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Abstract
Event-based cameras represent a new alternative to
traditional frame based sensors, with advantages
in lower output bandwidth, lower latency and
higher dynamic range, thanks to their independent,
asynchronous pixels. These advantages prompted
the development of computer vision methods on
event data in the last decade, however event-
based datasets are still in early stages in terms of
size and complexity compared to normal datasets
(e.g. ImageNet). This paper explores event
data augmentation by superimposing two existing
event datasets (N-MNIST and N-Caltech101) and
by adding uniform noise. It shows that training
an instance segmentation model on noisy datasets
does not improve its performance, but the amount
and type of noise added in the background
decreases the performance of such model. Code
is available at: https://github.com/alexmanoo/dvs
datasets transforms.
Keywords: Event Datasets, Data Augmentation,
Event-based Vision, Dynamic Vision Sensor

1 Introduction
The retina, as well as other neurological and biological
processes, serve as inspiration for event cameras. These
cameras use a new type of sensor, different from regular
Active-Pixel sensor (APS) cameras. A shutter on a typical
APS captures light by exposing the entire light-sensitive
surface to a specific amount of light for a specific amount of
time. In the case of event-based sensors (also called Dynamic
Vision Sensors - DVS), each time a light intensity change
exceeds a predetermined threshold, the light-sensitive pixels
individually turn on or off, outputting a stream of events
(Figure 1). Thus, in comparison to APS, DVS pixels records
these intensity events asynchronously and independently over
time, resulting in reduced motion blur, increased temporal
resolution, and a high dynamic range [1].

Figure 1: (A) A DVS camera, (B) The generated events
by a moving simple square. Image taken from [2].

The data output from the new, dynamic vision sensors,
differs in structure and content from APS, necessitating the
development of new Machine Learning processing methods.
There are a number of state-of-the-art deep learning methods
(shown in Figure 2) that can achieve above 90% accuracy on
image (that is, frame-based) datasets. However their input
format is incompatible with event-based data. In recent years,
work in the event-based field has progressed, and event (or

neuromorphic) datasets have been created or converted from
frame-based datasets [3].

Figure 2: Classification, object detection and instance
segmentation examples on frame-based images.1

Naturally, event-based data has prompted the development
of computer vision methods such as object detection,
tracking, and instance and semantic segmentation. The
datasets used, however, are either proprietary or overly
complex. As such, it must be determined how much
information can be extracted from event-based video datasets
in order to reliably perform object detection and, the focus of
this paper, segmentation.

This paper proposes the following question to clarify the
data complexity problem: Consider constructing event-
based segmentation datasets with noisy background, by
a superimposition of two event datasets. Would such
datasets bring improvements over the original datasets
for simulating noisy, real-world environments thereby
increasing the performance of segmentation Machine
Learning models?

Two related subquestions follow from the main question:

1. What is the optimal amount of noise that can be
superimposed from an existing event-based dataset over
a different event-based dataset to gain an improvement
in segmentation tasks?

2. How does applying random noise over an existing
event-based dataset affect the performance of instance
segmentation models?

In summary, the main contributions of this paper are:

• Propose a new approach to creating noisy event-based
datasets.

• Create and evaluate event-based datasets with varying
amounts of noise on an instance segmentation model.

This paper presents a literature study on image and
neuromorphic datasets, data augmentation, and image and
event segmentation in Section 2. The methodology is
explained in Section 3, with details about generating datasets
and segmentation models. Section 4 presents the experiments
and results. Section 5 gives a further explanation of
results and a reflection on the outcomes. In Section 6, the
ethical aspects of this research are discussed, as well as the
reproducibility of the methods. Finally, Section 7 summarizes
the research questions and provides a conclusion.

1https://medium.com/swlh/94ca109274f2
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2 Related Work
This section provides a literature review of relevant event-
based computer vision research. Existing image and
neuromorphic datasets, data augmentation methods, and
image and event segmentation literature are all discussed.

2.1 Neuromorphic Datasets
During the 1990s when frame-based computer vision was
starting to develop, datasets available were small at first,
had little variability in their representations and needed
improvements. MNIST [4] had uniform backgrounds, while
Caltech-5 [5] had a low number of classes with objects
positioned in roughly the same parts of the image. Over
time, the importance of how well these datasets represent
real-life was recognized and more focus was put towards
creating bigger and more complex datasets [6]. This allowed
researchers to create more complex computer vision models
and, more importantly, perform comparisons with other work
using bench-marking datasets.

Figure 3: (A) Custom made poker card deck with all
pips in black. (B) Browsing the custom poker card deck
in front of the DVS camera. Image taken from [7].

Similarly, datasets have a noticeable influence in the
field of event-based vision. Most importantly, well-
constructed event-based (or neuromorphic) datasets allow for
cost reductions of research – since current prices of event-
based cameras are very high – and they enable quantitative
bench-marking [8]. Small event-based datasets have been
created by researchers who want to evaluate their event-
based computer vision models: Poker-DVS [7] (cards of a
deck, 4 classes, example in Figure 3), faces [9] (7 classes),
MNIST-DVS [7] (handwritten digits, 36 classes), DVS-128
[10] (gestures in dynamic scenes). Perhaps an important
achievement is the conversion of the well-known frame-based
MNIST [4] and Caltech101 [11] datasets into neuromorphic
type [3]. Their event representations are shown in Figure 10.

Representations and contents of neuromorphic datasets
vary depending on the source camera and the context of the
recording. DDD17 [12] for example has recordings of roads
from the driver’s perspective at different times of the day. It
provides the events recorded by a DVS camera alongside the
equivalent gray-scale images, plus extra telemetry (vehicle
speed, GPS position, driver steering, throttle, and brake)
captured from the car’s on-board diagnostics interface.
Neuromorphic-MNIST [13] and Neuromorphic-Caltech101
[14], however, provide only the events. No telemetry data is
relevant in this case, and the frame-based representations are

available online, albeit they require some processing if they
are to be used for any related task (as explained later in 3.3).

As MNIST [4] and Caltech101 [11] provided a
building block for computer vision in its inception, it
is worth exploring the usefulness of their neuromorphic
representations in the quite new and evolving event-based
computer vision field, more specifically using data processing
and augmentation techniques in segmentation scenarios.

2.2 Data augmentation
In frame-based vision, data augmentation is a useful tool
for enhancing the size and diversity of image datasets to
ultimately help reduce overfitting of CNNs [15]. Image
data augmentation encompasses two approaches: basic image
manipulations and deep learning approaches. In the former,
geometric transformations and color space augmentation are
applied on the datasets (shown in Figure 4), as used by the
revolutionary image classifier AlexNet CNN [16]. The latter
approach focuses on improving the model’s architecture [17;
18].

Figure 4: Examples of possible augmentations on one
image.2

Current approaches to data augmentation for event datasets
are scarce. In [19], authors benchmark state-of-the-art
models over two neuromorphic datasets by applying data
augmentation over frame-based encodings of the events.
More recent work applies augmentation directly on event
data. EventDrop [20] filters and drops events from the

2https://www.mygreatlearning.com/blog/
understanding-data-augmentation/
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dataset to simulate different levels of occlusion, as seen in
Figure 5. In [21], authors employ a collection of geometric
augmentations on events (e.g. mixup [22], flipping, rolling,
rotation, etc.) by randomly sampling and applying subsets
of these augmentations with different probabilities and
intensities. Both papers achieve significant improvements
over previous state-of-the-art results, but ignore relationships
between events when processing them. In [23], authors have
taken into consideration spatio-temporal features of events for
applying augmentations and therefore achieved better results
than previously mentioned papers.

Figure 5: An example of augmented events with
EventDrop. Image taken from [20].

The mixup augmentation first introduced in [22] and
previously used in [21] serves as inspiration for this paper. In
the context of event data, applying this augmentation picks
two random samples of events from the same dataset and
returns a new sample as a linear interpolation. Naturally, the
possibility of combining two or more samples from different
datasets (like N-MNIST [13] and N-Caltech101 [14]) arises,
which is explored in more detail in subsequent chapters of
this paper.

2.3 Image & Event Segmentation
Image segmentation can take two approaches, semantic
segmentation where the aim is pixel-level labeling using a
set of object categories, and instance segmentation, which
further detects and labels each separate object in the image
[24]. For example, using semantic segmentation, all goats
in Figure 6 are segmented as one blue object, as is the dog.
It is thus a harder task than image classification, where the
output is one label per image. Instance segmentation extends
this semantic task by further detecting distinct instances of
an object in the image – in Figure 6, the goats are labeled
individually as different objects of interest.

Segmentation for frame-based computer vision is a
thoroughly researched topic. Mask R-CNN is a simple,
flexible, and general framework for object instance

3https://wiki.math.uwaterloo.ca/statwiki/index.php?title=
Mask RCNN

Figure 6: Semantic and instance segmentation on 2
different types of animals.3

segmentation [25]. It detects objects in the image while
also generating masks for each of them, by extending
Faster R-CNN’s [26] bounding box detection functionality.
DeepLabV3+ [27] is a state-of-the-art semantic segmentation
model that employs an encode-decoder module, using the
DeepLabV3 framework as the encoder for feature extraction,
and a decoder that recovers sharper segmentations. Its
backbone is based on an improved version of Xception
[28]. It achieves a new state-of-the-art performance on two
important datasets: PASCAL VOC 2012 [29] and Cityscapes
[30]. These state-of-the-art models developed for image
segmentation serve as an important baseline for working with
event-based neural networks.

Segmentation is still rather unexplored in event-based
vision [8]. More works addressing this difficult problem
begin to appear, as more advanced event-based vision
techniques are developed. EV-SegNet [31] introduces
a first baseline for semantic segmentation with event
data. The authors draw inspiration from the state-of-
the-art DeepLabV3+ model and Xception framework to
build a semantic segmentation CNN that takes event
data as input. Additionally, they propose a superior,
new 6-channel representation of the events that surpasses
previous representations for related tasks. Their evaluations
demonstrate how events and their corresponding gray-scale
images are complementary and can yield better results than
using only events. Another interesting solution is EvDistill
[32], which proposes a new approach to segmentation of
unlabeled event data, where a teacher network is trained on
labeled, frame-based data and transfers knowledge to learn a
student network on un-labeled, event data.

EV-Mask-RCNN [33] is an instance segmentation model
based on the state-of-the-art Mask R-CNN [25] framework.
It transforms the input event data into RGB-Depth images,
creates the ground truth masks and segments each object

https://wiki.math.uwaterloo.ca/statwiki/index.php?title=Mask_RCNN
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instance in the frame. Since it is compatible with the dataset
generation methods presented in the paper and can generate
the segmentation masks, the model used for evaluations is
EV-Mask-RCNN [33].

3 Methodology
The main research question proposes to analyze the effect
of applying noise to an existing event-based dataset on
segmentation models. For this reason, three related steps are
considered for constructing noisy event-based datasets and
evaluating them on segmentation tasks. They provide insights
for answering the two related subquestions stated in Section
1.

3.1 Neuromorphic Datasets
The datasets used in this paper are two simple and accessible
datasets: Neuromorphic-MNIST [13] and Neuromorphic-
Caltech101 [14]. They are the neuromorphic representations
of the well-known MNIST [4] and Caltech101 [11] frame-
based datasets, which have been converted to event
representations by Orchard et. al [3].

The two datasets are saved as a set of separate binary files,
each consisting of a list of events. Each event is represented
by 40 bits as follows:

• bit 39-32: x coordinate in the sensor
• bit 31-24: y coordinate in the sensor
• bit 23: polarity – 0 for OFF, 1 for ON
• bit 22-0: timestamp – in microseconds
Tonic4 library is used for loading and applying

transformations on event datasets like N-MNIST and
N-Caltech101. The library loads and processes the binary
files for N-MNIST and N-Caltech101 into a representation
easy to work with in Python. It returns a list of events
represented by 4-tuples in the form of (x, y, timestamp,
polarity) and the corresponding digit label.

3.2 Superimposing strategies
The main objective is to create noisy datasets containing
N-MNIST digits overlapping background noise, with the
evaluation goal of identifying the digits via segmentation
methods. Three such datasets are created with different
degrees of background noise, as explained in the next
paragraphs. Appendix B shows a sample of each digit
from each noisy dataset generated and from N-MNIST. The
average amount of events per digit, in each dataset, is plotted
in Figure 7.

Superimposed-Noisy dataset
This dataset contains the most amount of background noise.
One entry contains a merged background with a foreground,
with the former as a random entry from N-Caltech101 and the
latter being a digit from N-MNIST, as seen in Figure 12.

Each entry of the Superimposed-Noisy dataset is
constructed by applying a series of manipulations to the
background and the foreground. A denoise filter is applied

4https://tonic.readthedocs.io/en/latest/

to the background and foreground events to filter out any
random sensor noise. The background is cropped to the size
of the foreground (34 x 34 pixels) to make it compatible
with the evaluation model (later explained in 3.3) – that is,
events occurring outside the selected area are removed. The
background events are filtered once again to remove those
with a timestamp before or after the foreground events.

The final step is superimposing the foreground over the
background. Their array representations are concatenated
and a remove-overlaps filter is applied. Note that now some
events of the background may occur at the same place and
time with the foreground ones. They may have the same (x,
y) coordinates and timestamp. These ’conflicts’ are found
by sorting the concatenated events array into buckets for
coordinates and timestamps to find the overlapping ones, then
only one ON event of any overlap is kept.

Centered-Filtered dataset
This dataset is a less noisy variant of the aforementioned
Superimposed-Noisy dataset. It is therefore constructed
similarly, with the addition of two manipulations.

Analyzing the contents of N-Caltech101 entries, the center
of the frame almost always contains lots of events. Therefore
it is worth constructing a dataset with a crop of the
background in the center instead of a random crop. This
yields quite a noisy frame, so the background events are
downsampled to a predefined maximum number, which is
picked to be 3000 after experimental testing. Figure 13 shows
some samples from this dataset.

Uniform-Noisy dataset
The previous datasets effectively use (partial) shapes or
objects as background noise. When cropping into the N-
Caltech101 frame, a section of an object might be used as
noise. Or it can be the case a bigger object is captured in the
cropped frame and fills it almost entirely.

The Uniform-Noisy dataset is inspired by the case where
the entire frame is full of noise. Instead of N-Caltech101
events, a fixed number of events are introduced in the
background, drawn from a uniform distribution across event
dimensions (x, y, timestamp, polarity). A sample from this
dataset is shown in Figure 14.

Implementation
To generate superimposed entries for all of N-MNIST, there
is a lot of complexity for processing. The size of the dataset
is around 60000 entries. Doing complex computations like
the previously mentioned sorting into buckets for each entry
does not scale well, taking a minimum of 9 hours to complete
for the whole dataset.

Taking advantage of multiple cores of the CPU, the work
can be optimized by splitting ranges of entries on different
cores. If there are 10 cores available, the 60000 entries would
be split into 6000 per core. Using the 10 cores, 10000 events
are done processing in about 7 minutes, while 60000 events
are done in about 50 minutes.

With the help of multi-core processing, faster merging is
achieved, which allows for more evaluations. The source
code for generating these datasets as well as instructions

https://tonic.readthedocs.io/en/latest/


Figure 7: Average amount of noise per digit for each
generated dataset.

for the instance segmentation model are available at https:
//github.com/alexmanoo/dvs datasets transforms.

3.3 Evaluations
The three generated datasets are evaluated using an
instance segmentation model, to analyze the effect of
different amounts of noise on the model’s performance and
generalizability. It is expected that a model trained on a
dataset with background noise should perform worse on the
same dataset without noise, because the data itself (i.e. the
digits) is not necessarily modified, only the backgrounds. The
model used for evaluations is EV-Mask-RCNN [33], which
generates the ground truth of the input data, and performs
instance segmentation.

Ground truth of N-MNIST
To perform segmentation on N-MNIST, the ground truth
masks of each digit are required. They are not provided in
the original dataset, but they can be generated. In [33], the
author generates a proprietary representation of the masks
for N-MNIST. The digit shapes are approximated by making
an average frame of events from a time window (e.g. 10ms,
20ms, 50ms, etc.), and each digit is matched with the frame-
based MNIST to calculate exact positions of the mask. The
same procedure was used in this paper, with a time-window
of 20ms. Examples of such masks are shown in Figure 8.

4 Experiments
This section describes the experimental setup and results
for evaluating noisy datasets created according to the
methodology in Section 3.

4.1 Setup
The datasets are generated on a device with 10-core M1 CPU
and 16GB RAM, following the dataset construction strategies
and implementation optimizations explained in section 3.2.
The following three datasets are created: Superimposed-
Noisy, Centered-Filtered, and Uniform-Noisy. Additionally,

Figure 8: Ground truth of digits 5 and 9, left and right,
respectively, generated using [33].

the original N-MNIST dataset which does not contain any
noise is used together with the noisy datasets to provide a
baseline for the experiments. Then each dataset is converted
to the representation accepted by EV-Mask-RCNN [33]. A
time-window of 20ms is used.

For TensorFlow compatibility reasons, the training and
testing using EV-Mask-RCNN [33] are executed on a laptop
with Intel Core i7 8th Gen 8750H CPU, Nvidia GeForce
GTX 1050 Ti GPU, and 32GB RAM. The model is set up
with a starting leaning rate of 0.001 which is then adjusted
after a number of epochs for each dataset. The loss is
calculated by a sum of different losses for anchor boxes,
localization accuracy, object classification in the region
proposal, localization of the bounding box, and masks of
identified objects. The loss weights tell the model which
aspects are most important. Since this is a segmentation task,
and identification at pixel level is of importance, the mask
importance loss weight is increased the most.

Three instances of the model are trained for each of the
four datasets, resulting a total of 12 trained models. Instance
1 is trained for 12 epochs, instance 2 for 20 epochs, and
instance 3 for 30 epochs. For each instance, the learning rate
starts at 0.001 and drops at 0.0001 after 5, 8, and 15 epochs
respectively.

Three metrics used for scoring the experiments are
recorded by EV-Mask-RCNN [33], all stated in percentages
– mean Accuracy (mAcc), mean Average Precision (mAP),
and mean Intersection over Union (mIoU). They have been
used as main metrics to evaluate performance in past event
segmentation models, e.g. Ev-SegNet [31] and EvDistill [32].

4.2 Results
Tables 1, 2, 3, 4 contain the evaluation metrics calculated
after testing each model on its respective test dataset. All
results of noisy models (Tables 2, 3, 4) have comparable
accuracy but smaller mAP and mIoU than N-MNIST model
(Table 1). The mAcc is similar because it measures pixel-wise
correct labeling in a frame where the background is always
the majority of pixels. It is worth noting that the model
trained and evaluated on Uniform-Noisy dataset, the second
noisiest out of all, is closest to N-MNIST trained model.

The best model for all noisy datasets is the one trained
on 30 epochs. For the non-noisy one, 20 epochs is the
optimal amount. It is clear the noise introduced in the datasets
requires additional training time for the model to extract

https://github.com/alexmanoo/dvs_datasets_transforms
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Figure 9: (A) Ground truth of digits zero and six. (B)
Segmentation mask and class predictions.

relevant features. Segmentation results examples are shown
in Figure 9.

Cross evaluations. To further understand if training
models on noisy datasets results in improvements, each
model presented in this section is evaluated on the original
N-MNIST test set for 10 times. The best models for each
dataset (highlighted in gray in Tables 1 to 4) were used, and
the averaged results are presented in Table 5.

Table 5: Results of training on noisy datasets and
testing on N-MNIST test dataset.

Model mAcc mAP mIoU

Superimposed-Noisy 94.75 21.97 24.36
Centered-Filtered 95.12 28.44 34.24
Uniform-Noisy 95.31 29.3 36.58

No-noise 95.53 33.71 42.3

Table 6: Standard deviations of metrics from Table 5.

Standard deviations

Model mAcc mAP mIoU

Superimposed-Noisy 0.06 1.01 1.23
Centered-Filtered 0.08 1.04 1.32
Uniform-Noisy 0.06 1.25 1.52

No-noise 0.03 0.88 1.18

Table 1: Results of training and testing on N-
MNIST dataset. Best model highlighted in light
gray.

Model mAcc mAP mIoU

5-12eps 95.07 23.1 26.63
8-20eps 95.57 34.4 42.99

15-30eps 95.22 33.3 40.14

Table 2: Results of training and testing
on Superimposed-Noisy dataset. Best model
highlighted in light gray.

Model mAcc mAP mIoU

5-12eps 84.85 5.1 4.0
8-20eps 92.99 10.3 8.58

15-30eps 93.55 20.4 20.13

Table 3: Results of training and testing
on Centered-Filtered dataset. Best model
highlighted in light gray.

Model mAcc mAP mIoU

5-12eps 94.11 18.5 18.24
8-20eps 93.4 23.4 25.28

15-30eps 94.54 27.2 30.31

Table 4: Results of training and testing on
Uniform-Noisy dataset. Best model highlighted
in light gray.

Model mAcc mAP mIoU

5-12eps 90.32 11.6 10.67
8-20eps 94.13 20.2 20.57

15-30eps 94.66 28.9 32.43

4.3 Statistical significance of cross evaluations
Looking at cross evaluations averaged results in Table 5 (and
standard deviations in Table 6), there is significant difference
between mAP and mIoU metrics of each model. One can
conclude they are not drawn from the same distribution, that
the noisy models perform worse than the no-noise one, and,
therefore, do not provide an improvement for segmentation
tasks.

To test this hypothesis, a statistical significance test (two-
tailed, independent T-Test [34]) is performed for all three
metrics, to determine if the means of two sets of data are
significantly different from each other. The chosen null
hypothesis is ”The means of the two sets of data are equal”.
Each metric (mAcc, mAP, mIoU) of noisy models is tested
against the corresponding metric of No-noise model, and the
resulting p-value is analyzed. To accept the null hypothesis,



the p-value has to be greater than 0.05. Performing the t-test
yields all p-values < 0.001 , which signifies no underlying
features exist in the sets of data that would make them belong
to the same distribution. The outcome of this test verifies
there is no improvement for the presented segmentation task
when adding noise to an event-based dataset. All p-values
and t-statistics are shown in Table 7.

5 Discussion
The noisy datasets created in this paper are intended to
simulate noisy, real-world environments. In addition, the
main research question is whether these datasets can make
machine learning model training more generalizable.

The significance test in section 4.3 concluded that the
models trained on noisy datasets perform worse on a dataset
with no noise, than a model trained directly on the No-noise
dataset. Intuitively, this result is expected, but the results
on Uniform-Noisy dataset are worth mentioning. Although
it was the second noisiest dataset (see Figure 7), the model
performed the best when trained on this dataset, surpassing
Centered-Filtered which had 1000 less events on average
per digit. The uniformity of the noise did not impact the
model’s learning ability as much as the other types of noise
and allowed it to perform best in the testing scenario.

Despite the fact that the evaluation metrics in Tables 1,
2, 3, and 4 reflect the models’ lower ability on noisy data,
the segmentation masks placement is comparable across all
models. The mask losses for all trained models are shown in
Appendix D. They are all between 1 and 1.5, implying that
the noisy models are almost as good as the no-noise model at
applying (partial) masks to the objects. However, because the
test datasets differ in noise, this comparison should be viewed
with caution.

The fact that the dataset backgrounds have been altered
with noise is a reason for the negative results of this paper.
Random data is essentially added to the digits, which can only
negatively impact a model. Data augmentations are usually
done on the data itself, i.e. the digit, like in EventDrop [20].
Because they alter the data itself rather than the background,
the generalizability of predictions improves.

Furthermore, superimposing two datasets as presented in
the paper is not natural. Normally, when an object is placed in
front of another, there is some depth between them and their
movements are not exactly matched. In other words, there is a
moving object and a more static background, or a static object
and moving background. The dataset merging results of this
paper match the movements of objects exactly. By applying
rotations or time shifting on the digits, some variability in the
movement directions could be achieved.

A methodology improvement for this paper would be using
different time-window intervals for converting to events to
frames. The experiments in Section 4 have been carried out
on a 20 milliseconds average frame of events on all four
event-based datasets, however in [33] best results follow on
50 milliseconds time-windows. With noisier datasets, smaller
time-windows of 15, 10, or 5 milliseconds might improve
model metrics. Additionally, cross evaluations have only
been done on the no-noise MNIST dataset. Using the other

noisy datasets to perform cross evaluations can also give
some more insights into relationships between the noise and
model.

This paper demonstrated superimposing of two toy
neuromorphic datasets (N-MNIST [13] and N-Caltech101
[14]) using the computational power of consumer hardware.
For each entry of N-MNIST, some events from the other
dataset were added, with some filtering and frame cropping
being done. On the N-MNIST dataset with 60000 entries,
merging duration is 9 hours for single core operations, and 50
minutes when scaling to 10 cores. This type of operation is
manageable on a consumer system because the chosen dataset
is small both in terms of size and resolution. For much larger
datasets, similar computations might take days. It is therefore
recommended to utilize systems with superior CPUs and
RAM, as well as keeping the complexity of operations on
each dataset entry as low as possible.

6 Responsible Research
This paper’s research is conducted using already available
datasets and Machine Learning models. Therefore, data
integrity and the ethicality of models could impact the
credibility and reproducibility of the results.

The two datasets of this research are neuromorphic
adaptations of the popular MNIST [4] and Caltech-101 [11]
computer vision datasets. They are public and easy to load
with the help of open-source libraries like Tonic5. MNIST
contains digits written by humans, however they are not
identifiable or traceable back to the original persons. Caltech-
101 consists of pictures of objects and some of faces. On
the Caltech website6, they state the images are for non-profit
scientific experiments, they are not Caltech property, and any
use other than fair use should be negotiated with the pictures’
owners.

Machine Learning models are well-known for their ability
to extract features and information from all types of data not
visible by humans. A human expert in Artificial Intelligence
may not be able to read or explain the results of a model,
and it may be difficult to understand why the model came to
certain conclusions. Similarly, the human eye cannot identify
objects or features in some representations of neuromorphic
datasets because the events might be sparse. That is why care
is taken when using the machine learning model of this paper.
The only features it is trained to identify are the digits in the
frame, and nothing more.

Results achieved in this paper contradict the research
question and invalidate this research goal. However, negative
results are equally important as new findings and contribute
to the understanding of the topic.

All the code is publicly available at this link7 to allow
anyone to inspect the code of generating the results of
this paper. Furthermore, comments and instructions in the
README file provide support and guides to enable easy code
running and reproducibility.

5https://tonic.readthedocs.io/en/latest/
6http://www.vision.caltech.edu/datasets/caltech 10k webfaces
7https://github.com/alexmanoo/dvs datasets transforms
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7 Conclusions and Future Work
This paper presents a method to add noisy backgrounds to
event-based datasets, by superimposing two toy datasets and
by adding uniform noise. It has demonstrated that training
an instance segmentation model on such noisy datasets does
not increase its performance, but the type of added noise
decreases the performance of such model. For future work,
additional methods of constructing superimposed datasets
can be implemented. An idea is to increase the variability
of noise between the generated datasets. Additionally, larger
or smaller time windows than the one used in this paper’s
experiments might improve outcomes.

References
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A Supplementary

Figure 10: Recordings with a DVS camera for Caltech101 (A) and
MNIST (B). Image taken from [3].



B Noisy datasets samples

Figure 11: Sample of each digit from N-MNIST dataset.

Figure 12: Sample of each digit from Superimposed-Noisy dataset.



Figure 13: Sample of each digit from Centered-Filtered dataset.

Figure 14: Sample of each digit from Uniform-Noisy dataset.



C T-test results

Table 7: P-value and t-statistic results for t-tests on three noisy datasets.
Null hypothesis is ”The means of the two sets of data (noisy and no-
noise) are equal”. P-values are < 0.001, suggesting the rejection of the
null hypothesis.

Superimposed-Noisy Centered-Filtered Uniform-Noisy

Metric mAcc mAP mIoU mAcc mAP mIoU mAcc mAP mIoU

p-value 1.99e-17 8.29e-16 3.31e-17 5.55e-11 8.60e-10 6.01e-11 3.89e-08 7.57e-08 5.05e-08

t-statistic 32.45 26.27 31.53 13.73 11.60 13.67 9.07 8.67 8.91



D Validation losses

(a)

(b)

Figure 15: (a) Mask loss of models trained on N-MNIST dataset. (b)
Respective validation mask loss.

(a)

(b)

Figure 16: (a) Mask loss of models trained on Superimposed-Noisy
dataset. (b) Respective validation mask loss.



(a)

(b)

Figure 17: (a) Mask loss of models trained on Centered-Filtered
dataset. (b) Respective validation mask loss.

(a)

(b)

Figure 18: (a) Mask loss of models trained on Uniform-Noisy dataset.
(b) Respective validation mask loss.
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