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A B S T R A C T

A health indicator (HI) is a valuable index demonstrating the health level of an engineering system or structure,
which is a direct intermediate connection between raw signals collected by structural health monitoring (SHM)
methods and prognostic models for remaining useful life estimation. An appropriate HI should conform to
prognostic criteria, i.e., monotonicity, trendability, and prognosability, that are commonly utilized to measure
the HI’s quality. However, constructing such a HI is challenging, particularly for composite structures due
to their vulnerability to complex damage scenarios. Data-driven models and deep learning are powerful
mathematical tools that can be employed to achieve this purpose. Yet the availability of a large dataset with
labels plays a crucial role in these fields, and the data collected by SHM methods can only be labeled after
the structure fails. In this respect, semi-supervised learning can incorporate unlabeled data monitored from
structures that have not yet failed. In the present work, a semi-supervised deep neural network is proposed to
construct HI by SHM data fusion. For the first time, the prognostic criteria are used as targets of the network
rather than employing them only as a measurement tool of HI’s quality. In this regard, the acoustic emission
method was used to monitor composite panels during fatigue loading, and extracted features were used to
construct an intelligent HI. Finally, the proposed roadmap is evaluated by the holdout method, which shows
a 77.3% improvement in the HI’s quality, and the leave-one-out cross-validation method, which indicates the
generalized model has at least an 81.77% score on the prognostic criteria. This study demonstrates that even
when the true HI labels are unknown but the qualified HI pattern (according to the prognostic criteria) can
be recognized, a model can still be built that provides HIs aligning with the desired degradation behavior.
. Introduction

Prognostic and health management (PHM) is a natural extension of
tructural health monitoring (SHM) in the sense that the predictions of
emaining useful life (RUL) are timely updated using data from sensors.
o be able to predict RUL, a Health Indicator (HI) suitable to enter into
prognostic model is needed (Galanopoulos et al., 2021b). HI is a spe-

ial feature extracted from SHM data that shows the health (or damage)
tatus of the structure or system under monitoring. If the HI exceeds a

Abbreviations: PHM, Prognostic and health management; SHM, Structural health monitoring; IHI, Intelligent health indicator; SSDNN, Semi-supervised deep
eural network
∗ Corresponding author at: Structural Integrity & Composites Group, Aerospace Engineering Faculty, Delft University of Technology, Kluyverweg 1, 2629 HS
elft, P.O. Box 5058, 2600 GB Delft, The Netherlands.

E-mail address: M.Moradi-1@tudelft.nl (M. Moradi).

specific threshold, the SHM system should alarm in order to proceed
with the relevant guidelines such as system shutdown, maintenance, or
replacement. As a result, HI provides a connection and is a prominent
feature between raw signals and the prognostic model, and it has a
direct relationship with RUL. In contrast to RUL, which is commonly
assumed to be a linear or piece-wise linear degradation model (Al-
Dulaimi et al., 2019), HIs are nonlinear due to the nonlinear nature
of damage propagation and accumulation, which makes it useful for
analyzing and connecting to the mechanical behavior of the structure.
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On the other hand, HIs are not solely sensitive to damage, but they
might be sensitive to abnormalities in environmental conditions and
operations. The suitability of HI, which is made of features extracted
from different SHM systems, can be determined by criteria such as
Monotonicity (Mo — measuring the general increasing or decreas-
ing pattern of a variable over time), Prognosability (Pr — measuring
the distribution of a variable’s final value), and Trendability (Tr —
measuring the similarity between trajectories of variables) (Coble and
Hines, 2009; Coble, 2010; Lei, 2016; Saidi et al., 2017; Eleftheroglou,
2020). The main goal and contribution of this paper is the development
of a methodology to construct a HI satisfying the above-mentioned
prognostic criteria suited for use in prognostic models, which deals
with Feature Extraction (FE), Feature Selection (FS), and particularly,
Feature Fusion (FF).

The common procedure to design a HI that can be employed to
predict the RUL of an engineering system is to select the best features
(after FE) in accordance with prognostic criteria as the HI or the main
constitutive components of the HI. In this scenario, some features will
be overlooked since they do not meet the criteria, while they might
be useful since their fusion may comply with the intended specifica-
tions. To overcome this shortcoming, the prognostic criteria can play
a supervising role in the construction process of HI rather than being
only a measurement tool of HI’s quality. For example, a predefined
function with a set of polynomial components (Eleftheroglou, 2020)
can be considered to fuse features, in which the coefficients of the
polynomial components are unknown and have to be determined. In
this regard, combining the prognostic criteria into a ‘‘fitness’’ func-
tion could be considered as an objective function for an optimization
problem (Eleftheroglou et al., 2018). In this approach, although a
polynomial series might construct a proper HI function, the other
components, e.g. logarithmic and exponential ones, might construct a
function with more monotonic, trendable, and prognosable behavior.
In fact, the fusion function is limited to only polynomial operators in
this approach, whereas other mathematical operators and combinations
may produce better HI. Also, a significant and critical point in the
predefined function scenario to fuse features that should be seriously
noted is the computation time. Since the extracted features might
be more than hundreds (like the current work), this model is very
time-consuming. Thus, a fusion model based on an Artificial Neural
Network (ANN), especially Deep Neural Network (DNN), rather than
the predefined functions is proposed in the current study.

ANN and DNN are applicable in the field of PHM (Fink et al., 2020;
Khan and Yairi, 2018; Zhao et al., 2019) and are powerful mathematical
methods for approaching this problem; however, implementation of the
criteria directly through an ANN is problematic since backpropagation
requires the criteria’s derivatives, which are not easy to calculate. Fur-
thermore, because the values of HIs are unknown to be used as targets
for ANN, even after end-of-life (EOL), the problem cannot be solved
by a supervised learning model. Therefore, the lack of an approach to
tackle this challenge is obvious. In fact, the HI construction utilizing
FF lies between supervised and unsupervised learning, enabling Semi-
Supervised Learning (SSL) to be a feasible option. SSL makes it feasible
for enormous volumes of unlabeled data to be exploited in conjunction
with smaller labeled data sets (Van Engelen and Hoos, 2020) where it
is assumed (in the current research) that at least the HI value is known
at EOL. However, the key problem is figuring out how to incorporate
Mo, Tr, and Pr metrics into an SSL model, which will be addressed in
the present paper.

SSL models have recently attracted interest concerning RUL predic-
tion. He et al. (2022) extended a semi-supervised Generative Adversar-
ial Network (GAN) regression model to take both failure and suspension
histories into account in this respect. Also, a robustness evaluation
approach is applied to consider the prognostic model’s uncertainty
induced by the shortage of failure data. Two case studies are used to
verify the provided approach’s accuracy and reliability. Ellefsen et al.
(2019) use a semi-supervised setup to analyze the effects of unsu-

pervised pre-training on RUL estimations, using a Genetic Algorithm M
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(GA) approach to optimize the hyperparameters. According to their
observations, unsupervised pre-training is a viable strategy for RUL
prediction under a variety of operational conditions and failure types.
Based on the literature, SSL has been a promising method for RUL
prediction with a (piece-wise) linear degradation trend, but no research
has been performed on the HI construction by fusing features using a
SSL platform to obey the prognostic criteria. Since only the prognostic
criteria and EOL are available to guide the network, an inductive SSL
called intrinsically semi-supervised (Van Engelen and Hoos, 2020), which
is an extension of existing supervised methods to include unlabeled
samples in the objective function, is proposed to construct the HI for
the first time in the current research. To optimize hyperparameters, a
Bayesian optimization algorithm has been used, considering a holdout
validation, and the results have been evaluated by Leave-One-Out
Cross-Validation (LOOCV) in the perspective of generalization.

To validate the proposed method, acoustic emission (AE) data has
been collected from twelve single-stiffener composite panels during
compression–compression (C-C) fatigue loading, which are related to
the H2020 ReMAP.1 project. The application to such composite case
study poses additional challenges in the construction of HIs for prog-
nostic purposes. Due to the inhomogeneity and design of the composite
panels, their damage degradation process is complex. As such, the
relation between the collected AE data and the damage degradation is
not obvious. Furthermore, the extensive efforts required in composite
testing results in few samples and a small available training dataset.
Consequently, its application to composite panels makes the objective
of HI design and RUL prediction based on AE data challenging. Six
AE variables including amplitude, rise time, duration, energy, counts,
and RMS were extracted as main data and referred to as ‘‘signal’’ here-
inafter. Then, the FE process considering time and frequency domains
was carried out, and the resulting features have been considered as the
inputs of a Semi-Supervised Deep Neural Network (SSDNN). Although
AE as a powerful SHM method was selected as a validation case for
the proposed method, the same procedure can be generalized for other
SHM methods.

The contributions of this work include:

1. In order to choose the most effective function to generate labels
for HI, four functions are assessed based on the Mo, Tr, and Pr.

2. All three above-mentioned prognostic criteria are induced into
a SSDNN framework through the simulated labels by the above-
chosen function. In this way, Mo, Tr, and Pr implicitly force the
neural network to predict the proper HI desirable for prognostic.

3. The Bayesian optimization method is employed to identify the
optimal hyperparameters and architectures for the proposed
SSDNN. Furthermore, leave-one-out cross-validation is imple-
mented to validate and generalize the approach.

4. Acceptable HIs for composite skin-stiffener panels under C–C
fatigue loading using acoustic emission data are provided, which
for the first time conform to all three Mo, Tr, and Pr.

5. The findings demonstrate that, in terms of HI’s overall (quality)
fitness score, the proposed framework outperforms the recently
published research on the ReMAP dataset. Additionally, when
compared to the features used as HIs introduced by other re-
search, the proposed model provides better HIs according to the
prognostic criteria.

he remainder of the paper is organized as follows. It starts with Sec-
ion 2 which presents and discusses the Background on health indicators

for HI extraction/construction. Then, the Experimental Campaigns will
be introduced in Section 3. In Section 4, Methods will be described,
including Data Acquisition, Pre-processing, Signal Processing (SP), Feature
Extraction (FE), and Feature Fusion (FF). Feature Fusion (FF) as the
main contribution of the current research contains Criteria of Prognostic

1 ReMAP: Real-time Condition-based Maintenance for Adaptive Aircraft
aintenance Planning. https://h2020-remap.eu/.

https://h2020-remap.eu/
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Parameters and Semi-Supervised Criteria-based Fusion Neural Network.
Afterward, Results and Discussions will be explained in Section 5, includ-
ing Holdout Validation, Leave-One-Out Cross Validation (LOOCV), and
Discussion. Section 6 (Conclusions) concludes this paper and gives an
utlook on future work.

. Background on health indicators

In order to visualize data and continuously characterize the health
tate of the structure over its entire life, HIs can be informative and
elpful (Song et al., 2017). The available data-driven RUL prognostic
ethods, such as artificial intelligence and statistical-based models,

an also be effectively integrated with the fusion-based HIs (Lei et al.,
018). Depending upon whether a HI has any physical senses, system
erformance data is typically divided into two categories: the Physical
ealth Indicator (PHI) and the Virtual Health Indicator (VHI) (Hu et al.,
012).

Since health management has been given more attention and begun
arlier for some particular industrial components, such as batteries
nd rotating machinery equipment, PHIs are relatively well known and
elpful. In other words, the long-term and vital use of such components,
s well as their history in the industry, in turn results in providing
ore datasets as well as more solid physical, analytical backgrounds.

or instance, according to physical knowledge about batteries, the
apacity data of lithium-ion batteries can be considered as a proper
I (Cadini et al., 2019). Pei et al. (2022) recently said that, ‘‘To the
est of our knowledge, the capacity is a typical performance indicator
o monitor the health status of the battery and determine whether the
attery requires replacement; thus, we adopt such indicator for the
UL prediction’’. For rolling element bearings, Huang et al. (2020)
tilized Root Mean Square (RMS) as ‘‘a simple and practical HI, which
s widely used in bearings residual life prediction’’. Also, Relative
MS (RRMS) could be more robust to characterize the degradation
rocess of bearings (Zhang et al., 2023). However, to the best of our
nowledge, no certain and promising PHI has yet been developed for
omposite structures, especially for structures subjected to C–C fatigue
oading, which is one of the most critical and dangerous conditions
or composite structures. This can be due to complex scenarios of
rogressive damage and different types of damage, which in turn are
ependent on the type of fibers, matrix, fabrication, curing, boundary
nd environmental conditions, loading, etc., which is not the case in
sotropic material-made components.

Despite the fact that various articles have introduced PHIs (axial
train) utilizing DIC data (Eleftheroglou et al., 2016), or the size or
umber of cracks have been considered as PHIs (Li et al., 2022),
hey are not appropriate for genuine SHM and implementations. Con-
erning the first subject, methods like DIC are not yet considered
HM (Zarouchas and Eleftheroglou, 2020) because of their numerous
rawbacks, including the necessity of painting, particular illumination
equirements, problematic calibration, etc. The DIC method is also
imited to measuring the strain or the deformation at the surface of the
tructure in the field of view of the camera, making it more effective
or plates due to the lack of access to the rear of the surface. Such
ethods are usually used to validate other aspects of research, such

s finite element modeling (Seon et al., 2015) or other NDT/SHM
echniques (Saeedifar et al., 2022). For the latter subject, it may be
ossible to correctly monitor and take into account the number or
ize of fractures as a HI in isotropic materials such as aluminum (Li
t al., 2022), but this is not easily practical for composite materials
nd complicated structures. In reality, a variety of impactful micro and
acro-damage will emerge, such as cracks and delaminations, which
ot only emerge randomly throughout the structure (Qian et al., 2013)
ut are also concealed in various quantities among the various layers
f the composite material (Ameri et al., 2020).

In contrast to PHI, VHI cannot be easily interpreted and realized
n order to make an understandable connection to the physical impli-
ations. However, VHI can be designed and optimized based on the
3

intended purposes, such as prognostics. For example, if a monotonic,
trendable, and prognosable behavior can be embedded into an objective
function (Eleftheroglou, 2020) which is supposed to be used within a
data-driven model, the resulted VHI is suited to the next step, the prog-
nostic model. Linear-based feature extraction and selection methods are
suitable enough to provide an acceptable HI for some applications. For
instance, Principal Component Analysis (PCA) applied to gear vibration
signals was able to extract a proper HI (Qin et al., 2019). This method
was also used to successfully construct the HI for the CMAPSS dataset
(the turbofan engine degradation dataset), the PHM08 dataset (Prog-
nostics Data Challenge Dataset), and the N-CMAPSS dataset (the new
CMAPSS dataset) (Song et al., 2022). However, the PCA method does
not generate suitable HIs for the ReMAP dataset. Fig. 1 demonstrates
the 1st principal component obtained by the PCA model on the CMAPSS
dataset in comparison with the ReMAP dataset. It is clear that, in
accordance with the Mo, Tr, and Pr, this method is ineffective for
building HI utilizing either AE signals (amplitude, rise time, duration,
energy, counts, and RMS) or AE features (the features that have been
extracted and will be discussed in the current study).

The commonly used nonlinear methods for fusion include kernel
methods and DNN. For kernel methods, the kernel function is used
to measure the similarity between collected measurements, which is
time-consuming and memory-consuming (Wen et al., 2021). On the
other hand, DNN is a promising solution if enough labeled data is
available. For some cases, like the current work, not only is enough data
unavailable, but they are also unlabeled. Thus, by taking advantage
of FE on the input side (which leads to providing the informative and
labelable inputs) and inducing the intended desirable behavior on the
output side of the model (which leads to simulating labels), we try to
approach the problem.

It is important to note that an identified HI and its correspond-
ing preprocessing technique are closely relevant to the engineering
system/structure under monitoring (Wen et al., 2021), as well as the
type of SHM system and sensor that produce signals, and as a result,
they cannot be applied to other components directly. This marks the
first challenge in comparing the current work, which focuses on a
new experiment, to earlier research. In several works, only Mo was
reported for the utilized HIs (Eleftheroglou et al., 2018; Zarouchas
and Eleftheroglou, 2020; Eleftheroglou and Loutas, 2016), while only
one work (Yue et al., 2022) provided all the criteria. The prognostic
criteria have therefore infrequently been quantified for the reported
HIs, especially for composite structures, which adds another challenge
when comparing the current study with existing work. Yue et al.
(2022) employed the Guided-Wave (GW) monitoring method in the
ReMAP project to predict the stiffness of composite panels, which is
a mechanical characteristic of the structure, and then they reported
the prognostic criteria for predictions and stiffness. In contrast to the
current study, they only considered five samples out of twelve, and
it should be highlighted that the more samples used, the lower the
fitness score (quality) of HIs. One significant and critical point in
the HI construction or RUL prediction frameworks, which is directly
related to the Pr, is that input/features data must not be normalized
in accordance with the mean and standard deviation of the entire
dataset (training and test) (Peng et al., 2019; Wang et al., 2022), as
test data are unavailable in reality in the upcoming timeframes. A max–
min normalization technique using the full dataset has similar or even
more concerns (Jiang et al., 2021; Huang et al., 2019). Therefore, only
the mean and standard deviation of the training dataset are used to
perform zero-mean normalization in the current study. Several features
extracted from AE data, which were considered as HI of the composite
structure based on the literature (including 1/A (Eleftheroglou et al.,
2018; Zarouchas and Eleftheroglou, 2020), energy (Eleftheroglou et al.,
2020), and Rise-time/Amplitude ratio (RA) (Galanopoulos et al., 2021a;
Loutas et al., 2017) cumulated in the time window), will be compared
with the proposed HI. Also, the prognostic criteria for the proposed AE-
based HI will be compared with the HIs extracted from guided wave
data and mechanical properties (stiffness) of the ReMAP dataset (Yue
et al., 2022).
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Fig. 1. First principal component calculated using PCA on (a) raw data in the CMAPSS dataset, (b) acoustic emission variables (signals) in the ReMAP dataset, and (c) acoustic
emission features in the ReMAP dataset.
Fig. 2. Single stiffener panel: (a) skin side, (b) stiffener side (Broer et al., 2020), (c) sensor coordinates (dimensions in [mm]), where the four AE sensors shown as gray circles,
impact and disbond locations shown as a movable red circle and yellow rectangle for different panels.
3. Experimental campaigns

As part of the H2020 ReMAP project, two test campaigns were held
at the Delft Aerospace Structures and Materials Laboratory (DASML)
in 2019 and 2020, in which twelve composite skin-stiffener panels
were tested under C–C fatigue loading. The panels are made up of
a skin panel and a single T-stiffener according to an Embraer design
(see Fig. 2(a–b)). The skin and stiffener are all made of IM7/8552
carbon fiber-reinforced epoxy unidirectional prepreg with layups of
[45/−45/0/45/90/−45/0]S and [45/−45/0/45/−45]S, respectively
Broer et al. (2020). Two resin blocks for each composite specimen (CS)
were also included to ensure that the load was distributed evenly. The
dimensions of one panel are shown in Fig. 2(c). In all panels, an impact
loading (10 J) has been applied in different locations and times in
the stiffener region, and three composite panels also contain disbond
defects introduced during manufacturing between the skin panel and
the stiffener (more information in Table 1).

The damage growth in the panel was monitored using six different
techniques: (1) AE, (2) Distributed Fiber Optic Sensing (DFOS), (3)
FBGs (only for the campaign 2019), (4) Lamb Wave Detection System
(LWDS) (only for the campaign 2019), (5) Digital Image Correlation
(DIC), and (6) Camera. Only data from the AE method is analyzed
for the purposes of this research. More information can be explored
in Refs. Broer et al. (2020, 2021) and Zarouchas et al. (2021).

The panels were loaded in C–C fatigue loading using an MTS ma-
chine with a frequency of 2 Hz and an R-ratio of 10 which means
that the fatigue load was set in a compression load range of [6.5,
65.0] kN. Although the R-ratio was intended to hold invariant, the

panels experienced a loss in load-bearing capacity. The fatigue load

4

was disrupted at regular intervals of 500 cycles to allow the SHM
systems to take measurements. Table 1 summarizes the aforementioned
explanations and provides additional details.

4. Methods

Fig. 3 depicts the overall workflow of prognostics, including its main
steps. The successive processes from data acquisition to HI are outlined
in this section.

4.1. Data acquisition

The AE sensors used are Vallen Systeme GmbH VS900-M broadband
sensors with a frequency range of 100–900 kHz. The AE hits were
recorded using an AMSY-6 Vallen acquisition system. Moreover, Vallen
preamplifiers with a gain of 34 dB were used. Four AE sensors were
clamped in various positions on the skin of the panels to create a
parallelogram, enabling to localize damage and to obtain a quantifi-
cation of the location uncertainty. The AE Sensors 1, 2, 3, and 4
had [x, y] locations of [145.0, 190.0], [145.0, 20.0], [20.0, 50.0],
and [20.0, 220.0] mm, respectively, as seen in Fig. 2(c). As multiple
sensing techniques were employed for damage monitoring in the CS,
the AE sensor positions were selected through a trade-off with those
sensor positions of the other techniques, in particular to maximize the
monitoring region of both the AE and LWDS techniques. An amplitude
threshold of 60 dB was set for capturing the hits to avoid the recording
of noise signals. Only events localized within the AE sensor area are
taken into account. The internal Vallen processor for planar positioning,

which is based on Geiger’s model, was used for localization (Broer
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Table 1
The information of the composite specimens tested under C-C fatigue loading.

Year Campaign 2019 Campaign 2020

Name L1–03 L1–05 L1–09 L1–49 L1–50 L1–51 L1–52 L1–54 L1–55 L1–56 L1–59 L1–60
Composite Specimen 1 2 3 4 5 6 7 8 9 10 11 12
X-location of impact (mm) 50 115 82.5 50 50 50 50 50 115 50 50 115
Y-location of impact (mm) 80 160 140 160 160 160 160 160 80 160 160 80

Time of Impact At 0
cycles

At 0
cycles

At 0
cycles

After
5000
cycles

After
5000
cycles

After
5000
cycles

At 0
cycles

At 0
cycles

After
5000
cycles

After
5000
cycles

After
5000
cycles

After
5000
cycles

Size of disbond (mm) 15 × 20 20 × 20 20 × 25
y-location of disbond (mm) 60 60 60
Min Load (kN) −6.5 −6.5 −6.5 −6.5 −6.5 −6.5 −6.5 −6.5 −6.5 −6.5 −6.5 −6.5
Max Load (kN) −65 −65 −65 −65 −65 −65 −65 −65 −65 −65 −65 −65
Cycles (MTS) 152,458 144,969 133,281 48,702 65,500 94,431 368,558 510,961 226,356 756,226 110,137 170,884
Labeled Cycles 152,457 144,970 133,282 48,703 65,502 94,437 368,590 510,982 226,361 756,264 110,185 170,898
Error in cycles labeling −1 1 1 1 2 6 32 21 5 38 48 14
Fig. 3. Workflow of the present work as a part of the general steps in prognostics.
et al., 2020). A filter was also used to exclude events with a position
uncertainty greater than 50 mm. More detailed information for the
applied localization method to AE data are described in subsection of
Localizing Data. Six variables containing amplitude (A), rise time (R),
energy (E), counts (CNTS), duration (D), and RMS have been extracted
and recorded from AE events (see Fig. 4(a)).

4.2. Pre-processing

This section describes the pre-processing procedures, which include
Labeling Cycles, Localizing Data, Windowing, and Missing Values. An-
other pre-processing step that should be conducted after feature extrac-
tion is a zero-mean normalization technique which will be addressed in
Section 4.5.

∙ Labeling Cycles:
Labeling cycles on AE data is required for this study since a SSDNN

with some hypothetical HIs as targets is proposed in order to construct
HI, and the time (cycle) of each acquired AE event must be known
in order to generate these targets. Due to the constraints of the MTS
machine’s output channels and the AE system’s input channels and
software, the AE system is unable to directly record cycles from the
MTS machine. Nonetheless, since the AE system and MTS machine
have been synchronized, and the AE system can import displacement
and load values from MTS machine next to the other six variables
from AE sensors, signal processing methods can approximate the cycle
number of each hit, in which (cycle) that hit plus possibly more other
hits occurred. Table 1 shows the number of cycles reported by the
MTS machine (exact) and of the labeled cycles through the load signal
(approximate), as well as the error between them. Given that the
maximum error percentage is 0.044% (48/110137 for specimen 11),
the estimated labeled cycles provided with the AE variables can be
used.

∙ Localizing Data:
Geiger’s method (Ge, 2003) was used to localize the AE data

(Fig. 4(b)), and it allowed for planar localization of the AE events
throughout the fatigue testing. This method assumes a constant wave
velocity in all directions, which was determined using Hsu–Nielsen
sources on pristine specimens (Broer et al., 2021). The wave speed
was determined in both the 𝑥-direction (4423 m/s) and 𝑦-direction
(6107 m/s), and the mean wave speed was then calculated as 5265 m/s.
This was used as an input to Geiger’s method to determine the planar
5

location of the AE events. Since Geiger’s method is a time-of-arrival
approach, its application in anisotropic composite specimens can lead
to errors in the AE event localization. The application of four AE
sensors allows for the calculation of this position error, and a filter was
implemented to exclude events with a position uncertainty larger than
50 mm. Lastly, events outside the AE sensor region are filtered.

∙ Windowing:
In the third step of pre-processing, as can be seen in Fig. 4(c),

the signals (AE variables extracted from waveforms, including ampli-
tude, rise time, duration, energy, counts, and RMS) are windowed for
two reasons: one is that memorizing and analyzing all data from the
beginning to the current time costs a tremendous computation time;
another is that analyzing and comparing data at a single instant without
taking into account nearby time steps is insufficient, especially for
nonstationary signals. It should be noted that some SHM methods,
like AE, do not record data points at a constant rate since they are
passive methods and depend on the number of events occurring in the
structure. For example, AE might measure 50 events in the first 10 s
while it might measure 1000 events in the next 10 s. As can be seen in
Fig. 5, the two main factors in the windowing process are the length of
each window and the interval between two sequential windows, which
are essential and important since they influence the final results and
decisions. These factors might also be considered in a dynamic way
rather than the static one and can be optimized as such. The windowing
process for the current study was cycle-based, with a static length and
interval of 500 cycles due to the natural interval of QS loads.

∙ Missing Values:
Since no events might have been recorded in a few intervals of 500

cycles due to the applied filters, there are missing values for those time
windows. Because missing values have an impact on subsequent phases
of the HI construction process, they should be eliminated or filled in,
with the first option being taken for the windowed signals. Also, after
the feature extraction step, some statistical features may be missed. For
this step, linear interpolation is used to fill in the missing values.

4.3. Signal processing (SP)

A popular and logical way before FE is the transformation of data
from the time domain into other beneficial domains like frequency and
time–frequency domains. The foundation of SP in the frequency domain

is frequency spectrum analysis which is based on Fourier Transform
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Fig. 4. Data reduction during (a) pre-processing (initial feature extraction), (b) localization, (c) windowing, and (d) signal processing.
a

FT). To reduce computation time and improve the efficiency of the
iscrete Fourier Transform (DFT) which is utilized for discrete signals

ather than FT, the Fast Fourier Transform (FFT) is widely used to
ransform signals from the time domain into the frequency domain
ooley and Tukey (1965), and this SP method has been chosen in the
resent work.

It should be emphasized that the SP tasks are frequently attempted
o be fulfilled entirely by a neural network. However, we argue that
he mathematical gap between an artificial neuron and FT prevents

neuron from acting similarly to FT. A layer of artificial neurons,
ost likely with the same activation function, analyzes the inputs (x)
ultiplied by weights (Ws) with a single core activation function (like
−x) resulting in e−Wx, whereas FT has a multi-core activation function
6

(e−Kx) applied to inputs. In FT, the Ks are explicitly calculated and they
re coefficients (frequencies) in the perpendicular spaces, whereas the

Ws of ANN can be implicitly found by the back-propagation approach
and there is no guarantee that the weights will become perpendicular to
each other. As a result, it is worthwhile to analyze data using FT, which
has an exact and fast solution and does not require any backpropagation
process.

4.4. Feature extraction (FE)

In this step, features are extracted from multiple domains, including
time and frequency domain. FE can also be carried out based on
physical models which imply physical meaning but these model-based
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Fig. 5. Six time windows resulted by windowing process on artificial data with a
constant length and interval.

features are limited. As a result, statistical parameters are extracted
as features from various domains and employed in the following step
(fusion).

The popular features in the time domain have been listed in
Table A.1. However, as previously explained, the time domain is not
sufficient to extract features as a HI or an element of HI, and additional
statistical features should be extracted from the frequency domain.
Furthermore, since an incomprehensible variation, especially in high
frequency fluctuations, may not be detected in the time domain and
instead it simply causes a spectrum line in the frequency domain, the
frequency spectrum is more susceptible to incipient damages. This case
is widely used in fault detection. The common features in the frequency
domain have been listed in Table A.2.

As a result, 33 features are extracted from each of the 6 windowed
signals (variables) of the AE data, including amplitude, rise-time, en-
ergy, counts, duration, and RMS. The broad features field has been
expanded to include three additional possible useful features: cumu-
lative Rise-time/Amplitude ratio, cumulative energy, and cumulative
counts (Saeedifar and Zarouchas, 2020). The AE dataset yielded a total
of 201 features (6 × 33 + 3). It should be noted that FE procedure
may also be regarded as a dimension reduction step (Fig. 4), as raw
signals with thousands of data points within each window have been
reduced to 201 data points. In fact, data with billions of records has
been reduced to thousands.

4.5. Feature fusion (FF)

The extracted and selected features are fused in this step. The output
of this step is called ‘‘Health Indicator (HI)’’ which will be imported in
a prognostic model in order to predict RUL. It should be noted that
not every feature can be considered as a prognostic parameter. There
are several criteria that a feature or a fused feature should follow such
that it can be accepted as a prognostic parameter. One of the main
challenging issues of the current research is embedding these criteria
in the fusion step and in the entire architecture of data processing and
analysis as well as PHM. Thus, first, the aforementioned criteria are
briefly introduced in Section 4.5.1, and then, a scenario to embed these
criteria in the fusion model will be proposed in Section 4.5.2.

4.5.1. Criteria of prognostic parameters
In literature, a collection of metrics called Monotonicity (Mo), Prog-

nosability (Pr), and Trendability (Tr) (Coble and Hines, 2009) have
been suggested to examine whether an extracted and fused feature is
acceptable as a HI or not.

a. Monotonicity (Mo)
The general increasing or decreasing pattern of a feature or gen-

erally a signal over time is expressed by Mo. According to several
studies (Coble and Hines, 2009; Coble, 2010; Lei, 2016; Saidi et al.,
2017), quantifying monotonic trend in a parameter can be identified
in two manners, of which the details are provided next.

∙ Signum Formula or Sign Method:
7

The formula for this approach is:

𝑀𝑜 = 1
𝑀

𝑀
∑

𝑗=1

|

|

|

|

|

|

𝑁𝑗−1
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(1)

where 𝑥𝑗 is the vector of feature measurements on the 𝑗𝑡ℎ sample/system
𝑀 denotes the number of samples/systems monitored, and 𝑁𝑗 denotes
he number of measurements on the 𝑗𝑡ℎ sample/system. For this
anner, two other similar equations (Eleftheroglou, 2020; Yue and
ilon, 2004) can also be used:
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where 𝑠𝑔𝑛(𝑥) is:

𝑠𝑔𝑛(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1 𝑖𝑓 𝑥 < 0

0 𝑖𝑓 𝑥 = 0

1 𝑖𝑓 𝑥 > 0

(4)

𝑡𝑘 and 𝑡𝑖 denote the times of measurements for 𝑥
(

𝑡𝑘
)

and 𝑥
(

𝑡𝑖
)

, re-
spectively. The difference between Mo in Eq. (1) with Mann–Kendall
(MK) monotonicity in Eq. (2) is that the first one considers only the
behavior of sequential data points and it does not measure the relation
of data points with a time gap of more than one unit. Thus, Eq. (1)
does not evaluate a more overall view and it is easily affected by
noise. Nevertheless, since the output of the MK version is not nor-
malized (e.g., a range of [−1,1]), the results do not have informative
meaning (Eleftheroglou, 2020) and cannot be properly compared. In
other words, the Mo weight is the same for all deterioration histories,
regardless of time. Accordingly, the Modified Mann–Kendall (MMK)
version in Eq. (3) is suggested (Eleftheroglou, 2020; Eleftheroglou et al.,
2018) to measure the Mo of a function, which is used in the current
study.

∙ Spearman’s Rank Correlation Coefficient Method:
The Sign method of Mo is based on the number of sign change of the

derivative, while the Spearman’s Rank Correlation Coefficient Method
is in accordance with correlation:

𝑀𝑜 = 1
𝑀

𝑀
∑

𝑗=1

|

|

|

𝜌
(

𝑟𝑎𝑛𝑘
(

𝑥𝑗
)

, 𝑟𝑎𝑛𝑘(𝑡𝑗 )
)

|

|

|

(5)

where 𝑡𝑗 is the time-point vector that corresponds to the measurement
vector 𝑥𝑗 . 𝑟𝑎𝑛𝑘 (𝑥) computes the rank of matrix or vector 𝑥. This func-
tion employs a singular value decomposition (SVD) algorithm, which is
more time-consuming than the previous approaches but still the most
accurate. 𝜌 is the correlation function, which can be, among others,
Pearson’s linear correlation coefficient (Benesty et al., 2009), Kendall
Tau rank correlation coefficient (Kendall, 1948), and Spearman’s rank
correlation coefficient (Best and Roberts, 1975).

b. Trendability (Tr)
The term Tr refers to whether a parameter’s decay histories (degra-

dation) have the same underlying pattern for different samples or sys-
tems under monitoring. According to the literature (Coble and Hines,
2009; Coble, 2010; Lei, 2016; Saidi et al., 2017), the measure of
similarity between trajectories of parameters can be expressed as:

𝑇 𝑟 = min
𝑗,𝑘

|

|

|

𝜌
(

𝑥𝑗 , 𝑥𝑘
)

|

|

|

, 𝑗, 𝑘 = 1, 2, … ,𝑀 (6)
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The Pearson’s correlation function is utilized in the current study,
hich is expressed as:

(

𝑥𝑗 , 𝑥𝑘
)

=
𝑐𝑜𝑣

(

𝑥𝑗 , 𝑥𝑘
)

𝜎𝑥𝑗 𝜎𝑥𝑘
(7)

where cov is the covariance, 𝜎𝑥𝑗 and 𝜎𝑥𝑘 are the standard deviation of 𝑥𝑗
and 𝑥𝑘, respectively. When the lengths of 𝑥𝑗 and 𝑥𝑘 vary, the shorter
vector is resampled to equal the longer vector’s dimension. To make
this easier, their time vectors are first converted to percent lifespan,
i.e., [0%, 100%].

Tr in Eq. (6) is based on correlation while Tr can also be expressed
by (Khan and Yairi, 2018):

𝑇 𝑟 = 1 − 𝑠𝑡𝑑(𝑧𝑖), 𝑧𝑖 =
𝑛𝑜. 𝑜𝑓 𝑑𝑦∕𝑑𝑡 > 0

𝐷 − 1
+

𝑛𝑜. 𝑜𝑓 𝑑2𝑦∕𝑑𝑡2 > 0
𝐷 − 2

(8)

where y(𝑡𝑖) denotes the value of measurement at the time of 𝑡𝑖, 𝐷 is the
number of measurements of the ith degradation history. If each degrada-
tion pattern of the population for a parameter can be represented with
the same functional form, that parameter attribute is trendable (Eleft-
heroglou, 2020). After testing and comparing different aforementioned
approaches with artificial data, the former type (Eq. (6)) is selected to
be uses in the present work because its outputs were more reasonable.

c. Prognosability (Pr)
The distribution of a parameter’s failure (final) value is measured

by Pr. The measure of the variability of parameters at failure (the
final moment which is at the specimen’s end-of-life) can be expressed
as (Coble and Hines, 2009; Coble, 2010; Lei, 2016; Saidi et al., 2017):

𝑃𝑟 = 𝑒𝑥𝑝
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(

𝑁𝑗
)

|
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|

)

⎞

⎟

⎟

⎟

⎠

, 𝑗 = 1, 2, … ,𝑀 (9)

d. Fitness
To simultaneously consider all the aforementioned criteria, an ob-

jective function called ‘‘Fitness’’ is used Eleftheroglou (2020):

𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑎×𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦𝐻𝐼 +𝑏×𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐻𝐼 + 𝑐×𝑇 𝑟𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐻𝐼

(10)

where a, b, and c are the control constants which determine how
important each metric is compared to the others. These constants are
often user-defined parameters (Eleftheroglou, 2020), which are usually
assumed to be in the range of [0,1]. They are all considered one in this
work, resulting in Fitness in a range of [0-3].

4.5.2. Semi-supervised criteria-based fusion neural network
In order to embed the Fitness function representing the criteria,

different overall scenarios can be proposed. The simplest way is to rank
the features according to their Fitness values. Although the feature with
the highest rank can be considered as the HI, a threshold for the Fitness
value can be set to accept more than one feature, and then, they can
be considered as a set of HIs which are imported into a prognostic
model. Otherwise, some simple methods such as a weighted averaging
can be applied to the features filtered by the threshold, and finally,
only one HI can be exported. Nevertheless, such approach might result
in the overlooking of useful features since they do not fit the criteria.
However, their combination may fulfill the intended specifications.
Thus, as earlier mentioned, a fusion model based on DNN and Semi-
Supervised Learning (SSL), rather than the predefined functions, is
proposed in the current study.

SSL enables enormous volumes of unlabeled data to be exploited
in conjunction with normally smaller labeled data sets (Van Engelen
and Hoos, 2020). Unlabeled data can contribute to the formulation of
a superior classifier or regressor, provided enough unlabeled data is
available and certain assumptions about the distribution of the data

are adopted. Semi-Supervised Classification (SSC) and Semi-Supervised

8

Regression (SSR) are the key components of SSL (Kostopoulos et al.,
2018), depending upon the type of the output variable.

In semi-supervised learning, there are several assumptions that
define the forms of intended interaction (Chapelle et al., 2006). The
most widely adopted assumptions are as follows Van Engelen and Hoos
(2020):

(1) Smoothness assumption: two samples close to each other in the
input space should result in close labels in the output space as
well.

(2) Low-density assumption: the decision margin should not intersect
across densely populated portions of the input space.

(3) Manifold assumption: the labels for sample points on the same
low-dimensional manifold should be the same.

Most, if not all, semi-supervised learning algorithms are built on one or
more of these assumptions. These assumptions are different definitions
of the similarity between data points and their patterns (Van Engelen
and Hoos, 2020).

The two most prevalent divisions in SSL are transductive and induc-
tive, which are founded on the purpose of the training process. The
former is merely concerned with providing labels for unlabeled data
(not providing a model), whereas the latter constructs a classification
or regression model that can be used to predict the label of unseen data
points.

As adaptations of preexisting supervised algorithms, inductive learn-
ing algorithms that are called intrinsically semi-supervised (Van Engelen
and Hoos, 2020) allow unlabeled data to be included in the objective
function. They do not use any intermediary stages or supervised base
learners, rather they directly optimize an objective function with com-
ponents for labeled and unlabeled data. In general, these algorithms
rely on one of the SSL assumptions, either explicitly or implicitly,
and most semi-supervised neural networks rely on the smoothness
assumption.

In the present work, a semi-supervised deep neural network (SS-
DNN), by implicitly implementing the prognostic criteria as well as
using the available EOL, has been proposed to construct HI by feature
fusion. First, a hypothetical ideal HI function following the prognostic
criteria is proposed and then used as a target for a supervised ANN
to approximate the HI function (see Fig. 6). In this regard, two main
questions arise:

1. How to select a suitable function to make an ideal HI conforming
to the prognostic criteria?

2. What variable should be considered as the main variable of the
ideal HI function?

which are discussed in the following subsection, Selecting Hypothetical
Ideal HI Function. Then, Multi-layers LSTM Network for Feature Fusion,
Evaluation Metric, Hyperparameters Optimization and Model Validation are
addressed in the next three subsections.

a. Selecting Hypothetical Ideal HI Function
To create targets of the NN to predict HI, three aspects have been

considered:

◦ The ideal HI function should best conform to all the criteria (Mo,
Tr, and Pr).

◦ The simpler the ideal HI function, the simpler the NN model, and
the faster its convergence.

◦ The ideal HI function should take into account the nonlinear
behavior of damage propagation and accumulation in an engi-
neering system, which is a composite structure in the current
study.

The smoothness assumption of SSL is already taken into account when
using an ideal HI function as a label generator that fulfills the prognos-
tic criteria, i.e., if two bunches of extracted features at two different
time steps are close to each other in the input space, their HIs (labels)
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Fig. 6. Semi-Supervised Criteria-based NN Fusion to construct the HI from the features.

are close to each other as well. Inversely, increasing the dissimilarity
between two groups of extracted features at two separate time steps
in the input space causes their HIs to move apart. In other words, the
relative RUL between the former (t-1) and current (t) time windows,
from which the features are extracted, is known. As a result, a direct
relationship between the relative RUL and the relative HI variation
(degradation) can be used to reconstruct the relative HI. By using the
last relative RUL at the last time window before EOL (which is the only
labeled data point concerning RUL for each sample) and considering
a threshold as the maximum HI at EOL, all HI labels are recursively
provided from the final failure at the EOL to the healthy state at the
onset, yielding simultaneously prognosable behavior in HIs as the labels
(see Fig. 7).

With the above-mentioned hypotheses in mind, four basic func-
tions having high compatibility with the criteria are proposed and
studied to select the best one: linear (𝐻𝐼𝑡 = t), quadratic polynomial
(𝐻𝐼𝑡 = 𝑡2), natural logarithm (𝐻𝐼𝑡 = ln (𝑡)), and exponential functions
(𝐻𝐼𝑡 = exp(𝑡)). These functions should be expressed in terms of usage
time, which in this case is fatigue cycles. The functions should be
normalized using the max–min normalization to adapt Pr as a recursive
reconstruction process of HI. This normalization process is acceptable
for hypothetical targets. In order to investigate the prognostic criteria,
three different artificial specimens with variable lifetimes of 7, 4, and
10 time units (time step is 0.05) are considered, as shown in Fig. 8.
All functions best match to Mo and Pr according to the calculated
criteria shown in Fig. 9, however only linear and quadratic polynomial
functions have the highest value (1) of Tr. As a result, the quadratic
polynomial function is used to construct the targets since it takes into
account damage propagation and accumulation nonlinearity. There-
fore, the equation of ideal hypothetical HI for generating the targets
is:

𝐻𝐼(𝑡) = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
(

𝑡2
)

=
𝑡2 −𝐻𝐼𝑚𝑖𝑛

𝐻𝐼𝑚𝑎𝑥 −𝐻𝐼𝑚𝑖𝑛

=
𝑡2 − 𝑡20

𝑡2𝐸𝑂𝐿 − 𝑡20

𝑡0=0
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⟹ 𝐻𝐼(𝑡) =

𝑡2

𝑡2𝐸𝑂𝐿

(11)

here 𝑡0 and 𝑡𝐸𝑂𝐿 are the usage times in terms of cycles at the begin-
ing and the EOL, respectively. 𝐻𝐼𝑚𝑖𝑛 and 𝐻𝐼𝑚𝑎𝑥 are the minimum and

maximum HI. The key point is that 𝑡𝐸𝑂𝐿 is not available before the final
failure.

Using the simulated labels, a loss function at the output layer can
be defined, with the Mean-Squared-Error (MSE) being considered as
the loss function in the current study. The half-mean-squared-error of
the predicted outputs for each time step is the regression layer’s loss
function in sequence-to-sequence regression networks:

𝑙𝑜𝑠𝑠 = 1
2𝑆

𝑄
∑

𝑅
∑

(

𝑇𝑖𝑗 − 𝑎𝐿𝑖𝑗
)2

(12)

𝑖=1 𝑗=1

9

Fig. 7. Recursive reconstruction of the HI labels based on the relative RUL and the
maximum HI at EOL to implement SSL.

where 𝑄 is the length of the sequence, 𝑅 represents the number of
responses, 𝑇𝑖𝑗 denotes target (𝑇𝑖𝑗 = 𝑡2

𝑡2𝐸𝑂𝐿
), and 𝑎𝐿𝑖𝑗 represents the

network’s output (𝐿 refers to the last layer) for time step 𝑖 and response
𝑗.

b. Multi-layers LSTM Network for Feature Fusion
Although the primary goal of this research is not to find and design

the best and most generalized optimal ANN for fusing the extracted
features, a suitable ANN architecture should be supplied and developed
to demonstrate the feasibility of the suggested scenario. As a result,
since the dataset for the examined composite structures is novel, and
no previous study was performed on them, basic shallow architec-
tures such as Multi-Layer Perceptron (MLP) were used to construct
HI initially, before moving on to more complicated networks. In fact,
each layer was added one at a time, the number of neurons at each
layer was raised, and then the next layer was added. Various types of
layers, such as the Fully Connected (FC) layer and Long Short Term
Memory (LSTM), were tested in the meanwhile in order to achieve more
satisfactory results. Fig. 10 depicts the finalized NN structure.

The NN architecture mainly consists of four types of layers including
FC, Dropout, ReLU (Rectified Linear Units), LSTM, and Regression
layers, of which the first four will be explained in the following subsec-

tions, respectively. Initially, it should be noted that the input features
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Fig. 8. Hypothetical HI functions for three artificial specimens with different lifetimes.

Fig. 9. Prognostic criteria of four hypothetical HI functions shown in Fig. 8.

Fig. 10. Multi-layers LSTM network proposed for feature fusion.

10
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were standardized before being imported into the network using a zero-
mean normalization technique that used only the training dataset’s
mean value and standard deviation. The training data was also sorted
by sequence length to reduce the amount of padding applied to the
batches.

∙ Fully Connected (FC) Layer:
In FC layers, the neuron uses a weights matrix to apply a linear

transformation to the input vector, which is called generalized linear
layer (𝑧𝑙𝑗 =

∑

𝑘 𝑤
𝑙
𝑗𝑘𝑎

𝑙−1
𝑘 + 𝑏𝑙𝑗). A non-linear activation function 𝜎 is then

used to apply a non-linear transformation to the product according to
Eq. (13). If 𝑤𝑙

𝑗𝑘 can be considered the weight for the link between the
(𝑙 − 1)th layer’s 𝑘th neuron to the 𝑙th layer’s 𝑗th neuron, for a FC layer
we have:

𝑎𝑙𝑗 = 𝜎
(

𝑧𝑙𝑗
)

= 𝜎

(

∑

𝑘
𝑤𝑙

𝑗𝑘𝑎
𝑙−1
𝑘 + 𝑏𝑙𝑗

)

(13)

where 𝑧𝑙𝑗 and 𝑎𝑙𝑗 denotes input and output of a desired FC layer 𝑙,
respectively.

∙ Dropout Layer:
Dropout is a regularization strategy that prevents complicated co-

adaptations on training data, thereby decreasing overfitting in artificial
neural networks (Srivastava et al., 2014). The following equation is
considered for the dropout layer:

𝑤̂𝑗 =

{

0, 𝑤𝑖𝑡ℎ 𝑃 (𝑐)

𝑤𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(14)

where 𝑤̂𝑗 is the diluted row and 𝑃 (𝑐) is the probability 𝑐 to remove a
row in the weight matrix.

∙ Rectified Linear Units (ReLU) Layer:
ReLU is a type of activation function with a strong biological and

mathematical foundation (Hahnloser et al., 2000). It consists of setting
a threshold at 0:

𝑅𝑒𝐿𝑈 (𝑧) = 𝑧+ = 𝑚𝑎𝑥(0, 𝑧) (15)

∙ Long Short Term Memory (LSTM) Layer:
A memory cell (𝑔), an input gate (𝑖), an output gate (𝑜), and a forget

ate (𝑓 ) compose an LSTM unit, which was developed to maintain a
ong-term record of sequential inputs by using the memory unit (Liang
t al., 2021). As illustrated in Fig. 11, one input (𝑥𝑡) and the previous
idden state (ℎ𝑡−1) as well as the previous cell state (𝑐𝑡−1) are used to
ormulate the hidden state (ℎ𝑡) in the tth step in retaining information
rom the past as follows:

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 ) (16)

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (17)

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔) (18)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (19)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 (20)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (21)

where 𝑊∗ and 𝑏∗ stand for learnable weights and bias parameters,
respectively. 𝜎 is sigmoid activation function and ⨀ is the element-
wise product. The hidden state ℎ𝑡 influences the production of the
final output at any step 𝑡 by accumulating information from previously
processed features (Yang others, 2020), which could be referred to as
damage accumulation and health degradation in the current study.

c. Evaluation Metric
Two performance metrics from the field of PHM are employed in

this paper. The first evaluation criterion for the proposed scenario is the
Root-Mean-Square Error (RMSE). The RMSE is expressed by Eq. (22):

𝑅𝑀𝑆𝐸 =

√

√

√

√

𝑄
∑

(

𝑇𝑖 − 𝑎𝐿𝑖
)2

(22)

𝑖=1 𝑄

11
Fig. 11. LSTM cell’s architecture.

where 𝑄 is the length of the sequence (HI), 𝑇𝑖 and 𝑎𝐿𝑖 denotes target
and the network’s output for time step 𝑖, respectively. This metric
provides a single score for each CS’s constructed HI. Furthermore, the
𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 indicator, which encompasses three prognostic criteria outlined
in Section 4.5.1, is the second evaluation metric.

d. Hyperparameters Optimization and Model Validation
After fixing an acceptable configuration of the neural network layers

(Fig. 10), a Bayesian optimization algorithm (Snoek et al., 2012) was
used to set the hyperparameters, including the number of neurons at
each layer, Batch Size, and Dropout.

In this research, two main and trustworthy validation methods in
the machine learning fields, which are Leave-One-Out Cross-Validation
(LOOCV) and holdout validation methods (Arlot and Celisse, 2010),
have been employed. First, using the holdout method with 10, 1, and 1
CSs as training, validation, and test datasets, respectively, the Bayesian
optimization algorithm was used to find the top hyperparameters’ sets
and models (with the maximum RMSE over all CSs as the objective
function which must be minimized). It should be noted that by con-
sidering the maximum RMSE of all CSs rather than other statistical
parameters like the mean value of RMSE of them, the optimization algo-
rithm attempts to simultaneously decrease the mean value and standard
deviation of RMSE, which is more desirable. Then, the LOOCV method,
having 11 and 1 CS as training and validation dataset, respectively,
was applied to the top 10 models obtained by the holdout validation
and Bayesian to check models’ performance for the other folds, with 10
replications. Finally, the performance of these models will be described
as a distribution with a mean expected error and a standard deviation.

5. Results and discussions

The deep learning framework and signal processing parts were
developed using MATLAB R2021a; a high performance computing
cluster (Beowulf style) with 12 processors on one node for the Bayesian
optimization algorithm, and a laptop with an Intel Core i7-8665U CPU
and 16 GB RAM for training the deep learning networks and the other
parts (such as pre-processing and signal processing) were used. In this
section, following the results of the holdout validation and the LOOCV,
the best-proposed model will be discussed in comparison to the relevant
literature in the subsection Discussion.

5.1. Holdout validation

First, the holdout method has been used to validate the model, with
the first ten CSs for training, the 11th CS for validation, and the 12th

CS for the test dataset.
An Adam optimizer (Kingma and Ba, 2014) was used to learn
the deep learning model, with an initial learning rate of 0.005, a
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Table 2
The top 10 hyperparameter sets (models) obtained by the Bayesian optimization
algorithm and holdout validation with 11th CS as the validation and the 12th CS as the
test dataset. RMSE is the maximum one over all CSs.

Model (rank) Batch Size Dropout FCL1 LSTM1 FCL2 RMSE

1 4 0.3 110 154 50 0.0829
2 5 0.4 124 83 48 0.0884
3 5 0.5 201 79 36 0.0983
4 5 0.4 152 81 27 0.1013
5 5 0.5 41 142 43 0.1026
6 2 0 30 256 45 0.1052
7 5 0.4 124 56 48 0.1055
8 5 0.1 137 20 39 0.1067
9 5 0.4 161 92 48 0.1084
10 5 0.4 53 120 50 0.1110

learning rate drop factor of 0.2, a learning rate drop period of 5, and a
gradient threshold of 1, which all have been selected after trial and
error. Before each epoch, the training dataset was shuffled. Despite
the fact that the maximum number of training epochs was set to 500,
the network’s output is based on the best validation loss, with the
validation check frequency set to 30 iterations (number of trained
batches) and validation check patience set to 6.

The Bayesian optimization algorithm was given 120 trials in parallel
computing to optimize the hyperparameters. The number of neurons in
the FC layer 1 and FC layer 2 as well as the number of units in the LSTM
layer 1 have been allocated [1,201], [1,50], and [1,256], respectively,
based on trial and error. It is worth noting that the LSTM layer 2
only contains one unit. For Dropout, the interval [0,0.5] quantized
to 0.1 was also examined. Since the training dataset comprises ten
samples, the interval [1,5] quantized to one has been explored for
Batch Size. Since each set of Bayesian optimization final results is also
dependent on the initial start points, the entire procedure was repeated
several times. The top 10 hyperparameter sets (models) are presented in
Table 2. As can be seen, the varied configurations have resulted in quite
close RMSE ranged ∼[0.08–0.11], which is the maximum RMSE over all

Ss as the objective function of the Bayesian optimization algorithm.
Fig. 12(a) shows (merely as a case chosen to display the intuitive

esults) the constructed HIs by model 1, which is the first ranked, and
heir RMSE can be seen in Fig. 12(b). The RMSE for CSs 1, 11, and 12
lightly diverged from the mean value of RMSE for all CSs, which is
%.

Since comparing the quality of the constructed HIs based solely
n RMSE could not provide completely applicable information from a
rognostic standpoint, the prognostic criteria Mo, Tr, and Pr, as well
s their sum (Fitness), are shown in Fig. 13 for all the individual input
xtracted features as well as the HIs constructed by the model 1. The
op four features with a Fitness score higher than 1.5 are features 185,
84, 88, and 183, respectively, which are (see Tables A.1 and A.2):

• feature 185: the 6th-order central moment of the RMS signal in
the time domain

• feature 184: the 5th-order central moment of the RMS signal in
the time domain

• feature 88: the variance of the Energy signal in the frequency
domain

• feature 183: the 4th-order central moment of the RMS signal in
the time domain

As can be seen, the high Fitness score of 2.891 for HIs, which is
7.3% higher than the best feature (1.630), demonstrates the high
fficiency of the model 1 to construct HIs following the prognostic
riteria. In fact, this Fitness improvement represents the performance
f the proposed scenario and the whole developed algorithm because
he model, the proposed DNN architecture, might still be enhanced
y adding and/or changing characteristics such as the other types
f layers, units, neurons, activation functions, and hyperparameters.
 T

12
However, as previously discussed, the main focus in the current re-
search is how to implement the prognostic criteria in the process of
HI construction. When the overall implementation methodology of the
prognostic criteria has been validated, other enhancements like various
optimization methods or DNN architectures can be studied in the
main proposed roadmap. Nevertheless, the models are investigated in
accordance with LOOCV in the next subsection, due to the shortcomings
of the holdout validation in evaluating the generalization of the DNN
models.

5.2. Leave-One-Out Cross Validation (LOOCV)

The ten models listed in Table 2 are tested with 10 repetitions on the
12 folds of LOOCV. It should be noted that the fold i refers to the fact
that the 𝑖th CS is the validation and the rest are training datasets. Fig. 14
shows the mean value and standard deviation of RMSE calculated over
these repetitions for only the test dataset (e.g. for fold 1, CS 1 is the test
dataset). In other words, the training (CSs) datasets were not taken into
account during calculation of the mean value and standard deviation.
For example, in the first fold of LOOCV, the 1st CS was considered the
test, and CS 2–12 were considered for training, and when one model
had completed training, the network was tested on the 1st CS. The mean
value and standard deviation for that model and that fold (only for the
test dataset which in this example is the 1st CS) were then calculated
over ten repeats. This process has been performed for each of the 12
folds and each of the 10 best models from Table 2.

Fig. 14 demonstrates that some CSs, such as 3, 5, 7, 8, and 12,
have better performance for all models; however, some, such as 1
and 6, suffer from randomness in the DNN algorithm, which is owing
to the stochastic nature of ANN and randomness in the experimental
data. Fig. 15 depicts a line plot of the mean value of RMSE with
error (standard deviation) bars for all folds, illustrating a measurement
of the generalization of the models. According to this figure, models
8, 2, and 7 are the best generalized ones with mean RMSE value of
0.121 ± 0.090, 0.133 ± 0.082, and 0.139 ± 0.085, respectively.

As previously stated, the Fitness scores could be more appropriate
o report due to the deficiency in RMSE from a prognosis aspect. This
an be performed in two ways:

(1) The Fitness score of the constructed HIs is measured for each
replication; next, it is averaged across all replications; and fi-
nally, the findings for various models and folds are presented
(Table 3 and Fig. 16).

(2) After all replications have been completed, the constructed HIs
for each CS are averaged across all replications, and the Fitness
score of the averaged HIs is calculated. Finally, the outcomes for
various models and folds are provided (Table 4 and Fig. 18). This
could be a case of models making ensemble predictions.

ach approach is discussed in more detail next. It should be noted that
he Fitness scores for all extracted features remain unchanged and are
dentical to those in Fig. 13.

According to Table 3, the most challenging fold for the models to
earn is the first one, with a mean Fitness value of 1.550 ± 0.216, and
he other two worse folds are 10 and 2, with mean Fitness values of
.780 ± 0.212 and 1.871 ± 0.139, respectively, and the rest have mean
itness values of more than 2. The best generalized models are 2, 7, and
in order, with mean Fitness values of 2.360 ± 0.415, 2.342 ± 0.425,

nd 2.337 ± 0.427, respectively. To better compare different models
nd folds, the distribution of the average Fitness value of HIs for various
olds and models can be seen in Fig. 16. Fig. 16(a) demonstrates that
he models can appropriately construct HIs for folds 3, 5, 7, 8, 9,
nd 12 with a Fitness value greater than 2.575 ± 0.090 (fold 9). The
emaining folds are affected by the model’s low mean value or/and
igh variance. Model 6 has the lowest Fitness value averaged over all
olds (2.230 ± 0.349), but it has the lowest variance (see Fig. 16(b)).
he highest average Fitness value pertains to model 2 by which the
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Fig. 12. (a) HIs constructed by model 1 and (b) their RMSE. The CS 11 and 12 are the validation and test datasets, and the rest are the training dataset. Dot lines are the target
HIs.
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Fig. 13. The prognostic criteria for all 201 extracted features and the constructed HIs for model 1.
Fig. 14. (a) Mean value and (b) standard deviation of RMSE of test datasets (CS 1 to CS 12) over 10 repetitions for the top ten models.
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constructed HIs in iteration 8 (best one) can be seen in Fig. 17. It is
worth noting that the HIs for all CSs shown in this figure are from test
datasets corresponding to relevant folds, and there are no constructed
HIs from training datasets. Model 2 has not adequately learned CS 1,
and also CSs 6, 10, 2, and 9 are not as qualified as the rest which have
considerably good agreement.

So far, the prognostic criteria were averaged over HIs constructed
by ten iterations. Hereinafter, the HIs constructed by ten iterations are
averaged, and then, the average (ensemble) HIs are investigated to
report the prognostic criteria (Fitness).

Table 4 shows that the first fold is again the most challenging for
the models to learn, with a mean Fitness value of 2.019 ± 0.366, which
is substantially better than what was reported in the previous state
 c

14
(Table 3), while the remainder have mean Fitness values of higher than
2.5. The best generalized models are 7, 8, and 5 in order, with mean
Fitness values of 2.786 ± 0.144, 2.747 ± 0.146, and 2.729 ± 0.199,
espectively. The average (ensemble) HIs obviously conform better to
he prognostic criteria.

The distribution of the Fitness value of the average HIs can be
een in Fig. 18 to better compare various models and folds. Fig. 18(a)
ndicates that the models can construct HIs quite effectively for all
olds except 1, 10, 6, and 2 when compared to the rest, in which the
irst fold with the lowest mean value and highest variance of Fitness is
evere and distinguishable. The best Fitness value distribution pertains
o model 7 by which the constructed average HIs (over all iterations)
an be seen in Fig. 19(a). The discrepancy in deviation between the
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Table 3
Averaged fitness scores over 10 repetitions of the constructing HI.
Fig. 15. Mean value of RMSE over all folds’ tests (LOOCV) and after 10 replications,
ith error (Std) bars for the top ten models.

Fig. 16. The distribution of the averaged (across all replications) Fitness value of HIs
for various (a) folds and (b) models.

target, which is the ideal hypothetical HI, and the average constructed
HI for the first fold (CS 1) is remarkable. Therefore, this fold containing
its training dataset (CSs 2 to 12) has been shown in Fig. 19(b). Model 7
has obviously not learned the other CSs in the training dataset, let alone
the test one, CS 1. It is possible that this is due to inappropriate training
progress adjustments for this fold (e.g. validation check patience set
to 6), demonstrating the limitations of the proposed DNN models,
15
Fig. 17. HIs constructed by model 2 (in iteration 8 - best one). All shown HIs derive
from test datasets matching to relevant folds, not training datasets, for all samples. Dot
lines are the ideal HIs.

which can be improved in future work aimed at developing more
generalized models and training progress for all folds. Nonetheless,
Fig. 19(b) indicates that all CSs have comparable patterns to some
extent, resulting in a fair Fitness value (2.453). With this in mind,
while model 7 could not create HIs following the targets for the first
fold (i.e., high RMSE), it could intelligently fuse the input features to
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Table 4
Fitness scores of the averaged HIs over 10 repetitions.
Fig. 18. The distribution of the Fitness value of averaged (across all replications) HIs
for various (a) folds and (b) models.

produce an average HI that relatively matched the prognostic criteria
(i.e., high Fitness), including Mo (almost increasing), Tr (almost same
pattern), and Pr (almost from 0.1 to 0.4). In other words, the model
could have discovered how to relate and fuse the features to create a
HI with relatively the same pattern for all CSs.

5.3. Discussion

The best-generalized model according to the LOOCV is model 7,
whose prognostic criteria in two statuses of single and ensemble models
(ten parallel single models) are tabulated in Table 5. In addition, other
literature relevant to composite structures has been presented, one
of which (Ref. Yue et al. (2022)) worked with the ReMAP dataset,
although it includes only 5 samples out of the 12 presented in the
current paper. It should be noted that the more samples used, the lower
the fitness score (quality) for HIs. Table 5 also shows the additional
acoustic emission features that were considered as HI of the composite
structure based on the literature, such as cumulated 1/A, energy, and
rise-time/amplitude ratio (RA).

In terms of HI performance, the proposed ensemble model outper-
forms the other HIs proposed in the literature, according to Table 5. The
prognostic criteria for the windowed AE features, particularly Tr, are
extremely low. The maximum Mo is for the weighted HI derived from
guided-wave (GW) data. Pr, on the other hand, is not as qualified as the
16
proposed model in the current paper. It should also be highlighted that,
even though both the AE and GW systems rely on acoustic and elastic
waves within the structure, one is passive and the other is active. As
a result, they measure different structural characteristics, resulting in
a variety of data spaces. Therefore, the GW system may provide more
informative data, whereas the physical model utilized in Ref. Yue et al.
(2022) may not have been able to build its best HI. As a result, Table 5
compares the data’s informativity as well as the proposed models for
constructing HIs. Although only Mo has been quantitatively reported
for the HIs obtained from DIC data, AE data, and the predefined
function fusing DIC and AE data in Refs. Eleftheroglou et al. (2018)
and Zarouchas and Eleftheroglou (2020), not only is Mo of the HIs
developed in the current work slightly higher, but Tr and Pr are also
superior based on qualitative comparison.

All in all, this work demonstrated that even when the true labels are
unknown (as in HIs for composite structures) but the qualified pattern
can be recognized (as in the prognostic criteria of Mo, Tr, and Pr),
a model can still be built that aligns with the desired behavior using
data-driven and artificial approaches.

6. Conclusions

A roadmap to construct an intelligent HI suitable for usage in
prognostic models was proposed in the presented work. Following
feature extraction with the purpose of dimensional reduction from the
time and frequency domains of acoustic emission data captured during
monitoring of single-stiffener composite panels, a feature fusion (FF)
step based on semi-supervised learning was performed to ensure that
the obtained HI after FF complies with the prognostic criteria. The
quality of the constructed HI is measured and confirmed using these
criteria, which include monotonicity, trendability, and prognosability.
As a result, a semi-supervised deep neural network (SSDNN) was sug-
gested to implicitly induce a multi-layer LSTM network that meets
these criteria, as well as overcome the lack of labeled data and exploit
unlabeled data to train models. Ten top models were selected from a
Bayesian optimization algorithm applied to a holdout validation (ten
CSs as training, one as validation, and one as a test), and they were then
evaluated using the leave-one-out cross-validation (LOOCV) approach.

According to the holdout validation, the high Fitness score of 2.891
for HIs (maximum Fitness is 3) highlighted model 1’s remarkable
performance in constructing HIs based on prognostic criteria, which
is 77.3% higher than the best feature (1.6303). Indeed, the proposed
scenario’s efficiency was reflected in this Fitness gain. Moreover, ac-
cording to LOOCV, the best generalized models 7, 8, and 5 with the
average (ensemble) HIs achieved mean Fitness values of 2.786 ± 0.144,
2.747 ± 0.146, and 2.729 ± 0.199, respectively. For the first fold, the
difference in deviation between the target, which is the ideal hypotheti-
cal HI, and the average produced HI was considerable (e.g., model 7 has
a mean RMSE value of 0.296 ± 0.061). It is likely due to unfit training
progress adjustments for this fold (e.g. validation check patience set to
6), highlighting the proposed DNN models’ limitations, which can be
addressed in future work focused at designing more generalized models
and training progress for all folds. Nonetheless, the results showed that
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Fig. 19. Averaged HIs across all replications constructed by model 7 for (a) all folds (all samples are test datasets obtained from the relevant folds) and (b) fold 1 (only sample
1 is the test dataset (averaged), and the rest are the training ones (averaged)). Dot lines are the ideal HIs.
Table 5
Prognostic performance criteria of health indicators for composite structures.

* Different experiments to the current one.
** The stiffness values measured from load–displacement data.
all CSs possessed patterns that were similar to some extent, resulting
in a reasonable Fitness value (2.453 for model 7, indicating an 81.77%
quality). While model 7 was unable to generate HIs that satisfied the
first fold’s targets (i.e., high RMSE), it was able to intelligently fuse
the input features to yield an average HI that reflected the prognostic
17
requirements (i.e., high Fitness). In other words, the model has figured
out how to integrate and fuse the features to produce a HI with
relatively the same pattern for all composite specimens, which can be
utilized for more accurate and reliable prediction of EOL and decision-
making. The prognostic criteria were implemented within the feature
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Table A.1
Common statistical features in time domain.

No Equation Specific name No Equation Specific name

1 𝑋𝑚 =
∑𝑁

𝑛=1 𝑥(𝑛)
𝑁

Mean value 9 𝑋𝑐𝑟𝑒𝑠𝑡 =
𝑋𝑝𝑒𝑎𝑘

𝑋𝑟𝑚𝑠
Crest factor Daponte (2003)

2 𝑋𝑠𝑑 =

√

∑𝑁
𝑛=1

(

𝑥 (𝑛) −𝑋𝑚
)2

𝑁 − 1
Standard deviation 10 𝑋𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 =

𝑋𝑝𝑒𝑎𝑘

𝑋𝑟𝑜𝑜𝑡
Clearance factor

3 𝑋𝑟𝑜𝑜𝑡 =

(

∑𝑁
𝑛=1

√

|𝑥(𝑛)|
𝑁

)2

Root amplitude 11 𝑋𝑠ℎ𝑎𝑝𝑒 =
𝑋𝑟𝑚𝑠

1
𝑁

∑𝑁
𝑛=1 |𝑥(𝑛)|

Shape factor

4 𝑋𝑟𝑚𝑠 =

√

∑𝑁
𝑛=1 (𝑥 (𝑛))

2

𝑁
Root Mean Square (RMS) Paulter et al.
(2004)

12 𝑋𝑖𝑚𝑝𝑢𝑙𝑠𝑒 =
𝑋𝑝𝑒𝑎𝑘

1
𝑁

∑𝑁
𝑛=1 |𝑥(𝑛)|

Impulse factor

5 𝑋𝑟𝑠𝑠 =

√

√

√

√

𝑁
∑

𝑛=1
|𝑥 (𝑛)|2 Root-sum-of-squares (RSS) Paulter et al.

(2004) (The RSS level is also referred to
as the 2-norm.)

13 𝑋𝑝2𝑝 = max(𝑥(𝑛)) − min(𝑥(𝑛)) Maximum to Minimum difference

6 𝑋𝑝𝑒𝑎𝑘 = 𝑚𝑎𝑥 |𝑥(𝑛)| Peak 14, 15,
16, 17

𝑋𝑘_𝑐𝑚 =
∑𝑁

𝑛=1
(

𝑥 (𝑛) −𝑋𝑚
)𝑘

𝑁
Central moment for 𝑘th order (In this context, the
3𝑟𝑑, 4𝑡ℎ, 5𝑡ℎ, and 6𝑡ℎ are considered the features of
14, 15, 16, and 17, respectively.)

7 𝑋𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑𝑁

𝑛=1
(

𝑥 (𝑛) −𝑋𝑚
)3

(𝑁 − 1)𝑋𝑠𝑑
3

Skewness 18 𝑋𝐹𝑀4 =
𝑋4_𝑐𝑚

𝑋𝑠𝑑
4

FM4 (close to Kurtosis)

8 𝑋𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑𝑁

𝑛=1
(

𝑥 (𝑛) −𝑋𝑚
)4

(𝑁 − 1)𝑋𝑠𝑑
4

Kurtosis 19 𝑋𝑚𝑒𝑑 =
∑𝑁

𝑛=1 𝑡(𝑛)
𝑁

Median

𝑥 (𝑛) denotes the signal sequence for 𝑛 = 1, 2,… , 𝑁 .
𝑁 denotes the number of data points.
𝑡(𝑛) denotes the moments of occurrence of 𝑥 (𝑛).
Table A.2
Common statistical features in frequency domain.

No Equation Specific name No Equation Specific name

20 𝑝1 = 𝑋𝑚𝑓 =
∑𝐾

𝑘=1 𝑠(𝑘)
𝐾

Mean Frequency (may indicate the vibration energy in the frequency domain,
which represents the average of the amplitudes of all the frequencies.)

27 𝑝8 =
√

∑𝐾
𝑘=1 𝑓𝑘

4𝑠(𝑘)
∑𝐾

𝑘=1 𝑓𝑘
2𝑠(𝑘)

21 𝑝2 =
∑𝐾

𝑘=1(𝑠(𝑘)−𝑝1)
2

𝐾−1
(same as variance) 28 𝑝9 =

∑𝐾
𝑘=1 𝑓𝑘

2𝑠(𝑘)
√

∑𝐾
𝑘=1 𝑠(𝑘)

∑𝐾
𝑘=1 𝑓𝑘

4𝑠(𝑘)

22 𝑝3 =
∑𝐾

𝑘=1(𝑠(𝑘)−𝑝1)
3

𝐾
(

√

𝑝2
)3 (same as Skewness) 29 𝑝10 =

𝑝6
𝑝5

23 𝑝4 =
∑𝐾

𝑘=1(𝑠(𝑘)−𝑝1)
4

𝐾𝑝2 2
(similar to Kurtosis) 30 𝑝11 =

∑𝐾
𝑘=1(𝑓𝑘−𝑝5)

3𝑠(𝑘)
𝐾𝑝6 3

24 𝑝5 = 𝑋𝑓𝑐 =
∑𝐾

𝑘=1 𝑓𝑘𝑠(𝑘)
∑𝐾

𝑘=1 𝑠(𝑘)
31 𝑝12 =

∑𝐾
𝑘=1(𝑓𝑘−𝑝5)

4𝑠(𝑘)
𝐾𝑝6 4

25 𝑝6 =

√

∑𝐾
𝑘=1(𝑓𝑘−𝑝5)

2𝑠(𝑘)
𝐾

32 𝑝13 =
∑𝐾

𝑘=1

√

(𝑓𝑘−𝑝5)𝑠(𝑘)
𝐾
√

𝑝6

26 𝑝7 = 𝑋𝑟𝑚𝑠𝑓 =
√

∑𝐾
𝑘=1 𝑓𝑘

2𝑠(𝑘)
∑𝐾

𝑘=1 𝑠(𝑘)
33 𝑝14 =

√

∑𝐾
𝑘=1(𝑓𝑘−𝑝5)

2𝑠(𝑘)
∑𝐾

𝑘=1 𝑠(𝑘)

𝑠 (𝑘) denotes the spectrum for 𝑛 = 1, 2,… , 𝐾.
denotes the number of spectrum lines.

𝑘 denotes the frequency value of the 𝑘𝑡ℎ spectrum line.
usion and HI construction framework for this advancement rather than
eing used solely as a quality measurement tool for HI.
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Appendix. Statistical features

The popular features in the time domain have been listed in
Table A.1 by completing ones provided in Ref. Lei (2016).

The common features in the frequency domain have been listed in
Table A.2 by completing ones provided in Ref. Lei (2016). In Table A.2,
features 𝑝2–𝑝4, 𝑝6, and 𝑝11–𝑝13 characterize the convergence of spec-
trum power, which reflects frequency spectrum energy. Features 𝑝5 and
𝑝7–𝑝9 can indicate a shift in the place of dominant frequencies in the
frequency spectrum (Lei, 2016).
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