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Brain Activity Recognition using Deep
Electroencephalography Representation

Riddhi Johri Pankaj Pandey
IIT Gandhinagar IIT Gandhinagar
India India

Abstract—Advances in neurotechnology have enhanced and
simplified our ability to research brain activity with low-cost
and effective equipment. One such scalable and noninvasive
technique is Electroencephalography (EEG), which detects and
records electrical brain activity. Brain activity recognition is one
of the emerging problems as EEG wearables become more readily
available. Our research has modeled EEG signals to classify
three states (i) music listening, (ii) movie watching, and (iii)
meditating. The datasets incorporating the brain signals induced
while performing these activities are NMED-T for music listening,
SEED for movie watching, and VIP_SNY_HYT for meditating.
EEG activity is transformed into deep representation using a
convolutional neural network comprising three different types of
2D convolutions: Temporal, Spatial, and Separable, to capture
dependencies and extract high-level features from the data. The
Depthwise Convolution function is responsible for learning spatial
filters within each temporal convolution, and combining these
spatial filters across all temporal bands optimally is learned by
the Separable Convolutions. EEGNet and EEGNet_SSVEP are
specially designed for EEG Signal Processing and Classification,
and the DeepConvNet has incorporated more convolution lay-
ers. Our finding demonstrates that increasing the number of
layers in the Network provided a higher accuracy of 99.94%
using DeepConvNet. In contrast, the accuracy of EEGNet and
EEGNet_SSVEP resulted in 85.63% and 75.76 %, respectively.

Index Terms—Human-Centered Computing, EEG Sensor, Ma-
chine Learning, Brain Activity

I. INTRODUCTION

Human Activity Recognition-based wearables like Fitbit
have become quite common in everyday life. They detect
our movement by segmenting multivariate data streams from
multiple sensors like altimeter, accelerometer, bioimpedance
sensor, and gyroscope and label each segment with an ac-
tivity. The increasing surge in research in the healthcare
domain has spiked with the advent of biosensors such as
electroencephalography (EEG), electromyography (EMG), and
electrocorticogram (ECoG). The high temporal resolution and
sampling rate of EEG, as well as its robustness and wearability,
have made it widely popular.

The majority of EEG studies [1] employ Deep Learning
models to categorise EEG data, notably to analyse sleep
stages, detect seizures, and monitor emotion and cognition.
Other researchers explore new processes for producing data,
enhancing feature learning, or handling artefacts. In addition,
the studies on wearable-based HAR devices incorporating
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EEG emphasise detecting motor imagery activity based on a
person’s physiological activity [2] or disentangling the data
from irrelevant noise in order to learn essential features for
HAR tasks [3]. However, this research proposes to detect the
neurophysiological activities of a subject in naturalistic events
using an EEG sensor.

We use three EEG datasets that have the brain signals of
participants recorded while they were listening to music,
watching movies, and meditating. Three different Convolu-
tional Neural Networks, namely EEGNet, EEGNet_SSVEP,
and DeepConvNet, were employed to detect these activities,
and the training and testing datasets consisted of entirely
different subjects. In contrast to most previous studies in which
either of these datasets were analysed separately to classify
songs, emotions, movies, or meditation, we have combined all
three datasets and determined the 55 common EEG channels
present in all the datasets to recognise the type of activity.

II. DATA DESCRIPTION

NMED-T: This study analyzed NMED-T [4], a publicly
available dataset used for research in music processing. Be-
havioural responses from twenty participants engaged in a
naturalistic song listening study were recorded in this dataset,
along with their EEG signals. The pre-processed version of this
dataset, which contains 125 channels of EEG data captured at
125 Hz, was primarily employed in our study.

SEED: SEED [5] is composed of electroencephalogram
signals collected from fifteen subjects including eight females
and seven males, who watched fifteen excerpts from Chinese
films. Fifteen trials were conducted per subject, lasting 305
seconds, including a hint of starting for 5 seconds, a movie
clip for 4 minutes, a self-assessment for 45 seconds, and a rest
for 15 seconds. The data collected from the 62-electrode EEG
cap was then downsampled to 200 Hz, and the pre-processed
version available online was used for the experiment [6].

VIP_SNY_HYT: Datasets collected by the Meditation
Research Institute (MRI), located in Rishikesh, India, were
used in order to examine the electroencephalography (EEG)
activity of meditation practitioners from two different med-
itation traditions [7]: Vipassana (VIP) and Himalayan Yoga
(HT). For the data, a group of sixteen subjects was selected
for each meditation technique, making it a total of 32 subjects.
The EEG signals were sampled at 256Hz and contained 64
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Fig. 1. The different architectures used for classification from EEG data. There were 55 common channels

channels, C = 55,. The values of S and N vary between datasets.

channels. The study utilized the pre-processed version of these
brain signals [7].

III. METHODOLOGY

EEGNet: EEG data consisting of C channels, S time
samples, and N subjects were passed for 100 epochs to
the EEGNet model [8] composed of three convolutions in
sequence. The input was routed through eight 2D convo-
lution filters of size (1,64), which generated feature maps
at various bandpass frequencies in the first block to obtain
temporal information. Then, D*8 depthwise convolutions of
size (C,1) were employed to learn spatial information within
each temporal filter. The depth parameter D determined how
many spatial filters should be learned for each feature map.
The model was regularised with a dropout rate of 0.5 after
applying exponential linear unit (ELU) Non-Linearity and
Average Pooling layer of size (1, 4).

In Block 2, there was a Separable 2D Convolution layer
composed of sixteen filters of size (1,16). This helped to
combine spatial filters across temporal bands optimally. After
applying ELU Non-Linearity, dimensionality reduction was
achieved using an Average Pooling layer of size (1, 8).
All the convolutions were followed by Batch Normalization.
Finally, features after dropout were passed to the Softmax
Classification layer.

EEGNet_SSVEP: The SSVEP variant of EEGNet [9] was
designed specifically for classifying Asynchronous Steady-
State Visual Evoked Potentials signals. This differs from the
above network in size and number of kernels utilised in
each convolution layer, as illustrated in figure 1. In block
1, ninety-six 2D Convolution and Depthwise 2D Convolution
(D=1) of size (1,256) and (C,1) respectively were used to
obtain frequency-specific spatial filters. Furthermore, depth-
wise convolutions reduced the number of free parameters to
fit compared to fully-connected convolutions.

across all three datasets making the number for

In Block 2, ninety-six separable convolutions of size (1,16)
were used, which reduced the number of parameters to fit
while also explicitly decoupling the link between feature maps
across and inside them. In turn, a kernel summarizing each fea-
ture map was learned, followed by the optimal merging of the
outputs. After every Convolution layer, Batch Normalization
was applied. The input was then processed via ELU non-linear
activation, 2D average pooling, and dropout layers. Lastly, a
dense layer and a softmax activation function were connected
to the final layer.

DeepConvNet: The deep ConvNet architecture [10] to
extract features and decode EEG signals was inspired by
computer vision techniques. This architecture had four blocks,
each consisting of a 2D convolution layer with max_norm
constraint, batch normalization, ELU non-linearity activation,
max pooling of size (1,2) with strides (1,2), and a dropout
layer with a dropout rate of 0.5.

The convolution added in the first block was split into
two convolution layers of 25 filters each, one temporal layer
(1,5) and one spatial layer (C,1). These two layers helped in
forcing a linear transformation into a blend of a temporal
and a spatial filter, which implicitly regularized the overall
convolution. Finally, the fifth layer was a dense layer with a
softmax activation function for classification.

TABLE 1
THE 55 CHANNELS FOUND TO BE COMMON IN ALL THE THREE DATASETS
CONSIDERED

Region Channels
Frontal F1, F3, F5, F7, FZ, F2, F4, Fo, F8,
FP1, AF3, FPZ, FP2, AF4
Central FC5, FC3, FC1, FCé6, FC4, FC2, FCZ,
Cl, C3, C5, C2, C4, C6,
Parictal CP5, CP3, CP1, CPZ, CP6, CP4, CP2,
P1, P3, PS5, P7, PZ, P2, P4, P6, P8,
Occipital | Ol1, OZ, POZ, PO7, PO3, POS, PO4, O2
Temporal TP7, TP8, FT7, FT8
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Fig. 2. Confusion Matrices of the brain activity classification using the three CNN architectures

TABLE II
NUMBER OF SAMPLES FOR TRAINING AND TESTING.

Test
1520
1990
3024

Train
5448
8280
3040

Dataset
NMED-T (Music) [4]
SEED (Movie) [5] [6]
VIP and HT (Meditation) [7]

TABLE III
CLASSIFICATION METRICS

F1 Score
84.70%
74.43%
99.93%

Recall
87.36%
77.23%
99.94%

Precision
86.62%
82.60%
99.91%

Architecture
EEGNet [8]
EEGNet_SSVEP [9]
DeepConvNet [10]

Accuracy
84.63%
74.76%
99.94%

IV. EXPERIMENTAL RESULTS

This research analysed three datasets for categorising brain
signals according to the type of activity a subject was engaging
in, such as music listening, movie watching, and meditation.
As listed in Table I, 55 EEG channels were found to be shared
across NMED-T, SEED, and VIP_SNY_ HYT datasets and the
signals from these channels were analysed.

The Table II displays the number of samples from each
dataset utilised for training and testing the model. One sample
contained the brain signals for a duration of 10 secs from each
of the 55 channels from every subject considered in the dataset.
Models were never exposed to data from the subjects they were
getting tested on because training and testing datasets included
EEG signals of entirely different sets of subjects. Thus, the
accuracies achieved in identifying the activities of the subjects
as shown in Table III by the three CNN models indicates that
they were able to learn the subject invariant representation of
the EEG signals successfully.

While the high accuracy of 99.94% of DeepConvNet was
attributed to incorporating two more convolution layers, all
the models successfully identified a common neural signature
for the naturalistic activities across several participants. This
transfer learning of EEG data has been a prevalent challenge in
terms of invariant representation since synaptic plasticity and
interactions with the environment affect brain representation
of experiences differently in different individuals.

V. CONCLUSION

Our research shows that the CNN models successfully
learned the subject-independent features of brain signals spe-
cific to each of the activities. These findings can be leveraged
in wearable EEG headsets to monitor and detect naturalistic
scenarios using brain signals. The future possibility is to use
a dataset collected at one place with the same participants
performing different tasks.
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