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Abstract

An optical aberration is the departure of optical system performance from that predicted by
concepts of paraxial optics. Aberrations are found in most practical imaging systems and
their presence deteriorates image quality. The objective of an adaptive optics system is the
measurement and elimination of such aberrations in incoming wavefront in real time. Wave-
front aberration or phase information is not measured directly but has to to be estimated from
the intensity distributions on the image plane. Therefore, aberration retrieval from intensity
data is a special case of the more general problem of phase retrieval (PR). Algorithmic phase
retrieval based optical wavefront reconstruction offers an attractive means of estimating the
aberration from a set of measurements of the point-spread functions (PSF) of some optical
systems due to its experimental simplicity.

This thesis deals with the application of the existing PR algorithms to the special case of
optical wavefront reconstruction. The representation of the generalized pupil function (GPF)
as a linear combination of some convenient basis functions, as opposed to a pixel basis, allows
a reduction in computational burden. The complex-valued Zernike polynomials introduced
under the Extended Nijboer-Zernike (ENZ) theory constitute the most widely used basis func-
tions. Their inflexibility to represent arbitrary pupil geometry and inability to approximate
highly aberrated system are cited as the major limitations in their application to aberration
retrieval. On the other hand, Radial Basis Functions (RBF), a standard tool in approximation
theory, offer much improved simplicity and geometric flexibility.

The application of Gaussian RBFs to GPF modeling for subsequent aberration retrieval from
intensity distributions has been investigated in this thesis. In addition to a real-valued RBF,
a complex-valued phase encoded RBF has been proposed followed by an optimal design of
RBF hyper-parameters. Finally, the performance of these basis functions is compared with
ENZ polynomials in terms of accuracy of aberration retrieval via simulations.
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Chapter 1

Introduction

The recovery of a signal given the magnitude of its Fourier transform, also known as the
phase retrieval (PR) problem, is a recurring issue in the field of optics. Since the optical
detection devices (e.g. CCD cameras) only measure the photon flux (proportional to the
magnitude squared of the field), the phase information is lost. Consequently, access to this
information requires additional experimental complexity, like interference with another known
field. Alternatively, algorithmic phase retrieval offers a good means of solving the problem
by relying on some advanced measurements or prior knowledge to facilitate recovery [1].

This thesis deals with the application of the existing PR algorithms to the special case of
optical wavefront reconstruction that arises in the field of adaptive optics.

This chapter provides a brief introduction to the inverse problem of optical wavefront recon-
struction and the limitations of the existing approach along with the objective followed by an
outline of the thesis report.

1-1 Aberration retrieval

An optical aberration is the departure of optical system performance from that predicted by
concepts of paraxial optics [2]. Aberrations are found in most practical imaging systems and
their presence deteriorates image quality. Sources of aberrations can either be internal, due
to imperfections in or incorrect alignment of the optical components, or it can be external,
due to varying refractive index like in the atmosphere (turbulence) or biological samples.

The objective of adaptive optics is the measurement and elimination of such aberrations
in incoming wavefront, in real time [3]. Wavefront aberration or phase information is not
measured directly. Instead, it needs to be estimated from the intensity distributions on a
CCD or other area detectors. Therefore, aberration retrieval from intensity data is a special
case of the more general problem of PR. The application of PR algorithms to aberration
retrieval was recently studied in literature [4]. Again, this offers experimental simplicity and
does not require any additional optical components.
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2 Introduction

The procedure of aberration retrieval involves the measurement of the response of an optical
system to a monochromatic point-source [5]. This impulse response is known as the point-
spread function (PSF) of the system. The mathematical model of the optical system coalesces
all the components into a single plane known as the pupil plane. The field at the image plane
in the focal region, where the light is detected after exiting the optical system, is related to
the field in the pupil plane by a diffraction integral.

Figure 1-1: Geometrical optics description of the wavefront. Unaberrated light rays from a
point-source O enter the optical system through the entrance pupil (EnP), exit at the exit pupil
(ExP) and converge in the image plane at O′. An aberrated wave V differs from the Gaussian
reference Vg. For the ray depicted by a dashed line, wavefront aberration is given by the optical
path length difference [P̄1P1] (reprinted from [4]).

In absence of any aberration, the wave follows a reference spherical shape (represented by
Vg in Fig. 1-1) that is focused at the image plane. The aberration in the wave are the
deviations in the phase and/or amplitude from this reference shape (V in Fig. 1-1). These
aberrating effects occurring in the optical system and/or due to the turbulent medium are
modeled at the pupil plane as a generalized pupil function (GPF) [6]. Therefore, formulation
of the aberration retrieval problem requires the parametrization of this GPF.

Expressing the GPF as a linear combination of some convenient basis functions allows the field
at the image plane to be represented as a linear combination of transformed basis functions.
This is possible due to the linearity property of the diffraction integral. The reconstruction
problem is then reduced to retrieval of the coefficients of these basis functions, efficiently
calculated using algorithmic PR [4].

Zernike representation of the pupil. Zernike polynomials, the most famous and commonly
used set of basis functions for the description of phase distribution in the pupil plane, were
introduced as a part of Nijboer-Zernike (NZ) diffraction theory [7]. These form a complete
set of orthogonal polynomials defined over a unit disk and have been, since then, extended
to represent other pupil shapes [8, 9, 10]. Moreover, these polynomials allowed analytical
evaluation of the diffraction integral such that the Zernike coefficients used to describe the
phase in the pupil could be translated into an anaytically known contribution to the PSF.
However, the theory only permitted phase aberrations upto a few radians. Moreover, the
derivation required a uniform amplitude distribution over the pupil [11].
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1-2 Outline 3

Extended Nijboer-Zernike theory. The aforementioned limitations of the NZ theory were
largely mitigated by the introduction of the Extended Nijboer-Zernike (ENZ) theory. Instead
of parameterizing the phase aberration, the GPF is represented in a Zernike polynomial
basis with only even terms [12], or with complex-valued Zernike polynomial (referred to
as ENZ polynomials hereinafter) basis [11]. Both bases require complex-valued coefficients.
Again, analytical expression for the PSF has been derived. Like Zernike polynomials, ENZ
polynomials offers interesting mathematical properties due to its orthogonality and significant
robustness to numerical round-off error.

Although the Zernike modes offer physical interpretation of the phase aberrations present
in the wavefront, it is not the case for the ENZ polynomials [11]. These also share the
disadvantages of the Zernike polynomials in that they are not flexible to be used with arbitrary
aperture shapes and they exhibit smoothing effect that can significantly limit the aberrations
that can be modeled [13].

Radial basis functions. Radial basis function, a standard tool in approximation theory,
have been efficiently applied in literature to represent the phase aberrations in the wavefront
[14] and optical design of freeform surfaces [13]. Their local approximation ability proves to
perform better than orthogonal polynomials in representing local deformations in wavefronts
and optical freeform surfaces.

Recently, the use of a real-valued Gaussian radial basis function for representing the GPF
to evaluate the diffraction integral analytically was studied in the literature [15]. It was
demonstrated via simulations that this new scheme was very competitive and provided higher
accuracy and speed in comparison to the ENZ theory.

Objective. This thesis focuses on the use of this real-valued Gaussian radial basis function
to represent the GPF and subsequent aberration retrieval from intensity distributions in the
image plane. In doing so, the optimal design of the hyper-parameters has been studied.
The use of a complex-valued radial basis function to represent the GPF, which is essentially
complex-valued, has also been proposed in this thesis.

1-2 Outline

The application of radial basis functions to the problem of aberration retrieval from intensity
PSF distribution in the image plane is studied.

Chapter 2 deals with the mathematical problem formulation of aberration retrieval introduced
in section 1-1.

Chapter 3 is written in the form of a research article. The optimal design of RBF hyper-
parameters is proposed. Then the performance of aberration retrieval based on RBF approx-
imation is studied and compared with that based on ENZ theory via simulation. It is noted
here that the research article is complete in itself.

Finally, chapter 4 provides the recommendations for future work.

The algorithms used in chapter 3 have been summarized in the Appendices.
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Chapter 2

Aberration retrieval in adaptive optics

This chapter deals with the mathematical formulation of the problem of aberration retrieval.
The unaberrated imaging model is descibed first. Then the modeling of aberration is given
followed by a general problem of aberration retrieval from intensity point spread function. The
applications of Nijboer-Zernike theory and its extension to tackle the problem are explained.
The application of radial basis function over these existing existing theories is motivated and
the design problem is formulated.

2-1 Imaging system

An imaging system usually consists of several lenses and various distances between them. The
significant properties of such a system can be completely described by lumping these imaging
elements together and specifying only the aggregate properties at the terminals i.e., at the
entrance and exit pupil planes as shown in Fig. 2-1. This is what is known as the generalized
model approach [6]. It is assumed that geometrical optics can be used to describe the passage
of light between these terminals.

Figure 2-1: Generalized model of imaging system. The imaging system converts a diverging
spherical wave at the entrance pupil from a point object into a converging spherical wave at the
exit pupil that is finally focused at a point in the image plane (adapted from [6]).
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6 Aberration retrieval in adaptive optics

A diverging spherical wave, emanating from a point source object, incident on the entrance
pupil is converted by the imaging system into a converging spherical wave at the exit pupil,
seen at an ideal point in the image plane. Such a system is regarded as being diffraction-
limited [6].

Point-spread function (PSF) convolution

For a converging wavefront centred on the focal point, the Debye diffraction integral gives the
relation between the field in the exit pupil and the field in the focal region [16]. In normalized
cylindrical coordinates (ρ, θ) on the exit pupil sphere and (r, φ) in the focal region (see Fig.
2-2), this integral takes the form,

U(r, φ, f ; ρ, θ) = 1
π

∫ 1

0

∫ 2π

0
exp(ifρ2)P (ρ, θ)× exp(i2πrρcos(θ − φ))ρdρdθ. (2-1)

Here, P (ρ, θ) is known as the pupil function which is unity inside and zero outside the pro-
jected aperture. U(r, φ, f ; ρ, θ) is known as the normalized PSF corresponding to the pupil
function. The exit pupil of the optical system is assumed to be a unit disk. f is the defocus
parameter (= 0 for best focus) normalized with respect to the axial diffraction unit (λ/NA,
NA being the image-side numerical aperture of the optical system).

Figure 2-2: Coordinate system for the diffraction integral. The circular pupil has coordinates
ρ, θ; the image plane has polar coordinates r, φ with z coordinate normal to the pupil plane
(adapted from [17])

The PSF is measured only in terms of the energy density or the energy flow and is a nonlinear
function of the electric field in the focal region,

I(r, φ, f) = |U(r, φ, f)|2.

Aberration in optical systems

A system is said to have aberration if the wavefront leaving the exit pupil departs significantly
from ideal spherical shape (reference wave) [5]. Aberrations in image formation can be caused
either by inhomogeneities in the medium, for example turbulent atmosphere, or by imperfec-
tions in the optical components such as incorrect alignment of lenses. There are two types of
deviations from the reference wave. The deviation in phase is referred to as phase aberration,
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2-1 Imaging system 7

Φ(ρ, θ), and that in amplitude as throughput, A(ρ, θ), of the optical system. These effects
can be modelled using the generalized pupil function (GPF) in a complex phasor form [5],

P(ρ, θ) = A(ρ, θ)exp(iΦ(ρ, θ)).

Here, A(·) and Φ(·) are real-valued functions. The GPF is a transmission function that
maps the complex amplitude distribution in the object space to the exit pupil sphere in
image space and it uniquely characterizes an optical system. The PSF corresponding to GPF
can be written similarly as equation (2-1) by replacing P (ρ, θ) with P(ρ, θ). The intensity
distribution in the point-spread function strongly depends on the departure of the incident
wave from its reference shape.

Purely phase aberrated systems with circular exit pupils are considered under the scope of
this thesis. The throughput A(ρ, θ) is then modelled as an indicator function of the interval
[0, 1],

A(ρ, θ) =
{

1, 0 ≤ ρ ≤ 1
0, otherwise.

(2-2)

2-1-1 Inverse problem

The reconstruction of the amplitude and phase of the optical far-field distribution from a
particular intensity PSF is known as the phase retrieval (PR) problem [5]. Such a procedure is
of practical interest as it allows to derive relevant quality data of the optical system, wavefront
aberrations in our case, from intensity distributions. The strongly non-linear relationship
between the phase departure in the exit pupil of the optical system and the detected intensity
in the focal plane leads to an ill-posed problem. The existing PR algorithms have proven
to be an attractive way to estimate aberrations for optical systems as they do not require
additional optical components [4] (see Appendix A).

The problem formulation requires a convenient and systematic parametrization of the GPF.
The easiest choice is a pixel-based parametrization. This serves as the most flexible basis as
it can be used with any pupil shape [5]. However, the pixel-basis requires a lot of parameters
to be estimated using PR. Other forms of parametrization involve representing the pupil
function as a linear superposition of some basis functions [18]. Then, the phase of the GPF
can be retrieved by estimating the coefficients of these basis functions which reduces the size
of the problem.

P̂(ρ, θ) =
Nβ∑
n=1

βnψn(ρ, θ) = ψψψ(ρ, θ)βββ.

Here, the basis functions are written in a matrix format (ψψψ(ρ, θ)) and the coefficients are
collected in a vector βββ. The Debye integral in equation (2-1) then gives an analytical expres-
sion of the image obtained in the focal region Û(r, φ, f). This integral can be evaluated in a
discrete format using the FFT algorithm.

Diversity images. To improve the stability of the inversion process, extra information is in-
corporated in the intensity measurements by, for eg., the addition of known phase aberrations
to the system which is a common practice in a more difficult problem of phase diversity [19].
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8 Aberration retrieval in adaptive optics

One such known aberration is defocus and has been used in this thesis to produce diversity
images.

The intensity PSF is measured, using a CCD detector with Np = N2 pixels, at Nf different
positions along the optical axis [4]. The measured pixel values at (rk, φk) and defocus fk are
sorted using a single index k, and collected into a vector I ∈ RNm , where Nm = Np ·Nf .

The error between the recorded measurements and the predicted PSF for each acquisition
can be written as,

εk = Ik − |Û(rk, φk, fk,βββ)|2.

This can be formulated as a PR problem by minimizing the norm of the error,

minimize
βββ∈CNβ

‖εεε‖. (2-3)

2-2 Pupil function modeling

In this section, the existing parametrization of the phase aberration and GPF is first discussed
as given by the Nijboer-Zernike theory and then the its extension. The use of radial basis
function for local approximations is then motivated to replace these polynomials.

2-2-1 Zernike aberrations

The most famous and common representation of the phase aberration Φ is given by the
orthogonal set of basis functions formed by the circle polynomials, Zmn , introduced by Zernike
[20],

Φ(ρ, θ) =
∑
n,m

αmn Zmn (ρ, θ), (2-4)

where indices n ∈ N0 and m ∈ Z respectively denote the radial order and the azimuthal
frequency of the Zernike polynomial Zmn such that n − |m| > 0 and even. The polynomials
are given by the product of a radial polynomial R|m|n (ρ) and a trigonometric function Θm

n (θ)
with suitable normalization cmn ,

Zmn (ρ, θ) = cmn R
|m|
n Θm

n (θ).

where,

cmn =
{√

n+ 1 m = 0√
2(n+ 1) m 6= 0

, Θm
n (θ) =

{
cos(mθ) m ≥ 0
−sin(mθ) m < 0

,

Rmn (ρ) =
(n−m)/2∑
s=0

(−1)s(n− s)!
s!
(
n+m

2 − s
)
!
(
n−m

2 − s
)
!
ρn−2s.

Here, the Zernike polynomials are ordered and normalized according to Noll [21]. This rep-
resentation of the phase aberration is called modal representation, and the basis functions of
the decomposition are referred to as modes. The first four of these (except the piston) are
plotted in Fig. 2-3.
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2-2 Pupil function modeling 9

Figure 2-3: First four Zernike polynomials not including the piston (from left to right): Z1
1 , tip;

Z−1
1 , tilt; Z0

2 , defocus; Z2
2 , astigmatism. These are also some of the most common aberrations

found in optical systems (reprinted from [3]).

These basis functions have some particularly attractive mathematical properties [3],

• they are orthogonal on a unit disk,

• they have continuous derivatives of all orders,

• Rmn (1) = 1, and thus Zmn (ρ, θ) becomes unity at the aperture boundary,

• common aberrations observed in optics like tilt, defocus, astigmatism, coma, etc. can
be easily expressed through Zernike polynomials,

• they exhibit an inherent smoothing useful for system de-noising.

Another interesting feature of the Zernike circle polynomials is that they allow an analytical
evaluation of the Debye integral ((2-1)) [2]. However, this derivation requires the amplitude
over the pupil to be uniform and holds only for small aberrations not exceeding a few radians
and small defocus [16].

Aberration variance. The Zernike polynomial terms, except the first term, have a zero
mean and unit variance. Due to the orthogonality property of the Zernike polynomials, the
aberration coefficients αmn represent the standard deviation of the corresponding aberration
term across the pupil [4]. The root-mean-square (RMS) value of the aberration, in absence
of the first term Z0

0 (piston), can be written in terms of the 2-norm of Zernike coefficients,

RMS(Φ) =
(∑
n,m

(αmn )2
)1/2

.

Limitations. The major limitation of polynomial representation is that each term extends
its influence over the entire pupil [14]. Effort has been made to adapt these polynomials to
other pupil shapes, encountered in optics, using Gram-Schmidt orthogonalization [8, 9, 10].

It is very difficult to assess a priori how many terms are necessary to achieve acceptable
accuracy. Limiting Zernike analysis to only a few orders may cause incorrect assessment of
the severity of the aberration [14]. Although the smoothing effect of the polynomials allows its
application to raw data, it significantly limits its ability to capture highly aberrated surfaces
[13].
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10 Aberration retrieval in adaptive optics

2-2-2 Extended Nijboer-Zernike theory

The limiting requirement of the NZ theory for aberration retrieval is largely mitigated by the
Extended Nijboer-Zernike (ENZ) theory as proposed in [12]. Instead of the phase aberration
Φ, the GPF is expanded into a Zernike series,

P̂1(ρ, θ) =
∑
n,m

βmn Zmn (ρ, θ).

Here, the Zernike expansion is used with only cosine (even) terms and the coefficients β are
complex-valued but do not have a straight forward physical interpretation as the coefficients
αmn in equation (2-4). The on-axis intensity of the diffraction image is however, related to the
leading coefficient as: I(0, 0) = |β0

0 |2 [11]. For a special case that A ≈ 1 and Φ being small,

P(ρ, θ) ≈ 1 + iΦ(ρ, θ) = 1 +
∑
n,m

iαmn Z(ρ, θ)

The authors in [18] derived analytical expressions of the diffraction integral (equation (2-1))
for such a pupil representation. The analytical solution to the minimization in equation
(2-3) for the complex coefficients βmn is also derived by linearization and solving the PR
problem as a linear system of equations. This procedure is not adequate for medium to large
aberrations [22] and was improved by considering a predictor-corrector method to overcome
the linearization error.

Another basis function comprising both sine and cosine terms in Zernike representation was
introduced in [11],

Nm
n (ρ, θ) =

√
n+ 1R|m|n (ρ) exp(imθ).

This complex-valued basis function is referred to as ENZ polynomials hereinafter. This rep-
resentation is physically more suitable as the pupil functions is itself complex-valued. Again,
the coefficients βmn do not relate directly to the strength of a specific aberration.

To obtain the aberration coefficients αmn from the coefficients βmn , an additional transformation
step, involving phase unwrapping, is required. The retrieval of the coefficients βmn and αmn
using PR algorithms based on convex relaxation and alternating projections is studied in [4]
for small aberration correction experiments.

Limitations. Although Zernike polynomials are particularly suitable for the description of
phase aberration Φ, it is difficult to derive any physical interpretation from its application
to GPF modeling. The ENZ polynomials also share the limitations associated with Zernike
polynomial representation to phase aberrations (see Section (2-2-1)).

2-2-3 Gaussian radial basis functions

The RBF interpolation method uses linear combinations of translates of one function Ψ(%) of
real multi-dimensional variable %. Given a set of centres, %

k
the RBF interpolate takes the

form [23],

F (·) =
Nr∑
k=1

ωkΨk(·) =
Nr∑
k=1

ωkΨ(
∥∥∥· − %

k

∥∥∥).
Abhimanyu Gupta Master of Science Thesis



2-2 Pupil function modeling 11

Here, ωk are the weights of the scalar RBF with radial symmetry about its centres %
k
. Many

different basis functions Ψ(%) with global support exist but the scope of this thesis is limited
to Gaussian RBF.

Ψk(%) = e−λk%
2

The shape parameter λ > 0 is related to the variance σ2 of the normal distribution by
λ = 1/(2σ2). Moreover, it is assumed that the multivariate distribution is radially symmetric
i.e., λk takes the same value in all directions. The optimal choice of the shape parameter
based on a given data is a highly nonlinear problem and therefore, it is assumed that shape
parameters for all k′s take the same value,

λ1 = · · · = λNr = λ.

Unfortunately, severe ill-conditioning may occur in interpolation problems when the shape
parameter λ is small corresponding to the flattening of the basis functions [23]. However, this
problem is widely studied and it has been shown that limiting interpolants exist and converge
to the form of polynomials to obtain a well-conditioned basis [24] (see Appendix B).

Wavefront fitting. The application of radial basis functions for surface description is not
new to the optics literature. RBF offers much improved simplicity and geometric flexibility in
terms of aperture shapes in exchange of forsaking the orthogonality of the Zernike polynomials.
They are simple to implement based upon a summation of a basic function translated across
the aperture of the optical element. RBFs provide comparable accuracy to polynomials and
spectral convergence can be achieved as opposed to the Zernike polynomials where an optimum
number of terms is needed [25]. Another important advantage it offers over the modal methods
is the ability to model local deformations and high wavefront slopes at the edge of the pupil
[13].

Pupil function modeling. The representation of complex valued pupil function containing
both amplitude and phase aberration components using a series of Gaussian RBF has been
recently studied [15] to obtain simpler analytical expression for the diffraction integral in
equation (2-1). This has been shown to have advantages over the ENZ theory in that, it is
not limited to symmetric wavefront errors, exhibits fast convergence for even large values of
defocus parameter and is computationally efficient.

The retrieval of the wavefront aberration Φ from intensity data using Gaussian RBF, however,
has not been studied in literature. Two different radial basis functions are, therefore, studied
as a part of this thesis.

Real-valued RBF

The complex GPF is approximated by a real-valued, radially-symmetric Gaussian RBF on a
2D grid [15],

Ψk(ρ, θ; a, b;λ) = e−λ((x−ak)2+(y−bk)2), x = ρcos(θ), y = ρsin(θ).

Master of Science Thesis Abhimanyu Gupta



12 Aberration retrieval in adaptive optics

(a) (b) (c) (d)

Figure 2-4: Amplitude and phase plots of 2-4a-2-4b the real-valued RBF and 2-4c-2-4d the
complex-valued RBF respectively. The phase profile is zero throughout for the real RBF granting
more degree of freedom to the basis. The complex RBF, however, has a Gaussian profile of the
phase (upto phase-wrapping).

The amplitude and phase profiles of the RBF are shown in Fig. 2-4a and 2-4b. Using a polar
grid for the centres,

ak = %kcos(ϑk), bk = %ksin(ϑk),

the GPF can be approximated as,

P̂2(ρ, θ) = A(ρ, θ)
Nr∑
k=1

γke
−λ(ρ2+%2

k−2ρ%kcos(θ−ϑk)).

Here, A(ρ, θ) is the indicator function as given in equation (2-2).

Complex-valued RBF

As the GPF is essentially a complex valued function, it is physically more suitable to use
complex-valued basis functions for its approximation. This argumentation is based on the
same lines with the use of complex-valued Zernike polynomials. The application of complex-
valued kernels for image classification problems was recently studied [26]. It was suggested
that a complex-valued kernel serves as a regularized model due its sensitivity to phase struc-
ture. It was shown that a complex-valued CNN achieved comparable results as its real-valued
counterpart and was significantly less vulnerable to over-fitting. The complex Gaussian RBF
for approximating the GPF is constructed as a generalization of the real Gaussian RBF by
including a phase term,

ΨC
k (ρ, θ; a, b;λ1, λ2) = e−λ1((x−ak)2+(y−bk)2) · e−iπλ2((x−ak)2+(y−bk)2).

Here, the real-valued input features (
∥∥∥%∥∥∥, squared distance on a Euclidean space) are phase

encoded in [0, π] using the transformation exp(iπ
∥∥∥%∥∥∥) to obtain the complex valued input

features. This is similar to the activation function used in complex-valued neural networks
based on real-valued domains [27].

The amplitude and phase profiles of the basis function is shown in Fig. 2-4c and 2-4d. It is
noted here that the basis has a Gaussian phase profile as opposed to the flat null-phase of
real-valued RBF.

Abhimanyu Gupta Master of Science Thesis
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Under polar transformation, the GPF can be approximated as,

P̂(
3ρ, θ) = A(ρ, θ)

Nc∑
k=1

µke
−λ1(ρ2+%2

k−2ρ%kcos(θ−ϑk)) · e−iπλ2(ρ2+%2
k−2ρ%kcos(θ−ϑk))

= A(ρ, θ)
Nc∑
k=1

µke
−(λ1+iπλ2)(ρ2+%2

k−2ρqkcos(θ−ϑk))

It is also noted here that the complex-valued RBF has one extra parameter (λ2) as compared
to its real-valued counterpart.

2-3 Problem formulation

The RBF representation of wavefront offers advantage over orthogonal polynomials such as
Zernike modes due to its simplistic implementation, local approximation ability and adapta-
tion to any pupil aperture. This however involves an increased degree of freedom in the design
process. Particularly, the optimal choice of shape parameter and the grid for placement of
the RBF nodes is an important aspect for the efficient use of this representation. Moreover,
it is required to study and rectify the numerical stability issues associated with RBF approx-
imation. To complicate the issue, the wavefront aberration is not known beforehand but has
to be estimated from the PSF data observed at the image plane. This restricts the use of the
optimization tools available in literature to tune the parameters of the basis functions.

It is desirable to study aberration retrieval using RBF representation of the wavefront and to
find avenues to provide a performance better or at least comparable to Zernike representations.
As mentioned earlier, the existing research resorts to multiparameter local optimization to
design optimal imaging models. These methods are not studied as a part of this thesis but
an empirical approach for optimal RBF approximation is designed.

Master of Science Thesis Abhimanyu Gupta
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The use of radial basis function (RBF) expansion as a means to represent the generalized pupil function
for aberration retrieval from intensity point-spread function has been investigated in this research article.
The optimal choice of RBF hyper-parameters is derived empirically to achieve an increased accuracy of ap-
proximation along with well-conditioned basis. The phase retrieval problem is solved using PhaseLift, an
algorithm based on matrix rank minimization and also using a variant of the alternating projections algo-
rithm proposed by Gerchberg-Saxton. The performance of the RBF-based method is compared in terms
of accuracy and execution time with that based on the extended Nijboer-Zernike approach. Numerical
results based on simulations are presented.

OCIS codes: (100.5070) Phase retrieval; (110.1080) Active or adaptive optics; (010.7350) Wave-front sensing; (220.1000) Aberration
compensation; (000.3860) Mathematical methods in physics; (000.4430) Numerical approximation and analysis

1. INTRODUCTION

The inverse problem of aberration retrieval, an important part of
any adaptive optics system, is a special case of the more general
phase retrieval (PR) problem. Algorithmic phase retrieval based
optical wavefront reconstruction offers an attractive means of
estimating the aberration from a set of measurements of the
point-spread functions (PSF) of some optical systems [1, 2] due
to its experimental simplicity [3]. The representation of the
generalized pupil function (GPF) as a linear combination of
some convenient basis functions, as opposed to a pixel basis, al-
lows a reduction in computational burden. The complex-valued
Zernike polynomials introduced as a consequence of the Ex-
tended Nijboer-Zernike (ENZ) theory [4–6] constitute the most
widely used basis functions. These basis functions (referred to
as ENZ polynomials hereinafter) also allow semi-analytic evalu-
ation of the diffraction integral thereby improving accuracy and
efficiency. This was subsequently applied in the field of high
resolution optical lithography [7] and the estimation of optical
path aberration in very large telescopes [8].

The major limitation of this polynomial representation is that
each term extends its influence over the entire pupil and hence is
inflexible to be used with arbitrary pupil geometry [9]. Moreover,
it is in general difficult to assess the number of terms necessary
to achieve acceptable performance a priori. Limiting Zernike
analysis to only a few orders may cause incorrect assessment of
the severity of the aberration [9]. Although the smoothing effect
of the polynomials allows its application to raw data, it signifi-
cantly limits its ability to capture highly aberrated wavefronts
[10]. They are also not suitable for high frequency phase data
even if very high-order polynomial terms are used [11].

Recently, GPF approximation based on Gaussian radial basis
functions (RBF) was used for semi-analytic evaluation of the
diffraction integral [12]. An improvement in terms of complex-
ity, accuracy and execution time was achieved in comparison
to the the one based on ENZ theory. This was possible in part
due to the parallel evaluation of the integral for a vector of de-
focus parameters and in part due to a better fit of the complex
wavefront achieved using RBFs. RBF offers much improved
simplicity and geometric flexibility in terms of aperture shapes
in exchange of forsaking the orthogonality of the Zernike poly-
nomials. They provide comparable accuracy to polynomials and
spectral convergence can be achieved as opposed to the Zernike
polynomials where an optimum number of terms is needed [13].
Another important advantage RBF reconstruction offers over the
modal methods is the ability to model local deformations and
high wavefront slopes at the edge of the pupil [10].

This article is concerned with the application of Gaussian
RBFs to GPF modeling for subsequent aberration retrieval from
intensity PSF distribution in the focal region. In addition to
a real-valued Gaussian RBF, a complex-valued phase encoded
Gaussian function is also proposed. It is asserted that a complex
kernel is more suitable for the approximation of a complex-
valued GPF and serves as a regularized model. This is based on
the argumentation presented in [14] where a complex-valued
kernel is used in a convolutional neural network (CNN) frame-
work for real-valued classification. For each of these two RBFs,
optimal choice of shape parameters and placement of RBF nodes
on a grid are investigated for efficient representation and an
empirical design is proposed. An important aspect of RBF-based
approximations is to deal with the ill-conditioned system by
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using additional means such as Tikhonov regularization [10].
The interplay between the numerical ill-conditioning and the
accuracy of the solution to PR problems is also important in
practical implementation [1]. This issue is addressed using the
RBF-QR algorithm [15].

This RBF representation of the GPF is coupled with PR al-
gorithms based on convex optimization (PhaseLift) [16] and
alternating projections (AP) [17] to study aberration retrieval.
This approach is similar to the one used in [18] where ENZ poly-
nomials are used instead. The phase aberration data is generated
using a Zernike polynomial basis with its coefficients sampled
from an assumed distribution. The intensity PSFs corresponding
to these phase aberrations are simulated for three values of the
defocus parameter. This is done to introduce "phase diversity"
in the data to improve the convergence of the AP algorithm
[2] which, in general, does not offer any guarantee on unique-
ness of the result [19]. Three basis functions, namely real RBF,
complex RBF and ENZ polynomials, are compared on the ba-
sis of accuracy and efficiency of aberration retrieval from PSF
measurements using PhaseLift and AP algorithms.

The structure of the article is as follows. The mathematical
formulation of aberration retrieval as a PR problem is presented
in Section 2. An overview of the different basis functions used
to approximate the GPF is also presented in this section. The
PR algorithms used are explained in Section 3. Tuning of RBF
parameters for optimal representation of the GPF is explained
in Section 4. The simulation results for aberration retrieval are
reported in Section 5. A comparative assessment of the perfor-
mance of different basis functions and the two PR algorithms is
performed in Section 6. The conclusions are drawn in Section 7.

2. FORMULATION OF THE PHASE RETRIEVAL PROB-
LEM

A mathematical formulation of the aberration retrieval problem
is briefly presented here. The effects of aberration on an optical
system can be modelled using the generalized pupil function
(GPF) in a complex phasor form [1] in normalized cylindrical
coordinates (ρ, θ) on the exit pupil sphere as

P(ρ, θ) = A(ρ, θ)exp(iΦ(ρ, θ)), (1)

where A(·) and Φ(·) are real-valued functions and denote the
deviation in amplitude and phase respectively. Under the as-
sumption of purely phase aberrated systems with circular exit
pupils, the throughput A(ρ, θ) is modelled as an indicator func-
tion of the interval [0, 1] such that its value is unity inside the
pupil and zero otherwise. The field in the focal region is related
to that in the exit pupil by the Debye diffraction integral as

U(r, φ, f ; ρ, θ) =
1
π

∫ 1

0

∫ 2π

0
exp(i f ρ2)P(ρ, θ)

× exp(i2πrρcos(θ − φ))ρdρdθ,
(2)

where (r, φ) are the cylindrical coordinates in the focal region
and f is the defocus parameter, all normalized with respect
to the axial diffraction unit (λ/NA), NA being the image-side
numerical aperture of the optical system. Here, U(r, φ, f ) is
the complex point-spread function corresponding the GPF. It
is measured only in terms of the energy density or the energy
flow and is a nonlinear function of the electric field in the focal
region,

I(r, φ, f ) = |U(r, φ, f )|2. (3)

Formulation of the phase retrieval problem requires a con-
venient and systematic parametrization of the GPF, the easiest
being pixellation of the pupil. This serves as the most flexible
basis as it can be used with any pupil shape [1]. However, the
pixel-basis requires a large number of parameters to be identi-
fied using PR. As pointed out in [4], parametrizations based on
approximating the GPF as a linear superposition of some basis
functions reduce the size of the problem. The phase of the GPF
can then be retrieved by estimating the coefficients of the basis.

A. Extended Nijboer-Zernike theory
The representation of phase aberration Φ in terms of Zernike
polynomials [20] was generalized to represent the GPF under
the Extended Nijboer-Zernike (ENZ) theory [6, 21–23]. The GPF
is approximated as a truncated series of ENZ polynomials [6],

P̂1(ρ, θ) = ∑
n,m

βm
nNm

n (ρ, θ). (4)

Here, n and m denote respectively the radial order and azimuthal
frequency of the ENZ polynomial Nm

n (ρ, θ) (see Appendix A).
The polynomials are ordered according to Noll [24] and the
coefficients can then be collected into a single vector βββ ∈ CNβ

where Nβ = (nM + 1)(nM + 2)/2, nM being the maximum radial
order considered. The coefficients βm

n are complex-valued but do
not share the physical interpretation pertinent to the coefficients
of real-valued Zernike polynomials used to represent Φ [6].

B. Radial basis functions
The pupil function can be approximated by a linear combination
of Gaussian radial basis functions. The approximation theory
using RBF has been studied widely in literature [25]. Two dif-
ferent strictly positive Gaussian RBFs with local support have
been studied in this article. The coefficients are assumed to be
complex-valued.

B.1. Real valued RBF

The complex GPF is approximated by a real-valued, radially-
symmetric Gaussian RBF [12],

P̂2(ρ, θ) = A(ρ, θ)
Nr

∑
k=1

γkΨ(ρ, θ; $k, ϑk; λ) (5)

Ψk(ρ, θ; λ) = e−λ2(ρ2+$2
k−2ρ$kcos(θ−ϑk)), (6)

where ($k, ϑk) are the polar coordinates of the RBF nodes on
a polar grid and A(ρ, θ) is the same as in Eq. (1). Also, λ > 0
is the shape parameter inversely proportional to the square of
variance of the normal distribution. The amplitude and phase
profiles of the RBF are shown in Fig. 1a and Fig. 1b respectively.

B.2. Complex valued RBF

The complex Gaussian RBF (CRBF) for approximating the GPF
is constructed as a generalization of the real Gaussian RBF by
including a phase term,

P̂3(ρ, θ) = A(ρ, θ)
Nc

∑
k=1

γC
k ΨC(ρ, θ; $k, ϑk; λ̄) (7)

ΨC
k (ρ, θ; λ̄) = e−(λ̄+iπ)(ρ2+$2

k−2ρ$kcos(θ−ϑk)). (8)
The real-valued input features (|| · ||, squared distance on a Eu-
clidean space) are phase encoded in [0, π] using the transforma-
tion exp(iπ|| · ||) to obtain the complex valued input features.
This is similar to the activation function used in complex-valued
neural networks based on real-valued domain [26]. The ampli-
tude and phase profiles of the basis are shown in Fig. 1c and Fig.
1d respectively.
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(a)
(b) (c) (d)

Fig. 1. Amplitude and phase plots of 1a-1b the real-valued RBF and 1c-1d the complex-valued RBF respectively. The phase profile is
zero throughout for the real RBF granting more degree of freedom to the basis. The complex RBF, however, has a Gaussian profile
of the phase (upto phase-wrapping).

C. Inverse problem
Once a choice of basis is made, the PR formulation can be done.
The intensity PSF can be measured using a CCD detector with
Np = N2 pixels at Nf different positions along the optical axis
[18]. The measured pixel values at (rj, φj) and defocus fdj are
collected into a vector I ∈ RNm where Nm = Np · Nf sorted us-
ing a single index j. Acquiring several images along the optical
axis improves stability of the inversion process by incorporat-
ing extra information in the intensity measurements [1]. Here
this phase diversity is added to the system by introducing some
known defocus aberration, fd, d = 1 . . . Nf. The error between
the recorded measurements and the predicted PSF for each ac-
quisition can be written as,

εj = Ij − |Û(rj, φj, f j, γγγ)|2. (9)

The predicted PSF is a linear combination of transformed basis
functions weighted by the same coefficients as for the GPF owing
to the linearity property of the diffraction integral in Eq. (2).
This transformation is performed using two-dimensional FFT
denoted by Fd{·} for a defocus fd,

Û(r, φ, fd, γγγ) = Fd{P̂2} =
Nr

∑
k=1

γkFd{Ψk(ρ, θ; λ)}. (10)

The norm of the error in Eq. (9) can be minimized for the solution
of the PR problem,

minimize
γγγ∈CNr

||εεε||. (11)

The first application of ENZ to aberration retrieval considered
only cosine (even) terms of the Zernike polynomials with com-
plex coefficients [4, 5]. The solution of the PR problem in Eq. (11)
was derived by linearizing Eq. (9), solved as a system of lin-
ear equations, and was adequate for only small aberrations. A
predictor-corrector method was later proposed for medium to
large aberrations to rectify the error due to linearization [6]. Re-
cently, ENZ polynomials were coupled with algorithms based on
convex optimization and alternating projection to solve the prob-
lem without any explicit linearization [18]. These algorithms are
also used in this article to solve the PR problem.

3. ALGORITHMIC PHASE RETRIEVAL

This section briefly explains two phase retrieval algorithms
widely used for PR, one based on convex relaxation of Eq. (9)
and another based on non-linear iterative minimization. Com-
prehensive overview and comparisons can be found in [3].

A. Convex relaxation: PhaseLift
A smooth cost function in Eq. (11) can be written as

minimize
γγγ∈CNr

Nm

∑
j=1

(
Ij − |〈γγγ, aj〉|2

)2
1/2

, (12)

where the notation 〈γγγ, aj〉 = aH
j γγγ denotes an inner product and

complex vectors aj ∈ CNr are the conjugate transposed, ·H , rows
of the Fourier transformed basis,

aj =


...

Fd{Ψ(ρj, θj; λ)}H

...

 . (13)

Then the set of quadratic equations in Eq. (12) can be written as
linear equations in a higher dimension by considering the linear
transformation |〈γγγ, aj〉|2 = tr(AjB) such that Aj = ajaH

j and

B = γγγγγγH and tr(·) denotes trace of a matrix. Here, the second
constraint is such that the matrix B is required to have rank 1.
The minimization problem in Eq. (12) can be recast as a matrix
recovery problem [27],

minimize ||εεε||+ µrrank(B)
subject to εj = Ij − tr(AjB) j = 1, . . . , Nm

B � 0.

(14)

As the rank minimization problem is known to be NP-hard
[28], a convex relaxation is considered. This can be written as a
trace-minimization problem,

minimize ||εεε||+ µrtr(B)
subject to εj = Ij − tr(AjB) j = 1, . . . , Nm

B � 0.

(15)

This complex semi-definite program can be solved using convex
optimization packages like CVX [29, 30]. Then the solution is
factorized as B = γγγγγγH to solve the PR problem.

Uniqueness is guaranteed by oversampling and stability can
be achieved if the rows of the basis matrix A have a random
Gaussian distribution even in presence of noise [16]. The algo-
rithm also works well on more structured, non-random phase
retrieval problems [31]. It is also noted here that this good preci-
sion comes at a high computational cost as a higher dimensional
problem has to be solved. However, the solution space has a
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very low dimension when polynomial or RBF approximation is
considered as compared to that of a pixel basis. This algorithm
is denoted as RBFPL, CRBFPL and ENZPL for RBF, CRBF and
ENZ bases respectively.

B. Alternating projections
Alternating projections constitute the most popular class of
phase-retrieval algorithms [32, 33]. A variant of the conventional
AP algorithm is described here [17]. The following non-smooth
cost function is minimized,

minimize
γγγ∈CNr

Nm

∑
j=1

(√
Ij − |〈γγγ, aj〉|

)2
. (16)

The method relies on a two step-scheme: (i) initialization, (ii) it-
erative minimization of the cost in Eq. (16) using a "local search"
alternating projections algorithm. A good initialization proce-
dure for random Gaussian distributed aj is described in [17]
and has been summarized in Table. Defining a basis matrix
M ∈ CNm×Nr and a measurement vector b ∈ RNm as

M =


...

aH
j
...

 , b =


...√
Ij

...

 . (17)

Then the associated phase retrieval problem can be written as

reconstruct γγγ from b = |Mγγγ|. (18)

Assuming that the basis matrix M is independent from γγγ and is
injective (true for Nm � Nr [28]). Then it is sufficient to recover
z = Mγγγ in the intersection of following two sets,

1. z ∈ {z′ ∈ CNm , |z′| = b};

2. z ∈ Range(M).

The solution to the PR problem is then obtained from z via least
squares. The algorithm is summarized in Algorithm 1.

Although the use of non-convex algorithm offers an improve-
ment over convex-relaxation algorithms in terms of minimal
computational costs, they are based on gradient descent and
enjoy weak form of convexity only in the neighbourhood of the
solution [17]. Therefore, it is required to have a good initializa-
tion and/or more measurements. This algorithm is denoted as
RBFAP, CRBFAP and ENZAP for RBF, CRBF and ENZ bases
respectively.

4. OPTIMAL RBF APPROXIMATION OF THE PUPIL
FUNCTION

In this section, an optimal design of RBF parameters is described
and some empirical rules are postulated under the assumption
that the wavefront data is available. The wavefront data is gener-
ated randomly using Zernike polynomials with varying Zernike
order Nα (see Section 5A) and rms(·) values (see Appendix B).

There are basically three parameters that need to be deter-
mined for Gaussian approximation namely, shape parameter λk,
node position ($k, ϑk) and the weights γk. A practical way to
obtain an efficient representation is to choose for each index k,
values of ($k, ϑk) and λk. This is, however, a highly non-linear
problem usually solved by cross-validation [12]. Therefore, the
shape parameters are assumed to be the same for all indices and

Algorithm 1. Alternating projections algorithm

Input: Observations: b =
√

I ∈ RNm ,
Sampling basis: M ∈ CNm×Nr .

procedure INITIALIZATION(b,aj) . bj = |aHγγγ|.
2: Set

ζ2 = Nr
∑i bj

∑i ||aj||
.

Set γγγ0 to be leading eigenvector of

B =
1

Nm

Nm

∑
j=1

bjaja
H
j .

4: return initial guess normalized as ||γγγ0|| = ζ.
procedure AP(b, M, γγγ0)

6: Initialize z0 = Mγγγ0, t = 0.
while t < maxIter do . Stop: maximum iterations.

8: z′t ← b� phase(zt) . Projection onto set 1.
zt+1 ←

(
MM†) z′t . Projection onto set 2.

10: t← t + 1
return γγγ = M†zt. . ·†: pseudo-inverse.

Output: Coefficient vector γγγ

different distribution of the nodes are investigated. The accu-
racy of the Gaussian function and the stability of corresponding
linear system depends on the number of data points and on the
shape parameter λ.

A. Stability and numerical conditioning

As mentioned earlier, numerical conditioning of RBF basis
matrix is an important issue in RBF approximation. This ill-
conditioning increases exponentially as the separation between
the RBF nodes is decreased for a fixed λ or as the value of λ
is decreased for a fixed separation between the nodes [25]. A
standard criterion for measuring the numerical stability of an
approximation method is its condition number [25]. Condition
number near unity indicates a well-conditioned matrix. The
inverse calculations of the basis matrix become more sensitive
to small errors for high condition numbers.

Sever ill-conditioning occurs in the flat basis function limit
(λ → 0). In this limit, it has been proved that limiting inter-
polants exist and converge to the form of polynomials [15]. This
algorithm dubbed as RBF-QR is used in this literature to yield
a well-conditioned basis. However, this algorithm works well
only for small values of λ but the conditioning worsens for larger
values, in which case the regular basis matrix works better (Fig.
2). Therefore, a hybrid algorithm is desirable.

B. Node distribution

The following regular and quasi-random node distributions
have been investigated,

• rectangular grid with equally spaced points in [−1.1, 1.1].

• Halton points based grid generated from quasi-random
number sequence [34]. According to literature, an improve-
ment in approximation error is expected with anisotropic
placement of nodes when representation of possible sharp
features or asymmetric local variations of the surface is
desired.
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Fig. 2. Matrix condition number for RBF versus the shape
parameter for Nr = 64 for a Fibonacci grid (as in 1c). The
cross-over shape parameter λcross, for which the RBF-QR and
RBF-Direct give the same matrix conditioning, can be used to
design a hybrid algorithm.

• Fibonacci grid has been proved to be a competitive and
robust choice when the shape parameter is optimally chosen
for isotropic RBF representations [10]. A planar Fibonacci
grid can be defined using spiral representation in the polar
coordinates. For the kth point,

$k = $0
√

k− 1/2, ϑk = 2πk/ϕ, (19)

where $0 is an arbitrary scale factor and ϕ = (1 +
√

5)/2 is
the Golden ratio. The points on the grid tend to be evenly
distributed over the disk.

The grids are defined to have an area slightly larger than the unit
disk ([−1.1, 1.1]) as it is an efficient method to deal with Runge
phenomenon observed in interpolation problems [35]. These
node distributions are shown in Fig. 3.

C. Optimal shape parameter
The choice of shape parameter is significant as it affects numer-
ical stability, accuracy of fit and speed of convergence. The
practical design of the shape parameter is data dependent, in
that it depends on the variance of wavefront aberration and
its spatial frequency content as well [13]. As the data of GPF
is not available beforehand but has to be estimated using PR
techniques, it is desired to find a systematic empirical approach
of shape parameter selection.

Two designs are compared here. Firstly, in context of data
independent tuning based on mathematical literature [25],

λadhoc = 1/(0.815δ), δ = (1/Nr)
Nr

∑
k=1

δk. (20)

Here, Nr is the total number of nodes and δk is the nearest neigh-
bour distance between nodes. This will be referred to as ad-hoc
approach hereinafter. Secondly, an algorithm based on leave-
one-out cross validation (LOOCV) is used [36] to estimate optimal
values and the relation in Eq. (20) is updated as

λopt = 1/(ζδ). (21)

The numerical tuning results are presented in Table 1. The
optimal values obtained for real RBF with Fibonacci nodes using

Table 1. Conditioning and tuning parameters for radial basis
functions for Nr = 69. N is the type od node distribution.
Subscripts: adhoc Eq. (20); opt optimal value calculated using
Rippa’s LOOCV algorithm; cross: Fig. 2. The adhoc relation
is updated as in Eq. (21). R: Rectangular, F: Fibonacci and H:
Halton.

Ψ N λadhoc λopt λcross cond(Ψ) ζ

R
B

F

R 4.86 3.23±0.11 8.00 4.0 · 102 0.580

F 5.47 3.21±0.08 7.40 1.5 · 102 1.333

H 6.92 4.55±0.10 7.80 2 · 102 0.803

C
R

B
F

R 4.86 3.53±0.21 8.10 3 · 102 0.786

F 5.47 3.26±0.04 7.40 1 · 102 0.757

H 6.92 4.57±0.05 7.90 1.5 · 102 0.753

the two tuning approaches are shown in Fig. 4a. The variation of
the optimal shape parameter with number of terms Nα is shown
in Fig. 4b.

5. SIMULATION

In this section, a comparative assessment of performance of the
three basis functions, described in Section 2, is carried out to
reconstruct static aberrations from intensity PSFs. Firstly, the
wavefront aberration data is obtained in terms of Zernike polyno-
mials with the coefficients drawn from an assumed distribution.
Then the corresponding PSFs are computed. Lastly, these aber-
rations are retrieved using the two PR algorithms. The last step
is repeated using each of the three different basis functions.

A. Preparation of aberration data
The phase aberration data is simulated using the Zernike repre-
sentation

Φ(ρ, θ) = ∑
n,m

αm
n Zm

n (ρ, θ), (22)

where the Zernike polynomial Zm
n is defined in Appendix A.

It is assumed that the leading coefficient α0
0 = 0. This pis-

ton coefficient does not affect the image quality [18]. The to-
tal number of Zernike terms considered is denoted by Nα =
(nα + 1)(nα + 2)/2− 1, where nα is the maximum radial order
considered. The coefficient distribution is similar to the one
derived experimentally in [18] and is reported in Fig. 5a.

The wavefront data is generated over a circular pupil on
a 256 × 256 Nyquist-sampled grid (Fig. 5b). Twenty sets of
coefficient vectors ααα with Nα = 104 terms (corresponding to
Zernike polynomials up to the 13th radial order) are sampled
from the distribution in Fig 5a as explained in Appendix C. For
a single set of coefficients ααα, the phase aberration Φ is generated
for each increment in the radial order from nα = 5− 13. The
final data set, thus, consists of 160 phase aberration maps (8
for each of the 20 coefficient vectors) which is used for further
analysis.

A scalar number is associated with each phase map that quan-
tifies the variance of the aberration and is denoted as rms(Φ)
(see Appendix B). This scalar quantity is intended to represent
the spatial frequency contained in a given Zernike order and by
design, increases with increasing radial order for a single set of
coefficients ααα.
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Fig. 3. Node distributions on a 2D grid for a unit disk pupil aperture: 3a Rectangular (R), 3b Halton (H) and 3c Fibonacci (F).
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Fig. 4. Tuning of RBF shape parameter. Fig. 4a Optimal shape parameter for real RBF with Fibonacci nodes with varying number of
nodes Nr. At every value of Nr, a boxplot of the data-dependent optimal shape parameter is plotted. A line is then drawn through
the mean values of these distributions. The ad-hoc values of the shape parameter are also plotted here (Eq. (20)). Fig. 4b Optimal
shape parameter for RBF with Fibonacci nodes versus the number of Zernike polynomial terms used to generate the phase data.
The whiskers of the boxplots denote the range of the variables with circumpunct as the median. A line is drawn via the means of
optimal shape parameters.

B. Error in approximating the generalized pupil function
The errors in approximating the GPF using the ENZ polynomials
and RBF are compared in this section. A purely phase aberrated
pupil function is considered for this analysis i.e.,

P(ρ, θ) = exp

(
i ∑

n,m
αm

n Zm
n (ρ, θ)

)
. (23)

The coefficient vector αm
n is generated as explained in the pre-

vious section. This pupil function is approximated using the
three basis functions discussed in Section 2 and is denoted as
P̂(ρ, θ). For a purely phase aberrated GPF, an approximation of
the phase aberration Φ is obtained as

Φ̂(ρ, θ) = arg(P̂(ρ, θ)). (24)

The approximation error, E = Φ− Φ̂, is quantified using a scalar
number, rms(E), as explained in Appendix B.

Firstly, it is observed in Fig. 6a that the error in approxima-
tion decreases monotonously with increase in number of radial
orders of ENZ basis. The number of RBF centres used for the

approximation are assumed to be the same with Nr = Nc = 69.
The ENZ polynomials can thus be truncated to the nearest radial
order, i.e. nM = 13 with Nβ = 66 terms. The λopt for RBF is
taken to be constant equal to the mean values in Table 1. The
rms(E) is plotted against the number of Zernike polynomial
terms used to generate the data, Nα, in Fig 6b. By design, the
severity of aberration increases with the number of Zernike
terms. Consequently, it is observed that the least square error in
approximation of the GPF increases with the increasing order
of aberration. Also, this error for the RBF Fibonacci (F) case
is always below that of the ENZ approximation indicating a
better fit. The rms error for the RBF based on Halton (H) and
rectangular (R) nodes show intermediate performance diverging
from the Fibonacci case with increase in order of aberration. The
performance of the complex-valued RBF was found to be same
as its real valued counterpart. Therefore, it has not been reported
in Fig. 6b. However, an improvement in matrix conditioning
can be observed in Fig. 2 and Table 1.
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Fig. 5. Wavefront aberration data. Fig. 5a Boxplot of 500 realizations of randomly generated Zernike aberration coefficients αm
n with

an exponential decay in the values with order. On each box, central mark indicates the median, the top and bottom edge of the blue
box indicate first and third quartiles, respectively. The whiskers (thin blue lines) extend to the most extreme data points not outliers.
5b Normalized frequency spectrum of the phase screen Φ (Eq. (22)) for different number of coefficients from the distribution in Fig.
Fig. 4a plotted against normalized spatial frequency in cycles/pixel. Most of the energy of the signal is confined to 2π rad/4pixel
signifying Nyquist limit.

C. Aberration correction simulation
The next step in the assessment of radial basis functions against
ENZ polynomials involves aberration correction simulations
that estimate the phase aberration Φ from intensity PSF using
PR algorithms. The intensity PSF data is generated for the pupil
function model, Eq. (23), using Eq. (10) at defocus positions
f1 = 0.0, f2 = −2.77, and f3 = 3.46. This data is generated as
256 pixel × 256 pixels images.

Again, the approximation error is quantified using a single
scalar quantity, rms(E), in terms of the reconstruction of the
coefficient vector, ααα, used to generate the data. The procedure
is summarized in Algorithm 2. The phase unwrapping [37] in
step 10 is applicable only when arg(P̂(ρ, θ)) extends beyond
the interval [−π, π]. The rms error values are normalized with
the rms of the phase aberration (Step 12) for comparison across
different wavefront datasets.

The aberration correction simulations are carried out for each
PR algorithm and each basis function under study. In case of the
AP algorithm (see Section 3B), Nr = Nc = 69 terms are taken for
the RBF approximations and the ENZ polynomials are similarly
truncated at Nβ = 66. The value of λopt is kept constant as the
mean values reported in Table 1. A total number of measure-
ments Nm = 51040 are used to estimate the parameters. The
stopping criterion is set at 400 iterations or earlier if the succes-
sive estimate update is less than 1 · 10−7. The simulations based
on AP algorithm are carried out on an Intel Core i7 quad-core
processor (2.50 GHz) with 4GB RAM.

The PhaseLift algorithm (see Section 3A) was found to be
slow and therefore, the data is instead sampled on smaller 32
pixel × 32 pixels images. The number of basis functions is
set at Nr = Nc = Nβ = 45 and only the Fibonacci case is
studied for RBF. The value of λopt = 2.74 is kept constant and
is calculated using the relation in Eq. (21) for δ = 0.274. A total
number of measurements Nm = 2220 are used to estimate the
parameters. The regularization parameter is fixed at µr = 1
and the convex optimization is solved using the CVX toolbox
using the SDPT3 solver (infeasible path-following algorithm).

Algorithm 2. Aberration retrieval

Input: Aberration coefficients ααα ∈ RNα , Fig. 5a,
Basis matrix and its Fourier transform: Ψ,Fd{Ψ} ∈ CNm×Nr .

2: procedure SIMULATE ABERRATION(ααα, Nα)
Generate Φ(ρ, θ) using Eq. (22).

4: Obtain GPF P(ρ, θ) using Eq. (23).
Obtain PSF I ∈ RNm , Eq. (2),(3), at three defocus fd.

6: procedure RETRIEVE ABBERATION(I, Ψ,Fd{Ψ})
Estimate γγγ← PR(I, Ψ,Fd{Ψ}) . PL/AP (Section 3)

8: P̂ ← ∑Nr
k=1 γkΨk . Estimated GPF

Φ̄← arg
(
P̂
)

. Phase of the GPF
10: Φ̂← phase_unwrap(Φ̄) . Phase unwrappping

α̂αα←ZZZ\Φ̂ . Least squares solution
12: return RMSE(Φ− Φ̂)← ||ααα−α̂αα||

||ααα|| . . Normalized error

Output:

The threshold value is same as that of AP algorithm but the
maximum number of iterations is kept at the default value. The
simulations based on PhaseLift algorithm are carried out on an
Intel Xeon CPU E5-1620 v3 processor (3.5 GHz) with 16GB RAM.

It is noted here that the assumptions underlying the PhaseLift
algorithm that guarantee uniqueness and stability of the solution
to the PR problem, as mentioned in 3A, could not be verified
in the cases presented here. However, a consistent aberration
retrieval performance is achieved in simulations. Unfortunately,
the AP algorithm only offers a weak form of convexity in the
neighbourhood of the solution [17] and the entire measurement
needs to be utilized to achieve convergence in simulations.

The results of the aberration retrieval simulations are sum-
marized in Fig 7. It was found that complex valued RBF did not
offer any significant advantage over its real-valued counterparts
in terms of accuracy. Therefore, the results are not shown in the
figure. For the case of PhaseLift, a least squares fit using 136
ENZ polynomials is also plotted in Fig. 7b.
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Fig. 6. Least squares approximation of GPF. Fig. 6a RMS least squares error (Algorithm 2 step 12) for ENZ polynomial reconstruc-
tion of Zernike aberrations. The error is calculated as in Algorithm 2 step 12. It decreases with increase in number of ENZ terms
Nβ. The error plots are shown for three different number of Zernike polynomials (Nα) used for generating the data. The error bars
denote one standard deviation in the values. Fig. 6b RMS least squares error (Algorithm 2 step 12) for ENZ polynomial (Nβ = 66)
and RBF based (Nr = 69) reconstruction of Zernike aberrations. The error bars denote one standard deviation in the values. RBF
grids are denoted as R: rectangular, H: Halton and F: Fibonacci.

The computational time spent by the alternating projections
algorithm and PhaseLift algorithm for different basis functions
are found to be the same for different basis functions at mean
values of 25 sec and 650 sec respectively. These could not be
compared because the simulations for AP and PhaseLift were
performed on systems with different configurations.

6. DISCUSSION

The shape parameter of the RBF provides an extra degree of
freedom that allows the capture of small details in the wavefront
data with an easy implementation. It was observed that the RBF-
QR algorithm achieved a better conditioning of the RBF system.
This is important because the standard basis is prone to small
errors in the region of the optimal shape parameter. However,
this algorithm is generally more suited to circular pupils [15].
Other algorithms exist but have more complex implementation
and are therefore not investigated. These can be found in [38]
with a detailed comparison. It is noted here that RBF-QR al-
gorithm does not provide any significant improvement in the
approximation of the data but only improves the conditioning
of the system of equations for further calculations.

The guideline proposed for the optimal tuning of λ based on
the ad-hoc technique (Section 4C) was found to be very useful
when a different number of basis functions is used. However,
λopt also depends on the frequency content of the aberration
as is evident from Fig. 4b. The optimal λ increases with the
number of terms Nα in the Zernike aberration (Fig. 4b) which,
by design, also means an increase in frequency content. As the
generated Zernike aberrations are not able to capture a wide
spectrum of frequency content (Fig. 5b), the variation in λopt
is very less. Therefore, a mean value was used for aberration
correction experiments. A practical value based on bandwidth
fb of the aberration is given as λ = (πfb)

2 [13]. This relation
can be combined with the ad-hoc relation for aberrations of
varying frequency content to find a generalized tuning relation
for the shape parameter. A similar method was adopted in [11]

for estimating the Zernike order based on "targeted" frequency
content.

The RBF based on Fibonacci nodes were found to be the most
efficient in estimating the GPF. This can be attributed to the even
distribution of the nodes over the pupil aperture. The RBF based
on Halton and rectangular nodes were found to exhibit similar
performances. The simulations for approximation of the GPF
showed that the RBF have a better accuracy in comparison to
ENZ polynomials. A tuning based on frequency content of the
aberration can possibly result in better performance.

The AP aberration correction simulations were found to be
in agreement with the GPF approximation results. Moreover,
it was observed that the accuracy of RBF based approximation
over that based on ENZ polynomials increased (upto 10% for the
Fibonacci case) with increase in severity of the aberration even
with constant shape parameters. The standard deviation in the
percentage retrieval values was low for all the cases because of
the way the aberration data is collected. The standard deviation
for RBFAP was found to be even smaller than that for ENZAP.

The PhaseLift aberration correction simulations provide an
optimal fit that is not obtained using the AP algorithm. Although
the percentage retrieval values differ from the AP case due to
different sampling of the aberration data, the trend remains the
same. The RBF approximation provides a considerably better ac-
curacy for higher order aberrations. Also, the standard deviation
in the obtained values were very less.

It is noted that the aberration data collected might not relate
to that found in practice. However, Zernike polynomials have
been used widely to fit wavefront data in the field of adaptive
optics and provide a good basis. Lastly, as ENZ polynomials are
also based on Zernike polynomials, the data is believed to be
biased towards it. Even then, a considerable improvement in
accuracy is obtained with RBF.
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Fig. 7. Summary of 160 aberration correction simulations. Fig. 7a reports the Alternating projections results with an error plot of
aberration retrieval performance (Algorithm 2 step 12) with a line drawn through the mean over the different cases and error bar
denote one standard deviation in the values. Fig. 7b reports the PhaseLift results for the ENZ and RBF (Fibonacci) cases. A least
squares fit using 136 ENZ polynomials is also shown here that provides a reference maximum fit for under-sampled data.

7. CONCLUSION

The inverse problem of aberration retrieval from intensity point
spread function is a non-convex optimization problem. It has
already been proved that the use of basis functions to repre-
sent complex-valued generalized pupil function can result in an
improvement in approximation and computational time. The
application of radial basis functions to model the GPF has been
explored in this article. As the GPF data is not available but
has to be estimated by solving an optimization problem, em-
pirical relations for the optimal choice of the shape parameter
and grid choice have been derived. The RBF-QR algorithm has
been used to improve the numerical conditioning of the RBF-
approximation. The complex-valued RBF resulted in a basis
that is better conditioned than its real-valued counterpart with
similar accuracy.

The RBF based approach proposed here has been compared
with extended Nijboer-Zernike based complex-valued polynomi-
als to retrieve the phase aberration. The result of the comparison
show that use of RBF is competitive in terms of accuracy es-
pecially for higher order aberrations. It has been found that
Fibonacci nodes are more efficient as compared to other grid
types due to their symmetric distribution over the pupil.

As variation in the frequency content of the aberration data is
low, the optimal shape parameter was chosen to be constant for
a particular set of nodes. However, a slight monotonous increase
in its value was observed with increasing frequency content of
the aberration. This observation indicates that the proposed
framework to tune the shape parameter can be extended to
include target bandwidth of the aberration.

8. APPENDIX

A. REAL AND COMPLEX-VALUED ZERNIKE POLYNOMI-
ALS

The phase aberration Φ can be analyzed by the orthogonal set of
basis functions formed by the circle polynomials, Zm

n , introduced

by Zernike [20],

Φ(ρ, θ) = ∑
n,m

αm
n Zm

n (ρ, θ), (25)

where indices n ∈N0 and m ∈ Z respectively denote the radial
order and the azimuthal frequency of the Zernike polynomial
Zm

n such that n− |m| > 0 and even. The polynomials are given

by the product of a radial polynomial R|m|n (ρ) and a trigonomet-
ric function Θm

n (θ) with suitable normalization cm
n ,

Zm
n (ρ, θ) = cm

n R|m|n Θm
n (θ). (26)

where,

cm
n =

{√
n + 1 m = 0√
2(n + 1) m 6= 0

, Θm
n (θ) =

{
cos(mθ) m ≥ 0
−sin(mθ) m < 0

,

Rm
n (ρ) =

(n−m)/2

∑
s=0

(−1)s(n− s)!
s!
( n+m

2 − s
)
!
( n−m

2 − s
)
!
ρn−2s.

(27)
The expression of the radial function Rm

n (ρ) can be found in
[24, 39]. The GPF can be analyzed using a truncated series of
ENZ polynomials [6],

Nm
n (ρ, θ) =

√
n + 1R|m|n (ρ) exp(imθ). (28)

Again, the coefficients can be collected in a single vector using
Noll’s indexing. The normalization used here is as given in [18].

B. ROOT-MEAN-SQUARE VALUE OF ZERNIKE PHASE
ABERRATIONS

Owing to the orthogonality of the Zernike polynomial expan-
sion, the standard deviation of separate aberration terms across
the pupil can be represented by the corresponding aberration
coefficient, αm

n . The mean square value of the function Φ(ρ, θ) is
defined as,

E2[Φ] =
1
π

∫ 1

0

∫ 2π

0
Φ(ρ, θ)2ρdρdθ. (29)
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Fig. 8. The cumulative variance of the aberration versus the
number of Zernike polynomial terms considered for the distri-
bution of Zernike coefficients αm

n in Fig. 5a. The green shaded
region denotes 5% of the median values.

The aberration variance is defined as,

rms(Φ) = (E2[Φ]− E1[Φ])1/2. (30)

The mean value of the aberration, E1[Φ], is given by the norm
of the first Zernike aberration coefficient α0

0. This piston term
has been assumed to be zero in this article as it does not affect
the image quality. Therefore, for the choice of normalization cm

n
in Eq. (27), rms(Φ) = ‖ααα‖ [40]. The error in reconstruction can
also be expressed in terms of the norm of the coefficient vector
as rms(Φ− Φ̄) = ‖ααα− α̂αα‖.

C. SAMPLING ZERNIKE ABERRATION COEFFICIENTS

The Zernike coefficients are sampled from the distribution
shown in Fig. 5a. The variability in the variance of the aberration,
rms(Φ) = ‖ααα‖, was found to be very high for a particular num-
ber of polynomial terms, Nα, considered. This is expected due
to the randomness in the data. To reduce this randomness, 20
realizations of ααα were selected such that the cumulative rms(Φ)
was within 5% of the median as shown in Fig. 8.
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Chapter 4

Recommendations for future work

A general framework for the design of radial basis functions (RBF) has been proposed in this
thesis. It was mentioned that a large variation in frequency content in the phase aberration
could not be simulated using Zernike polynomials. This limited the tuning of shape parameter
to only a specific case of low to mid spatial frequency content. Therefore it is required to
generalize the empirically obtained tuning relation to a wider class of aberrations. A method
to achieve this objective has also been proposed in the Discussion section of Chapter 3.

It is again emphasized that the Zernike aberrations produced data that was possibly biased
towards approximation using extended Nijboer-Zernike (ENZ) polynomials. Therefore, it is
required to test the proposed basis functions on a more general class of aberrations found in
the domain of adaptive optics. One possibility is to generate atmospheric turbulence data
based on Kolmogorov phase screens [28].

The most cited advantage of RBF approximation is its relative robustness of the computation
with respect to the underlying geometry of the pupil. The simulations presented in this thesis
are all based on unit circular disk pupils. Therefore, this local character of RBF could not be
brought to light. The pupil shape usually varies across application domain. For example, for
the case of Hubble telescope, the pupil has a hexagonal annular geometry [5]. Moreover, phase
jumps across separate panels makes it difficult to carry out Gram-Schmidt orthogonalization
of the Zernike polynomials. On the other hand, RBF can handle such situations with ease.

It was also noted in the report that the RBF approximation worked better for higher order
aberrations for the same number of terms as Zernike polynomials. The limitation of Zernike
polynomials to capture aberrations of high frequency content has demotivated its use Extreme
Adaptive Optics systems (ExAO) with application to high contrast imaging [29, 30, 31]. This
creates interesting avenues for the use of RBF in aberration retrieval for adaptive optics
systems that can capture high spatial frequency with a reduced computational burden.

Finally, the use of semi-analytic formulation of the fast Fourier transform based on RBF as
described in [15] can be extended to formulate the aberration retrieval problem as done using
ENZ theory in [4]. This can result in a better approximation and a decrease in computational
time.
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Appendix A

Phase retrieval

This chapter sheds light on some of the existing algorithmic phase retrieval techniques. This
reconstruction of a complex vector from its linearly transformed magnitude is a non-convex
optimization problem.

The typical arrangement of the phase-retrieval problem is discussed as follows [32].

For a discrete signal x ∈ Cn, the measurements are the squared modulus of the inner product
between the signal and some measurement vectors aµ,

b2
µ = | 〈x, aµ〉 |2, µ = 1, 2, . . . ,M.

HereM are the number of measurements. The phase information inside the modulus squared
notation is lost. Therefore, it is intended to recover x from the data matrix b = [b1, b2, . . . bM ].

〈x, aµ〉 = σµbµ.

For a real-valued signal x, σµ’s are just signs having 2M combinations. For the complex-
valued case, σµ’s are also complex valued with each on a unit circle making the optimization
problem more complicated [32].

There are several methods which impose conditions on M and aµ to guarantee efficient nu-
merical recovery while minimizing cost function of the form,

minimize L(x) =
M∑
µ=1

l(bµ, | 〈x, aµ〉 |).

These algorithmic phase retrieval techniques are explained briefly in the following subsections.
Comprehensive overview and comparisons can be found in [1].

Note: It is important to observe here that for any solution x to the above problem, xeiφ, ∀φ ∈
[0, 2π) is also a solution. Therefore, the signal can be reconstructed only upto a global phase
factor eiφ. This is usually not of any concern in imaging problems.
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A-1 Semidifinite Programming

The following cost function is considered,

minimize L1(x) = 1
2M

M∑
µ=1

(b2
µ − | 〈x, aµ〉 |2)2. (A-1)

This method involves rewriting the set of quadratic equations (A-1) as linear equations in a
higher dimension. By considering a linear transformation A that maps the Hermitian matrices
into real-valued vectors [1].

Hn×n → RP

X 7→ {aHµ Xaµ}1≤µ≤P
b = A(xxH)

Uniqueness is guaranteed by oversampling and stability can be achieved if the measurements
are random (i.e., aµ are random vectors). Unfortunately, this good precision comes at a high
computational cost as a higher dimensional problem has to be solved.

PhaseLift. The constraint X = xxH is equivalent to requiring the matrix X to have rank 1.
Also, this matrix is positive semi-definite. Then this can be cast as matrix recovery problem.

minimize rank(X)
subject to A(X) = b

X � 0.
With convex relaxation, this can be written as a trace-minimization problem,

minimize Tr(X)
subject to A(X) = b

X � 0.

Then the solution is factorized as xxH to obtain the solution of the phase retrieval problem
up to a scalar multiplier c ∈ C sucth that |c| = 1.

Limitations. In [32], it is shown that PhaseLift requires M ∼ O(nlogn) random Gaussian
measurements to yield true vector x with large probability. The algorithm also works well on
more structured, non-random phase retrieval problems [33].

Unfortunately, the precision that PhaseLift offers comes at the cost of a high computational
cost making it impractical for online implementation but allows efficient solving as the con-
straints are singleton.
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A-2 Alternating Projections

These constitute the most popular class of phase-retrieval methods. The method pioneered by
Gerchberg and Saxton [34], (referred to as GS algorithm hereinafter), recovers the complex
image from magnitude measurements at two different planes–the real (imaging) plane and
Fourier (diffraction) plane. The algorithm is iterative and involves projections, imposing real
and Fourier plane constraints. However, recovery to the true solution is not guaranteed due
to non-convexity of the constraints and it can get stuck in local minimum. Modifications have
been proposed by Fienup [35] to overcome stagnation problems. The Fienup algorithm, how-
ever, requires several initializations to increase performance. A comparison of these iterative
algorithms with convex-optimization approaches can be found in [1].

A variant of the GS algorithm is described here [36]. The following non-smooth cost function
is minimized,

minimize L2(x) =
M∑
µ=1

(bµ − | 〈x, aµ〉 |)2.

. The method relies on the following two-step procedure,

• an initialization scheme.

• Iterative minimization of cost function L2(x) using a "local search" alternating projec-
tions algorithm.

Initialization The first step has important practical consequences. The initialization depends
on the probability distribution of the measurement vectors aµ’s. When these vectors are
independent and Gaussian, a good initialization procedure is described in [36], and has been
summarized in Table. Then, it has been shown that the algorithm should converge, at a linear
rate, with high probability, for M ∼ O(n).

Assuming that the measurement vectors are known, a measurement matrix A ∈ CM×n can
be defined as,

A =

a
H
1
...
aHM

 .
The associated phase retrieval problem is,

reconstruct x from b = |Ax|.

It is assumed that the measurement matrix is independent from x and is injective (true for
M > 4n for generic measurement vectors [37]). Then, it is sufficient to recover z = Ax in the
intersection of the following two sets,

• z ∈ {z′ ∈ Cm, |z′| = b};

• z ∈ Range(A).
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Limitations. Although the use of non-convex algorithm offers an improvement over convex-
relaxation algorithms in terms of minimal computational costs, they are based on gradient
descent and enjoy weak form of convexity only in the neighbourhood of the solution. There-
fore, it is required to have a good initialization and/or much more number of measurements
in relation to the dimension of the signal to be reconstructed. The last requirement increases
the probability by decreasing the stagnation points in the optimization.

Moreover, the algorithm is prone to several sources of instability, most prominently the pos-
sibility of division by zero (for eg., due to the numerical instability of measurement vectors).
Therefore, it is important to take machine precision into consideration in context of imple-
mentation.

Abhimanyu Gupta Master of Science Thesis



Appendix B

RBF-QR algorithm

Severe ill-conditioning occurs especially in the flat basis function limit (ε→ 0). An alternative
basis has been proposed in this limit that spans the same space and is based upon the
polynomial expansion of Gaussian functions. In this limit, it has been proved that limiting
interpolants exist and converge to the form of polynomials [24, 38, 39].

The algorithm is explained for the 2-dimensional case. Here, the RBF centred at node points
%
k

= (rk, θk) are evaluated at points % = (r, θ).

The standard radial basis function, φk(%), is expanded on a suitable expansion function tl(%),

φk(%) =
∞∑
l=1

cl(%k)dltl(%), k = 1, . . . , N.

This infinite expansion can be truncated at a finite value M ≥ N , determined based on
machine precision and shape parameter value, and written in matrix form as

Φ(%) ≈ C ·D · T (%), (B-1)

The matrix C ∈ RN×M contains the elements ckl = cl(%k). In this thesis, the expansion
functions are Chebyshev polynomials for the radial component, with a Gaussian weighing
function along that dimension and trigonometric functions for the angular component. The
expressions for the elements of the coefficient matrix C and expansion function T (%) can be
found in [24]. The diagonal scaling matrix D, with its elements as dl, contains the shape
parameter

dl = 2λl

l! .

The elements dl decay rapidly with l for small shape parameters. The goal of this factorization
is to confine the ill-conditioning, due to scaling of RBF, to the matrix D which can be safely
inverted.

Left multiplication with any non-singular matrix in equation (B-1) results in a new basis
which spans the same space as the original basis. To achieve a well-conditioned basis, the

Master of Science Thesis Abhimanyu Gupta



36 RBF-QR algorithm

matrix C is split using QR factorization,

Φ(%) = (Q ·R)D · T (%) = Q ·
[
R1 R2

] [D1 0
0 D2

]
· T (%)

= Q ·
[
R1D1 R2D2

]
,

where Q ∈ RN×N is an orthogonal matrix and R ∈ RN×M is upper triangular. The matrices
R1 and D1 are N ×N . The expansion functions T (%) is chosen to be better conditioned and
insensitive to the value of λ. The new basis is chosen as

Ψ(%) = D−1
1 R−1

1 QHΦ(%) =
[
I D−1

1 R−1R2D2
]
· T (%) =

[
I R̃

]
· T (%).

It is asserted that the unstable effect of the leading powers of λ are contained in D1 and D2,
but the resulting effect on R̃ is harmless.

The approximation problem is solved as a least square problem for coefficients c,

Ac = f.

The matrix A is computed in the new basis as

A =
[
Ψ(%1) . . . Ψ(%

M
)
]T [ I

R̃T

]
= T T1 + T T2 R̃

T ,

where T1(%) contains the first N expansion functions and T2(%) contains the remaining ex-
pansion functions evaluated at the same location.

The RBF-QR method explained here may suffer from numerical overflow as the expansion
coefficients, dl start to diverge quickly depending upon the value of λ. Therefore, this method
is not suitable for larger values of λ and the standard basis can be used instead. Also, this
method is generally more suitable for circular domains but other methods exist and either
require multi precision computing toolbox for MATLAB or a more complicated variant of
RBF-QR explained here [39]. These methods are not studied as a part of this thesis.
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Appendix C

Rippa’s LOOCV algorithm

The goal of a standard interpolation problem is to find a continuous function Ψf that inter-
polates the given function values f(%

i
) on some scattered data sites X = {%1, . . . , %N} such

that,
Ψf (%

i
) = f(%

i
), i = 1, . . . , N.

An RBF interpolant is of the form,

Ψf (%) =
N∑
j=1

cjφ(
∥∥∥%− %

j

∥∥∥).
Here, the basis φ is assumed to be strictly positive definite and the least squares solution for
the coefficients c = [c1, . . . , cN ]T is given as,

c = A†f ,

where Aij = φ(
∥∥∥%

i
− %

j

∥∥∥) and f = [f(%1, . . . , f(%
N

)]T .

A variant of cross validation method, leave-one-out cross validation (LOOCV)algorithm, a
cost function based on errors for a sequence of partial fits to the data is minimized to estimate
the optimal value of the shape parameter λ. This partial fit error is computed at a single
data point split from the rest of the data (N − 1 points ), on which the approximation of the
interpolant is based. This is repeated for each one of the N data points. The cost function is
provided by some norm of the so found error vector. The predicted optimal is usually close
to the actual optimum.
For a vector of data sites with the point %[k] removed defined as,

%[k] = [%1, . . . , %k−1, %k+1, . . . , %N ]T ,

the partial RBF interpolant to the data f [k] is defined as,

Ψ[k]
f (%) =

N−1∑
j=1

c
[k]
j φ(

∥∥∥%− %[k]
j

∥∥∥).
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38 Rippa’s LOOCV algorithm

Algorithm 1 Rippa’s LOOCV algorithm
Input: Data sites %, function values f(%). Fix λ

procedure LOOCV algorithm(φ,f ,%)
2: while k = 1, . . . , N do . Iterate for each data site

%[k] = [%1, . . . , %k−1, %k+1, . . . , %N ]T ,
4: Ψ[k]

f (%) =
∑N−1
j=1 c

[k]
j φ(

∥∥∥%− %[k]
j

∥∥∥) . Partial fit.

ek =
∣∣∣f(%

k
)−Ψ[k]

f (%
k
)
∣∣∣ . error estimate at kth data site.

6: ek = ck
A−1
kk

. Rippa’s step.

return cost vector e = [e1, . . . , eN ]T .
Output: Optimal shape parameter λ by minimizing ‖e‖.

Then the algorithm is summarized in Algorithm 1.

Rippa showed that the step 5 can be simplified to step 6 where ck is the kth expansion
coefficient of the interpolant Ψf based on full data set, and A−1

kk is the kth diagonal element
of the inverse of the corresponding interpolation matrix. It is noted here that step 7 can be
computed in a single step. The MATLAB function fminbnd is used to find the minimum of
the cost function in step 7.
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