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Abstract: Time-varying pilot control identification is essential for better understanding of how
pilots respond when faced with sudden changes in the dynamics of the vehicle they control, such
as when automatic control and stabilization systems disengage or undergo a mode transition.
This paper presents the results of a human-in-the-loop experiment performed at TU Delft to test
a promising online pilot identification method, based on recursive low-order ARX identification,
developed in earlier work. In the experiment, eight skilled participants performed tracking tasks
with time-varying vehicle dynamics, where at an unpredictable moment during each tracking
run a sudden degradation in vehicle stability was induced. In addition to controlling the time-
varying vehicle, participants were asked to indicate when they detected the change in the vehicle
dynamics with a button push. This paper compares the effectiveness of two different approaches
to detect the moment when pilot adaptation occurs from online identified pilot parameter
traces. Overall, the results indicate that the lag in this detection of identified pilot adaptation
is equivalent to the subjective detection times, or less. This implies that these online techniques
have clear potential for ensuring timely and effective changes in adaptive pilot support systems.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

1. INTRODUCTION

While most of our current knowledge about how pilots
control dynamics systems is valid only for time-invariant
task conditions (McRuer and Jex, 1967), it is in fact pilots’
capacity for quick, time-varying, control adaptations that
is of critical importance for many real-life control tasks
(Young, 1969; Mulder et al., 2018). Of special interest in
the aerospace domain are pilots’ interactions with time-
varying controlled vehicle dynamics, which for instance
may occur due to aircraft damage and sudden autopilot
or stabilization system mode switches or disengagement
(Hess, 2009, 2016; Zaal, 2016; Farjadian et al., 2016). Due
to the often safety-critical nature of such cases, which
can require significant time-varying pilot adaptation, a
better quantitative understanding of the nature of such
adaptations is needed (Mulder et al., 2018). Furthermore,
accurate online detection and characterization of time-
varying pilot adaptations — i.e., in real time — has great
potential for, for instance, the detection of reduced atten-
tion or distraction and the design of adaptive pilot support
systems and interfaces.

Traditionally, two perspectives on quantitative analysis of
time-varying pilot behavior are followed: the development
and testing of empirically-derived logic rules for the adap-
tation (Hess, 2009, 2016; Farjadian et al., 2016), or the
explicit identification, using system identification meth-
ods, from collected pilot-in-the-loop data. For the latter,
significant progress has been made towards developing
time-varying identification methods suitable for offline, a
posteriori, identification: e.g., methods based on Kalman
filters (Schiess and Roland, 1975; Boer and Kenyon, 1998;
Popovici et al., 2017), wavelets (Thompson et al., 2001),
linear parameter varying (LPV) models (Duarte et al.,

2017), or explicit modeling of time-variations (Zaal, 2016).
In the current state-of-the-art, however, a validated on-
line identification approach, together with a tested algo-
rithm for detecting pilot adaptations from identified time-
varying parameter traces, is still missing.

In this paper, a previously developed recursive ARX iden-
tification technique (van Grootheest et al., 2018) is imple-
mented in real time and tested for its capacity to online
identify, and timely detect, time-varying pilot adaptation
in response to a sudden degradation in vehicle stability.
To test the method, a dedicated human-in-the-loop exper-
iment was performed, similar to (Zaal, 2016), where eight
participants performed tracking tasks with time-varying
controlled element (CE) dynamics. To detect HC adap-
tation from identified traces of pilot response gains, two
different detection methods were tested, which compared
current values of these identified parameters against either
an a priori estimated time-invariant condition average, or
a moving average of the identified trace itself. For compar-
ison with the identified adaptation detections, participants
in the experiment were also asked to indicate, by means
of a button push, when they detected a change in the CE
dynamics during the tracking task.

2. METHOD
2.1 Control Task

A single-axis compensatory tracking task, based on the
experiment of Zaal (2016), was used to evaluate the
time-varying pilot identification and adaptation detection
methods. A block diagram of this task is shown in Fig. 1.
In this task, the pilot controls the time-varying controlled
element (CE) dynamics H.(s,t) such that its output y

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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Fig. 1. A schematic representation of a pilot in control of
time-varying CE dynamics.

tracks the forcing function f; as closely as possible. The
pilot minimizes the tracking error e, as presented on
a compensatory display, and provides a single control
input to the CE, u. In line with traditional quasi-linear
pilot modeling assumptions (McRuer and Jex, 1967), in
this task both the linear control dynamics H,(s,t) and
the characteristics of the nonlinear remnant contribution
H,(s,t) are expected to vary due to a change in the CE.
For the CE, a typical low-order approximation of aircraft
dynamics is considered:

K.(t)

Hc at = 5
(,2) $2 4+ we(t)s

(1)
To induce time-varying pilot adaptation, the parameters
of the CE dynamics in Eq. (1) —i.e., the gain K. and the
break frequency w. — were changed over time. To tie in
with (Zaal, 2016), a sigmoid function was used to vary both
parameters between an initial (i.e., subscript “1”) and a
final (i.e., “27) value, e.g., K.(t) = K¢, + (K, — K¢, ) /(14
e’G(t*M)). The initial CE dynamics represent a highly
stable and responsive vehicle, while the final CE dynamics
are notably less stable and more sluggish and require pilots
to generate lead (McRuer and Jex, 1967). As shown in
Fig. 2, two different settings of the sigmoid rate of change
parameter G were considered, 0.5 and 100 s~!, to include
both instantaneous and more gradual changes in the CE.
For consistent data collection, the CE variation was always
centered on the midway point of the measurement interval
T,, = 81.92s, i.e, M = 40.96s.
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2 —_
S 44 |
g — 50
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Fig. 2. CE parameters scheduled by sigmoid function

for a sudden (G = 100 s™!) and a gradual change
(G =0.5s71), located at M = Ty, /2.

2.2 Pilot Model

For the considered time-varying control task, it is known
that the time-varying pilot control dynamics H,(s,t) are
effectively quantified with a traditional linear pilot model

for which (part of) the parameters are free to vary over
time (Zaal, 2016; Duarte et al., 2017; van Grootheest
et al., 2018), see Eq. (2). Note that to avoid identification
ambiguities between the error response gain K. and the
lead time constant 77, normally present in models of this
form (McRuer and Jex, 1967), an error rate response gain
K(t) = K.(t)T1(t) is used for the parameterization:

Hpy(s,t) = (Kc(t) + Ke(t)s)e™* Hpm(s, t) (2)

Wi (t)

nm

wTQLm (t) + 2<nm (t)wnm (t)S + 52

Hpm(s,t) = (3)

As previous work has found no evidence for time-varying
adaptations of the pilot response delay 7 (Zaal, 2016) for
the considered scenario, four time-varying pilot parameters
are estimated. The pilot gains K. (t) and K.(¢) capture
how much proportional and derivative control is performed
by pilots. The natural frequency wy., and damping ratio
Cnm of the neuromuscular dynamics Hy,,, (s, t) (see Eq. (3))
account for time-varying neuromuscular adaptations.

2.8 Online Time-Varying ARX Identification

The goal of time-varying pilot identification is to use mea-
sured time traces of the tracking error e and the control
signal u (see Fig. 1) to estimate time traces of all time-
varying pilot model parameters. In this paper, for this a
previously developed approach based on the “autoregres-
sive with external input” (ARX) model structure is applied
(van Grootheest et al., 2018).

ARX Model Structure Eq. (4) gives the general single-
input-single-output ARX model structure (Ljung, 1999)
that is used in this paper:

u(t) = ﬁgggqme(w 4 @eu) (4)

Eq. (4) represents a discrete-time model with time shift
operator ¢, such that ¢~ e(t) = e(t — ng) to model the
pilot (input) delay. Pilot dynamics are approximated by
the ratio B(q)/A(q) of the ARX polynomial models and
the input data shift of ny samples. Eq. (4) shows that the
system and noise (remnant) dynamics are coupled through
A(q) in the ARX model structure, which makes estimating
its parameters a straightforward least-squares problem.

In this paper, second-order A(q) and B(g) polynomials
were chosen to match Eq. (2). The resulting ARX model
structure of Eq. (5) allows for estimating the vector of
polynomial coefficients — i.e., 8; = (a1 a2 by bl)T — with
RLS, but not the discrete input time shift parameter ny.
As was shown to be an allowable approximation by van
Grootheest et al. (2018), the pilot time delay was set a
priori to T = 0.28 s (Zaal, 2016), corresponding to n; = 28
for the 0.01 s timestep considered in the experiment.

bo + b1q* _
»(q) q e —— (5)
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Recursive Least Squares ~ An RLS algorithm with stan-
dard exponential forgetting factor was used to estimate
and track the ARX coefficients over time (Ljung, 1999;
van Grootheest et al., 2018). The forgetting factor, for
the considered 100 Hz data rate, was set to A = 0.99609
based on detailed tuning performed in previous work
(van Grootheest et al., 2018). This value corresponds to
a memory horizon of 2.56 s. The RLS algorithm esti-
mated 6#; at every sample time step, starting at ¢ = 3
s, as at earlier time instances insufficient data over the
memory horizon are available, accounting also for the
input time shift ng. To start the RLS, default initial
parameter and parameter covariance matrix settings of

6y = (—1.850.85 0.08 —0.08)T and Py = 10,0001 4,4,
respectively, were used.

Pilot Parameter Retrieval To retrieve the physical pi-
lot parameters from Eq. (2), the estimated discrete-time
ARX coefficients need to be converted. This is done by
first converting the estimated ARX models to discrete-
time transfer functions Hy(z) using the Z-transform. The
discrete transfer function estimated at each time step is
then converted to the continuous-time equivalent, using a
zero-order-hold conversion method. The pilot model pa-
rameters can then be retrieved from the converted ARX
model parameters using the following relations, where the
superscript “c” indicates that the ARX coefficients from
Eq. (5) have been converted to continuous time first:

i b
Ke = — K ==
a; as
a‘i - (6)
Cnm = 9 = Wnm = g
a3

It should be noted that this conversion is straightforward
as long as the orders of the parameter and ARX models
match. Otherwise, an order reduction technique would be
required for the parameter retrieval.

2.4 Adaptation Detection

For the considered task, the main expected pilot adapta-
tion is a reduction in the error gain K, and an increased
error rate gain K, after the induced drop in vehicle sta-
bility (Zaal, 2016). For this reason, this paper tests two
adaptation detection methods that perform the detection
based on the time-varying estimates of these two parame-
ters. Both proposed detection methods check for instances
where the current estimate of the parameter (e.g., K;)
is outside of a range linked to an expected average value
(e.g., K;) of the considered parameter and an accepted
variability margin (e.g., 0K.). This principle is illustrated
in Fig. 3, where the blue area indicates the reference
average parameter range and the red line indicates the
identified parameter trace.

As shown in Fig. 3, two different approaches were tested
for defining the reference band, leading to two adaptation
detection methods:

e Time-Invariant Condition Average (TICA), Fig. 3(a):
in this approach the reference parameter variation
K¢ rica and spread is defined a priori and derived

tde_lect
K, !

} K, rrca = 0K,

(a) TICA method

tde;‘ect

(b) MA method

Fig. 3. Graphical illustration of adaptation detection for
both the proposed TICA and MA methods.

from identified parameter traces of time-invariant
task runs, i.e., with only the stable CE dynamics.

o Moving Average (MA), Fig. 3(b): in this approach the
center of the reference band K¢ pra is derived from
the current identified parameter trace only, by taking
a moving average over a past window of ng samples.

Both detection methods have several settings that should
be tuned to minimize false-positive and false-negative
detections. A false positive (FP) was defined as a detection
made outside of the interval M <ty < 60 s, with M =
40.96 s the moment of transition. A limit of 60 s was
arbitrarily chosen since by then pilots should have adapted
to the new situation and the identified parameters should
be sufficiently converged to trigger a detection. A false
negative (FN) occurs when no detection was made. This,
for instance, can happen when the parameter trace is not
outside the reference band for longer than AT seconds.
The tunable settings (hyperparameters) of the detection
methods, which should be tuned to avoid FP and FN, are:

e 0K, 0K,: the accepted variability margin size. These
parameters define the width of the reference band and
quantifies the allowed (or expected) deviation of pilot
parameter estimates from the average without leaving
the reference band.

e K., K.: the middle of the reference parameter band,
defined following a different strategy for the TICA
and MA methods, see Fig. 3.

e AT: the minimum amount of time the current param-
eter trace should be outside of the reference band to
be considered a detection.

e n, (for MA method only): the number of samples
over which the reference moving-average parameter
average is calculated, which directly influences the
tracking speed of the moving average.

The TICA approach here is used as a reference, as for
general applications detailed knowledge of parameter vari-
ations in equivalent time-invariant scenarios are not avail-
able. The MA approach requires less additional data to
tune and is thus more promising for online implemen-
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tation. In this paper, both methods are applied to the
identified traces of both K, and Kg.

3. EXPERIMENT SETUP
3.1 Apparatus

To evaluate the proposed methodology for detecting pilot
adaptation to changes in the CE, a dedicated human-
in-the-loop experiment was performed where participants
performed the control task of Fig. 1. The experiment was
performed in the fixed-base simulator setup of the Human-
Machine Interaction Laboratory (HMILab) at the Faculty
of Aerospace Engineering at TU Delft, see Fig. 4. The
control task was implemented as a pitch attitude tracking
task matching the experiment of Zaal (2016), where partic-
ipants were asked to minimize pitch tracking errors shown
as the vertical displacement between a (stationary) aircraft
symbol and the (moving) horizon line, see Fig. 4(a).

(a) HMILab simulator (b) Stick with push button

Fig. 4. The experiment setup in the HMILab simulator (a)
and the push button on control stick (b).

Participants provided their control inputs using a right-
handed electro-hydraulic side-stick as shown in Fig. 4(a).
The stick’s torsional stiffness was set to 2.5 Nm/rad, its
damping to 0.22 Nm s/rad, and its inertia to 0.01 kg m?
with a moment arm of 9 cm. The stick could only rotate
around the pitch axis. Finally, a push button on the stick,
see Fig. 4(b), was used by the participants to indicate when
they detected the change in the task characteristics.

3.2 Forcing Function

The forcing function f; was defined as a sum of ten
sinusoids with different frequencies, all defined as integer
multiples of the base measurement frequency w,, = 27 /T,
to avoid spectral leakage.The forcing function was identical
to the signal used by Zaal (2016), however, it was shifted
by 10.5 s backwards in time, by an adjustment to the
phases. This was done to have a different part of the f;
time trace align with the CE transition region.

3.8 Experiment Conditions

In the experiment, two variables were varied indepen-
dently and all combinations were tested by all partic-
ipants (within-subjects design). First, participants were
subjected to both fast and gradual time-variations of the
CE — referred to as TVI12F and TV12S in the remainder
of this paper — implemented with two values for the max-
imum rate-of-change parameter of the sigmoid function:
G = 100 or 0.5 s~!, respectively, see Fig. 2. In addition,

w g
ke NG R
8 10 e T S e e =
e =i
S N
30 . . : .
0 20 40 60 80
t[sl]

Fig. 5. Measured average pilot control data (f, y, and u)
and average identified pilot parameter traces (K., K¢,
Crm, and wy,, ) for all participants (condition TV12F).

to ensure that the time of the CE change occurred did not
become predictable, the amount of run-in time added be-
fore the measurement window of T;,, = 81.92 s was varied
over three levels: 5 s, 10 s and 15 s. Finally, time-invariant
reference data with the initial CE dynamics (K. = 90,
we = 6 rad/s) were also collected for each participant for
implementing the TICA adaptation detection.

3.4 Participants and Ezxperiment Procedures

Eight skilled participants volunteered to perform the ex-
periment and provided written informed consent before
participating. Participants were instructed to minimize the
tracking error shown on the display and push the button
whenever they noticed changed CE dynamics. They re-
ceived no further briefing regarding nature of the tested
experiment conditions. After an initial training consisting
of at least one run of each condition, three further repeated
measurements of each condition were collected for each
participant, using a randomized order of presentation to
balance out fatigue effects. After each run, participants
received feedback of their performance (RMS of the error
signal e) as motivation to perform consistently.

4. RESULTS
4.1 Time-Varying Pilot Identification Data

To illustrate the first step of our proposed procedure, Fig. 5
shows average recorded time traces from the control task
(ft, y, and u, see Fig. 1), as well as the time-varying
estimates of the four free parameters of the pilot model
of Eq. (2) for condition TV12F. As is clear from the top
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Fig. 6. Adaptation detection using TICA. Hyperparame-
ters: 0K, = 0.06, 0K = 0.02, AT =3 s.

two graphs, after the CE transition indicated with the
dashed vertical line, participants showed degraded track-
ing performance (less accurate following of f; with y) and
increased control effort (larger ), as expected for a loss of
vehicle stability and responsiveness. The estimated pilot
parameter traces show the matching expected decrease
in K., and a notable increase in Kz of up to 100% after
the induced CE change (McRuer and Jex, 1967). Fig. 5
also confirms earlier findings (Zaal, 2016; van Grootheest
et al., 2018), as also for this data no consistent time-
varying adaptations in the neuromuscular parameters are
observed.

4.2 Adaptation Detection from Pilot Identification

To demonstrate the adaptation detection performed with
the TICA and MA algorithms, Figs. 6 and 7 show example
results for a single tracking run of one subject for the
condition with a sudden change in the CE, i.e., TV12F.
Each figure consists of two sets of graphs — one set for
K. and one for K; — and for each set the top graph
shows the respective identification data, while the bottom
graph shows the derived detection results. Matching Fig. 3,
the identified parameter variation over time is the red
data, while the parameter range used for the adaptation
detection is indicated as a blue area. In the detection
graphs, blue data are the “raw” detections that represent
all instances when the parameter trace goes outside of
the reference band, while the green data indicates the
“final” result, i.e., the first detection that has a length
longer than AT'. For reference, the subjective detection
(button press) is indicated in red. The results presented
here were obtained for an initial heuristic tuning of the
hyperparameters for both algorithms, based on inspection
of the nature and variability of the identified pilot param-
eter traces across our dataset.

Figs. 6 and 7 show that adaptation detection based on
K. is more troublesome, as inherent parameter variations
unrelated to the CE change seem to be comparatively
larger than for K. Fig. 7 even shows a clear FP, as only
a very early detection well before the actual CE change is
triggered for the MA method. For error detection based

— Ke M

@) - K, +06Ke

e [-]

T

— raw

— final

—— subjective

1‘0 2‘0 3‘0 4‘0 Sb é 0 7‘0 é 0
t[s]
— Ka M
(b) °

| W

10 20 30 40 50 60 70 80
t[s]

o

o

B K, *6Ke

Ke [—
o o
o o
S &

-

Detection [-]

o

o

Fig. 7. Adaptation detection using MA. Hyperparameters:
0K, =0.06, 0K, =0.02, AT =3 s, ngs = 1500.

Table 1. Error detection confusion matrix for
both methods. Hyperparameters: dx, = 0.06,
0r, = 0.02, AT =3 s, ny, = 1500.

Condition = Method Parameter TP FP TN FN
Ke 12 33 0 27

TV12F TICA K¢ 41 27 0 4
MA Ke 0 15 0 57

K. 20 12 0 40

Ke 6 30 0 35

TV128 TICA K 41 26 0 4
MA K. 2 10 0 59

K 11 7 0 53

on K., the raw detection data show that both methods
are also clearly triggered due to local, short-duration,
variations in the identified K. However, after taking a
minimum AT into account, the final result for both is
a detection at around 46 s, which is very close to the
subjective detection time indicated by this participant.

Overall, the example results in Fig. 6 and 7 suggest that
detection accuracy is highest based on K for both the
TICA and MA methods. Based on the detection results for
all runs, all participants, and both the fast and slow CE
changes, the final detection accuracy results are summa-
rized in the “confusion matrix” of Table 1. Note that this
means a total of 72 data sets were available for each case:
8 participants, 3 repeated runs for 3 different run-in time
settings. Here true positives (TP) are successful detections
and false negatives (FN) are cases where no detection was
triggered. FP and FN are defined as in Section 2.4.

Table 1 shows that for both TV12F and TV12S, the TICA
method for detection based on K, resulted in the highest
number of TPs (41), for a total detection accuracy of 57%.
On average, the MA method was found to be less sensitive,
with notably less TP and FP detections than TICA, as
well as over 70% of cases not triggering a detection (FN).
This result is at least partially explained by the heuristic
tuning of the hyperparameters. Especially the MA method
is highly sensitive to changes in the hyperparameters
(especially ns and AT), therefore a much improved result
is expected after proper hyperparameter optimization.
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4.8 Comparison with Subjective Detection Times

To verify the latency of the adaptation detection, the
detection lags for all FP detections were compared with
the recorded subjective detection lags (button presses).
For the subjective data, statistical analysis with a two-
way repeated-measures ANOVA — with G and the added
run-in time as factors — showed no difference due to
different run-in times, F(2,14) = 1.92, p > 0.05. Hence,
in the further analysis of detection times, the results of all
run-in times were combined. A significant difference was,
however, found between TV12F and TV12S, F(1,7) =
15.76, p < 0.05, with the sudden change (TV12F) being
noted 5 s earlier on average, see Fig. 8.

TV12F TV12S

s — T —
S i
T T

0 5 10 15 20 25 0 5 10 15 20 25
Detection lag [s] Detection lag [s]

Detection method

TICA, Ks

Fig. 8. Lags of true positive detections with MA and TICA
compared to subjective detection times (SUBJ.).

Fig. 8 shows the distribution of detection lags, for all TP
cases, for the subjective detections (“SUBJ.”) and the two
tested detection methods (“TICA” and “MA”) applied
to the identified K. data. For TV12F, the detection lags
for TICA and MA are found to be equivalent and not
significantly different — i.e., t(103.1) = —1.62,p > 0.05
and t(66.7) = —0.63,p > 0.05 , respectively — from the
subjective data. For the more gradual change in the TV12S
condition, all detection lags increase by around 5 s, but
still the identification detection lags are equivalent to the
subjective data, especially for TICA (t(97.0) = 1.42,p >
0.05). For MA, the 11 FP detections are found to occur
a bit earlier on average than the subjective detections, a
significant effect t(35.0) = 5.13,p < 0.05.

5. CONCLUSION

This paper tested and compared two methods for the
detection of time-varying pilot adaptation from pilot re-
sponse gain traces estimated online with a recursive ARX
identification technique. The methodology was tested on
experimental tracking data and identification detection
times were explicitly compared to the participants’ subjec-
tive indication of when they noticed the induced change in
the vehicle dynamics. Overall, it was found that identified
values of pilot error response gain K. showed the most
consistent variations due to degraded vehicle stability and
hence the most accurate adaptation detection results. The
TICA detection method, which checks for differences with
a priori measured non-adapted pilot behavior, was found
to be the most reliable, with a detection accuracy of 57%.
The tested MA method, which uses a moving average of
the past identified K¢ parameter trace itself as a reference,
is more practical for online implementations, but had a
lower detection accuracy, which can be improved with
better hyperparameter tuning. On average, for offline data

processing, the adaptation detection times of both meth-
ods were found to be equivalent to the recorded subjective
detection lags. Overall, these results indicate that an ap-
proach as tested in this paper has the potential to enable
accurate and timely detection of pilot adaptations to time-
varying adaptations in the controlled vehicle dynamics.
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