Simulating tratfic for
CIM accelerators

Fem Zlaon

]
TUDelft






Simulating traffic for
CIM accelerators

by

Fan Zhou

to obtain the degree of Master of Science
at the Delft University of Technology

Student number: 601639
Project Duration: October, 2024 - August, 2025

Thesis committee:  Prof.dr.ir. G.N.Gaydadjiev, TU Delft, supervisor
Prof.dr.ir.H.X.Lin, TU Delft
T.Spyrou PhD, TU Delft, daily supervisor

o]
TUDelft



Preface

It has been a challenging journey to complete this thesis, and | could not have accomplished it entirely
on my own. | would like to take this opportunity to sincerely thank all the people who have supported
me, both technically and emotionally.

First and foremost, | would like to express my deepest gratitude to my supervisors, Prof. Georgi Gaydad-
jiev, Theofilos Spyrou, and Ignacio Garcia Ezquerro, for their invaluable guidance and support. Georgi,
in particular, provided constant encouragement, insightful feedback, and expert advice that were instru-
mental throughout this research. | also thank Konstantinos Stavrakakis and Mahmood Naderan-Tahan
from Delft University of Technology (NL) for their helpful discussions, guidance, and constructive com-
ments on my work and thesis writing.

Also, | would like to thank my friends, both inside and outside the university.

Finally, | am deeply grateful to my parents for their unwavering emotional support and inspiration through-
out this journey.

To all of you, thank you sincerely!

Fan Zhou
Delft, August 2025



Abstract

The rapid advancement of artificial intelligence (Al) and deep learning has intensified computational
demands, exposing inefficiencies in traditional von Neumann architectures due to the "memory wall”
problem. Computation-in-Memory (CIM) emerges as a promising paradigm, performing computations
directly within memory arrays to minimize data movement and enhance energy efficiency. However,
current CIM design methodologies face significant challenges in configuration generation, performance
characterization, and application-specific optimization. This thesis addresses these gaps by proposing
a simulation framework that enables architectural exploration of multi-tile CIM-based NN accelerators
with a focus on network traffic modeling, resource utilization, and communication efficiency.

The framework abstracts NN operations into hardware-executable patterns, encompassing both fully
connected and convolutional layers, and incorporates key CIM components such as crossbars, accu-
mulators, and activation units. Specialized mapping strategies and tiling techniques are introduced to
capture realistic execution, while a bandwidth-constrained interconnect model quantifies communication
bottlenecks. The framework supports both major convolution-to-MVM conversion schemes, Im2Col and
K2M, allowing systematic evaluation of trade-offs between latency, area, and energy efficiency. Addi-
tionally, the framework integrates a topology visualization module that automatically generates Graphviz-
based diagrams of component interconnections and data flows, enabling intuitive inspection of commu-
nication patterns and design bottlenecks.

Experimental evaluation on MNIST demonstrates the framework’s capability to reveal fundamental de-
sign insights. Results show that while K2ZM maximizes crossbar utilization (0.8—1.0) and reduces latency
by up to 100%, Im2Col achieves up to 1000% reductions in crossbar count and data transfer energy,
making it favorable for area- and energy-constrained systems. Bandwidth analysis further highlights the
interaction between communication capacity and optimal crossbar sizing, establishing design guidelines
that balance delay, efficiency, and scalability.

Overall, this thesis contributes a flexible and extensible simulation environment for multi-tile CIM accel-
erators that bridges the gap between neural network workloads and CIM hardware design, providing a
foundation for future architectural exploration and hybrid optimization strategies in NN accelerators.

11



contents

Preface
Abstract
List of Figures
List of Tables
Nomenclature
1 Introduction
1.1 Motivation . . . . . . . . e
1.2 Problem Statement . . . . . . . .. L
1.3 Research Objectives . . . . . . . . . . . e
T4 SCOPE . . . . o e
1.5 Contributions . . . . . . . . . e e
1.6 ThesisOutline . . . . . . . . . . e
2 Background & Related Works
2.1 Computation-in-memory (CIM) . . . . . . . . . .
211 Definition . . . . ...
2.1.2 Current CIM Archtitectures . . . . . . . . . .. .. ... . ...
21.3 Advantage of CIM . . . . . . . . ..
2.2 CIMfor Neural Networks . . . . . . . . . . . . .
2.21 Matrix-to-CrossbarMapping . . . . . . . . . . .
2.2.2 Dataflow Strategies . . . . . . . ...
2.2.3 Convolution-to-MVM Conversion Methods . . . . . .. ... ... ... .......
3 Modeling Methodology
3.1 Matrix-Vector Multiplication . . . . . . . . ...
311 Matrix Mapping . . . . . . . .
3.1.2 Input Vector Application and OutputReadout . . . . . . .. ... ... .......
3.1.3 Matrix Tiling for Large-Scale Matrices . . . .. ... ... ... ... ........
3.2 Multi-Bit MVM Using Single-Bit Crossbars . . . . . . ... ... ... ... .. .......
3.2.1 Problem Statement . . . . . ...
3.2.2 DataRepresentation . . . ... .. .. ... ... ...
3.2.3 Crossbar Organization . . . . . . . . .. .. . .. . .. .. ..
3.2.4 Computation Process . . . . . . . . . . e
3.2.5 Data Traffic and Transfer Delay Analysis . . . . . . ... ... ... ... ......
3.2.6 Motivational Example . . . . . . . . ...
3.3 Neural Network Layer Modeling . . . . . . . . . ..
3.3.1 Fully Connected Layer Architecture . . . . .. ... ... ... ... ... ...,
3.3.2 Convolution Layer Architecture . . . . . . . .. .. ... ..
3.3.3 Pooling and Flattening Layer Architectures . . . . . ... ... ... .. ......
3.4 Component-Level Modeling . . . . . . . . . ..
3.4.1 CIMCrossbar Arrays . . . . . . . . e
3.4.2 AccumulatorModule . . . . . .. L
3.4.3 Activation Function Module . . . . . .. ... .. o
3.44 PoolingUnit. . . . . . . . . . e
3.45 FlatteningUnit . . . . . . . . .
3.5 Bandwidth-Constrained Communication Model . . . . . .. ... ... ... ........
3.5.1 Model Motivation and Formulation . . . . . .. ... ... ... ... ... ... ..
3.5.2 Implementation Framework . . . . . . . . .. .. ...
3.6 Conclusion . . . . . . L

11



Contents

v

4 Implementation

4.1 Implementation Architecture Overview . . . . . . . .. . . ... ... L
411 SystemHierarchy . . . . . . . .. ...
4.1.2 DataFlow Mechanism . . . . . . ... . ... ...

4.2 Component Implementation . . . . . . . ... ...
4.2.1 Basic Processing Component . . . . . . . . . .. .. ... ...
4.2.2 Specialized Processing Component . . . . .. ... ... ... . L.

4.3 Neural Network Layer Implementation . . . .. ... ... ... ... ... . .....
4.3.1 Fully-Connected Layer Implementation . . . . ... ... ... .. ... ......
4.3.2 Convolution Layer Implementation . . . . .. ... ... .. ... ... ...

4.4 Neural Network Implementation . . . . . .. ... .. ... ... .. ... .. .. ...
4.4.1 Layer Composition and Connectivity . . . . . ... ... ... ... ... ......
4.4.2 Timing and Performance Analysis . . . . . .. .. .. ... ... ... ... ...,
443 TensorFlow-styleInterface . . . . . . . ... .. .. ... ...

4.5 Interconnect

Implementation . . . . ... ... ...

4,51 Data Structure Organization. . . . . . .. ... ... ... ... ... . ... ....
4,52 Address Space Management . . . . . . ... ... ...
4.5.3 Bandwidth-Constrained Routing . . . . .. ... ... ... ... .. ... .....
4.5.4 Performance Monitoring Framework . . . . . . ... ... . o Lo
4.6 Topology Visualization . . . . . . . . . . e
4.6.1 Implementation . . . . . . . . ...
46.2 KeyFeatures . . . . . . . . . . e
4.6.3 Usage Example . . . . . . . . .
4.6.4 Benefits . . . . . . e

4.7 Conclusion

5 Results and Discussion
5.1 Neural Network Architectures . . . . . . . . . . . .
5.1.1 Fully Connected Neural Network Architecture . . . . . . .. ... ... .......
5.1.2 Convolution Neural Network Architecture . . . . . ... .. ... ... .......
5.2 Topology Visualization Case of FCNN . . . . . . . . . ... ... ... .. ... ......
5.3 Analysis Methodology . . . . . . . . . .
5.3.1 Analysis of StaticMetrics . . . ... ... ... .. ... .. ...
5.3.2 Delay Analysis . . . . . . . . . e e
5.4 Resultsand Analysisof FCNN . . . . . . . .. .
5.4.1 Static Metrics Analysis . . . . . . . . ..
5.4.2 Crossbar Size Optimization for Bandwidth . . . . . . .. ... ... ... ......
5.4.3 Multi-Precision Bandwidth Analysis . . . . . . . .. ... .. ... ..........
5.5 Resultsand Analysisof CNN . . . . . . . .. . . .. . .. .
5.5.1 Static Metrics Analysis . . . . . . . . ...
5.5.2 Multi-Precision Bandwidth Analysis . . . . . . . ... ... ... ... .. ... .
5.5.3 Comparative Analysis of Conversion Methods . . . . ... ... ... ... ....

5.6 Conclusion

6 Conclusions
6.1 Summary .
6.2 Future Work

References

25
25
25
26
27
27
27
28
29
30
31
31
32
32
32
32
33
33
34
34
34
34
35
36
36

37
37
37
38
38
39
40
40
40
40
41
41
42
42
42
43
44

46
46
47

49



3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3
54
5.5
5.6

List of Figures

Matrix-vector multiplication (MVM) using crossbar tiling. . . . . . . .. ... .. ... ... 12
Architecture of the fully connected layer in the CIM accelerator. . . . . . ... ... .... 17
Architecture of the convolution layer in the CIM accelerator. . . . . . ... ... ...... 18
Hardware abstraction of (a) pooling and (b) flattening layers in the CIM accelerator. . . . . 19
Interconnect architecture with example dataflow (red). . . . . . . . ... ... ... .... 25
Component-layer—network hierarchy with interconnects. . . . . . . .. ... ... ..... 26
Visualization of connectivity and data flow from the example. . . . . ... ... ... ... 36
Architecture topology of the FCNN visualization. . . . .. ... ... ... ......... 39
Static metrics: crossbar utilization, total transferred bits, and crossbar count. . . . . . .. 41
Delay optimization analysis for 1-bit precision configurations. . . . . . ... ... ... .. 42
Multi-precision bandwidth analysis: delays (top) and crossbar sizes (bottom). . . . . . . . 43
Crossbar utilization, data transfer, and count across sizes and precisions (K2M vs. Im2Col). 44
Multi-precision bandwidth analysis of (a) K2M and (b) Im2Col. . . . . . . .. .. .. .. .. 45



2.1

3.1
3.2
3.3

4.1

5.1
5.2

List of Tables

Key Differences Between K2M and Im2Col . . . . . . . . . .. .. ... ... ... 10
Data Transfer Characteristics . . . . . . . . . . . . . ... . . . 16
Pooling Unit Dimensional Transformation . . . . . .. ... ... ... ... ........ 22
Flattening Unit Dimensional Transformation . . . . . . .. .. ... ... ... ....... 23
Interconnect Monitoring Metrics . . . . . . . .. ... 34
Architecture of the Fully Connected Neural Network (FCNN) for MNIST . . . . .. .. .. 37
Architecture of the Proposed Convolution Neural Network for MNIST . . . . . . .. .. .. 38

vi



Abbreviations

Nomenclature

Abbreviation Definition

Al artificial intelligence

BLAS Basic Linear Algebra Subprograms
CIM computation in memory

CNN convolution neural network

Conv convolution

CPU central processing unit

DL deep learning

DRAM dynamic random-access memory
FC fully connected

FCNN fully connected neural network
GPU Graphics processing unit

MAC multiply-accumulate

MVM matrix-vector multiplication

NN neural network

NN accelerators neural network accelerators

NoC network on chip

PCM phase-change memory

ReRAM resistive random-access memory
TOPS trillion operations per second

vii



Introduction

This chapter introduces the topic addressed in this manuscript. Section 1.1 analyzes the computa-
tional demands of modern Al systems and the limitations of von Neumann architectures that necessi-
tate compuation-in-memory(CIM) solutions, particularly highlighting on-chip communication bottlenecks.
Section 1.2 identifies three critical gaps in current multi-tile CIM design tools: the lack of systematic
mapping methodologies between neural networks and crossbar arrays, insufficient performance quan-
tification capabilities, and absence of visualization tools for accelerator topologies. The thesis objectives
in Section 1.3 proposes a framework with automated configuration generation, precise performance
characterization, and advanced visualization tools to address these gaps. Section 1.4 delineates the
study’s boundaries by focusing on multi-tile CIM systems for inference of fully connected and convolu-
tion neural networks while abstracting certain physical characteristics. Key contributions in Section 1.5
include a modeling framework, evaluation framework, and topology visualization tools that advance CIM
accelerator methodology. Finally, Section 1.6 provides the thesis organization.

1.1. Motivation

The rapid advancement of artificial intelligence (Al), particularly in deep learning(DL), has created un-
precedented computational demands. Modern neural networks, such as vision transformers [8] with
billions of parameters, and complex tasks like real-time video analysis require massive computational
throughput [4]. Traditional computing architectures, rooted in the Von Neumann model [33], have seen
significant advancements over time [17, 12]. However, they still struggle to meet these demands due
to the "memory wall” [29] problem, a fundamental bottleneck where energy and latency of the computer
systems are dominated by data movement between physically separated processing units (e.g., CPUs,
GPUs) and memory hierarchies (DRAM, caches) [41]. This inefficiency is exacerbated in data-intensive
workloads. For example, large language models (LLMs), which have surged in popularity because of
their powerful generative capabilities that far surpass earlier state-of-the-art methods, pose significant
challenges in terms of computation, particularly the intensive compute requirements and high energy
costs associated with inference [37].

To overcome this limitation, Computation-in-Memory (CIM) [13] has emerged as a promising paradigm,
where computation is performed directly within the memory arrays, minimizing data transfers. CIM ar-
chitectures, such as SRAM-based Processing-in-Memory (PIM) [15] and memristor crossbars [3], have
demonstrated significant improvements in energy efficiency and throughput for matrix-vector operations,
a fundamental kernel in neural networks(NNs). However, as CIM systems scale to accommodate larger
neural networks, multi-tile communication between and within neural network layers emerges as a criti-
cal performance bottleneck.

This underscores the urgent need for specialized design tools that can:

» Accurately model data traffic patterns in multi-tile CIM systems;
» Explore network-on-chip (NoC) architectures optimized for CIM-specific communication patterns;
» Quantify tradeoffs between computational density, communication latency, and energy efficiency.



1.2. Problem Statement 2

Our work addresses this gap by developing a cycle-accurate simulation framework that enables system-
atic exploration of interconnect architectures for next-generation CIM accelerators.

1.2. Problem Statement

The design of multi-tile CIM neural network accelerators currently lacks comprehensive tools to bridge
the gap between algorithmic requirements and hardware implementation constraints. Existing method-
ologies fail to provide solutions for three critical challenges in accelerator design:

First, there is no standardized approach to map neural network parameters (weights and activations) to
multiple physical crossbar arrays while accounting for several architectural constraints. This mapping
problem becomes increasingly complex when considering: (a) different neural network architectures
(fully connected vs. convolution layers), each requiring distinct dataflow patterns; (b) variable bit pre-
cision requirements (from 1-bit binary to 8-bit fixed-point representations) that affect how weights are
distributed across crossbars; (c) physical crossbar size limitations (currently 128 x 128 to 256 x 256 de-
vices) that necessitate sophisticated tiling strategies; and (d) available bandwidth constraints that dictate
how quickly activations and partial sums can be moved between computational units.

Second, existing frameworks lack the capability to accurately quantify system-level communication costs
during complete neural network inferences. This includes simulating: (a) crossbar resource utilization
efficiency, which determines how effectively the hardware resources are employed during computation;
(b) precise accounting of bit transfers among components, which can help estimate total data movement
energy; and (c) end-to-end computation latency, particularly the delays introduced by bandwidth limita-
tions and component synchronization. Without these metrics, designers cannot perform meaningful
trade-off analyses between different architectural choices.

Third, there is a notable absence of visualization tools that can provide intuitive representations of archi-
tectural topologies, particularly for designs combining heterogeneous computational units (e.g., cross-
bars, accumulators, and activation modules) with multi-bit-width data paths. This opacity made it difficult
to validate basic connectivity, trace dataflow dependencies, or identify shared-resource contention dur-
ing early design stages.

The absence of the above capabilities in current design tools forces researchers and engineers to make
suboptimal architectural decisions, potentially leaving significant performance and energy efficiency
gains unrealized. This problem becomes particularly acute as neural network models grow in complexity
and CIM architectures scale to larger arrays of computational units. A simulation framework capable of
modeling these limitations would significantly advance CIM accelerator design, enabling designers to
optimize next-generation Al hardware more efficiently.

1.3. Research Objectives

This thesis aims to develop a comprehensive analytical framework that addresses the critical gaps in
multi-tile CIM accelerator design through three primary technical objectives.

First, the framework will establish an automated methodology for generating multi-tile CIM accelerator
configurations. This involves developing algorithms that intelligently determine the minimal set of re-
quired crossbar components and generate the component connection topologies by analyzing the neu-
ral network’s computational demands, matrix-to-crossbar mapping strategies, and hardware constraints
such as array dimensions and precision requirements.

Second, the framework will incorporate precise performance characterization capabilities to quantita-
tively evaluate key CIM configuration parameters, including crossbar size, on-chip network bandwidth,
and bit precision specifications. Through simulation of complete neural network inference operations,
it will track and record the following key metrics: (1) the number of activated CIM crossbars and their
utilization rates, revealing computational resource efficiency; (2) the total volume of transferred bits
across all interconnects, which directly reflects data movement energy consumption; and (3) the esti-
mated processing delay that accounts for both data dependencies and bandwidth constraints. These
measurements will provide designers with concrete insights into computational efficiency, energy costs,
and timing characteristics of their CIM accelerator implementations.

Third, the framework will generate clear, structured visualizations of the accelerator’s physical inter-
connect topology, explicitly mapping hierarchical connections, such as data distribution from the host



1.4. Scope 3

through multi-bit-width crossbars, and highlighting critical transitions between heterogeneous compo-
nents. By automating this foundational visualization, the tool will empower designers to efficiently verify
architectural correctness, debug interconnect mismatches, and gain immediate insight into the full sys-
tem architecture. This high-level overview will enable preliminary assessment of bandwidth bottlenecks
and dataflow efficiency, serving as a crucial first step before detailed dynamic simulation.

Together, these objectives will produce a naive design framework that bridges the gap between neural
network algorithms and CIM hardware implementation, enabling more efficient and automated develop-
ment of next-generation Al accelerators. The framework will specialize in co-optimizing neural network
architectures with physical hardware parameters, enabling designers to navigate trade-offs between
resource utilization, computational latency, and energy efficiency.

1.4. Scope

This thesis focuses on developing a multi-tile CIM accelerator simulation framework with carefully defined
boundaries to enable targeted investigation of communication bottlenecks in CIM systems. The scope
encompasses four key dimensions of the framework’s capabilities and limitations.

The simulation framework specifically targets two fundamental types of neural network layers: fully con-
nected (FC) layers and convolution layers. These architectures were selected because they represent
the most common building blocks of many deep learning systems while demonstrating distinct compu-
tational patterns - FC layers exhibit regular matrix-vector operations ideal for crossbar implementations,
while CNNs require specialized handling of sliding-window convolution operations. The framework cur-
rently excludes more complex layer types such as recurrent networks or attention mechanisms to main-
tain focus on core computational patterns.

Regarding operational characteristics, the simulation framework exclusively models inference opera-

tions using pre-trained and quantized neural network models. This design choice reflects the pre-

dominant use case for CIM accelerators in edge computing and embedded applications where energy-

efficientinference is paramount. The framework assumes networks have already undergone quantization-
aware training, with weights properly discretized to match the target hardware’s precision capabilities.

Training operations are explicitly excluded due to their fundamentally different computational patterns

and memory access requirements.

The hardware modeling approach employs abstracted but configurable representations of crossbar ar-
rays as fundamental computational units. Users can specify key parameters including crossbar dimen-
sions (typically 128x128 for current digital implementations) and bit precision (fixed-point with config-
urable width), while the simulation framework handles the mapping of neural network operations to
these constrained resources. The model intentionally simplifies certain physical characteristics by as-
suming idealized memory access behavior without endurance or retention issues, allowing researchers
to isolate and study communication effects separate from device-level non-idealities.

For traffic analysis, the simulation framework operates at two complementary levels of abstraction. At
the component level, the framework monitors key operational metrics, including active crossbar count
and utilization rates, delivering granular insight into hardware resource efficiency. System-level analysis
captures aggregate behavior through total transferred bits and total cycle count for end-to-end inference,
which serve as proxies for energy consumption and throughput. The framework deliberately excludes
certain physical effects, such as analog noise, thermal variations, and detailed wire parasitics, to main-
tain a focus on digital communication patterns and enable reproducible baseline comparisons.

This carefully scoped approach enables tractable verification of core simulation framework functionality
using the MNIST dataset and relatively simple neural network architectures. The choice of MNIST re-
flects its well-understood characteristics and modest computational requirements, which facilitate rapid
iteration and debugging before scaling to more complex models. While limited in immediate scope, the
framework is designed to provide foundational insights into communication bottlenecks that will inform
future extensions to more sophisticated networks and hardware models. The current implementation
prioritizes clear, reproducible results that establish performance baselines for digital CIM architectures
while maintaining extensibility for future research directions.



1.5. Contributions 4

1.5. Contributions
This thesis makes several significant contributions to the field of multi-tile CIM accelerator design through
the development of a network traffic simulation framework.

» Parameterized framework: the thesis proposes a framework that systematically bridges the gap
between neural network algorithms and its multi-tile CIM hardware implementations. The frame-
work accepts comprehensive input specifications including neural network architecture, bit preci-
sion requirements, crossbar array dimensions, and available bandwidth constraints. Based on
these parameters, it automatically generates hardware configurations by determining the mini-
mal number of required crossbar components, implementing efficient matrix-to-crossbar mapping
strategies, and generating detailed topological representations of inter-unit connection patterns.

Quantitative evaluation framework: the thesis develops a suite of complementary performance
metrics that extend beyond conventional measures to capture resource efficiency, energy proxies,
and latency in multi-tile CIM accelerators. By integrating these metrics into the proposed simulation
environment, the framework enables fine-grained analysis of crossbar utilization, comprehensive
accounting of hardware resources, and detailed data-movement tracking. These capabilities allow
designers to explore and compare architectural trade-offs with unprecedented precision, offering
deeper insight into performance bottlenecks and guiding more informed design optimizations.

Topology visualization: this thesis further contributes a design exploration tool that significantly
accelerates early-stage accelerator development through automated topology visualization. The
framework generates clear, structured representations of the physical interconnect architecture,
explicitly mapping hierarchical connections. By providing this intuitive visualization of component
interconnections and bandwidth characteristics, the tool enables designers to rapidly verify archi-
tectural correctness, identify potential interconnect mismatches, and gain immediate insight into
system-level dataflow efficiency. These capabilities offer a crucial first-step evaluation of the ac-
celerator’s static structure, allowing preliminary bottleneck assessment and informed optimization
decisions before committing to detailed simulation.

By integrating these capabilities, this work makes important methodological advances in several key ar-
eas. It establishes a systematic approach for mapping logical neural network operations to physical CIM
resources, accounting for both algorithmic requirements and hardware constraints. The framework intro-
duces quantitative evaluation techniques that provide objective measures of architectural effectiveness,
moving beyond simplistic performance estimates. The visualization tools transform abstract accelera-
tor designs into intuitive topological representations, enabling designers to immediately grasp critical
dataflow relationships and perform preliminary optimization.

These contributions are particularly valuable during the critical system-level design phase when neu-
ral network characteristics are known but hardware implementation decisions must still be made. The
framework provides essential guidance for navigating the complex design space where computational re-
quirements, hardware constraints, and performance targets must be carefully balanced. By addressing
this crucial phase in accelerator development, the thesis helps bridge the persistent gap between neural
network algorithms and efficient hardware realization in multi-tile CIM systems. The resulting framework
not only advances academic understanding of multi-tile CIM design principles but also provides practical
tools that can accelerate the development of next-generation Al accelerators.

1.6. Thesis Outline

The rest of this report is organized into size chapters. Chapter 2 is providing a background and related
works of CIM. The next two chapters are explaining the methodology and implementation of the proposed
simulation framework. Then, the manuscript uses one chapter to analyze the experimental results of
the simulation framework. Finally, the last chapter concludes this thesis. The following list provides a
more detailed description of the topics discussed in each chapter:

Chapter 2 introduces the background of CIM and points two difficulties of applying CIM to neural
network processing. Finally, it presents two methods that can potentially assist CIM to accelerate the
convolution operation.

Chapter 3 explains the methodology used to model the multi-tile CIM accelerator that processes the
neural network in a structured and organized manner.



1.6. Thesis Outline 5

Chapter 4 describes the implementation of the simulation framework, which is based on the model
from the last chapter.

Chapter 5 proposes two neural network architecture and analyzes the results obtained from simulating
these two neural networks using the proposed simulation framework.

Chapter 6 summarizes the thesis and discusses potential future work.



Background & Related Works

This chapter presents the fundamental concepts and state-of-the-art approaches for Computation-in-
Memory (CIM) neural network accelerators. Section 2.1 introduces the CIM paradigm, detailing its two
primary architectural implementations (analog and digital) and their respective advantages for neural
network processing. Section 2.2 examines the critical challenges in mapping neural networks to CIM
hardware, including matrix-to-crossbar mapping strategies and dataflow optimization techniques. The
core focus of the chapter, Section 2.2.3, analyzes two principal methods for converting convolution
operations to matrix-vector multiplications: the Im2Col approach (Section 2.2.3) and the K2M method
(Section 2.2.3). These techniques are compared in Section 2.2.3 through quantitative analysis of their
memory requirements, computational efficiency, and hardware implementation characteristics.

2.1. Computation-in-memory (CIM)

2.1.1. Definition

Computation-in-Memory (CIM) is a non-von Neumann computing paradigm that eliminates the physical
separation between memory and processing units. Unlike traditional architectures where data shuttles
between discrete CPU/GPU cores and memory hierarchies (e.g., DRAM, caches), CIM leverages the
physical properties of memory devices to perform computations directly within the memory array itself.
This approach exploits two fundamental mechanisms: (1) parallel analog computation in resistive mem-
ory technologies (e.g., memristors, ReRAM), where Ohm’s Law [31] (I = VxG) and Kirchhoff’s Law [32]
enable multiply-accumulate (MAC) operations through current summation; and (2) digital bitwise opera-
tions in modified SRAM/DRAM cells, where additional logic gates are embedded within memory subar-
rays. These mechanisms give rise to two distinct architectures: analog and digital CIM architecture.

2.1.2. Current CIM Archtitectures
1. Analog CIM Architectures

Analog CIM exploits the native physics of emerging non-volatile memory devices to perform com-
putations in the analog domain [2]. Resistive crossbars, made up of memristors [11], ReRAM [42],
or phase-change memory (PCM) [39] devices, encode weights as conductance values (G) and
inputs as voltages (V), generating output currents (I) that naturally compute MVM operations via
Ohm’s law. Mythic Al’'s analog matrix processors [30] and IBM’s HERMES project [19] showcase
how such crossbars achieve O(1) complexity for MAC operations, delivering 100-1,000 TOPS/W
efficiency. However, analog systems face challenges including device variability (5—-10% con-
ductance drift), thermal noise, and ADC/DAC overheads. Recent advances like hybrid precision
architectures (e.g., ISAAC [6]) combine analog crossbars with digital post-processing to mitigate
these issues. Ferroelectric FET (FeFET)-based CIM is another promising direction [26], offering
non-destructive reads and high endurance (> 10'2 cycles), though maturity lags behind resistive
memories.

2. Digital CIM Architectures

Digital CIM designs integrate programmable logic elements directly into conventional memory tech-
nologies, maintaining compatibility with standard CMOS processes. SRAM-based Processing-in-

6



2.2. CIM for Neural Networks 7

Memory (PIM) architectures, such as Samsung's HBM-PIM [38], augment memory banks with
simple ALUs to enable bitwise operations (AND, OR, XOR) and integer arithmetic within DRAM
subarrays. These designs excel at deterministic operations and are backward-compatible with
existing software stacks, but suffer from area overhead due to added logic. UPMEM’s DRAM-
PIM [23] takes an alternative approach by embedding RISC-V [40] cores directly into memory
banks, offering flexibility for diverse workloads but incurring higher power consumption. Recent
research, such as the ComputeDRAM framework, demonstrates how bitline computing in DRAM
can perform bulk bitwise operations without logic modifications, though precision is limited to 1-4
bits. Digital CIM is particularly suited for edge devices requiring moderate precision (INT8/INT16)
and deterministic execution.

2.1.3. Advantage of CIM

By colocating computation and storage, CIM reduces energy consumption greatly compared to von
Neumann systems, primarily by minimizing data movement. This paradigm is transformative for data-
intensive workloads like NNs, where weight matrices can be permanently stored in memory arrays and
activated by input vectors without off-chip transfers. In general, the key benefits of CIM include:

» Energy Efficiency: Eliminates redundant data movements;
+ Parallelism: Native support for bulk operations (e.g., MVM);
+ Scalability: Memory-centric design avoids bandwidth bottlenecks.

2.2. CIM for Neural Networks

2.2.1. Matrix-to-Crossbar Mapping

The efficient mapping of neural network parameters to physical crossbar arrays is a critical challenge in
CIM accelerator design. For large weight matrices that exceed the dimensions of a single crossbar (typi-
cally 128x128 for current resistive arrays), tiling strategies partition the matrix into smaller sub-blocks that
can be distributed across multiple crossbars. This approach introduces interconnect overhead but pre-
serves the inherent parallelism of CIM architectures. When dealing with multi-bit precision weights (e.g.,
4-8 bits), bit-slicing techniques decompose the weight matrix into separate crossbars, each handling
a specific bit position. This enables higher-precision computations while maintaining analog efficiency,
though it requires careful synchronization during partial sum accumulation.

2.2.2. Dataflow Strategies

The choice of dataflow strategy significantly impacts both energy efficiency and computational through-
put in CIM neural network accelerators. In weight-stationary architectures, weight matrices are per-
manently programmed into crossbar conductances, while input activations are streamed through the
array. This approach minimizes weight movement energy (which dominates in CNNs) but requires care-
ful scheduling of activation transfers. Alternatively, output-stationary designs keep partial sums local
to each crossbar during computation, reducing the need for intermediate sum transfers at the cost of
increased crossbar reprogramming overhead. Modern CIM accelerators often employ hybrid dataflows;
for example, using weight-stationary mapping for convolution layers (where weights are reused across
sliding windows) while adopting output-stationary approaches for fully connected layers (where partial
sums exhibit less reuse). The optimal strategy depends on both the neural network architecture and the
underlying CIM technology’s reprogramming latency and energy characteristics.

2.2.3. Convolution-to-MVM Conversion Methods

Convolution neural networks (CNNs) [20] fundamentally rely on 2D convolution operations between in-
put feature maps and weight kernels. However, Computation-in-Memory (CIM) architectures natively
accelerate matrix-vector multiplication (MVM) operations. This architectural mismatch necessitates re-
formulating convolution operations as MVM problems to fully leverage CIM’s parallel computing capabil-
ities. The conversion process addresses three key challenges: (1) preserving the sliding-window nature
of convolutions, (2) maintaining spatial relationships between pixels, and (3) efficiently mapping the
computation to fixed-size crossbar arrays. Without such conversion, CIM architectures would require
inefficient sequential processing of convolution windows, negating their energy and speed advantages.
Currently, there are two main coversion methods, Im2Col and K2M.



2.2. CIM for Neural Networks 8

Im2Col [16]

The Im2Col method transforms the convolution operation into a single large matrix multiplication by
unrolling all possible convolution windows from the input feature map. For an input tensor X R7*Wx¢
(height x width x channels) and K kernels of size F' x F' x C, the method:

1. Extracts all F' x F' x C patches from X with stride S;

2. Flattens each patch into a column vector of length F2C;

3. Constructs matrix X' R(F*C)x(OHXOW) where OH, OW are output dimensions;
4. Reshapes kernels into matrix W RE* (7€),

The convolution becomes: ¥ =W x X’

Where Y REK(OHOW) s the output feature map. This approach effectively converts the convolution into
a single MVM operation compatible with CIM crossbars. However, it introduces memory overhead due
to input duplication - the transformed matrix X’ is larger than the original input by a factor of F2/52.

Example To clarify this method, a specific example will be employed. Consider an input tensor X €
R3*3x1 (single channel) and a 2 x 2 kernel with stride 1:
1. Input Transformation:

* Original input (1 channel):

e
I

= &~ =

co Ot N

O O W

» Extracted 2 x 2 patches (stride 1):
1 2 2 3 4 5 5 6
4 5|7 |5 6|" |7 8" |8 9

* Flattened into columns (F2C = 4 elements per column):

1 2 4 5]"
56 8 9

2. Kernel Transformation:

+ Original kernels (K3 and K3):
_|a b e f
k=i el

* Flattened and stacked as rows:

3. Matrix Multiplication: The convolution becomes:

VoW x X — {a-1+b-2+c-4+d-5 }  g2xd

e-l+f-2+g-44+h-5
Each row of Y corresponds to one kernel’s output flattened.

This approach enables efficient MVM operations but duplicates input elements (e.g., value 5 appears 4
times in X).



2.2. CIM for Neural Networks 9

K2M [1]

The K2M method reformulates convolution by constructing a Toeplitz matrix [14] from the kernel weights,
which is then multiplied with the flattened input. Unlike Im2Col, this approach preserves the original input
structure while expanding the kernel into a sparse matrix.

Example To clarify this method, a specific example will be employed. Consider an input X € R3x3x!
and a single 2 x 2 kernel with stride 1:

1. Original Input and Kernel:

=
[

11 T12 T13 k k
X — 11 12
= |21 T22 T23|, k k

21 22

T31 T32 I33
2. Flattened Input:
T 9x1
VeC(X):[ﬂCu Ti2 T13 T21 T2 T23 T31  T32 9633] € R™

3. Kernel Matrix Construction: The kernel is transformed into a sparse matrix W € R**? (for output
size 2 x 2) with:
k‘u ]{?12 0 kgl ]{322 0 0 0 0
0 kll klg 0 k‘gl k22 0 0 0
0 0 0 kll k‘lg 0 kgl k‘gQ 0
0 0 0 0 ki1 ko 0 koy koo

Each row corresponds to one position in the output feature map, with the kernel weights positioned
according to the input pixels they multiply.

W =

4. Matrix Multiplication: The convolution is computed as:

kiizi1 + ka2 + k2121 + kooxao
k11712 + k12713 + k21722 + Kooz
k11221 + k12722 + k21731 + k22232
k11222 + k12723 + k21732 + k22233

Y =W x vec(X) = € R**!

The key features of K2M are as follows:

+ K2M creates a very sparse matrix where each row contains exactly F2 non-zero elements;
» The matrix size grows with both input size (H x W) and output size (OH x OW);
* Unlike Im2Col, the original input is used without duplication.

Comparison and Tradeoffs

Table 2.1 summarizes the key differences between the K2M and Im2Col methods for converting convo-
lution operations into matrix—vector multiplications. The two approaches mainly differ in which tensor
is transformed: K2M expands the kernel into a Toeplitz matrix, whereas Im2Col expands the input into
overlapping patches.

In terms of matrix shape, K2M produces a matrix of size (OH x OW) x (HW ('), while Im2Col yields a
(F2C) x (OH x OW) matrix. These layouts directly impact memory overhead: K2M requires storing a
large, highly sparse matrix, while Im2Col duplicates input elements, resulting in a dense but potentially
larger input representation.

Another important distinction is how the original data is modified. In K2M, the input tensor remains
preserved, but in Im2Col the input is unrolled and duplicated. This makes K2M more favorable for
small kernels with large inputs, where sparsity can be exploited, while Im2Col is advantageous for large
kernels with small inputs, where duplication overhead is relatively lower.

From a hardware perspective, K2M demands sparse optimizations to avoid wasted computation on zero
entries, while Im2Col directly benefits from dense Basic Linear Algebra Subprograms(BLAS) [7] routines
and existing accelerator support.

Overall, K2M trades off storage for sparsity, whereas Im2Col trades off duplication for compatibility with
dense computation. The choice between them depends on kernel size, input dimensions, and available
hardware optimizations.



2.2. CIM for Neural Networks

10

Table 2.1: Key Differences Between K2M and Im2Col

Aspect

K2M

Im2Col

Transformed Element
Matrix Shape

Memory Overhead
Sparsity

Input Modification
Best For

Hardware Friendliness

Kernel (Toeplitz matrix)
(OH x OW) x (HW(C)
Large sparse matrix

Highly sparse

Original preserved

Small kernels, large inputs
Needs sparse optimizations

Input (patches)

(F2C) x (OH x OW)
Duplicated input

Dense

Unrolled/duplicated

Large kernels, small inputs
Works with dense BLAS



Modeling Methodology

This chapter establishes a systematic modeling framework for computation-in-memory (CIM) acceler-
ators from top to bottom, focusing on hardware-algorithm co-design principles. Section 3.1 details
the foundational matrix-vector multiplication (MVM) operations in resistive crossbars, covering matrix
mapping strategies (Section 3.1.3), input/output handling, and tiling techniques for large matrices. Sec-
tion 3.2 presents a novel method for multi-bit MVM using single-bit crossbars, including data represen-
tation (Section 3.2.2), crossbar organization (Section 3.2.3), computation phases (Section 3.2.4), and
traffic analysis (Section 3.2.5). Section 3.3 abstracts neural network layers into hardware-executable pat-
terns, covering fully connected (Section 3.3.1), convolution (Section 3.3.2), and pooling/flattening layers
(Section 3.3.3). Section 3.4 provides component-level models for crossbars (Section 3.4.1), accumu-
lators (Section 3.4.2), activation units (Section 3.4.3), and pooling/flattening modules (Section 3.4.4).
Finally, Section 3.5 develops a bandwidth-constrained communication model, incorporating practical
interconnect limitations for enhanced model precision. Section 4.7 consludes the chapter.

3.1. Matrix-Vector Multiplication

In-memory computing using resistive crossbars enables highly efficient matrix-vector multiplication (MVM)
by leveraging Ohm’s Law for current summation and Kirchhoff’'s Law for column-wise accumulation. To

perform MVM operations, the matrix W € R™*™ must be properly mapped onto the crossbar array,

where each conductance value G;; of a memristive device at row i and column j represents the matrix

element W;;, while the vector is treated as the input of the crossbar.

3.1.1. Matrix Mapping
A typical m x n crossbar consists of m wordlines (rows) and n bitlines (columns), with memristive devices
at each intersection. The matrix W is mapped such that:

Gij o Wij7 (31)
where G;; is the conductance of the device at location (i, j).

3.1.2. Input Vector Application and Output Readout

The input vector x € R"™ is applied as analog voltages V; to the bitlines, scaled to avoid device nonlinear-
ity. The resulting currents along each wordline are summed vertically due to Kirchhoff’'s Law, producing
an output current vector I € R™:

n

=) GyV;. (3.2)

Jj=1

These currents are then converted to digital values, yielding the MVM result y = Wx.



3.2. Multi-Bit MVM Using Single-Bit Crossbars 12

_____________________________________________________________

4
Wwi2s)

xS

y(T-SJ
R

Figure 3.1: Matrix-vector multiplication (MVM) using crossbar tiling.

3.1.3. Matrix Tiling for Large-Scale Matrices

The dimensions of the matrix W € R™*" will most probably exceed the physical size of a crossbar
array (p x ¢, where p < m and/or ¢ < n). In this case, the matrix must be partitioned into smaller
submatrices (tiles) that fit within the crossbar, as shown in Fig. 3.1. The input vector x is split into
segments (x(1, ..., x(%)), and the weight matrix W is partitioned into tiles (W1 ... 'W(T»5))_ Each
tile is mapped to a crossbar, which computes partial results (y(V, ... y(7:9). These partial results
are accumulated in order to produce the final outputs (y(), ..., y(™). Zero-padding may be applied to
ensure divisibility.

Matrix Partitioning Strategy

Let W be divided into T x S tiles, where each tile W(:*) ¢ RP*¢ is mapped to a separate crossbar
operation. The partitioning is computed as:

r-fe]. 5]

with zero-padding added to the matrix edges if m or n is not divisible by p or ¢q. For simplicity, assume
m=T-pandn = S - ¢ hereafter. The input vector x € R" is similarly split into S segments x(*) ¢ R4.

Crossbar Computation and Output Accumulation

Each tile W (%) computes a partial MVM with its corresponding input segment x(*), producing an inter-
mediate output y(**) € R?:
() — W) (), (3.4)

To reconstruct the full output y € R™, the partial results are summed along the column partitions (s =
1,...,S) for each row partition (t =1,...,T):
y®

S
yO =Sy oy || (3.5)
s=1 y(T)

3.2. Multi-Bit MVM Using Single-Bit Crossbars

3.2.1. Problem Statement
The manuscript focuses on simulating the data traffic of multi-tile CIM accelerator with single-bit cross-
bars. Thus, there exists a problem, how to use single-bit crossbars to implement multi-bit MVM. The



3.2. Multi-Bit MVM Using Single-Bit Crossbars 13

multi-bit MVM computation requires:

» Matrix W € Z™*" with k-bit signed precision;
* Input vector x € Z" with k-bit signed precision;
+ Single-bit crossbar arrays performing bit-wise operations.

3.2.2. Data Representation
1. Matrix Decomposition: Each w;; is expanded to its k-bit two’s complement representation:

kw—2

Wiy = Z Qb’ng (36)
b=0

where w?; € {0,1}.
2. Input Vector Expansion: Each input z; is decomposed similarly:

ky—2

rj= Y 2%t (37)
a=0
and represented as a k x n binary matrix Xpj.

3.2.3. Crossbar Organization

The crossbar-based computing fabric integrates analog crossbar arrays for massively parallel bit-wise
dot-product operations and digital peripheral circuits for weighted accumulation and precision manage-
ment. This hybrid organization leverages the strengths of both domains:

» Analog crossbars efficiently perform large-scale Boolean multiplications in parallel through Ohm’s
and Kirchhoff’s laws;

+ Digital circuitry provides precise accumulation, bit-position alignment, and synchronization across
computation phases.

This architecture enables multi-bit matrix-vector multiplication by decomposing both weights and inputs
into their binary components, which are then orchestrated through a combination of static mapping for
weights and sequential application for inputs.

Matrix Mapping
The m x n matrix W with k-bit precision is transformed into an expanded binary representation:

k—1 0 k—1 0

wyp oot Wyttt Wy, ot Wiy
Whin = : : : : (3.8)
k—1 0 k—1 0
W1 o Wy o Wi T Wiy

where Wy, has dimensions m x (n - k). This expanded matrix is directly mapped to the crossbar array
such that:

* Each original element w;; occupies k consecutive columns;
» The most significant bit (MSB) wfj‘l is placed in the leftmost column of its group;

* The least significant bit (LSB) w?j occupies the rightmost column.

Input Vector Mapping
The n-element input vector x with k-bit precision undergoes a similar transformation:
xllc 1 xﬁ—l
Xbpin = : T (3.9)
af T

The input process requires k£ temporal phases:



3.2. Multi-Bit MVM Using Single-Bit Crossbars 14

1. In phase p (0 < p < k), the p-th bit-slice Xyin[p, :] is applied to all columns;
2. Each phase completes in one unit time;
3. The complete input sequence requires k unit times.

The crossbar organization ensures that:

» Matrix bits remain static during computation;
* Input bits are applied sequentially;
 Physical column adjacency matches logical bit significance.

3.2.4. Computation Process

The matrix-vector multiplication operation is executed through a carefully orchestrated sequence of ana-
log and digital computations. The complete process consists of three distinct phases that transform
binary-weighted inputs and weights into precise arithmetic results.

Bit-wise Multiplication Phase

The fundamental computation occurs at the crossbar arrays where single-bit weights interact with single-
bit inputs. For each input bit position a (0 < a < k) and weight bit position b (0 < b < k), the crossbar do
the computation:

pff = w,ﬁ’j A (3.10)

This Boolean multiplication is physically implemented through:

* Matrix representation: Memristor conductances G?; programmed to:

QY = {G"“ iy = 1 (3.11)
E Gop if wfj =0
* Input application: Voltage pulses Vja(t) applied to columns:
T R
« Current sensing: Output currents 7¢° at row i represent the logical AND operation:
I zn: GV (t) (3.13)
j=1

Bit-Position Scaling
The raw bit products require significance weighting according to their positional values. Each product
pi? is scaled by:

sih = 20tb . pab (3.14)
It can be implemented by scaling voltage-domain.

Vi(t) = 2% Vet - (3.15)

Result Accumulation
The final output is generated through a hierarchical accumulation process:

1. Crossbar-level summation: .
yit = sy (3.16)
j=1

performed inherently through Kirchhoff’s current law at each row node.



3.2. Multi-Bit MVM Using Single-Bit Crossbars 15
2. Digital weight accumulation:
k—1
=Y 20y (3.17)
b=0
implemented through shift-add operations in peripheral digital circuitry.
3. Input bit accumulation:
k—1
yi:ZQG.y;l (3.18)
a=0

completed in the output accumulator over k clock cycles.

The computation process maintains strict synchronization between the analog crossbar operations and

digital accumulations, with timing controlled by a central controller that manages:

* Input bit-slice application sequence;
» ADC sampling windows;
+ Digital accumulation cycles.

3.2.5. Data Traffic and Transfer Delay Analysis
Data Volume Characterization

For an m x n weight matrix with k-bit precision and n-element k-bit input vector:

* Crossbar Input:
Tin = k - n bits
(Serial transfer of n elements x k bit-slices);
* Crossbar Output:
Tout = k - (m - k) bits
(For m output lines x k input bits x k weight bits);
* Accumulator Input: Matches crossbar output:

Tace-in = Tout = k*m bits
* Accumulator Output:
Tacc-out = k - m bits

(Final k-bit outputs for m elements).

Transfer Timing Analysis
Define mynit as the system clock period, equal to the maximum of:

Tunit = maX(Tbih Teycles 7'transfer)
where:
* 7pit: Input bit application time;
* Teyele: Crossbar computation cycle;
* Tyansfer: Data Transfer Time Between Components.

The data transfer timeline proceeds as:

1. Input Phase (k cycles):

Tinput = K Tunit
2. Crossbar to Accumulator Transfer (k cycles):
Teross-out = K * Tunit
(Pipelined with computation)

Total transfer delay (excluding computation):

Ttransfer-total = 2K - Tunit

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)



3.2. Multi-Bit MVM Using Single-Bit Crossbars 16

Bandwidth Requirements
The sustained bandwidth between components must satisfy:
* Crossbar Output Bus:

BWerossbar > m - k - (3.27)

Tunit
* Accumulator Input Bus:

BWacc 2 m - k : (3.28)

Tunit

3.2.6. Motivational Example
This section presents a concrete example of signed matrix-vector multiplication using 2-bit precision,
accompanied by detailed data traffic and timing analysis.

System Specifications
The example system consists of:

» A 2 x 2 matrix using signed 2’s complement representation;
« 2-bit precision for both weights and inputs (numerical range: —2 to 1);
» Crossbar array dimensions: 2 x 4 (2 rows x 2 weights x 2 bits).

Binary Representations
The matrix W and input vector x are represented in 2’s complement binary format:

(1 1\ _ [0ly 0l 3\ _ (1L,
W= (0 2) - <oo2 102) T (0) - (002> (3.29)
where the most significant bit (MSB) represents the sign.

Data Traffic Analysis
The computation involves two primary data transfer phases, quantified in Table 3.1:

Table 3.1: Data Transfer Characteristics

Transfer Phase Bits Transferred Cycles Description

Input Loading 4 2 Serial transfer of 2 input elements x 2 bits
Crossbar Output 8 2 Parallel transfer of 2 rows x 4 bits/row
Total 12 4

Result Validation
The computation proceeds as follows:

Digital Reference:
yn=1x3+1x0=3
Yo=0x3+2x0=0
Crossbar Outputs:
MSB Cycle: (0,1,0,1)
LSB Cycle: (0,1,0,1)
Accumulation:
=22x0+2' x(0+1)+2°x1=3
Yo =22 x04+2'x (04+0)+2°x0=0



3.3. Neural Network Layer Modeling 17

3.3. Neural Network Layer Modeling

The simulator abstracts neural network layers into hardware-executable patterns, focusing on four funda-
mental layer types that collectively cover most CNN and Fully Connected Neural Network architectures,
including fully connected layer, convolution layer, pooling layer and flatten layer. Each layer type is
modeled with distinct computational characteristics and hardware resource requirements.

3.3.1. Fully Connected Layer Architecture

E Fully Connected Layer Weight Matrix |
Input Vector ' :
: Crossbars Crossbars Crossbars ) :
! NN NI :
I NN SINININ I
| NI SN -
I SIS SEEIN > S
1 1
1 T T o o o \
: 598 $$9 9 $$ 99 !
: | Accumulator | | Accumulator | J :
| ¥ ¥ ¥ !
: | Activation | | Activation | !
[}

D\ J !
e e e e - Y _______________________ J

Output Vector

Figure 3.2: Architecture of the fully connected layer in the CIM accelerator.

The fully connected (FC) layer is a fundamental component of neural networks, where each neuron
connects to all activations from the previous layer. In the proposed Computation-in-Memory (CIM)
accelerator, the FC layer is implemented using resistive crossbar arrays to perform efficient matrix-
vector multiplication (MVM) operations.

Mathematical Formulation
For an input vector x € R™ and weight matrix W € R™*", the output y € R™ is computed as:

y=¢(W-x+b) (3.30)

where ¢(-) is the activation function, and b € R™ is the bias vector. Based on the formulation, the
computation of FC layer can be abstracted into three stages:

1. Analog MVM in crossbar arrays to get partial products;
2. Digital accumulation (summing partial products to get final MVM results);
3. Nonlinear activation.

Structure of the FC Layer
As illustrated in Fig. 3.2, the FC layer’s implementation decomposes into the following key components,
each of which will be modeled in detail in Section 3.4:

1. Crossbar Arrays:

* Function: Perform MVM in analog domain via Ohm’s/Kirchhoff’s laws.

» Weight Mapping: Weights are stored in conductance values of resistive memory devices
(e.g., memristors). The precise mapping methodology for the weight matrix onto the crossbar
arrays is detailed in Section 3.1.3.

* Input Handling: Input vectors are applied as voltage signals, and Ohm’s Law/Kirchhoff’s Law
compute the dot product in analog domain. For large input dimensions, the input vector is
partitioned and distributed across multiple crossbars, as described in Section 3.1.3.

2. Accumulators:



3.3. Neural Network Layer Modeling 18

* Function: Partial sums from crossbar columns are aggregated digitally.

* Non-Ideality Mitigation: Resolve non-idealities (e.g., sneak paths, device variations) via cali-
bration circuits.

3. Activation Unit:
* Function: Applies nonlinear functions (e.g., ReLU, Sigmoid) to the accumulated outputs.
This three-stage abstraction—crossbars, accumulators, and activation—enables a modular analysis of
the FC layer’s performance and trade-offs, which will be explored in Section 3.4.

3.3.2. Convolution Layer Architecture

e

| .
, Convolution Layer Converted
Input Vector _l Conv-to-MVM Conversion kernel \INeights
L N B N N N § N | ------------l

Crossbars Crossbars Crossbars 3

w
AN

3444 &4 444
| Accumulator | | Accumulator | | Accumulator | J
¥ ¥ ¥
| Activation | | Activation | | Activation |
\ S
U
Output Vector

Figure 3.3: Architecture of the convolution layer in the CIM accelerator.

The convolution (Conv) layer performs spatial feature extraction through localized filter operations. In
the proposed Computation-in-Memory (CIM) accelerator, the Conv layer computation is abstracted
into matrix-vector multiplication (MVM) operations compatible with the crossbar infrastructure used in
FC layers (Sec. 3.3.1).

Mathematical Formulation

For an input feature map X € RE*XWxC and kernel W € REXEK*CxF the output Y € R#' *W'*F can
be computed through either of two formulations due to different conversion methods(Section 2.2.3):

1. Im2Col method:
Y = ¢(W - Im2Col(X) + b) (3.31)
2. X2M (Kernel-to-Matrix) method:

Y = ¢(reshape(W) - Xqqt + b) (3.32)

where ¢(-) is the activation function, and b € R is the bias vector. Based on these formulations, the
computation can be abstracted into:

* Im2Col path: Four stages (input reshaping + three FC-equivalent stages);
» X2M path: Three stages (identical to FC layer).

Structure of the Conv Layer
As illustrated in Fig. 3.3, the Conv layer implementation varies by conversion method:

1. Conversion Unit (for Im2Col only):



3.3. Neural Network Layer Modeling 19

* Function: Dynamically reshapes input feature maps using the Im2Co1 algorithm.
* Bypass Condition: Not required for K2M method where kernels are pre-reshaped.
2. Crossbar Arrays:

* Function: Performs matrix-vector multiplication (MVM) operations using the same fundamen-
tal principles as the FC layer implementation (Section 3.3.1).

* Weight Mapping:
— For the K2M method, kernel weights are pre-reshaped into Toeplitz matrices during the
programming phase and stored in conductance values;

— For the Im2Col approach, each kernel is flattened into column vectors and mapped to
crossbar columns.

* Input Handling:

— Processes either Im2Col-transformed input patches or flattened feature maps, depending
on the conversion method employed;

— Incorporates stride and padding parameters during the input reshaping process to main-
tain spatial correspondence.

3. Accumulators:

* Function: |dentical to FC layer implementation (Sec. 3.3.1).
4. Activation Unit:

* Function: Identical to FC layer implementation.
This abstraction demonstrates that the Conv layer either:

» Adds one preprocessing component (Im2Col unit) while reusing all FC layer components;
* Requires no additional components when using K2M conversion.

3.3.3. Pooling and Flattening Layer Architectures

Input Vectors Input Vectors
----- T 11
| I
i :
Pooling Units : Flattening Units !
: I
| I
| I

Pooling Layer

Output Output

(a) Pooling layer abstraction. (b) Flattening layer abstraction.

Figure 3.4: Hardware abstraction of (a) pooling and (b) flattening layers in the CIM accelerator.

The pooling and flattening layers represent simpler operations in neural networks that require distinct
hardware handling compared to FC and convolution layers. In the proposed Computation-in-Memory
(CIM) accelerator, these layers are abstracted as single functional units to maintain architectural con-
sistency while optimizing for their specific computational patterns.

Mathematical Formulation
+ Pooling Layer: For an input feature map X € R”*"W*¢ and pooling window size P, the output
Y € RE'XW'xC ig computed as:

Y j.c = Pool(X;p.(it1)P,;P:(j+1)P,c) (3.33)

where pool(-) represents max, average, or other pooling operations;



3.4. Component-Level Modeling 20

* Flattening Layer: For an input X € R7*WxC ‘the output y € RFWC is simply:
y = vec(X) (3.34)
where vec(-) denotes vectorization.

Structure of the Layers
As shown in Fig. 3.4, both layers are abstracted by dedicated functional units:
* Pooling Unit:
— Implements certain pooling operations(max or average in most cases) spatially across input
feature maps;
— Handles stride and padding parameters through configurable windowing logic;
— Typically operates in digital domain after analog-to-digital conversion of inputs.
* Flattening Unit:

— Reorganizes multi-dimensional input tensors into one-dimensional vectors;
— Requires only routing logic without computational elements;
— Maintains dimensional ordering consistency for subsequent FC layers.

The simplified abstraction of these layers as single components reflects their fundamental difference
from MVM-based layers, while preserving the overall accelerator’s modular design philosophy.

3.4. Component-Level Modeling

Since the manuscript focuses exclusively on bit-level traffic analysis within the CIM accelerator, all hard-
ware components, including the CIM crossbar arrays, accumulators, activators, and specialized units
for pooling and flattening, are modeled as traffic generators [27]. In this framework: 1. Each component
receives bits from preceding units, processes them, and transmits bits to subsequent stages. 2. All
transferred bits and delays are recorded and aggregated to evaluate the overall communication traffic
across the accelerator. This approach allows for a systematic analysis of data movement, enabling
optimizations for bandwidth, latency, and energy efficiency in CIM-based neural network processing.

3.4.1. CIM Crossbar Arrays

Computation-in-Memory (CIM) crossbar arrays utilize memristor-based crossbar architectures to per-
form analog matrix-vector multiplication (MVM), offering significant improvements in throughput and en-
ergy efficiency for neural network computations. In this work, we model the crossbar as a functional unit
characterized by its input-output bitwidth constraints and computational latency, abstracting away the
underlying physical implementation details.

Dataflow and Timing Model: Consider a weight matrix W ¢ R >~ mapped to the crossbar array and
an input matrix X € RP*M_ The computation proceeds through the following pipelined stages:

1. Input Phase: During each clock cycle ¢, one M-bit column vector x; € RM from the input matrix
is streamed into the crossbar;

2. Computation Phase: The crossbar performs analog MVM operation y; = Wx;, generating an
intermediate N-bit result that undergoes analog-to-digital conversion (ADC);

3. Output Phase: The quantized N-bit output vector y, is transmitted to subsequent processing units
incycle t + 1.

The total computation latency is determined by the input matrix dimensions:
Tiotal = P - Teycles

where P represents the number of column vectors in the input matrix and 7.yqe denotes the duration of
one clock cycle. The complete computation produces an output matrix Y € RP*V,

This model assumes perfect pipeline utilization, with new inputs being processed and corresponding
outputs being generated in each clock cycle until all P input vectors have been computed.



3.4. Component-Level Modeling 21

3.4.2. Accumulator Module

The accumulator processes partial results from CIM crossbar arrays through bit-precision and/or spatial
accumulation, producing final computational outputs. The module handles two orthogonal accumulation
scenarios that may occur simultaneously:

Accumulation Modes
1. Bit-Precision Accumulation: For p-bit inputs (p > 1), accumulates p bit-sliced components as
described in Section 3.2;

2. Spatial Accumulation: Combines partial products from s crossbars processing matrix partitions:

S
yi=Y ar; Vji€l[ln]
k=1

These modes operate concurrently when processing high-precision inputs on partitioned matrices, with
the accumulation hierarchy being:

1. First aggregate spatial partitions within each bit slice;
2. Then combine bit-weighted results across slices.

Output Timing Characteristics
The accumulator’s output phase exhibits deterministic latency:

» Output Generation: Requires 1 cycle after final input arrival to complete all accumulations;
* Result Streaming: Transmits p rows of n-bit results at 1 row/cycle:

Toutput = p cycles(pipelined with computation) (3.35)

The final output matrix Y € RP*™ contains accumulated results, where p reflects either:
* The input bit precision in bit-sliced mode;
» The row dimension of spatial partitions;
» The product of both factors in combined operation.

3.4.3. Activation Function Module

The activation module applies element-wise nonlinear transformations to the output of the accumula-
tor. The module maintains strict dimensional consistency between its input and output matrices while
introducing the necessary nonlinearity for neural network operations.

Dataflow Characteristics
Given an input matrix X € RP*™ from the accumulator:

* Processes one complete row per clock cycle;
* Applies activation function f(-) element-wise:
Yi,j = f(Xz,j) Vi € [lap]aj € [1777’] (336)
where f(-) represents ReLU, sigmoid, or other activation functions.

Timing Behavior
The module exhibits perfectly linear throughput:

» Latency: Exactly matches the row dimension of the input;
» Throughput: Sustains 1 row/cycle processing rate.

The total processing time is given by:
Tactivation = p cycles (3.37)

where p is identical to the row dimension of both:

» The accumulator’s output matrix;
» The activation module’s output matrix Y € RP*™,



3.4. Component-Level Modeling 22

3.4.4. Pooling Unit

The pooling unit performs spatial downsampling on multiple feature maps generated by the preceding
convolution layer, reducing spatial dimensions while maintaining feature depth. The module operates
on the principle of local receptive field aggregation with deterministic output sizing.

Dimensional Transformation
Given K input matrices X, € RP*™ from the convolution layer, where:

* p=>b x r represents:

— b: bit precision of computations;
— r: number of output features.
» n: spatial dimension (width x height) per feature map.

For pooling kernel size k x k with stride s, the output dimension per feature map is:

n = {‘c_k + 1J2 (3.38)

Dataflow Characteristics
* Processes K feature maps in parallel;

» Maintains row dimension p (bit precision x features);
» Reduces column dimension from n to n'.

Thus, the pooling unit dimensional transformation is shown in Table 3.2.

Table 3.2: Pooling Unit Dimensional Transformation

Parameter Input  Output
Row Dimension P P
Column Dimension n n'
Number of Features K K

Timing Behavior
The module exhibits linear throughput characteristics:

* Processing Rate: 1 row per clock cycle
» Total Latency:
Tpooling = P Cycles (3.39)

3.4.5. Flattening Unit

The flattening unit transforms multi-dimensional feature maps from the convolution/pooling layers into
a one-dimensional vector suitable for processing by fully-connected layers. The module performs a
deterministic reshaping operation while preserving the numerical precision of the original data.

Dimensional Transformation
Given K input matrices X, € RP*™ from the preceding layer, where:

* p=b x r represents:

— b: bit precision of computations;
— r: number of output features.
* n: spatial dimension per feature map.

The flattening operation produces output vector y € R?*™ where:
m=KXrxn (3.40)

y=vec([Xy Xy --- Xg) (3.41)



3.5. Bandwidth-Constrained Communication Model 23

Dataflow Characteristics
* Input Organization:

— Concatenates K feature maps column-wise;
— Maintains bit-level organization across features.
* Output Structure:
— Produces b output rows (bit precision);
— Each row contains m elements (flattened features).
Timing Behavior
The unit operates with predictable latency:

» Processing Rate: 1 row per clock cycle

* Total Latency:
Thatten = b Cycles (3.42)

Table 3.3: Flattening Unit Dimensional Transformation

Characteristic Specification
Input Features K

Input Rows per Feature p=bxr
Output Rows b
Output Columns m=KXxrxn
Throughput 1 row/cycle

3.5. Bandwidth-Constrained Communication Model

While the models mentioned earlier often assume ideal data transfer conditions, practical implemen-
tations face significant bandwidth limitations that impact overall system performance. This section
presents a detailed analytical model that captures these bandwidth constraints and their effects on neural
network acceleration.

3.5.1. Model Motivation and Formulation
The bandwidth-constrained model addresses the limitation of ideal network-on-chip assumptions by
incorporating three key realities:

1. Physical interconnect fabrics have finite bandwidth capacity;
2. Memory and processing components exhibit asymmetric 1/O capabilities;
3. Data transfer often becomes the performance bottleneck in CIM systems.

The transmission delay between any two components follows the fundamental equation:

size_bits

ttransmit = ’7 —‘ X UN|T_T|ME (3.43)

bweffective

where the parameters are defined as:

* size_bits: The data volume (in bits) for one row of the crossbar array;
* bweffective: Achievable bandwidth (bits/cycle) considering all constraints;
* UNIT_TIME: The system’s base clock cycle duration.

The effective bandwidth represents the tightest constraint in the communication path:

bWeffective = min(bwouh bwin, bwpath) [28] (3-44)

comprising:



3.6. Conclusion 24

* bweyt: Source component’'s maximum output bandwidth;
* bwin: Destination component’s maximum input bandwidth;
* bwpath: Configured interconnect path bandwidth.

It should be noted that the current bandwidth model does not account for access conflicts. For instance,
when multiple crossbars simultaneously transmit data to the same accumulator, the resulting contention
introduces additional delays that are not captured in the present implementation. Addressing this limita-
tion through enhanced conflict-aware bandwidth modeling is an important direction for future work.

3.5.2. Implementation Framework
The bandwidth management system operates through the precise algorithm shown in Algorithm 1, which
implements Equations 3.43 and 3.44.

Algorithm 1 Bandwidth-Constrained Transmission

Input: Source address, destination address, data size (bits)
Output: Transmission delay (cycles)

bweyt < source.getOutPortBW()

bwin, <+ destination.getinPortBW()

bwpath < interconnect.queryPathBW(src, dest)
bwefrective — min(bwoyt, bwin, bwpath)

cycles « [size_bits/bweftective |

return cycles x UNIT_TIME {Convert to system time}

The implementation handles several practical considerations:

+ Discrete Time Quantization: the ceiling function ensures conservative cycle counting;
» Port Contention: shared ports dynamically adjust available bandwidth;
» Path Reservation: critical paths can be allocated guaranteed bandwidth.

3.6. Conclusion

This chapter established a comprehensive modeling framework for multi-tile CIM accelerators. It first
introduced the fundamental matrix—vector multiplication operations using resistive crossbars, then ex-
tended the discussion to multi-bit computation techniques with single-bit devices, incorporating tiling
strategies for mapping large-scale matrices onto multi-tile CIM architectures. Building on the MVM-to-
CIM theory, the thesis developed neural network layer abstractions and component-level models that
enable efficient matrix-to-crossbar allocation and interconnect topology construction for neural network
architectures. To further enhance realism, a bandwidth-constrained communication model was also
proposed. Overall, the chapter lays a solid foundation for simulating and analyzing CIM-based neural
network accelerators from device-level operations to system-level interconnects.



Implementation

This chapter details the implementation of proposed multi-tile CIM accelerator simulator from bottom to
top, featuring a three-level hierarchy (components, layers, and networks) connected through a bandwidth-
constrained interconnect. The chapter is organized as follows: Section 4.1 presents the system archi-
tecture and hierarchical organization. Section 4.2 details the component-level implementations. Sec-
tion 4.3 describes the neural network layer compositions. Section 4.4 explains the complete network
implementation, and Section 4.5 covers the critical interconnect subsystem. Section 4.6 explains the
implementation of visualization function. Section 4.7 draws a brief conclusion for the chapter.

4.1. Implementation Architecture Overview

The data traffic simulator implements a hierarchical architecture centered around an interconnect fabric
that facilitates communication between various neural network processing components, which is illus-
trated in Figure 4.1.

<:::> Packets Sending

==y Dataflow from one CNN
layer to one pooling layer

i s 1

11 Pooling Layer

Crossbar A Crossbar B Activation Function A : ! :

[N} |

* o 0 e oo b 1

[N |

—_ ______:__________]“________'_l ________ I
1 1

Interconnect ) !

L I o e e e e e - =

Figure 4.1: Interconnect architecture with example data flow (red).

411. System Hierarchy
The simulator architecture organizes neural network acceleration into three distinct hierarchical levels,
as illustrated in Figure 4.2.

At the foundation lies the Component Level, comprising fundamental processing units including cross-
bars, accumulators, and activation functions. These primitive elements implement basic mathematical
operations and maintain standardized interfaces for communication through the interconnect fabric.

The intermediate Neural Network Layer Level abstracts complete neural network layers by composing
components into functional pipelines. Each layer encapsulates the sequence of operations required

25



41. Implementation Architecture Overview 26

1
¥
1 i
! | L [ Crossbar 1 Crossbar 2 Crossbar X : :
nput Layer ’
R A R N S NSNS SIS
| Interconnect ! : §§§§ §§§§ e e §§§§ ! |
[} 1 \
, DEnraTaanan '|{ | PR SIS SISISISHEE
| : FC Layer 1 ) . I :
| EEEEEa s A 1 [
| Interconnect '\ | Interconnect ¥
I \ I by
1 \ 1 I
o A lator 1 A lator 2 R lator Y !
: \\\ : | ccumulator | | ccumulator | i :
1
| Intergggnect o Interconnect ¥
| o e o 1
| \ [}
Lo Output Layer : ' i !
! 1
|

| Activation 1 | | Activation 2 | b Activation Y

________________________________________________________

Figure 4.2: Component-layer—network hierarchy with interconnects.

for specific transformations, such as convolution or pooling operations, while maintaining clear input
and output boundaries. The interconnect fabric serves as the critical infrastructure binding these layers
together, ensuring proper data flow between successive layers.

At the highest abstraction level, the Network Structure Level integrates multiple neural network layers
into complete processing pipelines. This tier manages the end-to-end data movement through the ac-
celerator, from initial input processing to final output generation.

Throughout all three levels, the interconnect fabric performs dual roles: it facilitates intra-level commu-
nication between components within individual layers while simultaneously managing inter-level data
transfers between successive layers’ boundary components. This hierarchical organization enables
modular analysis of computational efficiency at different abstraction levels while maintaining accurate
modeling of system-wide data movement patterns.

41.2. Data Flow Mechanism

There is a representative data flow path highlighted in red in Figure 4.1, demonstrating the movement
of data from crossbar components in a convolution layer to the subsequent pooling layer. It is a typical
transition from convolution layer to pooling layer, which also reflects the data flow mechanism.

Initially, input data undergoes matrix multiplication operations within the crossbar arrays (Crossbar A/B),
where the core linear algebra computations are performed. The raw computation results are then sys-
tematically packetized with appropriate addressing and size metadata before transmission through the
interconnect fabric.

Following crossbar processing, the data enters the accumulation phase where it is routed to dedicated
accumulator units (Accumulator A/B). These units perform critical partial sum reduction operations, com-
bining intermediate results from multiple crossbar computations. The accumulation process ensures
proper integration of distributed computations while maintaining numerical precision through careful bit-
width management.

Subsequently, the accumulated data proceeds to activation units (Activation A/B) where non-linear trans-
formations are applied. These transformations introduce the necessary non-linearity to the network while
preserving the structural integrity of the data packets. The activation outputs are then prepared for spatial
processing, with proper dimensional organization for downstream operations.

The final stage transitions the processed data to pooling layers through the interconnect fabric. Pool-
ing units receive the activated feature maps and perform spatial reduction operations, systematically
downsampling the data while retaining the most salient information. This generates condensed repre-
sentations that are properly formatted for transmission to subsequent network layers, completing one
full processing cycle from linear computation through non-linear transformation to spatial reduction.



4.2. Component Implementation 27

4.2. Component Implementation

This section presents the implementation details of the key components in the proposed data traffic
simulator for multi-tile CIM neural network accelerators.

All components inherit from a common Component base class, ensuring uniform interface implementation
across the architecture. This base class enforces standardized packet handling through consistent send
and receive interfaces, where components communicate exclusively through structured data packets
containing source/destination addressing and payload size information. Bandwidth configuration occurs
through member variables (in_port_bw, out_port_bw) that govern both intra-layer and inter-layer com-
munication constraints. The interface design allows components to maintain internal processing state
(such as the valid_rows and valid_volumes in crossbars) while exposing a consistent communication
abstraction to the interconnect fabric.

4.2.1. Basic Processing Component

The foundational layer of the architecture implements primitive processing units through several classes
of computational components. At the core are the matrix operation crossbars (CIMCrossbar), partial
sum reduction accumulators (Accumulator), and nonlinear transformation activation units (Activation).
These components form the basic computational building blocks that perform the fundamental mathe-
matical operations required for neural network processing.

CIM Crossbar Component

The CIMCrossbar class implements a computational model of memory-resident crossbar arrays, serving
as the fundamental processing unit for matrix operations in the architecture. The component’s data
structure tracks valid rows/columns for crossbar utilization metrics, an input counter for tracking column
vectors, and configurable 1/0 bandwidth parameters.

The crossbar’s behavior involves three key operations: (1) updating its input counter upon receiving
data packets, (2) performing matrix multiplication to generate dimensionally-appropriate outputs, and
(3) transmitting results through the interconnect fabric. The interconnect calculates transmission delays
based on both the crossbar’s bandwidth constraints (Section 3.5) and its computational model (Sec-
tion 3.4.1), accurately capturing both processing and communication overhead.

Accumulator Component

The Accumulator class handles the accumulation of partial results from distributed crossbar computa-
tions. Its structure maintains an input_times counter for multi-cycle operations, tracks compute_bits
for numerical precision management, and implements specialized bandwidth parameters (ACC_IN_BW,
ACC_0UT_BW) for I/O constraints.

The accumulator’s operation comprises three principal functions: (1) receiving and aggregating interme-
diate results from multiple crossbars, (2) scaling accumulated values by the BIT_PRECISION factor, and
(3) transmitting reduced-size outputs through the interconnect. Delay calculations incorporate both the
accumulation cycles and transmission overhead from bandwidth-constrained paths (Section 3.4.2 and
Section 3.5), ensuring accurate modeling of the complete accumulation pipeline.

Activation Component

The Activation class implements the configuration of nonlinear transformations (ReLU, sigmoid, etc.)

for neural network processing. Its structure maintains the nonlinear transformation type, input_times
and compute_bits counters for operation tracking, along with specialized bandwidth parameters (ACT_IN_BW,
ACT_OUT_BW) that govern data movement constraints.

The activation unit actually serves as a traffic generator: it receives incoming bits from upstream com-
ponents, optionally reshapes or reorganizes them, and forwards the resulting bits to downstream pro-
cessing elements. The transmission delay depends on the output data size and the bandwidth of the
communication path (Section 3.4.3 and Section 3.5), capturing the dataflow latency without involving
any actual computation.

4.2.2. Specialized Processing Component

Specialized processing units extend this computational foundation with domain-specific functionality.
The architecture includes convolution unfolding engines (Im2col) that transform input tensors into col-
umn matrices suitable for crossbar operations, spatial reduction operators (Pool) for dimensionality re-



4.3. Neural Network Layer Implementation 28

duction, and tensor reshaping modules (Flatten) that prepare multidimensional data for fully connected
layers.Each specialized unit preserves the standard component interface while incorporating optimiza-
tions tailored to its layer.

Im2col Component

The Im2col component implements the image-to-column transformation for convolution operations. Its
structure stores kernel parameters, input dimensions, and stride/padding configurations while precom-
puting optimal packet sizes for efficient data distribution. The transformation process involves three
key steps: (1) restructuring input feature maps into column matrices(Section 2.2.3), (2) partitioning the
output into fixed-size packets matching crossbar input dimensions, and (3) distributing packets across
multiple crossbars through specialized multi-destination transmission. Bandwidth requirements are dy-
namically calculated based on the input feature map geometry and kernel parameters (Section 2.2.3
and Section 3.5), ensuring efficient resource utilization.

Pooling Component

The Pool component performs spatial reduction operations (max/average) for dimensionality reduction.
The design maintains pooling-type configurations while tracking input bit accumulation and output pack-
etization schemes. Each pooling operation executes three principal functions: (1) receiving activated
feature maps, (2) applying kernel-based spatial reduction, and (3) generating optimally-sized output
packets. The processing delay scales with input size, while transmission delay accounts for both the re-
duced data volume post-pooling and output path bandwidth constraints (Section 3.4.4 and Section 3.5).

Flatten Component

The Flatten component transforms multidimensional tensors into 1D vectors for fully-connected lay-
ers. It has a buffer accumulating all the input bits while enforcing output packet size constraints. The
flattening operation proceeds through three stages: (1) receiving and concatenating multidimensional
inputs, (2) restructuring data into linear format, and (3) packetizing results with size-aware handling of
partial packets. The communication model employs specialized vectorized transmission that respects
component size limits, with per-packet delay calculations ensuring accurate modeling of the reshaping
overhead (Section 3.4.5 and Section 3.5).

4.3. Neural Network Layer Implementation

The neural network layer level serves as the mid-tier abstraction that orchestrates complete neural net-
work layers by composing individual components into functional units. Each layer follows specific com-
position rules that chain components in patterns appropriate for their computational purpose.

The interconnect fabric plays a crucial role in bridging components both within and between layers.
Within each layer, the first component receives inputs from either the preceding layer or external sources,
while the last component establishes connections to subsequent layers. Intermediate components
are precisely linked through bandwidth-configured pathways using the Interconnect: : setBandWidth ()
method, ensuring proper data flow matching the layer’s computational requirements. This architectural
configuration enables seamless transitions across diverse layer types while maintaining uniform com-
munication semantics.

The implementation specializes for different layer types through distinct component organization strate-
gies. While pooling and flatten layers employ relatively simple fixed transformations, fully-connected
(FCNN) and convolution (CNN) layers require sophisticated resource allocation algorithms. These com-
plex layers must:

» Dynamically partition weight matrices across crossbar arrays;
» Configure appropriate accumulator hierarchies;

» Coordinate activation function placement;

+ Establish optimized dataflow paths.

Section 4.3.1 and Section 4.3.2 detail the specific algorithms for organizing these computationally inten-
sive layers, including crossbar allocation strategies and component interconnection patterns.



4.3. Neural Network Layer Implementation 29

4.3.1. Fully-Connected Layer Implementation

The fully-connected layer implementation employs a systematic resource allocation strategy to map neu-
ral network parameters onto crossbar arrays. The algorithm 2, as implemented in the FullyConnectedLayer
constructor, follows three key phases:

First, the algorithm calculates the required crossbar resources by partitioning the weight matrix. Given
an input size N;,, and neural count N,,;, it determines the crossbar grid dimensions as:

Nrow = [Nout/v::bm Ncol = [Nin/scb] (41)
where V;, = S,/ P represents the maximum vectors per crossbar, S is the crossbar size, and P is the
bit precision.

Then, the implementation instantiates crossbars in row-major order, handling edge cases for partial ma-
trix partitions. Each crossbar’s valid dimensions are set according to the remaining unallocated rows
and columns, ensuring optimal resource utilization. The constructor creates corresponding accumula-
tors and activation units for each output channel partition, maintaining a one-to-one relationship between
crossbar rows and activation paths.

Finally, all components are registered with the interconnect and the bandwidth configuration, managed
in set_bandwidth(), establishes optimized paths between components. The interconnect sets specific
bandwidth constraints between:

» Crossbars and their corresponding accumulators (CB_ACC_BW);
» Accumulators and activation units (ACC_ACT_BW);
+ Activation units and downstream layers (LAYER_BW).

Algorithm 2 Fully-Connected Layer Resource Allocation

Input: N;,: input size, N, output size, S.,: crossbar size, B: bit precision
Output: Crossbar grid configuration with accumulators and activations
Vep < Sev/B {Max vectors per crossbar}
Nyow < [Nout/Ver | {Rows in crossbar grid}
Neot < [Nin/Se] {Columns in crossbar grid}
Rout < Now: {Remaining output neurons}
fori < 1to N,,, do
R;n < N;, {Reset remaining inputs}
V «+ min(Vy, Rout) {Current vectors}
for j + 1to N, do
S« min(Se, Rin) {Current inputs}
Create crossbar(S, V x B) {Instantiate with valid dimensions}
Rin — Rin -8
end for
Create accumulator(V x B)
Create activation(ACT_SIZE, type)
Rout <~ Rout -V
end for

The Algorithm 3 implements the forward propagation of FCNN layer and records the total delay, demon-
strating efficient pipelining by:

1. Parallelizing crossbar computations within each row;

2. Synchronizing partial sums through accumulators;

3. Balancing activation outputs across multiple targets.



4.3. Neural Network Layer Implementation 30

Algorithm 3 FCNN Forward Propagation

Input: target_address
for each input batch do
Ttotal +0
for i < 1to N,,, do
Trow <0
for j < 1to N, do
T, < crossbarli, j].send(accumulator[:])
Trow — ma'X(Trowy ch)
end for
T,.. < accumulator[:].send(activation[:])
T,.t < activation[i].send(target_address)
zjtotal — Ttotal + Trow + Tacc + Tact
end for
end for
Register all the components
Set bandwidths

4.3.2. Convolution Layer Implementation
The convolution layer implementation provides two distinct mapping strategies controlled by the mapping_flag
parameter, illustrated in Algorithm 4.

Kernel-to-Matrix (K2M) Mapping
When mapping_flag=true, the implementation converts the convolution kernels to a huge matrix based
on the theory discussed in Section 2.2.3. Then, the allocation method similar to Algorithm 2 is applied:

1. Calculates output feature map dimensions considering stride/padding;
2. Partitions kernels across crossbars using similar logic to FC layers;

3. Allocates accumulators per output channel;

4. Configures activation units for spatial output.

Image-to-Column (Im2Col) Mapping
When mapping_flag=false, the implementation employs the Im2col component to transform input fea-
ture maps according to the theory explained in Section 2.2.3. Key aspects include:

» Specialized bandwidth settings (IM_CB_BW) for Im2Col to crossbar paths;
» Dynamic input address routing based on mapping mode;
» Kernel-aware packet size optimization.

Algorithm 4 Convolution Layer Resource Allocation

Input: I[3]: input dimensions, K[3]: kernel dimensions, S: stride, P: pad
Output: Crossbar grid configuration with accumulators and activations
if mapping_flag then

/* K2M mode */

Nyt LI[O]—I;[O]HPJ % Ll[l]fK[1]+2PJ x K[2]
Nip < I[0] x I[1] x I]2]
else
/* Im2Col mode */
Nout < K[Z]
Nin + K[0] x K[1] x I]2]
end if

// Continue with FCNN allocation using N;,, Nout

The Algorithm 5 implements the forward propagation of CNN layer, handling both modes uniformly after



4.4. Neural Network Implementation 31

the initial data transformation phase and recording the delay of forward propagation. The computation
follows a strict pipeline:

1. Input transformation (Im2Col when enabled);
2. Parallel crossbar operations;

3. Accumulation across spatial positions;

4. Activation and output routing.

Algorithm 5 CNN Forward Propagation

Input target_address
if not mapping_flag then
Timacol < im2col.send(all_crossbars)
end if
Tiotar < 0
for each crossbar row i do
Trow 0
for each crossbar column j do
T, < crossbar[i, j].send(accumulator[:])
Trow < maX(Trowa ch)
end for
T.cc < accumulator[i].send(activation[i])
T, < activation[i].send(target_address)
Ttotal — Ttotal + Trow + Tacc + Tact
end for

Both implementations share the same bandwidth configuration strategy as FC layers, but add specialized
handling for the Im2Col transformation when active.

4.4. Neural Network Implementation
The top-level neural network implementation provides a TensorFlow-style interface for constructing and
executing computational graphs on the multi-tile CIM accelerator.

4.4.1. Layer Composition and Connectivity
The implementation establishes inter-layer connections through three mechanisms:

1. Automatic Dimension Tracking: The model maintains current tensor dimensions through current_size[3],
automatically calculating output shapes after each operation:

Win +2P = Ky K’”J +1 (4.2)

Wout = \‘ S

where W;,,, W,,; are input/output widths, K, is kernel width, S is stride, and P is padding.

2. Interconnect Registration: Each layer’s components register with the interconnect during con-
struction, establishing physical communication pathways:

» Crossbars for matrix operations;
» Accumulators for partial sums;
+ Activation units for nonlinear transforms.
3. Dataflow Chaining: The forward () method connects layers by:
(a) Configuring first layer inputs from host;
(b) Linking intermediate layers through forward_propagation(get_input_addr());
(c) Routing final outputs back to host.



N =

o

45. Interconnect Implementation 32

4.4.2. Timing and Performance Analysis
The model accumulates computational delays through:

Algorithm 6 Delay Accumulation Mechanism

Input: Layer connections and bandwidth constraints
Output: Total end-to-end latency

T’tota,l 0
Tiotal < Tiotar+ first_layer.set_up(host)
for each layer connection i do
Tiotal < Tiorar+ layer[i].forward_propagation(layer[i + 1])
end for
Tiotal < Tiota+ last_layer.forward_propagation(host)

The timing model accounts for:
» Crossbar computation latency;
* Interconnect transmission delay;
+ Activation function overhead;
* Pipeline stalls from bandwidth contention.

4.4.3. TensorFlow-style Interface
The implementation provides a declarative API mirroring popular frameworks:

Model model({32,32,3}, 256, host, interconnect); // Input 32x32x3

model.Conv(3,3,64) .MaxPool(2,2) // Conv->Pool
.Conv(3,3,128) .MaxPool(2,2) // Conv->Pool
.Flatten() .Dense (256) .Dense(10); // FC layers

model.forward(); // Execute

Listing 4.1: Example Network Construction

Key interface features include:
» Method chaining for concise network definition;
» Automatic dimension inference;
 Default parameters (stride=1, pad=0, ReLU);
» Polymorphic layer handling.
The implementation efficiently manages resources through:
» Dynamic crossbar allocation based on layer requirements;
» Automatic bandwidth configuration between components;
» Memory-aware tensor reshaping.

4.5. Interconnect Implementation

The interconnect fabric serves as the central communication backbone of the multi-tile CIM accelera-
tor, implementing a three-tiered architecture that connects components, layers, and complete neural
networks. As illustrated in Figure 4.1, this critical subsystem manages data movement while simultane-
ously collecting performance metrics.

4.5.1. Data Structure Organization
The interconnect class maintains several key data structures that enable its functionality:

* address_map: A bi-directional registry mapping addresses to component instances;
* bandwidth_map: A sparse matrix storing configured bandwidth constraints between components;



45. Interconnect Implementation 33

» logger: logs the data traffic and the log can be used to generate annotated topology graphs
through Graphviz [10], which will be detailed in Section 4.6;

* total_bits_transferred: Cumulative counter of all data movement;
* crossbar_num & crossbar_valid_area: Records computation resource usage statistics.

These elements work in concert to provide both real-time communication services and post-simulation
analysis capabilities.

4.5.2. Address Space Management
The interconnect implements a hierarchical addressing scheme through Algorithm 7, which guarantees
unique component identification across all abstraction levels.

Algorithm 7 Component Registration Protocol

Input: Component pointer comp, size parameter size
Output: Assigned hardware address addr

addr < next_addr {Current address counter}
address_mapladdr] < comp {Register mapping}
next_addr < next_addr + UNIT_ADDR {Increment counter}
if comp is CIMCrossbar then

crossbar_num <+ crossbar_num + 1

valid_area <+ valid_area + comp.getValidArea()
end if
return addr

Key properties of the addressing scheme include:
» Uniform addressing: Consistent namespace from components to complete networks;
« Strided allocation: UNIT_ADDR intervals prevent collisions;
* Resource tracking: Special handling for computation-in-memory crossbars.

4.5.3. Bandwidth-Constrained Routing
The interconnect’s routing engine implements precise delay calculations through the bandwidth-constrained
communication model(Section 3.5):

size_bits
min(bwsrm bwgst, bwpath

transmit = ’V )-‘ X teycle (4.3)

Algorithm 8 details the complete transmission process:

Algorithm 8 Packet Transmission Procedure

Input: Source address src, destination address dst, packet size size_bits
Output: Transmission delay delay

bwsre < src.getOutPortBW() {Source bandwidth}
bwyst +— dst.getinPortBW() {Destination bandwidth}
bwpath < bandwidth_map|(src, dst)] {Path constraint}
bwesr <— min(bwsrc, bwdst, bwpath )

delay « [size_bits/bweg| x UNIT_TIME

total_bits < total _bits + size_bits {Update metrics}
min_bw «+ min(min_bw, bweg)
logger.recordTransmission(src, dst, size_bits)

return delay




4.6. Topology Visualization 34

4.5.4. Performance Monitoring Framework
The interconnect collects essential performance metrics through the monitoring framework, which is
described in Table 4.1.

Table 4.1: Interconnect Monitoring Metrics

Metric Description

C Crossbar resources (count and utilization percentage)
Toits Total data volume transferred (bits)
Deoe End-to-end latency of complete forward passes

This comprehensive interconnect architecture enables accurate modeling of both computational and
communication aspects in multi-tile CIM accelerators, providing critical insights for architecture optimiza-
tion and performance tuning. The implementation faithfully captures the trade-offs between computation
efficiency and communication constraints that characterize real-world NN accelerators.

4.6. Topology Visualization

The system includes a topology visualization feature that captures the connectivity and data flow be-
tween components in real time. This functionality is integrated directly into the Interconnect subsystem
and leverages Graphviz to generate clear and comprehensive diagrams of the component network.

4.6.1. Implementation
The visualization is realized through the DotGraphLogger class, which provides the following capabilities:

» Graph Initialization: Creates and manages Graphviz DOT file output;

* Node Management: Tracks system components with formatted labels including addresses and
types;

» Edge Creation: Records data transfers between components with detailed metadata (size and
frequency);

» Automatic Finalization: Ensures correct file closure and DOT formatting.

The logger is seamlessly integrated into the Interconnect class:

class Interconnect {

1
2 private:

3 DotGraphLogger logger; // Visualization logger

4 // ...

6 public:

7 Interconnect (const std::string& dotFileName); // Constructor
8 A oo

9 3;

Listing 4.2: Interconnect Class Integration

4.6.2. Key Features
The visualization functionality introduces three main features: real-time data capture, comprehensive
metadata, and implicit node management.

Real-time Data Capture
Component interactions are captured during runtime as directed edges between nodes. For example:

1 uint32_t Interconnect::sendPacket(const Packet& packet) {

2 // ... processing logic
logger.addEdge (packet.source,
4 address_map.find (packet.source)->second->getType (),
5 packet.destination,
6 address_map.find (packet.destination)->second->getType(),
7 packet.size_bits, 1);
8 // ...
9 ¥

Listing 4.3: Real-time Data Logging



N

4.6. Topology Visualization 35

Comprehensive Edge Metadata
Each edge in the generated DOT graph includes:

» Source and destination components, labeled with addresses and types;
» Data transfer size, reported in bits;
» Transfer frequency, indicating the number of occurrences.

Implicit Node Management
Nodes are automatically created upon edge insertion, ensuring that the graph only contains components
that actually participate in data transfers:
void DotGraphLogger::addEdge (uint32_t from, const std::string& fromType,
uint32_t to, const std::string& toType,
uint32_t sizeBits, uint32_t times) {

std::string fromNode = formatNode(from, fromType);
std::string toNode = formatNode(to, toType);

dotFile << " \"" << fromNode << "\" -> \"" << toNode
<< "\" [label=\"" << std::dec << times << "x "
<< std::dec << sizeBits << " bits\"];\n";

Listing 4.4: Edge-based Node Creation

4.6.3. Usage Example

The following example creates a simple data flow pipeline where:

* A Host sends 256 bits of data to a CIMCrossbar;
» The CIMCrossbar processes the data (valid column width: 64) and sends 64 bits to an Accumulator;

» Bandwidth constraints are defined between components (1,000 bits/unit time for host-to-crossbar,
800 bits/unit time for crossbar-to-accumulator);

+ All transfers are automatically logged into topology.dot.

// Create interconnect with visualization
Interconnect ic("topology.dot");

// Register components

CIMCrossbar crossbar (CROSSBAR_SIZE, &ic, 256, 64);
Host host (1024, &ic);

Accumulator acc(512, &ic);

// Set bandwidth constraints
ic.setBandWidth(host.getAddress (), crossbar.getAddress(), 1000);
ic.setBandWidth(crossbar.getAddress (), acc.getAddress(), 800);

// Data transfers are logged automatically
host.send(crossbar.getAddress(), 256);
crossbar.send(acc.getAddress());

Listing 4.5: System Usage Example

The generated DOT file is shown below:

digraph InterconnectGraph {
"0x1000 Host" -> "0x2000 Crossbar" [label="1x 256 bits"];
"0x2000 Crossbar" -> "0x3000 Accumulator" [label="1x 64 bits"];

Listing 4.6: DOT File Output Format

This DOT description can be rendered with Graphviz, e.g., dot -Tpng topology.dot -o topology.png,
producing the visualization in Figure 4.3. The diagram illustrates that the Host (0x1000) sends 256 bits
to the Crossbar (0x2000) once, and the Crossbar subsequently transmits 64 bits to the Accumulator
(0x3000). The edge labels in the diagram show frequency and size of exchanged data.



4.7. Conclusion 36

0x1000 Host

1x 256 bits

0x2000 Crossbar

1x 64 bits

0x3000 Accumulator

Figure 4.3: Visualization of connectivity and data flow from the example.

4.6.4. Benefits
The topology visualization provides multiple benefits:

1. Debugging Aid: Simplifies detection of connectivity or configuration issues;
2. Performance Analysis: Reveals data flow patterns and possible communication bottlenecks;
3. Documentation: Generators up-to-date architecture diagrams;

Overall, this feature provides a non-intrusive and effective mechanism for visualizing and analyzing the
complex interactions and bit-level data exchanges between components in the architecture.

4.7. Conclusion

This chapter presented a comprehensive implementation of the proposed multi-tile CIM accelerator simu-
lator, detailing its three-level hierarchical architecture from fundamental components to complete neural
networks. The implementation accurately models both computational operations and communication
constraints through a bandwidth-aware interconnect fabric that functions as the central nervous system
of the accelerator. By maintaining consistent interfaces across all abstraction levels and integrating
detailed performance monitoring capabilities, the simulator offers a robust framework for analyzing the
complex trade-offs between computational efficiency and communication overhead in realistic neural
network workloads. The inclusion of topology visualization further strengthens its analytical utility by
providing intuitive insights into data flow patterns and potential architectural bottlenecks. Overall, the
chapter delivers a practical and extensible simulation platform that bridges device-level modeling with
system-level evaluation, enabling comprehensive exploration of CIM accelerator design.



Results and Discussion

This chapter presents experimental results and analysis of FCNN and CNN implementations on MNIST
using the proposed data traffic simulator. Section 5.1 gives an overview of the Neural Network archi-
tectures for the experiment. Section 5.2 presents the topology graph of the FCNN to demonstrate the
framework’s visualization capabilities. Section 5.3 details the evaluation methodology for key metrics
including crossbar utilization, total transferred bits, crossbar amount and traffic delay. Section 5.4 ana-
lyzes the results of FCNN, exploring how crossbar size, bit precision and bandwidth affect the metrices.
Section 5.5 analyzes the results of CNN, and mainly compares Im2Col and K2M conversion methods,
revealing fundamental trade-offs between computational efficiency and resource requirements, culmi-
nating in practical design guidelines for different application constraints. Section 5.6 summarizes the
experimental results.

5.1. Neural Network Architectures

The study employed two distinct neural network architectures for processing individual images from the
MNIST dataset. Both architectures take a single 28x28 grayscale image as input. The specifications of
each architecture are detailed below.

5.1.1. Fully Connected Neural Network Architecture

The FCNN architecture processes flattened image data through multiple dense layers with ReLU ac-
tivation functions, culminating in a softmax output layer for 10-class classification. The layer-by-layer
specification of the proposed FCNN is presented in Table 5.1. Each row corresponds to a layer in the
model, while the columns capture different descriptive attributes:

» Layer Type specifies the role of the layer in the network (e.g., input, hidden dense layers, output).

» Output Shape indicates the dimensionality of the data as it exits the layer. The format follows the
convention (n), where n is the number of elements in the output vector. For example, the input
layer produces a vector of size 784, while the first hidden layer outputs 512 activations.

* Number of Units denotes the number of neurons (trainable units) in the layer. This field is only
applicable to dense layers, so it is marked with “-” for the input layer.

+ Activation specifies the activation function applied at the layer’s output. For hidden layers, ReLU
is used, while the output layer applies the softmax function. Layers without a non-linear transfor-

“w

mation ,such as the input layer, are marked with “-".

Table 5.1: Architecture of the Fully Connected Neural Network (FCNN) for MNIST

Layer Type Output Shape Number of Units Activation
Input Layer (784) - -

Dense (Hidden Layer 1) (512) 512 RelLU
Dense (Hidden Layer 2) (32) 32 ReLU
Dense (Output Layer) (10) 10 Softmax

37



5.2. Topology Visualization Case of FCNN 38

5.1.2. Convolution Neural Network Architecture

The proposed CNN architecture processes individual images through convolution and pooling layers
for feature extraction, followed by dense layers for classification. The layer-by-layer specification of the
proposed CNN is shown in Table 5.2. Each row corresponds to a layer in the model, and the columns
capture the following descriptive attributes:

» Layer Type: Specifies the type of layer, such as convolution, pooling, flatten, or dense.
» Kernel/Stride: Indicates the size of the convolution or pooling kernel and the stride applied. For

layers that do not use a kernel (e.g., input, flatten, dense), this field is marked with “~".

» Output Shape: Gives the dimensionality of the data as it exits the layer. For convolutional and
pooling layers, the format (H, W, C) denotes the height, width, and number of channels of the
output feature map. For flatten and dense layers, the convention (n) is used, the same as in
Table 5.1, where n is the dimension of the output vector.

» Parameters: Reports the number of trainable parameters (weights and biases) in the layer. Layers
without parameters (e.g., input, pooling, flatten) are marked with “0”.

+ Activation: Same convention as in Table 5.1: convolutional and hidden dense layers use RelLU,
the output dense layer uses softmax, and layers without an activation function are marked with “-”.

Table 5.2: Architecture of the Proposed Convolution Neural Network for MNIST

Layer Type Kernel/Stride Output Shape Parameters Activation

Input - (28, 28, 1) 0 -
Conv2D 3x3, stride 1 (28, 28, 32) 320 RelLU
MaxPool2D 2x2, stride 2 (14, 14, 32) 0 -
Conv2D 3x3, stride 1 (14, 14, 64) 18,496 RelLU
MaxPool2D 2x2, stride 2 (7,7,64) 0 -
Conv2D 3x3, stride 1 (7,7,64) 36,928 RelLU
Flatten - (3136) 0 -
Dense - (64) 200,768 RelLU
Dense - (10) 650 Softmax

5.2. Topology Visualization Case of FCNN

To demonstrate the framework’s architectural visualization capabilities, Figure 5.1 presents the gener-
ated topology for the given FCNN implemented using 512 x 512 crossbars with 2-bit precision. The
topology reveals three critical aspects of the architecture:

* Weight Matrix Partitioning:
— Explicit mapping of sliced weight matrices to crossbar arrays (0x2000-0x5000);
— Visual confirmation of tiling patterns matching the neural network’s layers;
— Clear display of matrix slicing granularity (512x512 blocks).
* Precision-Aware Dataflow:
— 2-bit parallel datapaths;
— Progressive bit-width reduction following network architecture;

— Precision-preserving transitions between components with explicit annotation of the number
of bits.

+ Computational Pipeline:

— Crossbar arrays for matrix-vector multiplication;
— Paired accumulators and activation units;

The visualization enables verification of:

1. Correct weight matrix partitioning and crossbar mapping;
2. Consistency between expected and visualized bit-level data traffic across interconnections;



5.3. Analysis Methodology 39

0x1000 Host

x 512 bits 2x 272 bits [2

2x 272 bits

2x 512 bits 2x 512 bits x 512 bits
A
0x6000 Accumulator 0x7000 Accumulator
2x 256 bits 2x 256 bits

Y

y
0x8000 Activation 0x9000 A@

2x 256 bits [2x 256 bits
Y
0xa000 Crossbar

2x 64 bits 2x 10 bits

0xb000 Accumulator

x 32 bits
Rx 32 bits
0xd000 Crossbar

2x 20 bits

0xe000 Accumulator

0xf000 Activation

Figure 5.1: Architecture topology of the FCNN visualization.

3. Preservation of 2-bit precision through all transformations;
4. Proper accumulator-activation pairing relationships;
5. Dataflow continuity across sliced weight operations.

Particularly valuable is the explicit confirmation that the 784 — 512 — 32 — 10 network’s weight matri-
ces are properly sliced and distributed across the crossbar arrays while maintaining correct dimensional
reduction and 2-bit precision constraints throughout all parallel datapaths. Additionally, the visualization
exposes the amount of bits exchanged between crossbars, accumulators, and activation units, mak-
ing bandwidth requirements and potential communication bottlenecks directly observable alongside the
structural and precision-related aspects of the architecture.

5.3. Analysis Methodology

According to Section 4.5, the recorded metrics include:

* Crossbar utilization (U);

Total transferred bits (Biotar);
* Number of crossbars (N par);
» End-to-end clock delay (D.z.).
For a fixed neural network (NN) structure, the input variables are:
» Crossbar size (S);
» Bit precision (P);



5.4. Results and Analysis of FCNN 40

» Bandwidth (W).

5.3.1. Analysis of Static Metrics

Based on the bandwidth model in Section 3.5, only D... is affected by W. Therefore, for the first three
metrics (U, Biotal> Nzbar), the manuscript analyzes their relationship with S using dot-line charts, with
each line representing a fixed P. Thus, for a given P, each S maps to specific values of these metrics:

U= fl(S: P)
Biotar = f2(S, P) (5.1)
Napar = f3(S>P)

5.3.2. Delay Analysis
For Do, we first visualize the relationships through heat maps where:

» X-axis: S;

* Y-axis: W;

» Each map corresponds to a specific P;
* Cell color intensity represents D.a..

Next, for each fixed P, we identify the optimal crossbar size S that minimizes D.s. for a given W:

elay
S;elay = arg;nin DSQE(Sv VV; P) (52)

Consequently, for fixed P, each W determines:

* The optimal crossbar size 5§ezay;
+ Corresponding values of U, By,tq1, and Ny, through Eq. 5.1.

5.4. Results and Analysis of FCNN

The experimental setup employs the following configuration parameters:

+ Crossbar size: S = 2" x 2" where n € [5,10];
* Bit precision: 1-bit, 4-bit, and 8-bit representations;
+ Uniform bandwidth across all ports and channels, varying from 16 to 1024 bits/clock cycle.

5.4.1. Static Metrics Analysis

Figure 5.2 presents three key static metrics—crossbar utilization, total transferred bits, and crossbar
count—evaluated across different crossbar sizes and bit precisions. In each chart, the x-axis denotes
the crossbar size, the y-axis denotes the corresponding metric, and each line corresponds to a specific
bit precision.

Crossbar Utilization exhibits an inverse relationship with crossbar size, decreasing from 0.95 to less
than 0.1 for 1-bit precision and from 0.95 to 0.55 for 8-bit precision as S increases. This reduction
stems from increased fragmentation in larger crossbars. Notably, the utilization decrease slows between
28 x 28 and 2° x 2? for 4-bit and 8-bit precisions because the fixed 784-element input vector results in the
same first-layer utilization of 784/1, 024 for both crossbar sizes. The subsequent layers are too small to
significantly affect the overall utilization. This effect is less pronounced at smaller crossbar sizes, where
the influence of the second and third layers becomes more noticeable.

Total Transferred Bits demonstrates positive correlation with bit precision and negative correlation
with crossbar size. Larger crossbars reduce the required data transfer by decreasing the number of
column accumulations needed for weight matrix operations.

Crossbar Count follows similar trends to transferred bits, increasing with higher precision require-
ments and decreasing with larger crossbar sizes.



5.4. Results and Analysis of FCNN 41

Crossbar Usage Proportion Total Bits transferred Crossbar Amount

0.8

0.6

Crossbar Usage Proportion
Total Bits transferred
Crossbar Amount
=
5

0.4

0.2

5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10
Crossbar Size (2”n x 27n) Crossbar Size (2~n x 2”n) Crossbar Size (2”n x 27n)

Bit Precision
—— 1-bit 4-bit @~ 8-bit

Figure 5.2: Static metrics: crossbar utilization, total transferred bits, and crossbar count.

5.4.2. Crossbar Size Optimization for Bandwidth
The optimization process for 1-bit precision configurations yields the optimal crossbar sizes:

SSelay(W) = arg min D€2€(S7 W,P = ].-blt) (53)
S

Figure 5.3 illustrates the trade-off between crossbar size and delay across a range of bandwidth config-
urations (from 16 to 1,024 bits). The stars mark the optimal crossbar sizes for each bandwidth, where
the smallest crossbar achieves the lowest delay, while the optimal frontier curve connects these Pareto-
efficient points. Additionally, two significant bandwidth thresholds emerge from this analysis:

+ Critical Bandwidth (W.,.;; = 256): Below this threshold, the delay first decreases, then increases,
and eventually stabilizes. Beyond the threshold, the delay decreases monotonically with crossbar
sizes;

+ Saturation Bandwidth (W,,, = 512): No further delay improvement occurs when bandwidth ex-
ceeds this value.

In general, the optimal crossbar size S;,,,, generally increases with increasing available bandwidth,

suggesting a trade-off between these parameters.

5.4.3. Multi-Precision Bandwidth Analysis

Extending the optimization of Section 5.4.2 to multi-precision configurations leads to Figure 5.4, where
the x-axis denotes bandwidth(bits per unit time), the y-axises denote lowest delay and optimal crossbar
size, and each line corresponds to a specific bit precision. Several key insights are revealed:

» The minimal achievable delay shows diminishing returns with increasing bandwidth, reaching a
stable plateau after initial rapid improvement;

» Lower bit precision generally results in shorter delay, though the initial decrease is more gradual;

» Optimal crossbar sizes generally increase with available bandwidth, though the relationship is non-
monotonic;

» The optimal crossbar size is the same for 4-bit and 8-bit precision. For 1-bit precision, the optimal
size is generally not larger than those of the other two, except when limited by a 512-bit bandwidth,
which results in a larger optimal crossbar size.

The inflection point in the delay-bandwidth relationship represents a particularly efficient operating point,
simultaneously minimizing delay while requiring relatively modest crossbar sizes. This observation holds
across all tested precision configurations.



5.5. Results and Analysis of CNN 42

Delay vs Crossbar Size (1-bit Precision)
* = Optimal (Smallest Crossbar @ Lowest Delay)

o o BW=16 bits
102 BW=32 bits
BW=64 bits
BW=128 bits
BW=256 bits
BW=512 bits
BW=1024 bits
-%- Optimal Frontier

[ ]

9000

o
£
S
= * &
€
3 \ o o
- \
i) \
[ \
[s] N
\
*
f
|
* @

0 200 400 600 800 1000
Crossbar Size

Figure 5.3: Delay optimization analysis for 1-bit precision configurations.

5.5. Results and Analysis of CNN

The CNN configurations maintain identical parameters to the FCNN implementation described in Sec-
tion 5.4. Given the presence of convolution layers, both Im2Col (Section 2.2.3) and K2M (Section 2.2.3)
conversions are evaluated, with particular emphasis on their comparative performance metrics.

5.5.1. Static Metrics Analysis
The same as Figure 5.2, Figure 5.5 presents three fundamental static metrics evaluated across different
crossbar sizes and bit precisions..

Crossbar Utilization though generally decreases with crossbar size, demonstrates distinct patterns
between conversion methods. K2M maintains consistently high utilization (0.8-1.0) across all crossbar
sizes, decreasing only 20% or so as size increases from 2° x 2° to 219 x 219, In contrast, Im2Col shows
rapid utilization decay from almost 1.0 to less than 0.1 over the same range. This divergence stems
from K2M'’s generation of large, densely packed weight matrices that fully utilize crossbar resources,
while Im2Col’'s smaller matrices lead to fragmentation, particularly in marginal computation batches.
Additionally, lower bit precision results in reduced utilization for both methods, though the difference
between 4-bit and 8-bit precision remains minor.

Total Bits Transferred reveals that Im2Col requires much fewer bits than K2M across all configu-
rations, because K2M’s expanded matrix representations of convolution kernels. Both methods show
negative correlation with crossbar size, though there exists saturation for Im2Col, where additional size
provides nearly no reduction. In addition, the total bits of both methods increase constantly with higher
bit precision.

Crossbar Count K2M requires significantly higher resource counts (102—106), which consistently de-
crease as crossbar size increases. In contrast, Im2Col exhibits a more moderate decline, particularly
for crossbars larger than 26 x 26. Regarding bit precision, the crossbar count for K2M scales positively
with the bit precision, whereas Im2Col’s curves gradually converge, indicating better scalability for high-
precision implementations.

5.5.2. Multi-Precision Bandwidth Analysis

Extending the bandwidth optimization methodology from Section 5.4.2 yields the results shown in Fig-
ures 5.6. Similar to Figure 5.4, Figures 5.6a and 5.6b present the minimal achievable delays and the
corresponding optimal crossbar sizes across different bandwidths for the K2M and Im2Col methods,
where the x-axis denotes bandwidth(bits per unit time), the y-axises denote lowest delay and optimal
crossbar size, and each line corresponds to a specific bit precision. Several key insights are revealed:



5.5. Results and Analysis of CNN 43

Bandwidth Analysis for Different Bit Precisions

—e— Precision 1 bits
—=— Precision 4 bits

200 —&— Precision 8 bits

Lowest Delay (unit time)

200 400 600 800 1000

0
-@- Precision 1 bits
»
10001 _m. precision 4 bits /
k- Precision 8 bits

800

@
3
3

\

Crossbar Size
!
i
i
i
|
i
i
i
i
i
i
i
i
|
L

IS
3
3

200

0 200 400 600 800 1000
Bandwidth (bits/unit time)

Figure 5.4: Multi-precision bandwidth analysis: delays (top) and crossbar sizes (bottom).

Both methods gain lower latency with larger bandwidth or lower bit precision;
Both methods generally exhibit monotonic optimal crossbar size selection;

K2M demonstrates superior latency characteristics, maintaining delays 2 orders of magnitude
lower than Im2Col across all bandwidth constraints (10'-103 cycles vs 103-10° cycles);

Im2Col’s delay profile mirrors FCNN behavior, with consistent 256 x 256 optimal crossbar size for
1-bit precision regardless of bandwidth.

5.5.3. Comparative Analysis of Conversion Methods
The evaluation reveals fundamental trade-offs between K2M and Im2Col approaches:

K2M Advantages
+ Computational Efficiency: 100x lower latency and maximal crossbar utilization;
* Precision Scalability: Consistent performance gains across 1-8 bit precision levels.

Im2Col Advantages
* Resource Efficiency: 10-1,000% reduction in crossbar count requirements;
» Energy Efficiency: mostly 10x reduction in data transfers.

Design Guidelines The choice between methods depends on application constraints:
» Latency-Critical Systems: K2M is preferable when area/power budgets permit;
» Area/Energy-Constrained Designs: Im2Col offers superior efficiency.

This analysis demonstrates that while K2M achieves superior computational performance through ag-
gressive resource utilization, Im2Col remains competitive for resource-constrained implementations.
Furthermore, future architectures may benefit from hybrid approaches that dynamically select conver-
sion methods based on layer-specific requirements.



5.6. Conclusion

44

Crossbar Usage Proportion Total Bits transferred

-
Total Bits transferred

d Source
—e— 1-bit (cnn-k2col)  —e— &-bit (cnn-k2col)  ~@- 4-bit (cnn-im2col)
—e— 4-bit (cnn-k2col)  -@- 1-bit (cnn-im2col)  -®@- 8-bit (cnn-im2col)

Figure 5.5: Crossbar utilization, data transfer, and count across sizes and precisions (K2M vs. Im2Col).

5.6. Conclusion

This chapter presented and analyzed the experimental results of FCNN and CNN implementations on
MNIST using the proposed data traffic simulator. For FCNNs, the results showed that crossbar utilization
decreases with larger crossbar sizes, while total transferred bits and crossbar counts increase with
higher bit precision but improve with larger crossbars. Delay analysis revealed two critical thresholds:
a critical bandwidth of 256 bits/clock, below which delay fluctuates, and a saturation bandwidth of 512
bits/clock, beyond which no further delay improvement is observed. For CNNs, comparison of K2M and
Im2Col methods highlighted clear contrasts: K2M achieved up to 100x lower latency and consistently
high utilization, but required up to 10° crossbars and far greater data movement; in contrast, Im2Col
reduced crossbar count by up to three orders of magnitude and cut transferred bits by about 10x, though
at the cost of longer delays (103-10° cycles). Together, these findings underline fundamental trade-
offs between latency and efficiency, providing concrete design guidelines—K2M for performance-critical

systems and Im2Col for area- or energy-constrained designs.



5.6. Conclusion

45

Bandwidth Analysis for Different Bit Precisions

1600 —e~ Precision 1 bits
—=— Precision 4 bits
—— Precision 8 bits
1400
400
200 K
0
0 200 400 600 800 1000
~e- Precision 1 bits
10007 g precision 4 bits J/ 2
~&- Precision 8 bits /
Vi
/
800 v
J/
8 S
& 600
5
© 400 7
<
200 L e
o e — n

400 600
Bandwidth (bits/unit time)

(a) K2M: (Top) minimal achievable delays and (Bottom) corresponding

optimal crossbar sizes.

1000

Lowest Delay (unit time)

Bandwidth Analysis for Different Bit Precisions

140000

120000

100000

80000

60000

40000

20000

Crossbar Size

0

1000

800

600

400

200

—e— Precision 1 bits
—=- Precision 4 bits
—&— Precision 8 bits

.

0 200 400 600 800 1000
e~ Precision 1 bits =
Precision 4 bits e

-k~ Precision 8 bits el
' ==
/ -
/ -
/ -
]
0 200 800 1000

400 600
Bandwidth (bits/unit time)

corresponding optimal crossbar sizes.

Figure 5.6: Multi-precision bandwidth analysis of (a) K2M and (b) Im2Col.

(b) Im2Col: (Top) minimal achievable delays and (Bottom)




Conclusions

This chapter summarizes all the works of the manuscript and provides some potential future research
directions. Section 6.1 provides a summary of the thesis. Section 6.2 offers some promising directions.

6.1. Summary

Chapter 1 established the research foundation by identifying key limitations in von Neumann architec-
tures and formulating specific gaps in current multi-tile CIM design methodologies. Therefore, the thesis
focused on filling the gaps in certain application scenarios, developing a network traffic simulation frame-
work for multi-tile CIM accelerator in NN processing.

Chapter 2 established the theoretical foundations of CIM architectures. For neural network implementa-
tions, it identified critical challenges in matrix-to-crossbar mapping and dataflow optimization, particularly
for convolution layers which require specialized vector-matrix conversion. Two conversion methods were
analyzed: Im2Col, which enables dense computation at the cost of input duplication, and K2M, which
preserves input structure but produces large sparse matrices.

Chapter 3 presented a systematic modeling framework that abstracts neural network operations into
hardware-executable patterns. It detailed MVM operations in resistive crossbars with mapping and tiling
strategies, introduced top-down modeling from Neural Network level to component level, and incorpo-
rated a bandwidth-constrained communication model to enhance the model’s realism.

Chapter 4 described the hierarchical simulator, from component-level modules to full neural network
integration, based on the modeling framework. It also implemented an interconnect subsystem, which
manages the connection between components and records metrics to quantify computational resource
utilization and communication efficiency. Furthermore, the chapter introduced a topology visualization
functionality integrated into the interconnect subsystem, which captures connectivity and dataflow during
simulation and generates Graphviz-based diagrams.

In general, the work made three key contributions:

» Parameterized optimization framework: the simulation framework accepts high-level specifica-
tions such as network architecture, bit precision, crossbar size, and bandwidth constraints, and
automatically generates hardware mappings through efficient matrix-to-crossbar allocation and
interconnect topology construction. This provides a structured methodology for design-space ex-
ploration, integrating both algorithmic and hardware considerations.

* Quantitative evaluation framework: the interconnect subsystem records metrics such as av-
erage crossbar utilization (resource efficiency), total crossbar count (hardware cost), bit-transfer
counts (energy proxy), and total inference cycles (latency), enabling multidimensional assessment
of multi-tile CIM accelerator performance, offering deeper insight into performance bottlenecks and
guiding more informed design optimizations.

» Topology visualization: component interconnections recorded by the interconnect subsystem
are visualized using Graphviz. The intuitive diagram allows rapid inspection of connectivity and

46



6.2. Future Work 47

dataflow, accelerating early-stage design by helping designers detect mismatches, identify bottle-
necks, and make informed optimization decisions before detailed implementation.

Finally, Chapter 5 validated the framework through a comprehensive evaluation of FCNN and CNN
implementations on MNIST using the proposed CIM simulator, analyzing four key metrics across varying
crossbar sizes, bit precisions, and bandwidth constraints. For FCNNs, results showed a fundamental
trade-off between crossbar utilization and computational latency. CNN analysis highlighted differences
between Im2Col and K2M: K2M achieved up to 100x lower latency through maximal utilization (0.8—1.0),
while Im2Col reduced crossbar count and data transfer energy by 10—1,000x. These results suggested
design guidelines: K2M suits latency-critical systems with sufficient resources, whereas Im2Col favors
area- or energy-constrained applications, pointing to potential hybrid approaches that select methods
per layer. Experiments also revealed the effect of bandwidth on optimal crossbar size: systems with
higher bandwidth capacity usually benefit from larger crossbar arrays, achieving lower delays, but at the
cost of reduced utilization.

Reproducibility The complete source code of the multi-tile CIM traffic simulation framework is pub-
licly available at https://github.com/Zz-sev-point/IC_SIM. This repository provides instructions, example
configurations, and scripts to reproduce the experiments presented in this thesis.

6.2. Future Work

This section outlines several promising directions to enhance the proposed traffic simulation framework
for CIM accelerator:

» Mapping Optimization: While the current framework provides effective models for mapping MVM
operations in FCNN and convolution operations in CNN to CIM crossbars, further optimization of
these mapping algorithms could yield significant improvements in resource utilization and reduc-
tion of data traffic overhead. Potential approaches include dynamic tile-size adaptation, optimizing
spatial or temporal chunking of feature maps and weights to minimize data transfers and maximize
hardware utilization, as explored in recent mapping strategies for CIM workloads [21]. Addition-
ally, intelligent bit-slicing strategies for multi-bit precision operations can both improve precision
and reduce resource usage. For instance, improved bit-level mapping schemes reconfigure weight
storage within crossbar arrays to minimize array count, while bit-slicing techniques compensate
for analog variability in memory elements and reconstruct high-precision results via partial out-
puts [5, 34]. Beyond tiling and bit-slicing, sparsity-adaptive mapping methods can further enhance
utilization by dynamically packing non-zero weights and avoiding idle devices, as demonstrated in
sparsity-aware CIM accelerators [Zhang_2024, 18].

» Heterogeneous Configuration Support: The framework could be extended to support heteroge-
neous crossbar configurations, where:

— Different crossbar sizes are employed for different NN layers to maximize resource utilization;

— Variable bandwidth allocation across ports and channels is able to better reflects real-world
hardware constraints.

The existing framework architecture already provides interfaces for such multi-configuration simu-
lations, requiring primarily implementation extensions.

» Hybrid Conversion Methodology: Current limitations require selecting either Im2Col or K2M
conversion methods for entire simulations. Future development should enable simultaneous simu-
lation of heterogeneous systems containing multiple accelerator cores optimized for different con-
version approaches. This would better model practical systems that may employ specialized cores
for different layer types or computational patterns.

» Conflict-Aware Delay Modeling: As identified in Section 3.5, the current bandwidth model does
not account for access conflicts in shared-resource scenarios. Future developments will focus on
modeling contention effects when multiple crossbars simultaneously access accumulators. This
will involve implementing configurable arbitration protocols (e.g., time-multiplexed, priority-based,
or hardware-managed) with associated control-overhead modeling, drawing on designs and anal-
yses of arbitration schemes in digital systems [9]. Queuing theory will be integrated to estimate
contention-induced delays under varying traffic patterns, while preserving the framework’s cycle-


https://github.com/Zz-sev-point/IC_SIM

6.2. Future Work 48

accurate simulation capability. These enhancements will enable more realistic performance pre-
diction for architectures employing resource-sharing optimization techniques.

» Support for Diverse Neural Network Layers: The framework will be extended to support contem-
porary neural network architectures beyond basic fully-connected and convolution layers. Priority
additions include:

— Recurrent layers (LSTM, GRU): Real-hardware implementations of recurrent models using
CIM have been demonstrated—for instance, LSTM networks realized in memristor crossbar
arrays, enabling high-density, low-latency edge inference [25].

— Attention layers for transformers: Attention mechanisms, a core component of transformer
architectures, have been incorporated into CIM accelerators. Designs such as Attar (RRAM-
based attention engine with in-memory softmax) and analog in-memory attention architec-
tures highlight practical crossbar-based implementations of Q/K/V computations and softmax
[24, 22].

— Sparse convolution layers: Sparse attention accelerators like CPSAA utilize crossbar-based
PIM to process sparse attention patterns efficiently, which can be generalized to sparse con-
volution kernels as well [Li2022CPSAA].

Each layer type will implement its unique crossbar mapping strategy and precision requirements.
This expansion will significantly increase the framework’s practical utility for tasks like neural archi-
tecture search and accelerator co-design.

* Training Operation Simulation: While currently limited to forward propagation, the framework
will be extended to model the complete training cycle, including both forward and backward prop-
agation [36]. This involves:

1. Gradient computation through crossbar arrays with non-ideal conductance updates, as mod-
eled by simulation tools like TxSim, which captures forward, backward, and weight-update
non-idealities in resistive crossbars [35];

2. Weight update noise modeling accounting for device programming variability;
3. Precision management during backpropagation operations.

Special attention will be given to in-situ training algorithms that leverage CIM'’s parallel computation
capabilities. The simulation will track training-specific metrics such as convergence rate under
precision constraints and gradient quality degradation. This capability will open new research
directions in on-device learning and adaptive edge Al systems.



(1]

(2]

[3]

[4]

[5]

[6]
[7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

References

Baeldung. Convolution as Matrix Multiplication. https://www.baeldung. com/cs/convolution-
matrix-multiplication. Accessed: 2023-11-01. 2023.

Rajendra Bishnoi et al. “Energy-efficient Computation-In-Memory Architecture using Emerging
Technologies”. In: 2023 International Conference on Microelectronics (ICM). 2023, pp. 325-334.
DOI: 10.1109/ICM60448.2023.10378889.

Tiancheng Cao et al. “Parasitic-Aware Modelling for Neural Networks Implemented with Memristor
Crossbar Array”. In: 2021 IEEE 14th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC). 2021, pp. 122—-126. DOI: 10.1109/MCS0C51149.2021.00025.

Xiang Chen et al. Edge Computing Enabled Real-Time Video Analysis via Adaptive Spatial-Temporal
Semantic Filtering. 2024. arXiv: 2402 . 18927 [cs.CV]. URL: https: //arxiv.org/abs/2402.
18927.

Zhenjiao Chen et al. “Advancing Mapping Strategies and Circuit Optimization for Signed Oper-
ations in Compute-in-Memory Architecture”. In: Electronics 14.7 (2025). ISSN: 2079-9292. DOI:
10.3390/electronics14071340. URL: https://www.mdpi.com/2079-9292/14/7/1340.

NVIDIA Developer. NVIDIA Isaac. 2025. URL: https://developer.nvidia.com/isaac.

J. J. Dongarra et al. “An Extended Set of FORTRAN Basic Linear Algebra Subprograms”. In: ACM
Transactions on Mathematical Software (TOMS) 14.1 (1988), pp. 1-17. DOI: 10.1145/42288.
42291.

Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale”. In: CoRR abs/2010.11929 (2020). arXiv: 2010.11929. URL: https://arxiv.org/abs/
2010.11929.

F. El Guibaly. “Design and analysis of arbitration protocols”. In: IEEE Transactions on Computers
38.2 (1989), pp. 161-171. DOI: 10.1109/12.16493.

John Ellson et al. “Graphviz and Dynagraph - Static and Dynamic Graph Drawing Tools”. In: Graph
Drawing Software (2004), pp. 127-148. DOI: 10.1007/978-3-642-18638-7_6. URL: https:
//1link.springer.com/chapter/10.1007/978-3-642-18638-7_6.

Ella Gale. TiO2-based memristors and ReRAM: materials, mechanisms and models (a review).
Sept. 2014. DOI: 10.1088/0268-1242/29/10/104004. URL: https://dx.doi.org/10.1088/
0268-1242/29/10/104004.

Simcha Gochman et al. “Introduction to Intel® Core™Duo Processor Architecture”. In: Intel Tech-
nology Journal 10.2 (2006). Intel® Technology Journal, pp. 89-97.

Noam Gozlan, Tom Levi, Marc Louboutin, et al. “Quantum advantage in learning from experiments”.
In: Nature 606 (June 2022), pp. 468-473. DOI: 10.1038/s41586-022-04992-8. URL: https:
//www.nature.com/articles/s41586-022-04992-8.

Robert M. Gray. “Toeplitz and Circulant Matrices: A Review”. In: Foundations and Trends in Com-
munications and Information Theory 2.3 (2006), pp. 155-239. DOI: 10.1561/0100000006. URL:
https://ee.stanford.edu/~gray/toeplitz.pdf.

Yan-Cheng Guo et al. “CIMR-V: An End-to-End SRAM-based CIM Accelerator with RISC-V for Al
Edge Device”. In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). 2024,
pp. 1-5. DOI: 10.1109/ISCAS58744.2024.10558177.

OpenGenus 1Q. Understanding im2col: A Key Concept in Convolutional Neural Networks. https:
//iq.opengenus.org/im2col/. Accessed: 2024-06-15. 2023.

Mike Johnson. Superscalar Microprocessor Design. Englewood Cliffs, NJ: Prentice Hall, 1990.
ISBN: 9780138756348.

Prabodh Katti, Bashir M. Al-Hashimi, and Bipin Rajendran. Sparsity-Aware Optimization of In-
Memory Bayesian Binary Neural Network Accelerators. 2024. arXiv: 2411.07842 [cs.ET]. URL:
https://arxiv.org/abs/2411.07842.

49


https://www.baeldung.com/cs/convolution-matrix-multiplication
https://www.baeldung.com/cs/convolution-matrix-multiplication
https://doi.org/10.1109/ICM60448.2023.10378889
https://doi.org/10.1109/MCSoC51149.2021.00025
https://arxiv.org/abs/2402.18927
https://arxiv.org/abs/2402.18927
https://arxiv.org/abs/2402.18927
https://doi.org/10.3390/electronics14071340
https://www.mdpi.com/2079-9292/14/7/1340
https://developer.nvidia.com/isaac
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42291
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://doi.org/10.1109/12.16493
https://doi.org/10.1007/978-3-642-18638-7_6
https://link.springer.com/chapter/10.1007/978-3-642-18638-7_6
https://link.springer.com/chapter/10.1007/978-3-642-18638-7_6
https://doi.org/10.1088/0268-1242/29/10/104004
https://dx.doi.org/10.1088/0268-1242/29/10/104004
https://dx.doi.org/10.1088/0268-1242/29/10/104004
https://doi.org/10.1038/s41586-022-04992-8
https://www.nature.com/articles/s41586-022-04992-8
https://www.nature.com/articles/s41586-022-04992-8
https://doi.org/10.1561/0100000006
https://ee.stanford.edu/~gray/toeplitz.pdf
https://doi.org/10.1109/ISCAS58744.2024.10558177
https://iq.opengenus.org/im2col/
https://iq.opengenus.org/im2col/
https://arxiv.org/abs/2411.07842
https://arxiv.org/abs/2411.07842

References 50

[19] Riduan Khaddam-Aljameh et al. “‘HERMES-Core—A 1.59-TOPS/mm2 PCM on 14-nm CMOS In-
Memory Compute Core Using 300-ps/LSB Linearized CCO-Based ADCs". In: IEEE Journal of
Solid-State Circuits 57.4 (2022), pp. 1027-1038. DOI: 10.1109/JSSC.2022.3140414.

[20] Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with deep convo-
lutional neural networks”. In: vol. 60. 6. New York, NY, USA: Association for Computing Machinery,
May 2017, pp. 84-90. DOI: 10.1145/3065386. URL: https://doi-org.tudelft.idm.oclc.org/
10.1145/3065386.

[21] Souvik Kundu et al. CiMNet: Towards Joint Optimization for DNN Architecture and Configuration
for Compute-In-Memory Hardware. 2024. arXiv: 2402.11780 [cs.AR]. URL: https://arxiv.org/
abs/2402.11780.

[22] Ann Franchesca Laguna et al. “Hardware-Software Co-Design of an In-Memory Transformer Net-
work Accelerator”. In: Frontiers in Electronics 3 (2022). ISSN: 2673-5857. DOI: 10.3389/felec.
2022 .847069. URL: https://www.frontiersin. org/ journals/electronics/articles/10.
3389/felec.2022.847069.

[23] Dongjae Lee et al. “Analysis of Data Transfer Bottlenecks in Commercial PIM Systems: A Study
With UPMEM-PIM”. In: IEEE computer architecture letters 2 (2024), p. 23.

[24] Bing Li et al. “Attar: RRAM-based in-memory attention accelerator with software-hardware co-
optimization”. In: Science China Information Sciences 68.3 (2025), p. 132401. DOI: 10. 1007/
$11432-024-4247-4. URL: https://doi.org/10.1007/s11432-024-4247-4.

[25] CanLietal.“Long short-term memory networks in memristor crossbars”. In: CoRR abs/1805.11801
(2018). arXiv: 1805.11801. URL: http://arxiv.org/abs/1805.11801.

[26] Yandong Luo et al. “A FeFET-Based ADC Offset Robust Compute-In-Memory Architecture for
Streaming Keyword Spotting (KWS)”. In: IEEE Transactions on Emerging Topics in Computing
12.1 (2024), pp. 23—-34. DOI: 10.1109/TETC.2023.3345346.

[27] S. Mahadevan et al. “Network traffic generator model for fast network-on-chip simulation”. In: De-
sign, Automation and Test in Europe. 2005, 780—785 Vol. 2. DOI: 10.1109/DATE.2005. 22.

[28] Linyan Mei et al. “A Uniform Latency Model for DNN Accelerators with Diverse Architectures and
Dataflows”. In: 2022 Design, Automation Test in Europe Conference Exhibition (DATE). 2022,
pp. 220-225. DOI: 10.23919/DATE54114.2022.9774728.

[29] Onur Mutlu et al. “Processing Data Where It Makes Sense: Enabling In-Memory Computation”. In:
ACM Computing Surveys 52.3 (2019). Covers modern approaches (e.g., PIM, CXL) to mitigate
the memory wall., pp. 1-39. DOI: 10.1145/3329785. URL: https://arxiv.org/abs/1903.03988.

[30] Mythic. M1076 Analog Matrix Processor. 2025. URL: https : //mythic . ai/products/m1076-

analog-matrix-processor/.

[31] James W. Nilsson and Susan A. Riedel. Electric Circuits. 10th. Pearson, 2015. Chap. 24 (Kirch-
hoff's Laws), pp. 35-42, 78-92. ISBN: 978-0133760033.

[32] James W. Nilsson and Susan A. Riedel. Electric Circuits. 10th. Pearson, 2015. Chap. 4, pp. 3542,
78-92. ISBN: 978-0133760033.

[33] David A. Patterson and John L. Hennessy. Computer Organization and Design: The Hardware/-
Software Interface. 5th. Morgan Kaufmann, 2017. Chap. 1.4: The von Neumann Model, pp. 23—-28.
ISBN: 978-0124077263.

[34] Rebecca Pelke et al. CLSA-CIM: A Cross-Layer Scheduling Approach for Computing-in-Memory
Architectures. 2024. arXiv: 2401.07671 [cs.AR]. URL: https://arxiv.org/abs/2401.07671.

[35] Sourjya Roy et al. TxSim:Modeling Training of Deep Neural Networks on Resistive Crossbar Sys-
tems. 2021. arXiv: 2002.11151 [cs.LG]. URL: https://arxiv.org/abs/2002.11151.

[36] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations by
back-propagating errors”. In: Nature 323.6088 (1986), pp. 533-536. DOI: 10 . 1038/ 323533a0.
URL: https://www.nature.com/articles/323533a0.

[37] Siddharth Samsi et al. From Words to Watts: Benchmarking the Energy Costs of Large Language
Model Inference. 2023. arXiv: 2310.03003 [cs.CL]. URL: https://arxiv.org/abs/2310.03003.

[38] Samsung Semiconductor. HBM-PIM: Cutting-edge memory technology to accelerate next-generation

Al. 2023. URL: https://semiconductor . samsung . com/news - events/tech-blog/hbm-pim-
cutting-edge-memory-technology-to-accelerate-next-generation-ai/.


https://doi.org/10.1109/JSSC.2022.3140414
https://doi.org/10.1145/3065386
https://doi-org.tudelft.idm.oclc.org/10.1145/3065386
https://doi-org.tudelft.idm.oclc.org/10.1145/3065386
https://arxiv.org/abs/2402.11780
https://arxiv.org/abs/2402.11780
https://arxiv.org/abs/2402.11780
https://doi.org/10.3389/felec.2022.847069
https://doi.org/10.3389/felec.2022.847069
https://www.frontiersin.org/journals/electronics/articles/10.3389/felec.2022.847069
https://www.frontiersin.org/journals/electronics/articles/10.3389/felec.2022.847069
https://doi.org/10.1007/s11432-024-4247-4
https://doi.org/10.1007/s11432-024-4247-4
https://doi.org/10.1007/s11432-024-4247-4
https://arxiv.org/abs/1805.11801
http://arxiv.org/abs/1805.11801
https://doi.org/10.1109/TETC.2023.3345346
https://doi.org/10.1109/DATE.2005.22
https://doi.org/10.23919/DATE54114.2022.9774728
https://doi.org/10.1145/3329785
https://arxiv.org/abs/1903.03988
https://mythic.ai/products/m1076-analog-matrix-processor/
https://mythic.ai/products/m1076-analog-matrix-processor/
https://arxiv.org/abs/2401.07671
https://arxiv.org/abs/2401.07671
https://arxiv.org/abs/2002.11151
https://arxiv.org/abs/2002.11151
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://arxiv.org/abs/2310.03003
https://arxiv.org/abs/2310.03003
https://semiconductor.samsung.com/news-events/tech-blog/hbm-pim-cutting-edge-memory-technology-to-accelerate-next-generation-ai/
https://semiconductor.samsung.com/news-events/tech-blog/hbm-pim-cutting-edge-memory-technology-to-accelerate-next-generation-ai/

References 51

[39]

[40]

[41]

[42]

Ghazi Sarwat Syed, Manuel Le Gallo, and Abu Sebastian. “Phase-Change Memory for In-Memory
Computing”. In: Chemical Reviews 125.11 (2025), pp. 5163-5194. DOI: 10.1021/acs . chemrev.
4c00670. URL: https://doi.org/10.1021/acs.chemrev.4c00670.

Andrew Waterman and Krste Asanovi¢. The RISC-V Instruction Set Manual, Volume I: User-Level
ISA. Tech. rep. UCB/EECS-2014-54. Original RISC-V ISA specification (v2.0). University of Cali-
fornia, Berkeley, 2014. URL: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-
2014-54 .html.

William A. Wulf and Sally A. McKee. “Hitting the Memory Wall: Implications of the Obvious”. In:
ACM SIGARCH Computer Architecture News 23.1 (1995), pp. 20-24. DOI: 10.1145/216585 .
216588.

Furgan Zahoor, Tun Zainal Azni Zulkifli, and Farooq Ahmad Khanday. “Resistive Random Access
Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell
(mlc) Storage, Modeling, and Applications”. In: Nanoscale Research Letters 15.1 (2020), p. 90.
DOI: 10.1186/s11671-020-03299-9. URL: https://doi.org/10.1186/s11671-020-03299-9.


https://doi.org/10.1021/acs.chemrev.4c00670
https://doi.org/10.1021/acs.chemrev.4c00670
https://doi.org/10.1021/acs.chemrev.4c00670
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1186/s11671-020-03299-9
https://doi.org/10.1186/s11671-020-03299-9

	Preface
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Problem Statement
	Research Objectives
	Scope
	Contributions
	Thesis Outline

	Background & Related Works
	Computation-in-memory (CIM)
	Definition
	Current CIM Archtitectures
	Advantage of CIM

	CIM for Neural Networks
	Matrix-to-Crossbar Mapping
	Dataflow Strategies
	Convolution-to-MVM Conversion Methods


	Modeling Methodology
	Matrix-Vector Multiplication
	Matrix Mapping
	Input Vector Application and Output Readout
	Matrix Tiling for Large-Scale Matrices

	Multi-Bit MVM Using Single-Bit Crossbars
	Problem Statement
	Data Representation
	Crossbar Organization
	Computation Process
	Data Traffic and Transfer Delay Analysis
	Motivational Example

	Neural Network Layer Modeling
	Fully Connected Layer Architecture
	Convolution Layer Architecture
	Pooling and Flattening Layer Architectures

	Component-Level Modeling
	CIM Crossbar Arrays
	Accumulator Module
	Activation Function Module
	Pooling Unit
	Flattening Unit

	Bandwidth-Constrained Communication Model
	Model Motivation and Formulation
	Implementation Framework

	Conclusion

	Implementation
	Implementation Architecture Overview
	System Hierarchy
	Data Flow Mechanism

	Component Implementation
	Basic Processing Component
	Specialized Processing Component

	Neural Network Layer Implementation
	Fully-Connected Layer Implementation
	Convolution Layer Implementation

	Neural Network Implementation
	Layer Composition and Connectivity
	Timing and Performance Analysis
	TensorFlow-style Interface

	Interconnect Implementation
	Data Structure Organization
	Address Space Management
	Bandwidth-Constrained Routing
	Performance Monitoring Framework

	Topology Visualization
	Implementation
	Key Features
	Usage Example
	Benefits

	Conclusion

	Results and Discussion
	Neural Network Architectures
	Fully Connected Neural Network Architecture
	Convolution Neural Network Architecture

	Topology Visualization Case of FCNN
	Analysis Methodology
	Analysis of Static Metrics
	Delay Analysis

	Results and Analysis of FCNN
	Static Metrics Analysis
	Crossbar Size Optimization for Bandwidth
	Multi-Precision Bandwidth Analysis

	Results and Analysis of CNN
	Static Metrics Analysis
	Multi-Precision Bandwidth Analysis
	Comparative Analysis of Conversion Methods

	Conclusion

	Conclusions
	Summary
	Future Work

	References
	空白页面

