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Abstract
The production and consumption of electricity need to be balanced at all times. Due to the ever-growing
shift towards renewable energy generation, this poses an increasingly difficult challenge. Currently,
supply is regulated to maintain balance. However, there is potential to improve reliability and save
costs by shifting the balancing to the demand side, known as demand response. The flexibility of
water systems can play a role in this, thereby benefiting from cheaper price fluctuations and reducing
operating costs.

This research investigates the IJmuiden pumping station, which drains water from the
Noordzeekanaal-Amsterdam-Rijnkanaal system into The North Sea. The primary focus of the
control of this system is ensuring safe water levels as it runs through areas of high economic value.
The flexibility of the range of safe water levels allows costs to be minimized by selecting favourable
moments to consume electricity. This simultaneously contributes to the stability of the electrical grid.
This research explores the potential for a Reinforcement Learning controller for such an optimization
problem, as there are some drawbacks to the Model Predictive Control methods that are currently
widely used. The research objective is formulated as follows:

To optimize the control of the IJmuiden pumping station using Reinforcement Learning while
complying with local water level restrictions and compare it to the state-of-the-art Model Predictive
Control methods in terms of constraint violation, energy costs, and computational speed.

The Reinforcement Learning controller will use a deep Q-learning algorithm that chooses the most
cost efficient control in IJmuiden while respecting the water level restrictions. To do so, the model makes
decisions based on electricity prices and details about the state of the water system for the current time
step as well as a forecast of 48 hours ahead. This data is provided as an input to the model.

The inputs of the model consist of historical data, meaning that the associated uncertainties are not
included. The water system that the model can interact with is represented by a linear reservoir model.
Therefore, the water system is influenced dynamically by the actions taken by the model. The possible
actions are determined by the state of the water system.

The trained model was tested on 2 years of unseen data (data that was not used during training).
Using the same test data, control plans were generated using Model Predictive Control. The
Reinforcement Learning model was very successful in ensuring safe water levels. However, this did
result in approximately 50% higher energy costs. The use of the gate was close to optimal but the
pumping was not clearly correlated with favourable prices and power consumption. The trained model
was robust, with consistently accurate results with regards to respecting the water level constraints.

The most significant difference with the Model Predictive Control was the computation time. The
Reinforcement Learning model was able to create a control plan approximately 300 times faster. This
opens doors for further development of the model and increased complexity. A more accurate model
of the water system can be used to take into account temporal and spatial effects and individually
representing the six pumps in IJmuiden.

There are still many steps before such a model can be used for operational control, but the method
has potential for such an application. Many aspects of the model can be improved as well as making
adjustments to increase the usability for control operators.
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1
Introduction

1.1. Context
The current global energy system is environmentally unsustainable, which has incentivized the transition
towards newer and cleaner energy [2]. Climate change mitigation is the most prominent driver behind
this energy transition, however, other major societal benefits are expected as well [3]. Adapting
infrastructure to meet the new demands and transitioning to a low-carbon economy poses one of the
greatest challenges of our times [4].

Renewable energy sources behave differently to many of the non-renewables with which we are very
familiar and to which the energy system has been adapted over many years. Energy generation from
renewable sources often exhibits seasonality and unpredictability out of sync with the consumption of
energy, thus leading to an imbalanced electrical grid. Electricity generation and consumption need to
be balanced at all times. Preventing an imbalance will become an increasingly complex task as the
energy system shifts to more sustainably generated energy [5]. Many types of infrastructure can play a
role in reducing imbalances as well as reducing emissions and overall energy consumption.

In the past, the electricity network was balanced by adjusting the supply to match demand. This
was done by power plants regulating the amount of energy produced. They increase production when
sustainable energy sources are unavailable or demand increases. In the future, the portion of renewable
sources will only increase, making balancing on the supply side only more complex. There is potential to
improve reliability and save costs for electricity systems by shifting the balancing to the demand side [6].
Consumers can use more when supply exceeds demand and vice versa, known as demand response.

The focus of this thesis is the Dutch water management system and the possibilities of system control
by taking into account classical constraints, such as water level while minimizing its energy consumption.
At the moment, this water management system’s primary focus is safety, which it provides by controlling
pumps which in turn control the water levels at all scales (e.g. major rivers, groundwater, city canals).
In doing so, the system consumes large amounts of energy, approximately 10 million kWh yearly with
a cost of 700,000 euros, equivalent to more than 3,000 households [7]. The current strategy is to drain
excess rainfall as quickly as possible to the sea. The operators take into account the moments of low
head, however, this is still limited. Developments in the field of system control engineering allow for
more complex objectives and constraints. This would mean the control system can respect the bounds
set by safety regulations, while at the same time optimizing for energy consumption and stability of the
electrical grid.

The consumption and production of electricity determine the price, where a higher demand results
in increased prices and vice versa. Minimizing energy costs by taking advantage of price fluctuations
therefore not only decreases operational costs for a system but also contributes to balancing the electrical
grid.

A promising method to deal with these control problems is artificial intelligence [8], which is being
applied more and more often in the water sector for forecasting and classification. Reinforcement
learning (RL) is a type of learning where a control strategy is developed that learns from its interactions
with its environment to better optimize its objectives in the future. A famous application of this is
AlphaGo, which was the first computer program able to defeat a Go world champion [9]. Due to the

1



1.2. Case study 2

game’s complexity, it is an extremely challenging problem for artificial intelligence. There are also more
recent breakthroughs, for example, where RL was used for the control of a nuclear fusion experiment [10].
This highlights the wide range of possible applications and the successes that have been achieved using
this method.

1.2. Case study
To explore the potential for a RL controller in a real-world context, a case study was used to conduct
this research. The IJmuiden pumping station uses pumps and a gate to drain the water from the
Noordzeekanaal (NZK)-Amsterdam-Rijnkanaal (ARK) system into the North Sea. Figure 1.1 shows
the course of the water system, with the ARK flowing from Tiel to Amsterdam, after which it flows
into the NZK that ends in the North Sea at the IJmuiden pumping station.

IJmuiden

Amsterdam

Utrecht

Tiel

NZK

ARK

North Sea

Figure 1.1: The course of the NZK-ARK including important urban areas

Rijkswaterstaat is responsible for managing the NZK-ARK system, the main element of which is
the IJmuiden pumping station [11]. The system plays an important role in the freshwater supply and
flood safety in the west of The Netherlands [12]. Given that The Netherlands is a low-lying country
with a lot of water, and the west is a densely populated area, flood safety is of critical importance as
well as creating a robust system that contributes to overall climate resilience.

Maintaining safe water levels is paramount as the system runs through two areas of high economical
value; Amsterdam and Utrecht. Important infrastructure such as Schiphol airport, ports, and data
centres are located within this region. This highlights an important criterion for a control system of
the region, which is to respect the bounds that are set by the safety regulations.

On the other hand, there is a safe range within which the system can be operated, which lends itself
to optimization with an additional objective; minimizing costs. Due to the high yearly cost of operation,
even a small decrease in energy consumption could yield major economic benefits. In addition, the pump
system is relatively flexible and can take advantage of electricity price fluctuations caused by imbalances
in the grid. This lowers the operational costs while simultaneously contributing to the stability of the
electricity grid.

1.3. Possible control methods
Currently, Model Predictive Control (MPC) is used for the IJmuiden pumping station, which includes
optimization for energy costs. However, the electricity is bought on the futures market, which means
that bids need to be submitted at least a month ahead of time. The nature of this electricity market
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greatly limits the potential for cost optimization. Closer to delivery, the price fluctuations create
temporarily lower prices that are more economical that the prices on the futures market.

When exploring the potential for energy cost optimization with electricity markets that allow trading
very close to delivery, there are several possible methods. Proportional Integral Derivative (PID) and
MPC are mature control systems that are widely used today while Machine Learning has not yet reached
that status. However, it is currently a very active field of research because it enables real-time control
with complex objective functions.

1.3.1. Proportional Integral Derivative
As mentioned above, PID is a control method that is universally used in applications where optimized
automatic control is required. It is a means of controlling process variables, such as temperature,
flow, and pressure. The system is forced in the direction of an objective using a control loop mechanism.
Proportional tuning corrects for the difference between the target and measurement, known as the error,
while integral tuning accounts for past errors to eliminate the residual error. Finally, the derivative
tuning has a damping effect to prevent overshooting. [13, 14]

The limitation of PID control is that the feedback system works with constant parameters without
knowledge of the dynamics of the system. These controllers have poor performance when the dynamics
contain non-linearities and may have a delayed response to large disturbances. For these reasons, a PID
controller is not suitable for the complex water system in combination with the energy costs optimization
objective. [15]

1.3.2. Model Predictive Control
MPC is a popular method that can optimize the control for a pre-defined cost function while ensuring
that the system constraints are satisfied [16]. MPC unlike PID has the predictive ability to anticipate
future events. The control is optimized for a finite time horizon. This is a very suitable method for the
control in IJmuiden as it ensures that the safety regulations are respected by constraining the system.
The drawback of such a method, however, is the computation time and the limits to the complexity of
the system.

In order to compute the optimal solution rapidly, the system is often simplified to reduce the
complexity of the optimization problem. With these simplifications, the computations can still be
time-consuming. On the other hand, as the system dynamics are taken into account, the MPC finds
the optimal solution given its inputs.

1.3.3. Machine learning
Machine learning is being increasingly used to solve real-world problems in extremely varying
applications. Different methods are suitable for specific types of problems and are then able to analyze
data and improve through the use of data and experience. Three main types of machine learning can
be identified: supervised learning, unsupervised learning, and RL. These techniques are illustrated
in Figure 1.2. In supervised learning, the problem is solved by learning a mapping between inputs
and outputs. This is done by training on known input examples with targets, which is suitable for
problems such as fraud detection or customer segmentation. In unsupervised learning, the model aims
to describe or discover relationships in the data without prior knowledge. Using this method, you are
often working on problems such as speech analysis or image recognition. In both cases, there is a data
set available and you have an understanding of how to solve the problem.

RL is an increasingly popular technique when dealing with large and complex problem spaces. There
is knowledge about what the system should do, but you want to optimize or automate a specific process.
In RL an agent (the controller) interacts with an environment and learns to operate through the feedback
on its actions.

One of the advantages of RL algorithms is that it is a suitable method for solving systems that
include non-linear dynamics that are unknown and/or are affected by large uncertainties [8]. Since the
NZK-ARK with the IJmuiden pumping station has these properties, RL is a method with the potential
for a controller.

Accurate forecasts far into the future are difficult to make and therefore decisions need to be made
based on current expectations. There are many possible actions when controlling the water system
resulting in a large problem space. Finally, one of the drawbacks of MPC methods is the computation
time, which can be significantly reduced with the use of RL. The trade-off is that a RL model needs to
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Machine learning

Unsupervised learningSupervised learning Reinforcement learning

Classification
Regression

Clustering
Dimensionality reduction

Control

Figure 1.2: Types of machine learning and their applications

be pre-trained, which takes computation time of a similar order to the MPC evaluation time. However,
evaluating the control strategy using a pre-trained model can be done in real-time.

1.4. Research objective and questions
In this research, the potential of RL as a water system controller is investigated. This is applied to
the NZK-ARK system that ends at the IJmuiden pumping station where the safety regulations should
be respected while optimizing for energy consumption. The objective of this research is formulated as
follows:

To optimize the control of the IJmuiden pumping station using RL while complying
with local water level restrictions and compare it to the state-of-the-art MPC methods in
terms of constraint violation, energy costs, and computational speed.

An RL model will be developed, using Tensorforce [17], that receives the state of the water system
and forecasts of discharge, sea levels, and energy prices to determine the optimal control plan. The
forecasts and energy prices will be based on historic data. The water system itself will need to be
modelled to facilitate the dynamic nature of a control system. This will be done with a linear reservoir
model that evaluates the influence of specific actions on the state of the system. The RL model will be
set up to ensure that water safety is never compromised to save costs.

In order to achieve the research objective, several research questions will be answered. Firstly, it
is important to select an appropriate RL algorithm as there are many methods which are suitable for
varying types of systems and tackle different issues that can arise when training an RL agent.

Which RL algorithms are suitable for controlling a water system such as the IJmuiden
pumping station?

After selecting the algorithm, the model is first developed to deal with the classical constraints for
the water level before minimizing the costs. Before the additional complexity of cost optimization, the
model should be capable of creating a control plan to ensure the safety of the system.

How can RL deal with the water level restrictions when controlling a water system?
When sufficient performance is achieved, the cost objectives can be included in combination with

the requirements for the water level.

How can RL optimize control for objectives regarding energy costs while respecting the
water system constraints?

Finally, the RL model needs to be compared to current state-of-the-art MPC controllers to determine
how promising the method is for use in water system control. In addition, the two models will be
compared for several extreme scenarios. Throughout this research, it is also important to consider what
the (dis)advantages are of RL-based control.

How does an RL controller cope with extreme scenarios in the water system compared
to MPC?
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1.5. Thesis outline
This thesis aims to achieve the research objective, by first introducing the system to be controlled. The
IJmuiden pumping station and electricity markets in The Netherlands will be introduced in Chapters 2
and 3 respectively. The background of RL methods follows in Chapter 4. This allows a model of the
water system to be made that will be used by the controller, described in Chapter 5. Chapter 6 explains
the details of the RL method used for the control optimization, the main elements of which are shown
in Figure 1.3. The results of the model are presented in Chapter 7. Finally, the conclusions drawn and
recommendations for further research are given in Chapters 8 and 9.

Water system model
• Linear reservoir model of

NZK-ARK
• Schematization of pumps and

gate
• Wind effects

RL agent
• State and action space
• Reward structure

Electricity market
• Day-ahead market

RL model

Comparison with MPC
• Overall performance
• Extreme scenarios

Figure 1.3: Flow chart of the main elements of the proposed methodology



2
Case Study

To conduct this research project, a case study was used to explore the potential for reinforcement
learning (RL) in a real-world context. The water system that will be considered is the Noordzeekanaal-
Amsterdam-Rijnkanaal and the drainage into the North Sea through the IJmuiden pumping station.
The Amsterdam-Rijnkanaal (ARK) runs from Tiel, through Maarssen, to Amsterdam where it flows
into the Noordzeekanaal (NZK). The NZK ends in IJmuiden where the water enters the North Sea. An
overview of the system can be seen in Figure 2.1.

IJmuiden

Amsterdam

Maarssen

Tiel

Noordzeekanaal

Amsterdam-Rijnkanaal

North Sea

Waal

Lek

1

2

3

4

5 1 Prins Bernhardsluizen

2 Prinses Irenesluizen

3 Prinses Beatrixsluizen

4 Oranjesluizen

5 Zeesluis IJmuiden

Figure 2.1: NZK-ARK system including important structures and urban areas

There are several important structures in the NZK-ARK, labelled in Figure 2.1. The ARK starts in
Tiel, where the Prins Bernhardsluizen form the connection with the Waal (the main distributary branch
of the river Rhine). The ARK intersects the Lek at the Prinses Irenesluizen and later the lekkanaal at
the Prinses Beatrixsluizen, 13km downstream. Finally, the ARK flows into the IJ in Amsterdam, where

6
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the Oranjesluizen form the barrier between the IJ and IJmeer (a bordering lake east of Amsterdam).
The Oranjesluizen aid in regulating the water level in the NZK as well as reducing salt intrusion into
the IJmeer. The flow continues from the IJ into the NZK, finally reaching the North Sea at the Zeesluis
IJmuiden and IJmuiden pumping station.

There are two main sources of water for the NZK-ARK system: the ARK and the waterboards.
The Lek and Waal provide the majority of the discharge in the ARK. The discharge in the canal is
maintained to reduce salt intrusion and provide water for the surrounding area. Secondly, water is
discharged into the NZK-ARK by four surrounding waterboards that regulate water levels in the area
(Waternet, Rijnland, De Stichtse Rijnlanden, Hollands Noorderkwartier). A large portion of these areas
drain into the NZK-ARK system, shown by the green shaded area in Figure 2.1.

The dimensions of the NZK and ARK can be found in Table 2.1. Due to the lack of inundation
areas and floodplains (only 1.5% of the total area [18]), the storage area of the canal is considered
independent of the water level and therefore has a constant value. The many ports and side channels
around Amsterdam also contribute to the storage area. The water is brackish/fresh due to the mixing
of salt water from the sea that enters through the locks, and freshwater from the ARK and waterboards.
The average yearly discharge in IJmuiden is 3× 109m3/year. [19]

Table 2.1: Dimensions of the NZK-ARK [19, 20, 18, 21]

Dimension NZK ARK

Length 26km 72km
Width 270m 100− 120m
Depth 15m (11m in Amsterdam) 6m

Storage area 36× 106m2

Figure 2.2 shows the IJmuiden complex in more detail, which consists of a pumping station, a gate,
and several locks to allow shipping through the canal. The discharges through the locks are negligible
compared to that of the pumping station. The North Sea is located to the left of the complex and the
NZK to the right, which leads to Amsterdam.

Pumping station

Gate

Locks

North Sea

NZK

Figure 2.2: Aerial view of the IJmuiden complex with the important structures
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2.1. Water level regime NZK-ARK
For safety and shipping, there is a range between which the water level in the NZK should remain. The
target water level is −0.40m+NAP but the level is allowed to fluctuate between −0.55m+NAP and
−0.30m+NAP . When the water level increases above this range, there is a high water situation.

At−0.20m+NAP the first problems will arise for shipping as the minimum vertical clearance will not
be met. When this level is exceeded, the IJ-front (the connection between the Stadsboezem Amsterdam
and the IJ) will be closed off, as the first flooding will occur in Amsterdam at −0.15m+NAP . The
ARK-front (the connection between the Amstellandboezem and the ARK) can also be closed off from
the ARK if necessary. The final front that can be closed off is the Amstel-front, which occurs when the
water level in Amsterdam rises to −0.15m+NAP . [22]

A further increase to 0.00m+NAP will lead to a complete stop of all pumping into the NZK-ARK
to minimize further increases in the water level. All these measures help maintain safe water levels,
which is paramount as the system runs through two densely-populated areas of high economical value;
Amsterdam and Utrecht. A summary of the important water levels in the system can be seen in
Figure 2.3. [23]

m+NAP

-0.40 Target wl

-0.55 Lower boundary target wl

-0.30 Upper boundary target wl

-0.20 IJ-front/ARK-front closed off
-0.15 Amstel-front possibly closed off

0.00 Pumping stop into NZK-ARK

Target range

Figure 2.3: Important water levels in the NZK

2.2. IJmuiden gate
To drain water to the North Sea there are two possibilities in IJmuiden: opening the gate or utilizing
the pumping station. The gate can be opened at a minimum water level difference of 0.12m between
the North Sea and the NZK. This higher water level in the NZK is necessary to overcome the pressure
difference caused by the lower density of the brackish/fresh water in the canal compared to the saline
seawater.

The maximum discharge through the gate is 500m3/s to ensure the stability of the bed around the
gate complex. In a high-water situation, this maximum is increased to 700m3/s as flood safety becomes
a priority. In addition to these limits of maximum discharge, the discharge is currently kept as evenly
distributed as possible. For example, if it is possible to open the gate for 4 hours, it will not be opened
for 2 hours with a discharge of 500m3/s but for 4 hours with a discharge of 250m3/s. This results in
the same total discharge out of the system but with less chance of damage. [11]

2.3. IJmuiden pumping station
When the water level in the North Sea is too high to use the gate, pumping is the only option. Pumping
is possible if the sea level is at least as high as the water level in the NZK. As a result, when the water
level difference is between 0.12 and 0.0m, neither pumping nor opening the gate is possible. Generally,
around two-thirds of the water can be drained by opening the gate and the remainder needs to be
pumped [23]. Currently, the pumping station is controlled using Model Predictive Control (MPC),
which is explained in detail in Section 2.5.

There are six pumps installed at the pumping station of IJmuiden with a total capacity of 260m3/s.
Figure 2.4 shows one of the pumps and Table 2.2 gives an overview of the six pumps with their
specifications. All pumps are bulb pumps with an electrical engine.
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Figure 2.4: An example of a pump that is installed at the pumping station of IJmuiden [24, 25]

Table 2.2: Overview of pumps at IJmuiden pumping station [24]

Number of pumps 2 2 2 Total

Manufacturer Stork Stork Nijhuis -
Discharge capacity 40m3/s 40 or 28m3/s 50m3/s 260m3/s
Speeds Fixed speed Two speed Variable speed -
Pump height 1.2m 1.2m 1.2m -
Max. pump height 2.35m 2.35m 2.75m -
Power 1000kW 1000kW 1540kW 7080kW

The discharge of each pump and its corresponding power depends on the water level difference
between the NZK and the North Sea (pump height). These relationships are given in Table 2.3, where
Q-dH and P -dH are the discharge - pump height and power - pump height relationships respectively.
The relationships depend on the discharge at which the pump is operated. Pumps 5 and 6 are variable
speed pumps that have been described using three discharge modes (30, 40, and 50m3/s) however all
discharges between 0 and 50m3/s can be achieved given a low enough pump height. [26]

Table 2.3: Pump discharge and power relationships for all six pumps in the IJmuiden pumping station [26]

Pumps Discharge [m3/s] Q-dH [m3/s], [m] P -dH [kW ], [m]

1, 3 40 Q = −5.4174 · dH + 44.93 P = 208.08 · dH + 536.85

2, 4 40 Q = −5.4174 · dH + 44.93 P = 208.02 · dH + 536.85
28 Q = −6.4977 · dH + 33.149 P = 192.36 · dH + 217.26

5, 6 50 Q = −1.9822 · dH2 + 1.9726 · dH + 44.93 P = 443.91 · dH + 476.30
40 Q = −1.8544 · dH2 + 7.7740 · dH + 44.93 P = 379.09 · dH + 373.18
30 Q = −7.1021 · dH + 48.164 P = 282.97 · dH + 417.32

There are also time constraints for starting the pumping station to ensure that the electrical grid
is not overloaded. Each pump requires 5 minutes to reach the desired discharge, while if all pumps are
activated simultaneously, this increases to 25 minutes for full capacity (6 pumps). [26]

2.4. Wind set-up
The wind has a significant effect on the NZK-ARK system. Mainly in the winter months, west winds
occur regularly, causing a set-up in the North Sea reducing water level difference with the NZK. This
can significantly reduce the possibilities for using the gate, resulting in the necessity to use the pumps.
The wind does not only affect the water level in the North Sea but also in the NZK. The last section
of the NZK is relatively straight and angled to the North-West, which makes it prone to wind set-up.
This further reduces the water level difference. [26]

The set-up occurs as a result of the shear stress created by the wind with the water surface. This is
compensated by the gradient of the water level, which means that the water level deviations increase
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in magnitude as the length over which the shear stress is exerted (also known as the fetch) increases.
The water level deviations are maximum at the ends of the basin, in this case, the straight section of
the canal.

2.5. Current control
Currently, the IJmuiden pumping station is controlled with MPC, also known as moving/receding
horizon control. It is a popular and successful control method that has been applied in many industries
since the 1980s and only gained popularity. MPC computes the optimal control that minimizes a
pre-defined cost function while ensuring that the system constraints are satisfied. The future behaviour
of the system is determined over a finite time horizon. [16]

Figure 2.5: A schematization of a discrete MPC
scheme [27]

Figure 2.5 shows a discrete MPC scheme in
more detail where the model has input from the
past and then uses this in combination with the
model of the system to make predictions over
a prediction horizon. The controller requires
dynamic models of the system, often in the
form of linear empirical models to estimate the
effects of its actions. An iterative, finite-horizon
optimization is used where a control strategy
is computed for a constant period in the
future. State trajectories are explored starting
in the current state to find a cost-minimizing
strategy for the future control period (prediction
horizon). After the first step is implemented,
the horizon is shifted one timestep forwards and
the optimization is repeated starting at the new
current state. [28]

In IJmuiden, an MPC is used that relies on simplified models that describe the effects of pumping
and using the gate on the state of the system. Constraints are given to maintain a water level between
−0.30m+NAP and −0.55m+NAP . Finally, the optimization is performed to minimize energy use,
while energy is bought in advance on the futures market, with a prediction horizon of 24 hours. [29, 26,
30]

In addition to the MPC optimization, the control is set automatically when close to the lower
boundary of the target water level range. When the water level is within 2cm of the boundary, all
outflowing discharge is halted to ensure no further decrease in the water level. Neither pumping nor
opening the gate is possible. [7]



3
Electricity Markets

In many situations, as in The Netherlands, it is not yet feasible to store electricity economically and at a
significant scale with the current technology. As a result, the consumption and generation of electricity
have to be matched perfectly to maintain a safe and stable supply. When electricity storage becomes
feasible it will help stabilize the fluctuations in supply and demand, which will only increase with the
shift to more renewable energy production. [31, 32]

It is essential to keep supply equal to demand in order to maintain a stable frequency in the power
supply. Customers receive an alternating current power, which means it alternates between a negative
and positive voltage. The frequency of this oscillation is kept at 50Hz (in Europe, 60Hz in America)
at all times. If the electrical frequency deviates slightly from 50Hz, there is a high risk of damage
to equipment and infrastructure. For this reason, frequency security is one of the main focuses of
transmission system operators (TSOs) [33]. When the demand is higher than the supply, the frequency
decreases, and vice versa. The balance is very delicate due to the very slim tolerance of equipment and
infrastructure. [34, 35]

The continuous management of supply and demand is performed by the TSO. In The Netherlands
this is TenneT. The TSO aims to provide a continuous supply of electricity and facilitate the electricity
markets. There are three types of wholesale markets, where electricity is bought and sold before being
delivered to the consumer via the grid. Figure 3.1 shows the electricity markets and the relevant time
frames. On the forward and futures market, electricity is traded a long time ahead of consumption,
between four years and one month ahead. On the day-ahead market (DAM), electricity is bought and
sold in hourly blocks for the next day. Finally, the intraday market (IDM) opens after the closing of
the DAM, where electricity can be bought and sold up to 5 minutes before delivery. [36]

Real time

Balancing
markets

Delivery day

Intraday
market

Previous day

Day-ahead
market

Years/month ahead

Forward/futures
market

Figure 3.1: The types of electricity markets with their corresponding time frames

After the IDM closes, the supply and demand are matched in real-time, which is the responsibility of
the TSO. In The Netherlands, a balance responsible party (BRP) is responsible for the imbalances that
occur in their allocated portfolio. The BRP can also choose to increase their imbalance if that stabilizes
the overall system by considering the real-time imbalance prices that are provided by TenneT. [37, 36]

3.1. Day-ahead market
The DAM allows the buying and selling of electricity for the next day, in hourly blocks, with a minimum
trading quantity of 0.1MWh [38]. The market is run as a daily blind auction that closes at noon (12:00
CET) on the day before delivery. Any bids after this time will not result in a transaction. When the

11
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orders are logged by the market participants, demand and supply curves are established based on the
buy- and sell orders for each hour of the following day. The intersection between the two curves is the
market clearing price (MCP) and is paid or received by all successful participants of the auction. [39]

These successful participants are all buyers that submitted a higher price and sellers who submitted
a lower price than the MCP. The buyers and sellers are not matched individually, but rather there is
an overall buy volume equal to the sell volume per hour of the next day. The final MCP is published
at 12:55 CET and will remain fixed as the DAM is closed. In 2021, 31, 000GWh was traded with an
average price of 103EUR/MWh [40]. An example of the DAM prices for The Netherlands can be seen
in Figure 3.2.
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Figure 3.2: Regular DAM prices in The Netherlands, 01-02 January 2022 [41]

The energy bought has to be consumed in the specific hour slot for which it was purchased. In
practice, it is hardly ever possible to match the consumption exactly, which creates an imbalance that
will be charged in hindsight. This incentivizes the accurate prediction of energy consumption and
matching the auction bid as closely as possible.

Due to the high variability in demand across seasons, weeks, and during the day, there are continuous
fluctuations in the electricity price. Demand is also influenced by irregular events such as extreme
weather or so-called TV pick-ups (surges in demand when millions of people watch a television program
simultaneously). In the winter months, demand is generally higher than in summer, with an average
difference of 36% [42]. This is a result of people spending more time in their homes, an increased
demand for hot water, and the use of appliances such as space heaters and electric blankets. During the
night, consumption is lower due to the reduced domestic and commercial activity and demand surges
in the morning when people start to wake up. These trends and correlations with previous days can be
used to estimate prices for the next day when deciding how to bid before the MCP is known.

3.2. Intraday market
After the DAM is closed and the MCP is known, the IDM opens. Trading in quarter-hourly, hourly, or
longer interval blocks is possible continuously up to 5 minutes before delivery. The trade is instantly
performed as soon as a buy and sell bid are matched. The IDM is important in facilitating the energy
transition and optimizing the short-term market. The high variability in renewable energy production
means that more flexibility is required to maintain the balance in the power supply. [43]

The flexible nature of the IDM allows BRPs to compensate for imbalances between previously bought
energy and their actual consumption.

In 2021, 5, 800GWh was traded, which was a significant increase compared to the previous year with
4, 300GWh [40], though still at a far smaller scale than the DAM. This highlights the increasing interest
in trading in the intraday market, which is also observed in other European countries. This is coupled
with the increasing amount of renewable energy production, making the balancing of DAM bids more
challenging [44].
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3.3. Suitable markets for water system control
Currently, the IJmuiden pumping station is controlled with MPC using energy bought on the futures
market, at least a month ahead of consumption. During more extreme weather events, accurate forecasts
of the water level in the North Sea can only be made approximately 12 hours beforehand as the
windspeeds can be difficult to predict [26]. During calm weather, forecasts can be made accurately
longer ahead of time. Forecasts for inflowing discharges from the waterboards and ARK are also far
from accurate far ahead into the future. The uncertainties in the forecasts increase when made further
into the future. This means that months ahead of time when bids are made on the futures market,
the exact water levels cannot be taken into account. On the other hand, with the DAM and IDM,
the electricity is bought far closer to the consumption time and forecasts of water level and inflowing
discharges into the system are more accurate. These two markets, therefore, show the most potential
for cost optimization in water system control, compared to the futures market. Due to the speed of RL
models, control plans can be made fast enough to bid on the IDM.

The water system is relatively flexible compared to other infrastructure that may be tied to specific
times for consumption or require longer periods of time to change consumption. The pumps require a
maximum of 25 minutes to reach full capacity, while the gate can be opened significantly faster. This
means that the system is able to respond to changes in the electricity market rapidly and take advantage
of lower or even negative prices.

Electricity prices are driven by supply and demand, which means that a lower demand than supply
reduces the price to help maintain the balance in the power supply. As a result, negative electricity
prices can occur if there is a sudden oversupply, meaning that producers are charged. This stimulates
more consumption and reduces production. Producers will weigh the costs of stopping and restarting
their plants with the costs of selling at a negative price. As power generation with inflexible renewables
increases, negative prices will occur more often in the future. This has already been observed in Germany,
where 39 days in 2019 saw negative prices on the DAM [39]. Though the occurrence rate is far lower
in The Netherlands, with the increasing percentage of renewable energy production, it is expected to
increase in the future. An example of negative electricity prices on the DAM in The Netherlands can
be seen in Figure 3.3. With the flexibility of the water system, the negative energy prices can be used
to minimize operating costs as well as stabilizing the power supply.
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Figure 3.3: Negative DAM prices in The Netherlands, 15-16 July 2022 [41]

By bidding on the DAM as well as the IDM, there is a large potential to reduce pumping costs in
IJmuiden. An initial control plan can be made the day before to place a bid on the DAM. At this
moment in time forecasts are already reasonably accurate, however, within hours of the actual control,
the uncertainties will have decreased further. Reliable forecasts are available at least 2.5 hours ahead
of time depending on the weather conditions [26]. Opportunities may also arise in the IDM, which
would mean a different control strategy is more economical. If such a market strategy would be used in
IJmuiden it may require two control algorithms. The first would create the control plan for bidding on
the DAM. The second model would receive the initial control plan as input with the newest forecasts
and electricity prices.



4
Deep Reinforcement Learning

In this thesis, we investigate the applicability of RL for the control of the pumps and gates in IJmuiden.
The control using RL consists of an agent that can perform actions within an environment. In this case,
the environment is a model representation of the IJmuiden water system coupled with the electricity
market. The water system changes according to which action is chosen. For example, the agent chooses
a specific pump discharge, which combined with the inflowing discharge in the system results in a change
in the water level. The state of the water system determines which actions are possible. As described in
Section 2.1, the water level difference between the NZK and the North Sea indicates whether pumping
or opening the gate is possible.

The agent optimizes an objective function that reflects the desired behaviour. The goal is to minimize
electricity costs while ensuring that the water level remains within the target range. When deep
reinforcement learning (DRL) methods are used for the optimization, the decisions are made based
on the output of neural network (NN). The state of the system is given as input and the output
indicates which action should be taken.

This chapter starts by introducing the important concepts in RL, the mathematical background,
and the popular methods. Then the different algorithms will be discussed that can be applied to allow
the agent to learn. The most suitable and promising algorithms will be presented in detail. Finally, the
method for hyperparameter optimization will be introduced, which is an important step in improving
the final performance of the model.

4.1. Reinforcement learning concepts
Figure 4.1 shows an illustration of the interaction between the agent and the environment. To make
this clearer an explanation is given below of the important terms in RL. [45, 46]

Agent

Environment

action, at

rt+1

st+1

reward, rtstate, st

Figure 4.1: Interaction between agent and environment for a Markov Decision Process

Development of an RL algorithm starts by defining the environment and the agent. The agent is
the learner and decision-maker that interacts with the environment. At every step, the agent receives
an observation of the environment and a reward and performs an action based on these inputs. When
following the representation in Figure 4.1 it can be seen that the agent interacts with the environment
at time steps, t = 1, 2, 3, ..., and at each time step t receives the state of the environment, st. Using the
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observed state the agent chooses an action from the possible actions in that state, at. In the next time
step the agent will receive the reward and new state of the environment, rt+1 and st+1 respectively.

The reward indicates how good/bad the action was. The agent’s goal is to maximize the cumulative
reward, also known as the return. This is done by learning a value function that gives an estimation
of the expected rewards in the future, given the current state. A value function can also be found
expressed in terms of a state-action pair. The value function is used to choose the action with the
highest expected return. The mapping from the states to actions is known as the policy. When the
agent learns, the policy is continuously changing, approaching the optimal policy.

4.1.1. Markov Decision Process
In RL problems, the agent makes decisions based on the current state of the environment. When this
is repeated it becomes a sequential decision-making problem and the mathematical framework used to
formulate the problem this is known as a Markov Decision Process (MDP) [8]. This allows the MDP
to take current- as well as future rewards into account and thereby weigh the importance of immediate
or delayed rewards. All MDPs need to satisfy the Markov property: given the present state, the future
state is independent of past states, as shown in Equation (4.1) [47]. The probability of the next state,
st+1, given that the previous state was st is equal to the probability of st+1 given all previous states.

P (st+1|st) = P (st+1|s1, ..., st) (4.1)

The (Markov) assumption holds for the dynamics of the IJmuiden pumping station. The model used
for the water system is explained in detail in Chapter 5, which shows that all data needed to determine
the transition to the new state is included in the previous state. This is often not the case for many
tasks performed with RL, which highlights the importance of choosing the appropriate method. Certain
methods are more suitable for Markov environments as the Markov property is exploited, whereas other
methods perform best in non-Markov environments.

An MDP model contains a set of possible states of the environment, the actions that can be taken
in each state, and a real-valued reward function. The agent should make a decision based on long-term
rewards rather than purely instantaneous rewards of a single transition towards a new state. The
optimal solution can therefore include an action with a lower reward now in order to get a large reward
several steps ahead. The return is the long-term sum of rewards with a discount factor, γ, to emphasize
short-term rewards and ensure that the return is finite. Equation (4.2) shows the return where 0 ≤ γ ≤ 1.
Discounting future rewards is beneficial as uncertainties in the future may not be accurately represented
and therefore short-term rewards may be desirable [47].

R = r + γrt+2 + γ2rt+3 + ... =

∞∑
k=0

γkrt+k+1 (4.2)

The aim is to determine a policy that maps the states to actions while maximizing the return
(Equation (4.2)). The value function gives the expected return while following a specific policy. The
value function of state s when following policy π is expressed as vπ(s), also known as the state-value
function for policy π. Equation (4.3) shows the value function where Eπ denotes the expected value of
a random variable given that policy π is followed.

vπ(s) = Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣ s
]
, for all s ∈ S (4.3)

The policy function can also be defined as qπ(s, a), also known as the action-value function for policy
π. This is the expected return, starting in state s and taking action a.

qπ(s, a) = Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣ s, a
]
, for all s ∈ S, a ∈ A (4.4)

4.1.2. Reinforcement learning methods
The value function is learned using estimates of the return. Two methods that assume a perfect model
of the environment in the form of an MDP are dynamic programming (DP) and exhaustive search. DP
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methods break the problem down into sub-problems, solve these sub-problems, and then combine the
solutions while an exhaustive search goes through all possible paths and possibilities. The assumption
of a perfect model and the high computational cost means that the utility of these types of methods is
limited in the IJmuiden application. Methods that do not assume full knowledge of the environment
are temporal-difference (TD) learning and Monte Carlo (MC). This means that the probabilities of the
transitions are not known. No prior knowledge of the environment is needed and learning is done from
experience (sample sequences of states, actions, and rewards). An overview of these methods and how
they differ is shown in Figure 4.2.
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learning

Dynamic
programming
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...

Width of update

Depth/length
of update

(bootstrapping, λ)

Full
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Shallow
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Deep
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Figure 4.2: Width and depth of backups for main RL methods

MC follows the policy from a given state until the episode terminates to obtain an unbiased sample of
the return distribution. The method can have high variance due to the stochasticity of the transitions. In
comparison, with TD, the recursive property of value functions is used as there is already an estimate of
the value function, as shown in Equation (4.5). This method does not have high variance as the estimate
of the value function, Q̂π(s

′, π(s′)), provides an expected return distribution from s′ as opposed to a
sample from the distribution. However, the value function is being learned and is therefore biased.

qπ(s, a) = r + γQ̂π(s
′, π(s′)) (4.5)

The value function can be learned for the policy that was used to generate the data (on-policy) or
for another policy (off-policy). Off-policy uses samples from an arbitrary policy to reach the optimal
policy, which is more efficient in sampling. Learning is generally done with samples obtained with
exploratory policies that aim to provide diverse samples to learn from. This ensures that the value
function is accurate for all states that can be visited by the optimal policy. The sub-optimal policy may
not visit all states that are visited by the optimal state and therefore stochasticity is added to the policy.
Secondly, sample diversity is very important when using deep neural networks for the approximation of
the value function as large amounts of diverse examples are required for generalization.

Method comparison
The algorithms that are mainly applied are either TD or MC as it is not assumed that there is full
knowledge of the environment. In most practical cases this is indeed not known which makes the other
methods unsuitable. In the case of IJmuiden, the inputs will contain forecasts which are never exact
and these uncertainties mean that the exact dynamics of the system are not known. Below is a list of
the key differences between these two learning method types.
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• Backup depth
TD can learn before the episode is finished and the final return is known. This also means that
online learning and learning from incomplete sequences are possible. On the other hand, MC needs
the episode to terminate before learning. TD can be used for MDP that are continuing/cyclic
while MC only for those that are episodic/terminating.

• Variance
MC had a high variance and no bias as no estimates of the values are used, only the final return
of the episode. TD has low variance with some variance due to the use of value estimates in the
updates.

• Efficiency and convergence
TD exploits Markov property where MC does not. This means that TD is usually more efficient in
Markov environments and MC in non-Markov environments. MC has good convergence properties,
is not sensitive to initial values, and is simple to understand and use. TD is usually more efficient
but more sensitive to the initial values.

When considering the IJmuiden pumping station several aspects suggest that TD may be a
more suitable technique. Firstly, the control in IJmuiden is continuous and does not have a natural
termination as is the case with a game such as PacMan, where the game ends when all the food is eaten
or PacMan touches a ghost. The problem formulation means that the water system is a near-Markov
environment; the next state is determined by the current state and the chosen action, however, there
might be a slight uncertainty due to the use of forecasts.

4.2. Deep reinforcement learning algorithms
As RL problems become more complex it is no longer possible to explicitly store values and actions for
all states. This is solved by using a function to approximate and generalize the state space. In addition,
for many real-life problems, the true state is unknown, and instead, an observation is used, often with
high dimensionality and redundancy. NNs can represent a function given enough parameters to fit.
This is a significant advantage as any smooth function can be approximated which allows the network
to learn complex non-linear policies/value functions. The large number of parameters does come with
a drawback: optimization of these parameters is difficult and overfitting is more likely. The model can
learn too well, achieving a high performance on the training data but performing very badly on new,
unseen inputs. We require the model to generalize based on the training examples. When a deep neural
network (DNN) is used for the approximation, the algorithm is a DRL algorithm. This is often the case
for large complex environments such as the IJmuiden pumping station considered in this research.

There are many different DRL algorithms that are suitable for different types of problems. Most
aim to find an approximation for the optimal policy/value function (the mapping from states to actions
or states to the expected reward).

4.2.1. Common solution components
Several components are often included in DRL algorithms to improve performance or avoid pitfalls [8].
These are also likely to occur in the training of the RL agent for the control in IJmuiden.

• Delayed targets
A strong correlation exists between the network predictions and the bootstrapped value estimates
(target values). This occurs because the experience samples that are used for training are gathered
by following the current policy. Parameter updates in DNNs have a global effect and therefore
poor updates affect predictions in the whole state space. This can cause divergence of the learning
process [48], which is solved by calculating target values using a different network (target network).
This target network is an older version of the value function and allows the agent to train towards
a more stable target.

• Trust region updates
Due to the non-linearity of DNNs, small changes to the parameters can have a significant and
unexpected effect on the behaviour of the function. Smaller learning rates reduce this issue however
this is often not feasible due to the constraint of computation. There are three possible solutions:
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constraining the change to the policy [49], clipping the objective function to only consider small
changes to the policy [50], and constraining the parameters to not deviate too far from the running
average of previous policies [51].

• n-step returns
A problem arises with bootstrapping methods caused by the bias in updates. These methods
generally learn faster, however, there is also a danger that the algorithm fails to learn anything
useful. This is less likely when not only one step ahead is considered. As a result, the true reward
observed during n time steps and the learned value estimate in time step n+1, are used to estimate
the return, as shown in Equation (4.6). As with the use of target networks, this technique reduces
the correlation between the target value and the value function being learned.

q(st, at) = rt + γrt+1 + ...+ γn−1rt+n−1 + γnQ̂(st+n, at+n) (4.6)

• Experience replay
During the training of DNNs, gradients are calculated which can have a strong temporal correlation
with the experiences (sample data). This is avoided by creating a buffer of experiences from
which a random batch of samples can be taken. This also improves convergence as even for
sudden changes in the current policy, the distribution of training samples only changes slowly as
experiences are added to the buffer. In the case of off-policy learning, a large portion of previous
experiences can be used for learning, which also improves sample efficiency.

• Input, activation, and output normalization
Non-linear activations used in DNNs can create near-zero gradients when inputs to a layer are
not within a sensible range. As a result, the parameters leading up to the activation will not be
updated and the network will not learn. There are many normalization techniques such as batch
normalization [52], input normalization, layer normalization [53], and weight normalization [54].
On the other hand, it is also important that gradients do not become too large. Due to this DRL
algorithms can be sensitive to the scale of the rewards.

When considering the IJmuiden pumping station, several components described above are expected
to be beneficial for the performance of the RL agent. The experience samples with be generated by
following the current policy resulting in a strong correlation. The agent will choose the outflowing
discharge in the system and observe the new state and rewards. These samples are not available before
training and will be gathered as the agent is trained to explore the relevant parts of the state- and
action space. Secondly, there is a strong temporal correlation between experience samples. This is due
to the gradual changes in the state of the water system. When a normal discharge of 50m3/s occurs
in the NZK-ARK (with a storage area of 36× 106m2) there will only be a water level change of 5mm
after 1 hour. The water levels in the system are highly correlated as well as many other parameters in
the state. Therefore, it is expected that algorithms with experience replay will yield good results.

Normalization has shown to be an effective technique to improve DNN performance in many
applications, and therefore it is expected to be beneficial for learning speed and final performance
in this application as well. If a bootstrapping method is selected, n-step returns are also expected to
increase final performance.

4.2.2. Popular algorithms
This section discusses the more popular algorithms that implement varying combinations of the
components described above. The algorithms are generally suitable for certain types of RL problems
and have different advantages and disadvantages. [8]

• Neural Fitted Q Iteration (NFQ)
This algorithm learns offline using a fixed experience buffer of previously obtained interaction
samples. To improve convergence, the target Q-values are calculated for all states at the start of
each optimization iteration. Secondly, artificial experience samples are added to the database at
goal states, where true Q-values are known.
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• Deep Q-network (DQN)
This method builds on the NFQ algorithm but adds new experiences to the buffer (experience
replay) as obtaining a fixed set of experiences is often not possible. The constantly changing
buffer and learned Q-function means that no accurate targets are available initially. A copy of
the Q-function is kept in memory and used as a target network, which is updated to the current
parameters at regular intervals (delayed targets). This algorithm has achieved high success in
high-dimensional and large-scale problems. It can achieve stable training for MDPs with uncertain
environments and can handle a continuous state space. However, the action space is discrete and
it is a value-based method, which means that direct optimization of the policy is not possible.

• Double Deep Q-network (DDQN)
The max operator used for the Q-values causes DQN to suffer from a bias due to the overestimation
of the returns. The DDQN method uses the same two networks, where the target network is the
same as in DQN. The second network is used to determine for which action the target Q-function
is evaluated. This small change to the method has been shown to improve the convergence and
performance of the algorithm.

• Deep Deterministic Policy Gradient (DDPG)
While DQN is not applicable for environments with continuous action spaces, this closely related
actor-critic method is suitable. The critic estimates the value function and the actor updates
the policy distribution according to the critic. Both functions are represented by a DNN and a
copy is used as a target network for each. The method is off-policy which means that experience
replay can be used. The algorithm is most suitable for problems where the domains have stable
dynamics.

• Trust Region Policy Optimization (TRPO)
This on-policy method is relatively complicated and has inefficient sampling, however, can reliably
improve the policy. It is a policy gradient method that uses a large number of episodes following
the current policy to get state-action pairs with MC estimates of the returns.

• Generalized Advantage Estimate (GAE)
The TRPO algorithm can be used in combination with an exponentially-weighted estimator of
the advantage function for the value function. The value function is learned from MC estimation
including trust region updates. [55]

• Proximal Policy Optimization (PPO)
TRPO prevents the use of certain NN architectures. To solve this and reduce the complexity of
the TRPO algorithm, a clipped version of the objective function is used combined with GAE.

• Asynchronous Advantage Actor Critic (A3C)
Rather than collecting environment samples on-policy with single policies consecutively, A3C uses
multiple parallel actors with globally shared parameters (weights in the NN for approximation
of the value function). Each actor calculates updates for shared parameters which are applied
asynchronously. To make sure that different parts of the state and action space are explored,
all actors use a different exploration policy. Another variant of this algorithm is Advantage
Actor Critic (A2C), which works in the same manner only the updates are not applied
asynchronously. [56]

• Actor Critic with Experience Replay (ACER)
On-policy methods (TRPO, PPO, A3C) have a significant drawback in that past experiences
following other policies cannot be used. This algorithm combines the good convergence properties
of these methods with the higher sample efficiency of off-policy methods. This is done by combining
A3C with a trust region update scheme. Actor Critic (AC) is a similar method, the only difference
being that experience replay is not included. [51]

A concise overview of the algorithms and their main differences can be found in Table 4.1.
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Table 4.1: Overview of Deep reinforcement learning algorithms and their main components [8]

Algorithm Policy Return estimation Update constraints Data distribution

NFQ Discrete 1-step Q Bootstrap with old θ Off-policy fixed apriori
(D)DQN Discrete 1-step Q Bootstrap with old θ Off-policy experience replay
DDPG Continuous 1-step Q Bootstrap with old θ, w Off-policy experience replay
TRPO Discrete/continuous ∞-step Q Policy constraint On-policy
PPO Discrete/continuous n-step advantage 1 Clipped objective On-policy
A3C Discrete/continuous n-step advantage - On-policy
ACER Discrete/continuous n-step advantage Average policy network On-policy + Off-policy

Several aspects were considered when determining which RL algorithm was most suitable for the
IJmuiden pumping station. Firstly, when looking at the action space, both a discrete- and continuous
action spaces are possible. Technically, all outflowing discharges within the feasible region are achievable,
however, this can easily be discretized without losing control flexibility. As a result, both algorithms
with discrete and continuous action spaces are suitable.

When looking at the previous performance of algorithms for other applications, DQN jumps out
with state-of-the-art performance on domains with discrete actions in terms of final performance and
data efficiency [57]. This is achieved with the addition of extensions to the algorithm such as double
Q-learning and n-step returns, which also lead to faster training [46]. These advantages in combination
with the relative simplicity of the algorithm suggest that DQN is a suitable RL algorithm for the case
study. During model development, tests can be done to determine which extensions are suitable for the
specific environment of IJmuiden.

NFQ has a fixed experience buffer which is less suitable for this application. Initially, the model
needs to learn to maintain the necessary water levels after which the cost optimization becomes the
important objective. This is learned best when the experience buffer can change with the improving
performance of the agent. This algorithm does not allow the reward to change during training as the
experiences are all sampled before training starts.

DDQN is an extension to DQN that only allows continuous action space that could be advantageous
for this case as there is an ordinality in the actions. This ordinality is lost when represented discretely.

TRPO, PPO, A3C, and ACER also allow continuous action spaces. TRPO and A3C have inefficient
sampling and TRPO is relatively complicated.

Overall, DQN is a suitable algorithm for the initial implementation of the agent. The algorithm
only allows discrete action spaces. After the model has been successfully implemented, other algorithms
can be tested to see if performance can be improved further. Using continuous action spaces may yield
better results as the ordinality of the actions is preserved.

4.2.3. Deep Q-network
The DQN algorithm was developed in 2015 by DeepMind and had great success in solving a range of
Atari games to a sometimes superhuman level [48]. It consists of Q-learning with deep neural networks
combined with experience replay. The algorithm only allows discrete action spaces, which means that
the possible discharge of the pumps and gate will need to be discretized.

Q-learning is based on the Q-function, qπ(s, a), that represents the expected discounted sum of
rewards (return) when in state, s, and first taking action, a, after which policy, π, is followed. The
Q-function is updated using the Bellman optimality equation iteratively (see Equation (4.7)) which
converges to the optimal policy. [58]

qi+1(s, a) = E
[
r + γ max

a′
qi(s

′, a′)
]

(4.7)

The NN is trained using examples of experiences in the environment. These consist of a starting
state, chosen action, received reward, and the new state. New experiences are generated by allowing
the agent to make decisions following an ϵ-greedy policy. An action is either selected at random, with
a probability of ϵ to explore the state space or following the current policy. New experiences in the
environment are continuously added to an experience replay from which sampling is randomly performed
at regular interaction intervals. The buffer of experiences is constantly changing and therefore target

1(GAE)
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values cannot be determined a priori. The optimization targets are calculated using the target network
with the same architecture as the prediction network. The target network uses frozen parameters (θ−)
that are periodically updated to the values in the prediction network (θ). This leads to more stable
training as the target function is fixed for a while. An illustration of the architecture of these networks
can be seen in Figure 4.3.

... ...
...

...State

Q-value action 1

Q-value action 2

Q-value action N

...

Figure 4.3: Schematization of a Deep Q-network

The use of two networks that are constantly changing highlights the challenge of chasing a
non-stationary target. The periodic updating of the target network improves performance as the target
network is stable for the interval between each parameter update.

Typically when training a NN we seek to minimize or maximize an objective function. In the process,
the parameters of the network are updated according to the gradient of the loss function, which shows
the direction that minimizes this loss. Calculating how to update each parameter in the NN relies on
the chain rule to propagate the gradient backwards through the layers of the network. The loss function
used to update the NN in DQN is shown in Figure 4.4, which consists of two parts from the target and
prediction network.

Input

Target network, Q̂(s, a;θ−)

Prediction network, Q(s, a;θ)

Parameter update at
constant interval

[ target︷ ︸︸ ︷
r + γ max

a′
Q(s′, a′;θ−)−Q(s, a;θ)︸ ︷︷ ︸

prediction

]2

Figure 4.4: DQN loss function with components from the target and prediction network

The learning rate determines how much the NN weights are adjusted with respect to the gradient
descent loss. It has to be chosen appropriately as it greatly influences the convergence speed. If the
learning rate is chosen too large there is a chance that minima are overshot whereas a small learning
rate can take a very long time to converge. The update is performed as shown in Equation (4.8).

New_Q(s, a)︸ ︷︷ ︸
New Q
value

= Q(s, a)︸ ︷︷ ︸
Current
Q value

+

Learning
rate︷︸︸︷
α [R(s, a)︸ ︷︷ ︸

Reward

+

Discount
rate︷︸︸︷
γ max

a′
Q̂(s′, a′;θ−)︸ ︷︷ ︸

Max expected
future reward

−Q(s, a;θ)] (4.8)

The DQN pseudo code is shown in Algorithm 1, which shows the main steps performed to train the
RL agent and how the NN is updated.
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Algorithm 1 Deep Q-Network [48, 59, 60]
1: Input: state of the water system
2: Output: Q action value function (from which we obtain policy and select action)
3: Initialize replay memory D
4: Initialize action-value function Q with random weight θ
5: Initialize target action-value function Q̂ with weights θ− = θ
6:
7: for each episode = 1 to M do
8: for each t = 1 to T do

9: Following ϵ-greedy policy, select at ←

{
a random action with probability ϵ

argmaxa Q(s, a;θ) otherwise
10: Execute action at and observe reward rt and new state st + 1
11: Store transition (st, at, rt, st+1) in D
12: // experience replay
13: Sample random minibatch of transitions (sj , aj , rj , sj+1) from D

14: Set yj ←

{
rj if episode terminates at step j + 1

rj + γ maxaj+1
Q̂(sj+1, aj+1;θ

−) otherwise
15: Perform a gradient descent step on (yj−Q(sj , aj ;θ))

2 w.r.t. the network parameter θ
16: // periodic update of target network
17: Every C steps reset Q̂ = Q, i.e., set θ− = θ
18: end for
19: end for



4.3. Hyperparameter optimization 23

4.3. Hyperparameter optimization
Training times and required memory can be decreased and performance increased by choosing the
appropriate hyperparameters. This includes parameters for the neural networks but also those of the
chosen RL algorithm, such as the discount rate and exploration. All these parameters are set before
training starts.

The most common methods for hyperparameter optimization are manual, random search, grid search,
and Bayesian model-based optimization. To illustrate grid and random search, Figure 4.5 shows the
search for two parameters, where one parameter is far more important than the other. Both search
techniques perform nine trials within the search space. In random search, the space is a bounded
domain of parameter values, and points are randomly sampled. Grid search defines the space as a grid
of parameters where all positions in the grid are evaluated.
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Figure 4.5: Grid and random search with nine trials for optimizing a function f(x, y) = g(x) + h(y) ∼ g(x)

Figure 4.5 highlights one of the drawbacks of grid search. The model has to be trained 9 times,
while only 3 values are explored for both parameters. As a result, the best model found can still be far
from optimal. The search is also an exponential time algorithm as the time taken grows exponentially
with the number of parameters to tune. Random search generally performs better as the search space
grows and when certain parameters are more important.

However, random search does not take into account any of the previous trials while these do
contain information about possible promising values. This forms the basis of Bayesian hyperparameter
optimization as this technique creates a probability model of the objective function to select the most
promising parameters [61]. These parameters are then evaluated in the actual objective function. In
the case of a reinforcement learning problem, the objective function could be the average return for a
set of test cases. [62]

4.3.1. Bayesian Model-Based Optimization
The method that will be used for hyperparameter optimization is Sequential Model-Based Optimization
(SMBO) with Tree Parzen Estimator (TPE) [62]. Hyperparameter optimization is represented by
Equation (4.9), where f(x) is an objective function that gives a score to minimize. The objective
function takes the set of hyperparameters as input and returns a single score.

x∗ = argmin
x∈X

f(x) (4.9)

The challenge is that evaluating the objective function is extremely expensive as the agent needs to
be trained and then validated for each set of hyperparameters tested (trial). To reduce the number of
trials needed to find a near-optimal set of hyperparameters, a probabilistic model (surrogate model) is
used to map the hyperparameters to a probability of a score in the objective function (p(y|x)). After
each new trial, the new results are incorporated into the surrogate model. This becomes very efficient
with a large search space as slightly more time is spent selecting the next hyperparameters to reduce
the number of expensive evaluations of the objective function.

The steps described above are the main elements in SMBO. There are multiple methods to construct
the surrogate model, such as gaussian processes (where p(y|x) is modelled directly), random forest
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regressions, and TPE (where p(x|y) and p(x) are modelled). [63]
The selection is done by maximizing the expected improvement as shown in Equation (4.10), where

y∗ is a threshold score of the objective function. This means that the best hyperparameters are chosen
under the surrogate model of p(y|x). The TPE only uses performance in previous trials without taking
into account the correlation between the hyperparameters.

EIy∗

hyperparameters︷︸︸︷
(x) =

∫ ∞

−∞
max( y∗︸︷︷︸
target performance

−

loss or score︷︸︸︷
y , 0) p(y|x) dy (4.10)

In TPE the surrogate model is constructed by using the Bayes rule and does not directly represent
p(y|x). The distribution of the probability of the hyperparameters given a score is expressed depending
on whether the score is above or below a threshold, as shown in Equation (4.11) and Figure 4.6.

p(y|x) = p(x|y) ∗ p(y)
p(x)

, p(x|y) =

{
l(x) if y < y∗

g(x) if y ≥ y∗
(4.11)
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Figure 4.6: Tree Parzen Estimator; (a) objective function scores for hyperparameter values; (b) probability
distributions for hyperparameters above and below the threshold score

In TPE samples are drawn from l(x) and evaluated in terms of l(x)/g(x). The samples, therefore,
have a higher chance of scoring below the threshold score and a lower chance of resulting in a score
above the threshold. The new trial is performed with the set of hyperparameters that performed best
and therefore have the highest expected improvement. Subsequently, these parameters are evaluated
using the true objective function. The surrogate model is an estimate of the objective function which
is repeatedly updated with new trials.



5
Water System Model

This chapter describes how the IJmuiden pumping station and NZK-ARK system have been modelled.
This model is used by the RL model to determine the effect of the agent’s actions. The model includes
the NZK-ARK system, surrogate models for the pumping station and gate as well as the method used
to take wind set-up into account.

5.1. NZK-ARK system
A linear reservoir model will be used to represent the NZK-ARK system, as described in [64]. There
is a fixed surface area of the system and the net discharge determines the change in water level. The
simplification is appropriate as there are no inundation areas or floodplains. A schematization of the
linear reservoir can be seen in Figure 5.1, and Equation (5.1) shows how the water level change in the
system is calculated.

h [m+NAP]

A [m2]

Qout [m
3/s]

pumping / gate
Qin [m3/s]

waterboards + ARK

Figure 5.1: Linear reservoir model of the NZK-ARK

∆h [m] =
dt ∗ (Qin −Qout)

A
(5.1)

where:

∆h Water level change in NZK-ARK [m]
dt Time step [s]
Qin Inflowing discharge [m3/s]
Qout Outflowing discharge [m3/s]
A Storage area of the NZK-ARK [m2]

The depth of the system is approximately 11m, with a storage area of 36×106m2. The flow velocities
in the canal are small, 0.054m/s on average during 2021 [65].

The inflowing discharge is found by combining the discharges of the four waterboards and in the
ARK at Maarssen. Direct rainfall is neglected since the cumulative rainfall is very small compared to
the actual discharge in the system. The outflow is chosen by the RL agent and the possible choices are
determined by the pump and gate constraints as well as the water level in the North Sea.

25
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If the sea level is at least 0.12m lower than that in the NZK, the model can only choose to use the
gate. If the sea level is between 0.12 and 0m below the level in the water system, neither pumping
nor opening the gate are possible. If the water level at sea is equal to or higher than that in the NZK,
pumping is possible.

5.2. IJmuiden pumping station
5.2.1. Surrogate model - pumping station
To simplify the system, the whole pumping station was considered as if it consisted of one pump,
as performed in [64]. The single pump was described by a maximum discharge depending on the
pump height and a power consumption as a function of the discharge and pump height. To determine
the maximum discharge, the Q-dH relationships of the individual pumps in Table 2.3 were combined.
This was done by taking the case where discharge was maximum for each pump type. The resulting
relationship is shown in Equation (5.2).

Qp,max [m
3/s] = −1.9644 · dH2 − 17.7244 · dH + 269.58 (5.2)

The maximum pump discharge depends only on the pump height. Figure 5.2 shows the feasible
discharges for the pumping station.
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Figure 5.2: Q-dH relationship for pumps showing the feasible workspace

The power consumption depends on the pump height and discharge as well as which pumps are used
as each pump has a different power curve. The relationship for the simplified single pump was fitted by
optimizing the pump configuration for varying combinations of discharges and pump heights to minimize
power consumption. The optimization was formulated as a Mixed Integer Programming (MIP) problem,
which was subsequently solved using the Gurobi optimizer [66]. MIP problems are commonly described
as an objective (minimizing the power consumption) and constraints (six possible pumps to activate).
An elaborate explanation of the method can be found in Appendix A.

The resulting power consumption for the optimal pump configurations can be seen in Figure 5.3.
This also shows the boundary of the feasible pump discharges as calculated in Equation (5.2). The
missing data in the figure was due to some discharge and pump heights not being achievable with
combinations of the pump modes. However, all discharges in the feasible region can be achieved in
reality with the variable speed pumps. This could not be calculated during the optimization as the
variable speed pumps were simplified into three modes (30, 40, and 50m3/s) [26]. A function was fitted
to the MIP solution to ensure that the power consumption could be calculated throughout the feasible
workspace.
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Figure 5.3: MIP results for the power consumption of the optimal pump configuration

A fitted function was found using a least-squares solution to the linear matrix equation as shown in
Equation (5.3). The solution can be found in Equation (5.4). This matrix was chosen as it produced
an accurate representation of the whole feasible pumping region.

[
dH Q dH2 dH ·Q Q2

]
· x⃗ = P (5.3)

Pp [kW ] = a · dH + b ·Q+ c · dH2 + d · dH ·Q+ e ·Q2

a = −2.64e+ 02

b = 8.30e+ 00

c = 1.03e+ 02

d = 8.53e+ 00

e = 2.77e− 03

(5.4)

The relationship between the power consumption and the discharge and pump height can be seen
in Figure 5.4.
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Figure 5.4: Fitted P -Q-dH relationship for the MIP results for the power consumption of the optimal pump
configuration

This resulted in a simplification of the pumping station where the controller could choose a discharge
in the feasible workspace (shown in Figure 5.2), which depended on the pump height. The chosen
discharge and the pump height resulted in an optimal power consumption, which can be seen in
Figure 5.4.

If all pumps are activated simultaneously, it takes a maximum of 25 minutes for all pumps to reach
maximum capacity and a single pump requires 5 minutes [26]. For the purposes of this research, it is
assumed that the pumps can instantaneously reach the desired discharge. Time steps of 1 hour are
used which means that the start-up time can become a significant portion of the time step. The effect
of this assumption will be analysed with the results of the RL model.
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5.2.2. Surrogate model - gate
A simplification was made similar to that of the pumping station to simplify the behaviour of the gate
and provide possible actions for the controller. The gate consists of seven trumpet-shaped tubes that
were simplified into a single gate. The lowest point of the tubes is at −9.25m+NAP and the entirety
of the tubes are submerged under water.

The behaviour of the gate was described by Equation (5.5) using the parameters specified in Table 5.2.
The schematization is illustrated in Figure 5.5. This shows the relationship between the maximum
discharge and the water level difference between the NZK and the North Sea. [67, 68, 69]

Table 5.2: Parameters of the gate for calculation of the maximum discharge [67]

Parameter Symbol Value Unit

Number of tubes n 7 −
Width of each tube B 5.9 m

Throat height hk 4.8 m
Contraction coefficient α 1.0 −
Gravitational constant g 9.81 m/s2

Qg,max [m
3/s] = n · α ·B · hk ·

√
2 · g · dH (5.5)

North Sea

B

dH

hk

NZK

Figure 5.5: Gate schematization for the calculation of the maximum discharge

There are two additional constraints of a maximum discharge of 500 or 700m3/s, depending on the
water level, and a minimum water level difference of 0.12m. The maximum discharge is set is in order
to limit damage to the bed around the gate. If the water level in the NZK exceeds −0.3m+NAP it
is a high water situation and the maximum discharge is higher. The minimum water level difference
between the North Sea and the canal reduces salt intrusion near the bottom of the canal.

When the constraints of the gate, as well as those from the water system, were combined, a feasible
discharge region was found as shown in Figure 5.6. The two scenarios, with and without high water,
are represented by the green region and the combination of the green and orange regions respectively.
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Figure 5.6: Q-dH relationship for gate showing the feasible workspace during regular and high water conditions
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The power consumption of the gate was not taken into account as the opening and closing consume
a negligible amount of power compared to that of the pumps.

5.3. Wind set-up
The effect of wind set-up is shown in Figure 5.7, which illustrates the resulting water levels caused by
the shear stress of the wind. The canal has been schematized as a basin. The water level difference is
calculated using Equation (5.6), which is explained in more detail in Appendix B.

Wind velocity, u10

Fetch, F

Wind set-up, W

Figure 5.7: Basin schematization for wind set-up

W = 0.5 ∗ κ ∗ u
2
10

gd
∗ F ∗ cosϕ (5.6)

where:

W Wind setup [m]
κ Friction constant [−]
u10 Wind velocity at 10m height [m/s]
g Acceleration due to gravity [m/s2]
d Water depth [m]
F Fetch [m]
ϕ Angle between the land and wind [rad]

The friction constant has been fitted and [70] found that a suitable value for the systems in this
region was: κ = 3.4 ∗ 10−6. The wind velocities are taken from measurements in IJmuiden, level with
the coastline [71]. The section of the NZK that is exposed to the wind effects has a depth of 15m,
which does not fluctuate significantly throughout the year. Finally, the fetch depends on the angle of
the wind, and the directions for which the fetch is non-zero can be seen in Table 5.4.

Table 5.4: Fetch in the NZK for the important wind directions

Direction (0◦ = North, 90◦ = East, etc.) Fetch [km]

90◦ 1.5
100◦ 4.25
110◦ 19.25
120◦ 2.0
270◦ -1.5
280◦ -4.25
290◦ -19.25
300◦ -2.0



6
Methodology

The RL model has been set up as shown in Figure 6.1. The agent chooses an action that influences the
water system and these changes are determined with the model of IJmuiden as described in Chapter 5.
The new state of the water system determines which rewards the agent receives, calculated using a
reward function. Finally, the agent receives the new state of the water system, including which actions
are currently possible, along with the reward for its action.

Agent

Environment

Water system
model

Reward
function

Environment

Water system
model

Reward
function

action, at

rt+1

st+1

reward, rt state, st

Figure 6.1: RL agent interaction with the environment and reward function

The RL agent selects the action based on the estimate of the q-function, with a time step of 1 hour.
The q-function is approximated using a neural network that receives the state as input and returns the
expected return for each action. The agent will choose the action with the highest expected return that
can be performed in the current state.

6.1. Reinforcement learning method
The TensorFlow library for applied deep reinforcement learning, Tensorforce [17], that was introduced
in [72], was used for the implementation of the RL controller. The advantages of the library were that
a large number of algorithms were implemented as well as an intuitive setup of the package.

Below is an overview of the main elements that were implemented specifically for the water system
in IJmuiden. This includes the features in the state space, the actions and how masking was performed,
and the reward structure.

30
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6.1.1. State space
The state space represents the current configuration of the water system and should contain all the
necessary information for the agent to make decisions about which action to take. The state contains
the following data, which is scaled before being returned to the agent. The state space contains 72
inputs and the size of each is shown in brackets.

• The current water level [m] (1)
• The current wind set-up [m] (1)
• The current inflowing discharge [m3/s] (1)
• A forecast (48 hours) of the inflowing discharge [m3/s] (6)
• The current water level in The North Sea [m] (1)
• A forecast (48 hours) of the high and low tides [m,hrs] (14)
• The DAM electricity price for 48 hours ahead [EUR/MWh] (48)

The data for the inflowing discharges and sea levels were made available by [65], the wind set-up
data by [71], and the DAM prices by [41].

Water level
The current water level was calculated using the linear reservoir model shown in Equation (5.1). The
initial water level in the system was set to the target water level in IJmuiden of −0.40m+NAP . During
training, the water level was initiated randomly to explore more of the state space including water levels
exceeding the target range. This allowed the agent to learn the optimal behaviour when the water level
was both above and below the target range.

The wind set-up was added to the water level in the state in order to make sure that this feature
was the actual water level. This produced better model performance than leaving the wind set-up
completely separate in the state due to the infrequent occurrence of set-ups.

Wind set-up
The conditions needed for large wind set-ups are rare and the influence on the water level is gradual.
Between 2014 and 2022 there was a set-up during 2.2% of all days with a maximum water level deviation
of 0.04m [71]. For these reasons, no forecast was given to the agent, only the current set-up. The set-up
was kept as noise on the water level that the model could learn to take into account. The current wind
set-up also gave the agent an indication of short-term set-ups due to the high correlation with previous
time steps.

Discharge
The inflowing discharge consisted of the discharge in the ARK at Maarssen and the sum of the discharges
of the waterboards after that point. The average discharges from each source area: Waternet: 9m3/s,
Rijnland: 20m3/s, De Stichtse Rijnlanden: 7m3/s, Hollands Noorderkwartier: 6m3/s, Maarssen:
25m3/s. [65] The discharges in Maarssen and from Rijnland are the main contributors to the total
discharge. The maximum discharges are also far higher in Maarssen and Rijnland.

The discharge information in the state consisted of the current discharge as well as a forecast for
the following 48 hours. The forecast in the state did not include all available data as that would result
in a large number of input variables, referred to as a high dimensionality. Generally, the modelling task
becomes more challenging with more input features, known as the curse of dimensionality [73]. For this
reason, average discharges over an 8-hour period were given. An example from 2019 can be seen in
Figure 6.2.

By using the 8-hourly instead of hourly inflowing discharge, the feature size was reduced from 48
to 6. During the development of the RL model, different bin sizes and forecast lengths were tested
to determine the suitable balance between feature reduction without losing necessary information for
choosing actions.

The current model set-up uses the exact data or perfect forecasting as input. Further development
of the model should include actual forecasts rather than exact data as there are sometimes significant
uncertainties in the forecasts which can influence choices made by the agent. On the other hand, the
RL model runs extremely fast (less than a second) which means that the computation can be repeated
many times. First estimates of control could be made further ahead of time while the definitive control
can be determined just prior to when actions are performed with very accurate forecasts.
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Figure 6.2: Discharge forecast for the state space (Dataset from [65])
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Figure 6.3: Location of North Sea level data

Sea level
As with the discharge, the state contained the current
sea level as well as a forecast that had been reduced
in size. The North Sea level was measured in
the IJmuiden Buitenhaven, near the pumping station
located in IJmuiden, see Figure 6.3. As the water level
was measured directly, the influence of the wind was
included.

The sea level information was necessary for the
agent to estimate when it was possible to use the gate,
which has no costs associated with it. It was therefore
important to know when low and high tides will occur
as well as the water levels. Not all low tides allow the
use of the gate. The agent received the number of time steps/hours to each low/high tide as well as
the water level. Figure 6.4 shows the sea level forecast for the same 48 hours as in Figure 6.2. For a
forecast length of 48 hours, 7 low/high tides were passed as input to the agent.
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Figure 6.4: Sea level forecast for the state space (Dataset from [65])
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During testing, it was found that performance improved with the reduction of the input size to
purely the high and low tides instead of hourly sea levels.

Electricity price
The final component of the state space was the DAM price. This would allow the agent to choose the
appropriate moment to pump if only using the gate was not sufficient. Due to the large fluctuation
in DAM price, hourly prices were given, 48 hours ahead. Examples of 48 hour prices are shown in
Figures 3.2 and 3.3.

To increase the size of the dataset for training, and therefore improve the model performance in
more scenarios, DAM prices in Belgium and Germany were also used. The amount of renewable energy
generation in Germany is increasing and currently, the portion of inflexible power generation is far
higher than in The Netherlands. As a result, negative prices occur more frequently. In 2019 negative
prices were observed on the DAM on 39 days [39]. Including these two markets allowed the agent to
explore more of the state space and improve performance for more varying price scenarios.

Z-score normalization
When training a NN, the parameters/weights are small and updates are made based on the difference
between expected and predicted values. If the input variables are not scaled, the learning speed can
drastically decrease and training can be unstable. The scales of the data in the state space vary several
orders of magnitude from 0.01 − 100. Scaling the inputs during testing resulted in large performance
increases and decreased training times.

The inputs were normalized using a z-score normalization where features are scaled to have a mean
of 0 and a standard deviation of 1. This scaling was chosen rather than scaling all inputs to values
between 0 and 1. When scaling to a range, outliers can cause a large portion of the data to be scaled
to a very small interval.

The values used for the transformation of each type of input parameter can be seen in Table 6.1.
These parameters were determined using the training dataset to prevent leakage of information about
the test dataset.

Table 6.1: Mean and standard deviation used for z-score normalization of input parameters

Input parameter Mean (µ) Standard deviation (σ)

Water level −0.40m+NAP 0.50m+NAP
Wind set-up 0.00m 0.04m

Inflow discharge 67.5m3/s 48.4m3/s
Sea level (value) 0.40m+NAP 0.56m+NAP
Sea level (time) 24.5hrs 13.9hrs
Electricity price 48.7 EUR/MWh 38.47 EUR/MWh

6.1.2. Action space
The agent is able to choose three types of actions: no outflow, pumping, or opening the gate. No outflow
is always possible while the possibility for pumping or using the gate depends on the water level in the
NZK compared to that in the North Sea. Action masking allows the possible actions to be limited
depending on the current state of the environment.

As described in Chapter 5, if the sea level is between 0.12m and 0m below the level in the water
system, neither pumping nor opening the gate is possible. If the water level in the North Sea is at least
0.12m below that in the NZK, the gate can be chosen by the agent. The pumping station can be used
when the sea level is at least as high as the NZK.

The DQN algorithm is not suitable for continuous action space and therefore the possible outflow
discharges are discretized. There are 10 possible pumping discharges (26m3/s intervals) and the gate
can be operated for outflowing discharges with 50m3/s intervals, as shown in Figure 6.5.

It frequently occurs that the pumping station or gate can be used for a limited number of discharges.
When this is the case, the relevant actions are masked and the agent is unable to choose these. At
every time step, the agent not only receives the new state but also the action mask. This Boolean array
contains a True/False for each action to indicate which actions can be selected in the next time step.
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Figure 6.5: Action discretization for the pumping station and gate

Finally, some actions are forced during evaluation. When the model is evaluated no exploration is
performed, which means that the agent always chooses the action with the highest expected reward.
Current control includes halting all outflowing discharges when a water level of−0.53m+NAP is reached
to ensure no further decrease [7]. In addition, when the water level reaches −0.32m+NAP the maximum
discharge action is always performed. This aids the agent to minimize the exceedance of the upper
boundary of the target range.

During testing, the agent performed far better when the actions were only forced during evaluation
steps and not training. During training, the agent benefited from learning in states close to or outside
the target range, without automatically choosing certain actions.

6.1.3. Reward structure
An essential element in the RL method for high performance and fast learning is the reward function.
It works as an incentive mechanism and determines the final behaviour of the agent as it is the only
indication of how good a chosen action was. The goal is to maximize the final return which can include
making sacrifices in the current time step for higher rewards in the future.

After testing the agent for many reward structures with different components and relative scaling,
the best performance was found with the following configuration. Before returning the total reward to
the agent, the components are scaled.

Water level reward
The water level reward is split into two scenarios. All rewards are negative and can also be regarded as
a penalty for the agent.

• Inside target range: When the water level is between −0.55m+NAP and −0.30m+NAP , there
is a slight incentive to bring the level closer to −0.40m+NAP . The reward is calculated as shown
in Equation (6.1).

Rinrange = −(hNZK − htarget)
2 (6.1)

where:

Rinrange Reward due to water level when inside target range
hNZK Water level in the NZK [m+NAP ]
htarget Target water level in the NZK: −0.40m+NAP

• Outside target range: When outside the target water level range, the reward is the cost of pumping
the maximum discharge (260m3/s) with the maximum occurring price in the forecast of 48 hours.
The reward is then scaled to increase when the water level is further from the target range
boundary. This incentivizes the agent to remain closer to the boundary even when it has been
exceeded. As discussed in Chapter 2, the further the water level rises above the target range, the
more problems start to arise in the surrounding area.
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Rabove = −max [Emax ∗ Pmax, 100] ∗ (1 + hNZK − hmax) If above −0.30m+NAP

Rbelow = −max [Emax ∗ Pmax, 100] ∗ (1 + hmin − hNZK) If below −0.55m+NAP
(6.2)

where:

Rabove Reward due to water level when outside target range
Emax Maximum DAM price in 48 hour forecast [EUR/MWh]
Pmax Power consumption for pumping 260m3/s [MWh]
hmax Maximum water level in the NZK: −0.30m+NAP
hmin Minimum water level in the NZK: −0.55m+NAP

The maximum price in the forecast is used instead of that in the current time step to reduce the
fluctuations in the reward. As negative prices can occur, a minimum cost of 100EUR is set.

Pumping reward
Pumping is penalized with the cost calculated with the current DAM price and chosen discharge. This
does mean that the agent can achieve positive rewards when the pump is used during periods when the
electricity price is negative.

Rpump = −E ∗ P (Qpump) (6.3)

where:

Rpump Reward due to chosen pump discharge
E DAM price [EUR/MWh]
P (Qpump) Power consumption for chosen pump discharge [MWh]

Using the gate is not penalized as the power consumption is negligible compared to that of the
pumps.

Scaling
To convey the relative importance of the reward components, the rewards are scaled accordingly. The
scaling was tested by retraining the model with different scaling factors to find the best performance.
As the performance could not be assessed by comparing the reward (as this kept changing with scaling),
the costs of pumping and the percentage of time steps that the water levels were outside the target
range were compared. Using those assessment parameters, the best performance was achieved with the
scaling shown in Equation (6.4). This results in an order of importance, as shown in Equation (6.5).

Rinrange = 500 ∗ −(hNZK − htarget)
2

Rabove = 10 ∗ −max [Emax ∗ Pmax, 100] ∗ (1 + hNZK − hmax)

Rbelow = 10 ∗ −max [Emax ∗ Pmax, 100] ∗ (1 + hmin − hNZK)

Rpump = −E ∗ P (Qpump)

(6.4)

Rewards in order of importance: Rabove/Rbelow → Rpump → Rinrange (6.5)

With this scaling, the most important objective was maintaining a water level within the target
range. Exceeding the target range was penalized with a cost of at least ten times the maximum cost of
pumping. The penalty linearly increased as the water level deviated further from the boundary of the
target range. This ensured that water safety was not be compromised for energy savings. This factor
of 10 for the trade-off was also found to be suitable in the control of seasonal thermal energy storage
systems [3].

When the water level was within the target range, the penalty for pumping was the most important.
Finally, the reward when not pumping was purely the incentive towards the target water level of
−0.40m+NAP . The factor for the in-range penalty was determined by comparing model performance
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to ensure that an efficient pumping strategy resulted in the lowest reward. The in-range reward was
only significant when using the gate or not draining any water from the system.

Finally, as with the input parameters of the neural network, the learning is generally more stable
and faster if the training target is around 1 in magnitude. Therefore, the total reward is scaled to be
the appropriate order of magnitude.

Rtotal = 10−3 ∗ ([Rinrange or Rabove or Rbelow] +Rpump) (6.6)

Discussion
Care needs to be taken when using negative rewards to train an agent. When there are large regions
in the state space dominated by negative rewards, the agent may learn to avoid negative rewards by
reaching the terminal state as fast as possible. Currently, the episode terminates after a pre-defined
number of time steps or with the water level exceeding −5.0m or 5.0m. These extreme water levels are
only reached during the first training runs. At the start of training, the agent makes almost random
choices as the estimates of the value function are initially far from the actual values. It was not observed
that actions were chosen in order to reach the terminal state as fast as possible.

During testing, other reward structures were considered. Initially, the time step was set to 15
minutes which meant that it was not feasible to change the pump discharge at every time step. It is
not possible to reach the desired discharge within that short time frame and constantly changing the
discharge of the pumps will damage the machines, reducing their lifetime and increasing maintenance.
This was solved by including an additional penalty for choosing a different action than the previous
choice. Increasing the time step to 1 hour and removing the action change penalty proved the best
solution. This increased the performance of the model with regard to the costs and maintaining a water
level inside the target range. This is however something to consider as changing the action hourly may
still be more frequent than desired.

When considering maintenance and wear of pumps, it may be beneficial in further development of
the model to quantify these effects in terms of costs. This can allow the agent to make a trade-off
between the cost of pumping and maintenance costs that may increase with certain use of the pumps.

6.2. Input data
Training/input data for the IJmuiden pumping station was available between 2015 and 2022, which
gave the agent a large set of examples from which to train. In addition to the data, discharges were
also generated, as described in Appendix C, to allow the agent to encounter more examples of high
discharges, which do not occur as often in the data. If the agent doesn’t train on enough examples of
a certain situation, the model performance will reflect this.

The state space was explored further by initializing the water level outside the target range. This
allowed the agent to learn which actions were best in those situations. When evaluating the performance,
the water level was initiated at the target level of −0.40m+NAP .

To increase the examples of DAM prices, data from Germany and Belgium were also used. This also
allowed the model to encounter more examples of negative electricity prices which are currently less
likely in The Netherlands. Combining different electricity prices with the same discharge data creates
many more samples for training. This can also be achieved by combining discharge data from one year
with other inputs in the state from another year.

In addition to a large number of data samples, experiences can vary due to different choices made
by the agent. The choices of the agent have a significant influence on the water level and therefore the
actions that are possible. As a result, the same input data can produce a very different system state
for the agent to deal with.

6.2.1. Train, validation, test split
When training a NN the available data is split to accurately evaluate the performance of the model. The
training data was used to train the model and during training, the validation set was used as an unbiased
of the model performance. The validation set was therefore never used for the agent to learn and only
affects the model indirectly by giving insight into the current performance. This allowed changes to
be made during training or to determine whether training could be stopped. Finally, after training
the model, performance was evaluated with the unseen test data. To ensure that the test set gave an
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unbiased reflection of the model performance, parameters in the models, such as in normalization, could
only be based on the training set. This prevented leakage of information about the validation and test
data.

The split of the data for training, validating, and testing was made based on the wet-/dryness
and the electricity cost. The data was split into wet and dry clusters per month as well as cheap
and expensive. The data was subsequently split to include an approximately equal distribution of all
categories in the training and test set. A portion of the training set was kept aside for validation. The
method used to cluster the data and divide the data for testing, validation, and training is elaborated
on in Appendix D.

Using the clusters found in the data, the following splits were made for the training, validating, and
testing phase. When testing and validating only discharges and water levels from data in IJmuiden were
used in combination with DAM prices from The Netherlands. The training was done with discharge
data as well as simulated data. Sufficient data for the sea level was available to purely use data from
the North Sea outside the port of IJmuiden. Finally, the DAM prices from The Netherlands that were
not used for testing or validation were combined with data from Belgium and Germany for training.
The country from which the electricity prices were sampled was selected randomly with a probability
proportional to the size of the available dataset.

• Testing: 01/01/2019 - 01/01/2021

– All inputs were measurements from IJmuiden combined with DAM prices from The
Netherlands

• Validation: 01/01/2017 - 01/01/2018

– All inputs were measurements from IJmuiden combined with DAM prices from The
Netherlands

• Training set: All remaining data

– Discharges: 01/06/2015 - 13/09/2021 (excluding dates above) or simulated data
– Sea level: 31/12/2014 - 28/07/2022 (excluding dates above)
– Electricity prices (NL): 05/01/2015 - 18/07/2022 (excluding dates above)
– Electricity prices (BE): 05/01/2015 - 18/07/2022
– Electricity prices (DE-LU): 01/10/2018 - 18/07/2022

Finally, test scenarios were selected to evaluate the behaviour of the model in specific situations.
Scenarios for the discharge, sea level, and electricity prices that required different control behaviour
were chosen, as described in detail in Appendix E.

6.3. Learning procedure
The agent learns the behaviour for the region of the state space where experiences are sampled. When
the estimate of the value function is not yet accurate, the agent quickly allows the water level to
exceed the desired boundaries. If the episode length is too long, a large portion of the experiences are
examples of states outside the target water level range. Therefore the agent learns what to do outside
the boundaries but is still inadequate for control inside the boundaries. The episode length is gradually
increased during training to keep a large enough portion of the experiences within the desired control
region.

To optimize control, the most important factor is keeping the water level within the target range.
The agent is initially trained with only the water level component of the reward. This means that
training is initially focused purely on keeping the water level in range and later the agent is trained
further to take pumping costs into account. This speeds up training as learning a single objective is
easier for a RL agent. The steps in the training are shown in Table 6.5.

To provide an indication of the current performance, the model is evaluated every 50 training steps.
This is done the with validation dataset. Only a limited number of evaluations are performed, 20
episodes, to reduce overall training time. The small evaluation size results in a large uncertainty in the
predicted performance and therefore a larger evaluation is performed after every training step, with 100
episodes.

Only after the full training is complete is the final performance of the model calculated using the
test dataset, for 1000 episodes.
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Table 6.5: Agent training steps

Training step Number of epochs Episode length [days] Reward

1 500 2 Only water level objective
2 500 5 Total
3 500 10 Total
4 1000 15 Total
5 1000 15 Total
6 1000 15 Total

6.4. Hyperparameters
The performance of a RL can be drastically improved by optimizing the hyperparameters. Each system
is different and there is no best set of hyperparameters that is suitable for all situations. The model
was first developed to achieve a sufficient performance, after which a hyperparameter optimization was
done, as described in Section 4.3. Appendix F shows the results of the optimization that was performed
after the initial model was developed, as well as the final model, including the cost objective. Below is
an overview of the optimal parameters found for the final model.

• Batch size: 20
The number of training samples over which the update to the NN weights was computed.

• Update frequency: 0.15
The frequency, relative to the batch size, with which the target network was updated to the current
parameters of the prediction network.

• Replay memory capacity: 2500
The size of the buffer of experiences from which a random batch of samples was taken for training.

• Learning rate: 7e-4
The learning rate of the Adam optimizer, presented in [74], used for the iterative updating of the
NN weights. The optimizer computes adaptive learning rates for each network parameter based
on the moments of the gradients.

• Horizon: 2
In n-step DQN: the number of steps ahead for which the discounted-sum reward was used before
the target network estimate.

• Discount factor: 0.75
The discount factor (γ) used in the DQN learning.

• Exploration: 0.3
The probability of selecting an action at random when generating training samples.

• Policy network configuration:

– Layers: 4 fully connected
– Neurons: 16

The number of units in each layer.
– Activation function: tanh
– Weight initialization: Glorot normal

The method for initializing the weights, suitable for a network with the tanh activation
function.

– Dropout rate: 0.25
The fraction of units that were dropped from each layer during the training phase. These
neurons were not considered during the forward or backwards pass.

It is important to consider the the number of parameters (weights and biases) of the model that
need to be trained, compared to the number of available observations of the system. The number of
observations needs to be greater to prevent overfitting. The NN architecture contains a weight for each
connection between neurons, in addition to a bias for each neuron that is not in the input layer. Table 6.6
shows the number of coefficients to be trained, the data available, and the number of observations used
during training. This shows that there is sufficient data used during training to prevent overfitting.



6.5. Training speed 39

Table 6.6: Comparison of model coefficients, available observations, and training observations

Model Available training observations Observations
coefficients trained

2,409
Wind set-up and sea level 40,080

1,284,000Inflowing discharge 40,080 + generated
DAM electricity price 139,368

6.5. Training speed
The complexity of the system results in the need for a large number of training epochs to reach the
desired performance. When using the hardware (CPU/GPU) in a laptop this will take a very long time
to complete training. For this reason, the training of the RL agent was done on The Dutch National
Supercomputer Snellius. The speed of the available processors greatly reduced the training times,
which sped up the model development. In addition, hyperparameter optimization was made possible as
it required around 300 models to be trained from scratch, which would not have been possible without
this speedup. The agent could be fully trained 3 times as fast on the supercomputer.

A job script was used to queue a training task. An overview of the Slurm settings used can be seen
in the job script in Appendix G.



7
Results

This chapter shows the performance of the proposed RL model. Firstly, in Section 7.1 the control plan
created by the agent is explained to help understand the setup in later analysis. Section 7.2 shows
how the model deals with the classical constraints for the water level. The results, including energy
cost objectives, are presented in Section 7.3. The controller was compared to a state-of-the-art MPC
controller developed by [64] in Section 7.4 and tested on several extreme scenarios in Section 7.5. Finally,
an alternative reward structure was tested and presented in Section 7.7.

After training the agent, it was able to produce a control plan of any length, from hours to months.
The final output of the model is an hourly control plan of pump and gate discharges for the entire input
length. The current state of the water system, forecasts of the sea level and inflowing discharge, and
DAM prices determine the model output.

40
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7.1. Understanding the control plan
The agent makes choices about the outflowing discharge using the pump and gate. This results in a
change in the water level in the system, which influences which actions are possible in subsequent time
steps. A control plan is visualized in Figure 7.1, showing the important in- and outputs of the model.
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Figure 7.1: RL control plan for three days starting on 2020-02-25

The top figure shows the cumulative reward in blue, which demonstrates the negative rewards
associated with the costs of pumping. The magnitude of the reward depends on the DAM price, which
is shown in brown, and the power consumption of the pumps. The reward decreases monotonically
unless the agent chooses to pump during a time step at which the electricity price is negative. This is
the only situation where the agent can receive a positive reward. In the middle figure, the water level
in the NZK is plotted in orange, with black dashed lines indicating the boundaries of the target water
level range. The red and green shaded areas show when pumping and opening the gate are possible
respectively, and no shading marks when neither action is possible. The bottom figure displays the
chosen actions with the pump and gate discharges in red and green, respectively, with dashed lines to
indicate the maximum possible discharge. Finally, the purple line shows the total inflowing discharge
into the system. All figures share the x-axis showing the date of the input data.
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7.2. Water level objective
The NZK-ARK system is a watercourse that runs through the major metropolitan areas of Utrecht
and Amsterdam. Respecting the safety regulations regarding the permitted water levels is therefore
essential. It was necessary to first develop a model that was able to adhere to these constraints before
including the cost optimization. Saving costs is only desired when there is no risk of violating water
level boundaries.

To run the model with purely the water level objective, the penalty for pumping was set to zero
while keeping the rest of the reward structure the same as described in Section 6.1.3. This meant that
there was a slight penalty when inside the target range to incentivize the model to maintain a water
level close to −0.40m+NAP . Outside the target range, the penalty was at least an order of magnitude
larger to ensure that it was never advantageous to exceed the target range boundaries. The penalty
outside the target range was still correlated with the price of pumping the maximum discharge. The
dynamics of the water system were identical to those in the full model, including the masking of the
pumping and gate actions.

As there was no penalty difference between pumping and opening the gate, this was a simple
optimization problem. The agent only needed to take into account the water level and not the different
action possibilities. This meant that the agent could be trained quickly, approximately twice as fast as
the cost optimization, as fewer epochs were needed. The training was completed in around 45 minutes,
rather than 80 minutes. A control plan from the test data set is shown in Figure 7.2.

The top figure shows how the choice of pumping is currently not penalized but that the reward is
purely based on the water level in the system. The model has learned that maintaining a water level
in the lower region of the target range was safest to prevent exceedance even though this resulted in
a slight negative reward due to the deviation from the target water level. This does suggest that the
forecast of the inflow is not optimally taken into account. The forecasts show that the inflow remains
limited, which means that there is no risk of exceeding the upper boundary.

The agent had a high level of performance with an average of 0.2% time steps out of range for
episodes of one month (720 time steps). The worst performance of the entire test set was 2% of the
time steps out of range, which occurred during extremely high inflowing discharges. These statistics
were determined by training multiple models with different initializations and determining the average of
all trained models. The maximum water level reached was −0.28m+NAP , only 2cm above the target
range. This high water situation would not result in any measures in the area. At −0.20m+NAP ,
the IJ-front would be closed off due to the increased risk of flooding in Amsterdam. Even though no
measures would be taken with an exceedance of 2cm, this will still likely cause alarm and operators
will try to restore safe water levels as quickly as possible. The time period that the upper boundary
was exceeded was very short, less than 1 hour. The expected length and severity of the water level
exceedance are shown in the control plan, which also means that operators can anticipate this event.

During normal conditions, the lower region of the water level range was desirable for the model due
to the extremely high consequence of exceeding the upper boundary. The model learned that the slight
negative reward due to the deviation from −0.40m+NAP was beneficial, as the penalty for exceeding
the boundary was relatively a lot larger. During extreme inflowing discharges, there would be a buffer
in the system to overcome the highest peaks. It is possible for the inflow to be larger than the maximum
outflow discharge, at which point such a buffer would be necessary to ensure safe water levels. However,
the necessary information about high inflowing discharges in provided in the forecast, which means that
this is not adequately taken into account by the model.

There were also situations where it was not possible to maintain such a low water level due to higher
inflowing discharges. The agent was still able to keep the water level below the upper boundary. An
example of this can be seen in Figure H.1. This also shows that the agent makes use of the gate, which
is not the case in the previous example. Each new instance of the agent resulted in slightly different
behaviour after the training was completed. The initialization of the NN weights, as well as the random
sampling of experiences, cause the agent to behave slightly differently. The agent that created the
control plan in Figure 7.2 trained to generally use the pump unless high inflowing discharges occurred
and the water level started to rise. This behaviour was observed in most of the trained agents, likely
caused by the larger percentage of time steps where pumping was possible rather than using the gate.
In addition, the pumps were able to drain sufficient volumes for a large portion of the inflow situations.
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Figure 7.2: RL control plan for two weeks starting on 2019-06-25 with only the water level objective

The development of this model allowed the agent to be tested for a less complex optimization
problem to ensure that it was able to learn and reach acceptable performance. This also allowed the
water system to be tested to check whether the dynamics of the water system and the reward structure
were implemented correctly. When the agent achieved the desired performance, an initial Bayesian
hyperparameter optimization was completed to tune the model to the specific problem. The results
of the hyperparameter optimization are shown in Appendix F. A significant speedup of a factor 2 and
slight performance increase was achieved, which sped up the development of the full model including
the cost objective. The agent and environment were very similar for the two models, as the dynamics
of the system and in- and outputs of the model were the same. It was only necessary to tune the
hyperparameters slightly when the full model was developed.
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7.3. Cost objective
After showing the ability of the model to respect the water level restrictions, the cost objective could be
included. The high energy consumption of the IJmuiden pumping station cost Rijkswaterstaat 700,000
euros yearly in 2005 [7]. This is expected to have only increased since then due to increased electricity
prices. The target water level range gave sufficient flexibility to reduce energy costs within these bounds
while ensuring water safety in the surrounding areas. As described in Section 6.1.3, the reward was
split into three components to indicate the desired behaviour inside and outside the target water level
range and regarding the use of the pumps.

7.3.1. Overall model performance
First, the overall model performance was examined by testing the model on the entire test data set. This
was done by running 1000 tests of one month, where the initial water level was set to −0.40m+NAP .
Due to the large number of tests, the months overlapped but the water levels differed between test
months for data from the same dates. Only the initial water level was set, which subsequently changed
during the month and greatly influenced the action choices. The water level determines which actions
are possible as the relative level compared to the sea level is used to calculate the maximum outflowing
discharge and whether pumping, opening the gate or neither is possible.

During the 1000 test episodes, the lower boundary of the target range was never exceeded. This
constraint was simple to comply with as generally there are only inflowing discharges. It rarely occurs
that there is there an outflow (often less than −20m3/s) and the model could easily anticipate this. In
addition, the model was set up to prevent any outflowing discharges when a water level of−0.53m+NAP
was reached to ensure no further decrease in the water level. This was done during evaluation, as in
the training phase, no actions were forced automatically.

Over all the test cases of 1 month, the water level exceeded the upper water level boundary an
average of 1% of the 720 time steps. In the month where the model’s control plan caused a high water
situation for the longest time period, the water level was out of range 2% of the time. This occurred
during extreme inflowing discharges above 300m3/s on 02-23, 2020.

Largest water level exceedance
During the high inflow on 02-23, 2020, the maximum water level was −0.27m+NAP , the highest
reached during all tests. Measurements in IJmuiden showed that, during the event, the actual water
level reached a maximum of −0.32m+NAP , remaining within the target range [65]. However, 3 days
of measurements were missing around this time, so higher levels may have occurred. The results show
that the model still produced water levels that were higher for a longer period of time and most likely
exceeded the upper boundary by a greater margin. It is possible that during this event further measures
were taken by Rijkswaterstaat to prepare for the event that may not have been included in the RL model.
The dynamics of the system are also greatly simplified in the model used by the RL agent.

Comparison with the results from the MPC gave more insights as the same dynamics are used for the
water system. The water levels produced by the two models, as well as the measurements in IJmuiden,
are shown in Figure 7.3. The comparison with the measurements was used to compare general trends
in water level changes rather than exact water levels. Full control plans of the RL model and MPC can
be found in Appendix I.1.

The RL model and MPC showed similar behaviour with the exception of the day before the peak
discharge and several days afterwards. The MPC anticipated the high discharges by lowering the water
level during the two days before the peak. This allowed the water level to be kept within the target
range initially. This behaviour can also be seen in the measurements. By not lowering the water level,
the RL agent was not able to maintain safe water levels. However, after the initial high discharges, the
MPC was less successful in continually ensuring the target water levels, compared to the RL agent.

Finally, significant differences can be seen between the measurements and the model results. The
models both clearly show when the gate is opened as the water level decreases rapidly while the changes
in the measurements are less drastic. There are several differences between reality and the simplified
water system dynamics used by the models. The inflowing discharges are considered as a single discharge
that enters the system with an immediate change to the water level. The linear reservoir model assumes
that the water level changes instantaneously with a net in- or outflow in the system, in addition to the
water level being the same throughout the entire system. However, the general behaviour does give an
impression of the response of the water system to the chosen actions.
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Figure 7.3: Hourly water levels from historical measurements, RL model, and MPC for high inflow event on
2020-02-23. Models were run from 2020-02-18 with an initial water level equal to the measurements.

Training process
The training phase of the agent gives insights into the model performance and whether this can be
optimized further. It was difficult to observe the improving performance of the model through the
development of the reward. The reward structure was not constant during training and the episode
length was gradually increased. Instead, the percentage of time steps that the water level was outside
the target range gave a more accurate impression of the performance. It is still important to consider
that a longer episode length made the chance of exceeding the target range greater as the target water
level was used to initialize the water system.

Figure 7.4 shows how the model learns as more episodes are observed. The different training steps
can still be identified where the percentage out of range for the test data significantly increases. After
500 episodes, the cost objective was included and at 1,500 episodes, the episode length was increased
to 15 days.
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Figure 7.4: Agent performance improvement during training with the percentage out of target range for the training
set which included exploration and validation set

The performance during training includes exploration, which means that the agent performs a
random action with a probability of 0.3. During validation and testing, the exploration is set to 0.0 to
give a more accurate impression of the current performance. Due to the importance of remaining within
the water level range, the maximum exceedance was also included to show the worst performance of
the model. To assess the robustness of the RL model, the consistency needs to be taken into account.

The improvement of the model is clear in the training and validation results. When training a NN
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it is important to ensure that training does not continue too long with the risk of overfitting. This can
be identified by a decrease in the validation/test performance while the training performance remains
the same or improves. The training steps were found by comparing the final performance of many
trained models. Each model turns out slightly different depending on the initialization and the random
sampling of experiences. The average performance, therefore, gives an indication of how suitable the
training steps are.

Figure 7.4 shows several large fluctuations in the validation performance, in addition to those that
can be attributed to the changes in the reward structure or episode length. This suggests that the
model is not yet fully optimized. Further improvements and more stable training can likely be achieved
with a more suitable NN architecture, reward structure, and/or hyperparameters.

7.3.2. Normal conditions
To examine the model performance in more detail, control plans were made for specific types of situations.
During normal conditions in the NZK, it is possible to maintain safe water levels without pumping. Such
a control plan is shown in Figure 7.5.
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Figure 7.5: RL control plan for two weeks starting on 2019-06-25 where no pumping is necessary
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The agent was able to ensure the water level remained within the target range by only utilizing
the gate (shown in green in the lower graph of Figure 7.5). The water level tends to be kept near
the lower boundary of the target range, as with the model including only the water level objective.
The model learned that the risk of exceeding the upper boundary was reduced through this behaviour.
Similar behaviour has been found throughout these calm conditions for the test data. These are simple
optimization problems for the agent and there are many examples in the training data that allow the
performance to be extremely high in such situations. On average, the water level is −0.45m+NAP
during these conditions, meaning the water level is kept 5cm below the target level on average. However,
this is not always the case. The sea level determines whether the gate can be used for lower water levels.
There are situations where maintaining a lower water level in the system reduces the possibility of using
the gate. This makes it economical to allow the water level to rise closer to the upper boundary. An
example of this can be seen in Figure 7.6.
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Figure 7.6: RL control plan for two weeks starting on 2019-12-17 where the water level was in the upper part of the
target range due to higher sea levels

In the control plan for 2019-12-17, the inflowing discharge is also slightly greater, meaning that
pumping is occasionally necessary. Despite this, the RL agent was still able to maintain the target
water levels. It is also observed that after 2019-12-26, the sea level and inflowing discharge decrease
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which allows the water level in the system to start to decrease. Pumping is also no longer necessary,
which can be seen in the reward. If we zoom into the moments when the agent decided to use the pump,
there is no clear correlation with the electricity prices. A zoom into the control plan between 12-19 and
12-21 is shown in Figure 7.7.
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Figure 7.7: Zoom into two days (2019-12-19 - 2019-12-21) of Figure 7.6

The choice of pumping is not clearly linked to the electricity prices provided as input. There are
several examples where pumping an hour earlier or later would have been more economical. The reduced
costs are due to a combination of lower electricity prices and a smaller pump height, which requires less
power to pump the same discharge. Nevertheless, the overall control adheres to the safety regulations
for the water level. The pumping volumes are still limited as the majority of the water is drained
through the gate.

Figure 7.7 also shows that the full potential of the gates is not always used. On 12-19 at 04:00
and between 16:00 - 18:00, the maximum possible discharge is at least 100m3/s higher than the action
chosen by the agent. However, future possibilities for using the gates may be reduced by selecting the
maximum discharge. This behaviour is also observed in the control plan created by the MPC, shown
in Figure I.3. The choice to pump at higher costs suggests that further optimization is possible, which
is supported by the difference in pumping strategy of the MPC.

The MPC pumps for a lower cost but as a result, the water level is extremely close to the upper
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boundary for more time steps than the RL result. There are several time steps where there is a very
small exceedance of less than 1cm in the control plan of the MPC. The MPC has 525 euros total costs
over the two weeks for pumping while the RL costs almost twice as much with 995 euros.

Overall, the RL model performs well in normal situations but is not able to use the full potential
of the system to optimize energy costs. The results suggest that this is due to the choice of when to
use the pumps as the gates are used similarly to the control plan created by the MPC. It is difficult
to determine the energy cost optimization compared to the current control of the system, as the MPC
used for comparison is not the model that is currently used for operation. When considering the water
levels, the small exceedances of the MPC are still likely to cause alarm. For operation, the MPC may
need to be adjusted to maintain slightly lower water levels, resulting in increased costs.

7.3.3. High inflowing discharge
A more difficult control problem occurs when the inflowing discharges are greater and it is not possible
to fully rely on the gate to drain all the water out of the system. This also means that there is more
opportunity to minimize costs. It is a combination of draining the maximum volume with the gates
as well as choosing the economical moments to use the pumps. Higher discharges around 200m3/s
occurred on 03-05, 2019, shown in Figure 7.8.
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Figure 7.8: RL control plan for two weeks starting on 2019-03-05 with high inflowing discharges
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The model is able to drain the majority of the water through the gates, but pumping is also necessary.
The upper boundary of the target range is slightly exceeded during two time steps, however, this is by
less than 1cm. The total time that the water level is above the upper boundary is approximately 30
minutes.

Even though the exceedance is minimal, the high consequences of flooding in the area mean this is
still undesirable. The advantage of such a control plan is that it can be made in advance and tweaked to
reduce the chance of high water. This can be done by using the gate and pump at higher or full capacity
in the hours before the expected exceedance. As the water level in the system determines which actions
are possible, it is not always beneficial to increase gate/pump discharges. Higher discharges can be
drained using the gate and it may be safer to maintain a higher water level that allows more use of the
gate.

To assess the performance, a comparison was made with the result of the MPC, shown in Figure I.4.
Table 7.1 shows the costs, water level statistics, and computation times for the two models.

Table 7.1: RL and MPC control plan performance for two weeks starting on 2019-03-05

Model Pumping costs Maximum water Out of range Computation
[EUR] level [m+NAP ] [% time steps] time [s]

RL 4,400 -0.286 1.2 0.9
MPC 2,700 -0.278 4.5 280.0

As with previous situations, the RL control plan has higher costs than the MPC, though in this
case, the difference is smaller. Even so, there are some advantages to the RL result. In addition to the
water level exceedance being slightly smaller, the portion of time steps where high water occurs is much
smaller. For this water system, the most important criterion for control is ensuring safe water levels.
Finally, the largest difference between the two models is in the computation times. The RL agent is
able to create the control plan 300 times faster than the MPC.

7.3.4. Operational control
Several assumptions were made in the method and model of the water system. Firstly, no time was
taken into account to start up the pumps and reach the desired discharge. It takes a maximum of 25
minutes for all pumps to reach maximum capacity and a single pump requires 5 minutes [26]. The
control plans created by the RL agent often switch from not pumping to near maximum discharges, as
in Figure 7.8. Multiple pumps would need to be activated to achieve these outflows. In this specific
control plan, the pump discharges above 200m3/s often follow a time step where no discharge was
pumped. If the start-up time was taken into account, the actual pumped discharge would be lower,
changing the resulting water level in the system.

Not including the start-up times for the pumps also means that the costs calculated are not entirely
accurate. If the control plans would be adjusted to ensure that the pumps were at the desired discharge
when needed, more electricity would be consumed. This electricity would also be consumed during a
previous and following time steps, with a different DAM price.

The agent chooses an action that is performed for the following hour. In many cases, the water level
changes during this hour, meaning the action may no longer be possible. At 12-19 17:00 in Figure 7.7
an example of this can be seen. The gate is opened for an hour even though this is not possible for
around 50min of this time step. It is possible to reduce the time step length, however, this would allow
the model to turn the pumps on and off at an unrealistic rate. Additional features would need to be
included in the model to prevent this behaviour.
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7.4. Comparison with Model Predictive Control
In the previous section, the MPC results were used to assess the performance of the RL model for the
normal and high inflow situations. To examine the difference between the two models in more detail,
both were used to create a control plan for the entire test data set from 2019-01-01 to 2021-01-01. A
summary of the results can be seen in Table 7.2. To give an indication of the current control strategy,
an estimate was made of the costs if the electricity was bought on the DAM.

The historical measurements were used to determine the change in water level. An estimate of
the outflow discharge was made given the water level change using the linear reservoir model. The
simplification of the water system combined with the DAM prices rather than those of the futures
market mean that this is a very rough estimate. This does, however, give an order of magnitude. Due
to the higher prices on the futures market, it is possible that the costs are higher than the calculated
estimate.

Table 7.2: RL and MPC control plan performance for test data set, 2019-01-01 - 2021-01-01, with an indication of the
current control derived from water level measurements.

Model Pumping costs Water level Out of range Computation
[EUR] range [m+NAP ] [% time steps] time

RL 116,000 [-0.535, -0.265] 0.3 37 sec
MPC 74,000 [-0.737, -0.278] 5.5 3.6 hours

Measurements ∼795,0001 [-0.6, -0.28] 0.09 -

The same trends can be seen for the two models as those that were identified in previous sections.
The RL model creates a plan with higher costs and a lower percentage of time steps outside the target
range. When compared to the historical measurements, it can be seen that the water levels exceed
the target range far less frequently, but the estimated costs are significantly higher than both models.
Taking into account the large uncertainty in the estimated costs, it is still expected that a significant
cost reduction can be achieved by both models. To give an impression of the control plan produced by
each model, Figure 7.9 shows the resulting water level for both model outcomes, with the probability
density curve showing the distribution over the water level range.

Both models behave in a similar manner. General fluctuations in the water levels can clearly be seen
at the same moments in time. Between 2019-10 and 2020-01, the water levels are mostly in the upper
region of the target range, while in the months before and after, the levels are lower. The higher water
levels are due to a combination of higher sea levels and increased inflowing discharges. Both models use
the gate similarly, meaning that when the minimum water level for opening the gate is higher, a higher
water level is maintained. These fluctuations cannot be seen in the historical measurements of the water
level in the NZK in IJmuiden, shown in Figure J.1. This is likely caused by a different control strategy
that mainly focuses on flood safety. The flexibility of the system is not used optimally to maximize the
volume drained using the gate. There may also be dynamics that are not included in the simplified
water model. There may be temporal and spatial effects that are not taken into account.

When comparing the exceedance of the target range, this occurs more often for the MPC control
plan. At two moments, 05-2019 and 05-2020, the model does not behave as expected. The water level
drops to around −0.75m+NAP , which is more than 15cm below the target range. This can easily be
corrected by implementing the forced actions that are included in the RL model. This does not allow
any outflow when the water level is within 2cm of the lower boundary. The forced action can clearly
be seen in the RL result where the water level always remains at least 1cm above the lower water level
boundary. If only the upper boundary exceedance is taken into account, the MPC model was out of
range 2.1% of the time steps, instead of 5.5%. The exceedance still occurs far more frequently than
with the RL model, with 0.3% of the time steps. As described above, due to the high risks, even short
periods of high water can cause alarm, making this undesirable behaviour.

1Approximate costs if electricity was bought on the DAM based on changes in water level measurements
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Figure 7.9: The resulting water levels for the RL and MPC control plan for test data set, 2019-01-01 - 2021-01-01. The
probability density curve is shown in the right hand figures.

To analyse the exceedance of the upper boundary, Figure 7.10 shows the probability density curves
for the two models, as well as the historical measurements. The measurements are rounded to the
nearest 0.1m, which results in the fluctuations at regular intervals. A near normal distribution in the
centre of the target water level range can be seen for the measurements. The flexibility of the system is
not exploited for cost reduction. Both models show a more even distribution over the entire range. The
zoom into the upper boundary exceedance reflects the more frequent exceedance of the MPC. Even
though the RL model maintains safe water levels for a greater portion of the test period, the maximum
water level reached is higher than that of the MPC. This can be seen clearly in Figure 7.11.

0.6 0.5 0.4 0.3 0.2 0.1 0.0
Water level [m + NAP]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
ns

ity

Probability density curve - test data set
RL model
MPC
Measurements

0.30 0.28 0.26
0

1

2

3

Figure 7.10: Probability density curves for the water levels during the test data set for the RL model, MPC, and
historical measurements. The zoom shows the distribution when exceeding the upper target boundary.
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Figure 7.11: The % of time steps in the test data set where a water level occurred between bins of 0.005m

Figure 7.11 shows how the MPC frequently exceeds the target range by at least 0.5cm. The RL
model performs better in this respect, however, the water levels reached are more extreme, which may
be less desirable. When compared to the historical measurements, it can be seen that current control is
focused on limiting the exceedance as much as possible. This conservative control is the main reason for
the higher estimated costs. When comparing the costs, it is important to consider that the electricity
is bought on the futures market. The calculation was performed to analyse the pumping costs if the
control strategy was applied in the water system model combined with the DAM.

When the pumping costs are compared for the models, the MPC clearly performs best. The model is
able to effectively choose cheap electricity prices for the moments to pump. Both models are extremely
similar in the use of the gate. The MPC model does not drain a greater portion of the volume with the
gate but selects more economical time steps to use the pumps.

Finally, the most significant difference between the two models is the computation time. While the
MPC required 3.6 hours, the RL agent was able to create the control plan in under 1 minute. This
allows many scenarios to be run beforehand. The control plans can be made ahead of time as well as
right before control when the forecasts are most accurate. Currently, the uncertainties of the forecasts
are not taken into account, as historical data is used as input. RL models typically perform well in
situations that are affected by large uncertainties [8]. The use of forecasts may, therefore, highlight
further differences between these two models. In addition, the fast computation time of the RL model
creates opportunities for increased complexity. A more accurate representation of the water system
can be included, while remaining significantly faster than the MPC. Even though the speed of the RL
model is far greater, the speed of the MPC is still sufficient for the current model setup.
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7.5. Extreme scenarios
The general performance was analyzed by creating a control plan for the entire test data set. To
investigate the performance in critical situations, several extreme scenarios were selected. The scenarios
are described in more detail in Appendix E. An overview of the performance of the RL model and MPC
can be seen in Table 7.3. The solver used for the MPC was not able to solve the optimization for the
Negative E scenario. All control plans created by both models can be found in Appendix K.

Table 7.3: RL and MPC performance for extreme scenarios of 1 week

Scenario Model Pumping costs Maximum water Out of range Computation
[EUR] level [m+NAP ] [% time steps] time [s]

Extreme Q RL 6,900 -0.262 5.4 0.6
MPC 6,200 -0.280 6.5 150.0

High Q RL 7,900 -0.294 0.6 0.5
MPC 7,200 -0.290 14.8 150.0

Low Q RL 0 -0.383 0.0 0.6
MPC -120 -0.380 5.3 130.0

High Sea RL 620 -0.313 0.0 0.5
MPC 230 -0.297 1.8 150.0

High Sea High Q RL 8,000 -0.288 1.2 0.5
MPC 6,000 -0.284 16.6 170.0

High E RL 0 -0.365 0.0 0.4
MPC 0 -0.369 0.0 120.0

Negative E RL 0 -0.400 0.0 0.4
MPC - - - -

Extreme Neg E RL 400 -0.301 0.0 0.6
MPC -840 -0.373 1.8 140.0

Average 2 RL 3,400 - 1.0 0.5
MPC 2,700 - 6.7 140.0

Before the specific scenarios are analyzed, the general trends are compared to those found for the
entire test data set in Section 7.4. Figure 7.12 visualizes the total costs of the control plans of both
models for all test scenarios.

Extreme
Q

High Q Low Q High Sea High Sea
High Q

High E Negative
E

Extreme
Neg E

Test scenarios

0

2000

4000

6000

8000

Co
st

s [
EU

R]

Test scenario costs
RL model
MPC model
Mean RL
Mean MPC

Figure 7.12: Cost of the RL and MPC control plans for all test scenarios with the mean over all scenarios

2Excluding results of the negative E scenario
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In several scenarios, the costs of the RL model did not differ greatly from those of the MPC. However,
the costs were consistently higher throughout all test scenarios except the high energy price scenario.
Both models were able to avoid using the pumps altogether, resulting in no costs. The RL was not able
to benefit from the negative electricity prices in the low discharge and negative price scenarios. This
suggests that the behaviour regarding the choice of when to pump is not yet optimal. In all cases where
negative prices occur, the MPC was able to profit from this.

The safety of both models can be estimated using the percentage of time steps that the water level
is outside the target range. Figure 7.13 shows these results for all test scenarios.
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Figure 7.13: Percentage out of target water level range with the RL and MPC control plans for all test scenarios with
the mean over all scenarios

The RL agent consistently outperforms the MPC, often not exceeding the target range during the
entire scenario. Though the MPC does often allow the water level to rise to high water, this is often
less than 1cm. This does not immediately pose a danger for floods in the area but is still undesirable
behaviour.

These two results suggest that the RL model is more conservative in choosing actions, preferring to
ensure the necessary water levels rather than using the full flexibility of the system for cost optimization.
This is caused by the choice of scaling of the three components of the reward function. This is further
enforced by the action masking close to the boundaries of the target range. All outflowing discharge
is prevented near the lower boundary. At the upper boundary, the maximum discharge is forced. The
model is able to optimize by maximizing the volume drained using the gate, but performs worse selecting
the appropriate time step to use the pump.

Ideally, the choice of when to pump should be based on the electricity price as well as when pumping
requires the least amount of power. When the water level difference between the NZK and the North
Sea is greatest, the power consumption for the same outflowing discharge will be larger. The least power
is therefore often consumed closely before or following a low tide. This behaviour can be seen in general
for the control plans created by the MPC.

The most significant difference between the two models is in the computation time. The RL agent is
approximately 300 times as fast as the MPC. This means that far more scenarios can be run beforehand
and there are possibilities for increasing the complexity of the system. A more complex system will most
likely require a larger NN, which will increase the computation time. This can increase the applicability
and, with further optimization of the RL method, it is expected that the performance can be increased
to create more economical control plans.
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7.6. Suitable reinforcement learning algorithms
A literature study was used to determine which RL algorithms were suitable for the control of a water
system such as the IJmuiden pumping station. DQN was selected for the first implementation of the
RL agent. The relative simplicity, the experience replay used for sampling, and the inclusion of delayed
targets made the algorithm suitable. The implementation of DQN meant that it would require rewriting
a large portion of the code to test algorithms with continuous action spaces. Therefore, all additional
algorithms that were tested allowed the use of discrete action spaces.

There were 5 algorithms that could be tested with the same hyperparameters as those used for
DQN. This gave a good impression of which algorithms have the potential for further development.
The algorithms that could be implemented were; PPO, TRPO, Dueling DQN, AC, and A2C. All
algorithms except Dueling DQN, which is an extension to DQN, were introduced in Section 4.2.2.

Dueling DQN uses two estimators, one for the Q-function and the other for the state-dependent
advantage function. The advantage is the difference between the Q-value (expected return given the
state and action) and V-value (expected return given the state), calculated as follows: Aπ(s, a) =
Qπ(s, a)− V π(s). This helps the agent to generalize learning across actions. [75]

Table 7.4 shows the performance of these algorithms for the entire test data set, compared to the
final DQN model.

Table 7.4: Performance of multiple RL algorithms on the test data set using DQN hyperparameters

Method Pumping Water level % Out of Max % out Computation Training
costs [EUR] range [m+NAP ] range3 of range4 time [s] time [min]

DQN 116,000 [-0.53, -0.26] 0.3 2.3 37 81
PPO 242,000 [-0.55, -0.22] 0.8 7.6 47 43

TRPO 300,000 [-0.56, -0.22] 0.8 7.4 42 46
Dueling DQN 275,000 [-0.56, -0.27] 0.04 0.7 43 82

AC 378,000 [-0.56, -0.23] 0.4 4.4 43 80
A2C 553,000 [-0.55, -0.24] 0.1 2.4 46 80

There is no significant difference in the computation time of the algorithms. PPO and TRPO clearly
require less time for training the same number of epochs. However, the training times are less important
for the use of the model in operation. The training is done before the models are used, at which point
the evaluation time determines the applicability of the method. All tested RL methods are extremely
fast, especially compared to the MPC, which is at least 300 times slower.

The largest differences between the algorithms is the performance regarding costs and water levels.
DQN creates the cheapest control plan and only the water levels reached by Dueling DQN remain
closer to the target range. As the hyperparameters are tuned to the DQN algorithm, this behaviour
was expected. The high performance of the Dueling DQN can be partially due to the high similarity of
the algorithm with DQN.

When considering the other algorithms, PPO and TRPO outperform both actor-critic methods in
terms of costs. The lower costs have resulted in greater exceedances of the target range. As ensuring
the safety of the system is most important, this is not desirable behaviour.

7.6.1. High inflow scenario
To analyze the performance of all algorithms in a complex optimization problem, control plans were
made for the high inflow event of 2020-02-18. The behaviour of the algorithms resulted in unique
patterns for the water level development. Figure 7.14 shows the water level for a portion of the high
water event, where the start of the peak discharge is shown. The performance regarding total costs,
water level, and computation times can be seen in Table 7.5. The performance of the DQN algorithm
and the MPC are shown as a reference. Appendix L contains the complete control plans for all models.

3% of time steps out or range over the 2 year test data set
4Maximum % of time steps out of range in 1 month
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Figure 7.14: Comparison of water levels for control plans of multiple RL algorithms for the high water scenario of
2020-02-18

Table 7.5: Performance of multiple RL algorithms for the high water scenario of 2020-02-18 (10 days)

Method Pumping costs Water level % Out of Computation
[EUR] range [m+NAP ] range time [s]

DQN 7,200 [-0.42, -0.27] 4.2 1.8
MPC 6,200 [-0.51, -0.28] 7.1 248.0
PPO 9,200 [-0.40, -0.22] 16.3 1.4

TRPO 8,600 [-0.44, -0.22] 17.2 1.3
Dueling DQN 9,400 [-0.47, -0.27] 2.5 1.6

AC 9,300 [-0.51, -0.23] 13.0 1.3
A2C 14,000 [-0.55, -0.24] 8.4 1.3

There are apparent differences between the models in how the water level changes before the peak
discharge. Several algorithms (A2C, AC, and Dueling DQN) anticipate this by (slightly) lowering the
water level. A2C maintains a very low water level unless this is not possible due to high inflows, which
results in far higher costs than the other methods. The lower boundary of the target range is also often
exceeded.

Even with the lowered water level, AC exceeds the upper boundary by a significant amount. The
lowered water level only results in higher performance with Dueling DQN, where the percentage out of
range is lower than both the DQN and MPC. The overall costs are higher because a smaller volume is
drained using the gate.

Finally, PPO and TRPO have very similar performances, most likely due to the similarities in the
two algorithms. The costs are similar to AC and Dueling DQN but the water levels rises to 8cm above
the upper boundary.

Overall, the Dueling DQN performs extremely well and, with further optimization, is likely a suitable
extension to the current implementation of DQN. Due to the use of the DQN hyperparameters, other
algorithms may have significantly higher performance if the hyperparameters are tuned appropriately.
The anticipation by lowering the water level suggests that an actor-critic method may prove suitable
for this application.
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7.7. Alternative reward structure
The current reward structure includes a penalty when the water level is within the target range. This
can cause suboptimal behaviour, as the full water level flexibility is not exploited to minimize pumping
costs. The in range penalty was included to stabilize and speed up the training process. However, several
additional tests were done to analyse the performance increase than may be achieved by simplifying
the reward to two components. The new RL model that was tested was kept identical to the original
model, except for the in range penalty and the training procedure. In order to achieve the necessary
performance, the agent was trained for an extra 2000 epochs of 15 days. The in range penalty ensured
that there was always an optimal state, even when in range and not pumping. Without it, the model
first needed to learn an estimate of future rewards to effectively train within the target range. Initially
learning the return estimate meant that the overall training time increased.

Table 7.6 shows the tests that deviated most from the performance of the original model. During
normal conditions and the extreme scenarios (except the extreme negative energy prices scenario), the
performance was almost identical to that of the original model. The computation times of the two
models were very similar, as the NN used to determine the action used the same architecture and
hyperparameters. The control plans created by the alternative model for the results in Table 7.6 can
be found in Appendix M.

Table 7.6: Performance of alternative reward structure

Scenario Model Pumping costs Maximum water Out of range
[EUR] level [m+NAP ] [% time steps]

Entire test RLoriginal 116,000 -0.265 0.3
data set RLalternative 102,000 -0.260 0.2

High water level RLoriginal 2,400 -0.30 0.0
2019-12-17 RLalternative 1,700 -0.30 0.0
High inflow RLoriginal 4,400 -0.29 1.2
2019-03-05 RLalternative 3,800 -0.30 0.0

Extreme Neg E RLoriginal 400 -0.30 0.0
scenario RLalternative 90 -0.30 0.0

The source of the improved performance of the alternative reward is highlighted in the resulting
water levels for the entire test data set, shown in Figure 7.15. The probability density curves for the
water levels for the original RL model, MPC, historical measurements, and alternative reward structure
can be found in Figure 7.16.

2019-01 2019-04 2019-07 2019-10 2020-01 2020-04 2020-07 2020-10
Date

0.55

0.50

0.45

0.40

0.35

0.30

0.25

W
at

er
 le

ve
l [

m
+

N
AP

]

Test data set RL - alternative reward

Inside range
Outside range
Min/max water level

0 5
Density

Figure 7.15: The resulting water levels for the RL with the alternative reward structure for the test data set,
2019-01-01 - 2021-01-01. The probability density curve is shown in the right hand figure.
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boundary.

The alternative reward structure did not restrict the water level when in range. As a result, the
model utilized the full flexibility of the system to a greater extent by approaching closer to the lower
boundary. It can also be seen that the water level fluctuates more frequently than for the original
reward structure. The proximity to the target range boundaries did not result in a higher exceedance
rate. The alternative reward performed better in this respect.

The use of the full flexibility allowed the model to create control plans the generally meant lower
pumping costs. Slightly anticipating high inflows also had a small contribution to this.

The suboptimal behaviour with respect to the negative electricity prices was still observed with
the alternative reward. The model did not pump specifically during negative prices, but mainly based
the pumping strategy on the water level in the system. Changes in the training procedure or reward
structure are therefore still necessary to solve this. This test does show how changes in the reward
structure have a significant influence on the final behaviour of the model. This is the only information
the model receives about the desired actions.



8
Conclusion and Discussion

The objective of this thesis was to optimize the control of the IJmuiden pumping station using RL
while complying with local water level restrictions and compare it to the state-of-the-art MPC methods
in terms of constraint violation, energy costs, and computational speed. This IJmuiden case study
allowed the potential for an RL controller to be explored in a real-world context. The NZK-ARK
system plays an important role in the flood safety of the major metropolitan areas of Amsterdam and
Utrecht, including important infrastructure of high economic value. It is critical that the water level
remains within the safe range. Within this range, the flexibility of the system provides opportunities
for energy cost optimization.

8.1. Suitable reinforcement learning algorithms
In order to select a suitable RL algorithm for the agent, a literature study was performed. The DQN
algorithm was selected due to the relative simplicity, the use of experience replay for sampling, and
the delayed targets. In addition, the algorithm can achieve high levels of performance through various
extensions in domains with discrete actions [57].

The base implementation of the algorithm was implemented and evaluated. After hyperparameter
optimization on the validation set, the model reached a high level of performance on the test set. The
water level was nearly always maintained within the target range, performing at least as well as the
state-of-the-art MPC. The consistent use of the gate when possible reduced the electricity costs of
pumping. However, the pumping strategy was still suboptimal, which resulted in costs at least 50%
higher than the MPC. The chosen time step for pumping was based mainly on the water level in the
system and the electricity price forecast was not adequately taken into account.

After the base implementation, several extensions were researched and implemented. One extension
that was tested was Dueling DQN, which uses two estimators for the Q-function and state-dependent
advantage function. Without further optimization, the algorithm outperformed the DQN agent in terms
of maintaining safe water levels. This did result in higher costs, but with further tuning of the training
procedure, hyperparameters, and reward structure, it is expected that the costs can be decreased
further. This can include training more examples with high sea level and low inflowing discharge. This
scenario will make pumping necessary without the difficulty of staying within the target water level
range. The model can then learn to reduce the penalty for pumping as well as taking advantage of
negative electricity prices.

Actor Critic methods showed desirable behaviour by lowering water levels in anticipation of higher
inflowing discharges. These methods differed more from the original DQN, which suggests that the
hyperparameters may be less suitable and greater improvements can be achieved with tuning. Currently,
the Actor Critic control plans have significantly higher costs than the DQN model.

It was not possible to test the performance of methods with continuous action spaces within the
scope of this research. Such an algorithm would keep the ordinality in the actions, which may increase
model performance. The masking of actions can result in the agent not being able to choose the action
with the highest expected return. Currently, the agent is not able to choose the next best action in
terms of outflow discharge, but the action with the next highest expected return is selected, which

60



8.2. Water level constraints 61

may not be the same. DDPG, TRPO, PPO, A3C, and ACER are algorithms that all allow the use of
continuous action spaces.

Overall, the final performance of the DQN model shows that this algorithm is suitable for this type
of system. Further optimization and the addition of extensions to the algorithm have the potential to
create a model that can control the system with similar operational costs as the current state-of-the-art
MPC.

8.2. Water level constraints
The high economic value of the areas surrounding the water system results in strict water level
regulations to ensure the safety around the NZK-ARK. The water level should always be maintained
within the target range between −0.55m+NAP and −0.30m+NAP . Before cost reduction was
included in the model objective, the agent was first developed to deal with these classical constraints.

As this was a relatively simple optimization problem, the model performed very well. During normal
conditions, the water level was never exceeded. Only during extremely high inflowing discharges did
the water level rise above the upper boundary. During the most extreme inflow conditions, the water
level exceeded the target range during 2% of the time steps over an entire month. The water levels rose
to −0.28m+NAP , 2cm above the target range. This is a high water situation, but no measures are
taken until a water level of −0.20m+NAP is reached. At that point, the first problems will arise for
shipping as the minimum vertical clearance will not be met. The IJ-front will be closed off from the
NZK-ARK system due to the increased risk of flooding in Amsterdam.

The model did not adequately anticipate for the high inflowing discharge, which meant that choosing
the maximum outflow action was not sufficient to maintain the safe water levels. The desired behaviour
includes lowering the water level when high inflows are present in the forecasts.

This model allowed the agent to be tested for a simpler optimization problem to ensure that the
model was able to learn and that the dynamics of the water system model were correctly implemented.
The reward was independent of whether the pump or gate was chosen. This meant that the agent
learned to only use the pump, unless a large inflow discharge meant it was not possible to keep the
water level within the target range without using the gate.

8.3. Cost optimization
After successfully implementing the agent with only the water level objective, cost optimization was
added to the problem. For this water system, the most important criterion for control was respecting
the water level restrictions. Within this flexibility of the system, the costs could be minimized.

8.3.1. Water level constraints
Over all the 1000 test cases, the agent was able to ensure that the water level did not drop below
the target range during all time steps. A small margin of approximately 1cm was maintained from the
boundary. This was partly due to all outflowing discharges being prevented when the water level reached
−0.53m+NAP . However, if the water level was slightly above this level, the agent could still choose a
large discharge. This could decrease the water level to below the lower boundary. The performance of
the agent was very high in this region of the state space. Figure 7.9 shows the water level for the entire
test data set, where the margin to the lower boundary can clearly be seen.

A more complex objective was ensuring that the water level did not exceed the upper boundary of
the target range. In this respect, the RL agent outperformed the MPC, by allowing high water to occur
less frequently over the test period. The largest exceedance reached a water level of −0.27m+NAP ,
only 3cm above the upper boundary. The total duration of the high water was approximately 4 hours
over the episode of 1 month. The first measures are taken in the water system at a water level of
−0.20m+NAP , which was not close during the entire high water event. During this event, the MPC
was able to limit the level to −0.28+NAP , slightly better than the RL. However, the total time that
there was high water for the MPC was longer due to multiple small exceedances. This shows how the
two models have similar performance in this regard during high inflow events. In terms of total high
water time, the RL model performed best. The high water of both models can be seen in Figure 7.3.

The most significant difference in behaviour for this specific event was the choice of actions before
the peak discharge. The MPC lowered the water level to create a larger buffer when the peak occurred.
This was not observed for the RL model, resulting in a larger water level exceedance. This suggests
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that this scenario did not occur frequently enough in the training episodes, as the model did not behave
optimally.

The RL agent performed as desired during normal conditions. All water was drained using the gate,
which meant that no costs were made while maintaining the necessary water levels during all time steps.
For higher inflow, the agent was also able to ensure safe water levels in the system. This did require
the use of pumps, as the gate was not sufficient. The behaviour of the agent was not yet optimal as it
did not anticipate the peak discharge by preliminarily lowering the water level.

8.3.2. Cost reduction
As mentioned above, during normal conditions in the water system, the RL agent was able to maintain
safe water levels without pumping. As the inflow discharge increased, the use of the pumps was required.
The agent optimized the use of the gate to reduce costs. This minimized the volume that was drained
using the pumps.

When the control plans were examined in more detail, it could be seen that the choice of when to
pump was mainly driven by the water level. When the water level approached the upper boundary of
the target range, the pumps were used. There was no clear correlation with the electricity prices or
power consumption. This was further highlighted by the differences in the control plans created by the
MPC. The MPC used the temporarily lower DAM prices to pump as much as possible in combination
with moments when the pump height was small, reducing power consumption. Only when it was not
possible to delay the pumping to a lower cost time step was the pump used during less than ideal hours.

As a result, the RL model consistently created control plans with higher total costs than those of the
MPC. For the entire test data set, the total costs of the RL control plan were approximately 50% higher.
Though this difference was significant, the economical use of the gate is expected to reduce overall costs
when compared to the current operation. The estimate of current operational costs showed that both
models would significantly reduce costs by at least a factor of 6.

Current control includes spreading out the gate discharge over the longest possible period, which
reduces the possibility of cost optimization, as this generally lowers the total discharge that can be
drained by the gates. As the RL and MPC models do not take this into account, the system is more
flexible, and lower costs can be achieved.

Even though the RL model has approximately 50% higher costs, the water level exceeds the upper
boundary far less frequently. The upper boundary was exceeded 0.3% of all time steps, while for the
MPC this was 2%, as shown in Figure 7.9. As the flood safety is of great importance, high water
conditions greatly impact the area. It may therefore be preferable to have higher costs if that reduces
the chance of high water occurring. If the MPC were to reduce the time steps where the water level
was out of range, this would increase the costs.

The last important difference between the two models is the computation time. The RL control
plans can be created more than 300 times faster than those of the MPC. This is a significant advantage
as this shows the potential for increasing the complexity of the water system model as well as details
regarding the control of the water system. This can include changing the linear reservoir model to using
the more accurate one-dimensional Saint-Venant equations. More accurate calculation can be made for
the flow and water levels throughout the system. The six pumps have also been simplified into one
pump with characteristics that approximate the behaviour of all pumps together. The closer the water
system is modelled to reality, the more applicable the model becomes for operational control.

8.4. Extreme scenarios
After examining the performance of the RL model for the test data set, control plans were created for
several extreme scenarios and compared to the state-of-the-art MPC model. Similar performance was
observed in previous situations. The RL costs were consistently higher than those of the MPC. On
average, the costs were 25% higher, which was mainly due to the MPC creating income by pumping
during negative electricity prices. The costs of both models were similar for scenarios where pumping
was frequently necessary, while larger differences were observed with negative prices or only sporadic
pumping. The costs of all scenarios can be seen in Figure 7.12.

The water levels reached were similar for both models, however, the RL maintained safe water levels
for a significantly larger portion of the time steps. This included both exceeding the upper and lower
boundary of the target range. Several situations occurred where the MPC pumped during negative
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prices, thereby lowering the water level below −0.55m+NAP . The maximum water level was often
exceeded by the MPC. The model allowed higher water levels, resulting in exceedance as soon as the
inflow was too large. The water level was often less than 1cm above the upper boundary.

When compared to the RL model, the water level was normally maintained slightly lower, giving
the model a larger buffer during higher inflows. This difference can be seen clearly in the high sea levels
and high inflow scenario in Appendix K.5. The MPC has 20% lower costs, however, the maximum
water level is exceeded during 16% of the time steps.

As with the test on the full test data set, the computation times of the two models were of different
orders of magnitude. The RL model was able to create a control plan in around 0.5 seconds while the
MPC required at least 2 minutes.

8.5. Overall reinforcement learning model
After analysing the performance of the RL model on the entire test set, for extreme scenarios, and
compared to the state-of-the-art MPC, there were several additional observations.

8.5.1. Operational control
The current setup of the model it is not yet suitable for operational control, regardless of the performance.
The start-up time for the pumps to reach the desired discharge is not considered. The RL agent often
chooses to switch from not pumping to near-maximum discharges, where multiple pumps would need
to be activated. As a result, the outflowing discharge computed will be larger than that in reality. The
plans can be made ahead of time, which means that the pumps can be turned on ahead of time. This
allows the pumps to be at the desired discharge at the right moment. However, the costs no longer
be accurate, as pumping is also performed outside the original time step. In addition, the frequent
changing of pump discharge will increase the wear on the pumps, resulting in higher maintenance costs.

Only the water levels at the start of the time step are used to determine which actions are possible.
Due to the time step length of one hour, it occasionally occurs that an action is no longer possible
during the time step. The model currently does not take this into account. In the case of opening
the gate, if the sea level rises rapidly, this action may no longer be possible. One hour is enough for
significant changes can occur that make many actions infeasible.

8.5.2. Water system model
Currently, the water system is modelled as a single linear reservoir. This means that the water level
throughout the whole water system is the same. The inflowing discharges instantaneously affect the
water level in the system, as do the outflowing discharges. The location of the inflowing discharge is
also not taken into account. Due to the length of the system and the differences in wind set-up, the
water levels in Amsterdam and other critical areas can deviate from that in IJmuiden.

The speed of the current model means that it is feasible to implement a more complex model of the
water system that accounts for the spatial and temporal effects. This is a large benefit compared to MPC
methods. The computation time of MPC greatly limits the complexity of the system representation. In
addition, RL methods are suitable for the approximation of non-linear dynamics.

8.5.3. RL training
During training, there are fluctuations in the validation performance that cannot be attributed to
changes in the reward structure or episode length. This suggests that the training is not entirely stable
and further optimization can be done. The instabilities were observed for all training instances of the
RL agent. The tuning can improve performance in addition to making training more stable. This can
include changes to the NN architecture, reward structure, and hyperparameters.

8.5.4. Alternative reward structure
Initial tests of removing the penalty for the water level within the target range showed improvements
in the model performance. The model was able to use the full flexibility of the water system, which
resulted in a small reduction in costs. The model was not limited by the penalty for deviating from the
target water level of −0.40m+NAP . In addition, the model was able to reduce the time steps where
the water level exceeded the target range.
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8.6. Final conclusion
Overall, RL methods are capable of controlling a water system, such as the IJmuiden pumping station.
The model adheres to the safety regulations regarding the permitted water levels with the exception
of small exceedances during extreme inflow events. During these events, the water levels reached are
similar to those of the state-of-the-art MPC. However, the total time of exceedance is significantly less.
The additional flood safety regarding and a less optimal pumping strategy result in significantly higher
costs for the RL.

The testing of 1000 test episodes, as well as multiple extreme scenarios, allowed the consistency
of the model to be evaluated. The RL model proved to be robust, with outputs being consistent in
complying with the water level constraints. The performance in terms of cost optimization was also
consistent throughout the testing.

The biggest advantage of RL over methods such as MPC is the reduction in computation time.
Currently, the RL model is able to create a control plan for the pumping station approximately 300
times faster than the MPC. This opens doors for further development of the model and increased
complexity. A more accurate representation of the water system can be used. This can include more
temporal and spatial effects as well as a more realistic action space. The action space can discretize
all six pumps with their individual power and pump height curves. These adjustments will make the
model more applicable for the operational control of such a system.

This research has shown that further development of RL methods in this application is still necessary
to improve the performance with respect to minimizing costs. This method provides an extreme
reduction in computation time, making the control of more complex systems with multiple objectives
feasible. These control methods can contribute to the balancing of the electricity network as the portion
of renewable energy sources increases while optimizing for the energy consumption of the system.



9
Recommendations

Unlike Proportional Integral Derivative (PID) and MPC, which are mature control systems that are
widely used today, RL methods are not yet widespread. RL is a very active field of research and is not
currently used for the operational control of a water system, such as the IJmuiden pumping station.
This research explored the potential of RL for this application and, naturally, many recommendations
can be made. These recommendations will touch upon all facets of the control system. This includes
the water system model, the RL method, and finally the potential for a combination with MPC.

9.1. Water system model
9.1.1. NZK-ARK
The assumptions made by modelling the water system as a linear reservoir decrease the accuracy of the
calculated changes in the water system. The fast computation speed of the RL model enables the use of
a more complex model, such as using the one-dimensional Saint-Venant equations. These are often used
to model open channel flow, such as the NZK-ARK system. The equations describe the relationship
between water level, discharge, and storage. Currently, all inflowing discharges simultaneously enter the
system and have an immediate effect on the water level throughout the entire system. The water level
in IJmuiden is also considered equal to that in Amsterdam, which is not always the case due to effects
such as wind set-up. Using a more realistic representation of the system will increase the real-world
applicability of the RL method. The environment used for its training will more closely resemble the
real world.

9.1.2. Pumping station model
Not only the model of the NZK-ARK can be more realistic but also that of the pumping station.
The pumps can be represented individually with their individual discharge, pump height, and power
relationships. The action space can be discretized to include all pumps instead of a single pumping
action. If maintenance costs can be included in the model, the actions can also be selected based on
which pump is already operational. The agent can learn that frequently turning a pump on and off
increases the wear. In addition, when pumps require maintenance, the control method can still produce
a realistic plan by completely masking the inactive pump.

If all states of the system can be expressed in costs, the agent can find the optimal behaviour to
reduce total costs. These costs include the specific costs of the use of the pumps and gate as well as the
monetary consequence of certain water levels. Currently, the behaviour of the agent is determined by
the chosen scaling of the reward function. If the costs of all actions can be established, this will allow
a more accurate optimization.

9.1.3. Time resolution
Currently, the actions are chosen hourly. Since data is available every 5 minutes, the state of the water
system can be more accurately captured when changes are determined at this frequency. The current
set-up of the model uses the average inflowing discharge for the time step to determine the water level
changes. However, as the discharge is not constant, the water level fluctuations during the time step are
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not taken into account. A linear change in the water level is assumed during the time step. Increasing
the time resolution will give a more accurate maximum and minimum water level during specific control
episodes. If the inflowing discharge was very high at the start of the time step interval, the maximum
water level may have been higher than was calculated with the current method.

Another consequence of the time step length is that the state of the water system can change
significantly during a time step. We currently assume that an action can be performed during the
entire time step. This is not always the case and therefore the feasibility of the action needs to be
considered. To ensure that an action is only performed when the restrictions of the water system allow
it, the feasibility of the action needs to be computed more frequently. The model can either be set up
to stop all outflowing discharge, continue with the next highest possible action, or be allowed to choose
a new action. Setting the outflow to zero until the next time step will probably result in the water
level exceeding the target range more frequently. This is the case during high inflows combined with
a water level close to the upper boundary. Continuing with the next highest possible action may not
be the optimal action for that time step. It is therefore expected that the highest performance can be
achieved by allowing the agent to select a new action when the previous action is no longer possible.

9.1.4. Operational control
Before such a model can be used for operational control, the model needs to be tuned to the behaviour
of the operators that make the final decision about which control strategy is used. This will ensure that
the model is used optimally. Real-world performance may be increased if the upper boundary of the
target water level range is set to −0.32m+NAP rather than −0.30m+NAP . Operators are likely to
become nervous when the water levels approach −0.30m+NAP . As a result, they are likely to deviate
from the optimal control plan suggested by the model. If this is taken into account by the model, the
most optimal plan for those safer constraints can be found which will be followed by the operators of
the system.

The current policy for the pumping station includes spreading the gate discharge over a longer
period to reduce the maximum discharge. These constraints will reduce the potential of the system to
minimize costs by limiting the flexibility of the system. If the maximum discharges are used, this may
negatively affect the bed around the pumping station. The impact of this change in control would need
to be investigated.

The more frequent changing of the discharge of the pumps is expected to increase maintenance costs.
To fully optimize the system, these additional costs need to be quantified. This will allow the agent
to make the trade-off between lower electricity costs at the expense of higher maintenance costs in the
future.

9.2. Reinforcement learning method
9.2.1. Algorithms
During testing, several other RL algorithms have shown potential for proper control of the IJmuiden
water system. In particular, the extension to DQN, Dueling DQN, showed very high performance
without any further optimization. As discussed in [57], there are more extensions to the DQN algorithm
which can significantly improve performance in the appropriate application. Double Q-learning was
discussed previously, which addresses the overestimation bias caused by the maximization in calculating
the target return for updating weights [76]. Prioritized Experience Replay will allow us to emphasize
important state transitions. This could improve the performance of the model in negative price
situations as well as choosing the most cost-efficient time step for pumping. The last popular extension
to DQN is Distributional RL where the distribution of the returns rather than the expected returns are
learnt [77]. Testing with various combinations of these extensions may yield an algorithm with higher
performance than the current DQN, which may even approach the costs reduction achieved with MPC.

There are also other algorithms that showed potential and can be tested further. The algorithms
created control plans with less optimal behaviour, however, this is likely due to the use of the DQN
hyperparameters, which may not have been suitable. Anticipating high inflows is behaviour that is
desired in the controller, which was seen in the Actor Critic methods. These methods can be tested
more extensively, with appropriately tuned hyperparameters to give a more appropriate estimate of
their performance. The control plans currently have significantly higher costs than the optimized DQN
model.
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Finally, it is recommended to test the performance of the agent with algorithms that allow a
continuous action space. The ordinality in the actions suggests that this might make the optimization
problem less complex to learn. The action space can be split into three possibilities, one representing
no outflow, the second representing the discharge pumped, and the third the discharge drained using
the gate. The value of the NN output is then used to determine the magnitude of the discharge.

9.2.2. State space
Input data
The splits in the data set were made without padding between the training, validation, and test set.
There is a temporal relationship between the discharges, sea levels, and electricity prices. By splitting
the data on a specific date and time, consecutive hours were used for different training purposes. As a
result, there was a small leak of information in the training set about the validation and test set. In
future research, an interval of at least 1 month should be kept between the data splits. This will ensure
that the validation and test set give an accurate impression of the performance of the model on a new
and unseen data set.

Forecasts
Currently, the inputs of the model are historical data rather than forecasts. Due to the computation
speed of the RL model, it is expected that accurate forecasts will be available at the moment when the
control plan needs to be created [26]. The model currently only needs forecasts 48 hours ahead. Even
so, there will be uncertainty in the data, especially during more extreme events. Future models should
be further optimized to deal with these uncertainties. There are not only uncertainties associated with
forecasts but also those caused by measurement errors.

Predictions of the energy prices will also be used during operational control of the system rather
than the definitive DAM prices. The definitive prices are only available after the market has closed and
no more electricity can be bought or sold. This means that there is also uncertainty associated with
the electricity prices provided as input to the model.

As RL algorithms are suitable for applications affected by large uncertainties [8], it is expected that
the model will maintain a high performance when the forecasts are introduced rather than the historical
data. If the model is to be used for real-world applications, the use of forecasts is essential as the agent
will need to learn to deal with the uncertainties to perform well in operation.

The computation speed of the RL algorithm allows multiple scenarios to be run when the severity
of an extreme event is uncertain. If there is a possibility of high inflowing discharges, a control plan can
be created for multiple scenarios to determine the system response. This can help to take into account
the probability of occurrence of an event.

Electricity markets
As discussed in Chapter 3, the IDM is also suitable for cost optimization in the IJmuiden pumping
station. This may also reveal additional benefits to the RL method as speed becomes an increasingly
important factor. The bids on the DAM need to be submitted the day before delivery, while on the
IDM this can be as short as 5 minutes before. Due to the changing prices and state of the water system,
a fast model can benefit effectively from the price fluctuations. The model can be run repeatedly as
soon as new price estimates and other important inputs are available. If the IJmuiden pumping station
is controlled using electricity bought on both the DAM and IDM, this will likely require two RL models.
Each model works with different inputs and with different time steps. The performance and interaction
of such models would need to be tested and validated to assess the potential of the combination of these
markets.

An adjustment that might simplify the current optimization for the RL agent and increase
performance is the use of relative electricity prices. The absolute price is not the most important for
the model, but rather the cheapest time steps in the coming forecast period. The agent always chooses
the gate if possible and otherwise should select the best price option for pumping. Negative prices
could still be represented explicitly, as this is a necessary distinction for cost reduction. The additional
benefit of relative pricing is that the agent will not need to be re-trained when the prices change.
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9.2.3. Training steps
Due to the speed of the training, more evaluation steps can be performed during training to give a more
accurate indication of the performance. When training the agent locally, training times were significant,
which slowed the development speed. However, when training on Snellius, this was no longer a limiting
factor. Currently, the performance is evaluated by testing 20 episodes every 50 training steps. Increasing
the number of episodes tested may help to further optimize the training procedure.

In addition, the training examples can be tuned to increase the model performance for specific
scenarios. This can include the pumping strategy and use of the negative electricity prices as well as
taking into account the forecast of inflow. To train the pumping strategy, the model can learn from
episodes where the sea level is high and the inflowing discharge low. This will force the model to use
the pumps, as the use of the gates is not possible. The low inflow will mean that the focus is not on
maintaining safe water levels. Similar training scenarios can be created for other regions of the state
space where the model performance needs to improve.

9.3. Combination with MPC
The computation time of the MPC optimization can be reduced by initializing the model close to the
optimal solution. Using artificial intelligence techniques as a warm-starting procedure for MPC has
been demonstrated to reduce computation effort for MPC [78]. As the RL model is not able to decrease
the energy costs as effectively as the MPC, it is possible that the computation speed of the MPC can be
increased by using the control plan of the RL agent to initialize the model. This may also make it more
feasible to use a more complex model for the water system. Operators may also prefer the reliability
of a MPC. The control plans of both models are very similar in the use of the gate and the pumping
strategies often also overlap.

Trust in a new method such as RL can perhaps be achieved by running the model parallel to a
trusted method. This can show the reliability and performance of the method before it is used in
operation. The model can also be used for control when there is no risk of flooding. When the water
levels rise too close to the upper boundary, control can be switched to the current reliable method.

It is possible that a combination of two models yields the safest and most cost-effective control.
An MPC can be used to create the control plan based on the DAM prices, after which an RL model
computes changes to the plan with energy bought on the IDM. The speed of the RL makes planning
based on the IDM more feasible as bids can be submitted as late as 5 minutes before delivery.
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A
Power Consumption Optimization

To fit a single power curve for the combination of the six pumps at IJmuiden, the Gurobi optimizer
was used to find the most efficient combination of pumps for the combinations of discharges, Q, and
pump heights, dH. This was achieved by formulating the optimization as a MIP, with an objective and
constraints that were solved by the Gurobi optimizer [66].

For each situation, the most energy-efficient combination of pumps was found by using the Q-dH and
P -dH curves of all pumps. A summary of these relationships can be seen in Table A.1 with the symbols
to distinguish between the pumps and their operating modes that will be used in the optimization. The
subscripts show the number of the pump and when multiple modes are possible, the number of the
mode.

Table A.1: Pump discharge and power relationships for all six pumps in the IJmuiden pumping station [26]

Pump Q-dH [m3/s], [m] P -dH [kW ], [m]

1, 3 Q1,3 = −5.4174 · dH + 44.93 P1,3 = 208.08 · dH + 536.85

2, 4 Q21,41 = −5.4174 · dH + 44.93 P21,41 = 208.02 · dH + 536.85
Q22,42 = −6.4977 · dH + 33.149 P22,42 = 192.36 · dH + 217.26

5, 6 Q51,61 = −1.9822 · dH2 + 1.9726 · dH + 44.93 P51,61 = 443.91 · dH + 476.30
Q52,62 = −1.8544 · dH2 + 7.7740 · dH + 44.93 P52,62 = 379.09 · dH + 373.18
Q53,63 = −7.1021 · dH + 48.164 P53,63 = 282.97 · dH + 417.32

A.1. Optimization model
The model used for the power consumption optimization consisted of several components. Firstly the
discharge was determined with the Q-dH curves of all pumps combined with binary variables indicating
which pumps were being used. The binary variables, Bx, had a value of 0 or 1 indicating an inactive
and active pump respectively.

Qapprox(dH) [m3/s] =B1 ·Q1(dH) +B21 ·Q21(dH) +B22 ·Q22(dH) +B3 ·Q3(dH)+

B41 ·Q41(dH) +B42 ·Q42(dH) +B51 ·Q51(dH) +B52 ·Q52(dH)+

B53 ·Q53(dH) +B61 ·Q61(dH) +B62 ·Q62(dH) +B63 ·Q63(dH)

(A.1)

Constraints were added to ensure that multiple pump modes could not be activated simultaneously.
This was done by making sure only one binary variable of each pump could be nonzero. The indexing
of the binary variables was done in the same manner as in Table A.1, the first subscript showed the
number of the pump and the second the pump mode.
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B21 ·B22 ≤ 1e− 3

B41 ·B42 ≤ 1e− 3

B51 ·B52 ≤ 1e− 3

B51 ·B53 ≤ 1e− 3

B52 ·B53 ≤ 1e− 3

B61 ·B62 ≤ 1e− 3

B61 ·B63 ≤ 1e− 3

B62 ·B63 ≤ 1e− 3

(A.2)

It was not always possible to achieve the exact desired discharge by combining the six available
pump curves. To overcome this, the approximated discharge could have a maximum deviation of 5m3/s
from the discharge for which the power was optimized. In reality, all discharges can be achieved within
the feasible region (shown in Figure 5.2). However, this could not be done with the optimization as the
variable speed pumps (5, 6) were approximated with three distinct discharge modes [26].

(Qapprox −Q)2 ≤ 52 (A.3)

Finally, the objective of the optimization was to minimize the sum of the power consumption of
all the pumps. This total was determined with the P -dH curves of all the pumps combined with the
binary variables indicating which pumps were activated.

P (dH) [kW ] =B1 · P1(dH) +B21 · P21(dH) +B22 · P22(dH) +B3 · P3(dH)+

B41 · P41(dH) +B42 · P42(dH) +B51 · P51(dH) +B52 · P52(dH)+

B53 · P53(dH) +B61 · P61(dH) +B62 · P62(dH) +B63 · P63(dH)

(A.4)

A.2. MIP results
To determine an accurate power consumption throughout the whole feasible workspace, the optimization
was performed for a range of discharges and pump heights. The discharges considered ranged from
0− 260m3/s with a step size of 5m3/s. The pump height ranged from 0− 5m with a step size of 0.05m.
With each discharge and pump height combination, the optimal values for the binary variables were
determined, in other words, the optimal pump configuration.

The resulting optimized power consumption can be seen in Figure A.1. The missing data was due to
some discharge and pump height combinations not having a possible pump configuration. As explained
above, this was due to the approximation of the variable speed pumps. The dotted line shows the
boundary of the feasible workspace for pumping.
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Figure A.1: MIP results for the power consumption of the optimal pump configuration
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A.3. Fitted power consumption
In order to apply the derived power relationship, a quadratic curve was fitted using a least-squares
optimization, as shown in Equation (A.5). The solution can be found in Equation (A.6). The results
outside the feasible pumping region (to the right of the dotted line in Figure A.1) were not included
in the least-squares optimization. This ensured the most accurate fit inside the feasible workspace.
The power consumption will not be calculated for the infeasible workspace and therefore the power
relationship does not need to be accurate for those combinations of discharge and pump height.

[
dH Q dH2 dH ·Q Q2

]
· x⃗ = P (A.5)

Pp [kW ] = a · dH + b ·Q+ c · dH2 + d · dH ·Q+ e ·Q2

a = −2.64e+ 02

b = 8.30e+ 00

c = 1.03e+ 02

d = 8.53e+ 00

e = 2.77e− 03

(A.6)

The fitted solution is visualized in Figure A.2. This solution had an average absolute residual error
of 0.29MW , when compared to the MIP solution.
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Figure A.2: Fitted P -Q-dH relationship for the MIP results for the power consumption of the optimal pump
configuration



B
Wind Set-Up

The wind acts as a shear stress on the water surface, which is compensated by the gradient of the water
level in closed basins and lakes. The NZK can be treated as such a closed basin. The maximum set-up
occurs when the fetch (the length over which the wind shear stress acts) is largest. When the basin is
simplified as a rectangular shape, the maximum and minimum wind set-up are equal as the centre of
gravity of the water body is halfway the canal.

Equation (B.1) was used for the calculation in combination with the fetch of the canal for all wind
directions. The effect of the wind direction, cosϕ, was not included in the calculation as the fetch was
only non-zero for the relevant directions.

W = 0.5 ∗ κ ∗ u
2
10

gd
∗ F ∗ cosϕ (B.1)

where:

W Wind setup [m]
κ Friction constant [−]
u10 Wind velocity at 10m height [m/s]
g Acceleration due to gravity [m/s2]
d Water depth [m]
F Fetch [m]
ϕ Angle between the land and wind [rad]

There are several important assumptions when using Equation (B.1) to calculate the wind set-up.
The basin is rectangular with a constant rectangular cross-section and there are no inflowing or
outflowing discharges. These assumptions can be used due to the shape of the canal and the relatively
small discharges compared to the size of the basin. The time required to develop the water level
difference is not taken into account.
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C
Simulated Discharges For Training

The state space was explored further by training the RL model with historical discharge data as well
as simulated discharges. The discharges were simulated based on the distribution of the historical data
to produce realistic training examples. An initial discharge was sampled after which random changes
in discharge between time steps were chosen.

The initial discharge was randomly selected using one of two distributions. There was a 20% chance
of initializing the discharge with a high value. This situation occurs less frequently in the data and
therefore was generated more often in the simulated discharges. The discharge was sampled from a
uniform distribution between 100m3/s and 250m3/s. 250m3/s was chosen as the upper bound as
this was close to the maximum possible pump discharge which therefore resulted in a more complex
optimization problem that required pumping. This could also create situations where maintaining safe
water levels was not possible even if the maximum outflow action was consistently chosen.

For the other 80% of the samples, a more realistic initial discharge was sampled. Figure C.1 shows
a kernel density estimate for the training data as well as a fitted Weibull distribution. The Weibull
distribution (shape parameter: β = 1.6, scale parameter: η = 70) was used to sample initial discharges.
Negative discharges were not included as these only rarely occur and in these cases, the discharges are
extremely small for short periods of time.
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Figure C.1: Inflowing discharge distribution
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After sampling the initial discharge, a change in the discharge for every time step was sampled in
order to generate a time series for the entire training episode. The change in discharge was sampled
from a fitted normal distribution (µ = 0m3/s, σ = 13m3/s) as shown in Figure C.2. This distribution
was used for both high and regular discharge situations.
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Figure C.2: Inflowing discharge change distribution

All discharges were capped at −10m3/s and 260m3/s. The lower cap allowed negative discharges to
occasionally occur. The upper bound was set at 260m3/s as that was the absolute maximum that could
be pumped. If there are slight increases in pump height, pumping 260m3/s was no longer possible. As
a result, these inflowing discharges would be a challenge to maintain within the target water level range.
This allowed the agent to train in extreme cases and improve performance outside of the regular ranges.

Examples of high and regular simulated discharges can be seen in Figure C.3. During training, the
time series were generated randomly and therefore varied between retrained models.
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Figure C.3: Simulated inflowing discharges examples



D
Train, Validation, Test Split

D.1. Data clustering
To ensure that the available data was split to incorporate wet and dry data in both the training and
test set, the data was clustered by month. The inflowing discharge data was first split by month and a
kernel density estimate was computed using a Gaussian kernel with a bandwidth of 15. These kernels
were split into groups using the k-means algorithm with two clusters. This separated the samples into
groups of equal variance, representing the wet and dry months. The kernel densities and clusters found
can be seen in Figure D.1.
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Figure D.1: Clustered kernel densities per month wet/dry
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The same clustering was performed for the DAM price, as shown in Figure D.2, to split the data
into expensive and cheap months. The size of the two clusters varied significantly with far more months
falling into the cheap category.
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Figure D.2: Clustered kernel densities per month cheap/expensive

To visualize the data splits in time, Figure D.3 shows two timelines for the splits shown in Figures D.1
and D.2. A clear difference is highlighted between the discharge and DAM price trends. The discharges
show a seasonal variation where the winter months are generally wetter than the summer months. In
comparison, the electricity prices show a drastic increase in the months after June 2021.
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D.2. Data split
After clustering the data, the available data was separated for the three phases of training the RL agent;
training, validation, and testing. All data sets needed to contain enough data for each of the clustered
categories. Due to the small size of the expensive DAM prices cluster, these were not included in the
validation or testing data sets. To train the agent for these situations, more data would need to be
available. The wet and dry clusters could be more easily divided due to the seasonal variations causing
nearly all years to contain an adequate amount of wet and dry months.

First, a suitable and relevant section of the data was selected for testing. Two years of data would
allow enough examples for the agent performance to be evaluated. Different scenarios could also be run
with the same data by initializing the water level with a different value. As shown in Figure D.3, during
the summer of 2021 there was a significant increase in electricity prices. Therefore, the years 2019 and
2020 were selected for testing. This ensured all data fell into the cheap cluster and a representative
percentage of wet and dry months was included.

Validation was performed with data in 2017. As with testing, different initializations of the water
system meant that limited data could still give an accurate estimate of the performance of the model.
Both the wet and dry clusters were represented in the data split.

Finally, all the remaining data was used for training. This also included simulated discharges and
DAM prices from Belgium (BE) and Germany (DE-LU). This ensured the necessary amount of wet and
dry data. A summary of the data used for the three phases can be seen below:

• Testing: 01/01/2019 - 01/01/2021

– All inputs were measurements from IJmuiden combined with DAM prices from The
Netherlands

• Validation: 01/01/2017 - 01/01/2018

– All inputs were measurements from IJmuiden combined with DAM prices from The
Netherlands

• Training set: All remaining data

– Discharges: 01/06/2015 - 13/09/2021 (excluding dates above) or simulated data
– Sea level: 31/12/2014 - 28/07/2022 (excluding dates above)
– Electricity prices (NL): 05/01/2015 - 18/07/2022 (excluding dates above)
– Electricity prices (BE): 05/01/2015 - 18/07/2022
– Electricity prices (DE-LU): 01/10/2018 - 18/07/2022

Figure D.4 shows a timeline per country for how the data was split for the three phases. All the
discharge and sea level data was used from The Netherlands while the electricity prices were sampled
from either The Netherlands, Belgium, or Germany.
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Figure D.4: Timeline of the train, validation, test split for data per country



E
Test Scenarios

To evaluate the performance of the RL model in comparison to the MPC created by [64], test several
scenarios were chosen. Each represents a different optimization challenge. The scenarios were selected
for specific situations regarding the inflowing discharges, sea levels, and electricity prices.

E.1. Discharge scenarios
Three scenarios were selected; extreme high inflow, high inflow, and low inflow, shown in Figure E.1.
This showed how the behaviour of both controllers changes for different situations. The extreme inflow
will show how well they are able to cope when it is no longer possible to maintain the water level within
the target range. The high inflow will allow the pumping strategy to be compared while the low inflow
can be used to determine whether the full potential of the gate is used.
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Figure E.1: Discharge scenarios of 1 week for testing model performance

E.2. Sea level scenario
The control can become more challenging if the water level in the North Sea is very high. This reduces
the time steps for which opening the gate is possible, necessitating the use of the pumps. This high sea
level scenario was run twice, once with the actual inflowing discharges and a second time with increased
discharges to force the controllers to use the pumps.

The discharge in the week following 2020-09-10 was very low and therefore the pump was hardly
needed even with the high sea levels. To increase the difficulty of the optimization, the inflowing
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discharge was increased by 100m3/s for the entire scenario to ensure that the pumps were used.
Figure E.2 shows the sea levels for the test scenario, showing how the time steps where it is possible

to open the gate are limited.
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Figure E.2: Sea level scenario of 1 week for testing model performance

E.3. Electricity price scenarios
Several scenarios were chosen for testing how well the models could cope with the electricity price. A
relatively high price was chosen to evaluate whether the trade-off between exceeding the water level
and paying a high price for electricity is done correctly. Secondly, a week was chosen where the price
decreased rapidly for a short period of time. Finally, a data set was generated by transforming the
prices of 2020-02-10. This resulted in a week where the price was negative on several occasions.
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Figure E.3: Electricity price scenarios of 1 week for testing model performance



F
Hyperparameter optimization

After the initial RL model was developed where only the water level objective was included, a first
Bayesian hyperparameter optimization was performed. This tuned the model to the specific problem,
which resulted in a significant speedup and a slight performance increase. Figures F.1 and F.2 show the
results of the hyperparameter optimization and the effect on the training time. The parameters that
were tuned are shown in Table F.1 with the search space that was used.

Table F.1: Hyperparameters tuned for the water level objective including the search space, best performing value, and
chosen value

Hyperparameter Search space Best performance Chosen value

Batch size Exp(x), where x has a discrete uniform 20 20distribution between [1, 6].
Update frequency A uniform distribution between [0, 1]. 0.03 0.15

Replay memory A discrete uniform distribution between 3000 3000[450, 3000] with intervals of 50.
Network depth Randomly integer between [2, 10]. 8 8

Network width Randomly selected from 16 16[16, 32, 64, 128, 256, 512].
Dropout rate A uniform distribution between [0, 1]. 0.21 0.25

Learning rate A uniform distribution between 7e-4 7e-4[1e-5, 1e-2].
Horizon A random integer between [1, 10]. 2 2
Discount factor A uniform distribution between [0, 1]. 0.46 0.75

Due to the variability in the final performance of the agent, not only the best performing
hyperparameters were considered. The final chosen parameters were based on the 20 best performing
agents. The loss, training times, and correlation between the parameters were taken into account.
Figures F.3 and F.4 show two examples of the correlation between the batch size and a second
hyperparameter. The hyperparameter optimization does not take the correlation into account, and
it was therefore considered separately when choosing the final parameters. The update frequency
and discount rate were chosen higher than the best performing values due to the other parameter
configurations with high performance.

After the implementation of the cost objective in the rewards, a second less extensive hyperparameter
optimization was performed. The trials were performed in the same search space as the initial
optimization. The similarities with the initial model meant that there were only two parameters
that were chosen differently: the replay memory capacity and network depth were set to 2500 and 4,
respectively. Fewer hidden layers meant that the training speed increased and that the network was
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less complex, which is desirable. Since the agent was able to achieve similar performance, the network
depth could be significantly decreased.
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Figure F.1: Hyperparameters optimization showing the loss for each parameter value and a cross for the best
performance found. Trials with a loss above 50 were not included. The loss was set to be the negative reward, which was

minimized in the optimization.
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Figure F.3: Hyperparameters optimization loss for batch size and update frequency.
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Figure F.4: Hyperparameters optimization loss for batch size and memory.



G
Snellius Job Script

1 # SLURM settings
2 #SBATCH --job-name=test_job # Job name
3 #SBATCH --time=04:00:00 # Time limit [hrs:min:sec]
4 #SBATCH --nodes=1 # Number of nodes
5 #SBATCH --ntasks=1 # Number of tasks
6 #SBATCH --cpus-per-task=32 # Number of CPU cores per task
7 #SBATCH --output=output_%j.log # Output log
8 #SBATCH --error=error_%j.log # Error log
9

10 . ~/miniconda3/etc/profile.d/conda.sh
11 conda activate custom_env # Virtual env with necessary packages
12

13 module load 2021
14

15 export OMP_NUM_TREADS=18 # Max threads in parallel region
16

17 set -euo pipefail # Stop script on error and undefined variables

Listing G.1: Snellius job script with Slurm settings
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H
Additional Results - Water Level Objective
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Figure H.1: The RL control plan for two weeks starting on 2020-03-03 with only the water level objective.
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I
Additional Results - Cost Objective

I.1. Largest water level exceedance control plans
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Figure I.1: The RL control plan for 14 days starting on 2020-02-18.
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Figure I.2: The MPC control plan for 14 days starting on 2020-02-18.
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I.2. MPC control plan - normal conditions
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Figure I.3: The MPC control plan for two days starting on 2019-12-19.



I.3. MPC control plan - high inflow conditions 94

I.3. MPC control plan - high inflow conditions

2019-03-05 2019-03-07 2019-03-09 2019-03-11 2019-03-13 2019-03-15 2019-03-17 2019-03-19

Energy price

2019-03-05 2019-03-07 2019-03-09 2019-03-11 2019-03-13 2019-03-15 2019-03-17 2019-03-19
0.7

0.6

0.5

0.4

0.3

0.2

W
at

er
 le

ve
l [

m
]

Water level

Water level
Gate feasible
Pump feasible
Min/max water level

2019-03-05 2019-03-07 2019-03-09 2019-03-11 2019-03-13 2019-03-15 2019-03-17 2019-03-19
Date

0

100

200

300

400

500

Di
sc

ha
rg

e 
[m

3 /s
]

Discharge
Pump
Max pump
Gate
Max gate
Inflow

0

10

20

30

40

50

60

70

En
er

gy
 p

ric
e 

[E
UR

/M
W

h]

Energy price NL

[2019-03-05] - MPC

Figure I.4: The MPC control plan for two weeks starting on 2019-03-05.



J
Additional Results - Test Data Set
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Figure J.1: The historical measurements of the water level in the NZK at IJmuiden for the entire test data set.
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K
Additional Results - Test Scenarios

K.1. Extreme Q
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Figure K.1: The RL control plan for the extreme discharge scenario.
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Figure K.2: The MPC control plan for the extreme discharge scenario.
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K.2. High Q
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Figure K.3: The RL control plan for the high discharge scenario.
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Figure K.4: The MPC control plan for the high discharge scenario.
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K.3. Low Q
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Figure K.5: The RL control plan for the low discharge scenario.
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Figure K.6: The MPC control plan for the low discharge scenario.
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Figure K.7: The RL control plan for the high sea level scenario.
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Figure K.8: The MPC control plan for the high sea level scenario.
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Figure K.9: The RL control plan for the high sea level and high discharge scenario.
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Figure K.10: The MPC control plan for the high sea level and high discharge scenario.
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Figure K.11: The RL control plan for the high electricity price scenario.
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Figure K.12: The MPC control plan for the high electricity price scenario.
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Figure K.13: The RL control plan for the negative electricity price scenario.



K.8. Extreme negative E 109

K.8. Extreme negative E

0.8

0.6

0.4

0.2

0.0

Cu
m

m
ul

at
iv

e 
re

wa
rd

Reward and energy price

0.7

0.6

0.5

0.4

0.3

0.2

W
at

er
 le

ve
l [

m
]

Water level

Water level
Gate feasible
Pump feasible
Min/max water level

2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17
Date

0

100

200

300

400

500

Di
sc

ha
rg

e 
[m

3 /s
]

Discharge
Pump
Max pump
Gate
Max gate
Inflow [data]

30

20

10

0

10

20

30

40

En
er

gy
 p

ric
e 

[E
UR

/M
W

h]

Reward
Energy price NL
Energy price = 0

Extreme Neg E [generated]

Figure K.14: The RL control plan for the extreme negative electricity price scenario.
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Figure K.15: The MPC control plan for the extreme negative electricity price scenario.
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L.1. Control plans for 2020-02-18
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Figure L.1: The RL control plan using DQN for 10 days starting on 2020-02-18.
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Figure L.2: The MPC control plan for 10 days starting on 2020-02-18.
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Figure L.3: The RL control plan using PPO for 10 days starting on 2020-02-18.



L.1. Control plans for 2020-02-18 114

60

50

40

30

20

10

0

Cu
m

m
ul

at
iv

e 
re

wa
rd

Reward and energy price

0.7

0.6

0.5

0.4

0.3

0.2

W
at

er
 le

ve
l [

m
]

Water level

Water level
Gate feasible
Pump feasible
Min/max water level

2020-02-18 2020-02-20 2020-02-22 2020-02-24 2020-02-26 2020-02-28
Date

0

100

200

300

400

500

600

Di
sc

ha
rg

e 
[m

3 /s
]

Discharge
Pump
Max pump
Gate
Max gate
Inflow [data]

10

20

30

40

50

En
er

gy
 p

ric
e 

[E
UR

/M
W

h]

Reward
Energy price NL

[2020-02-18] - TRPO

Figure L.4: The RL control plan using TRPO for 10 days starting on 2020-02-18.
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Figure L.5: The RL control plan using Dueling DQN for 10 days starting on 2020-02-18.
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Figure L.6: The RL control plan using AC for 10 days starting on 2020-02-18.



L.1. Control plans for 2020-02-18 117

40

30

20

10

0

Cu
m

m
ul

at
iv

e 
re

wa
rd

Reward and energy price

0.7

0.6

0.5

0.4

0.3

0.2

W
at

er
 le

ve
l [

m
]

Water level
Water level
Gate feasible
Pump feasible
Min/max water level

2020-02-18 2020-02-20 2020-02-22 2020-02-24 2020-02-26 2020-02-28
Date

0

100

200

300

400

500

600

Di
sc

ha
rg

e 
[m

3 /s
]

Discharge
Pump
Max pump
Gate
Max gate
Inflow [data]

10

20

30

40

50

En
er

gy
 p

ric
e 

[E
UR

/M
W

h]

Reward
Energy price NL

[2020-02-18] - A2C

Figure L.7: The RL control plan using A2C for 10 days starting on 2020-02-18.



M
Additional Results - Alternative Reward

M.1. High water level - 2019-12-17
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Figure M.1: The RL alternative reward control plan for two weeks starting on 2019-12-17.
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Figure M.2: The RL alternative reward control plan for two weeks starting on 2019-03-05.
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Figure M.3: The RL alternative reward control plan for the extreme negative energy prices scenario.
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