. But then 𝑓∗ does not
pass through 𝑅∗. Contradiction.
Lastly, let 𝜅 be the line through 𝑃1 and 𝑃2 and 𝑄∘ be the conic through 𝑃3, … , 𝑃7. By the above results,
𝑃8 ∉ 𝜅 ∪ 𝑄∘. Choose 𝑃∘1 and 𝑃∘2, both on 𝜅 but neither on 𝑄∘. Pick constants 𝑏∘1, 𝑏∘2, 𝑏∘3 such that
𝑓∘ = 𝑏∘1𝑓1 + 𝑏∘2𝑓2 + 𝑏∘3𝑓3 vanishes on 𝑃∘1 and 𝑃∘2. Since 𝑓∘ meets 𝜅 in four points, Bézout’s Theorem
implies that it contains 𝜅 as a component, together with a conic. This conic passes through 𝑃3, … , 𝑃7
and thus, is equal to 𝑄∘. But then 𝑓∘ does not pass through 𝑃8. A final contradiction that shows that 𝑓∘
cannot exist and that we could not have chosen 𝑓1, 𝑓2, 𝑓3 to be linearly independent.

Even though the above theorem may seem like a pretty specific setting for which we require two cubics
that intersect in exactly nine distinct points, it can actually be used to prove a lot of incidence relations
between lines, conics and curves. For instance, there is the classical Pappus’ Theorem that dates back
from the 4th century A.D. and is accredited to Pappus of Alexandria [13].

Theorem22 (Pappus’ Theorem, 4th century). Let 𝜆 and 𝜇 be two distinct lines and let𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2, 𝐵3
be distinct points such that 𝐴1, 𝐴2, 𝐴3 ∈ 𝜆, 𝐵1, 𝐵2, 𝐵3 ∈ 𝜇 and no point lies on both lines. Suppose that
for 𝑖𝑗 = 12, 23, 31, the lines 𝐴𝑖𝐵𝑗 and 𝐴𝑗𝐵𝑖 intersect in the point 𝐶𝑖𝑗. Then 𝐶12, 𝐶23, 𝐶31 are collinear.

Proof. A sketch of the above situation is given in Figure 2.2. Let 𝑄1 be the union of lines 𝐴1𝐵2, 𝐴2𝐵3
and 𝐴3𝐵1 (the dotted lines in the figure). Similarly, let 𝑄2 be the union of lines 𝐴1𝐵3, 𝐴2𝐵1 and 𝐴3𝐵2 (the
dashed lines). We let 𝑄 denote the union of lines 𝐴1𝐴3, 𝐵1𝐵3 and 𝐶12𝐶23. Note that 𝑄1 and 𝑄2 are two
cubic curves that meet in exactly nine distinct points {𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2, 𝐵3, 𝐶12, 𝐶23, 𝐶31}. But 𝑄 is also
a cubic curve that goes through the first eight of these points. Hence, 𝐶 should also go through 𝐶23.
Since 𝐶23 cannot lie on 𝜆 nor 𝜇, the result follows.

𝜆

𝜇

𝐴1

𝐴3

𝐵1 𝐵3

𝐴2

𝐵2

𝐶12
𝐶31

𝐶23

Figure 2.2: Representation of Pappus’ Theorem is depicted.

Fast forward in time to the 17th century when Pascal gave a generalisation of Pappus’ Theorem in his
essay Essai pour les coniques. The essay has been lost to time, but the theorem luckily still remains
[14].
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Theorem 23 (Pascal’s Theorem, 1640). Let 𝐴1, 𝐴2, 𝐴3, 𝐵2, 𝐵2, 𝐵3 be distinct points on a conic 𝐶. Sup-
pose that for 𝑖𝑗 = 12, 23, 31, the lines 𝐴𝑖𝐵𝑗 and 𝐴𝑗𝐵𝑖 meet at point 𝐶𝑖𝑗. Then the points 𝐶12, 𝐶23, 𝐶31 are
collinear.

Proof. The proof of Pascal’s Theorem is actually the exact same proof as for Pappus’ Theorem, where
we replace the conic 𝜆 ∪ 𝜇 by the conic 𝐶. Since 𝐶 meets every line in at most two points, none of the
𝐶𝑖𝑗 can lie on 𝐶. See also Figure 2.3 for a drawing.

𝐴1

𝐴2
𝐴3

𝐵3𝐵1

𝐶

𝐵2

𝐶12
𝐶31

𝐶23

Figure 2.3: Representation of Pascal’s Theorem is depicted.

So indeed, when specifically considering two conics that vanish on nine distinct points, we are able to
prove some pretty and historical results from geometry. But the next Cayley-Bacharach Theorem is
even more powerful than Chasles’ Theorem. For this statement, we need some more notions. When
we require that a curve in 𝐾[𝑥1, 𝑥2] of degree 𝑑 vanishes at a point 𝑝 ∈ 𝐾, we impose a linear constraint
on the coefficients defining the curve. For example, suppose we consider a curve 𝑓 in 𝐾[𝑥1, 𝑥2] of
degree 1. Then this curve has equation 𝑓(𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐, where 𝑎, 𝑏, 𝑐 are the coefficients. If
we require that 𝑓(2,−1) = 0, then we impose the linear condition 2𝑎 − 𝑏 + 𝑐 = 0. This idea of points
imposing linear constraints allows us to define when a set of points fail to impose linear constraints.

Definition 24. If a set Γ of 𝛾 points imposes only 𝛼 ≤ 𝛾 independent linear conditions on the coefficients
of a curve of degree 𝑑, then we say that Γ fails to impose 𝛾−𝛼 independent linear conditions on curves
of degree ≤ 𝑑.

For instance, 9 collinear points fail to impose 5 independent conditions on curves of degree 3: by
Bézout’s Theorem, any cubic that passes through 4 of the collinear points must pass through them all.
In general it holds that any set of 𝑘 collinear points fails to impose 𝑘 − (𝑑 + 1) conditions on curves of
degree 𝑑 ≤ 𝑘 − 1.
Secondly, when returning to Pappus’ Theorem, there is actually a specific case that we have not con-
sidered yet, but that gives a nice introduction to projective geometry. We might have chosen 𝐴1, 𝐴2, 𝐵1
and 𝐵2 such that 𝐴1𝐵2 and 𝐴2𝐵1 are actually parallel. In the Cartesian plane that means that 𝐴1𝐵2 and
𝐴2𝐵1 do not have an intersection point and therefore we cannot use Pappus’ Theorem. In the projec-
tive plane ℙ2 however, we say that 𝐶12 lies on the line at infinity. In the case where 𝐴2𝐵1 and 𝐴3𝐵2
also intersect on the line at infinity, Pappus’ Theorem implies that also 𝐶31 lies on this line at infinity.
Translated back, this means that 𝐴1𝐵3 and 𝐴3𝐵1 are parallel too. This example shows it can make
sense to look at the projective plane ℙ2 instead of the Cartesian one. This is what we shall do in the
next few results to then revert back to the Cartesian plane.
Lastly, it is important to note that if we equip the set of all curves in ℙ2 of degree 𝑘 that vanish on some
set of points Γ with the usual polynomial addition and the usual scalar multiplication, this set forms a
vector space. And if Γ′ ⊆ Γ, the vector space 𝑉 of degree 𝑘 curves vanishing on Γ forms a subspace of
the vector space 𝑉′ of degree 𝑘 curves vanishing on Γ′. Therefore, we can also consider the quotient
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space 𝑉′⧵𝑉, also called 𝑉′ modulo 𝑉. Now we are able to consider the first Cayley-Bacharach Theorem
[13].

Theorem 25 (Cayley-Bacharach 1, 19th century). Suppose that two plane curves 𝐶1, 𝐶2 ⊆ ℙ2 of re-
spective degrees 𝑑1 and 𝑑2 intersect in 𝑑1𝑑2 points Γ = 𝐶1 ∩ 𝐶2 = {𝑝1, … , 𝑝𝑑1𝑑2}. Partition Γ = Γ′ ∪ Γ″
and set 𝑠 = 𝑑1 + 𝑑2 − 3. If 𝑘 ≤ 𝑠 is a non-negative integer, then the dimension of the vector space of
curves of degree 𝑘 vanishing on Γ′, modulo those vanishing on all of Γ, is equal to the failure of Γ″ to
impose linearly independent conditions on curves of degree 𝑠 − 𝑘.

As a corollary, we formulate a generalisation of Chasles’ Theorem.

Corollary 26. Let 𝐶1, 𝐶2 ⊆ ℙ2 be plane curves of respective degrees 𝑑1 and 𝑑2, meeting in 𝑑1𝑑2 distinct
points Γ. If 𝐶 is a plane curve of degree ≤ 𝑑1 +𝑑2 −3 containing all but one point of Γ, then 𝐶 contains
all of Γ.

Proof. We apply the first Cayley-Bacharach Theorem. Hence, let Γ′ be the subset of Γ containing all
but one point where 𝐶 vanishes and let Γ″ be the singleton with the remaining point. Moreover let 𝑘
denote deg𝐶 ≤ 𝑠 = 𝑑1 + 𝑑2 − 3. Then the failure of Γ″ to impose linearly independent conditions on
curves of degree 𝑠 − 𝑘 ≥ 0 is equal to 0 as |Γ″| = 1. Hence, the dimension of the vector space of
curves of degree 𝑘 vanishing on Γ′ modulo those vanishing on all of Γ is equal to 0. This means that
any such curve vanishes on all of Γ.

There exists a generalisation of the first Cayley-Bacharach Theorem that replaces the two curves by 𝑛
hypersurfaces of ℙ𝑛, the projective space of dimension 𝑛. A hypersurface is a manifold of dimension
𝑛 − 1 in an ambient space of dimension 𝑛. When 𝑛 = 2, then a hypersurface is a plane curve,
which brings us back to the setting of the theorem above. In a higher dimension 𝑛, we can regard a
hypersurface as a polynomial in 𝑛 variables [13].

Theorem 27 (Cayley-Bacharach 2, 19th century). Let 𝑋1, … , 𝑋𝑛 be hypersurfaces in ℙ𝑛 of respective
degrees 𝑑1, … , 𝑑𝑛, meeting transversely, and suppose that its finite intersection Γ = 𝑋1 ∩ ⋯ ∩ 𝑋𝑛 is
partitioned in Γ = Γ′ ∪ Γ″. Set 𝑠 = ∑𝑖 𝑑𝑖 − 𝑛 − 1. If 𝑘 ≤ 𝑠 is a non-negative integer, then the dimension
of the family of curves of degree 𝑘 containing Γ′, modulo those containing all of Γ, is equal to the failure
of Γ″ to impose independent conditions of curves of degree 𝑠 − 𝑘.

In the above theorem, we require the hypersurfaces to meet transversely. Meeting transversely can
be seen as the opposite as meeting tangentially. So, at an intersection point, we require the tangents
of the curves to be different. For a final statement of the Cayley-Bacharach Theorem, we can weaken
that assumption to the hyperplanes intersecting in singular points, i.e. 𝑋1∩⋯∩𝑋𝑛 is zero-dimensional.
Moreover, we no longer restrict ourselves to the projective plane ℙ2 and we replace the notion of
hypersurfaces that intersect with a system of equations for which we want to find solutions. This yields
a theorem that has the same flavour as Chasles’ Theorem and Corollary 26. This theorem holds over
any arbitrary field if all the intersection points Γ are defined over this field [18].

Theorem 28 (Cayley-Bacharach 3, 20th century). Consider the system of equations

𝑔1(𝑥) = 0
⋮

𝑔𝑛(𝑥) = 0

of respective degrees 𝑑1, … , 𝑑𝑛 with 𝑑1𝑑2…𝑑𝑛 isolated solutions Γ. If 𝐶 is a curve of degree ≤ ∑𝑖 𝑑𝑖 −
𝑛 − 1 containing all but one point of Γ, then 𝐶 contains all of Γ.

Note that with this theorem we have entered the 20th century. Even tough Karasev [18] dates this
theorem to the 19th century, it seems highly unlikely that this result was already known by then. That is
because the proof requires some involved algebraic ideas that were only introduced in the 20th century.
For example, it requires the notion of Gorenstein Rings and the intersections of the hypersurfaces are
treated as schemes. We will not go into the details of this proof; the main takeaway from this Cayley-
Bacharach Theorem is that it actually implies the Alon-Füredi Bound that can be found in Corollary 3.
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Proof of Corollary 3 using Theorem 28. For every 𝑆𝑖 ⊆ 𝔽, we define 𝑔𝑖 = ∏𝑠∈𝑆𝑖(𝑥𝑖−𝑠), such that every
𝑔𝑖 has degree 𝑑𝑖 = |𝑆𝑖|. Then any polynomial 𝑝 with deg𝑝 ≤ ∑𝑖 𝑑𝑖 − 𝑛 − 1 = ∑𝑖(𝑑𝑖 − 1) − 1 that
vanishes on all common zeroes of 𝑔1, … , 𝑔𝑛 except one, vanishes on all of them. Hence, if 𝑝 does
vanish on 𝑆1 ×⋯× 𝑆𝑛 except one point, deg𝑝 ≥ ∑𝑖(𝑑𝑖 − 1).

So with two different polynomial methods, we are able to find a lower bound on a grid cover where all
points are covered once, except one point which is left uncovered. A sensible next step is to consider
what happens if we do not want to cover every point once, but multiple times while still avoiding the
origin. This brings us to the setting of the Ball-Serra bound.

2.4. The Ball-Serra Bound
In this section we consider the case where we do not cover every non-zero point of the grid only once,
but 𝑘 times, for some integer 𝑘 ≥ 2, while still avoiding the origin. We call such a cover a 𝑘-cover.
Because of the increased multiplicity, the Alon-Füredi does not provide a useful bound. However, the
polynomial method is able to provide another bound. Specifically, this section considers the Punctured
Combinatorial Nullstellensatz formulated by Ball and Serra in [4]. This Nullstellensatz requires some
notation. First of all, let 𝑇(𝑛, 𝑘) be the set of all non-decreasing sequences of length 𝑘 on the set [𝑛].
Note that non-decreasing means that a sequence can have repeated elements. Moreover, for any such
sequence 𝜏 ∈ 𝑇(𝑛, 𝑘), we let 𝜏(𝑖) denote its 𝑖-th element. When summing over elements in a sequence
𝜏, repeated elements are counted multiple times.

Example 29. Consider 𝑇(2, 3) = {(1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2)}. Let 𝜏 = (1, 1, 2), then 𝜏(1) =
𝜏(2) = 1 and 𝜏(3) = 2. Summing over its elements becomes ∑𝑖∈𝜏 𝑖 = 1 + 1 + 2 = 4.

Secondly, we need to define when a point vanishes with multiplicity 𝑘 for a polynomial in an arbitary
field.

Definition 30. Consider an arbitrary field 𝔽. We say that a polynomial 𝑓 ∈ 𝔽[𝑥1, … , 𝑥𝑛] has a zero of
multiplicity 𝑘 at point (𝑎1, … , 𝑎𝑛) ∈ 𝔽𝑛 if 𝑘 is the maximum non-negative integer such that all monomials
in the polynomial 𝑓(𝑥1 + 𝑎1, … , 𝑥𝑛 + 𝑎𝑛) in expanded form have degree 𝑘.

Lastly, if we consider the grid Γ = 𝑆1 ×⋯× 𝑆𝑛 in 𝔽𝑛, we again formulate the polynomials

𝑔𝑖(𝑥𝑖) =∏
𝑠∈𝑆𝑖

(𝑥𝑖 − 𝑠),

such that Γ is the set of all common zeroes of 𝑔1, … , 𝑔𝑛. The set-up allows us to have some points on
our grids that we do not cover. For these points, we define the subsets 𝐷𝑖 ⊂ 𝑆𝑖 and polynomials

𝑙𝑖(𝑥𝑖) = ∏
𝑑∈𝐷𝑖

(𝑥𝑖 − 𝑑).

Theorem 31 (Punctured Combinatorial Nullstellensatz). If 𝑓 vanishes at least 𝑘 times at all elements
of 𝑆1 ×⋯×𝑆𝑛, except at at least one point of 𝐷1 ×⋯×𝐷𝑛 where it has a zero of multiplicity less than 𝑘,
then there are polynomials ℎ𝜏 in 𝔽[𝑥1, … , 𝑥𝑛] satisfying deg(ℎ𝜏) ≤ deg(𝑓)−∑𝑖∈𝜏 deg(𝑔𝑖) and a nonzero
polynomial satisfying deg(𝑢) ≤ deg(𝑓) − ∑𝑛𝑖=1 (deg(𝑔𝑖) − deg(𝑙𝑖)), such that

𝑓 = ∑
𝜏∈𝑇(𝑛,𝑘)

𝑔𝜏(1)…𝑔𝜏(𝑘)ℎ𝜏 + 𝑢
𝑛

∏
𝑖=1

𝑔𝑖
𝑙𝑖
.

And if there is a point of 𝐷1 ×⋯× 𝐷𝑛 where 𝑓 does not vanish, then

deg(𝑓) ≥ (𝑘 − 1)max
𝑗∈[𝑛]

(|𝑆𝑗| − |𝐷𝑗|)) +
𝑛

∑
𝑖=1
(|𝑆𝑖| − |𝐷𝑖|) .
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Example 32. Suppose there exists a degree 12 polynomial that covers {0, 1, 2, 3} × {0, 1, 2, 3} ⧵ {(0, 0)}
with multiplicity 3 while avoiding the origin. Note that such existence would give tightness in the lower
bound on the degree of 𝑓 as (3 − 1)max𝑗 (|𝑆𝑗| − |𝐷𝑗|)) + ∑

𝑛
𝑖=1 (|𝑆𝑖| − |𝐷𝑖|) = 2 ⋅ 3 + 3 + 3 = 12. Then

Theorem 31 implies that 𝑓 can be written in the following form:

𝑓 = ℎ111 ⋅ 𝑔31 + ℎ112 ⋅ 𝑔21𝑔2 + ℎ122 ⋅ 𝑔1𝑔22 + ℎ222 ⋅ 𝑔32 + 𝑢 ⋅
𝑔1
𝑙1
⋅ 𝑔2𝑙2

,

where ℎ𝜏 are constants for all 𝜏 ∈ 𝑇(2, 3) and deg(𝑢) ≤ 12−3−3 = 6, 𝑔1(𝑥) = 𝑥(𝑥 −1)(𝑥 −2)(𝑥 −3),
𝑔2(𝑦) = 𝑦(𝑦 − 1)(𝑦 − 2)(𝑦 − 3), 𝑙1(𝑥) = 𝑥 and 𝑙2(𝑦) = 𝑦. Hence,

𝑓 =ℎ111 ⋅ (𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3))
3 + ℎ112 ⋅ (𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3))

2 ⋅ 𝑦(𝑦 − 1)(𝑦 − 2)(𝑦 − 3)+
ℎ122 ⋅ 𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3) ⋅ (𝑦(𝑦 − 1)(𝑦 − 2)(𝑦 − 3))

2 + ℎ222 ⋅ (𝑦(𝑦 − 1)(𝑦 − 2)(𝑦 − 3))
3+

𝑢 ⋅ (𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑦 − 1)(𝑦 − 2)(𝑦 − 3).

The Ball-Serra bound will play a vital role in this thesis, so let us take a closer look at its proof. In the
first place, we require Alon’s Combinatorial Nullstellensatz [1].

Theorem 33 (Alon’s Combinatorial Nullstellensatz). Let 𝔽 be an arbitrary field. Suppose a polynomial 𝑓
vanishes over all elements of 𝑆1 × ⋯ × 𝑆𝑛, that is, 𝑓(𝑠1, 𝑠2, … , 𝑠𝑛) = 0 for all 𝑠𝑖 ∈ 𝑆𝑖. Then there exist
polynomials ℎ1, ℎ2, … , ℎ𝑛 ∈ 𝔽[𝑥1, 𝑥2, … , 𝑥𝑛] with deg(ℎ𝑖) ≤ deg(𝑓) − deg(𝑔𝑖) such that

𝑓 =
𝑛

∑
𝑖=1
ℎ𝑖𝑔𝑖 .

To prove Alon’s Combinatorial Nullstellensatz, we need another lemma regarding polynomials that
vanish on grids [1].

Lemma 34. Let 𝑓 be a polynomial in 𝑛 variables over an arbitrary field 𝔽. Suppose that deg𝑥𝑖(𝑓) ≤ 𝑡𝑖
for 𝑖 ∈ [𝑛], where deg𝑥𝑖(𝑓) denotes the degree of 𝑓 as a polynomial in 𝑥𝑖. For every 𝑖, let 𝑆𝑖 ⊆ 𝔽 such
that |𝑆𝑖| ≥ 𝑡𝑖 + 1. If 𝑓 vanishes on all of 𝑆1 ×⋯× 𝑆𝑛, then 𝑓 ≡ 0.

Proof. We will prove this lemma using induction on 𝑛. For the base case, when 𝑛 = 1, the lemma just
corresponds to the fact that a univariate polynomial of degree 𝑡1 can have at most 𝑡1 zeroes.
Now assume that the lemma holds for polynomials in 𝑛 − 1 variables and consider an 𝑛-variate poly-
nomial and sets 𝑆𝑖 satisfying the hypotheses. We can write

𝑓 =
𝑡𝑛
∑
𝑖=0
𝑓𝑖(𝑥1, … , 𝑥𝑛) ⋅ 𝑥𝑖𝑛 ,

where each 𝑓𝑖 is a polynomial such that deg𝑥𝑗(𝑓𝑖) ≤ 𝑡𝑗 for all 𝑗. Moreover, for each fixed point
(𝑥1, … , 𝑥𝑛−1) ∈ 𝑆1 × ⋯ × 𝑆𝑛−1, the polynomial in 𝑥𝑛 obtained by substituting (𝑥1, … , 𝑥𝑛−1) vanishes
for all 𝑥𝑛 ∈ 𝑆𝑛, and is thus identically zero by the base case. Hence, 𝑓𝑖(𝑥1, … , 𝑥𝑛−1) = 0 for all
(𝑥1, … , 𝑥𝑛−1) ∈ 𝑆1 ×⋯× 𝑆𝑛−1. So, by the induction hypothesis 𝑓𝑖 ≡ 0 for all 𝑖 and so 𝑓 ≡ 0.

Proof of Alon’s Combinatorial Nullstellensatz. Let 𝑡𝑖 = |𝑆𝑖| − 1 for all 𝑖. Moreover, we rewrite each 𝑔𝑖:

𝑔𝑖(𝑥𝑖) =∏
𝑠∈𝑆𝑖

(𝑥𝑖 − 𝑠) = 𝑥𝑡𝑖+1𝑖 −
𝑡𝑖
∑
𝑗=0
𝑔𝑖𝑗𝑥𝑗𝑖 ,

for some coefficients 𝑔𝑖𝑗. This enables us to say that if 𝑥𝑖 ∈ 𝑆𝑖, then 𝑔𝑖(𝑥𝑖) = 0, yielding the relation

𝑥𝑡𝑖+1𝑖 =
𝑡𝑖
∑
𝑗=0
𝑔𝑖𝑗𝑥𝑗𝑖 .
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Let 𝑓∗ be the polynomial obtained by replacing each occurrence of 𝑥𝑢𝑖𝑖 with 𝑢𝑖 > 𝑡𝑖 by a linear com-
bination of smaller powers of 𝑥𝑖, using the above relation. For the resulting polynomial it holds that
deg𝑥𝑖(𝑓

∗) ≤ 𝑡𝑖 for all 𝑖 and 𝑓∗ is obtained by subtracting products of the form ℎ𝑖𝑔𝑖 from 𝑓, where
ℎ𝑖 ∈ 𝔽[𝑥1, … , 𝑥𝑛] and deg(ℎ𝑖) ≤ deg(𝑓) − deg(𝑔𝑖). Furthermore, 𝑓∗(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥1, … , 𝑥𝑛) = 0 for all
(𝑥1, … , 𝑥𝑛) ∈ 𝑆1×⋯×𝑆𝑛, because the relations used to replace the 𝑥𝑖 with high degree hold exactly for
these points. By the above lemma, 𝑓∗ ≡ 0 and hence,

𝑓 =
𝑛

∑
𝑖=1
ℎ𝑖𝑔𝑖 .

We generalise this statement to the case where 𝑓 vanishes with multiplicity at all common elements of
𝑆1 ×⋯× 𝑆𝑛.
Theorem 35. Suppose a polynomial 𝑓 vanishes with multiplicity 𝑘 over all elements of 𝑆1×⋯×𝑆𝑛. Then
there exist polynomials ℎ𝜏 ∈ 𝔽[𝑋1, 𝑋2, … , 𝑋𝑛] for every 𝜏 ∈ 𝑇(𝑛, 𝑘) with deg(ℎ𝜏) ≤ deg(𝑓)−∑𝑖∈𝜏 deg(𝑔𝑖)
such that

𝑓 = ∑
𝜏∈𝑇(𝑛,𝑘)

𝑔𝜏(1)…𝑔𝜏(𝑘)ℎ𝜏 .

Proof. This theorem is proven using double induction on 𝑛 and 𝑘. If 𝑘 = 1, then this just corresponds to
Alon’s Combinatorial Nullstellensatz. Moreover, if 𝑛 = 1, then 𝑓 is a univariate polynomial that vanishes
with multiplicity 𝑘 on all 𝑠𝑖 ∈ 𝑆1. Hence, 𝑓(𝑥) = ∏𝑠𝑖∈𝑆𝑖 (𝑥 − 𝑠𝑖)

𝑘 ⋅ ℎ(𝑥) = 𝑔𝑘(𝑥) ⋅ ℎ(𝑥). Since 𝑇(1, 𝑘)
only contains one sequence, namely the all-1 sequence, this indeed corresponds to the formula in the
theorem.
For the induction hypothesis, assume that the statement holds for 𝑚 < 𝑛 and 𝓁 ≤ 𝑘 and for 𝑚 ≤ 𝑛 and
𝓁 < 𝑘. Now suppose 𝑓 is an 𝑛-variate polynomial that vanishes on all of 𝑆1 × ⋯ × 𝑆𝑛 with multiplicity
𝑘. Let 𝛼 ∈ 𝑆𝑛. Then we write 𝑓 = (𝑥𝑛 − 𝛼)𝐴𝛼 + 𝐵𝛼, with 𝐴𝛼 ∈ 𝔽[𝑥1, … , 𝑥𝑛] and 𝐵𝛼 ∈ 𝔽[𝑥1, … , 𝑥𝑛−1]. We
know that (𝑠1, … , 𝑠𝑛−1, 𝛼) is a root of 𝑓 with multiplicity 𝑘 for all 𝑠1 ∈ 𝑆1, … , 𝑠𝑛 ∈ 𝑆𝑛. Hence, 𝐵𝛼 vanishes
with multiplicity 𝑘 at all points of 𝑆1 ×⋯× 𝑆𝑛−1 and by the induction hypothesis,

𝐵𝛼 = ∑
𝜅∈𝑇(𝑛−1,𝑘)

𝑔𝜅(1)…𝑔𝜅(𝑘)ℎ𝜅 ,

where deg(ℎ𝜅) ≤ deg(𝐵𝛼) − ∑𝑖∈𝜅 deg(𝑔𝑖) ≤ deg(𝑓) − ∑𝑖∈𝜅 deg(𝑔𝑖).
Now we split 𝐴𝛼 into two polynomials by considering 𝛽 ∈ 𝑆𝑛, 𝛽 ≠ 𝛼. Then we write 𝐴𝛼 = (𝑥𝑛−𝛽)𝐴𝛽+𝐵𝛽.
We again apply the induction hypothesis, this time on 𝐵𝛽:

𝐵𝛽 = ∑
𝜅∈𝑇(𝑛−1,𝑘)

𝑔𝜅(1)…𝑔𝜅(𝑘)𝑙𝜅 ,

with deg(𝑙𝜅) ≤ deg(𝐵𝛽) − ∑𝑖∈𝜅 deg(𝑔𝑖) ≤ deg(𝑓) − 1 − ∑𝑖∈𝜅 deg(𝑔𝑖). We plug this into the original
expression for 𝑓 to obtain

𝑓 = (𝑥𝑛 − 𝛼)(𝑥𝑛 − 𝛽)𝐴𝛽 + 𝑈𝛼𝛽 ,

𝑈𝛼𝛽 = ∑
𝜅∈𝑇(𝑛−1,𝑘)

𝑔𝜅(1)…𝑔𝜅(𝑘)𝑚𝜅

and deg(𝑚𝜅) ≤ deg(𝑓) − ∑𝑖∈𝜅 deg(𝑔𝑖). We keep repeating this to write 𝑓 in the form

𝑓 = ∏
𝑠𝑖∈𝑆𝑛

(𝑥𝑛 − 𝑠𝑖) ⋅ 𝐴 + 𝐵 = 𝑔𝑛(𝑥𝑛) ⋅ 𝐴 + 𝐵,

where deg(𝐴) ≤ deg(𝑓) − deg(𝑔𝑛).
Moreover, 𝐵 can be written as

𝐵 = ∑
𝜅∈𝑇(𝑛−1,𝑘)

𝑔𝜅(1)…𝑔𝜅(𝑘)𝑤𝜅 ,
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such that deg(𝑤𝜅) ≤ deg(𝑓) −∑𝑖∈𝜅 deg(𝑔𝑖). Since 𝑔𝑛(𝑥𝑛) ⋅ 𝐴 has a zero of multiplicity 𝑘 at all points of
𝑆1 ×⋯× 𝑆𝑛 and 𝑔𝑛 has a zero of multiplicity 1 at all these zeroes, 𝐴 vanishes with multiplicity 𝑘 − 1 on
𝑆1 ×⋯× 𝑆𝑛. Therefore we can use the induction hypothesis on 𝐴 too:

𝐴 = ∑
𝜂∈𝑇(𝑛,𝑘−1)

𝑔𝜂(1)…𝑔𝜂(𝑘−1)𝑝𝜂 ,

with deg(𝑝𝜂) ≤ deg(𝐴) − ∑𝑖∈𝜂 deg(𝑔𝑖). Putting everything together yields

𝑓 = 𝑔𝑛 ⋅ ∑
𝜂∈𝑇(𝑛,𝑘−1)

𝑔𝜂(1)…𝑔𝜂(𝑘−1)𝑝𝜂 + ∑
𝜅∈𝑇(𝑛−1,𝑘)

𝑔𝜅(1)…𝑔𝜅(𝑘)𝑤𝜅

= ∑
𝜂∈𝑇(𝑛,𝑘−1)

𝑔𝜂(1)…𝑔𝜂(𝑘−1)𝑔𝑛
⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
includes all 𝜏∈𝑇(𝑛,𝑘) with 𝜏(𝑘)=𝑛

𝑝𝜂 + ∑
𝜅∈𝑇(𝑛−1,𝑘)

𝑔𝜅(1)…𝑔𝜅(𝑘)
⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝

includes all 𝜏∈𝑇(𝑛,𝑘) with 𝜏(𝑘)≠𝑛

𝑤𝜅

= ∑
𝜏∈𝑇(𝑛,𝑘)

𝑔𝜏(1)…𝑔𝜏(𝑘)ℎ𝜏 ,

with deg(ℎ𝜏) ≤ deg(𝑓) − ∑𝑖∈𝜏 deg(𝑔𝑖), which is exactly what we wanted to prove.

Now we finally proceed to prove the Ball-Serra Bound.

Proof of the Punctured Combinatorial Nullstellensatz. Suppose that 𝑓 vanishes with multiplicity 𝑘 at all
grid points of 𝑆1×⋯×𝑆𝑛, except at the points of 𝐷1×⋯×𝐷𝑛. At those points, 𝑓 has a zero of multiplicity
less than 𝑘. Then we can write 𝑓 in the form

𝑓 = ∑
𝜏∈𝑇(𝑛,𝑘)

𝑔𝜏(1)…𝑔𝜏(𝑘)ℎ𝜏 +𝑤,

where we note that 𝑤 does not contain a monomial 𝑥𝓁11 …𝑥𝓁𝑛𝑛 such that there is a 𝜏 ∈ 𝑇(𝑛, 𝑘) with
𝓁𝑗 ≥ mult(𝑗, 𝜏) ⋅ |𝑆𝑗| for all 𝑗 ∈ [𝑛], where mult(𝑗, 𝜏) denotes the number of occurrences of 𝑗 in 𝜏. We
can assume that 𝑓 has this form because if there is such a monomial in 𝑤 for a certain 𝜅, we can obtain
𝑤′ = 𝑤 − 𝑔𝜅(1)…𝑔𝜅(𝑘) and therefore 𝑓 = ∑𝜏∈𝑇(𝑛,𝑘) 𝑔𝜏(1)…𝑔𝜏(𝑘)ℎ′𝜏 +𝑤′.
But maybe more importantly, we know that 𝑓 ⋅ 𝑙𝑘𝑖 vanishes at all common zeroes of 𝑔1, … , 𝑔𝑛. As these
common zeroes are clearly also zeroes of ∑𝜏∈𝑇(𝑛,𝑘) 𝑔𝜏(1)…𝑔𝜏(𝑘)ℎ𝜏, we know that 𝑤 ⋅ 𝑙𝑘𝑖 should also
vanish at these points (𝑠1, … , 𝑠𝑛) ∈ 𝑆1 × ⋯ × 𝑆𝑛. If we regard 𝑤 ⋅ 𝑙𝑘𝑖 as a univariate polynomial in 𝑥𝑖,
we find that 𝑔𝑖 divides this polynomial. Since 𝑙𝑖 divides 𝑔𝑖, that means that 𝑔𝑖𝑙𝑖 divides 𝑤 ⋅ 𝑙𝑘−1𝑖 . But 𝑔𝑖𝑙𝑖
cannot divide 𝑙𝑘−1𝑖 , since 𝑔𝑖

𝑙𝑖
= ∏𝑠𝑖∈𝑆𝑖⧵𝐷𝑖(𝑥𝑖 − 𝑠𝑖) and 𝑙𝑖 = ∏𝑠𝑖∈𝐷𝑖(𝑥𝑖 − 𝑠𝑖). Therefore we know that 𝑔𝑖𝑙𝑖

divides 𝑤. This holds for every 𝑖, so 𝑤 = 𝑢∏𝑖∈[𝑛]
𝑔𝑖
𝑙𝑖

for some polynomial 𝑢. Hence,

𝑓 = ∑
𝜏∈𝑇(𝑛,𝑘)

𝑔𝜏(1)…𝑔𝜏(𝑘)ℎ𝜏 + 𝑢∏
𝑖∈[𝑛]

𝑔𝑖
𝑙𝑖
.

Moreover, 𝑢 cannot be the zero polynomial, because otherwise 𝑓 would vanish on all common zeroes
of 𝑔1, … , 𝑔𝑛, which contradicts our assumptions. This concludes the first part of the statement. Now
we still have to prove the bound on the degree. To do so, let 𝑑2 ∈ 𝐷2, … , 𝑑𝑛 ∈ 𝐷𝑛 and consider

𝑓(𝑥1, 𝑑2, … , 𝑑𝑛). Since 𝑓(𝑥1, 𝑑2, … , 𝑑𝑛) vanishes with multiplicity 𝑘 on all 𝑠 ∈ 𝑆1 ⧵𝐷1, we know that (𝑔1𝑙1 )
𝑘

divides 𝑓(𝑥1, 𝑑2, … , 𝑑𝑛). Furthermore, evaluating (𝑥1, 𝑑2, … , 𝑑𝑛) in

∑
𝜏∈𝑇(𝑛,𝑘)

𝑔𝜏(1)…𝑔𝜏(𝑘)ℎ𝜏 + 𝑢 ⋅ ∏
𝑠𝑖𝑗∈𝑆𝑗⧵𝐷𝑗

(𝑥𝑗 − 𝑠𝑖𝑗)

yields
𝑔1(𝑥1)𝑘ℎ1…1 + 𝑐 ⋅ 𝑢(𝑥1, 𝑑2, … , 𝑑𝑛) ⋅ ∏

𝑠∈𝑆1⧵𝐷1

(𝑥1 − 𝑠),
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for some constant 𝑐. Since (𝑔1𝑙1 )
𝑘
divides this sum, it has to divide both terms. For the first term

this is obviously true, for the second one this implies that (𝑔1𝑙1 )
𝑘−1

divides 𝑢(𝑥1, 𝑑2, … , 𝑑𝑛). Therefore,
deg(𝑢) ≥ (𝑘 − 1) ⋅ (|𝑆1| − |𝐷1|), and this argument can be repeated for any 𝑗 ∈ [𝑛]. Hence,

deg(𝑢) ≥ (𝑘 − 1) ⋅ (|𝑆𝑗| − |𝐷𝑗|), ∀𝑗 ∈ [𝑛].

Since deg (∏𝑖∈[𝑛]
𝑔𝑖
𝑙𝑖
) = ∑𝑖(|𝑆𝑖| − |𝐷𝑖), we find for all 𝑗 ∈ [𝑛],

deg(𝑓) ≥ (𝑘 − 1) ⋅ (|𝑆𝑗| − |𝐷𝑗|) + ∑
𝑖∈[𝑛]

(|𝑆𝑖| − |𝐷𝑖|).

Thus, if we would like to cover a certain grid 𝑆1 ×⋯×𝑆𝑛 𝑘 times, where all 𝑆𝑖 are subsets of some field
𝔽, while completely avoiding the origin, then the Ball-Serra Bound implies that we need at least

(𝑘 − 1)max
𝑗
(|𝑆𝑗| − 1) +

𝑛

∑
𝑖=1
(|𝑆𝑖| − 1)

hyperplanes.

2.5. Conclusion
This section provided lower bounds on the sizes of grid covers, depending on their multiplicity. First,
we considered a grid cover where all points of Γ = 𝑆1×⋯×𝑆𝑛 are covered with multiplicity one, except
for one point that must remain uncovered. The Alon-Füredi Bound implies that such a cover has size at
least∑𝑖 (|𝑆𝑖| − 1). This bound could easily be proven in the case when Γ = 𝑄𝑛, bymaking use of the fact
that the polynomial that we define from the cover only needs to vanish on binary vectors. In the general
setting, proving this lower bound required some more complicated polynomial methods. Specifically,
we used the Footprint Bound, which states that the number of common zeroes of polynomials in an
ideal is upper bounded by the number of standard monomials of that ideal. By considering a grid as
a set of common zeroes of univariate polynomials, we could translate this upper bound to the upper
bound given by Alon-Füredi. Interpreting a grid as such a set of common zeroes also enabled us to
prove the Alon-Füredi Bound using one of the Cayley-Bacharach Theorems. This is an older theorem
that links the dimension of the vector space of curves of given degree that vanish on a set to the failure
of the ”complementary” set to curves of ”complementary” degree.
When we increase the multiplicity of the grid cover, the Alon-Füredi Bound no longer holds. In that case,
Ball and Serra provided a different bound with their Punctured Combinatorial Nullstellensatz. They
showed that the minimum size of the cover is then equal to (𝑘−1)max𝑗 (|𝑆𝑗| − 1)+∑

𝑛
𝑖=1 (|𝑆𝑖| − 1). This

bound was proven using polynomial methods too, this time using Alon’s Combinatorial Nullstellensatz.
This Nullstellensatz originally gave the form of a polynomial that vanishes on the entire grid Γ = 𝑆1×⋯×
𝑆𝑛 with multiplicity 1. Adapting this form to the case where 𝑓 vanishes with multiplicity 𝑘 on Γ except at
one point, where it does not vanish, yields the Ball-Serra Bound. While in the case of the Alon-Füredi
we have seen that this lower bound is actually tight, it’s not as clear whether the Ball-Serra bound is
tight too. That is what is investigated in the next chapter.





3
Tightness of the Ball-Serra Bound

The Ball-Serra Bound states that a polynomial that vanishes at all points of 𝑆1×⋯×𝑆𝑛 with multiplicity 𝑘,
except at one uncovered point, has degree at least (𝑘−1)max𝑗 (|𝑆𝑗| − 1)+∑

𝑛
𝑖=1 (|𝑆𝑖| − 1). In particular,

this minimum degree immediately gives a lower bound on the number of hyperplanes required to form a
hyperplane 𝑘-cover of 𝑆1×⋯×𝑆𝑛. However, the bound does not assume anything about the polynomial
except its roots. In this light, we investigate two things in this chapter. For starters, we examine whether
the Ball-Serra Bound is tight for hyperplane covers. Next, in the cases where we do not know if we have
tightness, we explore if the Ball-Serra Bound is tight when we omit the constraint that the polynomial
needs to be a product of hyperplanes, i.e. a product of degree 1 polynomials. Such a polynomial is
called a polynomial 𝑘-cover.
We start by introducing the basic ideas in an analysis of tightness of the Ball-Serra Bound for the hy-
percube in Section 3.1. We give the best lower bounds possible using the polynomial method and
compare them with the conjectured hyperplane covering number. The polynomial method for the hy-
percube interestingly also raises some questions about the polynomial covering number of the vector
space 𝔽𝑛2 over the binary field. Both the polynomial and the hyperplane covering number of the binary
field are addressed in Section 3.2. The largest part of this chapter is spent on how to cover grids in
the Cartesian plane. While the behaviour of the hyperplane covering number has been studied fairly
well, the polynomial covering number has not been studied yet and hence is unknown. In the remain-
ing sections of this chapter we look into multiple approaches taken to figure out when the Ball-Serra
Bound is tight for these grids. At first, we generate different polynomial 3-covers using an algorithm.
We investigate the different properties that these polynomial covers in the plane can have. Based on
the example covers, a threshold is proposed when the Ball-Serra Bound is tight for polynomial covers
of grids in the Cartesian plane. To further investigate the 3-covers we also look at a different method
to construct them, based on slices of the grid. From this method, the exact same threshold seems
to arise. As there are still open questions regarding proof methods, this threshold is presented as a
conjecture. Generalising the analysis of the 3-covers, we are also able to conjecture a threshold for any
polynomial 𝑘-cover and to conjecture the behaviour of the polynomial 𝑘-covering number for grids that
do not satisfy the threshold. In this chapter, we always assume that the considered grid 𝑆1×𝑆2×⋯×𝑆𝑛
has the property |𝑆1| ≥ |𝑆2| ≥ ⋯ ≥ |𝑆𝑛|, which we are allowed to do because of symmetry.

3.1. Covers of the Hypercube
Just as with the Alon-Füredi bound, we start our analysis of the bound by looking at the hypercube,
making use of the fact that all points that we want to cover are binary. Note that for the hypercube
𝑄𝑛 = {0, 1}𝑛, the Ball-Serra Bound implies that a 𝑘-cover has size at least (𝑘 − 1) + 𝑛. For 𝑘 = 1, this
coincides with the – tight – Alon-Füredi Bound. Before looking into covers with higher multiplicities, it is
important to establish a method to actually search for polynomials that vanish with the right multiplicity.
Already in the analysis of the Cayley-Bacharach Theorem in Section 2.3, we have seen that requiring
that a polynomial vanishes at a point imposes a linear constraint on the coefficients of that polynomial.
In a similar fashion, there are linear constraints that encode that we require that the polynomial should
vanish with higher multiplicity at that point. For a polynomial 𝑓 to vanish at some point (𝑢, 𝑣) with
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multiplicity 𝑘, we should have

𝑓(𝑢, 𝑣) = 𝜕(𝑖+𝑗)𝑓
𝜕𝑥𝑖𝜕𝑦𝑗 (𝑢, 𝑣) = 0 for all 0 ≤ 𝑖 + 𝑗 ≤ 𝑘.

Hence to find out whether there exists a polynomial cover of a certain degree for a given grid, we
can verify whether there exists a solution on the linear system constructed with the above constraints,
where the coefficients of the polynomial are variables in the system.

Example 36. Suppose we would like to find out whether there is a polynomial 2-cover of degree 3 for
the grid 𝑄2 = {0, 1} × {0, 1}. Then we know that such a polynomial needs to be of the form

𝑓(𝑥, 𝑦) = 𝑎30𝑥3 + 𝑎21𝑥2𝑦 + 𝑎12𝑥𝑦2 + 𝑎03𝑦3 + 𝑎20𝑥2 + 𝑎11𝑥𝑦 + 𝑎02𝑦2 + 𝑎10𝑥 + 𝑎01𝑦 + 1.

We are allowed to set the constant term equal to 1, because the polynomial should not vanish at the
origin. Imposing that the points (1, 1), (1, 0) and (0, 1) are covered by 𝑓 yields the linear constraints:

𝑎30 + 𝑎21 + 𝑎12 + 𝑎03 + 𝑎20 + 𝑎11 + 𝑎02 + 𝑎10 + 𝑎01 + 1 = 0
𝑎30 + 𝑎20 + 𝑎10 + 1 = 0

𝑎03 + 𝑎02 + 𝑎01 + 1 = 0.

Since 𝑓 has to form a 2-cover, we should also take into account the derivatives of first order:

𝜕𝑓
𝜕𝑥 = 3 ⋅ 𝑎30𝑥

2 + 2 ⋅ 𝑎21𝑥𝑦 + 𝑎12𝑦2 + 2 ⋅ 𝑎20𝑥 + 𝑎11𝑦 + 𝑎10
𝜕𝑓
𝜕𝑦 = 𝑎21𝑥

2 + 2 ⋅ 𝑎12𝑥𝑦 + 3 ⋅ 𝑎03𝑦2 + 𝑎11𝑥 + 2 ⋅ 𝑎02𝑦 + 𝑎01.

We require that (1, 1), (1, 0) and (0, 1) are also roots of these polynomials and combine all the equations
in the system in a matrix. Then we perform Gaussian Elimination on the matrix to find out whether there
exists a polynomial with coefficients that satisfy the constraints.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎30 𝑎21 𝑎12 𝑎03 𝑎20 𝑎11 𝑎02 𝑎10 𝑎01
1 1 1 1 1 1 1 1 1 −1
1 0 0 0 1 0 0 1 0 −1
0 0 0 1 0 0 1 0 1 −1
3 2 1 0 2 1 0 1 0 0
0 1 2 3 0 1 2 0 1 0
3 0 0 0 2 0 0 1 0 0
0 1 0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 1 0 0
0 0 0 3 0 0 2 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∼

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎30 𝑎21 𝑎12 𝑎03 𝑎20 𝑎11 𝑎02 𝑎10 𝑎01
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 −1
0 0 1 0 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 3
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 −2
0 0 0 0 0 0 0 0 1 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.



3.1. Covers of the Hypercube 23

This shows that there is a unique degree-3 polynomial that covers every non-zero point of {0, 1}×{0, 1}
twice while avoiding the origin. Its function is given by the row reduced echelon form and equals

𝑓(𝑥, 𝑦) = −𝑥2𝑦 − 𝑥𝑦2 + 𝑥2 + 3𝑥𝑦 + 𝑦2 − 2𝑥 − 2𝑦 + 1.
And hence, the Ball-Serra Bound is tight for this grid. We factorise 𝑓 to obtain

𝑓(𝑥, 𝑦) = −(𝑥 + 𝑦 − 1)(𝑥 − 1)(𝑦 − 1),
showing that the unique tight polynomial 2-cover for 𝑄2 is in fact a hyperplane 2-cover.

Now that we have established a method to ensure that a polynomial vanishes with the right multiplicity
at a point, we continue the analysis of 𝑘-covers of the hypercube. For 𝑘 = 2, Example 36 has shown
that there exist instances for which the Ball-Serra Bound, which is equal to 𝑛 + 1, is tight. In fact, the
bound is tight for 𝑘 = 2. A 2-cover of the hypercube of size 𝑛 + 1 can be obtained by generalising the
cover from the example and taking the 𝑛 hyperplanes of the form 𝑥𝑖 = 1 and adding the hyperplane
∑𝑖 𝑥𝑖 = 1. Starting from a 3-cover, things become more complicated and hence also more interesting.
Exactly these covers were investigated by Clifton and Huang [11] in 2020. They came up with the
following theorem.

Theorem 37 (Clifton-Huang). Let 𝑓(𝑛, 𝑘) denote the minimum size of a hyperplane 𝑘-cover of 𝑄𝑛. For
𝑛 ≥ 2,

𝑓(𝑛, 3) = 𝑛 + 3.
For 𝑘 ≥ 4 and 𝑛 ≥ 3,

𝑛 + 𝑘 + 1 ≤ 𝑓(𝑛, 𝑘) ≤ 𝑛 + (𝑘2).

We give an outline of the proof.

Proof. First of all, note that for 𝑘 = 3, 𝑛+3 is equal to 𝑛+ (𝑘2). A 𝑘-cover of this size is given by: 𝑥𝑖 = 𝑖
for 𝑖 ∈ [𝑛] together with 𝑘−𝓁 copies of ∑𝑛𝑖=1 𝑥𝑖 = 𝓁 for 𝓁 ∈ [𝑘−1]. This set of hyperplanes covers every
point of Hamming weight (number of 1’s in its coordinate) equal to 𝓁 exactly 𝓁 times by 𝑥𝑖 = 1 and 𝑘−𝓁
times by ∑𝑛𝑖=1 𝑥𝑖 = 𝓁. And the size of this cover is indeed 𝑛 + ∑𝑘−1𝓁=1 (𝑘 − 𝓁) = 𝑛 + (𝑘2). Hence, for 𝑘 = 3,
we find 𝑛 + 2 ≤ 𝑓(𝑛, 𝑘) ≤ 𝑛 + 3.
Suppose there exists a 3-cover of 𝑄𝑛 of 𝑛 + 2 hyperplanes 𝐻1, … , 𝐻𝑛+2. We can assume that every
hyperplane 𝐻𝑖 is defined by 𝑎𝑖 ⋅ 𝑥 = 1 for 𝑎𝑖 , 𝑥 ∈ ℝ𝑛. So we define the polynomials 𝑝𝑖 = 𝑎𝑖 ⋅ 𝑥 − 1 and
𝑓 = 𝑝1…𝑝𝑛+2. Using the Combinatorial Nullstellensatz with 𝐷𝑖 = {0}, 𝑆𝑖 = {0, 1}, 𝑔𝑖 = 𝑥𝑖(𝑥𝑖 − 1) and
𝑙𝑖 = 𝑥𝑖 we write 𝑓 in the form

𝑓 = ∑
1≤𝑖≤𝑗≤𝑘≤𝑛

𝑥𝑖(𝑥𝑖 − 1)𝑥𝑗(𝑥𝑗 − 1)𝑥𝑘(𝑥𝑘 − 1)ℎ𝑖𝑗𝑘 + 𝑢 ⋅
𝑛

∏
𝑖=1
(𝑥𝑖 − 1),

with deg(𝑢) ≤ 2.
It is easy to see that 𝑓(𝑥) = 0 for all 𝑥 ∈ 𝑄𝑛 ⧵ {0}. But for 𝑓 to have a zero of multiplicity 3 at every
point of 𝑄𝑛 ⧵ {0}, we need all its partial derivatives up to second order to vanish on 𝑄𝑛 ⧵ {0}. Since
𝑥𝑖(𝑥𝑖 − 1)𝑥𝑗(𝑥𝑗 − 1)𝑥𝑘(𝑥𝑘 − 1)ℎ𝑖𝑗𝑘 has its first and second order derivatives vanishing on 𝑄𝑛 ⧵ {0}, we
require

𝜕
𝜕𝑥𝑖

(𝑢 ⋅
𝑛

∏
𝑖=1
(𝑥𝑖 − 1)) (𝑥) = 0

𝜕2
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑢 ⋅
𝑛

∏
𝑖=1
(𝑥𝑖 − 1)) (𝑥) = 0

for all 𝑖, 𝑗 ∈ [𝑛] and all 𝑥 ∈ 𝑄𝑛 ⧵ {0}. Working this out explicitly will imply that 𝑢 ≡ 0, a contradiction.
Hence 𝑓(𝑛, 3) = 𝑛 + 3 for 𝑛 ≥ 2.
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Exactly similar, one can prove that 𝑓(𝑛, 4) ∈ {𝑛+5, 𝑛+6} for 𝑛 ≥ 3. Since removing 1 hyperplane from
a 𝑘-cover leaves us with a (𝑘 − 1)-cover, we have

𝑓(𝑛, 𝑘) ≥ 𝑓(𝑛, 𝑘 − 1) + 1.
So for 𝑘 ≥ 4 and 𝑛 ≥ 3 we find

𝑓(𝑛, 𝑘) ≥ 𝑓(𝑛, 4) + (𝑘 − 4) ≥ 𝑛 + 5 + (𝑘 − 4) = 𝑛 + 𝑘 + 1.
This result shows that Ball-Serra is actually only tight for 𝑘 = 1 or 𝑘 = 2. In any other case, Clifton and
Huang provide a better lower bound. Moreover, they conjecture that the upper bound 𝑛 + (𝑘2) is tight,
rather than the lower bound. The most significant progress in increasing this lower bound was made
by Sauermann and Wigderson in [19] in 2022, again using the polynomial method rather than looking
at the geometric properties of the problem. They were able to improve the lower bound to

𝑛 + 2𝑘 − 3 ≤ 𝑓(𝑛, 𝑘).
Specifically, they showed the following theorem.
Theorem 38 (Sauermann-Wigderson). Let 𝑘 ≥ 2 and 𝑛 ≥ 2𝑘−3. Then any polynomial 𝑝 ∈ ℝ[𝑥1, … , 𝑥𝑛]
with 𝑝(0) ≠ 0 having zeroes of multiplicity at least 𝑘 at all points in {0, 1}𝑛\{0} has degree deg𝑝 ≥
𝑛 + 2𝑘 − 3. Furthermore, there exists such a polynomial 𝑝 with degree deg𝑝 = 𝑛 + 2𝑘 − 3.
There are a couple of interesting things to note from this statement. First of all, this shows that we cannot
expect to increase the lower bound by only using arguments related to polynomials. Since there exists a
polynomial of degree 𝑛+2𝑘−3 that satisfies the above properties, the lower bound cannot be increased
further using the polynomial method. This implies that if the conjecture of Clifton and Huang is correct
and the hyperplane 𝑘-cover number is equal to 𝑛 + (𝑘2), there is a different regime in the polynomial
cover number and the hyperplane cover number. Furthermore, it also means that to find a better lower
bound, other arguments are required that specifically use the fact that we are considering a hyperplane
cover. Secondly, the theorem has now been formulated specifically for polynomials over the reals. The
result actually holds in some more cases, but for those we need the notion of the characteristic of a
field.
Definition 39. Let 𝔽 be an arbitrary field. The characteristic of 𝔽, denoted by char(𝐾) is the smallest
non-negative number 𝑚 such that 𝑚 ⋅ 1𝔽 equals 0𝔽, where 1𝔽 is the multiplicative identity of 𝔽 and 0𝔽
the additive identity. If no such number exists, the field is said to have characteristic 0.
The Sauermann-Wigderson holds for all fields with characteristic zero. What happens for fields with
positive characteristic will be investigated in Section 3.2. Sauermann and Wigderson also looked at
almost 𝑘-covers of the hypercube where the origin is covered exactly 𝓁 times, where 𝓁 ∈ {0, … , 𝑘 − 2}.
Theorem 40. Let 𝑘 ≥ 2 and 𝑛 ≥ 2𝑘 − 3. Let 𝑝 ∈ ℝ[𝑥1, … , 𝑥𝑛] be a polynomial having zeroes of
multiplicity at least 𝑘 at all points in {0, 1}𝑛\{0}, and such that 𝑝 does not have a zero of multiplicity at
least 𝑘 − 1 at the origin. Then 𝑝 must have deg𝑝 ≥ 𝑛 + 2𝑘 − 3. Furthermore, for every 𝓁 ∈ [𝑘 − 2],
there exists a polynomial 𝑝 with deg𝑝 = 𝑛 + 2𝑘 − 3 having zeroes of multiplicity at least 𝑘 at all points
in {0, 1}𝑛\{0}, and such that 𝑝 has a zero of multiplicity exactly 𝓁 at 0.
The case when 𝓁 = 𝑘 − 1 is slightly different.
Theorem 41. Let 𝑘 ≥ 2 and 𝑛 ≥ 1. Let 𝑝 ∈ ℝ[𝑥1, … , 𝑥𝑛] be a polynomial having zeroes of multiplicity
at least 𝑘 at all points in {0, 1}𝑛\{0}, and a zero of multiplicity exactly 𝑘 − 1 at the origin. Then 𝑝 must
have deg𝑝 ≥ 𝑛 + 2𝑘 − 2. Furthermore, there exists such a polynomial 𝑝 with deg𝑝 = 𝑛 + 2𝑘 − 2.
This last theorem holds for any field, independent of its characteristic. So we are able to conclude that
the Ball-Serra bound is only tight for the hypercube in very few cases, namely for covers with multiplicity
1, which is in fact the Alon-Füredi bound, and for covers with multiplicity 2. For higher multiplicity, the
best known lower bound is given by Sauermann and Wigderson and states that 𝑓(𝑛, 𝑘) ≥ 𝑛 + 2𝑘 − 3.
The conjectured hyperplane 𝑘-covering number is 𝑛+(𝑘2) and to prove this to be true, other arguments
than the polynomial method are required. Furthermore, Ball-Serra is not even tight if we allow the
origin to be covered with lower multiplicity than the other grid points. Suppose we allow the origin to be
covered 𝓁 times with 𝓁 < 𝑘 and let 𝑓(𝑛, 𝑘; 𝓁) denote the minimum size of such an almost 𝑘-cover, then
𝑓(𝑛, 𝑘; 𝓁) ≥ 𝑛 + 2𝑘 − 3 for 𝓁 ∈ [𝑘 − 2] and 𝑓(𝑛, 𝑘; 𝑘 − 1) ≥ 𝑛 + 2𝑘 − 2.
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3.2. Covers of the Binary Field
As we have noted previously, Theorem 38 only holds for fields with characteristic 0. If we consider
a field 𝐾 with odd characteristic char(𝐾) > 0 or with characteristic 2, there exists an integer 𝑘 > 1
such that we can actually find a polynomial 𝑝 ∈ 𝐾[𝑥1, … , 𝑥𝑛] of degree ≤ 𝑛 + 2𝑘 − 4 that vanishes on
𝐾 ⧵ {0} with multiplicity 𝑘 while 𝑝 has a non-zero value at the origin [19]. In this section, we provide a
short analysis of the case where 𝐾 is the binary field 𝔽2. As one can expect, by considering a finite
field instead of the hypercube, both the hyperplane and polynomial covers exhibit different behaviours.
To verify the multiplicity of a root of a polynomial in a finite field, the regular derivative cannot be used
anymore. Instead, we have to consider a generalisation of the derivative of a polynomial, called Hasse
derivatives [6].

Definition 42. Let 𝐾[𝑥] be a polynomial ring of positive characteristic. The Hasse derivative of order 𝑟
of 𝑥𝑛 is equal to

𝐷(𝑟) = (𝑛𝑟)𝑥
𝑛−𝑟 ,

if 𝑟 ≤ 𝑛 and 0 otherwise.

In the multivariate case, we take the derivatives sequentially, e.g.:

𝐷(2)
𝐷𝑥𝑖𝐷𝑥𝑗

𝑝 = 𝐷(1)
𝐷𝑥𝑖

(𝐷
(1)

𝐷𝑥𝑗
𝑝) = 𝐷(1)

𝐷𝑥𝑗
(𝐷

(1)

𝐷𝑥𝑖
𝑝) .

From now on, for the first order partial derivative, the ‘(1)’ in the exponent will be omitted and the deriva-
tive will simply be denoted by 𝐷

𝐷𝑥𝑖
. The product rule of the Hasse derivative is slightly different compared

to the normal derivative. To derive this product rule, we need an elemental equality in combinatorics:
the Vandermonde’s Identity.

Theorem 43 (Vandermonde’s Identity). Let 𝑚, 𝑛, 𝑟 be integers such that 𝑟 ≤ 𝑛 +𝑚. Then

(𝑛 +𝑚𝑟 ) =
𝑟

∑
𝑖=0
(𝑛𝑖)(

𝑚
𝑟 − 𝑖).

Proof. Let 𝑆𝑛 , 𝑆𝑚 be two sets of respective sizes 𝑛 and𝑚. The binomial coefficient (𝑛+𝑚𝑟 ) is the number
of ways to pick 𝑟 elements out of 𝑆𝑛 ∪𝑆𝑚. This is equal to the sum of all ways of first picking 𝑖 elements
out of 𝑆𝑛 and then 𝑟 − 𝑖 elements out of 𝑆𝑚, for 𝑖 = 0,… , 𝑟. This is equal to ∑𝑘𝑖=0 (𝑛𝑖)(

𝑚
𝑟−𝑖).

This identity almost immediately provides the product rule for Hasse derivatives.

Lemma 44 (Product Rule). Let 𝑓, 𝑔 ∈ 𝐾[𝑥] and let 𝑟 ∈ ℕ. Then the 𝑟-th order Hasse derivative of 𝑓 ⋅ 𝑔
is given by

𝐷(𝑟)(𝑓 ⋅ 𝑔) =
𝑟

∑
𝑖=0
𝐷(𝑖)𝑓 ⋅ 𝐷(𝑟−𝑖)𝑔.

Proof. To prove this equality, it suffices to look at 𝐷(𝑟)(𝑥𝑛𝑥𝑚) = 𝐷(𝑟)(𝑥𝑛+𝑚). On one hand side,
this is equal to (𝑛+𝑚𝑟 )𝑥

𝑛+𝑚−𝑟. On the other hand we obtain ∑𝑟𝑖=0 𝐷(𝑖)𝑥𝑛 ⋅ 𝐷(𝑟−𝑖)𝑥𝑚. This is equal to
∑𝑟𝑖=0 (𝑛𝑖) ⋅ 𝑥

𝑛−𝑖( 𝑚𝑟−𝑖) ⋅ 𝑥
𝑚−𝑟+𝑖 = ∑𝑟𝑖=0 (𝑛𝑖)(

𝑚
𝑟−𝑖) ⋅ 𝑥

𝑛+𝑚−𝑟, which is indeed equal to the first expression by
the Vandermonde Identity.

A similar product rule can be derived in the multivariate case.

Lemma 45 (Multivariate Product Rule). Let 𝑓, 𝑔 ∈ 𝐾[𝑥1, … , 𝑥𝓁] and let 𝑟, 𝑟1, 𝑟2, … , 𝑟𝓁 ∈ ℕ such that
𝑟1 + 𝑟2 +⋯+ 𝑟𝓁 = 𝑟. Then any 𝑟-th order partial derivative on 𝓁 variables is given by

𝐷(𝑟)
𝐷𝑥𝑟11 𝐷𝑥𝑟22 ⋯𝐷𝑥𝑟𝓁𝓁

(𝑓 ⋅ 𝑔) =
𝑟1
∑
𝑛1=0

𝑟2
∑
𝑛2=0

⋯
𝑟𝓁
∑
𝑛𝓁=0

𝐷(𝑛1)
𝐷𝑥𝑛11

𝐷(𝑛2)
𝐷𝑥𝑛22

… 𝐷
(𝑛𝓁)

𝐷𝑥𝑛𝓁𝓁
𝑓 ⋅ 𝐷

(𝑟1−𝑛1)

𝐷𝑥𝑟1−𝑛11

𝐷(𝑟2−𝑛2)
𝐷𝑥𝑟2−𝑛22

… 𝐷
(𝑟𝓁−𝑛𝓁)

𝐷𝑥𝑟𝓁−𝑛𝓁𝓁
𝑔.
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So in other words, the 𝑟𝑖 derivatives that have to be taken of the product get split into all possible ways
between 𝑓 and 𝑔. The proof is obtained by induction on 𝓁.

Proof. Suppose 𝓁 = 1, then this is just the univariate product rule that has been proved above. Hence,
suppose the formula to hold for 𝓁 < 𝑘 and consider

𝐷(𝑟)
𝐷𝑥𝑟11 𝐷𝑥𝑟22 ⋯𝐷𝑥𝑟𝑘𝑘

𝑓 ⋅ 𝑔 = 𝐷(𝑟1)
𝐷𝑥𝑟11

( 𝐷(𝑟−𝑟1)
𝐷𝑥𝑟22 ⋯𝐷𝑥𝑟𝑘𝑘

𝑓 ⋅ 𝑔)

= 𝐷(𝑟1)
𝐷𝑥𝑟11

(
𝑟2
∑
𝑛2=0

⋯
𝑟𝑘
∑
𝑛𝑘=0

𝐷(𝑛2)
𝐷𝑥𝑛22

… 𝐷
(𝑛𝑘)

𝐷𝑥𝑛𝑘𝑘
𝑓 ⋅ 𝐷

(𝑟2−𝑛2)

𝐷𝑥𝑟2−𝑛22
… 𝐷

(𝑟𝑘−𝑛𝑘)

𝐷𝑥𝑟𝑘−𝑛𝑘𝑘
𝑔)

=
𝑟1
∑
𝑛1=0

𝑟2
∑
𝑛2=0

⋯
𝑟𝑘
∑
𝑛𝑘=0

𝐷(𝑛1)
𝐷𝑥𝑛11

𝐷(𝑛2)
𝐷𝑥𝑛22

… 𝐷
(𝑛𝑘)

𝐷𝑥𝑛𝑘𝑘
𝑓 ⋅ 𝐷

(𝑟1−𝑛1)

𝐷𝑥𝑟1−𝑛11

𝐷(𝑟2−𝑛2)
𝐷𝑥𝑟2−𝑛22

… 𝐷
(𝑟𝑘−𝑛𝑘)

𝐷𝑥𝑟𝑘−𝑛𝑘𝑘
𝑔.

The Hasse derivative allows us to say that a zero of a polynomial in a finite field has multiplicity 𝑘 if
all derivatives up to order 𝑘 − 1 vanish at that point. Having established this framework, we are able
investigate Theorem 38 in the binary field. For 𝑘 = 4, the polynomial

𝑓4 (𝑥) = (
𝑛

∏
𝓁=1
(𝑥𝓁 + 1)) ⋅ (1 +

𝑛

∑
𝑖=1
(𝑥3𝑖 + 𝑥2𝑖 + 𝑥𝑖) + ∑

1≤𝑖≠𝑗≤𝑛
(𝑥3𝑖 + 𝑥2𝑖 )𝑥𝑗 + ∑

1≤𝑖<𝑗≤𝑛
𝑥𝑖𝑥𝑗 + ∑

1≤𝑖<𝑗<𝑘≤𝑛
𝑥𝑖𝑥𝑗𝑥𝑘)

vanishes with multiplicity 𝑘 on 𝔽𝑛2 ⧵ {0} while 𝑓4(0) ≠ 0. The degree of 𝑝 is equal to 𝑛 + 4 = 𝑛 + 2𝑘 − 4.
That means that indeed Theorem 38 does not hold in this field. From its formula, it is clear that 𝑓4(𝑥) = 0
with multiplicity at least 4 for all 𝑥 with Hamming weight greater than or equal to 4. It can also be easily
seen that indeed 𝑓4(0) ≠ 0. It remains to be verified that for the polynomial

𝑝4 (𝑥) = (1 +
𝑛

∑
𝑖=1
(𝑥3𝑖 + 𝑥2𝑖 + 𝑥𝑖) + ∑

1≤𝑖≠𝑗≤𝑛
(𝑥3𝑖 + 𝑥2𝑖 )𝑥𝑗 + ∑

1≤𝑖<𝑗≤𝑛
𝑥𝑖𝑥𝑗 + ∑

1≤𝑖<𝑗<𝑘≤𝑛
𝑥𝑖𝑥𝑗𝑥𝑘) ,

any vector with Hamming weight 1 vanishes with multiplicity 3, any vector of Hamming weight 2 van-
ishes with multiplicity 2 and any vector of Hamming weight 3 vanishes with multiplicity 1. It can be easily
seen that any such vector indeed is a root of 𝑓4. To verify the multiplicities of the vectors of Hamming
weight 1 and 2, we compute the Hasse derivatives.

𝐷𝑝4
𝐷𝑥𝑖

= 3𝑥2𝑖 + 2𝑥𝑖 + 1 + (3𝑥2𝑖 + 2𝑥𝑖)∑
𝑗≠𝑖
𝑥𝑗 +∑

𝑗≠𝑖
(𝑥3𝑗 + 𝑥2𝑗 ) +∑

𝑗≠𝑖
𝑥𝑗 + ∑

𝑗,𝑘≠𝑖
𝑗<𝑘

𝑥𝑗𝑥𝑘

≡ 𝑥𝑖 + 1 + 𝑥𝑖∑
𝑗≠𝑖
𝑥𝑗 +∑

𝑗≠𝑖
𝑥𝑗 + ∑

𝑗,𝑘≠𝑖
𝑗<𝑘

𝑥𝑗𝑥𝑘 ,

where ≡ denotes that both expressions evaluate to the same over 𝔽𝑛2 . Hence, it follows that

𝐷𝑝4
𝐷𝑥𝑖

(𝑒𝑖) =
𝐷𝑝4
𝐷𝑥𝑖

(𝑒𝑗) =
𝐷𝑝4
𝐷𝑥𝑖

(𝑒𝑖 + 𝑒𝑗) =
𝐷𝑝4
𝐷𝑥𝑖

(𝑒𝑗 + 𝑒𝑘) = 0.

We conclude that the vectors of Hamming weight 2 indeed vanish with multiplicity 2. The two second
order Hasse derivatives are
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𝐷(2)𝑝4
𝐷𝑥2𝑖

= (32)𝑥𝑖 + (
2
2) + ((

3
2)𝑥𝑖 + (

2
2))∑

𝑗≠𝑖
𝑥𝑗

≡ 𝑥𝑖 + 1 + (𝑥𝑖 + 1)∑
𝑗≠𝑖
𝑥𝑗

𝐷(2)𝑝4
𝐷𝑥𝑖𝐷𝑥𝑗

= (3𝑥2𝑖 + 2𝑥𝑖) + (3𝑥2𝑗 + 2𝑥𝑗) + 1 + ∑
𝑘≠𝑖,𝑗

𝑥𝑘

≡ 𝑥𝑖 + 𝑥𝑗 + 1 + ∑
𝑘≠𝑖,𝑗

𝑥𝑘 .

Since

𝐷(2)𝑝4
𝐷𝑥2𝑖

(𝑒𝑖) =
𝐷(2)𝑝4
𝐷𝑥2𝑖

(𝑒𝑗) =
𝐷(2)𝑝4
𝐷𝑥𝑖𝐷𝑥𝑗

(𝑒𝑖) =
𝐷(2)𝑝4
𝐷𝑥𝑖𝐷𝑥𝑗

= 𝐷(2)𝑝4
𝐷𝑥𝑖𝐷𝑥𝑗

(𝑒𝑘) = 0,

all vectors of Hamming weight 1 are indeed roots of 𝑝4 with multiplicity 3. Therefore 𝑓4 is a polynomial
𝑘-cover of 𝔽𝑛2 . If we apply the Ball-Serra Bound for 4-cover of 𝔽𝑛2 , the lower bound on the degree of 𝑓4
is

deg(𝑓4) ≥ (4 − 1) + 𝑛 = 𝑛 + 3.

So in theory, there could exist a polynomial of even lower degree than the above one that vanishes
everywhere on 𝔽𝑛2 ⧵{(0, … , 0)}with multiplicity 4 and that is non-zero at the origin. We will show however
that the Ball-Serra Bound is not tight for 4-covers of the binary field.

i Theorem 46. i The polynomial 4-covering number of 𝔽𝑛2 is equal to 𝑛 + 4.

Proof. Sauermann and Wigderson already provided a polynomial of degree 𝑛 + 4 that covers each
point of 𝔽𝑛2 ⧵ {0} 4 times while avoiding the origin. Thus, proving the above theorem corresponds to
proving that there is no degree 𝑛+3 polynomial that covers all points of 𝔽𝑛2 ⧵{0} with multiplicity four and
that leaves the origin uncovered. To do so, we will use the same proof method as Clifton and Huang
did for Theorem 37, but now using Hasse derivatives.

In search of a contradiction, suppose that there does exist such a polynomial 𝑓, with deg(𝑓) = 𝑛 + 3.
Then by the Punctured Combinatorial Nullstellensatz we can write 𝑓 in the form

𝑓 = ∑
1≤𝑖≤𝑗≤𝑘≤𝓁≤𝑛

𝑥𝑖(𝑥𝑖 − 1)𝑥𝑗(𝑥𝑗 − 1)𝑥𝑘(𝑥𝑘 − 1)𝑥𝓁(𝑥𝓁 − 1)𝑔𝑖𝑗𝑘𝓁 + 𝑢 ⋅
𝑛

∏
𝑖=1
(𝑥𝑖 − 1),

with deg(𝑢) ≤ deg(𝑓) − 𝑛 = 3. Since for 𝑡 = 0, 1, 2, 3, the 𝑡-th partial Hasse derivative of 𝑥𝑖(𝑥𝑖 −
1)𝑥𝑗(𝑥𝑗−1)𝑥𝑘(𝑥𝑘−1)𝑥𝓁(𝑥𝓁−1) is zero on 𝔽𝑛2 , the polynomial ℎ ∶= 𝑢 ⋅∏𝑛𝑖=1(𝑥𝑖−1) has 𝑡-th order partial
Hasse derivatives vanishing on 𝔽𝑛2 ⧵ {0}. Using the product rules that we have just derived, we find the
following expressions for the different derivatives.
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𝐷ℎ
𝐷𝑥𝑖

= 𝐷𝑢
𝐷𝑥𝑖

𝑛

∏
𝑗=1
(𝑥𝑗 − 1) + 𝑢∏

𝑗≠𝑖
(𝑥𝑗 − 1) (3.1)

𝐷(2)ℎ
𝐷𝑥2𝑖

= 𝐷(2)𝑢
𝐷𝑥2𝑖

𝑛

∏
𝑗=1
(𝑥𝑖 − 1) +

𝐷𝑢
𝐷𝑥𝑖

∏
𝑗≠𝑖
(𝑥𝑗 − 1) (3.2)

𝐷(2)ℎ
𝐷𝑥𝑖𝐷𝑥𝑗

= 𝐷(2)𝑢
𝐷𝑥𝑖𝐷𝑥𝑗

𝑛

∏
𝑘=1
(𝑥𝑘 − 1) +

𝐷𝑢
𝐷𝑥𝑖

∏
𝑘≠𝑗
(𝑥𝑘 − 1) (3.3)

+ 𝐷𝑢
𝐷𝑥𝑗

∏
𝑘≠𝑖
(𝑥𝑘 − 1) + 𝑢 ∏

𝑘≠𝑖,𝑗
(𝑥𝑘 − 1)

𝐷(3)ℎ
𝐷𝑥3𝑖

= 𝐷(3)𝑢
𝐷𝑥3𝑖

𝑛

∏
𝑗=1
(𝑥𝑗 − 1) +

𝐷(2)𝑢
𝐷𝑥2𝑖

∏
𝑗≠𝑖
(𝑥𝑗 − 1) (3.4)

𝐷(3)ℎ
𝐷𝑥2𝑖 𝐷𝑥𝑗

= 𝐷(3)𝑢
𝐷𝑥2𝑖 𝐷𝑥𝑗

𝑛

∏
𝑘=1
(𝑥𝑘 − 1) +

𝐷(2)𝑢
𝐷𝑥2𝑖

∏
𝑘≠𝑗
(𝑥𝑘 − 1) (3.5)

+ 𝐷(2)𝑢
𝐷𝑥𝑖𝐷𝑥𝑗

∏
𝑘≠𝑖
(𝑥𝑘 − 1) +

𝐷𝑢
𝐷𝑥𝑖

∏
𝑘≠𝑖,𝑗

(𝑥𝑘 − 1)

𝐷(3)ℎ
𝐷𝑥𝑖𝐷𝑥𝑗𝐷𝑥𝑘

= 𝐷(3)𝑢
𝐷𝑥𝑖𝐷𝑥𝑗𝐷𝑥𝑘

𝑛

∏
𝓁=1
(𝑥𝓁 − 1) +

𝐷(2)
𝐷𝑥𝑖𝐷𝑥𝑗

∏
𝓁≠𝑘
(𝑥𝓁 − 1) (3.6)

+ 𝐷(2)𝑢
𝐷𝑥𝑖𝐷𝑥𝑘

∏
𝓁≠𝑗
(𝑥𝓁 − 1) +

𝐷(2)𝑢
𝐷𝑥𝑗𝐷𝑥𝑘

∏
𝓁≠𝑖
(𝑥𝓁 − 1)

+ 𝐷𝑢
𝐷𝑥𝑖

∏
𝓁≠𝑗,𝑘

(𝑥𝓁 − 1) +
𝐷𝑢
𝐷𝑥𝑗

∏
𝓁≠𝑖,𝑘

(𝑥𝓁 − 1)

+ 𝐷𝑢
𝐷𝑥𝑘

∏
𝓁≠𝑖,𝑗

(𝑥𝓁 − 1) + 𝑢 ∏
𝓁≠𝑖,𝑗,𝑘

(𝑥𝓁 − 1).

Since all above polynomials have to vanish on 𝔽𝑛2 ⧵ {0}, we evaluate its points to get additional restric-
tions on 𝑢.
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𝐷ℎ
𝐷𝑥𝑖

(𝑒𝑖) = 𝑢(𝑒𝑖) = 0 (3.7)

𝐷(2)ℎ
𝐷𝑥2𝑖

(𝑒𝑖) =
𝐷𝑢
𝐷𝑥𝑖

(𝑒𝑖) = 0 (3.8)

𝐷(2)ℎ
𝐷𝑥𝑖𝐷𝑥𝑗

(𝑒𝑖) =
𝐷𝑢
𝐷𝑥𝑗

(𝑒𝑖) + 𝑢(𝑒𝑖) = 0 (3.9)

⇒ 𝐷𝑢
𝐷𝑥𝑗

(𝑒𝑖) = 0

𝐷(2)ℎ
𝐷𝑥𝑖𝐷𝑥𝑗

(𝑒𝑖 + 𝑒𝑗) = 𝑢(𝑒𝑖 + 𝑒𝑗) = 0 (3.10)

𝐷(3)ℎ
𝐷𝑥3𝑖

(𝑒𝑖) =
𝐷(2)𝑢
𝐷𝑥2𝑖

(𝑒𝑖) = 0 (3.11)

𝐷(3)ℎ
𝐷𝑥2𝑖 𝐷𝑥𝑗

(𝑒𝑖) =
𝐷(2)𝑢
𝐷𝑥𝑖𝐷𝑥𝑗

(𝑒𝑖) +
𝐷𝑢
𝐷𝑥𝑖

(𝑒𝑖) = 0 (3.12)

⇒ 𝐷(2)𝑢
𝐷𝑥𝑖𝐷𝑥𝑗

(𝑒𝑖) = 0

𝐷(3)ℎ
𝐷𝑥2𝑖 𝐷𝑥𝑗

(𝑒𝑗) =
𝐷(2)𝑢
𝐷𝑥2𝑖

(𝑒𝑗) +
𝐷𝑢
𝐷𝑥𝑖

(𝑒𝑗) = 0 (3.13)

⇒ 𝐷(2)𝑢
𝐷𝑥2𝑖

(𝑒𝑗) = 0

𝐷(3)ℎ
𝐷𝑥2𝑖 𝐷𝑥𝑗

(𝑒𝑖 + 𝑒𝑗) =
𝐷𝑢
𝐷𝑥𝑖

(𝑒𝑖 + 𝑒𝑗) = 0 (3.14)

In fact, more conditions arise from the other third-order partial derivatives, but we will not need those
to derive a contradiction. Since 𝑢 has maximum degree 3 and does not vanish at the origin, we can
assume that it takes the following form:

𝑢(𝑥) =∑
𝑖
𝑎𝑖𝑥3𝑖 +∑

𝑖
𝑏𝑖𝑥2𝑖 +∑

𝑖≠𝑗
𝑐𝑖𝑗𝑥2𝑖 𝑥𝑗 +∑

𝑖<𝑗
𝑑𝑖𝑗𝑥𝑖𝑥𝑗 + ∑

𝑖<𝑗<𝑘
𝑒𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘 +∑

𝑖
𝑓𝑖𝑥𝑖 + 1.

Taking its first order Hasse derivative:

𝐷𝑢
𝐷𝑥𝑖

= 3𝑎𝑖𝑥2𝑖 + 2𝑏𝑖𝑥𝑖 +∑
𝑗≠𝑖
𝑐𝑖𝑗 ⋅ 2𝑥𝑖𝑥𝑗 +∑

𝑗≠𝑖
𝑐𝑗𝑖𝑥2𝑗 + (∑

𝑗<𝑖
𝑑𝑗𝑖 +∑

𝑗>𝑖
𝑑𝑖𝑗)𝑥𝑗

+ ( ∑
𝑗<𝑘<𝑖

𝑒𝑗𝑘𝑖 + ∑
𝑗<𝑖<𝑘

𝑒𝑗𝑖𝑘 + ∑
𝑖<𝑗<𝑘

𝑒𝑖𝑗𝑘)𝑥𝑗𝑥𝑘 + 𝑓𝑖

≡ 𝑎𝑖𝑥𝑖 +∑
𝑗≠𝑖
𝑐𝑗𝑖𝑥𝑗 + (∑

𝑗<𝑖
𝑑𝑗𝑖 +∑

𝑗>𝑖
𝑑𝑖𝑗)𝑥𝑗 + ( ∑

𝑗<𝑘<𝑖
𝑒𝑗𝑘𝑖 + ∑

𝑗<𝑖<𝑘
𝑒𝑗𝑖𝑘 + ∑

𝑖<𝑗<𝑘
𝑒𝑖𝑗𝑘)𝑥𝑗𝑥𝑘 + 𝑓𝑖 .

The next derivative we need is

𝐷(2)𝑢
𝐷𝑥2𝑖

= (32)𝑎𝑖𝑥𝑖 + (
2
2)𝑏𝑖 + (

2
2)∑

𝑗≠𝑖
𝑐𝑖𝑗𝑥𝑗

≡ 𝑎𝑖𝑥𝑖 + 𝑏𝑖 +∑
𝑗≠𝑖
𝑐𝑖𝑗𝑥𝑗 .
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And lastly, assuming that 𝑖 < 𝑗, we have

𝐷(2)𝑢
𝐷𝑥𝑖𝐷𝑥𝑗

= 2𝑐𝑖𝑗𝑥𝑖 + 2𝑐𝑗𝑖𝑥𝑗 + 𝑑𝑖𝑗 + (∑
𝑗<𝑘

𝑒𝑖𝑗𝑘 + ∑
𝑖<𝑘<𝑗

𝑒𝑖𝑘𝑗 +∑
𝑘<𝑖
𝑒𝑘𝑖𝑗)𝑥𝑘

≡ 𝑑𝑖𝑗 + (∑
𝑗<𝑘

𝑒𝑖𝑗𝑘 + ∑
𝑖<𝑘<𝑗

𝑒𝑖𝑘𝑗 +∑
𝑘<𝑖
𝑒𝑘𝑖𝑗)𝑥𝑘 .

Now we use the conditions we have derived to try to solve for the coefficients in 𝑢. Let us consider the
above conditions from top to bottom. Note that in certain choices for 𝑖 and 𝑗, 𝑑𝑖𝑗 should be replaced by
𝑑𝑗𝑖. To ease notation, however, we only write 𝑑𝑖𝑗 below, as it does not change the conclusion.

𝑢(𝑒𝑖) = 𝑎𝑖 + 𝑏𝑖 + 𝑓𝑖 + 1 = 0 (3.15)
𝐷𝑢
𝐷𝑥𝑖

(𝑒𝑖) = 𝑎𝑖 + 𝑓𝑖 = 0 (3.16)

𝐷𝑢
𝐷𝑥𝑖

(𝑒𝑗) = 𝑐𝑗𝑖 + 𝑑𝑖𝑗 + 𝑓𝑖 = 0 (3.17)

𝑢(𝑒𝑖 + 𝑒𝑗) = 𝑎𝑖 + 𝑎𝑗 + 𝑏𝑖 + 𝑏𝑗 + 𝑐𝑖𝑗 + 𝑐𝑗𝑖 + 𝑑𝑖𝑗 + 𝑓𝑖 + 𝑓𝑗 + 1 = 0 (3.18)
𝐷(2)𝑢
𝐷𝑥2𝑖

(𝑒𝑖) = 𝑎𝑖 + 𝑏𝑖 = 0 (3.19)

𝐷(2)𝑢
𝐷𝑥𝑖𝐷𝑥𝑗

(𝑒𝑖) = 𝑑𝑖𝑗 = 0 (3.20)

𝐷(2)𝑢
𝐷𝑥2𝑖

(𝑒𝑗) = 𝑏𝑖 + 𝑐𝑖𝑗 = 0 (3.21)

𝐷𝑢
𝐷𝑥𝑖

(𝑒𝑖 + 𝑒𝑗) = 𝑎𝑖 + 𝑎𝑗 + 𝑐𝑗𝑖 + 𝑑𝑖𝑗 + 𝑓𝑖 = 0. (3.22)

Combining (3.15), (3.16) and (3.19), we obtain 𝑎𝑖 = 𝑏𝑖 = 𝑓𝑖 = 1. Moreover, (3.17) and (3.21) imply
𝑐𝑖𝑗 = 𝑐𝑗𝑖 = 1. Plugging all these values in the left hand side of (3.18) gives 1, while it should be zero.
Hence 𝑢 can indeed not exist, which concludes the proof.

So even though the improved lower bound of Sauermann and Wigderson does not hold in the binary
field, we have shown that in this specific case the Ball-Serra Bound is not tight either. Knowing the
exact cover number for a 4-cover of 𝔽𝑛2 , an interesting further research would be to investigate whether
this result can be extended to any 𝑘-cover for 𝑘 ≥ 5. Perhaps there is a recurring relation similar to the
one in the proof of Theorem 37 that allows us to lower bound the cover number of higher multiplicities.

i Question 1. i Can we find bounds on the polynomial 𝑘-covering number of 𝔽𝑛2 for 𝑘 ≥ 5, knowing
that the optimal polynomial 4-cover has degree 𝑛 + 4?

Moreover, by allowing fields of other characteristic, it would be interesting to research whether there
are finite fields for which the Ball-Serra bound is tight for a certain polynomial 𝑘-cover. When restricting
the cover to hyperplanes, the question becomes even more difficult. Bishnoi et al. [9] have proven
that if the hyperplane 𝑘-cover of 𝔽𝑛2 is not allowed to cover the origin at all, the problem is equivalent to
finding linear binary codes of large minimum distance. This problem is well-studied and known to be
difficult, showing that finding the minimum size of a hyperplane 𝑘-cover is a tough nut to crack. In the
same paper, it is studied what happens if we want to cover every non-zero point 𝔽𝑛2 with multiplicity 𝑘 by
(𝑛−𝑑)-dimensional subspaces while the origin is covered at most 𝑘−1 times. We denote the minimum
number of such affine subspaces required for an almost 𝑘-cover by 𝑔(𝑛, 𝑘, 𝑑). When 𝑑 is equal to one,
this is the hyperplane case, similar to what Sauermann and Wigderson investigated in Theorem 40 and
Theorem 41. The latter did hold over any field, but specifically considers the case where the origin is
covered exactly 𝑘 − 1 times. The behaviour of 𝑔(𝑛, 𝑘, 𝑑) is given in the following theorem.
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Theorem 47 (Bishnoi-Boyadzhiyska-Das-Mészáros). Let 𝑘 ≥ 1 and 𝑛 ≥ 𝑑 ≥ 1. Then:

(a) If 𝑘 ≥ 2𝑛−𝑑−1, then 𝑔(𝑛, 𝑘, 𝑑) = 2𝑑𝑘 − ⌊ 𝑘
2𝑛−𝑑 ⌋.

(b) If 𝑛 > 22𝑑𝑘−𝑑−𝑘+1, then 𝑔(𝑛, 𝑘, 𝑑) = 𝑛 + 2𝑑𝑘 − 𝑑 − 2.

(c) If 𝑘 ≥ 2 and 𝑛 ≥ ⌊log2 𝑘⌋ + 𝑑 + 1, then

𝑛 + 2𝑑𝑘 − 𝑑 − log2(2𝑘) ≤ 𝑔(𝑛, 𝑘, 𝑑) ≤ 𝑛 + 2𝑑𝑘 − 𝑑 − 2.

We see that there is a different behaviour of 𝑔(𝑛, 𝑘, 𝑑) when 𝑘 is fixed and 𝑛 is large compared to when
𝑛 is fixed and 𝑘 is large. And, more importantly in the investigation of the Ball-Serra Bound, it shows
a separation between polynomial covers and hyperplane covers of the binary field. For any 𝑘 ≥ 4, we
set

𝑓𝑘(𝑥) = 𝑥𝑘−41 (𝑥1 − 1)𝑘−4𝑓4(𝑥),

where 𝑓4(𝑥) is as defined above. Then 𝑓𝑘 vanishes with multiplicity 𝑘 on 𝔽𝑛2 ⧵{𝑥}, while having multiplicity
𝑘 − 4 at the origin. Hence, the minimum degree of a polynomial cover is at most deg 𝑓𝑘 = 𝑛 + 2𝑘 − 4,
while Theorem 47 shows that for any 𝑘 ≥ 4 and 𝑛 sufficiently large, 𝑔(𝑛, 𝑘, 1) = 𝑛 + 2𝑘 − 3.

3.3. Covers in the Cartesian Plane
In the proof of Alon-Füredi, we saw that the hypercube is a particular setting with nice properties,
because all points that have to be covered have binary entries. While the binary field still has binary
entries, things became more complicated because of the different derivative that we had to consider. In
this section, we leave the finite fields behind and return back to the Cartesian plane. More specifically,
we focus on 𝑘-covers of planar grids Γ = 𝑆1 × 𝑆2 ⊆ ℝ2, where we assume that (0, 0) ∈ Γ. Hyperplane
covers of such grids have been studied in literature and the threshold is known for which grids the Ball-
Serra Bound is tight. The first part of this section looks at these results and highlights the gaps in what
is known so far. Secondly, we consider polynomial 𝑘-covers of grids in ℝ2. This has not been studied
in literature so far. An algorithm is presented to compute the minimum degrees of such polynomials
and it is investigated whether the coefficients in optimal polynomials show a nice pattern that can be
generalised. The generated curves seem to show a threshold when the Ball-Serra Bound is tight. This
threshold is further investigated by considering slices of the grid and evaluating polynomials on these
slices. This method suggests the same threshold, which is included as a conjecture at the end of the
chapter.

3.3.1. Hyperplane Covers
In the Cartesian plane, a hyperplane simply corresponds to a line. The topic of hyperplane 𝑘-covers in
the plane was investigated by Yvonne den Bakker in her thesis [3]. An intuitive approach to finding the
cover number for arbitrary planar grids is to first find the optimal values for small grids with small covering
number and then generalise the cover to other cases. An integer programme can be constructed that
finds the hyperplane 𝑘-cover number for a specific grid. For every possible origin-avoiding line 𝜆 ∈ Γ,
we introduce a variable 𝑧(𝜆) that indicates how many times 𝜆 is used in our cover. Of course there
are infinitely many lines that pass through the considered grid. However, we can restrict ourselves to
origin-avoiding lines that pass through at least two points of Γ. If a 𝑘-cover of minimum size contains a
line that passes through exactly one point of Γ, we can always replace this line by another that passes
through that point and a second one, while avoiding the origin. This does not decrease the size of the
𝑘-cover. Hence, the set of to be considered lines Λ is finite. The linear programme becomes:

min ∑
𝜆∈Λ

𝑧(𝜆)

subject to ∑
𝜆∈Λ

(𝑥,𝑦)∈𝜆

𝑧(𝜆) ≥ 𝑘 for all (𝑥, 𝑦) ∈ Γ ⧵ {(0, 0)}

𝑧(𝜆) ∈ ℤ≥0 for all 𝜆 ∈ Λ.
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When solving this integer programme for grids in the plane we are mainly interested in whether the
returned value corresponds with the Ball-Serra Bound or whether there is a gap between the lower
bound and the actual value. As mentioned at the beginning of the chapter, for |𝑆1| = 𝑛 and |𝑆2| = 𝑚,
we can – and will – always assume that 𝑛 ≥ 𝑚 because of symmetry. For Γ = 𝑆1 × 𝑆2, we denote the
minimum size of a hyperplane 𝑘-cover of Γ by cov𝑘(Γ). The Ball-Serra Bound for a 𝑘-cover of 𝑆1 × 𝑆𝑛
then becomes

cov𝑘(Γ) ≥ (𝑘 − 1)(𝑛 − 1) + (𝑛 − 1) + (𝑚 − 1) = 𝑘(𝑛 − 1) + (𝑚 − 1).
When the integer programme is run for 𝑘 = 3 on the grid {0, 1, … , 𝑛 − 1} × {0, 1, … ,𝑚 − 1}, the left table
in Table 3.1 emerges [3]. In this table, we see that the Ball-Serra is indeed tight in some cases, namely
when 𝑛 is large compared to 𝑚. This corresponds to wide, rectangular grids. In other cases the Ball-
Serra Bound is not tight. Moreover, the gap between the lower bound and the optimal value increases as
the grids become larger. A similar analysis can be made when increasing the cover number from 3 to 4.
The minimal cover sizes are given in the right table of Table 3.1. We again see that for wide rectangular
grids, the Ball-Serra Bound is tight. And again, the gap between the lower bound and the optimal value
increases as the grid becomes larger. This time, the gap seems to increase even faster. One can
verify that the region in both tables where Ball-Serra is tight corresponds to 𝑛 ≥ (𝑘 − 1)(𝑚 − 1) + 1.
Indeed, in the paper following the thesis, Bishnoi et al. proved this threshold for tightness of Ball-Serra
for 𝑘-covers in the plane [8].

m
n 2 3 4 5 6 7 8

2 5 7 10 13 16 19 22
3 9 12 14 17 20 23
4 14 16 19 21 24
5 18 21 23 26
6 23 25 28
7 27 30
8 32

m
n 2 3 4 5 6 7 8

2 6 10 13 17 21 25 29
3 12 15 19 23 26 30
4 18 21 25 28 32
5 24 27 30 34
6 30 33 36
7 36 39
8 42

0
1
2
3
4
5
6
7

Table 3.1: Tables with the hyperplane covering numbers for {0, 1, … , 𝑛−1}×{0, 1, … ,𝑚−1} [3]. The left table contain the covering
numbers for 3-covers, the right table shows the values for 4-covers. The colours indicate the gap with Ball-Serra.

Theorem 48 (Tightness of Ball-Serra in the plane). Let 𝑆1, 𝑆2 ⊆ ℝ have respective sizes |𝑆1| = 𝑛 and
|𝑆2| = 𝑚. Assume 0 ∈ 𝑆1∩𝑆2 and let Γ = 𝑆1×𝑆2. If for a positive integer 𝑘, we have 𝑛 ≥ (𝑘−1)(𝑚−1)+1,

cov𝑘(Γ) = 𝑘(𝑛 − 1) + (𝑚 − 1).

To prove this theorem, we must make a distinction between interior points and boundary points.

Definition 49. Let Γ = 𝑆1×𝑆2 ⊆ ℝ2 be a grid such that (0, 0) ∈ Γ. We say that a point in Γ is a boundary
point if one of its coordinates is zero and that it is an interior point otherwise.

Proof of Theorem 48. Say 𝑆1 = {0, 𝑠1, … , 𝑠𝑛−1} and 𝑆2 = {0, 𝑡1, … , 𝑡𝑚−1}. We arbitrarily partition 𝑆1 ⧵ {0}
in 𝑃1∪⋯∪𝑃𝑚−1 such that |𝑃𝑗| ≥ 𝑘−1 for all 𝑗. Note that is always possible since 𝑛−1 ≥ (𝑘−1)(𝑚−1).
The cover that we will be using consists of three types of lines.

1. 𝑘 − 1 copies of the line 𝑥 = 𝑠𝑖 for all 𝑖 ∈ [𝑛 − 1];

2. the line 𝑦 = 𝑡𝑗 for all 𝑗 ∈ [𝑚 − 1];

3. the line connecting (𝑠, 0) and (0, 𝑡𝑗) for every 𝑗 ∈ [𝑚 − 1] and 𝑠 ∈ 𝑃𝑗.

There are (𝑘 −1)(𝑛−1) lines of the first type, 𝑚−1 lines of the second one and 𝑛−1 lines of the third
one, as there is exactly one such line through every 𝑠𝑖 for 𝑖 ∈ [𝑛 − 1]. Hence, this collection contains
𝑘(𝑛−1)+(𝑚−1) lines. Moreover, every interior point is covered 𝑘−1 times by a line of type 1 and once
by a line of type 2. Therefore the only points for which we should still verify whether they are covered 𝑘
times are the boundary points. Let us first consider points (𝑠𝑖 , 0) on the 𝑥-axis. Such a point is covered
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𝑘 − 1 times by a line of type 1 and once by a line of type 3. And secondly, a point on the 𝑦-axis (0, 𝑡𝑗)
is covered once by type 2 and |𝑃𝑗| ≥ 𝑘 − 1 times by a line of type 3. Therefore this collection of lines is
a 𝑘-cover for 𝑆1 × 𝑆2 of size 𝑘(𝑛 − 1) + (𝑚 − 1), matching the lower bound given by Ball-Serra.

The question arises what happens if Ball-Serra is not tight, i.e. what is the minimum size of a 𝑘-cover
of an (𝑛 × 𝑚)-grid when 𝑛 ≤ (𝑘 − 1)(𝑚 − 1)? First of all, we can find an upper bound on the cover
number of an arbitrary (𝑛 × 𝑚)-grid if 𝑘 is divisible by 𝑛+𝑚−2

gcd(𝑛−1,𝑚−1) [9].

Theorem 50. Let Γ be an arbitrary (𝑛 × 𝑚)-grid and suppose 𝑘 is divisible by 𝑛+𝑚−2
gcd(𝑛−1,𝑚−1) . Then,

cov𝑘(Γ) ≤ 𝑘(𝑛 − 1) +
𝑘

𝑛 +𝑚 − 2(𝑚 − 1)
2.

To find a 𝑘-cover that gives this upper bound, we have the opportunity to use some graph theory, namely
matchings of bipartite graphs. Before we look at the construction, we quickly refresh our memories on
Hall’s Matching Theorem and a corollary thereof [22].

Theorem 51 (Hall’s Matching Theorem). A bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸) has a matching that covers all
vertices of 𝐴 if and only if

|𝑁(𝑆)| ≥ |𝑆|, ∀𝑆 ⊆ 𝐴.

Corollary 52. Every non-empty regular bipartite graph contains a perfect matching.

These two fundamental statements in graph theory will remarkably allow us to come up with a tight
hyperplane cover for the grids that are specified above.

Proof of Theorem 50. Let Γ be an arbitrary (𝑛×𝑚)-grid and 𝑘 be a positive integer such that 𝑛+𝑚−2
gcd(𝑛−1,𝑚−1)

divides 𝑘. We let

𝑎 = 𝑛 − 1
gcd(𝑛 − 1,𝑚 − 1) and 𝑏 =

𝑚 − 1
gcd(𝑛 − 1,𝑚 − 1) ,

such that 𝑎 + 𝑏 divides 𝑘. We also define the integers

𝑑1 =
𝑏𝑘
𝑎 + 𝑏 and 𝑑2 =

𝑎𝑘
𝑎 + 𝑏 ,

such that 𝑑1+𝑑2 = 𝑘. We let 𝐺 = (𝑆1⧵{0}, 𝑆2⧵{0}, 𝐸) be a biregular bipartite graph of respective degrees
𝑑1 and 𝑑2. A way of constructing such a graph 𝐺 is the following. First, we construct a bipartite graph
𝐺1 = (𝑆1⧵{0}, 𝐴, 𝐸𝐺1), where every 𝑠 ∈ 𝑆1⧵{0} has 𝑑1 unique neighbours in some set 𝐴 of size 𝑑1(𝑛−1).
Similarly, we construct a bipartite graph 𝐺2 = (𝑆2⧵{0}, 𝐵, 𝐸𝐺2), such that every 𝑡 ∈ 𝑆2⧵{0} has 𝐷2 unique
neighbours in some set 𝐵 of size 𝑑2(𝑚−1). Thus, |𝐴| = |𝐵| = 𝑑 for some integer 𝑑. We connect every
𝑎 ∈ 𝐴 with every 𝑏 ∈ 𝐵 to obtain one large graph 𝐻. Note that the induced subgraph of the vertices
in 𝐴 and 𝐵 forms a complete bipartite graph 𝐾𝑑,𝑑. By the corollary to Hall’s Matching Theorem, this
subgraph graph has a perfect matching. Consider such a perfect matching 𝑀. Now we say we have
an edge {𝑠, 𝑡} in 𝐸(𝐺) if and only if there is a path {𝑠, 𝑎, 𝑏, 𝑡} in 𝐻 with {𝑎, 𝑏} ∈ 𝑀. Now we define our
𝑘-cover.

1. 𝑑2 copies of the line 𝑥 = 𝑠 for each 𝑠 ∈ 𝑆1 ⧵ {0};

2. 𝑑1 copies of the line 𝑦 = 𝑡 for each 𝑡 ∈ 𝑆2 ⧵ {0};

3. the line connecting (𝑠, 0) and (0, 𝑡) for each {𝑠, 𝑡} ∈ 𝐸(𝐺).

With this collection of lines, every interior point is covered 𝑑2 times by a line of type 1 and 𝑑1 times by
a line of type 2. Since 𝑑1+𝑑2 = 𝑘, every interior point is indeed covered 𝑘 times. A point on the 𝑥-axis
(𝑠, 0) is covered 𝑑2 times by a line of type 1 and deg𝐺(𝑠) = 𝑑1 times by a line of type 3. Similarly, a
point on the 𝑦-axis (0, 𝑡) is covered 𝑑1 times by a line of type 2 and deg𝐺(𝑡) = 𝑑2 times by a line of type
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3. So every boundary point is covered 𝑘 times too. Moreover, the origin clearly remains uncovered.
Hence, this collection of lines is a 𝑘-cover of size 𝑑2(𝑛 − 1) + 𝑑1(𝑚 − 1) + 𝑑1(𝑛 − 1). Therefore,

cov𝑘(Γ) ≤ 𝑑2(𝑛 − 1) + 𝑑1(𝑚 − 1) + 𝑑1(𝑛 − 1)
= (𝑑1 + 𝑑2)(𝑛 − 1) + 𝑑1(𝑚 − 1)

= 𝑘(𝑛 − 1) + 𝑏𝑘
𝑎 + 𝑏(𝑚 − 1)

= 𝑘(𝑛 − 1) + 𝑘
𝑛 +𝑚 − 2(𝑚 − 1)

2.

Ideally, we would like to show that we can never find a cover of smaller size than the above one.
Unfortunately, it’s not that easy. A matching lower bound can be shown for a specific type of grid.

Definition 53. Let 𝑆1, 𝑆2 ⊆ ℝ and Γ = 𝑆1 × 𝑆2. If any line that goes through two boundary points does
not pass through any of the interior points, then we say that Γ is generic.

Note that the vast majority of grids is generic. When sampling the points for 𝑆1 independently and
uniformly at random from a fixed interval [𝑠1, 𝑠2] and the points for 𝑆2 from [𝑡1, 𝑡2], then the grid 𝑆1 × 𝑆2
is generic with probability 1. But it is easier to cover a non-generic grid with few lines than a generic
grid, because a cover of a generic (𝑛 ×𝑚)-grid is also a cover for any non-generic grid while the other
way around is not necessarily true. Therefore, a lower bound on a generic grid is not necessarily a
lower bound on a non-generic grid [9].

Theorem 54. Let Γ = 𝑆1 × 𝑆2 ⊆ ℝ2 be a generic (𝑛 × 𝑚)-grid such that (0, 0) ∈ Γ. Then,

cov𝑘(Γ) ≥ 𝑘(𝑛 − 1) +
𝑘

𝑛 +𝑚 − 2(𝑚 − 1)
2.

So in particular, if 𝑘 is divisible by 𝑛+𝑚−2
gcd(𝑛−1,𝑚−1) we have equality.

The proof of this theorem can be obtained by defining a solution to the dual of the linear programme
given above and using weak duality. In the case where a grid is not generic the lower bound can still
be increased compared to the Ball-Serra Bound [9].

Theorem 55. Let 𝑆1 ⊆ ℝ such that 0 ∈ 𝑆1 and |𝑆1| = 𝑛. Then for Γ = 𝑆1 × 𝑆1, we have for 𝑛 → ∞

(10 − 4√5 + 𝑜(1)) 𝑘(𝑛 − 1) ≤ cov𝑘(Γ) ≤ ⌈
3
2𝑘⌉(𝑛 − 1).

Compared to Ball-Serra, which gives the lower bound (𝑘 + 1)(𝑛 − 1), the above theorem provides a
constant factor improvement for 𝑘 ≥ 18, which shows that Ball-Serra can never be tight for hyperplane
covers with high multiplicity of large square grids. However, this analysis of the Ball-Serra bound is
assuming that the cover is given by lines, hence the corresponding polynomial is a product of degree
one polynomials. The question arises for which grids the bound is tight when we look at polynomial
𝑘-covers.

3.3.2. Generating polynomial 3-Covers with Derivatives
Unlike the hyperplane covers in the Cartesian plane, the Ball-Serra Bound has not yet been investigated
for polynomial covers. Therefore, we have to start at the very beginning and investigate polynomial
covers of small grids and small multiplicities. From there on, we work our way towards a conjecture
about the threshold for tightness for any 𝑘-cover. Everything in the remainder of this chapter is own
work and cannot be found in literature. First, as a starting point for investigating whether there is a
clear difference between polynomial covers and line covers, we are going to recompute the values
in Table 3.1 for this new setting. Yet now we cannot make use anymore of a linear programme, as
for a given degree there are infinitely many polynomials to be considered over the grid. Hence, a
different approach is needed. At the beginning of this chapter, we have seen that we can come up
with polynomial covers by using the vanishing conditions on the partial derivatives. Let us first analyse
an algorithm that implements this method. Since we know that the Ball-Serra Bound is tight for 𝑘 = 2
for a line cover, we obviously cannot beat this when we allow ourselves to use any type of polynomial.
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Therefore, we start by looking at 3-covers. Themost straightforward way of computing polynomials is by
precisely performing the steps of Example 36. The first approach taken is to compute the polynomials
with a symbolic solver in Python, namely SymPy. This package allows to set up a polynomial of certain
degree, where the coefficient in front of 𝑥𝑖𝑦𝑗 is a variable 𝑎𝑖𝑗. Moreover, the package includes functions
to compute partial derivatives of polynomials. Hence, we can easily construct the systems of equations
that needs to be solved. The entire code can be found in Appendix B.1. This most basic approach is
implemented by the function curvemaker. This function generates all monomials of the right degree
and sets up the coefficients 𝑎𝑖𝑗. Using the SymPy command sp.diff(), the partial derivatives are
computed and all grid points are evaluated. SymPy also allows to solve a system of equations using
sp.solve(). The only remaining step is to choose a value for possible free variables in the system.
These are always set to 0, because this choice leads to the most compact formulas of polynomials.

Example 56. Using the constraints on the partial derivatives, the algorithm finds a 3-cover of degree
11 for the grid {0, 1, 2, 3} × {0, 1, 2}:

𝑓(𝑥, 𝑦) = (𝑦 − 2) ⋅ (𝑦 − 1) ⋅ (314𝑥9 − 5652𝑥8 + 1727𝑥7𝑦2 − 5181𝑥7𝑦 + 44274𝑥7 − 21666𝑥6𝑦2

+ 64998𝑥6𝑦 − 197820𝑥6 + 111470𝑥5𝑦2 − 334410𝑥5𝑦 + 554838𝑥5 − 303324𝑥4𝑦2

+ 909972𝑥4𝑦 − 1011708𝑥4 + 4239𝑥3𝑦5 − 22608𝑥3𝑦4 + 38151𝑥3𝑦3 + 449177𝑥3𝑦2

− 1406877𝑥3𝑦 + 1197910𝑥3 − 25434𝑥2𝑦5 + 135648𝑥2𝑦4 − 228906𝑥2𝑦3 − 291078𝑥2𝑦2

+ 1229310𝑥2𝑦 − 887364𝑥2 + 46629𝑥𝑦5 − 248688𝑥𝑦4 + 419661𝑥𝑦3 − 31086𝑥𝑦2 − 559548𝑥𝑦
+ 373032𝑥 + 216𝑦9 − 243𝑦8 − 1161𝑦7 − 2997𝑦6 − 6669𝑦5 + 111672𝑦4 − 219510𝑦3
+ 84780𝑦2 + 101736𝑦 − 67824).

The plot of this polynomial can be found in Figure 3.1. The example shows that the Ball-Serra Bound
is tight for this grid. However, when looking at its formula and plot, it is not clear how this cover can be
generalised to a cover of higher degree for a larger grid. The system obtained for this cover did contain
free variables, which were set to zero. Therefore, there are actually infinitely many 3-covers of this grid
of degree 11, depending on the choice for the free variables.

Figure 3.1: Plot of a 3-cover of {0, 1, 2, 3} × {0, 1, 2} of degree 11.

As explained, we would like to reproduce Table 3.1 and thus we want to rerun the code for larger grids
too. The above cover has already shown that there exist grids for which polynomial covers perform
better than line covers. However, in its current form, the program is very slow and it takes a while to
run it for larger grids. Luckily, there are a couple of observations that make it run faster.

Observation 57. Consider a symmetric grid Γ, i.e. a grid such that if (𝑎, 𝑏) ∈ Γ, then (𝑏, 𝑎) ∈ Γ. For
such a grid and for any 𝑘, there exists a 𝑘-cover that is symmetric in 𝑥 and 𝑦.
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This observation was made by Alessandro Neri during his research visit in Delft. To see why it holds,
consider an arbitrary 𝑘-cover 𝑓(𝑥, 𝑦) of Γ. Since (𝑦, 𝑥) is also a 𝑘-cover of the same grid, we find that
𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥) is a 𝑘-cover too. Clearly, this polynomial is symmetric in 𝑥 and 𝑦. This enables us to
decrease the number of variables in our system, since knowing 𝑎𝑖𝑗 implies knowing 𝑎𝑗𝑖. Interestingly,
keeping the constraint that the polynomial should be symmetric on the non-symmetric grids of the form
{0, 1, … , 𝑛 − 1} × {0, 1, … ,𝑚 − 1} often also yields covers of the tight degree compared to the Ball-Serra
Bound. Hence, we can first try to match the bound with this constraint added and if such a polynomial
cannot be found, the slower code can be run to investigate whether a different tight cover exists. In the
code in the appendix, this approach is implemented in the function curvemaker_symmetric. This is
almost the same function as curvemaker, to which the constraints 𝑎𝑖𝑗 − 𝑎𝑗𝑖 = 0 have been added.

Example 58. Returning to the example grid {0, 1, 2, 3}×{0, 1, 2}, we can rerun the algorithm after having
added the constraint that the polynomial needs to be symmetric in 𝑥 and 𝑦. There indeed exists a
symmetric 3-cover of degree 11 and this cover is found more quickly than the previous one. Its formula
is

𝑓(𝑥, 𝑦) = (𝑥 − 2) ⋅ (𝑥 − 1) ⋅ (𝑦 − 2) ⋅ (𝑦 − 1) ⋅ (𝑥 + 𝑦 − 3) ⋅ (𝑥2 − 3𝑥 + 𝑦2 − 3𝑦 + 2) ⋅ (2𝑥4 + 4𝑥3𝑦
− 18𝑥3 + 5𝑥2𝑦2 − 33𝑥2𝑦 + 58𝑥2 + 4𝑥𝑦3 − 33𝑥𝑦2 + 89𝑥𝑦 − 78𝑥 + 2𝑦4 − 18𝑦3 + 58𝑦2
− 78𝑦 + 36).

Plotting the polynomial in Figure 3.2 clearly shows the symmetry in 𝑥 and 𝑦.

Figure 3.2: Plot of a symmetric 3-cover of {0, 1, 2, 3} × {0, 1, 2} of degree 11.

The above example has an interesting property. It contains almost every horizontal and vertical line
through a boundary point of the grid, only the line 𝑥 = 3 is missing. This leads to the question whether
we can find tight 3-covers of {0, 1, … , 𝑛 − 1} × {0, 1, … ,𝑚 − 1} of the form

𝑓(𝑥, 𝑦) =
𝑛−1

∏
𝑖=1
(𝑥 − 𝑖) ⋅

𝑚−1

∏
𝑗=1
(𝑦 − 𝑗) ⋅ 𝑝(𝑥, 𝑦). (3.23)

The greatest gain in terms of computation with this approach is that the interior points are already
covered twice with the lines and the boundary points once. Hence, the partial derivatives of second
order do not need to be computed anymore and the first order partial derivatives do not need to vanish
on the interior points anymore. Furthermore, we can even investigate whether the remaining polynomial
𝑝(𝑥, 𝑦) is symmetric in 𝑥 and 𝑦. That would mean that the cover is not symmetric anymore, but further
reduces the computation time to find 𝑝. The respective functions in the code for these approaches are
curvemaker_lines and curvemaker_lines_symmetric.
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Example 59. Returning to the grid {0, 1, 2, 3} × {0, 1, 2} we used the algorithm to investigate whether
there is a 3-cover of degree 11 of the above form with 𝑝 symmetric. This turned out to be the case, with
the cover given by:

𝑓(𝑥, 𝑦) = (𝑥 − 3) ⋅ (𝑥 − 2) ⋅ (𝑥 − 1) ⋅ (𝑦 − 2) ⋅ (𝑦 − 1) ⋅ (2𝑥6 − 24𝑥5 + 11𝑥4𝑦2 − 33𝑥4𝑦 + 116𝑥4
+ 13𝑥3𝑦3 − 111𝑥3𝑦2 + 242𝑥3𝑦 − 288𝑥3 + 11𝑥2𝑦4 − 111𝑥2𝑦3 + 413𝑥2𝑦2 − 627𝑥2𝑦 + 386𝑥2

− 33𝑥𝑦4 + 242𝑥𝑦3 − 627𝑥𝑦2 + 682𝑥𝑦 − 264𝑥 + 2𝑦6 − 24𝑦5 + 116𝑦4 − 288𝑦3 + 386𝑦2 − 264𝑦
+ 72).

The plot of this polynomial in Figure 3.3 has again a completely different form than the previous 3-covers
of the same degree.

Figure 3.3: Plot of a 3-cover of {0, 1, 2, 3} × {0, 1, 2} of degree 11 that contains all horizontal and vertical lines in the grid and has
a symmetric remaining factor.

While the SymPy code has proven to be useful and was able to generate a lot of covers, computing the
derivatives symbolically still takes a long time. Since all covers are polynomials and the derivatives of
polynomials follow rules that are easy to implement, the matrix with the linear constraints as in Exam-
ple 36 can also be computed without symbolic computations, but using Numpy. The disadvantage of
this is that Numpy performs Gaussian Elimination numerically. Hence, the coefficients in the polynomi-
als obtained with Numpy are not exact, meaning that the obtained polynomials do not actually vanish
on the grid points. This can be resolved using SageMath. A matrix in Sage can be defined over a cer-
tain domain. Since the polynomials vanish on integer points, the coefficients of the polynomial should
be rationals. So, setting the domain of the matrix to the rational field resolves this issue. The Sage
code can be found in Appendix B.2. This code in Sage is much faster than its Python counterpart. The
code also returns the exact same covers as the SymPy code. A second advantage of this approach
using matrices instead of symbolic computations is that when no cover of a tight degree can be found,
the linear dependencies between the rows of the matrix can be more easily investigated. With this
improved code, Table 3.1 can be easily remade for polynomial 3-covers. The minimum degrees of
polynomial 3-covers for {0, 1, … , 𝑛 − 1} × {0, 1, … ,𝑚 − 1} can be found in Table 3.2. Moreover, all found
curves are plotted in Appendix A.1.
The table shows clear differences between the minimum degree of line and polynomial covers of mul-
tiplicity 3. In the former case, we proved tightness with Ball-Serra whenever 𝑛 ≥ 2𝑚 − 1. This table
seems to suggest that Ball-Serra is tight for polynomial 3-cover whenever 𝑛 ≥ 𝑚 + 1. Furthermore,
for all considered grids, there is always a construction that contains all horizontal and vertical lines and
that has a symmetric remaining component. This is clearly visible in the plots in the appendix. The
presence of these lines is intriguing because it implies that if such a tight construction exist for the
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m
n 2 3 4 5 6 7 8

2 5 7 10 13 16 19 22
3 9 11 14 17 20 23
4 13 15 18 21 24
5 17 19 22 25
6 21 23 26
7 25 27
8 29

0
1

Table 3.2: Minimum degree of a polynomial 3-cover for the grids {0, 1, … , 𝑛 − 1} × {0, 1, … ,𝑚 − 1}.

(𝑛×(𝑛−1)) grid, then Ball-Serra is tight for any other, more rectangular (𝑛×𝑚)-grid where𝑚 ≤ 𝑛−1.
A tight construction can be obtained by removing the redundant horizontal lines from this first construc-
tion. We make this insight more formal in the next section. Additionally, for the square grid, Ball-Serra
does not seem tight. In the case of line covers however, the gap between the optimal degree of the
cover and the lower bound increased when 𝑛 and 𝑚 increase in such a way that 𝑛 −𝑚 remains equal.
For polynomial covers the gap seems to only depend on the value of 𝑛 − 𝑚. This seems to imply a
completely different regime for line and polynomial covers. Interestingly, for the degree one higher than
Ball-Serra and the square grids in Table 3.2, there always exist a polynomial 3-cover that contains each
non-zero horizontal and vertical line of the grid once and that has a symmetric remaining factor. This
suggests that for any grid Γ, if there exists a 3-cover of degree 𝑑, there exists a 3-cover of the same
degree that contains all non-zero vertical and lines in Γ.

3.3.3. Symmetric Slices of 3-covers
The clear advantage of the above observation is that for 3-covers, it allows us to focus on (𝑛×(𝑛−1))-
grids and square grids. To prove tightness of the Ball-Serra Bound, it would suffice to come up with a
method to predict the terms of covers of the (𝑛 × (𝑛−1))-grids. For the less square grids, we can then
remove the redundant horizontal lines to still obtain a tight polynomial cover.

i Lemma 60. i Let 𝑆1, 𝑆2 ⊆ ℝ be sets of respective sizes 𝑛 and𝑚 that both contain 0. Set Γ = 𝑆1×𝑆2
and consider a sub-grid Γ′ = 𝑆1 × 𝑆′2 with 𝑆′2 ⊆ 𝑆2 such that 0 ∈ 𝑆′2. If there is a polynomial 𝑘-cover of
Γ for some natural number 𝑘 that is tight with respect to the Ball-Serra bound and the contains every
horizontal line of the form 𝑦 = 𝑠 for 𝑠 ∈ 𝑆2 ⧵ {0} at least once, then there is also a tight cover of Γ′.

Proof. Suppose there is a polynomial 𝑓 of degree 𝑘(𝑛 − 1) + (𝑚 − 1) that gives a 𝑘-cover of Γ that
contains every horizontal line of the form 𝑦 = 𝑠 for 𝑠 ∈ 𝑆2 ⧵ {0} at least once. Then we write

𝑓(𝑥, 𝑦) = 𝑝(𝑥, 𝑦) ⋅ ∏
𝑠∈𝑆2⧵{0}

(𝑦 − 𝑠),

where deg𝑝 = 𝑘(𝑛 − 1) and 𝑝 covers the points on the slice 𝑦 = 0 at least 𝑘 times and the points at
the slices 𝑦 = 𝑠 at least 𝑘 − 1 times for all 𝑠 ∈ 𝑆2 ⧵ {0}. Hence,

𝑔(𝑥, 𝑦) = 𝑝(𝑥, 𝑦) ⋅ ∏
𝑡∈𝑆′2⧵{0}

(𝑦 − 𝑡)

has degree 𝑘(𝑛 − 1) + (|𝑆′2| − 1). Since 𝑆′2 ⊆ 𝑆2, 𝑝 still covers all points of Γ′ on the slice 𝑦 = 0 at least
𝑘 times and the points at the slices 𝑦 = 𝑡 at least 𝑘 − 1 times for all 𝑡 ∈ 𝑆′2 ⧵ {0}. Thus, 𝑔 is a tight
polynomial 𝑘-cover of Γ′.

Unfortunately, coming up with a polynomial 3-cover of an arbitrary (𝑛 × (𝑛 − 1))-grid is no easy feat.
For instance, let us consider the tight polynomial 3-covers with symmetric remaining factors of the
(4 × 3)-grid and the (5 × 4)-grid:
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𝑓4×3(𝑥, 𝑦) = (𝑥 − 3) ⋅ (𝑥 − 2) ⋅ (𝑥 − 1) ⋅ (𝑦 − 2) ⋅ (𝑦 − 1) ⋅ (2𝑥6 − 24𝑥5 + 11𝑥4𝑦2 − 33𝑥4𝑦 + 116𝑥4
+ 13𝑥3𝑦3 − 111𝑥3𝑦2 + 242𝑥3𝑦 − 288𝑥3 + 11𝑥2𝑦4 − 111𝑥2𝑦3 + 413𝑥2𝑦2 − 627𝑥2𝑦 + 386𝑥2

− 33𝑥𝑦4 + 242𝑥𝑦3 − 627𝑥𝑦2 + 682𝑥𝑦 − 264𝑥 + 2𝑦624𝑦5 + 116𝑦4 − 288𝑦3 + 386𝑦2 − 264𝑦
+ 72)

𝑓5×4(𝑥, 𝑦) = (𝑥 − 4) ⋅ (𝑥 − 3) ⋅ (𝑥 − 2) ⋅ (𝑥 − 1) ⋅ (𝑦 − 3) ⋅ (𝑦 − 2) ⋅ (𝑦 − 1) ⋅ (3𝑥8 − 60𝑥7 + 510𝑥6

+ 25𝑥5𝑦3 − 150𝑥5𝑦2 + 275𝑥5𝑦 − 2400𝑥5 + 28𝑥4𝑦4 − 430𝑥4𝑦3 + 1880𝑥4𝑦2 − 3050𝑥4𝑦
+ 6819𝑥4 + 25𝑥3𝑦5 − 430𝑥3𝑦4 + 2950𝑥3𝑦3 − 9200𝑥3𝑦2 + 12625𝑥3𝑦 − 11940𝑥3 − 150𝑥2𝑦5

+ 1880𝑥2𝑦4 − 9200𝑥2𝑦3 + 21700𝑥2𝑦2 − 24250𝑥2𝑦 + 12540𝑥2 + 275𝑥𝑦5 − 3050𝑥𝑦4

+ 12625𝑥𝑦3 − 24250𝑥𝑦2 + 21600𝑥𝑦 − 7200𝑥 + 3𝑦8 − 60𝑦7 + 510𝑦6 − 2400𝑦5 + 6819𝑦4
− 11940𝑦3 + 12540𝑦2 − 7200𝑦 + 1728).

Comparing the two formulas, there is no clear way of linking the coefficients of both polynomials. Since
the second polynomial has more terms than the first, it is in the first place unclear which terms we should
compare. Is there a sequence to be found in the terms of highest degree? Or should we try to relate
the coefficients of the same monomials in the polynomials? Looking further into the formulas of larger
grids does not seem to show a clear pattern in any coefficients. Of course, we could investigate other 3-
covers of the grids to see whether a pattern emerges there. But after having examined the four different
types of covers as explained in Section 3.3.2, no clear way of easily predicting the coefficients in a tight
3-cover of an arbitrary (𝑛 × (𝑛 − 1))-grid could be found. When investigating the non-tight degree 13
cover of {0, 1, 2, 3}×{0, 1, 2, 3}, there is an interesting pattern that can be found in a maybe less obvious
place. The formula of the 3-cover of the (4 × 4)-grid with lines and symmetric other component is

𝑓4×4 = (𝑥 − 3) ⋅ (𝑥 − 2) ⋅ (𝑥 − 1) ⋅ (𝑦 − 3) ⋅ (𝑦 − 2) ⋅ (𝑦 − 1) ⋅ (6𝑥6 − 72𝑥5 − 11𝑥4𝑦3 + 66𝑥4𝑦2
− 121𝑥4𝑦 + 348𝑥4 − 11𝑥3𝑦4 + 138𝑥3𝑦3 − 553𝑥3𝑦2 + 858𝑥3𝑦 − 864𝑥3 + 66𝑥2𝑦4 − 553𝑥2𝑦3
+ 1668𝑥2𝑦2 − 2123𝑥2𝑦 + 1158𝑥2 − 121𝑥𝑦4 + 858𝑥𝑦3 − 2123𝑥𝑦2 + 2178𝑥𝑦 − 792𝑥 + 6𝑦6

− 72𝑦5 + 348𝑦4 − 864𝑦3 + 1158𝑦2 − 792𝑦 + 216).
Although at first there might not seem to be a pattern between the coefficients of the symmetric parts
of 𝑓4×3 and 𝑓4×4, the plots of these polynomials reveal a surprising property. The first polynomial can
be found in Figure 3.3 and the second one in Figure 3.4.
Just as the coefficients that do not show a clear connection between the two polynomials, the shapes of
the polynomials are not similar either. Yet in both cases, the horizontal slices of the symmetric factor of
the polynomial yield a pattern. To investigate this, we keep the notation of Equation (3.23) and let 𝑝4×3
and 𝑝4×4 denote the respective symmetric and irreducible parts of our covers. The horizontal slices of
these polynomials are univariate polynomials that can be obtained by evaluating the 𝑦-values in the
grid. In particular, the slices of 𝑝4×3 are

𝑝4×3(𝑥, 0) = (𝑥 − 1)2 ⋅ (𝑥 − 2)2 ⋅ (𝑥 − 3)2
𝑝4×3(𝑥, 1) = 𝑝4×3(𝑥, 2) = 𝑥2 ⋅ (𝑥 − 1) ⋅ (𝑥 − 2) ⋅ (𝑥 − 3) ⋅ (𝑥 − 6).

Note that the slice that coincides with the 𝑥-axis has the maximal degree possible for 𝑓4×3 to be tight
with respect to the Ball-Serra Bound. Also for the cover of the (4 × 4)-grid we can compute the slices:

𝑝4×4(𝑥, 0) = (𝑥 − 1)2 ⋅ (𝑥 − 2)2 ⋅ (𝑥 − 3)2
𝑝4×4(𝑥, 1) = 𝑝4×3(𝑥, 2) = 𝑝4×3(𝑥, 3) = 𝑥2 ⋅ (𝑥 − 1) ⋅ (𝑥 − 2) ⋅ (𝑥 − 3) ⋅ (𝑥 − 6).

These slices are equal for both covers. Furthermore, we see that in the slices at 𝑦 = 1, 𝑦 = 2 and
𝑦 = 3, there is an additional factor (𝑥 − 6). The question arises whether this factor is unique and if so,
what it is determined by. It will turn out that it is not completely unique, but that there are only specific
choices for this factor. Predicting the form of polynomial covers on the different slices is an interesting
approach because of the following observation.
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Figure 3.4: Plot of a 3-cover of {0, 1, 2, 3} × {0, 1, 2, 3} of degree 13 that contains all horizontal and vertical lines in the grid and
has a symmetric remaining factor. This polynomial is not tight with respect to the Ball-Serra Bound.

iObservation 61. i Consider an arbitrary polynomial 𝑝(𝑥, 𝑦) ∈ ℝ[𝑥, 𝑦] and an arbitrary point (𝑠, 𝑡) ∈ ℝ2.
Then,

𝜕𝑝(𝑥, 𝑦)
𝜕𝑥 |

(𝑥,𝑦)=(𝑠,𝑡)
= 𝑑𝑝(𝑥, 𝑡)

𝑑𝑥 |
𝑥=𝑠
.

Proof. It is important to note that 𝑝 is a polynomial. Hence, it is very well-behaved and both derivatives
always exist. Using the definitions of partial derivatives and univariate derivatives, we find

𝜕𝑝(𝑥, 𝑦)
𝜕𝑥 |

(𝑥,𝑦)=(𝑠,𝑡)
= lim
ℎ→0

𝑝(𝑠 + ℎ, 𝑡) − 𝑝(𝑠, 𝑡)
ℎ

𝑑𝑝(𝑥, 𝑡)
𝑑𝑥 |

𝑥=𝑠
= lim
ℎ→0

𝑝(𝑠 + ℎ, 𝑡) − 𝑝(𝑠, 𝑡)
ℎ .

Therefore, they are indeed equal.

Of course, a similar result holds for the partial derivative with respect to 𝑦. Moreover, by taking the
corresponding limits, the result can be generalised to partial derivatives of higher order that are all with
respect to 𝑥 or all with respect to 𝑦. For 𝑘 ≥ 3,

𝜕𝑘𝑝(𝑥, 𝑦)
𝜕𝑥𝑘 |

(𝑥,𝑦)=(𝑠,𝑡)
= 𝑑𝑘𝑝(𝑥, 𝑡)

𝑑𝑥𝑘 |
𝑥=𝑠
.

Hence, (𝑠, 𝑡) is a root of multiplicity two of 𝑝(𝑥, 𝑦) if and only if 𝑠 is a root of multiplicity two of 𝑝(𝑥, 𝑡)
and 𝑡 is a root of multiplicity two of 𝑝(𝑠, 𝑦). For roots with higher multiplicity 𝑘 ≥ 3, only one direction of
the statement follows, since we also have to take into account partial derivatives with respect to 𝑥 and
𝑦 combined. If (𝑠, 𝑡) is a root of multiplicity 𝑘 of 𝑝(𝑥, 𝑦), then 𝑠 is a root of multiplicity 𝑘 of 𝑝(𝑥, 𝑡) and 𝑡
is a root of multiplicity 𝑘 of 𝑝(𝑠, 𝑦).
Let us see how we can use these slices to come up with a 3-cover with a symmetric component, without
relying on partial derivatives but by using slices.

Example 62. Consider the grid {0, 1, 2, 3} × {0, 1, 2} and suppose we want to find a 3-cover of degree
11. This time we do not use partial derivatives to compute the cover, but slices. To start, based on
the observations we previously made, we assume that the cover contains all non-zero horizontal and
vertical lines in the grid. Hence, we have simplified to problem from finding a 3-cover of degree 11
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to a polynomial 𝑝 of degree 6 that covers every boundary point twice and every interior point once.
Moreover, we want 𝑝 to be symmetric in 𝑥 and 𝑦 to simplify the calculations. We write 𝑝 in the following
form:

𝑝(𝑥, 𝑦) = 𝑎6(𝑦)𝑥6 + 𝑎5(𝑦)𝑥5 + 𝑎4(𝑦)𝑥4 + 𝑎3(𝑦)𝑥3 + 𝑎2(𝑦)𝑥2 + 𝑎1(𝑦)𝑥 + 𝑎0(𝑦),
where 𝑎𝑖(𝑦) is a univariate polynomial of maximum degree 6 − 𝑖 for all 0 ≤ 𝑖 ≤ 6. Because of the
vanishing conditions of 𝑝, we want that

𝑝(𝑥, 0) = (𝑥 − 1)2 ⋅ (𝑥 − 2)2 ⋅ (𝑥 − 3)2

= 𝑥6 − 12𝑥5 + 58𝑥4 − 144𝑥3 + 193𝑥2 − 132𝑥 + 36.

Since this univariate polynomial already has degree 6, there cannot be another factor in this slice. For
the other slices at 𝑦 = 1 and 𝑦 = 2, however, we add a factor of degree 1:

𝑝(𝑥, 1) = 𝑥2 ⋅ (𝑥 − 1) ⋅ (𝑥 − 2) ⋅ (𝑥 − 3) ⋅ (𝑎1𝑥 + 𝑎0)
= 𝑎1𝑥6 + (−6𝑎1 + 𝑎0)𝑥5 + (11𝑎1 − 6𝑎0)𝑥4 + (−6𝑎1 + 11𝑎0)𝑥3 − 6𝑎0𝑥2

𝑝(𝑥, 2) = 𝑥2 ⋅ (𝑥 − 1) ⋅ (𝑥 − 2) ⋅ (𝑥 − 3) ⋅ (𝑏1𝑥 + 𝑏0)
= 𝑏1𝑥6 + (−6𝑏1 + 𝑏0)𝑥5 + (11𝑏1 − 6𝑏0)𝑥4 + (−6𝑏1 + 11𝑏0)𝑥3 − 6𝑏0𝑥2

The formula of 𝑎6(𝑦) can easily be found, since it is a degree 0 polynomial. To satisfy that the coefficient
of 𝑥6 in 𝑝(𝑥, 0) equals 1, we obtain 𝑎6(𝑦) = 1. Note that this also implies 𝑎1 = 𝑏1 = 1, because otherwise
we would have a contradiction.
For 𝑎5(𝑦), we know that it should be of the form

𝑎5(𝑦) = 𝜐(5)0 + 𝜐(5)1 𝑦,

for some 𝜐(5)0 , 𝜐(5)1 ∈ ℝ. We want 𝑎5(𝑦) to be equal to the coefficient of the corresponding monomials
in the slices for 𝑦 = 0, 1, 2. Hence, this yields the system of equations

𝜐(5)0 = −12
𝜐(5)0 + 𝜐(5)1 = −6𝑎1 + 𝑎0 = 𝑎0 − 6
𝜐(5)0 + 2𝜐(5)1 = −6𝑏1 + 𝑏0 = 𝑏0 − 6.

This system only has a solution if 𝑏0 = 6 + 2𝑎0. One such choice is 𝑎0 = 𝑏0 = −6, which shows why
the factor (𝑥−6) appeared in the slices of the example above. For this choice of 𝑎0 and 𝑏0 we find that
𝑎5(𝑦) = −12. The slices at 𝑦 = 1 and 𝑦 = 2 become

𝑝(𝑥, 1) = 𝑝(𝑥, 2) = 𝑥6 − 12𝑥5 + 47𝑥4 − 72𝑥3 + 36𝑥2.
Knowing the coefficients at the three slices, we proceed to solve for

𝑎4(𝑦) = 𝜐(4)0 + 𝜐(4)1 𝑦 + 𝜐(4)2 𝑦2.

The system of equations becomes

𝜐(4)0 = 58
𝜐(4)0 + 𝜐(4)1 + 𝜐(4)2 = 47

𝜐(4)0 + 2𝜐(4)1 + 4𝜐(4)2 = 47.

This has the unique solution 𝜐(4)0 = 58, 𝜐(4)1 = −33/2 and 𝜐(4)2 = 11/2. Hence,

𝑎4(𝑦) = 58 −
33
2 𝑦 +

11
2 𝑦

2.
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For 𝑎3(𝑦), we again get one more variable:

𝑎3(𝑦) = 𝜐(3)0 + 𝜐(3)1 𝑦 + 𝜐(3)2 𝑦2 + 𝜐(3)3 𝑦3.
The system of equations after plugging in 𝑦 = 0, 𝑦 = 1 and 𝑦 = 2, written in matrix form is

[
1 0 0 0 −144
1 1 1 1 −72
1 2 4 8 −72

] .

Solving the system yields one free variable, such that

𝑎3(𝑦) = −144 + (108 + 2𝜐(3)3 ) 𝑦 + (−36 − 3𝜐(3)3 ) 𝑦2 + 𝜐(3)3 𝑦3.
We proceed in the exact same way to find expressions for 𝑎2(𝑦) and 𝑎1(𝑦). Let

𝑎2(𝑦) = 𝜐(2)0 + 𝜐(2)1 𝑦 + 𝜐(2)2 𝑦2 + 𝜐(2)3 𝑦3 + 𝜐(2)4 𝑦4,
to obtain the system of equations

[
1 0 0 0 0 193
1 1 1 1 1 36
1 2 4 8 16 36

] .

Solving yields

𝑎2(𝑦) = 193 + (−
471
2 + 2𝜐(2)3 + 6𝜐(2)4 )𝑦 + (1572 − 3𝜐(2)3 − 7𝜐(2)4 )𝑦2 + 𝜐(2)3 𝑦3 + 𝜐(2)4 𝑦4.

The last system of equations we will solve corresponds to

𝑎1(𝑦) = 𝜐(1)0 + 𝜐(1)1 𝑦 + 𝜐(1)2 𝑦2 + 𝜐(1)3 𝑦3 + 𝜐(1)4 𝑦4 + 𝜐(1)5 𝑦5,
and is equal to

[
1 0 0 0 0 0 −132
1 1 1 1 1 1 0
1 2 4 8 16 32 0

] .

Its solution gives the expression

𝑎1(𝑦) = − 132 + (198 + 2𝜐(1)3 + 6𝜐(1)4 + 14𝜐(1)5 ) 𝑦 + (−66 − 3𝜐(1)3 − 7𝜐(1)4 − 15𝜐(1)5 ) 𝑦2

+ 𝜐(1)3 𝑦3 + 𝜐(1)4 𝑦4 + 𝜐(1)5 𝑦5.
We should still find an expression for 𝑎0(𝑦) = 𝑝(0, 𝑦). Since we assumed 𝑝 to be symmetric, we use
𝑝(0, 𝑦) = 𝑝(𝑦, 0) to find

𝑎0(𝑦) = 𝑦6 − 6𝑦5 + 4𝑦4 + 42𝑦3 − 113𝑦2 + 108𝑦 − 36.
Note that because of this choice we indeed have 𝑎0(0) = 36, 𝑎0(1) = 0 and 𝑎0(2) = 0, as required.
Now we put everything together to find an expression for 𝑝:

𝑝(𝑥, 𝑦) =𝑥6 − 12𝑥5 + 𝑥4 (58 − 332 𝑦 +
11
2 𝑦

2)

+ 𝑥3 (−144 + (108 + 2𝜐(3)3 ) 𝑦 + (−36 − 3𝜐(3)3 ) 𝑦2 + 𝜐(3)3 𝑦3)

+ 𝑥2 (193 + (−4712 + 2𝜐(2)3 + 6𝜐(2)4 )𝑦 + (1572 − 3𝜐(2)3 − 7𝜐(2)4 )𝑦2 + 𝜐(2)3 𝑦3 + 𝜐(2)4 𝑦4)

+ 𝑥 (−132 + (198 + 2𝜐(1)3 + 6𝜐(1)4 + 14𝜐(1)5 ) 𝑦 + (−66 − 3𝜐(1)3 − 7𝜐(1)4 − 15𝜐(1)5 ) 𝑦2

+𝜐(1)3 𝑦3 + 𝜐(1)4 𝑦4 + 𝜐(1)5 𝑦5)
+ 𝑦6 − 6𝑦5 + 4𝑦4 + 42𝑦3 − 113𝑦2 + 108𝑦 − 36.
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We impose that 𝑝 is symmetric, such that the number of free variables gets reduced. For instance, the
symmetry implies that

𝜐(1)5 = 0

𝜐(1)4 = −332
𝜐(2)4 = 11

2
𝜐(1)3 = 108 + 2𝜐(3)3
𝜐(2)3 = −36 − 3𝜐(3)3 .

Thus, 𝑝 becomes

𝑝(𝑥, 𝑦) = 𝑥6 + 𝑦6 − 12𝑥5 − 12𝑦5 + 58𝑥4 + 58𝑦4 − 144𝑥3 − 144𝑦3 + 193𝑥2 + 193𝑦2 − 132𝑥 − 132𝑦

+ 36 − 332 𝑥
4𝑦 − 332 𝑥𝑦

4 + 112 𝑥
4𝑦2 + 112 𝑥

2𝑦4 + (108 + 2𝜐(3)3 ) 𝑥3𝑦 + (108 + 2𝜐(3)3 ) 𝑥𝑦3

+ (−36 − 3𝜐(3)3 ) 𝑥3𝑦2 + (−36 − 3𝜐(3)3 ) 𝑥2𝑦3 + (−4712 + 2𝜐(2)3 + 6𝜐(2)4 ) 𝑥2𝑦

+ (−66 − 3𝜐(1)3 − 7𝜐(1)4 ) 𝑥𝑦2 + 𝜐(3)3 𝑥3𝑦3 + (1572 − 3𝜐(2)3 − 7𝜐(2)4 ) 𝑥2𝑦2

+ (198 + 2𝜐(1)3 + 6𝜐(1)4 ) 𝑥𝑦.

We rewrite all free variables in function of 𝜐(3)3 :

−4712 + 2𝜐(2)3 + 6𝜐(2)4 = −5492 − 6𝜐(3)3

−66 − 3𝜐(1)3 − 7𝜐(1)4 = −5492 − 6𝜐(3)3
157
2 − 3𝜐(2)3 − 7𝜐(2)4 = 148 + 9𝜐(3)3
198 + 2𝜐(1)3 + 6𝜐(1)4 = 315 + 4𝜐(3)3 .

Substituting this yields

𝑝(𝑥, 𝑦) = 𝑥6 + 𝑦6 − 12𝑥5 − 12𝑦5 + 58𝑥4 + 58𝑦4 − 144𝑥3 − 144𝑦3 + 193𝑥2 + 193𝑦2 − 132𝑥 − 132𝑦

+ 36 − 332 𝑥
4𝑦 − 332 𝑥𝑦

4 + 112 𝑥
4𝑦2 + 112 𝑥

2𝑦4 + (108 + 2𝜐(3)3 ) 𝑥3𝑦 + (108 + 2𝜐(3)3 ) 𝑥𝑦3

+ (−36 − 3𝜐(3)3 ) 𝑥3𝑦2 + (−36 − 3𝜐(3)3 ) 𝑥2𝑦3 + (−5492 − 6𝜐(3)3 ) 𝑥2𝑦

+ (−5492 − 6𝜐(3)3 ) 𝑥𝑦2 + 𝜐(3)3 𝑥3𝑦3 + (148 + 9𝜐(3)3 ) 𝑥2𝑦2

+ (315 + 4𝜐(3)3 ) 𝑥𝑦.

For any choice of 𝜐(3)3 , 𝑝 is a symmetric polynomial with the slices

𝑝(𝑥, 0) = (𝑥 − 1)2 ⋅ (𝑥 − 2)2 ⋅ (𝑥 − 3)2
𝑝(𝑥, 1) = 𝑝(𝑥, 2) = 𝑥2 ⋅ (𝑥 − 1) ⋅ (𝑥 − 2) ⋅ (𝑥 − 3) ⋅ (𝑥 − 6)

𝑝(0, 𝑦) = (𝑦 − 1)2 ⋅ (𝑦 − 2)2 ⋅ (𝑦 − 3)2
𝑝(1, 𝑦) = 𝑝(2, 𝑦) = 𝑦2 ⋅ (𝑦 − 1) ⋅ (𝑦 − 2) ⋅ (𝑦 − 3) ⋅ (𝑦 − 6).
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This means that all points of {0, 1, 2, 3} × {0, 1, 2} are roots of 𝑝. Moreover, all boundary points except
(3, 0) are zeroes of multiplicity two. Lastly, to ensure that (3, 0) also has this multiplicity, we need that
𝑝(3, 𝑦) is of the form

𝑝(3, 𝑦) = 𝑦2 ⋅ 𝑟(𝑦),
for some polynomial 𝑟(𝑦). If we consider this slice, we obtain

𝑝(3, 𝑦) = (𝑦5 − 12𝑦4 + 58𝑦3 + (−144 − 21𝜐(3)3 )) 𝑦2 + (175 − 18𝜐(3)3 ) 𝑦 + 12𝜐(3)3 − 78) 𝑦

Hence, we need to set 𝜐(3)3 = 78
12 = 13 to get the final expression for 𝑝(𝑥, 𝑦). Adding each horizontal

and vertical line of the grid once yields the final 3-cover with formula

𝑓(𝑥, 𝑦) = = (𝑥 − 3) ⋅ (𝑥 − 2) ⋅ (𝑥 − 1) ⋅ (𝑦 − 2) ⋅ (𝑦 − 1) ⋅ (𝑥6 + 𝑦6 − 12𝑥5 − 12𝑦5 + 58𝑥4 + 58𝑦4

− 144𝑥3 − 144𝑦3 + 193𝑥2 + 193𝑦2 − 132𝑥 − 132𝑦 − 332 𝑥
4𝑦 − 332 𝑥𝑦

4 + 112 𝑥
4𝑦2

+ 112 𝑥
2𝑦4 + 121𝑥3𝑦 + 121𝑥𝑦3 − 1112 𝑥3𝑦2 − 1112 𝑥2𝑦3 − 6272 𝑥2𝑦 − 6272 𝑥𝑦2 + 132 𝑥

3𝑦3

+ 4132 𝑥2𝑦2 + 314𝑥𝑦 + 36).

Note that this cover is the same cover that we had already found in Example 59.

The above example shows that we do not have to use partial derivatives to find a cover, we can also
focus on the slices of the grid. Even though this approach might seem to be at least as complicated,
mimicking the steps in the example appears to give a promising method in the search of proving that
for any grid Γ = 𝑆1 × 𝑆2, of respective sizes 𝑛 ≥ 3 and 𝑚 such that 𝑆2 ⊊ 𝑆1 and (0, 0) ∈ Γ, there exists
a polynomial 𝑓 of degree 3(𝑛 − 1) + (𝑚 − 1) that covers every non-zero point of Γ three times while
avoiding the origin. All polynomial covers found so far suggest that 𝑓 can be written in the form

𝑓(𝑥, 𝑦) = ∏
𝑠∈𝑆1⧵{0}

(𝑥 − 𝑠) ⋅ ∏
𝑡∈𝑆2⧵{0}

(𝑦 − 𝑡) ⋅ 𝑝(𝑥, 𝑦),

where 𝑝(𝑥, 𝑦) is symmetric in 𝑥 and 𝑦.
As said, we follow the steps from Example 62. At first, we consider the slices at 𝑦 = 0 and 𝑦 = 𝑠 for
all 𝑠 ∈ 𝑆2 ⧵ {0}. As we have seen in the example, there is a restriction on the form of the latter type of
slices, since certain coefficients of the two types of slices have to be equal. Hence, we first formulate
a lemma that we will use to match the first 𝓁 coefficients of both slices, where 𝓁 is some integer. That
is, we want to ensure that the coefficients of the first 𝓁 monomials when ordered in decreasing degree
are equal.

i Lemma 63. i Let 𝓁, 𝑘 be two integers such that 𝓁 ≤ 𝑘. Let ℎ(𝑥) and 𝑞(𝑥) be arbitrary univariate
polynomials of respective degrees 𝑘 and 𝑘−𝓁. Then there exists a univariate polynomial 𝑐(𝑥) of degree
𝓁 such that the first 𝓁 + 1 coefficients of ℎ(𝑥) and 𝑞(𝑥) ⋅ 𝑐(𝑥) are matched.

Proof. Let us consider the formulas of ℎ(𝑥) and 𝑞(𝑥) ⋅ 𝑐(𝑥):

ℎ(𝑥) = 𝑎𝑘𝑥𝑘 + 𝑎𝑘−1𝑥𝑘−1 +⋯+ 𝑎1𝑥 + 𝑎0
𝑞(𝑥) ⋅ 𝑐(𝑥) = (𝑏𝑘−𝓁𝑥𝑘−𝓁 +⋯+ 𝑏1𝑥 + 𝑏0) ⋅ (𝛽𝓁𝑥𝓁 +⋯+ 𝛽1𝑥 + 𝛽0),

where all coefficients of ℎ(𝑥) and 𝑞(𝑥) are known, while the 𝛽𝑖 are to be chosen. To ensure that the first
𝓁 + 1 coefficients of ℎ(𝑥) and 𝑞(𝑥) ⋅ 𝑐(𝑥) are equal, we should look into how the monomials of highest
degrees are obtained in 𝑞(𝑥) ⋅ 𝑐(𝑥). For instance, the only term of degree 𝑘 in this product is given by
𝑏𝑘−𝓁𝑥𝑘−𝓁𝛽𝓁𝑥𝓁. Since this has to be equal to 𝑎𝑘, we have 𝛽𝓁 =

𝑎𝑘
𝑏𝑘−𝓁

. In general, for 0 ≤ 𝑗 ≤ 𝓁, we need
to solve the linear equation

𝑎𝑘−𝑗 =
𝑗

∑
𝑖=0
𝛽𝓁−𝑗+𝑖𝑏𝑘−𝓁−𝑖 .
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As we have just seen, for 𝑗 = 0 this can be immediately solved. Now suppose we have solved the
equations for 𝑗 < 𝑚 for some 𝑚 < 𝓁. Then for 𝑗 = 𝑚, we need to solve

𝑎𝑘−𝑚 = 𝛽𝓁−𝑚𝑏𝑘−𝓁 +
𝑗

∑
𝑖=1
𝛽𝓁−𝑗+𝑖𝑏𝑘−𝓁−𝑖 .

It follows that

𝛽𝓁−𝑚 =
𝑎𝑘−𝑚 − ∑

𝑗
𝑖=1 𝛽𝓁−𝑗+𝑖𝑏𝑘−𝓁−𝑖
𝑏𝑘−𝓁

.

Therefore, these equations can be solved sequentially, giving all values of the coefficients in 𝑐(𝑥). Once
we have found the value of 𝛽0, we have matched terms of degree 𝑘 − 𝓁, thus the first 𝓁 + 1 terms of
both polynomials are equal, as required.

Note that in the above lemma we could have replaced the first 𝓁+1 terms by any 𝓁+1 terms. For any
set 𝒮 consisting of to be matched terms we first solve for the term of highest degree in 𝒮 and again go
sequentially through the set.
Having proven the lemma, we proceed with our search for the symmetric polynomial 𝑝.
We write 𝑆1 = {0, 𝑠1, … , 𝑠𝑛−1} and 𝑆2 = {0, 𝑠1, … , 𝑠𝑛−2}. The polynomial that we are looking for has
degree 2(𝑛 − 1), so we express it as

𝑝(𝑥, 𝑦) = 𝑎2(𝑛−1)(𝑦) ⋅ 𝑥2(𝑛−1) + 𝑎2(𝑛−1)−1(𝑦) ⋅ 𝑥2(𝑛−1)−1 +⋯+ 𝑎1(𝑦) ⋅ 𝑥 + 𝑎0(𝑦),

where 𝑎𝑖(𝑦) are polynomials of degree 2(𝑛 − 1) − 𝑖 for 𝑖 ∈ {0, … , 2(𝑛 − 1)}. Since 𝑝 needs to vanish
twice on the boundary points of Γ, we want

𝑝(𝑥, 0) = ∏
𝑠∈𝑆1⧵{0}

(𝑥 − 𝑠)2. (3.24)

Similarly, for 𝑝 to vanish once on the interior points and twice on the boundary points on the 𝑦-axis, we
impose

𝑝(𝑥, 𝑠𝑖) = 𝑥2 ∏
𝑠∈𝑆1⧵{0}

(𝑥 − 𝑠) ⋅ 𝑐𝑖(𝑥), (3.25)

with polynomials 𝑐𝑖(𝑥) for 𝑖 ∈ [𝑛 − 2]. To satisfy the degree constraint, deg 𝑐𝑖 ≤ 𝑛 − 3. Note that 𝑐𝑖(𝑥)
does exist since 𝑛 ≥ 3. For every 𝑖, we mimic the above example and pick the same 𝑐(𝑥), thus

𝑝(𝑥, 𝑠1) = 𝑝(𝑥, 𝑠2) = ⋯ = 𝑝(𝑥, 𝑠𝑛−2).

The 𝑐(𝑥) we choose is given by Lemma 63 with 𝓁 = 𝑛 − 3 such that the first 𝑛 − 2 terms of 𝑝(𝑥, 0)
are equal to the first 𝑛 − 2 terms of 𝑝(𝑥, 𝑠1). For such a univariate polynomial 𝑝(𝑥, 𝑠), we let 𝑝(𝑥, 𝑠)𝑖
denote the coefficient of the term of degree 𝑖. Now we should determine 𝑎0(𝑦), … , 𝑎2(𝑛−1)(𝑦) that satisfy
condition (3.24) and the 𝑛 − 2 conditions (3.25). To find their expressions, we split the 𝑎𝑖(𝑦) into three
categories.

1. 𝑎𝑖(𝑦) of low degree
We start by looking into the first 𝑛 − 2 terms in the representation of 𝑝(𝑥, 𝑦). Clearly, condition
(3.24) imposes that

𝑎2(𝑛−1)(𝑦) = 1.

Secondly, we have
𝑎2(𝑛−1)−1(𝑦) = 𝜐(2(𝑛−1)−1)0 + 𝜐(2(𝑛−1)−1)1 𝑦.
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Plugging in the different values for 𝑦 for conditions (3.25):

𝜐(2(𝑛−1)−1)0 + 𝑠1𝜐(2(𝑛−1)−1)1 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−1
𝜐(2(𝑛−1)−1)0 + 𝑠2𝜐(2(𝑛−1)−1)1 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−1

⋮
𝜐(2(𝑛−1)−1)0 + 𝑠𝑛−2𝜐(2(𝑛−1)−1)1 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−1.

The solution to this system is 𝜐(2(𝑛−1)−1)0 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−1 and 𝜐(2(𝑛−1)−1)1 = 0.
Thus,

𝑎2(𝑛−1)−1(𝑦) = 𝑝(𝑥, 𝑠1)2(𝑛−1)−1
= 𝑝(𝑥, 0)2(𝑛−1)−1,

where the last equality is needed to satisfy condition (3.24).
Hence we continue to 𝑎2(𝑛−1)−2(𝑦) = 𝜐(2(𝑛−1)−2)0 + 𝜐(2(𝑛−1)−2)1 𝑦 + 𝜐(2(𝑛−1)−2)2 𝑦2. By a completely
similar analysis, one easily finds

𝑎2(𝑛−1)−2(𝑦) = 𝑝(𝑥, 𝑠1)2(𝑛−1)−2
= 𝑝(𝑥, 0)2(𝑛−1)−2.

In fact, this analysis can be repeated for the first 𝑛 − 2 terms, yielding that for 0 ≤ 𝑖 ≤ 𝑛 − 3,

𝑎2(𝑛−1)−𝑖(𝑦) = 𝑝(𝑥, 𝑠1)2(𝑛−1)−𝑖
= 𝑝(𝑥, 0)2(𝑛−1)−𝑖 .

2. 𝑎2(𝑛−1)−(𝑛−2)(𝑦)
For 𝑎2(𝑛−1)−(𝑛−2)(𝑦), we have

𝑎2(𝑛−1)−(𝑛−2)(𝑦) = 𝜐(2(𝑛−1)−(𝑛−2))0 + 𝜐(2(𝑛−1)−(𝑛−2))1 𝑦 +⋯+ 𝜐(2(𝑛−1)−(𝑛−2))𝑛−2 𝑦𝑛−2.
Just as before, we plug in the conditions (3.25).

𝜐(2(𝑛−1)−(𝑛−2))0 + 𝑠1𝜐(2(𝑛−1)−(𝑛−2))1 +⋯+ 𝑠𝑛−21 𝜐(2(𝑛−1)−(𝑛−2))𝑛−2 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−(𝑛−2)
𝜐(2(𝑛−1)−(𝑛−2))0 + 𝑠2𝜐(2(𝑛−1)−(𝑛−2))1 +⋯+ 𝑠𝑛−22 𝜐(2(𝑛−1)−(𝑛−2))𝑛−2 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−(𝑛−2)

⋮
𝜐(2(𝑛−1)−(𝑛−2))0 + 𝑠𝑛−2𝜐(2(𝑛−1)−(𝑛−2))1 +⋯+ 𝑠𝑛−2𝑛−2𝜐(2(𝑛−1)−(𝑛−2))𝑛−2 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−(𝑛−2).

To satisfy condition (3.24), we need 𝜐(2(𝑛−1)−(𝑛−2))0 = 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−2). Therefore the above
system of equations becomes

𝑠1𝜐(2(𝑛−1)−(𝑛−2))1 +⋯+ 𝑠𝑛−21 𝜐(2(𝑛−1)−(𝑛−2))𝑛−2 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−(𝑛−2) − 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−2)
𝑠2𝜐(2(𝑛−1)−(𝑛−2))1 +⋯+ 𝑠𝑛−22 𝜐(2(𝑛−1)−(𝑛−2))𝑛−2 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−(𝑛−2) − 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−2)

⋮
𝑠𝑛−2𝜐(2(𝑛−1)−(𝑛−2))1 +⋯+ 𝑠𝑛−2𝑛−2𝜐(2(𝑛−1)−(𝑛−2))𝑛−2 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−(𝑛−2) − 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−2).

One may notice that the left-hand side of this system corresponds to a special matrix: a Van-
dermonde Matrix. But also without this realisation, it is easy to see that the different equations
are linearly independent. The right-hand side is always the same constant, while the left-hand
side are pairwise different equations. Therefore, this is a system of 𝑛 − 2 linearly independent
equations and 𝑛 − 2 variables and thus there is a unique solution.
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3. 𝑎2(𝑛−1)−(𝑛−1)(𝑦)
We write

𝑎2(𝑛−1)−(𝑛−1)(𝑦) = 𝜐(2(𝑛−1)−(𝑛−1))0 +𝜐(2(𝑛−1)−(𝑛−1))1 𝑦+⋯+𝜐(2(𝑛−1)−(𝑛−1))𝑛−2 𝑦𝑛−2+𝜐(2(𝑛−1)−(𝑛−1))𝑛−1 𝑦𝑛−1.

After having set 𝜐(2(𝑛−1)−(𝑛−1))0 = 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−1), the remaining system of equations is

𝑠1𝜐(2(𝑛−1)−(𝑛−1))1 +⋯+ 𝑠𝑛−11 𝜐(2(𝑛−1)−(𝑛−1))𝑛−1 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−(𝑛−1) − 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−1)
𝑠2𝜐(2(𝑛−1)−(𝑛−1))1 +⋯+ 𝑠𝑛−12 𝜐(2(𝑛−1)−(𝑛−1))𝑛−1 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−(𝑛−1) − 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−1)

⋮
𝑠𝑛−2𝜐(2(𝑛−1)−(𝑛−1))1 +⋯+ 𝑠𝑛−1𝑛−2𝜐(2(𝑛−1)−(𝑛−1))𝑛−1 = 𝑝(𝑥, 𝑠1)2(𝑛−1)−(𝑛−1) − 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−1).

This system has 𝑛−2 linearly independent equations and 𝑛−1 variables. Thus there is one free
variable. Hence, we can write 𝜐(2(𝑛−1)−(𝑛−1))𝑖 as a linear combination of 1 and 𝜐(2(𝑛−1)−(𝑛−1))𝑛−1 , for
all 𝑖 ∈ [𝑛 − 2].

4. 𝑎𝑖(𝑦) of high degree
At this point we have found an expression for the first half of the 𝑎𝑖(𝑦). For the second half we
impose the assumption that 𝑝 is symmetric. For 𝑛 ≤ 𝑖 ≤ 2(𝑛 − 1) − 1, we write

𝑎2(𝑛−1)−𝑖(𝑦) =𝜐(2(𝑛−1)−𝑖)0 + 𝜐(2(𝑛−1)−𝑖)1 𝑦 +⋯+ 𝜐(2(𝑛−1)−𝑖)𝑛−1 𝑦𝑛−1

+⋯+ 𝜐(2(𝑛−1)−𝑖)𝑖 𝑦𝑖 .

Condition (3.24) implies 𝜐(2(𝑛−1)−𝑖)0 = 𝑝(𝑥, 0)2(𝑛−1)−𝑖. Next, we consider 𝜐(2(𝑛−1)−𝑖)𝑛 . This is the
coefficient of the monomial 𝑥2(𝑛−1)−𝑖𝑦𝑛. Because of symmetry, this should be equal to the coeffi-
cient of 𝑥𝑛𝑦2(𝑛−1)−𝑖. Since 𝑛 = 2(𝑛−1)−(𝑛−2), we have determined this coefficient in the second
category above and there is a unique solution for 𝜐(2(𝑛−1)−𝑖)𝑛 . And if 𝑖 ≥ 𝑛+1, we have by a similar
analysis that for 𝑛 + 1 ≤ 𝑗 ≤ 𝑖, the coefficient of 𝑥2(𝑛−1)−𝑖𝑦𝑗 should be equal to the coefficient of
𝑥𝑗𝑦2(𝑛−1)−𝑖. We have determined the coefficients of these monomials in the first category. Since
2(𝑛−1)−𝑖 ≠ 0, these coefficients are in fact all equal to zero, because all polynomials in the first
category are just constants. Hence, the only variables we should still determine are 𝜐(2(𝑛−1)−𝑖)𝓁
for 1 ≤ 𝓁 ≤ 𝑛 − 1. Plugging in all conditions (3.25) yields a system of 𝑛 − 2 linearly independent
equations and 𝑛−1 variables. So there is one free variable, namely 𝜐(2(𝑛−1)−𝑖)𝑛−1 . Because of sym-
metry, this is also the coefficient of the monomial 𝑥𝑛−1𝑦2(𝑛−1)−𝑖 = 𝑥2(𝑛−1)−(𝑛−1)𝑦2(𝑛−1)−𝑖. The
analysis of the third category has shown that 𝜐(2(𝑛−1)−𝑖)𝑛−1 can be written as a linear combination of
1 and 𝜐(2(𝑛−1)−(𝑛−1))𝑛−1 .
This is the point where things becomemore complicated. Among the terms of the different 𝑎𝑖(𝑦) of
high degree in this category, there are also linear dependencies. To illustrate this, consider an ar-
bitrary 𝑖 > 𝑛+2. There is a coefficient 𝜐(2(𝑛−1)−𝑖)𝑛−2 that corresponds to the monomial 𝑥2(𝑛−1)−𝑖𝑦𝑛−2.
Since 𝑛 − 2 = 2(𝑛 − 1) − 𝑛, symmetry implies that 𝜐(2(𝑛−1)−𝑖)𝑛−2 = 𝜐(2(𝑛−1)−𝑛)2(𝑛−1)−𝑖 , another coefficient in
this category. For both coefficients we had already found an expression in terms of 𝜐(2(𝑛−1)−(𝑛−1))𝑛−1
to which it should be equal. This could possibly lead to contradictions. Going back to Example 62,
we found that 𝜐(2)1 = 𝜐(1)2 = −5492 − 𝜐(3)3 . However, this equality was never explicitly imposed in
the calculations. If these two coefficients had not been equal to each other, finding 𝑝 would have
been impossible. Since for the grids that we are considering, there always exists a tight cover
with symmetric 𝑝, it seems the case that these coefficients will always have the same expression
in terms of the last remaining free variable, but that is still to be proven.

i Question 2. i Can we prove that making 𝑝 symmetric does not yield any contradictions in the
linear constraints on the coefficients?
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If we assume that there indeed are no contradictions and that we can find a proper expression for
each 𝑎𝑖(𝑦) in the category above, the proof of tightness for the Ball-Serra Bound for these grids
follows. There is still one expression that we need to find.

5. 𝑎0(𝑦)
The last expression remaining is the one of 𝑎0(𝑦). One may note that 𝑎0(𝑦) = 𝑝(0, 𝑦). Using
symmetry, this is equal to 𝑝(𝑦, 0), which we know.

In that case, we have an expression of infinitelymany 𝑝(𝑥, 𝑦) – because of the free variable 𝜐(2(𝑛−1)−(𝑛−1))𝑛−1
– such that 𝑝 is symmetric and has slices equal to

𝑝(𝑥, 0) = ∏
𝑠∈𝑆1⧵{0}

(𝑥 − 𝑠)2

𝑝(𝑥, 𝑠𝑖) = 𝑥2 ∏
𝑠∈𝑆1⧵{0}

(𝑥 − 𝑠) ⋅ 𝑐(𝑥), ∀𝑠𝑖 ∈ 𝑆2 ⧵ {0}

𝑝(0, 𝑦) = ∏
𝑠∈𝑆1⧵{0}

(𝑦 − 𝑠)2

𝑝(𝑠𝑖 , 𝑦) = 𝑦2 ∏
𝑠∈𝑆1⧵{0}

(𝑦 − 𝑠) ⋅ 𝑐(𝑦), ∀𝑠𝑖 ∈ 𝑆2 ⧵ {0}

For any choice of the free variable, 𝑝(𝑥, 𝑦) has roots of multiplicity one at all interior points and roots
of multiplicity two at all boundary points except (𝑠𝑛−1, 0). This point is a root of multiplicity at least one,
because of the slice 𝑝(𝑥, 0). Moreover, this slice implies that 𝜕𝑝𝜕𝑥 (𝑠𝑛−1, 0) = 0. Hence, we only still

require 𝜕𝑝
𝜕𝑦 (𝑠𝑛−1, 0) = 0. This last linear equation determines the value of 𝜐(2(𝑛−1)−(𝑛−1))𝑛−1 . The obtained

polynomial 𝑝 would then be exactly the polynomial that we were looking for.
Hence, there is only one step remaining to find the existence of the polynomial 𝑝, namely proving that
requiring the polynomial to be symmetric does not yield any contradictions. All generated polynomials
support this assumption. In Appendix A.1, one can verify that a symmetric polynomial has been found
for every grid that has been considered. Proving this existence will nevertheless require some addi-
tional effort. Once we have obtained 𝑝, a tight polynomial 3-cover of Γ can be obtained by adding the
horizontal and vertical lines.
If we first consider the case where |𝑆1| = 𝑛 and |𝑆2| = 𝑚 = 𝑛−1, and there is a polynomial 𝑝 of degree
2(𝑛−1) that covers every boundary point twice and every interior point once, while avoiding the origin,
then we add every horizontal and every vertical line once:

𝑓 = 𝑝 ⋅ ∏
𝑠∈𝑆1⧵{0}

(𝑥 − 𝑠) ⋅ ∏
𝑡∈𝑆2⧵{0}

(𝑦 − 𝑡).

Clearly, this covers every non-zero point of Γ three times and does not vanish at the origin. Furthermore,

deg 𝑓 = deg𝑝 + 𝑛 − 1 + 𝑛 − 2
= 2(𝑛 − 1) + 𝑛 − 1 + 𝑛 − 2
= 3(𝑛 − 1) + 𝑚 − 1.

For grids where 𝑆2 has a smaller size, Lemma 60 implies the existence of a tight 3-cover if the above
cover exists.

3.3.4. Asymmetric Slices of 3-covers
For (𝑛 × 𝑚)-grids where the points on the 𝑦-axis are a subset of the points on the 𝑥-axis, there are
quite some indications that Ball-Serra is tight whenever 𝑛 ≥ 𝑚− 1. Table 3.2 gave the first suggestion
that this is the correct threshold and this was supported by the method of slices. However, there is
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no definitive answer on the correctness of the threshold yet. If we drop the constraint that one set of
axis points has to be a subset of the other set, Table 3.2 does not change, suggesting that the same
threshold should hold for any grid. But in this case, proving tightness seems to be even more difficult
as we cannot use symmetry to reduce the number of free variables. First of all, the horizontal slices
can again be chosen using Lemma 63. But it is unclear how the vertical slices should be picked. Is
there an incentive to pick the slices such that some of the coefficients are matched up? Or should it
be chosen related to the systems of equations that are given by the horizontal slices? And how do we
combine horizontal and vertical slices to one polynomial cover?
Instead of using slices to prove the existence of certain polynomial covers, we can also try to use them to
disprove this existence. For example, let 𝑛 be an integer and consider an arbitrary (𝑛×𝑛)-grid Γ = 𝑆1×𝑆2
that contains the origin for which we want to find a tight 3-cover 𝑓(𝑥, 𝑦) that contains all horizontal and
all vertical lines at least once, together with some other factor 𝑝(𝑥, 𝑦). Then deg 𝑓 = 3(𝑛 − 1)+ (𝑛 − 1)
and it follows that deg𝑝 = 2(𝑛 − 1).
Moreover, if we let 𝑆2 = {0, 𝑡1, … , 𝑡𝑛−1}, we need that

𝑝(𝑥, 0) = ∏
𝑠∈𝑆2⧵{0}

(𝑥 − 𝑠)2

𝑝(𝑥, 𝑡𝑖) = 𝑥2 ∏
𝑠∈𝑆2⧵{0}

(𝑥 − 𝑠) ⋅ 𝑐𝑖(𝑥),

for all 𝑖 ∈ [𝑛 − 1]. We again set

𝑝(𝑥, 𝑦) = 𝑎2(𝑛−1)(𝑦) ⋅ 𝑥2(𝑛−1) + 𝑎2(𝑛−1)−1(𝑦) ⋅ 𝑥2(𝑛−1)−1 +⋯+ 𝑎1(𝑦) ⋅ 𝑥 + 𝑎0(𝑦),
where 𝑎𝑖(𝑦) have degree 2(𝑛 − 1) − 𝑖 for 𝑖 ∈ {0, … , 2(𝑛 − 1)}.
Then by repeating the steps from Section 3.3.3, we notice that 0 ≤ 𝑖 ≤ 𝑛 − 2, finding 𝑎2(𝑛−1)−𝑖(𝑦)
corresponds to solving a linear system of 𝑛 − 1 equations and at most 𝑛 − 2 variables. By using
Lemma 63, we are only able choose the slices such that we can for sure solve 𝑛 − 2 of these 𝑛 − 1
linear systems. It might be possible that because of a very specific choice of 𝑆1 and 𝑆2, matching up
the first 𝑛 − 2 terms led to the (𝑛 − 1)th terms also being matched, but in general, one of the linear
systems contains a contradiction. This means that the polynomial 𝑝 does not exist and gives intuition
why Ball-Serra seems not to be tight for square grids. Allowing 𝑝 to have a degree 2(𝑛 − 1) + 1 solves
this problem as we are able to match up one additional term in that case, so this might explain why we
see a gap of one between the optimal cover and the Ball-Serra Bound for (𝑛 × 𝑛)-grids. This analysis
does rely on the assumption that if, for some grid Γ, there exists a 3-cover of degree 𝑑, there exists
a 3-cover of Γ of degree 𝑑 that contains every non-zero horizontal and vertical line of Γ at least once.
While all generated covers in Appendix A.1 indicate this to be true, this still remains to be proven. A
good first step might be to retrace the steps of the proof of the Punctured Combinatorial Nullstellensatz
(Theorem 31) while adding the restriction of the horizontal and vertical lines. Another approach might
be to immediately look at the slices of 𝑓 rather than those of 𝑝. But setting

𝑓(𝑥, 0) = ∏
𝑠∈𝑆2⧵{0}

(𝑥 − 𝑠)3 ⋅ 𝑐0(𝑥),

leaves us with a choice for a polynomial 𝑐0(𝑥) of degree 𝑛 − 1. Proving that there is no choice for this
polynomial such that 𝑓 is a tight 3-cover still requires some work. In any case, the analysis of the last
two sections allow us to formulate a conjecture and a question on the tightness of the Ball-Serra Bound.

i Conjecture 1. i Let 𝑆1, 𝑆2 ⊆ ℝ≥0 such that 𝑆1 = {0, 𝑠1, … , 𝑠𝑛−1} and 𝑆2 = {0, 𝑡1, … , 𝑡𝑚−1} for integers
2 ≤ 𝑚 < 𝑛. Let Γ = 𝑆1 × 𝑆2. Then there exists a polynomial 𝑓 of degree 3(𝑛 − 1) + (𝑚− 1) that covers
every non-zero point of Γ three times while avoiding the origin. Furthermore, 𝑓 contains each vertical
line 𝑥 = 𝑠𝑖 for 𝑖 ∈ [𝑛 − 1] and horizontal line 𝑦 = 𝑡𝑖 for 𝑖 ∈ [𝑚 − 1] at least once.
In the case where |𝑆1| = |𝑆2|, it would be interesting to find out whether the bound is never tight for a
3-cover of 𝑆1 × 𝑆2, or whether there are specific grids for which a tight 3-cover does exist.

i Question 3. i Do there exist 𝑆1, 𝑆2 ⊆ ℝ≥0 both of size 𝑛 and both containing zero such that there is
a 3-cover of 𝑆1 × 𝑆2 of degree 4(𝑛 − 1)?
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3.3.5. Polynomial Covers of Higher Multiplicity
To see whether the conjectured threshold for polynomial 3-covers can be generalised to polynomial 𝑘-
covers for 𝑘 ≥ 4, we start by exploring the values of polynomial 4-covers of the (𝑛×𝑚)-grids {0, 1, … , 𝑛−
1}×{0, 1, … ,𝑚−1} for small values of 𝑛 and𝑚. These values can be generated by adapting the existing
code. The only change that needs to bemade is adding the third order derivatives as well. However, the
symbolic code becomes extremely slow and Sage also starts making numeric errors when performing
Gaussian Elimination, especially for square grids. Hence, certain observations again have to be made
to speed up the code. First of all, there again seems to always exist a cover of best possible degree that
contains every non-zero horizontal and vertical line once. For the example grids with a tight polynomial
4-cover with respect to the Ball-Serra Bound, there always exists such a cover that contains every non-
zero vertical line twice and all horizontal lines once. As assuming the existence of these lines decreases
the remaining degree of the cover and speeds up the algorithm, it makes sense to first search for a
cover with the horizontal lines twice. If this doesn’t exist, we continue with the horizontal lines once.
The SymPy code for this approach is given in Appendix B.3. The algorithm allows us to solve for 𝑛
up to seven. For greater 𝑛, even the symbolic code starts making numerical errors, meaning that a
different approach is needed if we want to generate more values. The optimal degrees of the 4-covers
are given in Table 3.3 and the corresponding covers are plotted in Appendix A.2.

m
n 2 3 4 5 6 7

2 6 10 13 17 21 25
3 11 15 18 22 26
4 16 20 23 27
5 21 25 28
6 26 30
7 31

0
1

Table 3.3: Minimum degree of a polynomial 4-cover for the grids {0, 1, … , 𝑛 − 1} × {0, 1, … ,𝑚 − 1}.

From the first look at this table and the plots, many interesting observations can be made. First of
all, there is a clear distinction between the hyperplane 4-cover in Table 3.1 and the polynomial cov-
ers. Again, the threshold seems to behave differently. A second remark is that the considered grids
{0, 1, … , 𝑛 − 1} × {0, 1, … ,𝑚 − 1} are a specific type of grid. We considered these to compare them to
line covers in Table 3.1, but it has to be noted that the fact that the grids are evenly-spaced has an
influence on their polynomial covering number. For instance, for the square grids in this table, the gap
between the minimum degree and the Ball-Serra Bound is one. Consider the grid {0, 1, 2} × {0, 1, 2}. A
polynomial 4-cover of degree 11 is

𝑓(𝑥, 𝑦) =(𝑥 − 2) ⋅ (𝑥 − 1) ⋅ (𝑦 − 2) ⋅ (𝑦 − 1) ⋅ (𝑥 + 𝑦 − 2) ⋅ (𝑥2 + 𝑥𝑦 − 3𝑥 + 𝑦2 − 3𝑦 + 2) ⋅ (2𝑥4
− 4𝑥3𝑦 − 2𝑥3 − 3𝑥2𝑦2 + 21𝑥2𝑦 − 14𝑥2 − 4𝑥𝑦3 + 21𝑥𝑦2 − 43𝑥𝑦 + 26𝑥 + 2𝑦4 − 2𝑦3
− 14𝑦2 + 26𝑦 − 12).

The plot of this polynomial is given in Figure 3.5. From this plot, it is clear that the polynomial contains a
conic that goes through six points of the grid. This is of course not possible for all grids. Because of this
conic, this grid can be covered in amore efficient way than usual. For example, the grid {0, 1, 5}×{0, 1, 2}
requires a polynomial of degree 12 to find a 4-cover. The same remark can bemade for the other square
grids in the table, where in general the gap with the Ball-Serra Bound is equal to two.
Thirdly, as we already mentioned, in the cases in the table where the bound is tight, there exists a cover
that contains every non-zero horizontal line of the grid once and every non-zero vertical line twice. But
because of the evenly-spaced grids that have lower degree 4-cover than most of the grids of the same
size, there are grids where no optimal 4-cover contains every vertical line twice. For instance, the grid
{0, 1, 2, 3}×{0, 1, 2, 3} has a 4-cover of degree 16. This cover contains every vertical and horizontal line
once. If we require that every vertical line is contained twice in the cover, then the minimum degree
is not even 17, it is equal to 18. The reason why it is interesting that there are tight 4-covers with
the vertical lines twice and the horizontal lines once is that it provides a link with the slices that we



3.3. Covers in the Cartesian Plane 51

Figure 3.5: Plot of a 4-cover of {0, 1, 2} × {0, 1, 2} of degree 11. This polynomial contains a conic through six points of the grid.

investigated for 3-covers. A tight cover 𝑓 of an (𝑛 × 𝑚)-grid 𝑆1 × 𝑆2 has degree 4(𝑛 − 1) + (𝑚 − 1).
Assuming that 𝑓 is of the form

𝑓(𝑥, 𝑦) = ∏
𝑠∈𝑆1⧵{0}

(𝑥 − 𝑠)2 ⋅ ∏
𝑡∈𝑆2⧵{0}

(𝑦 − 𝑡) ⋅ 𝑝(𝑥, 𝑦),

then deg𝑝 ≤ 2(𝑛 − 1), the same maximum degree 𝑝 had in the 3-cover case. Furthermore, let 𝑘 be
an arbitrary integer and let 𝑆1, 𝑆2 ⊆ ℝ≥0 be sets such that 𝑆1 = {0, 𝑠1, … , 𝑠𝑛−1} and 𝑆2 = {0, 𝑡1, … , 𝑡𝑚−1}
and such that 𝑛 ≥ 𝑘. If we assume that there always exists a tight 𝑘-cover of 𝑆1 × 𝑆2 that contains
every horizontal line once and every vertical line 𝑘 − 2 times the degree of the remaining factor 𝑝(𝑥, 𝑦)
is always 2(𝑛 − 1). Again considering the horizontal slices of this polynomial 𝑝, we have

𝑝(𝑥, 0) = ∏
𝑠∈𝑆1⧵{0}

(𝑥 − 𝑠)2

𝑝(𝑥, 𝑡𝑖) = 𝑥𝑘−1 ⋅ ∏
𝑠∈𝑆1⧵{0}

(𝑥 − 𝑠) ⋅ 𝑐𝑖(𝑥),

where 𝑝(𝑥, 0) has degree 2(𝑛 − 1) such that it is impossible that 𝑝 vanishes at the origin and where
deg 𝑐𝑖(𝑥) ≤ 𝑛 − 𝑘 for 𝑖 ∈ [𝑚 − 1]. Such a 𝑐𝑖(𝑥) always exists since 𝑛 ≥ 𝑘. We can pick all 𝑐𝑖(𝑥) to be
equal to the polynomial given by Lemma 63 with 𝓁 = 𝑛−𝑘, such that the first 𝑛−𝑘 +1 terms of 𝑝(𝑥, 0)
are equal to the first 𝑛 − 𝑘 + 1 terms of 𝑝(𝑥, 𝑡1) and such that every slice at 𝑦 ≠ 0 is equal.
At first, it might seem arbitrary to follow this approach. But in the following steps, it will become clear
that these slices again provide support for making a conjecture on the threshold for tightness of the
Ball-Serra Bound. Keeping the same notation as before, we write

𝑝(𝑥, 𝑦) = 𝑎2(𝑛−1)(𝑦) ⋅ 𝑥2(𝑛−1) + 𝑎2(𝑛−1)−1(𝑦) ⋅ 𝑥2(𝑛−1)−1 +⋯+ 𝑎1(𝑦) ⋅ 𝑥 + 𝑎0(𝑦).
Since we have matched the first 𝑛 − 𝑘 + 1 terms, we let

𝑎2(𝑛−1)−𝑖(𝑦) = 𝑝(𝑥, 𝑡1)2(𝑛−1)−𝑖
= 𝑝(𝑥, 0)2(𝑛−1)−𝑖 ,

for 0 ≤ 𝑖 ≤ 𝑛 − 𝑘.
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Now we consider 𝑎2(𝑛−1)−(𝑛−2)(𝑦), with formula

𝑎2(𝑛−1)−(𝑛−𝑘+1)(𝑦) = 𝜐(2(𝑛−1)−(𝑛−𝑘+1))0 + 𝜐(2(𝑛−1)−(𝑛−𝑘+1))1 𝑦 +⋯+ 𝜐(2(𝑛−1)−(𝑛−𝑘+1))𝑛−𝑘+1 𝑦𝑛−𝑘+1.

The slice at the 𝑥-axis requires that 𝜐(2(𝑛−1)−(𝑛−𝑘+1))0 = 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−𝑘+1). Plugging this in and and
adding the other conditions of the slices, we obtain the system of equations

𝑡1𝜐(2(𝑛−1)−(𝑛−𝑘+1))1 +⋯+ 𝑡𝑛−𝑘+11 𝜐(2(𝑛−1)−(𝑛−𝑘+1))𝑛−𝑘+1 = 𝑝(𝑥, 𝑡1)2(𝑛−1)−(𝑛−2) − 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−2)
𝑡2𝜐(2(𝑛−1)−(𝑛−𝑘+1))1 +⋯+ 𝑡𝑛−𝑘+12 𝜐(2(𝑛−1)−(𝑛−𝑘+1))𝑛−𝑘+1 = 𝑝(𝑥, 𝑡1)2(𝑛−1)−(𝑛−2) − 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−2)

⋮
𝑡𝑚−1𝜐(2(𝑛−1)−(𝑛−𝑘+1))1 +⋯+ 𝑡𝑛−𝑘+1𝑚−1 𝜐(2(𝑛−1)−(𝑛−𝑘+1))𝑛−𝑘+1 = 𝑝(𝑥, 𝑡1)2(𝑛−1)−(𝑛−2) − 𝑝(𝑥, 0)2(𝑛−1)−(𝑛−2).

This is a system of 𝑚 − 1 linearly independent equations and 𝑛 − 𝑘 + 1 variables. Hence, this system
only has a solution whenever 𝑚 ≤ 𝑛 − 𝑘 + 2. Looking at Table 3.3, this is the same threshold when
the generated covers are tight with respect to the Ball-Serra Bound. Thus, we make the following bold
conjecture.

i Conjecture 2. i Let 𝑛,𝑚, 𝑘 be integers such that 𝑚 ≤ 𝑛−(𝑘−2) and 𝑘 ≤ 𝑛. Consider two arbitrary
sets 𝑆1, 𝑆2 ⊆ ℝ≥0 such that 𝑆1 = {0, 𝑠1, … , 𝑠𝑛−1} and 𝑆2 = {0, 𝑡1, … , 𝑡𝑚−1}. Let Γ = 𝑆1 × 𝑆2. Then there
exists a polynomial 𝑓 of degree 𝑘(𝑛 − 1) + (𝑚 − 1) that covers every non-zero point of Γ 𝑘 times while
avoiding the origin. Furthermore, 𝑓 contains every vertical line 𝑥 = 𝑠𝑖 for 𝑖 ∈ [𝑛−1] at least 𝑘−2 times
and every horizontal line 𝑦 = 𝑡𝑖 for 𝑖 ∈ [𝑚 − 1] at least once.

The especially bold part of this conjecture lies in its second half. It does not feel very efficient that
the optimal cover contains the vertical lines this many times. However, the horizontal slices of this
construction neatly show where the threshold pops up. Moreover, if we allow 𝑝 to have a degree one
higher than the Ball-Serra Bound, the ‘critical’ system of equations has one more linearly independent
equation, allowing it to have a solution for 𝑚 ≥ 𝑛 − (𝑘 − 2) + 1, which is exactly the behaviour we
expect based on the numerical data. Also, having a lot of copies of the vertical lines resembles the
construction in the proof of the threshold for line 𝑘-covers in Theorem 48. In general, we expect the
following behaviour of the optimal value of 𝑘-covers outside the threshold.

i Conjecture 3. i Let 𝑛,𝑚, 𝑘 be integers such that 𝑚 > 𝑛 − (𝑘 − 2). Consider two arbitrary sets
𝑆1, 𝑆2 ⊆ ℝ≥0 such that 𝑆1 = {0, 𝑠1, … , 𝑠𝑛−1} and 𝑆2 = {0, 𝑡1, … , 𝑡𝑚−1}. Let Γ = 𝑆1 × 𝑆2 and let 𝑗 be the
integer such that𝑚−𝑗 = 𝑛−(𝑘−2). Then there exists a polynomial 𝑓 of degree 𝑘(𝑛−1)+(𝑚−1)+ 𝑗
that covers every non-zero point of Γ 𝑘 times while avoiding the origin.

Further research is required to prove both conjectures. It should still be investigated how the vertical
slices have to be chosen to find a cover. Moreover, we have seen that the construction with multiple
vertical lines is not always optimal. There are grids that can be covered more efficiently with the lines
only included once. Table 3.3 is an example where both conjectures hold, but where Conjecture 3 is not
tight for the (𝑛×𝑛)-grids. In the same table, we have also seen that there exist (𝑛×𝑚)-grids such that
𝑚−1 = 𝑛−(4−2) and for which the polynomial 4-covering number is equal to 4(𝑛−1)+ (𝑚−1)+1.
Hence, the conjectured threshold 𝑚 ≤ 𝑛 − (𝑘 − 2) cannot be sharpened for all grids. It would be
interesting to investigate when the conjectured upper bound on the optimal degree is tight and whether
we can characterise the grids for which it is not. Perhaps the notion of generic grids can be extended
such that it also holds for 𝑘-covers. Furthermore, perhaps there are specific grids that do not adhere
to the threshold but for which there exists a 𝑘-cover that is tight with respect to the Ball-Serra Bound.
This would imply that there are is a level as to how non-generic certain grids are for polynomial covers,
based on by how much their optimal covers beat the expected degree in Conjecture 3.
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3.4. Conclusion
This chapter investigated whether the Ball-Serra Bound is tight for various types of grids. As part of this
investigation, we distinguished between hyperplane and polynomial 𝑘-covers. We have seen that for
the hypercube, the Ball-Serra Bound is only tight for 1-covers and 2-covers. Once the multiplicity of the
cover is greater than or equal to three, the bound is not even tight for polynomial covers, as shown by
Sauermann and Wigderson [19]. They improved the lower bound for a 𝑘-cover of 𝑄𝑛 from 𝑛+(𝑘−1) to
𝑛 + 2𝑘 − 3. On one hand, this bound is tight for polynomial 𝑘-covers of the hypercube. On the other, it
has been conjectured by Clifton and Huang [11] that the minimal size of a hyperplane 𝑘-cover is 𝑛+(𝑘2).
If this conjecture holds, there is a clear difference between polynomial and hyperplane covers of the
hypercube.
Secondly, in Section 3.2, we looked into covering the binary field. As the usual derivatives do not hold
in finite fields, we started with a short introduction into Hasse derivatives. Using these derivatives, we
showed that the optimal polynomial 4-cover of 𝔽𝑛2 has degree 𝑛+4 and is thus never tight with respect
to the Ball-Serra Bound. So obviously the bound is not tight for the hyperplane 4-cover number either.
Since we know the exact polynomial 4-covering number of 𝔽𝑛2 , the question arises whether we can
use this result to find improved lower bounds on polynomial covers of higher multiplicity. Perhaps the
method with Hasse derivatives can be generalised, or there could be a recurrence relation between the
multiplicities. However, it is unclear what such a relation would look like, as, contrary to the hyperplane
cover, we cannot just delete a single degree of a polynomial cover. When looking at the hyperplane
covering number rather than the polynomial one, the exact value is also unknown. When relaxing the
problem to almost 𝑘-covers of 𝔽𝑛2 , Bishnoi et al. [9] have proven the behaviour of the hyperplane cover
number when 𝑛 is fixed and 𝑘 is large and the other way around. Yet again, this behaviour was different
compared to the polynomial covering number. So, in the setting of the binary field, there are still plenty
of interesting research directions.
The final and most extensive part of this section was spent on exploring how to cover grids in the
Cartesian plane. For the hyperplane 𝑘-cover of an (𝑛 × 𝑚)-grid, it is known that the Ball-Serra Bound
is tight whenever 𝑛 ≥ (𝑘 − 1)(𝑚 − 1) + 1, a result that was first proven in den Bakker’s thesis [3]. If
the grid does not satisfy this threshold, the gap with the Ball-Serra Bound becomes larger as 𝑛 and 𝑚
become larger even if their difference stays equal. When investigating the behaviour of the polynomial
𝑘-cover of the same (𝑛 × 𝑚)-grid, a lot of differences could be noticed. We conjectured that the Ball-
Serra Bound is tight whenever 𝑛 ≥ 𝑚 + (𝑘 − 2). This threshold grows considerably slower than the
threshold for the line covers. Moreover, it seems that the gap between the polynomial covering number
and the Ball-Serra Bound is upper bounded by the difference (𝑚 + (𝑘 − 2)) − 𝑛. Hence, contrary to
the hyperplane covering number, the gap does not seem to increase when 𝑛 and 𝑚 grow while their
difference stays equal. It is sure that the conjectured upper bound on the gap is not always tight though.
The grids {0, 1, … , 𝑛 − 1} × {0, 1, … , 𝑛 − 1} are an example for which the upper bound can be beaten.
As further research, it would be interesting to investigate if we can determine the properties of grids
that can be covered more efficiently than expected. This characterisation could be a generalisation of
non-generic grids, but now for polynomial covers. At this point, it is unclear what this characterisation
would look like. Another interesting open research question is whether there exists a grid that does not
satisfy the threshold, but for which the Ball-Serra Bound is tight. Even tough we have found evenly-
spaced grids that are efficient to cover with polynomials, none of the grids outside the threshold had
a 4-cover of tight degree with respect to the Ball-Serra Bound. Hence, if such a grid exists, it should
consists of a very specific structure to ensure enough linear dependencies in the constraints. A last
proposed further research is maybe the most ambitious one. Until now, we have only considered two-
dimensional grids in the Cartesian plane. The problem of course be generalised to finding polynomial
𝑘-covers of 𝑑-dimensional grids in ℝ𝑑, for 𝑑 ≥ 3. Since we had already difficulties of keeping track of
the slices in two dimensions, adding more dimensions seems beyond our current capabilities. But this
generalisation is for sure something to keep in mind when further refining the existing methods or when
coming up with completely new techniques to find polynomial 𝑘-covers of grids in the plane.
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Conclusion

Drawing this thesis to a close, the only remaining part is to look back at its important results and to
look ahead to its most interesting further research directions. We investigated polynomial covers and
hyperplane covers for all kinds of values of the multiplicity and for multiple grids. Even though, at
first glance, the covering problem seems to be geometrical in nature, most of the arguments that we
considered were based on the polynomial method. For covers with multiplicity one, the Alon-Füredi
bound provided the optimal covering number.

Corollary 3 (The Alon-Füredi Bound). Let 𝑆1, … , 𝑆𝑛 be subsets of an arbitrary field 𝔽. Consider a
polynomial 𝑝 such that 𝑝 vanishes on 𝑆1×𝑆2×⋯×𝑆𝑛 except at one point. Then deg(𝑝) ≥ ∑𝑖 (|𝑆𝑖| − 1).

The Alon-Füredi Bound is tight for line covers and hence also for polynomial covers. We considered
two ways to prove this bound. The first approach in Section 2.2 used Gröbner bases to prove the
Footprint Bound, which estimates the number of common zeroes of an ideal, based on the number of
standard monomials of that ideal. By choosing a specific ideal, the Alon-Füredi Bound elegantly follows
from the Footprint Bound. The second approach in Section 2.3 involved one of the Cayley-Bacharach
theorems. This is a set of theorems in algebraic geometry with a rich history dating back to the 19th
century. They all involve a bound on the number of linear constraints imposed by a set of points on
polynomials of fixed degree that vanish on these points. By letting the set of points be equal to the grid
we want to cover, we could again retrieve the Alon-Füredi Bound. Investigating the linear constraints
imposed by a grid on a polynomial of fixed degree continued to play a vital role throughout all remaining
sections of the thesis. When increasing the multiplicity of a cover from one to some 𝑘 ≥ 2, the best
lower bound on its degree is given by the Ball-Serra Bound.

Theorem 31 (The Ball-Serra Bound). Let 𝑆1, … , 𝑆𝑛 and 𝐷1, … , 𝐷𝑛 be arbitrary sets such that 𝐷𝑖 ⊂ 𝑆𝑖 for
all 𝑖 ∈ [𝑛]. If 𝑓 vanishes at least 𝑘 times at all elements of 𝑆1 × ⋯ × 𝑆𝑛, except at at least one point of
𝐷1 ×⋯× 𝐷𝑛 where it does not vanish, then

deg(𝑓) ≥ (𝑘 − 1)max
𝑗
(|𝑆𝑗| − |𝐷𝑗|)) +

𝑛

∑
𝑖=1
(|𝑆𝑖| − |𝐷𝑖|) .

We derived this from the Punctured Combinatorial Nullstellensatz in Section 2.4. While the Alon-Füredi
Bound is tight for hyperplane and polynomial covers, it is unclear when the Ball-Serra Bound is tight
for any type of cover. That is what we investigated in the next chapter, Chapter 3. We looked into
three different grids: the hypercube, the binary field and grids in the Cartesian plane. In the case of
hyperplane covers with multiplicity one, the hypercube 𝑄𝑛 was arguably the easiest setting to find the
minimal size of the cover. When increasing the multiplicity however, it quickly became clear that even
in this setting it is difficult to decide what the optimal size is. For hyperplane 2-covers, it was not too
complicated to show that the Ball-Serra Bound is tight. Increasing the multiplicity, different methods
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were required, but Clifton and Huang were able to determine the minimum size of a hyperplane 3-
cover and find a lower bound on the minimum sizes of hyperplane covers of multiplicity greater than or
equal to four [11].

Theorem 37 (Clifton-Huang). Let 𝑓(𝑛, 𝑘) denote the minimum size of a hyperplane 𝑘-cover of 𝑄𝑛. For
𝑛 ≥ 2,

𝑓(𝑛, 3) = 𝑛 + 3.
For 𝑘 ≥ 4 and 𝑛 ≥ 3,

𝑛 + 𝑘 + 1 ≤ 𝑓(𝑛, 𝑘) ≤ 𝑛 + (𝑘2).

The lower bound was obtained by the simple realisation that removing one hyperplane from a 𝑘-cover
yields a (𝑘 − 1)-cover, which results in the recurrence relation 𝑓(𝑛, 𝑘) ≥ 𝑓(𝑛, 𝑘 − 1) + 1. This theorem
shows that the Ball-Serra Bound is never tight for hyperplane 𝑘-covers of the hypercube for 𝑘 ≥ 3. But
Clifton and Huang even conjectured that the actual hyperplane 𝑘-covering number is equal to 𝑛 + (𝑘2).
Later, Sauermann and Wigderson were able to improve the lower bound, again using polynomials [19].

Theorem 38 (Sauermann-Wigderson). Let 𝑘 ≥ 2 and 𝑛 ≥ 2𝑘−3. Then any polynomial 𝑝 ∈ ℝ[𝑥1, … , 𝑥𝑛]
with 𝑝(0) ≠ 0 having zeroes of multiplicity at least 𝑘 at all points in {0, 1}𝑛\{0} has degree deg𝑝 ≥
𝑛 + 2𝑘 − 3. Furthermore, there exists such a polynomial 𝑝 with degree deg𝑝 = 𝑛 + 2𝑘 − 3.

Due to this theorem, the polynomial 𝑘-covering problem of the hypercube is immediately solved. More-
over, it shows that there might be a separation in the minimum degree of a polynomial 𝑘-cover and the
minimum size of a hyperplane 𝑘-cover of the hypercube. Hence, to prove the conjecture of Clifton and
Huang, additional techniques are required that take into account that we are specifically considering a
hyperplane cover. The polynomial method in itself will not suffice. Since the Sauermann-Wigderson
Theorem only holds for fields with characteristic equal to zero, the next sensible step was to investi-
gate the covering number of fields with positive characteristic. Specifically, we looked into how to cover
the binary field. Since the usual derivatives no longer hold for finite fields, we first introduced Hasse
derivatives, a generalisation of derivatives that enabled us to determine the multiplicities of roots of
polynomials in finite fields. Using these, we were able to prove the polynomial 4-covering number of
𝔽𝑛2 .

i Theorem 46. i The polynomial 4-covering number of 𝔽𝑛2 is equal to 𝑛 + 4.

The 4-covering number is less than the lower bound on fields with zero characteristic in the Sauermann-
Wigderson Theorem. But it is still greater than the Ball-Serra Bound, showing that the bound is not
tight in this case. Since Clifton and Huang were able to derive bounds on hyperplane covers of all
multiplicities of the hypercube with a recurrence relation, the question arose whether something similar
is possible for the binary field.

i Question 1. i Can we find bounds on the polynomial 𝑘-covering number of 𝔽𝑛2 for 𝑘 ≥ 5, knowing
that the optimal polynomial 4-cover has degree 𝑛 + 4?

Finding a recurrence relation for polynomial covering numbers is unfortunately not as straightforward
as for hyperplane covering numbers. In the latter, a hyperplane can easily be removed from a cover,
while in the former, removing a single degree is impossible. Reverting back to hyperplane coverings,
their minimum size in the binary field remain unknown at this moment. Because of its equivalence with
a well-studied – and unsolved – problem, we regarded a relaxed version of the hyperplane 𝑘-covering
problem where the origin is allowed to be covered at most 𝑘 − 1 times. In this case, a difference in
hyperplane and polynomial coverings could be found.
Lastly, we considered grids in the Cartesian plane. The hyperplane 𝑘-covering problem of these grids
has already been studied and the threshold for tightness of the Ball-Serra Bound for covering (𝑛 ×𝑚)-
grids is known [8].
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Theorem 48. Let 𝑆1, 𝑆2 ⊆ ℝ have respective sizes |𝑆1| = 𝑛 and |𝑆2| = 𝑚. Assume 0 ∈ 𝑆1 ∩ 𝑆2 and let
Γ = 𝑆1 × 𝑆2. If for a positive integer 𝑘, we have 𝑛 ≥ (𝑘 − 1)(𝑚 − 1) + 1,

cov𝑘(Γ) = 𝑘(𝑛 − 1) + (𝑚 − 1).

The polynomial 𝑘-covering problem of grids in the Cartesian plane had not been studied yet. To investi-
gate this problem, we started by setting up an algorithm based on partial derivatives that finds 3-covers
for small grids. These covers raised the idea that the Ball-Serra Bound is tight whenever 𝑛 ≥ 𝑚 + 1.
Moreover, we found that for every grid, there was a 3-cover that contains every horizontal and vertical
line once. And if the points on the 𝑦-axis are a subset of the points on the 𝑥-axis, the remaining factor
of the polynomial cover could always be chosen to be symmetric in 𝑥 and 𝑦. To further investigate
the threshold and the properties of the polynomial covers, we stepped away from the derivatives and
looked into the slices of the grid. On these slices we evaluated the polynomial cover, yielding a linear
system of equations for every slice. The analysis on when these systems have a solution found the
exact same threshold 𝑛 ≥ 𝑚+1. Unfortunately, we were not yet able to prove this threshold. Even for
symmetric polynomials there are a lot of linear dependencies and it is not fully clear if we can always
ensure that those do not yield a contradiction. But since the entire analysis of the polynomial 3-covers
seems to support that this is indeed the correct threshold, we posed it as a conjecture.

i Conjecture 1. i Let 𝑆1, 𝑆2 ⊆ ℝ≥0 such that 𝑆1 = {0, 𝑠1, … , 𝑠𝑛−1} and 𝑆2 = {0, 𝑡1, … , 𝑡𝑚−1} for integers
2 ≤ 𝑚 < 𝑛. Let Γ = 𝑆1 × 𝑆2. Then there exists a polynomial 𝑓 of degree 3(𝑛 − 1) + (𝑚− 1) that covers
every non-zero point of Γ three times while avoiding the origin. Furthermore, 𝑓 contains each vertical
line 𝑥 = 𝑠𝑖 for 𝑖 ∈ [𝑛 − 1] and horizontal line 𝑦 = 𝑡𝑖 for 𝑖 ∈ [𝑚 − 1] at least once.

Besides proving this conjecture, there are still some other interesting open research directions. As
mentioned, the conditions for the existence of symmetric polynomials has to be further researched.
Furthermore, we saw that the threshold cannot be improved for all grids. But perhaps there are specific
grids outside the threshold that are very efficient to cover and for which the Ball-Serra bound is tight. Or
maybe the threshold is actually tight. Additionally, we extended the analysis for polynomial 3-covers to
𝑘-covers with 𝑘 ≥ 4. Again, the algorithmic approach suggested a threshold that was also found in the
analysis of the slices. Hence, the conjecture for 3-covers could be generalised to higher multiplicities
too.

i Conjecture 2. i Let 𝑛,𝑚, 𝑘 be integers such that 𝑚 ≤ 𝑛− (𝑘 − 2) and 𝑘 ≤ 𝑛. Consider two arbitrary
sets 𝑆1, 𝑆2 ⊆ ℝ≥0 such that 𝑆1 = {0, 𝑠1, … , 𝑠𝑛−1} and 𝑆2 = {0, 𝑡1, … , 𝑡𝑚−1}. Let Γ = 𝑆1 × 𝑆2. Then there
exists a polynomial 𝑓 of degree 𝑘(𝑛 − 1) + (𝑚 − 1) that covers every non-zero point of Γ 𝑘 times while
avoiding the origin. Furthermore, 𝑓 contains every vertical line 𝑥 = 𝑠𝑖 for 𝑖 ∈ [𝑛−1] at least 𝑘−2 times
and every horizontal line 𝑦 = 𝑡𝑖 for 𝑖 ∈ [𝑚 − 1] at least once.

Analogous to the 3-covers, we investigated what happens outside the threshold for 𝑘-covers. The
code and the slices suggest that the gap between the minimum degree of a polynomial 𝑘-cover of an
(𝑛 × 𝑚)-grid and the Ball-Serra Bound depends on the difference 𝑛 −𝑚.

i Conjecture 3. i Let 𝑛,𝑚, 𝑘 be integers such that 𝑚 > 𝑛 − (𝑘 − 2). Consider two arbitrary sets
𝑆1, 𝑆2 ⊆ ℝ≥0 such that 𝑆1 = {0, 𝑠1, … , 𝑠𝑛−1} and 𝑆2 = {0, 𝑡1, … , 𝑡𝑚−1}. Let Γ = 𝑆1 × 𝑆2 and let 𝑗 be the
integer such that𝑚−𝑗 = 𝑛−(𝑘−2). Then there exists a polynomial 𝑓 of degree 𝑘(𝑛−1)+(𝑚−1)+ 𝑗
that covers every non-zero point of Γ 𝑘 times while avoiding the origin.

There are grids for which this conjectured upper bound on the minimum degree of a 𝑘-cover is not tight.
For instance, for 𝑛 ≤ 7, we found polynomial 4-covers of the grids {0, 1, … , 𝑛 − 1} × {0, 1, … , 𝑛 − 1} of
degree 4(𝑛 − 1) + (𝑛 − 1) + 1, which is one degree lower than proposed in the conjecture. But we
also found grids for which the conjecture is tight, so in general it cannot be improved. In any case, the
conjecture proposes a very different behaviour of the threshold for tightness of the Ball-Serra Bound
for hyperplane and for polynomial covers. To prove this distinction, some more work is required.
In conclusion, for none of the three grids there is a proof yet that there is a different behaviour between
the hyperplane 𝑘-covering number and the polynomial 𝑘-covering number. Only for almost 𝑘-covers of
the binary field such a distinction has actually been proven. However, in all three cases there are clear
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indications that such a difference exists. Moreover, in the case of the hypercube and the binary field,
we saw that the Ball-Serra Bound is often not tight, whereas in the Cartesian plane, the bound is tight
for hyperplane 𝑘-covers of infinitely many grids. Furthermore, for fixed 𝑘, the threshold of tightness
for polynomials 𝑘-covers is conjectured to be even smaller than the one for 𝑘-hyperplane covers. So,
there are many different aspects to covering grids with multiplicities. In this thesis, we have highlighted
these aspects and their history, made some progress in finding covering numbers and have proposed
different tools to attack the open questions. Hopefully, this framework can enable further progress on
this interesting and intricate problem.



Bibliography
[1] N. Alon. “Combinatorial nullstellensatz”. In:Combinatorics, Probability andComputing 8.1-2 (1999),

pp. 7–29.
[2] N. Alon and Z. Füredi. “Covering the cube by affine hyperplanes”. In: European journal of com-

binatorics 14.2 (1993), pp. 79–83.
[3] Y. den Bakker. “Hyperplane covering problems”. TU Delft, 2021. URL: https://repository.

tudelft.nl/islandora/object/uuid:b7edc7e3-a094-4f32-93fd-1fc67a91562e.
[4] S. Ball and O. Serra. “Punctured combinatorial nullstellensätze”. In: Combinatorica 29.5 (2009),

pp. 511–522.
[5] E. Bézout. Théorie générale des équations algébriques. Ph.-D. Pierres, 1779.
[6] A. Bishnoi. “Some contributions to incidence geometry and the polynomial method”. PhD thesis.

Ghent University, 2016.
[7] A. Bishnoi. The footprint bound. Mar. 25, 2018. URL: https://anuragbishnoi.wordpress.

com/2018/03/25/the-footprint-bound/.
[8] A. Bishnoi, S. Boyadzhiyska, S. Das, and Y. d. Bakker. “Covering grids with multiplicity”. In: arXiv

preprint arXiv:2305.00825 (2023).
[9] A. Bishnoi, S. Boyadzhiyska, S. Das, and T. Mészáros. “Subspace coverings with multiplicities”.

In: Combinatorics, Probability and Computing 32.5 (2023), pp. 782–795.
[10] M. Chasles. Traité des sections coniques: faisant suite au traité de géométrie supérieure... Pre-

mière partie. Gauthier-Villars, 1865.
[11] A. Clifton and H. Huang. “On almost k-covers of hypercubes”. In: Combinatorica 40.4 (2020),

pp. 511–526.
[12] D. Cox, J. Little, D. O’shea, and M. Sweedler. Ideals, varieties, and algorithms. Vol. 3. Springer,

1997.
[13] D. Eisenbud, M. Green, and J. Harris. “Cayley-Bacharach theorems and conjectures”. In: Bulletin

of the American Mathematical Society 33.3 (1996), pp. 295–324.
[14] P. Griffiths and J. Harris. Principles of algebraic geometry. John Wiley & Sons, 1978.
[15] D. Hilbert. “Ueber die vollen Invariantensysteme”. In:Mathematische Annalen 42 (1893), pp. 313–

373. DOI: https://doi.org/10.1007/BF01444162.
[16] T. Høholdt. “On (or in) the Blahut footprint”. In: Codes, Curves, and Signals: Common Threads

in Communications (1998), pp. 3–7.
[17] D. Husemöller. Elliptic curves. Vol. 2. Springer New York, NY, 2010.
[18] R. Karasev. “Residues and the combinatorial Nullstellensatz”. In: Periodica Mathematica Hun-

garica 78 (2019), pp. 157–165.
[19] L. Sauermann and Y. Wigderson. “Polynomials that vanish to high order on most of the hyper-

cube”. In: Journal of the London Mathematical Society 106.3 (2022), pp. 2379–2402.
[20] B. Sturmfels. “What is... a grobner basis?” In: Notices-American Mathematical Society 52.10

(2005), p. 1199.
[21] T. Tao. Pappus’s theorem and elliptic curves. July 15, 2011. URL: https : / / terrytao .

wordpress.com/2011/07/15/pappuss-theorem-and-elliptic-curves/.
[22] D. B. West et al. Introduction to graph theory. Vol. 2. Prentice hall Upper Saddle River, 2001.

59

https://repository.tudelft.nl/islandora/object/uuid:b7edc7e3-a094-4f32-93fd-1fc67a91562e
https://repository.tudelft.nl/islandora/object/uuid:b7edc7e3-a094-4f32-93fd-1fc67a91562e
https://anuragbishnoi.wordpress.com/2018/03/25/the-footprint-bound/
https://anuragbishnoi.wordpress.com/2018/03/25/the-footprint-bound/
https://doi.org/https://doi.org/10.1007/BF01444162
https://terrytao.wordpress.com/2011/07/15/pappuss-theorem-and-elliptic-curves/
https://terrytao.wordpress.com/2011/07/15/pappuss-theorem-and-elliptic-curves/




A
Plots of Covers

This appendix contains all generated polynomials for 3-covers and 4-covers. By Lemma 60, if there
is a tight polynomial cover of an (𝑛 × 𝑚)-grid that contains all horizontal lines at least once, there is
also a tight cover for every (𝑛 × 𝓁)-grid for 𝓁 < 𝑚. These covers can be obtained by just removing the
redundant horizontal lines. On all plots, the grid points we want to cover are indicated by blue dots.
The origin, which has to remained uncovered is indicated by a red cross. The polynomial cover 𝑓 is
given by the orange curve. We also indicate the covered grid and deg 𝑓 in the caption of each figure.

A.1. 3-covers
Already for 3-covers, the formulas of the polynomials quickly become too large to fit on one page.
Therefore we only give the plots of the covers. These plots are sufficient to see that for the grids
{0, 1, … , 𝑛−1}×{0, 1, …𝑚−1}, there is indeed always a cover that consists of all horizontal and vertical
lines and a symmetric component.

Figure A.1: {0, 1, 2} × {0, 1, 2} - deg(𝑓) = 9

61
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Figure A.2: {0, 1, 2, 3} × {0, 1, 2} - deg(𝑓) = 11

Figure A.3: {0, 1, 2, 3} × {0, 1, 2} - deg(𝑓) = 11
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Figure A.4: {0, 1, 2, 3} × {0, 1, 2, 3} - deg(𝑓) = 13

Figure A.5: {0, 1, 2, 3} × {0, 1, 2, 3} - deg(𝑓) = 13
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Figure A.6: {0, 1, 2, 3, 4} × {0, 1, 2, 3} - deg(𝑓) = 15

Figure A.7: {0, 1, 2, 3, 4} × {0, 1, 2, 3, 4} - deg(𝑓) = 17
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Figure A.8: {0, 1, 2, 3, 4, 5} × {0, 1, 2, 3, 4} - deg(𝑓) = 19

Figure A.9: {0, 1, 2, 3, 4, 5} × {0, 1, 2, 3, 4, 5} - deg(𝑓) = 21
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Figure A.10: {0, 1, 2, 3, 4, 5, 6} × {0, 1, 2, 3, 4, 5} - deg(𝑓) = 23

Figure A.11: {0, 1, 2, 3, 4, 5, 6} × {0, 1, 2, 3, 4, 5, 6} - deg(𝑓) = 25
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Figure A.12: {0, 1, 2, 3, 4, 5, 6, 7} × {0, 1, 2, 3, 4, 5, 6} - deg(𝑓) = 27

Figure A.13: {0, 1, 2, 3, 4, 5, 6, 7} × {0, 1, 2, 3, 4, 5, 6, 8} - deg(𝑓) = 29



68 A. Plots of Covers

A.2. 4-covers

Figure A.14: {0, 1, 2} × {0, 1, 2} - deg(𝑓) = 11. This cover contains all vertical lines once.

Figure A.15: {0, 1, 2, 3} × {0, 1} - deg(𝑓) = 13. This cover contains all vertical lines twice. The points on the 𝑥-axis are covered
twice by the lines and twice by the other factor of the polynomial, but they are all singular points of this factor.
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Figure A.16: {0, 1, 2, 3} × {0, 1, 2, 3} - deg(𝑓) = 16. This cover contains all vertical lines once.

Figure A.17: {0, 1, 2, 3, 4} × {0, 1, 2} - deg(𝑓) = 18. This cover contains all vertical lines twice.
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Figure A.18: {0, 1, 2, 3, 4} × {0, 1, 2, 3, 4} - deg(𝑓) = 21. This cover contains all vertical lines once.

Figure A.19: {0, 1, 2, 3, 4, 5} × {0, 1, 2, 3} - deg(𝑓) = 23. This cover contains all vertical lines twice.
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Figure A.20: {0, 1, 2, 3, 4, 5} × {0, 1, 2, 3, 4, 5} - deg(𝑓) = 26. This cover contains all vertical lines once. There are a lot of points
that are singular points of factor of high degree of the cover

Figure A.21: {0, 1, 2, 3, 4, 5, 6} × {0, 1, 2, 3, 4} - deg(𝑓) = 28. This cover contains all vertical lines twice.
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Figure A.22: {0, 1, 2, 3, 4, 5, 6} × {0, 1, 2, 3, 4, 5, 6} - deg(𝑓) = 31. This cover contains all vertical lines once.



B
Codes to generate Polyomial Covers

B.1. SymPy Code for 3-covers
import sympy as sp
import itertools as itertools

def gridgenerator(xlist, ylist): #generates all non-zero points of a grid
grid = []
for i in xlist:

for j in ylist:
grid.append([i,j])

grid.remove([0,0])

return grid

def curvemaker(xlist, ylist, deg): #computes the polynomial 3-cover
indices = [i for i in itertools.product(range(deg+1), repeat=2)

if 0 < sum(i) <=deg] #Set up the polynomial of the right degree
a = sp.IndexedBase(’a’)
i = sp.Idx(’i’)
coeffs = {i: a[i] for i in indices} #define all the coefficients
coeffslist = [a[i] for i in indices]
coeffs[(0,0)] = 1 #the constant term in the polynomial = 1

points = gridgenerator(xlist, ylist)

x,y = sp.symbols(’x, y’)
p = sp.Poly(coeffs, *[x,y]) #construct the polynomial

px = sp.diff(p,x) #compute all partial derivatives
py = sp.diff(p,y)
pxx = sp.diff(px, x)
pxy = sp.diff(px, y)
pyy = sp.diff(py,y)

pols = [p, px, py, pxx, pxy, pyy]
#construct the system of linear equations
equations = [pol.eval(point) for pol in pols for point in points]
solutions = sp.solve(equations, *coeffslist)

if len(solutions) == 0:
return ”no solution”, ”no solution”, ”no solution”

else:
freevar = {}

for i in coeffslist:
if (i in solutions) == False: #Set the free variables equal to 0

freevar[i] = 0
solutions[i] = 0

73
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sols={i: solutions[coeffs[i]] for i in indices}
sols[(0,0)] = 1

psolved=sp.Poly(sols, *[x,y]) #construct the formula of the polynomial
psolved = sp.Poly(psolved.subs(freevar))
pfactor = sp.factor(psolved.as_expr()) #factorise the cover

return solutions, psolved, pfactor #returns the coefficients, the expanded
polynomial and the factorised polynomial

def curvemaker_symmetric(xlist, ylist, deg): #same function as above, but we impose that p
is symmetric
indices = [i for i in itertools.product(range(deg+1), repeat=2)

if 0 < sum(i) <=deg]
a = sp.IndexedBase(’a’)
i = sp.Idx(’i’)
coeffs = {i: a[i] for i in indices}
coeffslist = [a[i] for i in indices]
coeffs[(0,0)] = 1

points = gridgenerator(xlist, ylist)

x,y = sp.symbols(’x, y’)
p = sp.Poly(coeffs, *[x,y])

px = sp.diff(p,x)
py = sp.diff(p,y)
pxx = sp.diff(px, x)
pxy = sp.diff(px, y)
pyy = sp.diff(py,y)

pols = [p, px, py, pxx, pxy, pyy]

equations = [pol.eval(point) for pol in pols for point in points]

for i in range(deg+1): #add constraints to make the curve symmetric
for j in range(deg+1):

if i<j:
equations.append(a[i,j]-a[j,i])

solutions = sp.solve(equations, *coeffslist)

if len(solutions) == 0:
return ”no solution”, ”no solution”, ”no solution”

else:
freevar = {}

for i in coeffslist:
if (i in solutions) == False:

freevar[i] = 0
solutions[i] = 0

sols={i: solutions[coeffs[i]] for i in indices}
sols[(0,0)] = 1

psolved=sp.Poly(sols, *[x,y])
psolved = sp.Poly(psolved.subs(freevar))
pfactor = sp.factor(psolved.as_expr())

return solutions, psolved, pfactor

def bound_int_generator(xlist, ylist):
grid = []
for i in xlist:

for j in ylist:
grid.append([i,j])

boundary = [] #make a distinction between boundary and interior points
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interior = []

for i in grid:
if 0 in i:

boundary.append(i)
else:

interior.append(i)
boundary.remove([0,0])

return boundary, interior

def curvemaker_lines(xlist, ylist, deg): #variation on curvemaker that assumes that the
horizontal and vertical lines are included in the cover

#compute the number of horizontal and vertical lines
linedeg = len(xlist) - 1 + len(ylist) - 1
indices = [i for i in itertools.product(range(deg - linedeg +1), repeat=2)

if 0 < sum(i) <=deg - linedeg]
a = sp.IndexedBase(’a’)
i = sp.Idx(’i’)
coeffs = {i: a[i] for i in indices}
coeffslist = [a[i] for i in indices]
coeffs[(0,0)] = 1

boundary, interior = bound_int_generator(xlist, ylist)

x,y = sp.symbols(’x, y’)
p = sp.Poly(coeffs, *[x,y])

px = sp.diff(p,x)
py = sp.diff(p,y)
pols = [p, px, py]

#the derivatives only have to vanish on the boundary:
equations = [pol.eval(point) for pol in pols for point in boundary]

for point in interior:
equations.append(p.eval(point))

solutions = sp.solve(equations, *coeffslist)

if len(solutions) == 0:
return ”no solution”, ”no solution”, ”no solution”

else:
freevar = {}

for i in coeffslist:
if (i in solutions) == False:

freevar[i] = 0
solutions[i] = 0

sols={i: solutions[coeffs[i]] for i in indices}
sols[(0,0)] = 1

psolved=sp.Poly(sols, *[x,y])
psolved = sp.Poly(psolved.subs(freevar))
pfactor = sp.factor(psolved.as_expr())

return solutions, psolved, pfactor

def curvemaker_lines_symmetric(xlist, ylist, deg): #function to ensure that the factor
without the lines is symmetric
linedeg = len(xlist) - 1 + len(ylist) - 1
indices = [i for i in itertools.product(range(deg - linedeg +1), repeat=2)

if 0 < sum(i) <=deg - linedeg]
a = sp.IndexedBase(’a’)
i = sp.Idx(’i’)
coeffs = {i: a[i] for i in indices}
coeffslist = [a[i] for i in indices]
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coeffs[(0,0)] = 1

boundary, interior = bound_int_generator(xlist, ylist)

x,y = sp.symbols(’x, y’)
p = sp.Poly(coeffs, *[x,y])

px = sp.diff(p,x)
py = sp.diff(p,y)

pols = [p, px, py]

equations = [pol.eval(point) for pol in pols for point in boundary]

for point in interior:
equations.append(p.eval(point))

for i in range(deg - linedeg +1):
for j in range(deg - linedeg +1):

if i<j:
equations.append(a[i,j]-a[j,i])

solutions = sp.solve(equations, *coeffslist)

if len(solutions) == 0:
return ”no solution”, ”no solution”, ”no solution”

else:
freevar = {}

for i in coeffslist:
if (i in solutions) == False:

freevar[i] = 0
solutions[i] = 0

sols={i: solutions[coeffs[i]] for i in indices}
sols[(0,0)] = 1

psolved=sp.Poly(sols, *[x,y])
psolved = sp.Poly(psolved.subs(freevar))
pfactor = sp.factor(psolved.as_expr())

return solutions, psolved, pfactor
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B.2. Sage Code for 3-covers
import itertools as itertools
import numpy as np

def gridgenerator(xlist, ylist): #generates all non-zero points of a grid
grid = []
for i in xlist:

for j in ylist:
grid.append([i,j])

grid.remove([0,0])

return grid

#Evaluate a point (x,y) in each monomial and construct a row filled with these evaluated
monomials

def evp(x,y, indices):
row = np.zeros(len(indices))

for i in range(len(indices)):
j = indices[i]
row[i] = x**(j[0]) * y**(j[1])

return row

#Evaluate a point (x,y) in the monomials after having taken the derivative wrt x
def evp_x(x,y, indices):

row = np.zeros(len(indices))

for i in range(len(indices)):
j = indices[i]

if j[0] != 0:
row[i] = j[0] * x**(j[0]-1) * y**(j[1])

return row

#Evaluate a point (x,y) in the monomials after having taken the derivative wrt x
def evp_y(x,y, indices):

row = np.zeros(len(indices))

for i in range(len(indices)):
j = indices[i]

if j[1] != 0:
row[i] = j[1] * x**(j[0]) * y**(j[1]-1)

return row

#Evaluate a point (x,y) in the monomials after having taken the second order derivative wrt
xx

def evp_xx(x,y, indices):
row = np.zeros(len(indices))

for i in range(len(indices)):
j = indices[i]
if j[0] > 1:

row[i] = j[0]*(j[0]-1) * x**(j[0]-2) * y**(j[1])

return row

#Evaluate a point (x,y) in the monomials after having taken the second order derivative wrt
yy

def evp_yy(x,y,indices):
row = np.zeros(len(indices))
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for i in range(len(indices)):
j = indices[i]
if j[1] > 1:

row[i] = j[1]*(j[1]-1) * x**(j[0]) * y**(j[1]-2)

return row

#Evaluate a point (x,y) in the monomials after having taken the second order derivative wrt
xy

def evp_xy(x,y, indices):
row = np.zeros(len(indices))

for i in range(len(indices)):
j = indices[i]
if j[0] != 0 and j[1] != 0:

row[i] = j[0]*j[1] * x**(j[0]-1) * y**(j[1]-1)

return row

#This function makes the system of linear equations based on the above functions
def matrixgenerator(xlist, ylist, deg):

#Construct the monomials of the right degrees
indices = [i for i in itertools.product(range(deg+1), repeat=2) if 0 <= sum(i) <= deg]

#Place the constant term as final index in the list such that it becomes the last column
in the system
indices.remove((0,0))
indices.append((0,0))

grid = gridgenerator(xlist, ylist)
print(grid)

eqcount = 6*len(grid) #number of equations in the system for a 3-cover
indcount = len(indices) #number of monomials

syst = np.zeros((eqcount, indcount))

#Constructing the matrix:
teller = 0
for j in grid:

syst[teller, :] = evp(j[0], j[1], indices)
teller = teller + 1

syst[teller, :] = evp_x(j[0], j[1], indices)
teller = teller + 1

syst[teller, :] = evp_y(j[0], j[1], indices)
teller = teller + 1

syst[teller, :] = evp_xx(j[0], j[1], indices)
teller = teller + 1

syst[teller, :] = evp_xy(j[0], j[1], indices)
teller = teller + 1

syst[teller, :] = evp_yy(j[0], j[1], indices)
teller = teller + 1

#The domain of the matrix is ”ZZ”, i.e. the rational field
syst = Matrix(QQ, syst)

return syst, syst.rref(), syst.pivot_rows(), syst.pivots()

#Use the solution of the system to construct the corresponding polynomial
def curvegenerator(xlist, ylist, deg):

indices = [i for i in itertools.product(range(deg+1), repeat=2) if 0 <= sum(i) <= deg]
indices.remove((0,0))
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indices.append((0,0))

syst, matrix, rows, pivot = matrixgenerator(xlist, ylist, deg)
x,y = var(’x, y’)
p = -1

for i in range(len(pivot)):
p = p + matrix[rows[i], -1] * x**(indices[pivot[i]][0]) * y**(indices[pivot[i]][1])

return p

#generate the non-zero points and make a distinction between interior and boundary points
def bound_int_generator(xlist, ylist):

grid = []
for i in xlist:

for j in ylist:
if i >= j:

grid.append([i,j])

boundary = []
interior = []

for i in grid:
if 0 in i:

boundary.append(i)
else:

interior.append(i)
boundary.remove([0,0])

return boundary, interior

##Evaluate a point (x,y) in each monomial and construct a row filled with the evaluated sums
of symmetric monomials

def evp_symmetric(x,y, indices):
row = np.zeros(len(indices))

for i in range(len(indices)):
j = indices[i]
if j[0] == j[1]: #All monomials that are symmetric to itself

row[i] = x**(j[0]) * y**(j[1])
else: #Sums of other monomials

row[i] = x**(j[0]) * y**(j[1]) + x**(j[1]) * y**(j[0])

return row

##Evaluate a point (x,y) in all sums of symmetric monomials after having taken the derivative
wrt x

def evp_x_symmetric(x,y, indices):
row = np.zeros(len(indices))

for i in range(len(indices)):
j = indices[i]
if j[0] == j[1]: #Symmetric to itself

if j[0] != 0:
row[i] = j[0] * x**(j[0]-1) * y**(j[1])

else:
if j[0] != 0 and j[1] != 0: #None of the powers is zero

row[i] = j[0] * x**(j[0]-1) * y**(j[1]) + j[1] * x**(j[1]-1) * y**(j[0])
elif j[0] == 0 and j[1] != 0: #Power of x is zero

row[i] = j[1] * x**(j[1]-1) * y**(j[0])
elif j[0] != 0 and j[1] == 0: #Power of y is zero

row[i] = j[0] * x**(j[0]-1) * y**(j[1])

return row
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##Evaluate a point (x,y) in all sums of symmetric monomials after having taken the derivative
wrt y

def evp_y_symmetric(x,y, indices):
row = np.zeros(len(indices))

for i in range(len(indices)):
j = indices[i]
if j[0] == j[1]:

if j[1] != 0:
row[i] = j[1] * x**(j[0]) * y**(j[1]-1)

else:
if j[0] != 0 and j[1] != 0:

row[i] = j[1] * x**(j[0]) * y**(j[1]-1) + j[0] * x**(j[1]) * y**(j[0]-1)
elif j[0] == 0 and j[1] != 0:

row[i] = j[1] * x**(j[0]) * y**(j[1]-1)
elif j[0] != 0 and j[1] ==0:

row[i] = j[0] * x**(j[1]) * y**(j[0]-1)

return row

#Same function as the matrixgenerator above, but now for symmetric polynomials
def matrixgenerator_symmetric(xlist, ylist, deg):

indices = [i for i in itertools.product(range(deg+1), repeat=2) if 0 <= sum(i) <= deg
and i[1] <= i[0]]

indices.remove((0,0))
indices.append((0,0))

boundary, interior = bound_int_generator(xlist, ylist)

eqcount = len(interior) + 3* len(boundary)
indcount = len(indices)

syst = np.zeros((eqcount,indcount))
teller = 0

for j in boundary:
syst[teller,:] = evp_symmetric(j[0], j[1], indices)
teller = teller + 1

syst[teller,:] = evp_x_symmetric(j[0],j[1], indices)
teller = teller + 1

syst[teller,:] = evp_y_symmetric(j[0],j[1], indices)
teller = teller + 1

for i in interior:
syst[teller,:] = evp_symmetric(i[0], i[1], indices)
teller = teller + 1

syst = Matrix(QQ, syst)

return syst, syst.rref(), syst.pivot_rows(), syst.pivots()

#Same function as the curvegenerator above, but now for symmetric polynomials
def curvegenerator_symmetric(xlist, ylist, deg):

indices = [i for i in itertools.product(range(deg+1), repeat=2) if 0 <= sum(i) <= deg
and i[1] <= i[0]]
indices.remove((0,0))
indices.append((0,0))

syst, matrix, rows, pivot = matrixgenerator_symmetric(xlist, ylist, deg)
x,y = var(’x, y’)
p = -1

for i in range(len(pivot)):
if indices[pivot[i]][0] == indices[pivot[i]][1]:

p = p + matrix[rows[i], -1] * x**(indices[pivot[i]][0]) *
y**(indices[pivot[i]][1])
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else:
p = p + matrix[rows[i], -1] * (x**(indices[pivot[i]][0]) *

y**(indices[pivot[i]][1]) + x**(indices[pivot[i]][1]) *
y**(indices[pivot[i]][0]))

return p
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B.3. SymPy Code for 4-covers
import sympy as sp
import itertools as itertools

def gridgenerator(xlist, ylist): #generate all non-zero point of a grid
grid = []
for i in xlist:

for j in ylist:
grid.append([i,j])

grid.remove([0,0])

return grid

def curvemaker(xlist, ylist, deg): #computes the polynomial 4-cover
indices = [i for i in itertools.product(range(deg+1), repeat=2)

if 0 < sum(i) <=deg] #Set up the polynomial of the right degree
a = sp.IndexedBase(’a’)
i = sp.Idx(’i’)
coeffs = {i: a[i] for i in indices} #define all the coefficients
coeffslist = [a[i] for i in indices]
coeffs[(0,0)] = 1

points = gridgenerator(xlist, ylist)

x,y = sp.symbols(’x, y’)
p = sp.Poly(coeffs, *[x,y]) #construct the polynomial

px = sp.diff(p,x) #compute all partial derivatives
py = sp.diff(p,y)
pxx = sp.diff(px, x)
pxy = sp.diff(px, y)
pyy = sp.diff(py,y)
pxxx = sp.diff(pxx, x)
pxxy = sp.diff(pxx, y)
pxyy = sp.diff(pxy, y)
pyyy = sp.diff(pyy, y)

pols = [p, px, py, pxx, pxy, pyy, pxxx, pxxy, pxyy, pyyy]
#construct the system of linear equations
equations = [pol.eval(point) for pol in pols for point in points]
solutions = sp.solve(equations, *coeffslist)

if len(solutions) == 0:
return ”no solution”, ”no solution”, ”no solution”

else:
freevar = {}

for i in coeffslist:
if (i in solutions) == False: #Set the free variables to 0

freevar[i] = 0
solutions[i] = 0

sols={i: solutions[coeffs[i]] for i in indices}
sols[(0,0)] = 1

psolved=sp.Poly(sols, *[x,y]) #construct the formula of the polynomial
psolved = sp.Poly(psolved.subs(freevar))
pfactor = sp.factor(psolved.as_expr()) #factorise the cover

return solutions, psolved, pfactor

#generate the non-zero points and make a distinction between interior and boundary points
def bound_int_generator(xlist, ylist):

grid = []
for i in xlist:

for j in ylist:
grid.append([i,j])
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boundary = []
interior = []

for i in grid:
if 0 in i:

boundary.append(i)
else:

interior.append(i)
boundary.remove([0,0])

return boundary, interior

def curvemaker_oneline(xlist, ylist, deg): #computes the polynomial 4-cover assuming all
horizontal and vertical lines to be included once in the cover

#compute the number of horizontal and vertical lines:
linedeg = len(xlist) - 1 + len(ylist) - 1
indices = [i for i in itertools.product(range(deg - linedeg +1), repeat=2)

if 0 < sum(i) <=deg - linedeg]
a = sp.IndexedBase(’a’)
i = sp.Idx(’i’)
coeffs = {i: a[i] for i in indices}
coeffslist = [a[i] for i in indices]
coeffs[(0,0)] = 1

boundary, interior = bound_int_generator(xlist, ylist)

x,y = sp.symbols(’x, y’)
p = sp.Poly(coeffs, *[x,y])

px = sp.diff(p,x)
py = sp.diff(p,y)
pxx = sp.diff(px, x)
pxy = sp.diff(px, y)
pyy = sp.diff(py,y)
pols = [p, px, py, pxx, pxy, pyy]

#the second derivatives only have to vanish on the boundary:
equations = [pol.eval(point) for pol in pols for point in boundary]

for point in interior:
equations.append(p.eval(point))
equations.append(px.eval(point))
equations.append(py.eval(point))

solutions = sp.solve(equations, *coeffslist)

if len(solutions) == 0:
return ”no solution”, ”no solution”, ”no solution”

else:
freevar = {}

for i in coeffslist:
if (i in solutions) == False:

freevar[i] = 0
solutions[i] = 0

sols={i: solutions[coeffs[i]] for i in indices}
sols[(0,0)] = 1

psolved=sp.Poly(sols, *[x,y])
psolved = sp.Poly(psolved.subs(freevar))
pfactor = sp.factor(psolved.as_expr())

return solutions, psolved, pfactor
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#generate the non-zero points and make a distinction between interior points and points on
the two axes

def x_y_generator(xlist, ylist):
grid = []
for i in xlist:

for j in ylist:
grid.append([i,j])

x_boundary = []
y_boundary = []
interior = []

grid.remove([0,0])

for i in grid:
if 0 == i[0]:

y_boundary.append(i)
elif 0 == i[1]:

x_boundary.append(i)
else:

interior.append(i)

return x_boundary, y_boundary, interior

def curvemaker_lines(xlist, ylist, deg): #computes the polynomial 4-cover assuming all
horizontal to be included once and vertical lines to be included twice in the cover

#compute the number of horizontal and vertical lines:
linedeg = 2*(len(xlist) - 1) + len(ylist) - 1
print(linedeg)
indices = [i for i in itertools.product(range(deg - linedeg +1), repeat=2)

if 0 < sum(i) <=deg - linedeg]
print(indices)
a = sp.IndexedBase(’a’)
i = sp.Idx(’i’)
coeffs = {i: a[i] for i in indices}
coeffslist = [a[i] for i in indices]
coeffs[(0,0)] = 1

x_boundary, y_boundary, interior = x_y_generator(xlist, ylist)

x,y = sp.symbols(’x, y’)
p = sp.Poly(coeffs, *[x,y])

px = sp.diff(p,x)
py = sp.diff(p,y)
pxx = sp.diff(px, x)
pxy = sp.diff(px, y)
pyy = sp.diff(py,y)
pols = [p, px, py, pxx, pxy, pyy]

#the highest derivatives only have to vanish on the y-axis:
equations = [pol.eval(point) for pol in pols for point in y_boundary]

for point in x_boundary:
equations.append(p.eval(point))
equations.append(px.eval(point))
equations.append(py.eval(point))

for point in interior:
equations.append(p.eval(point))

solutions = sp.solve(equations, *coeffslist)

if len(solutions) == 0:
return ”no solution”, ”no solution”, ”no solution”

else:
freevar = {}
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for i in coeffslist:
if (i in solutions) == False:

freevar[i] = 0
solutions[i] = 0

sols={i: solutions[coeffs[i]] for i in indices}
sols[(0,0)] = 1

psolved=sp.Poly(sols, *[x,y])
psolved = sp.Poly(psolved.subs(freevar))
pfactor = sp.factor(psolved.as_expr())

return solutions, psolved, pfactor
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