
TinyML-Empowered Line Following for a Car Robot
Evaluating the Capabilities of Various Lane Detection Models on Microcontrollers

Adrien Carton1

Supervisors: Qing Wang1, Ran Zhu 1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
27 June 2025

Name of the student: Adrien Carton
Final project course: CSE3000 Research Project
Thesis committee: Qing Wang, Ran Zhu, R.R. Venkatesha Prasad1

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
This research explores the feasibility of implement-
ing lane detection on lightweight microcontrollers
using a combination of traditional image process-
ing and compact machine learning methods. With
the aim of enabling real-time inference under strict
hardware constraints, several models were trained
and evaluated against a custom image processing
pipeline. Each approach was tested for accuracy,
speed, and resource usage on the Raspberry Pi
Pico 0 microcontroller. While these solutions fall
short of cutting-edge accuracy and cannot process
as much information as state of the art models, their
low cost, minimal power consumption, and real-
time performance highlight their potential. These
findings suggest that lightweight lane detection is
a viable direction for further research in embedded
autonomous systems.

1 Introduction
Autonomous cars and robots can assist humans and allow
them to drive their focus on more entertaining tasks. Lane
following is an essential component that would allow full au-
tonomy to a diverse class of robots. Their applications range
from warehouse and industrial robots to delivery systems and
self-driving private vehicles. The ability to compute lane fol-
lowing on board with a microcontroller presents many advan-
tages. It allows independence from heavy on-board hardware
or cloud-based solutions, hence, decreasing dependence on
internet connection and dedicated CPUs and GPUs. TinyML
models [1] aim to enable edge computing by reducing the
computational needs of a model. This approach would allow
for smaller, lighter, cheaper robots. This increases the scala-
bility and independence of robots and autonomous cars.

Many diverse approaches to the problem of lane detection
exist and have been studied. Prompting literature reviews [2;
3; 4] that show accuracies of up to 97% are achievable today.
The trend divides in two main approaches: Image processing
(IP), Machine Learning (ML), but also a combination of the
two. However, the common trait of all approaches is the com-
putational intensity, leading to a hardware-to-computation
time trade-off. These real-time lane detection algorithms re-
quire bulky, expensive hardware, beyond the scope of this
project. Another important note is that the cutting-edge tech-
nologies are proprietary to individual auto manufacturers to
keep a competitive edge. These approaches are inaccessible
and therefore not considered in this study.

Given the diversity of approaches and our constraints, a
key question arises: What is the best solution, focusing on
efficiency and accuracy, to detect lanes dynamically on a
lightweight microcontroller? This research will focus on
finding and adapting existing solutions to the hardware.

The main contributions of this research include the com-
pilation of different academic approaches to the issue of lane
finding, the process of selection and creation of algorithms
compatible to the selected hardware, and lastly, a methodical
comparison of the resulting algorithms.

The paper starts with an overview of the existing research
in section 2. Section 3 then outlines the scientific process fol-
lowed in the duration of the project. The experimentations
and their result are outlined in section 4. Section 5 outlines
the ethical limitations of this research, followed by a contex-
tualization of the results and concluding remarks in Sections
6 and 7.

2 Related Work on Lane Detection
As mentioned previously, given the strong trend of au-
tonomous vehicles, many computationally intensive solutions
exist to the problem of lane finding. We will classify the dif-
ferent types of solutions to understand the underlying me-
chanics and what can be used in an implementation cus-
tomized to the hardware. The existing solutions will be sorted
in the order of, IP methods, ML methods and combined meth-
ods. Understanding the researched solutions will help us con-
clude what will be further researched in this study.

Image Processing Approaches
In controlled setups, it suffices to have a lane with a different
color from the background and apply thresholding. We con-
sider that this solution is too rigid and limiting, therefore not
relevant to this research. Nonetheless, it is important to note
that it is a practical and simple to use in controlled environ-
ments such as factories.

Other IP methods [5] include camera calibration to undis-
tort images, gradient thresholding, Region of Interest (ROI)
masking, edge detection and finish with Lane Pixel Detection
and Polynomial Fitting. Given the “artisanal” nature of IP
processing each implementation can include additional opti-
mization steps such as sliding windows. The description of a
complete simple pipeline can be found in [6] and in Figure 1.
For the edge detection, several approaches need to be studied,
Canny edge filters [7] are the most precise but more computa-
tionally expensive. Hodge-Laplacian [8] and Sobel [9] edge
filters offer a less precise solution for a much smaller cost.
Using only traditional methods it is possible to achieve “de-
tection rate of 96.78 per cent” [6], although we must note the
accuracy test exclude examples from nighttime.
OpenCV is the most commonly used framework for image

processing applications. This is largely due to OpenCV’s
convenience; it abstracts many algorithmic details, provides
optimized implementations, and supports multi-threading to
enhance performance. OpenCV remains the dominant choice
for C++ and Python implementation despite evidence sug-
gesting that it is not the most efficient solution for all image
processing applications [10]. However, OpenCV’s compu-
tational demands exceed the capabilities of ultra-low-power
microcontrollers such as the Raspberry Pi Pico 0. As a
result, adapting OpenCV’s implementations will be necessary
to use existing IP approaches on our hardware.

Machine Learning Approaches
Many diffrent approaches of ML have been used to attempt
to find lanes efficiently:

• CNN [11] - A lightweight encoder–decoder first pro-
duces a binary “lane-edge” mask; a second branch lo-
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calises each individual lane via low-dimensional clus-
tering.

• BNN [12] - Binary Neural network, a subset of CNN,
simplifies the weights of the neural network to binary
values +1 and -1. Much more compact and efficient to
calculate at the cost of precision.

• U-Net [13] - U-Nets create “skip connections”, caches of
the state while encoding that is reused at decoding time.
These connections help preserve spatial detail during re-
construction. It derives its name after the “U” shape the
process takes. This does mean that at inference time, the
model has to simultaneously cache intermediate results,
increasing the total necessary flash memory.

• SCNN (Spatial CNN) [14] - can give information from
row to row, column to column. SCNNs are designed
to capture horizontal and vertical spatial dependencies,
providing very efficient results.

• UFDL (Ultra Fast Structure-aware Deep Lane
Detection)[15] - treats lane finding as a classifica-
tion problem. For Y rows the lane edge can be in one
of X classes. This can be set up as a last layer after a
classical CNN.

• RNN (Reccurent Neural Networks) - use sequential data
to make a more precise time-invariant estimation. How-
ever, sufferers of the same issue as the U-Net, the need
to cache more frames. It also necessitates more con-
text about the vehicle’s speed and direction, which is not
commonly available.

An approach we have not encountered in our research would
be to use previous predictions to accelerate the next predic-
tion, using the labels rather than the input, as in the RNN.
Examples of such models would modify the search space us-
ing the previously computed inputs. They are interesting to
consider as the labels are much smaller than the actual im-
ages, but like the RNN, they require additional context about
speed and direction.

All of the given approaches require between 3 and 16 GB
of RAM in their proposed implementations. Given the limit
of the hardware, 264KB of RAM, we would need to prune
them to a magnitude of 104. Given the resource constraints,
it may be more prudent to derive compact models inspired
by the original architectures rather than relying on aggressive
pruning of existing large-scale networks.

To that goal, we can use the Tensorflow and keras li-
braries provided by Google. They can be considered a tool-
box that provides users with the components to create very
compact and efficient ML models, such as the MobileNetV1
architecture [16], also developed by Google. These tools al-
low us to create minimal models that are able to run on mi-
crocontrollers.

Combined Approach
It is important to note that the two methods can work hand
in hand. To increase the accuracy of a ML model we need
to preprocess it. This can include a normal Gaussian blur
but could also use edge filters and ROI masks to combine
the benefits of traditional IP and ML. In this paper, we will

Figure 1: Outline of a simple Image Processing pipeline from [6]

explore the gains and losses of Sobel edge filters as a pre-
processing method.

Lastly, it is important to note that more advanced solutions
exist. Tesla can create a 360° feature space unmatched in
academia due to the resources poured into intellectual prop-
erty, as detailed in Appendix A. This research will not aim
to match the performance of Tesla’s, but rather explore a
smaller-scale alternative. In the next section, we will further
define the constraints set in this research and the steps neces-
sary to complete this goal.

3 Research Constraints and Metodology
This section outlines the constraints and experimental meth-
ods used to evaluate lane detection on low-power microcon-
trollers. With strict limits on memory, processing power, and
cost, both image processing and lightweight machine learn-
ing models are explored. Section 3.1 briefly defines the re-
search constraints, while the following sections elaborate on
the training and evaluation strategies aimed at balancing ac-
curacy and efficiency on constrained microcontrollers.

3.1 Lane Finding on Limited Hardware
The purpose of this research is to bring Lane finding to the
edge. In that goal, constraints on power draw, RAM, and
cost were prioritized. Three microcontrollers were consid-
ered: the Raspberry Pi Pico 0 and 2, and the Teensy 4.1, as
can be seen in Table 1. The goal is to create a flexible solution
that uses minimal resources. In this study, to explore the full
capabilities of lightweight models, we opted to focus on the
most constraining microcontroller: the Raspberry Pi Pico 0.
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Microcontroller Cost (C) SRam (kB) Flash Memory (MB) Peak Current Draw (mA)
Raspberry Pi Pico 0 5 264 2 93
Raspberry Pi Pico 2 6 520 4 93
Teensy 4.1 40 1024 8 100

Table 1: Considered Microcontrollers

Having studied IP and ML solutions, this study will fo-
cus on comparing different ML models to a traditional IP
pipeline, weighing the advantages and disadvantages of each
approach. Given that the final goal is to have a solution with
accurate estimations, the research will focus on finding and
creating solutions, measuring their necessary hardware, and
estimating their accuracy and efficiency.

3.2 Experimental Process: ML Models
In this section, we will outline the steps necessary to com-
plete the ML portion of this research. The process is outlined
in two main parts; part 1, Existing ML models, outlines how
existing models are treated. The following parts, Training
Models, Datasets and Loss function, and Final Preprocess-
ing, will explicit how new models were trained and created
for the research.

Existing ML Models
All existing models are considered an option for the research.
The first step is to analyse the resource requirements. They
are then filtered into two sections: models that can work on
the pico or be pruned enough to, and models intended for
use as industry benchmarks. However, since all models were
trained to require gigabytes of RAM, none met the criteria
for the first category. As a result, the pruning process is not
discussed further.

Training Models
Of the Models described in the Section 2, four architectures
will be considered: CNN, BNN, U-Net, and UFDL. These
models were selected on two criteria: feasibility and proba-
bility to work on the pico 0. This discounted RNN architec-
tures and SCNN due to their complexity.

To train and quantize these models, the primary tools will
be the Torch and Tensorflow Python libraries. In Tensorflow,
the MobileNetV1 architecture from Google will be the pri-
mary tool explored.

To achieve the goal of running the models on a microcon-
troller like the pico 0, the models will have to be as minimal
as possible. To do so, the input will have to be reduced. The
target hardware camera is the Himax HM01B0, supporting
up to 320x320 grayscale images. This means images would
occupy 102KB, 39% of the SRAM. To increase the avail-
able space for the models, smaller input images of 80x80
and 40x40 will be considered. Downsampling the image to
that degree makes the lanes unrecognizable; therefore, image
cropping will be considered.

Datasets and Loss function
First, the key to a working model is the dataset it is trained
on. In this goal, two datasets were selected. TUSimple [17]
is a collection of clips from American highways. It will be

used as the simplest training layer, as the lanes are rarely
obstructed and the weather is uniformly sunny. To test the
models further, the CULane dataset [14] will be used. The
dataset was selected due to its diverse urban settings, weather,
and lighting conditions. This will test the model’s resilience
to nighttime, rainy conditions, and roads obstructed by sur-
rounding traffic. For each dataset, a new model will be trained
with the same parameters. It is necessary as the camera an-
gles, dimensions, and warps are incompatible, and we were
unable to unify them. Larger models can compensate for
these flaws, but it is not uncommon to see larger models have
separate training configurations per dataset, such as in the im-
plementation of UFLD [15]. In this case, the scale of the
models makes retraining unavoidable.

Through experimental trial and error, the dice similarity
coefficient [18] was selected as the most efficient loss func-
tion:

DSC(p, g) = 1−
2
∑N

i=1 pigi∑N
i=1 pi +

∑N
i=1 gi

Where N is the number of pixels in the input, pi is the pre-
dicted value for pixel i, and gi is the ground truth label for
pixel i, with 1 indicating the positive class and 0 the negative
class.

The dice coefficient was complemented with the focal loss
function, which helps underrepresented labels be recognized.
The α in the following function will be experimented with to
tune the correction:

FLi =
1

N

N∑
i=1

(−α(1− pi)
γ log(pi))

With the same N , i, and pi. α and γ are constant hyperpa-
rameters, γ reducess the loss value for well classified labels
while giving a high weight to misclassified examples in the
loss result. α offsets the class imbalance by penalizing mis-
classified minority elements, assigning them a higher weight.
This encourages the model to focus more on learning from
the underrepresented class.

The number of training epochs is determined by the sta-
bilization of the model’s loss; the training will be interrupted
once the loss stops decreasing with a patience of 5 epochs if it
has 50 epochs scheduled or 10 if 150. UFLDs are scheduled
for more epochs due to the model’s slower learning rate. The
stopping mechanism was implemented to reduce overfitting.

Final Preprocessing
To understand the effect of data preprocessing, each model
was trained identically on differently preprocessed databases.
The differences include the sampling of the image, one with
a simple blur, while the other with top pixel sampling. More
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Algorithm 1 Sobel Edge Detection with Thresholding [9]

1: procedure SOBELEDGEDETECTION(I , T )
2: Define Sobel kernels:

3: Gx =

[−1 0 1
−2 0 2
−1 0 1

]
, Gy =

[−1 −2 −1
0 0 0
1 2 1

]
4: Initialize output image E with zeros
5: for each pixel (i, j) in image I do
6: Extract 3× 3 patch P centered at (i, j)
7: Sx ← Gx ∗ P ▷ Convolve patch with Gx

8: Sy ← Gy ∗ P ▷ Convolve patch with Gy

9: M ← |Sx|+ |Sy| ▷ Common Gradient
10: if M ≥ T then
11: E[i, j]← 255 ▷ Mark as edge
12: else
13: E[i, j]← 0 ▷ Suppress as non-edge
14: end if
15: end for
16: return E
17: end procedure

Figure 2: Input 80x80 image before and after Sobel edge filter

importantly, each model will be trained on the raw image and
an edge filter. The Sobel edge filter [9] described above in Al-
gorithm 1 is used due to its simplicity and efficiency. The So-
bel filter works by emphasizing the edges in an image, which
correspond to regions of rapid intensity change. It does this
by convolving the image with two 3×3 kernels that approxi-
mate the gradient of the image intensity in the horizontal (Gx)
and vertical (Gy) directions. The resulting gradients are then
combined to produce the final edge map. Edge filters are typ-
ically combined with a Gaussian blur to reduce noise in the
image, however, given the scale of the input images, too much
information would be lost. Moreover, the algorithm used on
the microcontroller is slightly modified to include in-place
computation, using a buffer to store the current and previous
row; it also uses simple thresholding instead of using a binary
search square root. A result of the algorithm can be found in
Figure 2. We can observe that the contrast between the rele-
vant features and the background is much more pronounced.

For models with smaller input sizes, the same region of
interest will be considered. To keep a maximal amount of
information in the input, several downsizing methods will be
considered. First, a normal Gaussian blur will be considered.
For edge detection inputs, the Sobel edge filter will be applied

to the downsampled version, but also computed at a higher
resolution, then downsampled in several methods to see how
they affect the results. They include taking the maximum, av-
erage, or sample of the edge map. All models will be trained
on all of these input types to verify the effect of the prepro-
cessing methods to find the optimal input format.

Lastly, dual-channel models will be considered throughout
the project. Inputting both the original input image and the
edge map retains the maximal amount of information. The
effects of inputting ”more” information will be observed.

3.3 Experimental Process: IP pipelines
Two approaches are considered in this section. First, the man-
ual creation of our pipeline. Second, adapting an existing
pipeline to fit on our microcontroller. Both options will be
explored. For the first method, the steps in Figure 1 will be
followed. Additional steps will be experimented with. These
include a sliding window approach, replacing Hough trans-
forms with Centroid detection and gradient direction analy-
sis.

3.4 Evaluation Metrics
To have a global idea of how this research compares to ex-
isting research, we will measure the accuracy of our pro-
posed solutions (IP and ML), and existing solutions. The
resource consumption of each model will be an important
metric. Given that our models will use significantly fewer
resources than the existing research, the expectations are to
have a lower accuracy but comparable (under 10% differ-
ence).

To evaluate and compare the effectiveness of our lane de-
tection approaches, we will use the following evaluation met-
rics:

• Accuracy of Lane Detection: For segmentation mod-
els, we will compute the Intersection over Union (IoU)
between predicted and ground-truth lane masks. For
models predicting lane curvature or steering angle, mean
absolute error (MAE) will be used.

• Frame Rate (FPS): The models must achieve a min-
imum of 5 FPS, with 10–20 FPS considered ideal for
real-time inference on embedded hardware.

• Model Size: The models are measured for the necessary
RAM at inference time.

3.5 Measuring and Selecting Adequate Models
Given the goal to run a model on the Pico with an acceptable
accuracy to performance trade-off, a compromise will need to
be reached. The first step in this direction is to create models
and benchmark them systematically against existing models.

Due to the varying amount of information in the images,
and the varying nature of the labels, the metrics considered
will be False Negative (FN) rate, False Positive (FP) rate,
and the lane precision metric. The lane precision metric
will be calculated as the difference between the polynomial
mean square error of the predictions and the polynomial mean
square error of the labels.

4



Figure 3: In-house Image Processing Pipeline. Yellow represents
the left lane, blue represents the right lane. The gray trapezoid is the
ROI, the bounds of the computation.

Each 40-pixel model is tested in four different configura-
tions: “NO SOBEL”, “SOBEL BLURRED”, “SOBEL SAM-
PLED”, and “SOBEL MAX”. The same is done for the 80-
pixel models, but only with “NO SOBEL” and “SOBEL”.

4 Testing Models
In this section, the created ML models and IP pipelines will
be evaluated. As the IP pipelines were unsuccessful and a
minor part of the research, they are evaluated first in Section
4.1. The following Sections outline the results of the various
trained ML models.

4.1 Image Processing Approach
Although implementations of image processing pipelines to
detect lanes exist, none were compatible with the micro-
controllers or could be downsized to. An image processing
pipeline was created following the steps in Figure 1. Results
of the simple pipeline can be seen in Figure 3. Modifications
to the pipeline were added to recognize segmented lanes and
ignore traffic. However, none succeeded in the project’s time-
frame. No working hardware-constrained IP pipeline was ac-
quired or created during the duration of the project, but we
hold a strong conviction that a working system would not be
adaptable in complex environments.

4.2 ML models, TUSimple dataset
Each model was trained on using 80% of the TUSimple
dataset [17] as the training data, 10% as the validation set,
and 10% for testing the accuracy.

CNN and BNN models
Several CNN architectures were considered during the term
of the research, however, the resulting models had a heavy
tendency to overfit on straight lines and the horizon, or to
always take the “safe guess” of the negative majority class.
CNN and the subclass BNN were phased out for U-Net,
whose skip connections enabled the models to put a further

emphasis on edges. The gains in accuracy and output coher-
ence outweighed the losses of necessitating layer caches.

UFLD: Performance of Preprocessing Methods

Preprocessing 80 FP (%) FN (%) Accuracy (%) Pixel Accuracy
NO SOBEL 15.1 12.4 83.1 2.737
SOBEL 15.8 9.6 83.9 2.680
DUAL 15.4 12.7 82.6 2.789
Preprocessing 40 (%) FN (%) Accuracy (%) Pixel Accuracy
NO SOBEL 16.1 15.1 80.9 3.741
SOBEL BLURRED 15.5 17.3 80.4 4.671
SOBEL SAMPLED 13.4 12.1 84.4 3.461
SOBEL MAX 14.7 14.7 82.0 3.743
DUAL 14.4 11.0 84.2 3.141

Table 2: Inference result of different preprocessing methods for
UFLD, average of 3 models.

Due to the observed variance in model results, attributed
to the randomness of the initial weights, the results for each
preprocessing type are the average of 3 model trainings. Table
2 shows that larger models with 80x80 inputs perform better,
mainly in the pixel accuracy measure.

U-Net: Performance of Preprocessing Methods

Preprocessing 40 FP (%) FN (%) Accuracy (%) Pixel Accuracy
NO SOBEL 3.8 28.4 95.2 2.6
SOBEL BLURRED 3.8 29.4 95.2 2.1
SOBEL SAMPLED 3.8 28.0 95.3 2.3
SOBEL MAX 3.9 30.9 95.1 2.6

Table 3: Inference result of different preprocessing methods for U-
Net trained with Width = .23 and trained with Dice Loss

The results in Table 3 show more promising results than
The results for the UFLD, as shown previously in Table 2.
Again, the preprocessing methods don’t show a qualitative
improvement. The high False Negative rate can be attributed
to both the model missing some details of lanes, but also to
the uniformly thick labeling, which may overestimate the lane
width in certain instances. Achieving 95% accuracy despite
significantly reducing performance from traditional models is
laudable, although it must be noted that only a small compa-
rable section of the input image is considered in this model.

In this Section, only 40x40 models were considered, as
only they were small enough for the pico 0 as discussed in
Section 4.4.

Introduction of Mini U-Net
Given the promising results of U-Nets at a 40x40 scale, a
new architecture of Mini U-Net was introduced with two
goals: accelerating predictions and increasing possible input
size. Condensing the model reduced the accuracy and the
model’s ability to comprehend complex situations. In many
cases where the lane was disjuncted, the model preferred not
to guess. To counteract this, the focal loss function was in-
troduced to encourage the model to guess and understand the
underlying structures of the lane. As shown in Figure 4, the
focal loss allows the model to overestimate the shapes, cre-
ating inaccurate but structurally relevant outputs that capture
the essence of the desired lane shape. The performance re-
sults of the decrease in size are discussed in Section 4.4.
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(a) Width 0.23, Dice Loss (b) Width 0.1, Dice Loss

(c) Width 0.1, Focal Loss α
0.25

(d) Width 0.1, Focal Loss α
0.1

Figure 4: Visual result of U-Net inference with different training
parameters, width, and loss function. The scale is from blue to red,
representing the probability of lane presence.

4.3 ML Models on More Complex Datasets:
CULane

Results of models trained in the CULane [14] dataset re-
turn meaningless results. Without distilling the dataset, input
images include blinding reflections, parking tickets covering
part of the input, and the hood of the car. Furthermore, the
dataset is difficult to recognize by a human once blurred and
cropped to a 320x320 size. Although accuracies of 99% were
achieved, it was attributed to the lane class representing less
than 1% with the model always predicting no lane. The re-
sults for this model were discarded.

4.4 On Board Performance of Selected Models

Model Type Inference time (ms) Tensor Arena (KB)
UFLD 40 81 21.3
Mini U-Net 40 650 67.5
U-Net 40 721 79.8
UFLD 80 220 40.0
Mini U-Net 80 - overflow
U-Net 80 - overflow

Table 4: Inference result of all models on Raspberry Pi Pico 0

Table 4 presents the inference results obtained on the pico
0. The primary metrics of interest are inference time and
memory usage, specifically the size of the allocated ten-
sor arena. A clear trade-off is observed between the U-Net
and UFLD architectures: while U-Nets achieve higher accu-
racy, they are significantly more resource-intensive, whereas

UFLD models offer faster inference with reduced memory re-
quirements.

Due to the Pico’s maximum tensor arena size of 80.0KB,
the U-Net width had to be constrained to 0.23, utilizing ap-
proximately 99.8% of the available memory for a 40x40 in-
put. Despite this limitation, U-Nets remain computation-
ally demanding and are incapable of real-time performance,
achieving inference speeds little above one frame per second
on the intended hardware.

In contrast, the UFLD model fulfills its design objective of
rapid inference, albeit with reduced accuracy. They allow a
rate of up to 12.3 frames processed per second, which can be
considered real-time.

The Mini U-Net, intended as a compromise between the
two extremes, does not significantly reduce inference time
nor enable the processing of 80×80 inputs, which, even quan-
tized, failed to fit within the flash resource constraints of the
target. Therefore, Mini U-Net fails to deliver the anticipated
balance between accuracy and efficiency.

Adding the preprocessing methods did not change the in-
ference time or the necessary memory for any of the models,
as the architecture itself did not change. The overall neces-
sary RAM was not increased as the buffers used by the so-
bel edge filter were smaller than the ones used by the models
and were reused by the models once the image was prepro-
cessed. The preprocessing took an insignificant amount of
time, adding 0.9ms for a 40x40 input and 3.7ms for an 80x80
input. The different preprocessing methods can therefore be
considered equally on the Pico 0, although all the results for
inference time given in Table 4 are the ones without edge fil-
tering.

The inference results on the pico 0 are encouraging. All
evaluated models were able to run on the device to varying ex-
tents, each offering a distinct balance between accuracy and
speed. Depending on the specific application context, both
high-accuracy and high-speed models may be considered vi-
able.

5 Responsible Research
5.1 Ethics in Data Collection
To follow the licenses of the used dataset, the preprocessing
code and instructions are made available in the repository.
Additionally, none of the created models innately store any
data; they process the input images and display the results.

All road images are derived from the TuSimple Lane
Detection Benchmark Dataset, which is licensed un-
der the Apache License 2.0. Dataset available at:
https://github.com/TuSimple/tusimple-benchmark

The content of this paper is reproducible given the code
available in a public repository1. However, it is important
to note that the start weights of the models are random and
non-seeded, and therefore present variance. That is why the
results are averaged over several models.

5.2 Use of Generative AI
Artificial intelligence, notably ChatGPT, has been used
throughout the duration of the project for LaTeX figure refor-

1https://github.com/pandaandotter/Lane Detection
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matting, code debugging, and code refactoring. The research
process, report writing, and created models did not include
generative AI in their creation.

6 Discussion of Models in Broader Context
6.1 Interpretation of Results
The aim of the research was to find What is the best solution,
focusing on efficiency and accuracy, to detect lanes dynami-
cally on a lightweight microcontroller? As the target of this
research is the pico 0 microcontroller, the goal was achieved,
albeit at the expense of accuracy or speed.

Additionally, to respect the constraints of the hardware, the
input datasets were excessively affected. In some models,
only 40x40 of the TUSimple’s 1280×720 dataset was consid-
ered.

However, the research proves that with minimal informa-
tion and hardware, low-resource ML models can find mean-
ingful information about the car’s surrounding lanes.

6.2 Limitations
While the results prove that results can be achieved on limited
hardware, several limitations should be acknowledged.

Firstly, the research is based mainly on the TUSimple
dataset, which consists of relatively clean highway scenes
with minimal visual clutter, allowing the model to learn from
a reasonable context and with minimal information loss, even
in a low resolution. In new, more noisy contexts that contain a
larger degree of close obstacles, the models struggled to make
predictions given their limited field of view.

Secondly, given that the lane class was present around 3%
of the time in the TUSimple dataset, numerical measures
were hard to trust during the development process. Pure nu-
merical accuracy measures often led to suboptimal results,
such as overfitting or underfitting. To encourage the models
to guess more frequently and accurately, visual results and
tweaks led part of the development process of the project.

Finally, while larger models with higher accuracies were
trained during the course of this project, they were not ex-
plored in depth due to the strict focus on the pico 0. This
microcontroller’s 264KB RAM cap limited the experimenta-
tion space. Early indications suggest that expanding the RAM
budget to 1MB could still substantially improve performance.
Future work should consider broadening the hardware range
to explore these possibilities.

6.3 Broader context
The field of autonomous lane detection has progressed
rapidly, with state-of-the-art models often relying on special-
ized hardware and computationally intensive architectures.
These systems, while highly accurate, are largely inaccessible
due to their cost, energy requirements, and proprietary nature.

This research reframes the problem by targeting ultra-low-
power microcontrollers like the pico 0. Rather than aiming to
match industry-leading accuracy, the goal is to demonstrate
that lane detection can function under severe resource con-
straints. By shifting the focus from performance, this project
highlights an underexplored but promising space for embed-
ded autonomy.

Most current academic work assumes a first-person (POV)
or warped bird’s-eye view and builds around large neural net-
works trained on massive datasets. However, these models
dominate the field primarily because lightweight, efficient al-
ternatives have not yet been fully realized. This study sug-
gests that downsized, efficient models could provide a foun-
dation for challenging Tesla’s models on an equal bird’s eye
view perspective.

7 Conclusions and Future Work
This research demonstrates that lane detection is feasible on
ultra-low-power microcontrollers, such as the Raspberry Pi
Pico 0, using lightweight machine learning models. By adapt-
ing and evaluating both classification-based, UFLD, and se-
mantic segmentation models, U-Net, we show that even un-
der strict resource constraints, meaningful lane detection is
achievable. Despite reductions in input resolution and com-
putational capacity, the U-Net boasts an accuracy score of
95% on the TUSimple dataset while the less precise UFLD
architecture offers fast inference of down to 88ms, enabling
it to process 12 frames per second.

TinyML models represent a largely unexplored avenue for
lane detection and would benefit from further investigation.
Future work should focus on expanding the range of neu-
ral network architectures adapted for TinyML deployment.
Additionally, implementing larger and more accurate mod-
els, operating on higher-resolution inputs, should be explored
using more capable microcontrollers, such as those listed in
Table 1.
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A Auto Manufacturer’s models: Tesla

Figure 5: Tesla Old “HydraNet”, limited to a point of view predic-
tion

Figure 6: Tesla “HydraNet” left, new “Spatial RNN” featurespace
right

This appendix is based on Tesla 2021 AI summit 2

One subject of this summit is the transition of Tesla to a
new feature space. They describe the old “Hydranet” (fig-
ure 5), a first-person view feature space that is similar to the
feature space current research is exploring. The framework
had parallel processes for each task, lane finding, traffic sign
recognition, vehicle detection, etc... However, the combined
models struggled in new environments and required supervi-
sion, retraining, and a lot of manual fine-tuning to deploy.

To make the models more adaptable, the AI team decided
to start a new architecture from scratch. Tesla transitioned to
an unwarped bird’s eye view feature space. With the benefit
of an increase in spatial accuracy was paired the adaptability
in other tasks, such as vehicle detection.

Being able to map the surroundings accurately allowed
Tesla to increase the use of RNNs, allowing past predictions
to guide the current spatial awareness. The models spread the
prediction by saving a precise map of the discovered environ-
ment and only updating new information.

They also go in-depth about creating a record of these fea-
ture spaces, creating precise maps of the surroundings by
overlapping several passages by one or multiple commuters.

2https://www.youtube.com/watch?v=j0z4FweCy4M

They recognize key shapes that are common in several point
of views to make a unified prediction.

To conclude, Tesla is an interesting case of auto manufac-
turers pushing the boundaries of the industry. Given Tesla
employs 8 cameras and 16GB of RAM for the combination
of lane finding and object recognition of depth and velocity,
it is far out of the scope of this project.
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