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1
Introduction

High expenses toward the upkeep and servicing of aircraft engines are driving the aviation industry to
utilize condition monitoring data for optimal decision-making and improving operating efficiency. AI-driven
methods are particularly valued for their ability to understand complex patterns, handle uncertainties in
measurements, and overcome the challenges posed by the reduced number of sensors on turbofan engines.

Deep learning techniques are becoming the method of choice for their proficiency in autonomously
identifying features and deciphering complex relationships within data. However, the reliance on simulated
datasets for Prognostics and Health Management (PHM) in aircraft engines raises issues regarding their
applicability to real-world conditions. Further complicating this issue is the lack of failure data compared to
normal operating data which leads to class imbalance and limits the performance of fault detection models.

This study aims to explore the potential of Generative Adversarial Networks (GANs) to mitigate the
class imbalance issue in real-world turbofan engine data, thereby improving the performance of deep learning
models in fault detection tasks. Since their introduction in 2014, GANs have demonstrated remarkable
proficiency in creating synthetic data that closely mimics the characteristics of original datasets.

Focusing on operational and gas path parameters collected from General Electric Next Generation
(GEnx) turbofan engines, this research establishes a baseline model first using Recurrent Neural Networks
(RNNs) for fault detection. Then, by generating synthetic time series failure data through a GAN and
assessing its impact on the model’s classification accuracy, this work aims to demonstrate the value of data
augmentation in aerospace maintenance. Additionally, recognizing the ongoing challenge in assessing the
realism of synthetic time series data, this study also proposes an innovative validation approach employing
a GEnx Gas Path Analysis (GPA) engine performance model to ensure the generated data accurately
reflects the engines’ physical behaviors.

The report is organized into two main parts. The first part, Part I, introduces the paper that lays the
groundwork for this investigation. Subsequently, the second section provides a comprehensive review of the
literature and related works that form the basis of this study.
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Highlights
Augmenting Aircraft Engine Flight Data with Generative Adversarial Networks for Fault Detec-
tion
Daniel Cisneros Acevedo

• To address the industry’s challenge of limited failure data compared to normal operational data, we propose a generative
adversarial network (GAN) for augmenting real-world GEnx turbofan data to improve deep learning fault detection
models.

• This study utilizes a 1D convolutional neural network Wasserstein GAN with Gradient Penalty (WGAN-GP) to generate
synthetic time series data.

• A GPA-based engine performance model is used to validate the physical relationship between the operating and gas
path parameters of the synthetic samples.

• Introducing GAN synthetic samples to the original dataset improved the F1-score of the baseline fault detection model
by an average of 2.8%.
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A B S T R A C T
Recent advancements in deep learning for aircraft engine fault detection have been predominantly
focused on research using simulated datasets. Despite significant progress, the gap between simulated
and real-world data underscores a pressing need for models that are more applicable and adaptable
to the aerospace industry. This discrepancy stems from factors such as water washes, maintenance
activities, noise, and nuanced variations in operating conditions. Further complicating this issue is
the lack of failure data leading to class imbalance and limiting the performance of fault classification
models. In response to these challenges, this study uses Generative Adversarial Networks (GANs)
to augment real-world failure data from General Electric Next Generation (GEnx) aircraft engines.
New synthetic data are generated using a Wasserstein GAN with Gradient Penalty (WGAN-GP)
and convolutional layers. Evaluation of GAN-generated data remains an active area of research.
Accordingly, we also introduce a novel validation method based on a GEnx Gas Path Analysis model.
This evaluation step revealed that the GAN could effectively generate gas path response variables that
were physically meaningful and consistent with the operating conditions. Furthermore, integrating
the GAN-generated data into the original dataset improved the baseline fault detection model’s F1-
score by an average of 2.8%. This research also highlights the GAN’s ability to learn and reproduce
degradation patterns applicable across different engine units, emphasizing its potential to overcome the
challenges between engine unit-to-unit variations. Additionally, this work can potentially be extended
to other engine families that require synthetic data to improve maintenance strategies.

1. Introduction
With the advent of big data and the Internet of Things,

the aviation industry is increasingly focused on leveraging
condition monitoring data for optimal decision-making and
enhancing operating efficiency [35]. This focus is particu-
larly relevant to the expensive maintenance of turbofan en-
gines [28], positioning Prognostics and Health Management
(PHM) as a critical area for investment and innovation. In
recent years, extensive research has been conducted into a
variety of methods aimed at diagnostics and prognostics of
industrial assets, ranging from statistical and physics-based
models to hybrid and artificial intelligence (AI) techniques
[32]. In particular, AI-driven techniques have gained traction
for their capacity to understand nonlinear patterns, handle
measurement uncertainties, and overcome limitations posed
by the reduced number of sensors in turbofan engines [16].
Motivated by the lack of public run-to-failure datasets avail-
able for research, the NASA Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) software [49]
has played a crucial role in the development and benchmark-
ing of machine learning models in turbofan engine PHM.

Deep learning approaches have emerged as a preferred
research area due to their ability to automatically extract
features and learn complex relationships in the data [55, 56].
This trend continues to persist after the introduction of
the new C-MAPSS (N-CMAPSS) dataset [1] which further
enhanced the realism of turbofan data simulations by inte-
grating authentic operating conditions and a detailed degra-
dation model. The datasets from the publications enabled
the study of sophisticated deep neural network architectures
and showed that both recurrent neural networks (RNNs)

[38] and convolutional neural networks (CNNs) [50] have
been validated as effective tools in detecting and predicting
system failures.

While simulated datasets have significantly contributed
to deep learning research in PHM, there exist concerns about
the differences between simulated and real-world datasets
[33, 43, 32]. Simulated datasets are typically generated us-
ing zero-dimensional turbofan performance models, which
are commonly used for Gas Path Analysis (GPA). These
simulators rely on thermodynamic principles to approximate
engine parameters across various gas path stations [24].
Besides common input parameters describing operating con-
ditions such as Mach number, thrust, ambient temperature,
or pressure, the engine performance models can also incor-
porate health parameters from various component groups
enabling the simulation of deteriorated responses. Hence,
to create run-to-failure datasets, mathematical damage prop-
agation models have been used to describe the health pa-
rameters’ evolution until a predefined failure condition is
reached. However, this approach may not capture the com-
plex and nuanced patterns of real-world engine degradation.
For instance, engine degradation patterns may change after
major maintenance events when certain parts are replaced
or repaired. Routine practices like water washes introduce
extra complexity as these interventions disrupt the natural
evolution of engine degradation patterns [25]. In addition,
the simulations do not account for the variability due to a
broad spectrum of conditions, influenced by diverse factors
like pilot behavior and aircraft weight, or even the swapping
of engines between aircraft. Consequently, these disparities
underscore a critical gap between academic research and

Cisneros Acevedo et al. Page 1 of 15



practical industrial application, stressing the urgent need for
real-world data to improve the relevance and transferability
of data-driven models.

Although turbofan engines generate a vast amount of
operating data, the class imbalance remains a challenging
issue due to the abundance of normal condition monitoring
data relative to failure instances [18, 21, 13]. Given the crit-
ical importance of maintaining turbofan engine safety, their
design for high reliability and the application of preventive
maintenance strategies contribute to the scarcity of engine
failures. As a result, training fault detection models on
imbalanced data have a higher risk of model bias towards the
majority class, whereas they tend to generalize poorly to the
minority class. This issue severely affects the performance
of machine learning models in classification tasks, which are
crucial for fault detection.

This research aims to investigate how data augmentation
using Generative Adversarial Networks (GANs) can address
the class imbalance issue common in real-world turbofan
engine datasets and improve deep learning based fault de-
tection models. Introduced by Goodfellow et al. [22], GANs
have shown to possess exceptional capabilities at generating
synthetic data indistinguishable from the original dataset.
Initially, they found their primary application in computer
vision tasks. Yet, their potential in the time-series domain,
crucial for the application of turbofan PHM, is still an
emerging and active area of research [19, 27]. In the context
of turbofan data, our literature review identifies only three
studies that explored the utility of GANs on the C-MAPSS
and N-CMAPSS dataset [31, 57, 59].

The core of our methodology involves the comprehen-
sive preparation of the dataset, which accounts for main-
tenance events, water washes, and the labeling process. A
baseline model using Recurrent Neural Networks (RNN)
is then developed to differentiate between failure and non-
failure states. It is trained to identify critical patterns between
the operating conditions and the gas path parameters as
observed from the in-flight measurements. Moving forward,
we propose to design and implement a GAN architecture
based on convolutional layers to generate synthetic engine
failure data. Within this framework, the generator is tasked to
produce synthetic yet realistic representations of time series
data, while the discriminator evaluates the authenticity of
these representations in comparison to real data samples.
It is anticipated that this adversarial process will progres-
sively refine the generator’s ability, ultimately enabling it to
replicate the critical characteristics inherent in the real data.
Lastly, the GAN is utilized to augment augment the original
dataset with new synthetic data allowing for an evaluation of
the impact on the fault detection model’s predictive perfor-
mance after retraining.

The process of evaluating the quality and utility of the
synthetic time series data from GANs continues to be a focus
of research efforts [6]. Unconditional GANs, which generate
data without specific conditions, pose unique challenges
in verifying the realism of the synthetic time series due
to the lack of a ’targeted evaluation’ mechanism. On the

contrary, in conditional GANs, synthetic data can be directly
compared against a validation set under specific conditions,
facilitating a more straightforward evaluation. Despite these
challenges with unconditional GANs, GPA-based simula-
tors present a valuable opportunity to assess the physical
interdependence of the synthetically produced sensor vari-
ables. By using the domain knowledge encapsulated in these
simulators, which relate operating conditions with engine
responses, an extra layer of validation is introduced. GPA-
based performance models serve as an intermediate refer-
ence and enable a comparison method where both real data
and synthetic data generated by the GAN can be evaluated
against this benchmark. This approach allows for assessing
if the generated data holds up to the realistic standards set by
actual engine behaviors and conditions.

The principal contributions of this study are outlined as
follows:

1. Development of an RNN fault detection model to
differentiate between non-failure and failure samples
collected from real-world GEnx-1B turbofan data,
including a detailed preprocessing methodology for
water washes and major maintenance activities.

2. Introduction of a 1D-CNN Wasserstein GAN with
Gradient Penalty (WGAN-GP) designed to generate
synthetic time series data of failure instances, mitigat-
ing the class imbalance problem between healthy and
failure data.

3. Utilization of a GPA-based performance model for the
GEnx-1B engine to assess that the GAN-generated
sensor data maintains realistic interdependence be-
tween the operating and gas path parameters.

In summary, this research aims to provide insights into
the generation of synthetic GEnx-1B aircraft engine failure
data with GANs for improved fault detection. By leveraging
the capabilities of generative models, the issue of class im-
balance is mitigated using high quality synthetic time series
data. Furthermore, this research integrates domain knowl-
edge through engine GPA-based thermodynamic models to
assess the physical consistency of GAN-produced samples.
To the best of knowledge, no other publication has explored
the application of GANs for augmenting real-world aircraft
engine data.

The remainder of this paper is organized as follows:
section 2 provides the reader with information about DL
within the scope of PHM. Furthermore, recent works on
the application of GANs in time series data are also briefly
summarized. Section 3 outlines the research methodology,
detailing the utilization of GEnx-1B engine data, the de-
velopment of a surrogate model for GSP, classifier train-
ing processes, and the proposed GAN architecture. This is
followed by the results and discussion in section 4. Finally,
conclusions drawn from this study, accompanied by recom-
mendations for further investigation and potential areas for
future research, are presented in Section 5 and Section 6,
respectively.
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2. Related work
The related work section is organized into two main

parts. The first part, detailed in subsection 2.1, focuses on the
applications of deep learning within Prognostics and Health
Management (PHM). The second part, outlined in subsec-
tion 2.2, explores the utilization of Generative Adversarial
Networks (GANs) for time series data augmentation. Given
the limited research of GANs in turbofan condition moni-
toring data, this review extends to include important studies
from other research fields to provide a global overview.
2.1. Deep learning in prognostics & health manage-

ment

Deep learning techniques have emerged as powerful tools
for prognostics and health management (PHM) of aircraft
engines. This interest is attributed to advancements in sensor
technologies and big data analytics, enabling data-driven ap-
proaches in predictive maintenance [43, 21, 19, 30]. Specif-
ically, the introduction of the C-MAPSS dataset in 2008
has catalyzed deep learning research to analyze and predict
engine health [49, 12].

Central to PHM is the development of health indicators,
which provide insights into the system’s health state. These
indicators are broadly classified into physics-based and vir-
tual categories, with efficiency and corrected mass flow
being popular in aircraft engine monitoring [32]. However,
deep learning models have proven to be effective in PHM,
managing to successfully learn the nonlinear behaviors and
degradation patterns of complex systems. As a result, the
identification of health indicators is implicitly learned from
condition monitoring data without the need to develop them
manually [33]. This is particularly useful for deciphering
simultaneous faults and degradation patterns in complex
multivariate time series data [56, 20].

Extensive research has been conducted on the applica-
tion of different neural network architectures in PHM. For
instance, multilayer perceptrons (MLPs) have been able to
learn health state representations of gas turbines, making
them suitable for diagnostics [16]. Nonetheless, MLPs fail to
capture the temporal characteristics hidden in the data which
is crucial for the evolution of degradation patterns. The
inclusion of temporal context has been critical as it is recog-
nized that certain faults are sequential by nature [44]. Addi-
tionally, physics-based diagnostics can be compromised by
the smearing effect, where the absence of sensors in modern
turbofan engines may cause faults to appear across multiple
modules in the gas turbine. Instead, including temporal con-
text was useful in mitigating the smearing effect [8]. Because
of their ability to capture temporal patterns, the exploration
into Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) has been significant in advancing
fault detection from historical sensor data [61, 17]. Liu et al.
[37] applied fault diagnostics to motor bearings using RNN-
based autoencoders (AE) learning useful characteristics hid-
den across the time domain. Furthermore, Mansouri et al.

[40] proposed an enhanced RNN technique for fault detec-
tion and classification in wind energy systems by simplifying
the model’s training and complexity through hierarchical K-
means clustering.

The emphasis on learning sequential features is particu-
larly important in prognostics [30]. Specifically, long-short
term memory (LSTM) based architectures have emerged
as leading models in the prognostics of aircraft engines,
demonstrating superior performance [55]. Applications of
LSTMs are found on the C-MAPSS and the N-CMAPSS
(new C-MAPSS) datasets where some researchers also ex-
tended the LSTM’s capabilities with the attention mech-
anism [36, 38, 10]. In an effort to further motivate col-
laboration, Darrah et al. [11] established a comprehensive
framework for the development of deep learning models
aimed at predicting the Remaining Useful Life (RUL). On
the other hand, the CNN’s utility in RUL estimation has also
been validated through their capacity to effectively capture
localized features. A notable contribution by Li et al. [34]
involves the proposal of a model comprising four stacked
convolutional layers, succeeded by a two-dimensional fully
connected layer. Contributing to this field, Solís-Martín et al.
[50] employing a deep stacked CNN to predict RUL on the
N-CMAPSS dataset for the 2021 PHM Conference Data
Challenge. Their model achieved third place in the challenge
and underscored the potential of CNNs in prognostics.
2.2. Generative adversarial networks in time series

In general, research on Generative Adversarial Networks
(GANs) for time series data remains relatively limited com-
pared to their use in computer vision tasks. The challenge
of training GANs is amplified in the context of time series
data [19] with only a handful of studies addressing aircraft
condition monitoring data [31, 57, 59]. Consequently, a
broader review is required by including insights from diverse
applications and domains.

Previous studies have predominantly adopted Recurrent
Neural Networks (RNNs) for both the generator and discrim-
inator components of GANs. Mogren [42] was among the
first researchers to develop a Recurrent GAN (RGAN) for
generating classical music. This approach was expanded by
Esteban et al., who tailored RGANs for multivariate medical
time series generation [14]. Further, RGANs have been
adapted for sensor data synthesis in autonomous driving,
demonstrating the versatility of recurrent architectures in
GANs [4]. Specific to turbofan engines, Lang et al. [31]
demonstrated how GAN-augmented datasets could enhance
training and predictive accuracy on the C-MAPSS dataset.
Moreover, Xiong et al. introduced a physics-informed GAN
for data augmentation focusing on the monotonic degra-
dation patterns of engine health [57]. Additionally, Zhang
et al. proposed a hybrid GAN, combining convolutional
and recurrent layers, to improve RUL estimation on the C-
MAPSS dataset and suggested further exploration into the
evaluation of generated time series with domain expertise
[59].
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Training challenges, such as mode collapse and vanish-
ing gradients, have been mitigated through advancements
like Wasserstein GANs (W-GAN) and its enhanced version
with gradient penalty (WGAN-GP), improving stability and
performance [3, 23]. These advancements have been suc-
cessfully applied beyond turbofan applications, as seen in
the adoption of WGAN-GP for learning from fMRI data by
Qiang et al. [46]. Furthermore, other challenges such as high
computational load and extended training time associated
with RGANs have motivated research into alternative mod-
els. Huang and Deng [26] demonstrated the effectiveness of
one-dimensional CNNs in generating time series data, high-
lighting CNNs’ capability in synthesizing data. Similarly,
Baptista and Henriques [5] utilized 1D CNNs within GAN
frameworks to reduce noise and enhance RUL prediction
accuracy on the C-MAPSS dataset. Further advancements
in CNN architectures aimed at augmenting sensor data for
human movement analysis [58].

A drawback of convolution filters is the inability to
extract features at different scales due to their fixed-size ker-
nels. Addressing this limitation, Zhao et al. [60] developed
a CNN model incorporating various kernel sizes and inte-
grated them through a concatenation layer. This approach
significantly improves the model’s ability to distinguish
short-term and long-term degradation patterns. The concept
of a concatenation layer has been further extended to merge
time series data from different sources. Choudhary et al. [9]
applied this strategy to combine vibration and acoustic data
from induction motors, achieving superior fault diagnostic
results. These studies, while not exhaustive, underscore the
research into CNNs for GAN applications, particularly in
the generation and refinement of time series data for diverse
applications.

3. Methodology
This section outlines the research paper’s methodolog-

ical approach. First, the principal research questions are
revisited in subsection 3.1, followed by an introductory
overview in subsection 3.2 of the General Electric Next Gen-
eration (GEnx) aircraft engine data. Then, subsection 3.3
discusses the application of Gas Path Analysis (GPA) in
turbofan health management and gives an overview of Gas
turbine Simulation Program (GSP), the engine performance
simulator tool used in this study. After, section 3.4 describes
the development of the surrogate model based on the GSP
simulated data. Furthermore, data preprocessing and fault
classification model training are discussed in section 3.5.
Lastly, the GAN architecture and training process are dis-
cussed in section 3.6 for data augmentation.
3.1. Research questions

In this study, we employ data augmentation using generative
adversarial networks on a real world turbofan data provided
by KLM Engine Services. The primary research question of
this study is as follows:

R1 How can generative adversarial networks further im-
prove the predictive performance of failure detection
models on real-world flight data?

Our hypothesis for the primary research question is as
follows

H1 Integrating generative adversarial networks (GANs)
into the training process of turbofan failure diagnos-
tics models can improve the model’s overall F1-score
and generalization capabilities, as GANs introduce a
broader range of failure samples.

We further extend the primary research question with the
following two subquestions:
R1.1 How can generative adversarial networks be applied

to real-world turbofan data to produce high-quality
synthetic time series data?

R1.2 In what way can domain-knowledge from Gas Path
Analysis contribute to validating the GAN generated
turbofan data?

Our hypotheses for these sub research questions are
listed below:
H1.1 Generative adversarial networks, based on deep neural

networks that capture temporal patterns, can produce
high-quality synthetic data for data augmentation.

H1.2 Domain-knowledge from Gas Path Analysis may
serve as an indication for quantifying the interrela-
tions between the operating and gas path parameters
generated by the GAN.

3.2. Real-world flight data

This study focuses on measurements that are directly related
to the operating conditions and the engine gas path parame-
ters of the GEnx-1B aircraft engine. Figure 1 illustrates a to-
tal of 9 sensors with the associated description summarized
in Table 1. The essential operating parameters include the
Mach number (𝑀), the fan speed (𝑁1), the total pressure at
station 2 (𝑃𝑡2), and the total air temperature (TAT). The other
sensors, total temperature and static pressure at station 3 (𝑇𝑡3and 𝑃𝑠3), the fuel low (𝑊𝑓 ), the core speed (𝑁2), and the
exhaust gas temperature (𝑇𝑡49) relate to the internal gas path
parameters of the engine. The combinations of these sensors
ultimately lead to a multivariate vector describing the state
of the engine at each time step.

The dataset from KLM (Royal Dutch Airlines) contains
approximately 373,000 in-flight measurements from mul-
tiple GEnx-1B engine units. The data capture important
engine states during three flight phases: takeoff, climb, and
cruise. In Figure 2, a typical example of in-flight measured
data from a single engine sensor is plotted along with the
shop visits and water washes. In certain cases, the degra-
dation recovery as a result of the water washes can directly
be observed on the rolling mean. In others, this change
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Figure 1: The GEnx-1B turbofan layout of relevant sensors in
this research adjusted from [47, 48]. This research uses data
from nine distinct sensors. Operating conditions are monitored
by four sensors: 𝑀 , 𝑁1, 𝑃𝑡2, TAT. The remaining five sensors
relate to performance and gas path parameters.

is less visible due to seasonality trends and the impact of
operating conditions. It can also be observed that the in-
flight measurements exhibit similar short-term and long-
term degradation characteristics as discussed by Hepperle
et al. [25] and by Hanachi et al. [24].

Table 1
Description of the sensors corresponding to the GEnx-1B
turbofan in Figure 1.

Symbol Description Units
𝑀 Mach number -
𝑁1 Fan speed %
𝑃𝑡2 Total pressure at fan inlet Pa
TAT Total air temperature K
𝑇𝑡3 Total temperature HPC outlet K
𝑃𝑠3 Static pressure at HPC outlet Pa
𝑊𝑓 Fuel flow kg/s
𝑁2 Core speed %
𝑇49 Total temperature at HPT outlet K

The dataset includes records of water washes and main-
tenance visits for each engine within the fleet. Maintenance
logs contain detailed reasons for engine overhauls and which
engine modules were serviced. The data in this study only
accounts for all unscheduled maintenance events. Hence,
this paper defines a "trajectory" as a sequence of flight
cycles leading to an unscheduled maintenance event. After
maintenance, the engine enters a new trajectory, allowing
for multiple trajectories throughout its operating life. Each
set of measurements leading up to maintenance is assigned
a unique trajectory identification number. Similarly, each
measurement is also assigned an identification number as-
sociated with the number of water washes that the engine
has received.

3.3. Gas path analysis

Gas Path Analysis (GPA) is a popular technique, employed
over the operating lifespan of an engine, to identify a variety
of potential issues ranging from erosion and corrosion to
more complex conditions such as foreign object damage
(F.O.D.) and wear [52]. As Urban [52] states in their re-
search, the core objective of GPA is the economical and
effective detection of such faults by monitoring parameters
that reveal implicit signs of degradation. Although GPA
effectively identifies many types of defects, it may not de-
tect certain issues, such as fatigue-induced cracks or subtle
blade corrosion, because they do not significantly change the
parameters that are monitored in GPA. For these types of de-
fects, additional diagnostic techniques, such as radiography
or boroscopy, are essential for fault detection.

The Gas turbine Simulation Program (GSP), developed
by Visser et al. [54] at Delft University of Technology and
National Aerospace Laboratory (NLR), is a modular zero-
dimensional tool for simulating aircraft engine performance.
GSP, which can be used for conducting GPA, is versatile
enough to model different engines, including the latest turbo-
fan variants. This tool estimates average gas path parameters
across multiple engine stations, factoring in variables such as
ambient conditions, Mach number, and fan speed [53]. Fur-
thermore, GSP can also simulate a deteriorated response by
modifying the health parameters within each engine module.
The core of GSP’s computational approach in simulating off-
design conditions is the Newton-Raphson numerical solver,
which tackles the system’s non-linear algebraic equations
to uphold conservation principles. The goal is to minimize
an error vector 𝐸̄ as a function of 𝑆̄, where the engine
state vector 𝑆̄ is represented by [𝑠1, 𝑠2, ..., 𝑠𝑛]. Through the
Newton-Raphson method, updates to the state variables 𝑠𝑛are made by linear approximation of the gradient of 𝑒𝑛against 𝑠𝑛, with each variable slightly adjusted to calculate
its gradient about the error. This process iteratively updates
the state vector using the Jacobian matrix, continuing until
the error falls beneath a certain threshold, thus solving the
system of equations and determining the engine’s state.

To accurately simulate off-design conditions within the
GSP it is essential to have access to component maps specific
to the engine model. However, acquiring these maps is a
common issue in aircraft engine modeling since these are
often proprietary to OEMs [51]. Previous work by Ramdin
et al. [47] introduced a methodical framework for developing
turbofan engine models within GSP while addressing the
challenge of limited gas path sensors in modern turbofan
engines. By tuning and scaling the engine turbo machinery
maps with test-cell correlation data, an accurate represen-
tation of the GEnx-1B engine was created covering all
different operating conditions. Since it is known that the
operating and gas path parameters recorded from in-flight
measurements are physically interdependent [24], our study
utilizes this specific GEnx-1B engine model, optimized in
GSP, to evaluate whether the GAN learned a reasonable
relationship between these variables. In essence, the model
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Figure 2: The plot shows a time series of the in-flight measurements captured by one GEnx-1B engine unit for a single sensor
during cruise. The rolling mean with a window of 70 is plotted. The shop visits or major maintenance events and the water washes
are depicted by the yellow and black striped lines, respectively.

offers a means to apply domain knowledge systematically
during the assessment of GAN-generated samples.
3.4. GSP surrogate model development

Although GSP is proven to be effective at simulating modern
turbofan engines, it falls short in terms of computational
speed for heavy iterative tasks. Instead, a surrogate model
was pre-trained on GSP simulated data produced by the
digital GEnx-1B engine model discussed in subsection 3.3.
This simplifies the application of GSP in validating the
authenticity of synthetic turbofan engine data.

Figure 3 illustrates the concept of the surrogate model.
A fully connected neural network (FCNN) was trained over
approximately 1.2 million simulated scenarios covering a
wide range of Mach numbers (𝑀), engine fan speeds (𝑁1),
ambient pressures (𝑃𝑎𝑚𝑏), and ambient temperatures (𝑇𝑎𝑚𝑏).These simulations, generated via GSP, provided the neces-
sary gas path parameters for each set of operating conditions.
Thus, the surrogate model effectively predicts gas path pa-
rameters based on operational inputs. The ambient pressure
and temperature were derived from the total pressure at
station 2 and total air temperature (TAT), using the isentropic
relations described by Equation 1.

𝑇𝑎𝑚𝑏 =
𝑇𝐴𝑇

(

1 + 𝛾−1
2 𝑀2

) 𝑃𝑎𝑚𝑏 =
𝑃𝑡2

(

1 + 𝛾−1
2 𝑀2

)
𝛾

𝛾−1
(1)

The architecture of the four layer FCNN begins with an
initial layer of 64 units, followed by layers that progressively
halve in unit count. The final layer contains the number of
units equal to the number of sensors. Notably, this training
process did not apply any regularization techniques. Fur-
thermore, the features are scaled using a Min Max scaler
since the extent of the operating region can be confidently
estimated with the in-flight measurements.

While GSP allows for the adjustment of health pa-
rameters across different engine modules, these remained
unchanged when producing the simulated dataset. Con-
sequently, the response variables 𝑃𝑠3, 𝑇𝑡3, 𝑇 𝑡49, 𝑁2, and
𝑊𝑓 are based on the GEnx-1B turbomachinery maps that

Gas Simulation
Program (GSP)

Figure 3: A surrogate model, consisting of a four layer
fully connected neural network, is pre-trained on 1.2 million
scenarios simulated by Gas turbine Simulation Program (GSP)
for different operating conditions of the GEnx-1B.

were optimized using the test cell correlation data retrieved
from a single engine test. Hence, the response surface
learned by the surrogate model is biased towards the test
cell engine and will not be optimal for each engine in the
fleet. The surrogate model was then trained and validated
on this dataset, with its performance assessed through the
Root Mean Square Error (RMSE) on a validation subset,
accounting for 10% of the simulations. After training, the
model’s performance was further evaluated by comparing
its outputs against actual GEnx-1B engine data, specifically
analyzing the Mean Absolute Percentage Error (MAPE) for
each sensor and flight phase. This benchmark provides a
method of comparison when assessing the quality of GAN-
generated data.
3.5. Engine fault detection model

The influence of the GAN-generated data on the failure clas-
sification performance, as stated by R1.2 in subsection 3.1,
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is evaluated by first establishing the predictive performance
on the original dataset before applying the GAN. The failure
classification model is designed to differentiate between two
conditions: ’non-failure’ and ’failure’. Thus, the classifier
serves as a tool for fault detection in the fleet.
3.5.1. Feature & model selection

The primary purpose of the failure classification model is
to distinguish between data from an engine’s initial operating
phase, where deterioration is minimal, and data before an
unscheduled engine overhaul that suggests a failure might
be imminent. In light of the challenges presented by manual
feature engineering, especially due to the diverse range of
potential faults in engine systems [19], we use deep learn-
ing techniques to automate the feature engineering process.
The deep learning model is specifically guided to explore
features within a predefined scope, comprising operating
conditions and gas path parameters. This approach builds
on the premise that GPA-based simulators can effectively
reproduce the degraded states of an engine under various
operating conditions by adjusting the health parameters of
each module.

To also facilitate learning across time series data, a
recurrent neural network (RNN) is utilized containing a
single Long-Short Term Memory (LSTM) layer comprising
16 units. This is followed by a fully connected layer with 32
units, activated by a Rectified Linear Unit (ReLU) function,
and then a batch normalization layer is added. The architec-
ture is completed with a final layer that employs a sigmoid
activation function, which is suitable for addressing binary
classification problems. Moreover, we selected the default
settings for the Adam optimizer.
3.5.2. Preparing training samples

The training samples are prepared in batches that include
sequences from both non-failure and failure classes, ensur-
ing each sequence has a fixed length. These sequences are
fed into the classification model per batch with dimension
size of batch size, window size, and feature count. Adhering
to a similar framework described by Fawaz [15]. The training
dataset consists of a collection of pairs (𝑋𝑖, 𝑌𝑖), where 𝑋
is a time-ordered two-dimensional array with each sensor,
[𝑥1, 𝑥2, ..., 𝑥𝑡], spanning 𝑡 time steps.

Given the scarcity of failure data relative to non-failure
data, we adopt the strategy of using the smallest stride pos-
sible (stride = 1) when sampling within the failure region.
This is depicted in Figure 4 where the non-failure region is
greater than the failure region. On the contrary, the stride for
training samples in the non-failure region is adjusted such to
achieve a balanced training dataset. It is important to note
that we define the length of the training samples in terms
of flight cycles, with one flight cycle equivalent to three
measurements (i.e. take-off, climb, and cruise).

To ensure clarity and consistency in the training process
of the classification model, we strategically sample the train-
ing data from periods between trajectories and water washes.
For this approach, we utilize the unique identification num-
bers assigned to each trajectory and water wash to accurately

group the sequences, as explained in subsection 3.2. As a
result, this approach prevents abrupt sensor measurement
changes within the samples at the cost of a reduced number
of training samples. Nonetheless, this strategy considerably
enhanced the quality of the training dataset. Experiments
indicated that neglecting these preprocessing steps compro-
mised the model’s ability to distinguish between the non-
failure and failure classes; it was no better than flipping a
coin.
3.5.3. Labeling & cross validation

Estimating the failure region prior to engine overhaul is
challenging as the exact time of failure is generally unknown.
This uncertainty makes it hard to label the data accurately
for the purpose of training the classification model. In this
research, we attempt to classify whether a fixed time period
shows signs of failure or non-failure limiting to unscheduled
maintenance events only. It is based on the idea that an
accurate guess of the failure region will demonstrate good
predictive performance on the validation data. Furthermore,
the failure class does not distinguish the different faults, re-
moval reasons, and module specific problems that triggered
the unscheduled maintenance events. Hence, there exist a
variety of faults in the failure data.

train val

unit 1

val train

unit 2

non-failure failurecutoff

last n flight cycles

cycles

window size

Figure 4: The schematic illustrates the allocation of engine
measurement data to training (blue) and validation (orange)
sets based on engine unit and class label, ensuring no overlap.
The last N flight cycles parameter indicates how many cycles
before an unscheduled engine removal were labeled to the
failure class within a single trajectory.

The extent of the failure region is governed by the last
N flight cycles parameter, as shown in Figure 4. During
model training and validation, the window size and the last
N flight cycles parameters are varied. For each combination,
the model is subjected to 5-fold cross-validation. Engine
measurement data are segregated by engine unit and class
label, ensuring that training samples from a specific engine
in a given class are exclusive to the training set and not du-
plicated in the validation set. Adhering to this strict separa-
tion ensures that performance metrics will generalize across
different engine units since differences between individual
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Figure 5: The generative adversarial network architecture used to learn the distribution of the GEnx-1B failure data comprises of
two 1D convolutional neural networks. The generator network (1-6) consists of three transposed convolutional layers (3-6) which
upscale the latent space representation. The critic (7-10), consisting of a multi-scale convolutional layer (7), down-samples the
input time series and assesses the authenticity the generated sequences against real sequences with the final (11) output layer.

engines within the same family have also been observed
due to manufacturing issues [49, 19]. Furthermore, to avoid
model confusion we take only 60% of the total trajectory as
depicted by the cutoff. The rest of the data in the cutoff region
is not included in the training or validation set.

The 5-fold cross-validation is executed with four differ-
ent seeds, and the window size is evaluated at 30, 50, and
70, while the last N flight cycles are tested at intervals of 90,
110, 130, and 150. Model training is stopped after 8 epochs
at which the F1-score of the model is assessed. Finally, data
augmentation with GANs is reserved for instances where
the classification model was successful in differentiating
between the two classes.
3.6. Data augmentation with GANs

To study the primary research question of this paper, R1
from section 3.1, a generative adversarial network (GAN)
is trained with data from the failure region. The classifica-
tion model is then cross-validated with the new augmented
dataset as described in section 3.5.3. The overall archi-
tecture of the GAN is based on 1D Convolutional Neural
Networks (CNNs) optimized for a Wasserstein loss with
gradient penalty.
3.6.1. GAN Architecture

The generator was structured with four transposed con-
volutional layers for data upsampling. As Illustrated in Fig-
ure 5, the GAN maps the latent space (1) to the first dense
layer (2) with a number of units equal to the window size
of the training samples reshaping it to a two-dimensional
vector of dimensions (window size, 1). Following this are
four one-dimensional transposed convolutional layers (3-6)
sharing the same parameters: a stride of 1, 32 filters, a kernel
size of 10, and equal padding. Between each layer, we use
a Leaky ReLU activation function with an alpha of 0.01.

The experiments conducted during the research demon-
strated that the Leaky ReLU activation function substantially
improved convergence results. The activation function in
the last layer is omitted as suggested by Huang and Deng
[26]. The final layer’s filter count (6) is adjusted based on
the number of sensors the GAN is expected to simulate,
providing the GAN with the flexibility to generate samples
of different fixed sizes and sensor counts. Thus, the gen-
erator will synthetically produce a sequence of values for
multiple operating conditions and gas path parameters as
required by the classification model: 𝑀 , 𝑁2, 𝑃𝑎𝑚𝑏, 𝑇𝑎𝑚𝑏,
𝑃𝑠3, 𝑇𝑡3, 𝑇 𝑡49, 𝑁2, and 𝑊𝑓 .

The critic, or discriminator, is structured with three
layers in total: two convolutional layers (7-8) with 16 filters
each, and a fully connected layer (9) with 16 units. The final
layer (11) outputs the score of the associated input sequence.
Furthermore, the multi-scale layer (7) utilizes kernel sizes of
9 and 27 to capture features across multiple temporal scales.
Introducing this feature benefited the GAN’s ability to reach
good convergence results. Because of the varied kernel sizes,
even padding is applied to the convolutions before merging
the filters in the concatenation layer. Subsequently, in the
second convolutional layer (8), we use a kernel size of 18,
after which the output is flattened before entering the fully
connected layer (9).
3.6.2. GAN training

The development of a baseline classification model, dis-
cussed in subsection 3.5, not only benchmarks its perfor-
mance but also helps in identifying the extent of the failure
region within the dataset. This allows for unsupervised GAN
training focusing only on augmenting the data in the failure
region. As a result, more failure data samples are syn-
thetically created whereas samples from the "non-failure"
region are acquired by changing the stride of the windowing
algorithm for that region.
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For optimization, we utilize the Wasserstein loss func-
tion with gradient penalty (WGAN-GP) [2, 23]. This strat-
egy was found to consistently produce stable and successful
results compared to using the conventional binary cross
entropy loss function. Both the generator and critic training
are governed by the Adam optimization algorithm, adopting
a learning rate of 5 × 10−3 and beta values 𝛽1 = 0 and
𝛽2 = 0.9 [23]. Furthermore, the critic is updated twice for
every single update of the generator over the course of 40
epochs.

The GAN is individually trained for each fold in the
cross-validation process. This process begins with the ran-
dom partitioning of the dataset into two distinct subsets:
one for training and the other for validation purposes. In
the initial phase, the classification model undergoes training
on the training set, followed by a performance evaluation
on the validation set. Subsequently, the GAN is trained
using the same training set, focusing only on data samples
within the failure region. Upon completing this training, the
original training dataset is augmented with the failure data
synthesized by the GAN. Finally, the classification model
is trained again on the augmented dataset, leading to an
updated metric of the validation F1-score for fault detection.
Since this process is repeated across for multiple folds and
seeds, the uncertainty in the evaluation process is mitigated
providing more robust and reliable results about the GAN’s
impact on the baseline fault detection model.
3.6.3. GAN evaluation with the surrogate model

The GAN is designed to generate synthetic data that
contains both operating conditions and gas path parameters.
These variables are interrelated and follow physical princi-
ples. Once the GAN training is complete, the synthetic sen-
sor data it generates is assessed for its physical realism. This
assessment uses the pre-trained GPA-based surrogate model,
detailed in Section 3.4, to analyze the GAN-produced data.
Using the domain knowledge integrated into the surrogate
model increases the understanding of the GAN’s capability
to replicate the complex interdependencies among sensor
readings [59]. This approach also facilitates an additional
evaluation process for unsupervised GANs which do not
generate new samples based on preset conditions.

The differences between the data generated by the GAN
and predictions from the surrogate model are compared
under varied operational conditions by calculating the per-
centage error across 300 time series samples for the five gas
path parameters (𝑃𝑠3, 𝑇𝑡3, 𝑇 𝑡49, 𝑁2, and 𝑊𝑓 ). These errors
are anticipated due to the surrogate model being trained
on simulated data, which naturally differs from the GAN’s
training on actual in-flight data. To set a reference error, the
errors from real flight data are also determined against the
surrogate model’s predictions. The comparison of these er-
ror distributions provides insights into the similarity between
real and GAN-generated data based on domain knowledge
about turbofan engines.

4. Results & Discussion
This section outlines the results of the research. First, the

surrogate model in section 4.1, developed with data from
a GPA-based simulation tool, is validated against in-flight
measured data collected from a fleet of GEnx-1B turbofan
engines. Secondly, section 4.2 analyzes the classification
model’s performance in differentiating between “failure”
versus “non-failure” samples. Thirdly, insights are shared in
section 4.3 on the GAN’s ability to create synthetic sam-
ples by evaluating the real and synthetic distributions and
ensuring plausible gas path parameter values that adhere to
known physical laws and operating conditions. The latter is
carried out using the aforementioned surrogate model which
holds domain knowledge about the relationship between
operating conditions and gas path parameters. Moreover,
the classification model undergoes retraining with the GAN-
augmented dataset to determine the method’s effectiveness
on fault detection, utilizing the F1-score as the evaluation
metric.
4.1. Validation of the surrogate model

The surrogate model was initially trained and validated on
the simulated dataset achieving an overall Root Mean Square
Error (RMSE) of 2×10−3. However, to thoroughly assess the
surrogate model’s effectiveness, it was applied to real-world
operating conditions and sensor data from in-flight engine
measurements. Figure 6 illustrates the comparison between
the simulated response variables to the values measured
during flight allowing for the error analysis. For each sensor,
the mean absolute percentage error is plotted per flight
condition. The analysis revealed significant discrepancies
in simulated sensor values, particularly for the exhaust gas
temperature (𝑇𝑡49) and fuel flow (𝑊𝑓 ), which displayed the
largest errors. Additionally, the error variation for parame-
ters 𝑇𝑡49,𝑁2, and𝑊𝑓 was influenced by the flight conditions,
with more pronounced deviations during cruise conditions.
This observation aligns with the direct application of the
GPA simulation tool also found in [47].

The discrepancies can be attributed to a variety of fac-
tors, including oversimplifications within the engine perfor-
mance model itself, disparities between the surrogate model
and the GPA engine performance model, and the inherent de-
teriorated condition of engines leading to different response
surfaces. The latter may be substantial since the in-flight
measured snapshot data covers a broad range of the engine
life cycle. Additionally, noise in the GEnx-1B flight data and
differences among individual engine units also contribute
to these discrepancies. Specifically, the GPA model was
calibrated using test cell correlation data from an engine later
in its life cycle, which may introduce variability. Installation
effects, though requiring further verification, may also play
a role.
4.2. Baseline failure classification model

As outlined in Section 3.5.3, an RNN-based classification
model is established to classify a time series sample as
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Figure 6: The mean absolute percentage error deviation
between in-flight and surrogate model simulated data plotted
per flight phase and gas path parameter.

either "failure" or "non-failure". Due to the unavailability
of precisely labeled data on failure events, various dataset
configurations were evaluated by adjusting the last number
of cycles parameters, which represents the number of cycles
assigned to the "failure" class label before an unscheduled
maintenance event. Besides this labeling parameter, the win-
dow size is also varied when training the classifier.

Table 2 demonstrates the F1-score of the classifier for all
parameter combinations. The model did not appear to have
learned correct decision boundaries for seven of the twelve
tests. The scores were mostly around 0.55. Nevertheless, five
out of the twelve tests resulted in a 0.82-0.83 F1-score on
the validation set. The configurations that resulted in a high
F1-score (bold) provide evidence of the classifier’s ability to
detect differences between failure and non-failure samples.
These distinctions are critical for defining the failure region
since the failure data will be augmented by the GAN. The
reason for poor performance on the other seven tests was not
determined. Because of this, GAN augmentation was only
applied to the five successful tests. The results are discussed
in the next section.
Table 2
Average F1-scores for the failure classification model are
provided for various combinations of the last number of cycles
and the window size of the time series samples. The average
scores are based on a 5-fold cross validation for 4 different
seeds. Successful runs, as highlighted in the table, are further
studied for GAN augmentation.

F1-score window size (cycles)

last N cycles 30 50 70

90 0.827 0.539 0.460
110 0.559 0.564 0.824
130 0.557 0.831 0.551
150 0.588 0.834 0.828

4.3. GAN evaluation

This section utilizes different methods to assess the quality
of the synthetic samples produced by the GAN. Initially,
these samples are assessed by analyzing their feature dis-
tribution and comparing them to the real dataset. Subse-
quently, dimensionality reduction techniques, specifically
t-distributed Stochastic Neighbor Embedding (t-SNE) and
Uniform Manifold Approximation and Projection (UMAP),
are employed to compare the real and synthetic samples in
a reduced dimensional space. Following this, the surrogate
model is utilized to examine how well the GAN has learned
the relationship between synthetic operating and gas path
parameters. Lastly, the classifier performance is reassessed
using the GAN-augmented dataset to determine the effect on
the F1-score.
4.3.1. Data distribution

The density plots in Figure 7 indicate a close match be-
tween the real and GAN-generated data distributions across
most sensor variables which suggests that the GAN was able
to effectively capture the statistical properties of the data.
The density plot pairs exhibit the same shapes with peaks
and troughs occurring around comparable values. A similar
conclusion is drawn for the spread and tail distribution. In
certain cases, however, such as at the Mach number 𝑀 ,
ambient temperature 𝑇𝑎𝑚𝑏, and core speed, 𝑁2, the peaks
are slightly higher compared to the training dataset. Overall
the GAN can capture key properties and has obtained a
reasonable similarity to the GEnx-1B flight data.

Figure 7: The distribution of the GAN generated samples
(fake) is compared to the in-flight measured GEnx-1B data
distribution (real) for each variable.
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Figure 8: The UMAP algorithm was applied to the GAN
generated data (fake) and the GEnx-1B flight data (real).
The three clusters of the synthetic and real data overlap
and represent the three flight phases recorded by the engine
monitoring unit.

The degree of overlap is also studied between the syn-
thetic and real samples using the UMAP algorithm [41]
and the t-SNE [39] comparing the distribution of the data
on a reduced feature space. The results are presented in
Figure 8 and Figure 9, respectively. The UMAP algorithm
is configured using 30 neighbors and a minimum distance of
0.2 to characterize the data in two-dimensional space. Fur-
thermore, we utilize default values for the t-SNE algorithm;
perplexity 30, early exaggeration 12, automated learning
rate, 1000 iterations, and use the Euclidean distance as the
metric. Both figures demonstrate three clusters for the in-
flight and synthetic data where each cluster represents one
of the three flight phases. This similarity indicates that the
synthetic data points could potentially be used as a proxy for
real data in applications where additional data is beneficial.
4.3.2. Evaluation with the surrogate model

The GPA-based surrogate model facilitates the evalua-
tion of synthetic operating conditions alongside correspond-
ing gas path parameters generated by the GAN. The assess-
ment is carried out after training the generator. Figure 10
summarizes the critic loss of the GAN for 100 training runs
plotting the 75% percentile interval. It can be observed that
the training process for multiple training runs converges
close to zero. Additionally, the variance of the loss decreases
over time which is a sign of stable learning. Since multiple
GANs are trained for different training sets the results imply
that the training process is robust for these variations.
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Figure 9: The GAN-generated data (fake) and GEnx-1B flight
data (real) were analyzed using the t-SNE algorithm resulting
in three clusters, each representing one of the three flight
phases.
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Figure 10: A total of 100 GAN runs are evaluated and their
75% percentile intervals are plotted over the epochs. The
negative critic loss exhibits robust convergence, indicating a
stable learning curve between the generator network and the
critic.

The GAN-generated and in-flight measured gas path
parameters were evaluated against the expected values de-
termined by the surrogate model under specific operating
conditions. The error distributions displayed in Figure 11
reveal significant alignment between the GAN outputs and
actual data, particularly for parameters 𝑇𝑡3, 𝑇𝑡49, and 𝑁2.
This alignment highlights that the discrepancies observed
between real and modeled gas path parameters have been
effectively captured by the GAN. Notably, the different peaks
observed in 𝑇𝑡49 and 𝑁2 stem from flight phase error biases,
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as detailed in subsection 4.1. The GAN’s ability to mirror
these error distributions indicates it has successfully learned
physically relevant characteristics from the real flight data.
Regarding the 𝑃𝑠3 parameter, while the GAN-generated data
shows greater variance than the actual data, the mean values
of both distributions align closely. This difference may be
caused due to higher variance already present in the real data
resulting in a increased difficulty for GAN training. A similar
patterns can also be observed for the fuel flow𝑊𝑓 parameter.
However, in this case, the fuel flow data is expected to
have high variability since the fuel flow sensor is relatively
inaccurate compared to the other sensors. Yet, the majority
of GAN-generated data remains within a reasonable range of
values. These observations underscore the GAN’s capacity
to generate data that reflects realistic physical properties.
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Figure 11: Per operating condition, the real and generated
gas path parameters are compared with the expected values
from the surrogate model. Having the real data as a reference,
the percentage error distributions are plotted for each sensor
variable.

4.3.3. GAN impact on fault classification
A total of 5 parameter sets were evaluated to study how

augmenting the dataset with a GAN affects the classifier’s
performance. These corresponded to the parameter sets that
led to good results in the baseline fault detection model. Each
parameter set indicated the final number of cycles labeled as
"failure" before an unscheduled maintenance event and the
specific window size used to create the time series samples
for the classifier. The performance of the classifier trained
on the original dataset and the augmented dataset were
compared based on the F1-score. Within the pipeline, it was
ensured that the same dataset was used to train the baseline
classifier and the GAN before augmentation.

Out of the 5 experiments, the augmented dataset achieved
good results on 3 experiments, illustrated in Figure 12. For
these parameter sets, the GAN-augmented data exhibited a

higher median F1-score compared to the original dataset,
suggesting an improvement in the classifier’s ability to
predict failures. The improvement is particularly notable
in the (lastn130, window50) and (lastn150, window70),
where the augmented data’s interquartile range and median
surpass the original. The first set, (lastn90, window30), also
shows an elevated median F1-score for the augmented data
but the effect is less. It must be noted that the experiment
testing the (lastn110, window70) parameter combination
resulted in a substantially high variance in the distribution
of the F1-score raising concerns about the validity of these
results specifically. However, the second experiment, which
resulted in an overall lower F1-score for all trained models,
did have a reasonable variance.
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Figure 12: Results after augmenting the original dataset with
the GAN are provided for the three successful parameter
combinations. Cross validation (5-fold) of the fault detection
model with the GAN shows improvements in the F1-score as
a result of data augmentation.

These findings demonstrate the effectiveness of data
augmentation with GANs and their ability to improve fault
detection. Increases of up to 2.8% in the average F1-score are
observed with respect to the fault detection model trained
on the original dataset. For these cases, the consistent im-
provement underscores the GAN’s ability to generate data
samples that are representative of the underlying dataset.
Additionally, because of the way the data is preprocessed,
the training data contains flight data labels that do not appear
in the validation set and, hence, the results also demonstrate
how GAN augmentation improves performance on unseen
engine class labels. While these are promising results, the
impact of the sample window sizes and labeling process
must still be considered and further studied.

5. Conclusion
This study explored the potential of Generative Adver-

sarial Networks (GANs) in augmenting operating and gas
path parameters collected from real-world GEnx-1B aircraft
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engine data. Amidst challenges such as data imbalance and
the scarcity of failure instances, our research introduced a
Wasserstein GAN with Gradient Penalty (WGAN-GP) based
on 1D convolutional neural networks (CNNs) to generate
synthetic time series of failure data. The predictive per-
formance of a baseline recurrent neural network (RNN)
was first established by distinguishing between non-failure
and failure time series data. After augmenting the original
dataset with the GAN, the performance of the baseline
model was reevaluated. Furthermore, to compensate for the
unsupervised nature of GAN learning, a surrogate model,
pre-trained on a GPA-based simulated dataset, was used to
verify the credibility of the GAN-generated samples. This
validation focused on analyzing the interrelation between
generated operating conditions and response variables to
determine their physical plausibility.

The GAN’s loss metrics indicated stable and conver-
gent training across multiple experiments, suggesting an
effective architecture in this regard. Furthermore, analysis
via the surrogate model reveals that the GAN produced
plausible gas path response variables for the synthetic op-
erating conditions, confirming its capability to understand
the underlying physics between these variables. However,
while most synthetic response variables remained within
acceptable limits, some synthetic variables exhibited more
variance in the error distribution than others. Nevertheless,
these findings suggest that the GAN is capable of generating
data with significant physical relevance. Importantly, the
results demonstrated that integrating GAN-generated data
into the original dataset enhanced the fault detection clas-
sification model’s validation F1-score by as much as 2.8%.
Furthermore, given that the training dataset included class
labels from various engine units not present in the validation
set, these improvements suggested the GAN’s proficiency
in identifying and replicating critical degradation patterns
across different engines.

6. Future work
This research explored the application of data augmen-

tation to improve fault detection of deep learning models in
aircraft engine applications. In particular, Generative Ad-
versarial Networks (GANs) were studied to produce syn-
thetic time series data. The lack of labeled data in safety-
critical systems, such as aircraft engines, poses considerable
challenges for fault detection. Future work should extend
towards improving the labeling process of real-world data.
Literature indicates that unsupervised or semi-supervised
labeling techniques can be a better approach in terms of time
and costs for these types of applications [56, 7, 45, 29].

Although this study focused on fault detection, the GANs
effect on the predictive performance can also be extended to
diagnostics and prognostics models. For instance, the train-
ing process of the GAN could be focused towards generating
synthetic data of a specific type of failure mode. From a
prognostics perspective, new synthetic data may improve the
predictions on the future health state of the engine. Further-
more, including traditional machine learning models in the

analysis may offer greater transparency compared to "black-
box" deep learning frameworks. This could enable more
research in explainable artificial intelligence for predictive
maintenance. Aligning with suggested research directions
by Zhang et al. [59], domain-specific knowledge can be
included to guide the optimization process of the GAN
which could improve the quality of the generated samples.
Finally, introducing the operating conditions in combination
with conditional GANs also presents a promising avenue for
simulating synthetic data of aircraft engines and may offer a
more direct evaluation approach.
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7
Introduction

Aircraft maintenance contributes approximately 11% to the overall operating cost of airliners [1]. A
considerable share of these expenses is directed toward the upkeep and servicing of aircraft engines. Given
the intense competition in the aviation industry, airliners are investing in inventive strategies to reduce
maintenance costs.

Condition Based Maintenance (CBM) emerges as a crucial strategy that utilises machinery sensor data
to inform optimal decision-making based on real-time conditions. This capability not only aids in creating
cost-effective maintenance strategies but also improves engine reliability [2]. Central to CBM is the ability
to quantify the engine’s health based on the monitored data. Because engine health indicators are not
directly measurable, Maintenance, Repair, and Overhaul (MRO) engineers combine engine data with Gas
Path Analysis (GPA) tools to extract vital health parameters such as efficiency and flow [3][4].

Prognostics and Health Management (PHM) further extends CBM with the ability to predict the future
health of an engine. Its primary objective is to predict the Remaining Useful Life (RUL), the period at
which a system ceases to perform its intended function. Methods to estimate RUL span from statistical
and physics-based to hybrid and artificial intelligence models [5]. In recent years, Deep Learning models
have proven to be effective tools in detecting and predicting system failures [6]. Their ability to accurately
predict RUL was particularly observed in the 2021 PHM Data Challenge where neural networks were the
most popular amongst the winners [7].

However, the limited availability of failure data from safety-critical systems poses considerable challenges
for training neural networks [5]. In response, researchers have generated synthetic training data through
turbofan system models, such as the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
[8][9]. Yet, these approaches, reliant on GPA model approximations and pre-determined degradation
paths, are not inherently geared towards industrial applications raising concerns about their usefulness in
real-world settings [10][11].

This literature review intends to examine the feasibility of augmenting KLM’s GEnx-1B lifecycle data
using generative adversarial networks. These have shown to possess exceptional capabilities at generating
synthetic data indistinguishable from the original dataset [12]. Furthermore, the cross-disciplinary approach
between deep learning and physics-based modelling may play a critical role in producing high-quality
synthetic data [13]. For this reason, we also explore potential methodologies of integrating KLM’s GPA
tools during the training process.
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8
Research Question(s) and Objective

Training diagnostics models is challenging due to the limited available failure data in safety-critical systems.
To solve this issue, augmenting training set may potentially be a solution. Therefore, the question central
to this literature review is as follows:

How can generative models effectively augment existing turbofan life cycle data to improve the
predictive performance of diagnostics models?

Research Objective

To establish the scope of this literature review, our focus extends to understanding Gas Path Analysis
(GPA) and state-of-the-art deep learning models that have proven to be effective in diagnostics models.
Additionally, the groundwork is laid for an analysis of different data augmentation techniques, focusing
particularly on time series data. Expanding on the primary research question, this literature review is
dedicated to the following sub-level questions.

1. How can generative models be implemented to create realistic turbofan deterioration data?

(a) How can generative models learn the intrinsic nature of damage propagation and model it
realistically?

(b) How do operational settings and ambient conditions play a role in the turbofan life cycle?
(c) How can prior knowledge on operational settings and ambient conditions aid in the generation

of synthetic data?
(d) What should the frequency of the generated data be?
(e) Which sensor measurements are essential for training robust diagnostics models?
(f) How is the realism of the synthetic turbofan degradation data assessed?
(g) How do we ascertain that the generative model is not simply ”memorising” the original dataset?

2. How can prior knowledge from the Gas Path Analysis tool, Gas Simulation Program, be included in
the training process?

(a) How should existing architectures of generative models be adapted to include physics-based
knowledge?

(b) How should reference engine models in the Gas Simulation Program be modified to derive health
indicators?
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9
Gas Turbine Maintenance

Traditional maintenance strategies rely on historical failure event data and are based on periodical and
corrective measures [14]. Such an approach may lead to early replacement of healthy engines or, in more
dangerous situations, allow malfunctions to occur prior to scheduled maintenance. This approach could
potentially compromise engine reliability and increase overall maintenance costs of airliners.

This chapter focuses on three critical areas: (Section 9.1) an exploration of deterioration patterns
in gas turbines, (Section 9.2) an examination of the commonly used maintenance strategies by airline
operators, and (Section 9.3) a discussion on Gas Simulation Program (GSP) to extract key state variables
that describe the health of the engine and methods to quantify deterioration.

9.1. Gas Turbine Deterioration
In general, any faulty component within the engine can lead to machine degradation [15]. Tahan et al.
[16] identifies these faults into four different groups: gas path faults, faults in auxiliary subsystems,
mechanical errors, and sensor uncertainties (Figure 9.1). Non-performance-based techniques exist to
monitor malfunctions in subsystems or mechanical faults such as thermography, acoustics, load, vibration
and temperature analysis. In contrast, gas path faults often occur because of aerodynamic or performance
related problems. Examples of these issues include fouling, erosion and corrosion of blades, and improper
combustion.

Figure 9.1: Four categories of gas turbine faults as specified by Tahan et al. [16].

The compressors and turbines are the most expensive and important components in aircraft engines
and, hence, are often seen as the most critical ones [16]. Kurz, Brun, and Wollie [15] discusses three main
degradation effects that influence the performance of compressors. Over its lifetime, the compressor will
typically be subjected to increased tip clearances, changes in airfoil geometry, and increased airfoil surface
roughness. Furthermore, these effects are augmented since deteriorated stages lead to alteration in the
flow exit conditions. Consequently, the downstream compressor stages also operate at non-optimum design
conditions.

Besides affecting other compressor stages, a degraded compressor will also affect other components
such as the turbine as they start to mismatch. The changes in physical aspects of the component will
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inherently affect the response surface of the compressor map as shown in in Figure 9.2 and Figure 9.3
which has a compounding effect. In literature [15, 17], the degradation phenomena per component are
studied separately. However, researchers also note that in reality these effects interact with each other and
do not occur in isolation.

At constant load, loss of compressor efficiency results in reduced discharge pressure and flow, whereas it
increases the TIT and heat rate. Simultaneously, compressor fouling or increased tip clearance reduces
flow capacity which limits available power at lower ambient temperatures [15]. The relationship between
pressure ratio and flow does not alter as it depends on the turbine. However, the engine must rotate faster
and, consequently, the compressor power consumption increases as shown in Figure 9.2 and Figure 9.3.

Figure 9.2: Increased power consumption as a
result of fouling [18]. Figure 9.3: Degraded response surface [17].

9.2. Maintenance Strategies
MROs maintain their engines on fixed basis or when certain thresholds are reached in terms of performance
degradation. Therefore, it is crucial to extract important data describing the state of the engine to effectively
transition the fleet towards condition based maintenance. In the engine life cycle, different reasons exist
that may trigger its removal. MROs categorise these reasons based on causes related to the engine (basic)
and unrelated to the engine (non basic) such as human error and the environment. The synthesis of this
categorisation is depicted in Figure 9.4, where the primary engine removal categories are illustrated 1.

The definitions of relevant engine removal reasons from Figure 9.4 are described in Table 9.1. Within
the scope of unplanned reasons, not all removals are due to deteriorated engine performance. For example,
maintenance condition and foreign object damage are reasons unrelated to engine performance. Other
reasons are more applicable to a deteriorated engine state.

Table 9.1: unplanned engine removal definitions

Unplanned Reasons Definitions
Item Part Problem removal for specific part malfunction
Performance unexpected performance issues
Maintenance Condition removal because of human error during inspection
Operation Condition removal due to operational problem
Foregin Object Damage ingestion of an object unrelated to engine

Planned engine removals are instances where the engine removal process is scheduled. When an engine
is maintained before it has failed, the collected data throughout the engine life cycle gets prematurely

1KLM document: ERR causes GE definitions R-01-CF6-002
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Figure 9.4: Primary removal reasons for engine overhaul. The planned and unplanned causes impact the
recorded data for run-to-failure trajectory.

truncated. This may pose challenges to the accumulation of complete run-to-failure datasets which are
required for RUL prediction. It is also the main reason why complete run-to-failure datasets of safety-critical
systems are rare.

In contrast, unscheduled engine removals are instances where removals are not planned and may,
therefore, contain complete run-to-failure datasets of an engine. However, identifying when the engine
exactly failed remains difficult since in some cases the observation of a failure during a scheduled inspection
does not directly indicate the exact time of the failure. In other words, the engine may have been flying
at a failed state the last couple of flights. This could ultimately affect the labelled RUL dataset. Unless
the failure is detectable in the recorded data, it is not immediately clear when it happened. Therefore,
besides awareness of different engine removal reasons, it is critical to establish clear definitions of failure
when collecting representative run-to-failure datasets. In addition, the life cycle of each individual engine
must be analysed and considered carefully for the training set.

9.3. Gas Path Analysis
Monitoring gas path faults requires apriori knowledge about the aircraft engine and appropriate placements
of sensors along the gas path [16]. Gas Path Analysis (GPA) is a popular performance-based method to
analyse engine conditions and detect the gas path faults discussed in Section 9.1.

9.3.1. Gas Simulation Program
A specific example of a GPA tool is the Gas Simulation Program (GSP), a collaborative effort by the Dutch
National Aerospace Laboratory (NLR) and Delft University of Technology. GSP allows for modelling and
simulation of gas turbines which allows for performance diagnostics and quantification of engine health
[19]. The application has the option to adjust the flow and efficiency parameters, which are indicative of
engine health. This feature is especially useful when trying to match the simulated gas path variables with
in-flight measurements. As a result, state variables related to specific health conditions of the engine can
be quantified. With data like ambient pressure, temperature, Mach number, and N1 spool speed, depicted
in Figure 9.5, GSP can estimate the sensor variables at multiple gas path stations.

GSP utilises Newton-Raphson numerical solver to find a solution of the system of non-linear algebraic
equations that satisfy the conservation laws. To explain the convergence process, Visser [3] considers
the vector S̄ = [s1, s2, ..., sn] describing the state of the engine. Simple engine models use as few as 4
independent engine states, while more complex models require up to 50 states. In other words, an error
vector Ē exist as a function of S̄ which has to be reduced to near-zero:
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Figure 9.5: Overview of input and output variables from GSP [3]. The numbers correspond to the
different engine stations along the gas path.

Ē(S̄) =


e1

e2
...

en

 (9.1)

The Newton-Raphson method aims to update the state variables sn towards error reduction by linearly
estimating the gradient of en relative to sn. Each state variable is slightly perturbed to find its gradient
with respect to the error. Consequently, the state vector is updated with the Jacobian matrix until the
error is reduced below a specified threshold. Hence, the resulting state represents a solution to the system
of equations.

Ji,j = ∆ei

∆sj
S̄i+1 = S̄i − f · J−1

i · Ēi (9.2)

(9.3)

9.3.2. Quantifying Degradation with Adaptive Modelling
Extracting the current health of an operational engine is essential for diagnostics. Visser, Kogenhop,
and Oostveen [19] implemented Adaptive Modelling (AM) within GSP to estimate engine deterioration
parameters. The concept compares the measurements of a deteriorated engine with the baseline engine
model, where efficiency and mass flow are unknowns, and adapts the healthy component maps with so-called
map modifiers.

In GSP, the measured variables are included during the Newton-Raphson optimisation process (Equa-
tion 9.1) by extending the core set of equations using the AM control module [3]. The model equations are
extended by adding one equation per measured variable. An equal number of unknown component health
parameters such as efficiency and flow must also be passed to maintain a square matrix. This constraint is
needed to calculate the inverse Jacobian matrix when executing the Newton-Raphson method.

The number of measured gas path variables differs per engine type. Newer engine architectures, such as
the GEnx-1B and the LEAP-1A used by KLM, have fewer installed sensors along the gas path. Consequently,
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the system of equations in Adaptive Modelling becomes underdetermined when the parameters of all
components have to be estimated as noted by Rootliep, Visser, and Nollet [20]. To solve this problem, the
authors proposed a differential evolution optimisation scheme applied to adaptive modelling using Multiple
Operating Point Analysis (MOPA). However, introducing an additional optimisation scheme during the
synthetic data generation process may lead to convergence instabilities.
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Prognostics & Health Management

The academic exploration of machinery health prognostics has gained increasing interests in recent years.
It is an interdisciplinary research field that integrates sensor analytics and engineering practices to monitor
and predict the health of a system. Prognostics and Health Management (PHM) aims at predicting
the Remaining Useful Life (RUL) at which the system no longer performs its intended function. Using
this information, companies managing and operating their assets are able to create effective maintenance
strategies that ultimately lead to the reduction of operating costs and increased reliability.

10.1. History
Because of the safety-critical nature and high-maintenance cost, professionals within the aerospace industry
pioneered early on with PHM. While various condition-based maintenance strategies have been in practice
since as early as the 1940s, the specific terminology of PHM was first introduced in 2009 by the US Air
Force within their F-35 Joint Strike Fighter program [21].

Over the last decade, PHM has been implemented in various fields such as Aerospace, Energy, Trans-
portation, and Manufacturing, and is widely regarded as an essential technology for effective system
maintenance and operational reliability [22]. Various technical societies were established to promote and
facilitate collaboration within prognostics: PHM society (2009), Intelligent Maintenance Systems (IMS)
center (2001), Center for advanced Life Cycle Engineering (CALCE)(1986), Prognostics Center of Excellence
(PCoE)(2016), and Integrated Vehicle Health Management (IVHM) center (2008) [22]. The creation of
these societies have catalysed research in failure physics, sensor technology, feature extraction,

10.2. Diagnostics & Prognostics
The words diagnosis and prognostics originate from the Greek language: diagnōstikos ”able to distinguish”
and prognōstikos ”come to know beforehand”. Diagnostics focuses on identifying the root cause of a failure
or abnormality in a system. This is generally based on the analysis of real-time sensor data, historical
data, and expert knowledge about the system. Diagnostics dedicates itself towards detecting and isolating
system faults and answering questions to why it is not performing optimally.

Prognostics pertains to the process of predicting the future performance of a system or its Remaining
Useful Life (RUL) given its current state, past performance, and anticipated usage conditions. This process
uses data-driven, model-based, or hybrid approaches to forecast the degradation of the system, thereby
facilitating condition based maintenance and system optimisation. Prognostics is concerned with questions
regarding the time at which a system will fail or how much longer it can perform its intended function.

Figure 10.1 presents a schematic showing where diagnostics and prognostics fit within the overall
framework of PHM. The ability to predict a system’s health relies on using models that can tell us about its
degradation state and the Remaining Useful Life (RUL). Monitoring emphasises real-time fault detection,
commonly using anomaly detection techniques. Diagnostics, meanwhile, identifies the nature of the fault
and measures its impact on the system. Finally, the insights from these various components are integrated
and analysed to create cost-effective strategies for maintenance and logistics.
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Figure 10.1: Overview of Prognostics & Health Management and its relationship towards other sub
modules [14].

10.3. Health Indicators
The development of health indicators play a critical role in forecasting the future state of a system. Several
health indicators have been proposed as key performance parameters that describe the health of an engine.
Efficiency and flow are typical indicators of gas turbines. However, Hanachi et al. [23] suggest the use of
heat loss and power deficit index for industrial gas turbines where internal gas path parameters are hard to
access. In essence, multiple indicators can be used in RUL prediction which makes it important to select
the most suitable indicator(s).

Lei et al. [5] propose two questions related to the development of health indicators: (a) In what way
are effective health indicators derived from the measured data? (b) How is their effectiveness assessed?
The authors classify health indicators into physics-based health indicators and so-called virtual indicators.
Furthermore, De Giorgi, Menga, and Ficarella [7] present two techniques to extract health indicators from
the data: a physics-based and data-driven approach.

10.3.1. Physics-Based Health Indicators
Physics-Based health indicators, customary to any machinery, represent the data with physical significance.
These are often extracted from statistical approaches in the time and frequency domain. For example, in
vibration signals, the root mean square (RMS) is used an a key performance parameter as it describes
the system’s energy level. In gas turbine applications, physics-based health indicators could include flow,
efficiency, heat loss, and the power deficit index [23]. However, variables such as flow and efficiency are not
directly measurable and have to be derived from physics-based models.

10.3.2. Virtual Health Indicators
Unlike physics-based health indicators, virtual health indicators do not inherently represent any physical
meaning and are often made up of multiple physical health indicators. For example, the combination of
the four physical health indicators of gas turbines mentioned earlier creates a new virtual health indicator.
Common techniques focus on reducing feature space dimensionality. Principal component analysis (PCA)
is a technique often used in data-driven methods. Newer deep learning methods can learn the underlying
representation of the data during training and automatically construct the most important virtual indicators
to predict the RUL as discussed in Section 10.4.

10.3.3. Health Indicators Evaluation
This section quantifies the utility and effectiveness of the physical and virtual health indicators. Lei et al.
[5] discusses several methods to quantify their effectiveness: monotonicity, robustness, and trendability.
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Monotonicity assesses the health indicator against the irreversible nature of degradation. It does so by
counting the number of occurrences where the health indicator difference is either positive or negative.

Monotonicty(X) = 1
K − 1 · |
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dx
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Health indicators should aim for smooth degradation trends and, therefore, robustness aims to quantify
the noise of a health indicator. The robustness of the health indicator can be evaluated by comparing the
the value xk at time tk with xT

k which represents the value from a smoothing method.
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Finally, trendability reflects a correlation with time since the system’s degradation likelihood increases
with operating time. Due to nonlinear degradation trends, researchers tend to use the Spearman’s ranks
coefficient to determine the trendability. Here, {x̃k}k=1:K and
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}
k=1:K represent the health indicator’s

rank sequence.
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10.4. Predicting Remaining Useful Life (RUL)
Researchers and professionals define the RUL of machinery either as the remaining time left until the
machine stops performing its intended function or until its health state drops below a predefined failure
threshold [5]. The industry benefits from estimating the RUL by avoiding downtime, costs, improve
operations, and preventing system failures. The two key issues in RUL prediction revolve around the
method used to estimate the RUL from monitored sensor data and how to evaluate its accuracy.

Figure 10.2 presents the distribution of publications that follow one of the four RUL prediction methods:
statistical models, hybrid approaches, physics-based models, and artificial intelligence [5]. With the advent
of artificial intelligence methods this distribution has most likely changed. In the next sections, several
common techniques are described.

Figure 10.2: Methodology distribution from several publications in estimating RUL up to 2015 [5].
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10.4.1. Physics-based Models
A physics-based model seeks to derive the health parameters from mathematical and thermodynamical
principles [7]. These focus on describing the evolution of deterioration through mathematical damage
propagation models

Physics-Based health indicators represent the data with physical significance [5]. For example, in
vibration signals, the root mean square (RMS) is used an a key performance parameter as it describes the
system’s energy level. For gas turbines, physics-based health indicators could include flow, efficiency, heat
loss, and the power deficit index. However, variables such as flow and efficiency are not directly measurable
and have to be derived from physics-based models.

Gas Path Analysis (GPA) is a common tool for gas turbine applications and is also used at KLM.
Its objective is to quantify health indicators using derived variables from the measured sensor data. By
understanding the physics behind the engine its health indicators can be related to the recorded data at
different stations along the gas path using Adaptive Modelling (AM), as discussed in Section 9.3.2.

10.4.2. Statistical Models
Autoregressive (AR) and Markov models are two examples of statistical models that have been utilised
for RUL prediction. AR models fundamentally rely on the assumption that the future state of a system
depends linearly on historic data and errors. These models are simple but may lead to large forecasting
errors as they depend on trends and history.

Markov models are based on the assumption that a system changes its state among a finite set of states.
This property asserts that the future state of the system depends only on its current state. These models
are often applied to the health states which are often observable [5]. Another notable limitation of Markov
models is their difficulty in capturing complex scenarios, as the number of potential states can increase
exponentially, leading to substantial computational overhead [24].

10.4.3. Data-Driven Models
Data-Driven techniques to predict RUL span from Bayesian belief networks and artificial neural networks
to traditional machine learning techniques such as Support Vector Machines. Since the release of the
C-MAPSS dataset for the 2008 PHM challenge [8], numerous researchers have utilised data-driven methods
to forecast RUL. Amongst the winners of the more recent 2021 PHM Data Challenge, deep learning
approaches were the most popular [7]. The deep learning trend was also observed by Vollert and Theissler
[6], especially in recurrent neural networks (RNNs).

RNNs excel at learning sequential dependencies intrinsic to data [25]. Given the time-series nature of
turbofan sensor data, they are well-suited for this task. Long-Short Term Memory (LSTM) architectures
are particularly beneficial, thanks to their utilisation of the hidden memory state concept. The strength of
LSTMs lies in their capability to remember long-term dependencies by mitigating the vanishing gradient
problem often encountered in traditional RNNs. This makes them very proficient in handling complex
time-series prediction tasks.

Figure 10.3: Long Short-term Memory (LSTM) cell depicting the cell and hidden state [26]. The variable
xt represents a vector of n features at time step t.

The flow of information is summarised in Figure 10.3 where the LSTM cell is governed by the
three non-linear gating units in Equation 10.1: the forget gate, ft, the input gate it, and the output
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gate, ot. The matrices and biases corresponding to these gates serve as the trainable parameters of
the neural network. The candidate for the new cell state, denoted as C̃t, is computed via the formula
C̃t = tanh

(
WCxi

t + RCht−1 + bC

)
. This candidate cell state is then combined with the previous cell state

to determine the new cell state, Ct = ft ⊗ Ct−1 + it ⊗ C̃t. Finally, the new hidden state ht is determined
by the output gate, which effectively decides which components of the cell state should be retained for
future operations.

ft = σ
(
Wf xi

t + Rf ht−1 + bf

)
it = σ

(
Wix

i
t + Riht−1 + bi

)
ot = σ

(
Woxi

t + Roht−1 + bo

) (10.1)

The architecture of the full LSTM model may consists of several layers and different neurons. An
example of a general architecture is illustrated in Figure 10.4. These can further be enhanced by using
bidirectional layers [27], adding attention mechanisms to the output of the LSTM cells [26], or introducing
a convolutional layer in the architecture [28]. In addition to adjusting the LSTM architecture, other
research propose integrating physics-based simulators in the training process [29]. However, despite the
demonstrated effectiveness of RNNs in various applications, their utility in safety-critical engineering
systems is often hampered by their significant training data requirements. The scarcity of run-to-failure
data, a consequence of systems being routinely replaced before failure, makes training challenging.

Layer 2

Layer 1

LSTM Cell LSTM Cell LSTM Cell

LSTM Cell LSTM Cell LSTM Cell

Figure 10.4: Example of an LSTM neural network architecture with two layers [26].

10.5. Evaluation
Evaluating the performance of different models involves assessing whether the requirements of the prognosis
are met. In safety-critical systems, a late failure prediction could compromise safety and impose considerable
economic strain on the company. Therefore, it is essential to establish evaluations reflecting these factors.
This section aims to discuss the evaluation of both predictive models and health parameters.

10.5.1. Model Evaluation
A simple method of establishing a model’s performance is the root mean squared error (RMSE). Equation 10.2
defines as the root mean square of RUL predictions starting from the first predicted time until the end of
life (EoL).

RMSE =

√√√√ 1
EOL − FPT

EoL∑
k=F P T

(
ltk

− l∗
tk

)2 (10.2)
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In contrast to the RMSE, Saxena et al. [8] proposes an asymmetric scoring function, Equation 10.3, to
evaluate model performance. Predicting the estimated RUL before the true RUL is preferred to preserve
safety whereas predicting RUL after the system fails imposes a hazard. Equation 10.3 shows how the
scoring function depends when deviating from the true value with d = t̄RUL − tRUL. The corresponding
values are plotted in Figure 10.5.

penalty =


∑n

i=1 e
−

(
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)
− 1 for d < 0∑n

i=1 e

(
d

a2

)
− 1 for d ≥ 0

(10.3)

In addition to the symmetric scoring function, Saxena et al. [8] expands on the idea that predicting on
a larger time horizon is more difficult compared to a smaller window. In contrast, if the prediction is made
while the true RUL is closer to the operational system, the accuracy of the forecast is more valuable. This
idea introduces another asymmetric dimension when evaluating models and improves the comparison of
different models.

Figure 10.5: Asymmetric scoring function (Equation 10.3) proposed by Saxena et al. [8]. Predicting RUL
after the failure has happened should have a more severe penalty to maintain reliability of safety-critical

systems.
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Turbofan Data Augmentation

Data augmentation techniques hold significant value as they enable the artificial expansion of a dataset.
This expansion is achieved through the application of subtle transformations to the original data or by
learning the underlying distribution to generate entirely new, yet representative samples. In turn, the
increased diversity within the training set reduces overfitting and contributes to more robust machine
learning models, particularly within deep learning, where large quantities of data are often essential for
training [30].

A major issue in the development of prognostics models within the aviation industry is the lack of
turbofan run-to-failure data. To address this challenge, researchers have proposed various strategies. These
approaches span from employing basic data augmentation techniques to more complex methods, such as
synthetically simulating turbofan degradation cycles using Gas Path Analysis (GPA) models [31][28][8].
Regardless of the specific technique, the common goal of these methods is to create new synthetic data.
While the synthetic data are intentionally designed to be different from the original data, it must continue
to preserve the fundamental characteristics of the data and produce artificial patterns that can be learned
and are relevant.

11.1. Time Series Data Augmentation
Traditional statistical methods often rely on the assumption that observations are independent and
identically distributed. However, this assumption does not hold when data is recorded at consecutive points
in time [32]. For this reason, augmenting existing run-to-failure trajectories requires understanding of the
nature of time series data.

Within the space of time series data augmentation, different techniques exists ranging from basic
approaches to more advanced methods. Maintaining temporal trends is crucial in time series analysis
and, consequently, not all augmentation techniques are applicable. In Figure 11.1, Wen et al. [33] propose
a taxonomy of 6 groups dedicated towards data augmentation in time series related tasks: time series
transformations, frequency based augmentation, a hybrid combination of time and frequency, decomposition
of trends, statistical methods, and learning methods.

Figure 11.1: Overview of time series data augmentation techniques proposed by Wen et al. [33].

Basic techniques apply transformations to the data directly. They involve slicing, jittering, scaling,
rotation, and permutation. Figure 11.2 presents a few examples of traditional augmentation methods in the

33
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time domain. These techniques generally apply minor transformations to the data. Moreover, the methods
can be combined and super-imposed to produce additional variations of the original data. In contrast,
advanced techniques learn the probability distribution of the training data to create new synthetic data
[34]. These are discussed in Section 11.3.

Figure 11.2: Examples of basic time series data augmentation techniques [34].

The study by Gay et al. [31] assessed various standard data augmentation techniques using the C-MAPSS
dataset. Their results indicate that methods like time warping, time slicing, and interpolation positively
impacted the Root Mean Square Error (RMSE). In contrast, magnitude warping was found to adversely
affect RMSE in the resulting prognostic models. Besides using the simulated C-MAPPS dataset, the
authors also demonstrated that these elementary augmentation methods can substantially increase the
prediction confidence in industrial applications.

11.2. Simulating Turbofan Degradation
To address the lack of data, several researchers have aimed to generate synthetic run-to-failure data by using
GPA tools to model turbofan degradation cycles [8][9]. The degradation trends are produced synthetically
by imposing mathematical damage propagation models which often originate from literature. Modelling the
dynamics of damage propagation between the cycles presents an additional challenge on top of developing
a representative turbofan model that can accommodate health indicators. Both Saxena et al. [8] and
Arias Chao et al. [9] have contributed significantly to the PHM community by providing synthetic turbofan
run-to-failure datasets for the RUL prediction PHM data challenges. Their work has opened new pathways
for ongoing research and is discussed in the following two sections.
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11.2.1. C-MAPSS
The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS), developed by NASA, serves
as a simulation tool for modern turbofan engines and operates within MATLAB and Simulink [35]. It is
similar to GSP, allowing users to manipulate input parameters and model specific conditions.

In 2008, Saxena et al. [8] employed C-MAPSS as the engine model, integrating a damage propagation
model to simulate the trajectories of various engine units. This damage propagation model, derived from
Goebel et al. [36], assumes exponential evolution of faults. The equation for wear, denoted by w = AeB(t),
encompasses overall degradation characteristics. The health indicators, efficiency e and flow f , are modelled
as:

h(t) = 1 − d − ea(t)·tb(t)
(11.1)

Here, d symbolises initial wear that may arise from manufacturing issues. The overall health index is
expressed as H(t) = g(e(t), f(t)). The complete data generation process with C-MAPSS is described below:

1. The health parameter’s initial condition for deterioration is selected.
2. The degradation model is imposed to each health indicator of the HPC where the change in f and e

are constrained by 1%, a ∈ [0.001, 0.003] and b ∈ [1.4, 1.6].
3. The C-MAPSS simulation is executed until the overall health indicator reaches zero.
4. Additional measurement noise is added to the generated data to simulate sensor noise.

Figure 11.3: An example of a generated run-to-failure trajectory for one sensor from Saxena et al. [8].
The deviating trends become more prominent as the turbofan enters the unhealthy stage. The stage names

are indications on how the data points can be divided over the cycles.

Figure 11.3 shows an example of the evolution of deterioration for several engine units where sensor 14
represents any arbitrary sensor that monitors a specific variable along the gas path. The figure shows how
the units follow different trajectories and may fail at different moments in time.

11.2.2. N-CMAPSS
Saxena et al. [8] did not implement real operating and ambient data from real. Besides imposing initial
deterioration and implementing randomness within the damage propagation model, the following aspects
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to why a specific engines may experience unique degradation trends should also be considered: (1) is the
engine from the same type? (2) how far did the engine fly? (3) what were the weather conditions during
take-off and cruise? (4) which aircraft body was the engine mounted on? (5) what was the maximum
take-off weight of the aircraft? (6) how many times has the engine been removed from the aircraft?

In 2021, Arias Chao et al. [9] contributed to new improvements to the original C-MAPSS dataset by
not only introducing operational and ambient data from real flights, but also increasing the complexity of
the degradation model, linking it to historic data. When considering the C-MAPSS system model, the
inputs are categorised by operating conditions, w, and health parameters, θ. Similar to GSP, the C-MAPSS
equation is summarised as

[
x(t)

s , x(t)
v

]
= F

(
w(t), θ(t)

)
(11.2)

Unlike Saxena et al. [8], the N-CMAPSS is generated using real sensor data, recorded during multiple
flights. The NASA DASHlink-Flight Data For Tail 687 is used as input for the operating conditions w and
results in more realistic generated samples [37].

The authors propose to model the overall degradation with an initial degradation, a normal degradation,
and an abnormal degradation. Furthermore, the degradation model is not only applied to the HPC, but
also any rotating sub-component such as fan, LPC, HPT, and LPT leading to more complex degradation
patterns.

Figure 11.4: The data generation process for the N-CMAPSS dataset as proposed by Arias Chao et al.
[9].

A step-by-step summary of the data generation process for the N-CMAPSS dataset is shown in
Figure 11.4 with its corresponding description below:

1. The real flight conditions are used as input for the C-MAPSS simulation.
2. The degradation of the different engine components are imposed after each flight.
3. The engine performance is simulated throughout each flight with C-MAPSS.
4. The first three steps are repeated until the engine reaches the failure criterion: H(t) = 0
5. In addition to the measurement noise from the real flight data, extra noise is added to the generated

data.

Although the presented datasets have enabled numerous advances in prognostics and aircraft engine
health management, the question remains whether this data generation method provides enough realistic
data for prognostics models to be generalisable when deployed in the real world. The synthetic datasets
are subjected to the assumptions of the 0D models and the assumed mathematical degradation models
which may not always capture the reality of industrial processes [31].
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11.3. Generative Models
Section 11.1 provided an overview of the different time series data augmentation techniques where they were
divided based on their complexity. This section aims to discuss more advanced techniques of augmenting
time series data. In recent years, generative models have experienced significant progress. They operate by
learning to match the model’s parameters to generate samples that are indistinguishable from the original
distribution [38].

Variational Autoencoders
Variational Autoencoders (VAEs) create compressed representations of the input data from which new
data is sampled. The lower dimensional encoded space, or latent space, is learned by comparing the
reconstructed input values with the original samples shown in Figure 11.5. VAEs were first proposed by
Kingma and Welling [39].

Figure 11.5: Schematic of the variational autoencoder architecture.

The two main components, the encoder and the decoder, aim to learn the reduced feature space using
self-supervised learning [34]. Unlike the original autoencoders, VAEs learn from a probability distribution,
µ and σ, to avoid overfitting. Upon producing new examples, the VAEs samples synthetic data from this
distribution.

Generative Adversarial Networks
The fundamental learning process of GANs are based on an adversarial approach. Two neural networks, the
generator and the discriminator, compete against each other. The generator tries to fool the discriminator
by forging realistic samples. On the other hand, the discriminator seeks to differentiate between real
and synthetic samples. Over time, the generator improves its ability to create realistic data, while the
discriminator enhances its ability to distinguish between real and fake data. This data augmentation
technique is further discussed in Chapter 12.

11.4. Advantages and Disadvantages
This section evaluates the data augmentation techniques covered in prior sections. Table 11.1 presents a
scoring metric ranging from 1 to 5 for each technique, based on criteria that include ease of implementation,
theoretical effectiveness, scientific relevance, and computational resource demands. These criteria are
weighted at 30%, 20%, 35%, and 15%, respectively. While the scientific relevance of each method is
important for the PHM community, the practicality of the method is also crucial. Furthermore, theoretical
effectiveness is evaluated to include the prospective impact of each method. Lastly, considering the
constraints often imposed by available computational resources, each technique is also scored on this
criterion.

The process of generating synthetic data with physics-based models comes with certain limitations, as
the data is subject to simplifications in turbofan simulation and degradation assumptions. Consequently,
machine learning models trained on this data may not perform adequately when exposed to real flight data
[10][11]. However, comparing the output of physics-based models with real world data can strengthen the
understanding of gas turbine deterioration.
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Table 11.1: Data augmentation techniques trade-off

Ease (30%) Effect (20%) Relevance (35%) Resources (15%)
Basic 5 1 1 5 2.80
VAEs 3 3 2 3 2.65
GANs 1 5 5 2 3.35
Simulation 2 2 3 3 2.50

Instead, KLM could leverage the limited amount of data to learn deteriorated turbofan performance
and enhance model predictions during operational use. Basic data augmentation techniques are relatively
straightforward to implement, supported by robust research, and do not require model training, thereby
reducing both time and complexity. However, techniques such as slicing, jittering and other transformations
might risk producing lower quality, or even invalid, examples when modifying specific data points from the
original datasets [34].

VAEs offer greater control over parameters and flexibility in diversifying the original dataset. However,
compared to GANs they generate less data due to the nature of the algorithm. While GANs have
demonstrated impressive results in different industries and areas of research, they are inherently challenging
to train due to mode collapse, instability, and convergence evaluation. In addition, evaluating the
performance of GANs, particularly in quantitative metrics, remains an active area of research [40]. The
next chapter, Chapter 12, focuses on these issues and discusses the possible GAN architectures in time
series related tasks.
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Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of artificial intelligence algorithms used in unsupervised
machine learning. Goodfellow et al. [12] introduced the concept of adversarial training by letting two neural
networks compete against each other: a generator and a discriminator. The generator produces artificial
examples, while the discriminator evaluates them for their realism. The generator improves through the
adversarial process, aiming to generate data that the discriminator cannot differentiate from real instances.
GANs have found extensive applications in image synthesis, semantic image editing, style transfer, image
super-resolution and classification.

12.1. Adversarial Training
The process of training happens in two steps where the discriminator starts with learning the distribution
of real and fake data. For the discriminator, the objective is to correctly classify the real instances from
the training set and the generated instances from the generator. The loss function for the discriminator is
typically formulated as a binary cross-entropy loss, which is minimised when the discriminator accurately
distinguishes real instances from fake ones. During updating the parameters of the discriminator the
generator’s parameters are held constant as shown in Figure 12.1.

The discriminator seeks to correctly classify real instances from the training set and generated
instances from the generator.

The generator seeks to fool the discriminator into believing that its generated instances are real.

The second step involves in updating the generator’s parameters. The objective of this step is to
update the generator’s parameters to create even more realistic examples using the information from the
discriminator. To achieve this, we use the discriminator’s predictions on the generator’s outputs but with
the labels flipped as if they were real instances. The reason for this lies in back propagation. When we
pass the generator’s fake instances through the discriminator and label them as real, the resulting gradient
will indicate how to change the generator’s parameters to make its outputs more like real instances. After
passing a batch, the generator’s parameters are updated in isolation as shown in Figure 12.2.

At core, the losses of the generator and discriminator are at odds with each other which results in the
adversarial part of training. In terms of mathematical formulation, the generator and discriminator try to
both minimise and maximise the following the objective function:

min
G

max DV (D, G) = Ex∼pdata (x)[log D(x)] + Ez∼pz(z)[log (1 − D(G(z)))](12.1)

12.1.1. Mode Collapse
Modes represent areas of data concentration within a space, and a dataset can exhibit multiple such modes.
Consider, for instance, a dataset of handwritten digits ranging from 1-10. Here, the discriminator would
aim to categorise each handwritten digit into one of the 10 classes. During the training phase, if the
discriminator struggles to distinguish between ones and sevens, this information is conveyed back to the
generator. Consequently, the generator improves its capability to create more convincing examples of these

39
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Figure 12.1: The discriminator starts first with learning the distribution of the fake and the real data. It
does so by computing the loss and updating its parameters with ∇θdisc to better classify real and fake

examples.

specific classes. However, this selective enhancement may lead to a phenomenon called ’mode collapse’,
where the generator produces only a certain subset of data. When relating this issue to the generation of
turbofan life cycle data, it would mean that the generator starts producing examples of one failure mode
specifically. Consequently, the generator is locked and generates examples of a specific type predominantly,
thereby not representing the entirety of the training set.

12.1.2. Vanishing Gradients
In the original GAN paper Goodfellow et al. [12], the authors used the binary cross entropy (BCE) loss
function to run the optimisation. The problem with BCE loss is the declined effect of gradients as the
discriminator starts becoming better. Consequently, the information used by the generator to update its
parameters is more weak and less effective because of very different distributions. In other words, the
generator fails at improving its generated examples.

To address this issue, a Wasserstein metric based on Earth Mover’s Distance (EMD) was introduced
by Arjovsky, Chintala, and Bottou [41]. This metric quantifies the effort required to transform the fake
data distribution to match the real data distribution. Unlike traditional discriminators that classify data
as either 0 or 1, the implementation here involves a critic that assigns an arbitrary positive number. For
effective training, it was proposed that the critic be Lipschitz continuous with a constraint of 1, implying
that the gradients should not exceed this limit. This was initially achieved through gradient clipping.
However, a subsequent enhancement proposed by Gulrajani et al. [42] replaced gradient clipping with a
regularisation parameter that penalises gradients based on their magnitude, thereby enforcing Lipschitz
continuity more effectively.

12.2. Recurrent Generative Adversarial Networks
The understanding of time series data, discussed in Section 11.1, has led various researchers to train
Generative Adversarial Networks with Recurrent Neural Networks (RNNs). RNNs, particularly long
short-term memory (LSTMs) networks, are able to capture inherent temporal dependencies which make
them a popular architecture in time series applications [25].

Mogren [43] was among the first researchers to develop a Recurrent Generative Adversarial Networks
(RGAN) to generate classical classical music as shown in Figure 12.3. In their model, both the generator
and discriminator are LSTM networks to suppress the vanishing gradient problem. During training the
authors often noticed the discriminator overpowering the generator which is why they froze updates to the
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Figure 12.2: The generator updates its weights with ∇θgen after the discriminator has been updated. In
this step only fake examples are passed to the discriminator and are labelled as real.

discriminator’s weights for multiple batches until the generator caught up. The authors also implemented
other techniques such as feature matching to reduce overfitting the discriminator.

In their study, Esteban, Hyland, and Rätsch [44] developed an RGAN to generate multidimensional
medical time-series data. Medical machine learning often confronts challenges due to the relatively small
datasets available, a consequence of the sensitivity surrounding such data, making it difficult to train deep
learning models. Their work presents various methodologies to evaluate RGAN output, including a method
termed ”Train on Synthetic, Test on Real” (TSTR), highlighting the potential for using synthetic data in
real-world applications. However, they acknowledged difficulties in implementing Wasserstein GANs due
to the insufficient research on enforcing the Lipschitz constraint on RNNs at the time. The subsequent
introduction of gradient penalty has since mitigated this issue.

With the advent of new sophisticated transformer based techniques, Li et al. [45] introduced the
Transformer-Based Time-Series GAN (TTS-GAN) in 2022. The difficulty faced by RNN-based GANs in
modelling long sequences and parallel training led to the advent of transformers, which exclusively use
the attention mechanism, as detailed by Vaswani et al. [46]. A notable technique in this context involves
processing time-series data similar to images, a method also acknowledged in the recent literature review
by Brophy et al. [40].

Esteban, Hyland, and Rätsch [44] also demonstrated the utility of RGAN by conditioning its output to
enable the generation of labeled medical time series data. The architecture of a Recurrent Conditional
GAN (RCGAN) is similar to the one proposed in Figure 12.3 by Mogren [43]. However, slight modifications
are added to the input and training to include labeled data as seen in Figure 12.4. Similarly, Arnelid, Zec,
and Mohammadiha [47] utilise the RCGAN to generate synthetic sensor data for autonomous vehicles. In
this paper, the data for the output, input, and latent space is represented by xt ∈ RTt×k,yt ∈ RTt×`, and
zt ∈ RTt×m. Here, the conditional input is related to the raw sensor data captured by the vehicle which is
used to direct the GAN.

Other researchers attempt at improving the RCGAN training process by including the Wasserstein
loss function. As mentioned in Section 12.1.2, Wasserstein GAN can improve training stability of a
GAN and limit mode collapse. Qiang et al. [48] implement the Wasserstein distance metric in their
Recurrent GAN to learn brain representations from the fMRI data. They include the gradient penalty
term, λEx∼Ω [|∇D(x)|p − 1]2, in the discriminator’s loss function to enforce the 1-Lipschitz constraint.
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Figure 12.3: The Continuous Recurrent Generative Adversarial Network (C-RNN-GAN) was developed
by Mogren [43] for classical music generation. Both Generator and Discriminator are LSTM based neural

networks competing in an adversarial setting.

12.3. Augmenting the C-MAPSS Dataset with GAN
The original C-MAPSS dataset was created with the objective to stimulate research in Prognostics and
Health Management by modelling the degradation cycles in aircraft engines [8]. Much of the research
focuses on RUL prediction as explained in Section 10.4. In practice, deep learning models require vast
amounts of real data for training which is often unavailable in the industry.

12.3.1. Time Window
Lang et al. [28] proposed augmenting the C-MAPSS dataset with a GAN leading to a greater training
dataset and higher predictive performance on the test set. Considering that the C-MAPSS dataset is
based on time series data, the authors used a time window, presented in Figure 12.5, to train the GAN
and the subsequent RUL prediction model. As a result, the input shape of the model is (n_windows,
window_length, n_sensors) where the number of samples is determined by the stride and the window
length.

The authors solely verified their implementation of the GAN be contesting different models with their
proposed model. The prediction model would only be trained on the real data, but later also with the real
and generated data to observe any differences in prediction model. They do not show any other evaluation
techniques or compare other data augmentation techniques, such as more simpler methods like introducing
noise, with the GAN approach.

12.3.2. Variable Length Time Series
In the 2021 PHM data challenge, Lövberg [49] used CNNs with variable length window sizes to predict the
RUL on the N-CMAPSS dataset. They argued that a fixed window size may lead to the loss of valuable
context, as the smallest window becomes the limiting factor for longer predictions. To address the challenge
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Figure 12.4: The Recurrent Conditional Generative Adversarial Network (RCGAN) proposed by
Esteban, Hyland, and Rätsch [44]. At each time step the condition, yt, is used as an input in the generator

and discriminator.

of varying time-series lengths, is to apply padding to the training data. However, this approach becomes
infeasible when dealing high variety in length as the padding impacts the distribution of generated samples
significantly [50]. Consequently, Demetriou et al. [50] condition the GAN to control the output length of
the trajectory.

12.4. Physics-Informed Machine Learning
In addition to requiring extensive datasets, machine learning models generally lack understanding of
scientific principles and often are inconsistent with established physical laws [51]. These data-driven
approaches also present challenges in terms of interpretability, robustness, and alignment with physical
constraints [52]. In contrast, exclusively relying on physics-based models, which attempt to approximate
reality, carries the risk of oversimplifying complex processes. The interplay between these modelling
paradigms is depicted in Figure 12.6.

Hybrid models are subjected to different methodologies of integrating physics in machine learning
models: (1) Physics-Guided Loss Function, (2) physics-guided initialisation, (3) physics-guided architecture
design, (4) residual modelling, and (5) hybrid models. However, after compiling the different methods and
their corresponding applications, Willard et al. [13] found that only the architectures and loss functions
have been adjusted for the application of data generation. Thus, a hybrid combination of a generative
model and turbofan simulation model may be a potential gap in this field.

12.4.1. Loss Function
Leveraging prior physical knowledge of the target data could mitigate the issue of high sample complexity
in GANs. By constraining the loss function with physical insights, the GAN can generate more realistic
samples. Data-driven models often struggle to learn the interrelation between variables, particularly when
confronted with data scarcity. Lack of run-to-failure data, as described in Chapter 10, is a common issue in
aerospace related applications. The loss function would be updated as follows [13]:

Loss = LossML (Ytrue , Ypred ) + γ Lossphy (Ypred ) (12.2)

Willard et al. [13] mentions three benefits of physically constraining the loss function.



12.5. Evaluation 44

Figure 12.5: Windowing technique used by [28]. Each window with a specified window length generates a
new sample.

1. Extra labelled observation data is not required.
2. Limiting the search space ultimately leads to less training data required.
3. Physics informed machine learning models tend to be more generalisable.
Xiong et al. [53] introduced a physics-informed loss function designed for N-CMAPSS data augmentation

that is based on the monotonic degradation of engine health parameters. Assuming that engines are
unable to self-repair, the loss function penalises trajectories that contradict the expected decline in health
indicators. Additional penalty terms, such as trendability and robustness (Section 10.3.3), could also be
included.

12.4.2. Architecture Design
Apart from modifying the loss functions, recent research suggests designing novel machine learning structures
that facilitate the integration of domain knowledge at specific neural network nodes [13]. Employing
intermediate physical variables has found usage in diverse applications, such as lake temperature modelling
[51]. Moreover, this approach enhances interpretability, addressing a common shortcoming of deep learning
models. Other studies propose to relate a specified set of weights to meaningful physical values.

12.4.3. Hybrid Physics-based Models
Willard et al. [13] uses the example from Daw et al.[51] where the authors combine a physics-based model,
fP HY , and a neural network, fNN , such that they complement each other and suppress their disadvantages.
An approach is to use merge a physics-based model with a machine learning model by combining its inputs
and outputs. Even though the concept was utilised for a Neural Network, the concept can also be adapted
to GANs as shown in Figure 12.7.

12.5. Evaluation
Unlike the established evaluation metrics of GANs in computer vision related tasks, evaluation of time
series based networks remains a challenging and open topic [40]. Evaluation metrics may also differ per
field; medical, financial, audio, and other applications. This section aims to discuss the different approaches
found within the time series generation literature.

El Emam [54] argues that synthetic data should be backed by strong evidence of utility. In other words,
data augmentation makes sense if downstream prediction models can benefit from it. The authors examine
different evaluation methods to determine the utility of the generated data. In this section, three different
methods are discussed: assessment by experts, replication, and general metrics.

12.5.1. Assessment by Experts
Evaluating the quality of generated time series is generally more complicated for humans, making quantitative
metrics the preferred choice for assessing time series-based GANs. Nonetheless, given that the synthetic
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Figure 12.6: Physics-informed Machine Learning combines scientific knowledge with the power of
machine learning (taken from Daw et al. [51]). This framework may either improve the generalisability of

data-driven models or reduce the amount of labelled data required.

data aims to realistically represent turbofan engine degradation, visual inspection aligned with existing
literature is a possible evaluation method. Domain experts are tasked to distinguish both original and
artificially generated datasets. The success rate of the expert’s classification could serve as an indicator of
the generator’s ability to produce real data.

12.5.2. Latent Space Interpolation
Latent space interpolation seeks to proof whether smooth variations of the training data can be created
from the latent space. Esteban, Hyland, and Rätsch [44] implemented this test to assess whether the
generator has learned the underlying distribution instead of replicating the training data.

For a more comprehensive understanding, consider Figure 12.8 where two real time series are traced
back to their respective coordinates in the latent space, Z1 and Z5. The selected training examples must
be similar, but not identical. By generating synthetic data at each point in the latent space along the
interpolation of these two training samples, we can study the progression of the synthetic data. A gradual
change of the generated time series indicates that the generator has learned the underlying distribution
instead of memorising the data.

12.5.3. Replication
A general method for utility assessment involves reproducing results using synthetic data, as discussed by
El Emam [54]. The essence of this approach lies in the following hypothesis: the synthetic data can be
considered useful if similar conclusions can be drawn from both the original and synthetic datasets.

This concept is also utilised in the study by Esteban, Hyland, and Rätsch [44], where they introduce a
method known as ”Train on Synthetic, Test on Real” (TSTR) presented in algorithm algorithm 1. This
method requires labelled data as the performance of downstream prediction models are compared. The
validity of the synthetic data is determined by whether a prediction model trained on the synthetic data
yields a predictive performance equal or similar to that achieved when trained on the original data. This
process can also be carried out the other way around (e.g. TRTS).
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Figure 12.7: A hybrid GAN architecture inspired by Daw et al.[51]. The generator output is used to
guide a set of parameters that run a physics-based model. Then, the discriminator is tasked to distinguish

between real and fake data.

Figure 12.8: Smooth variations produced by the generator (G(Z)) between two real trajectories indicates
the model has not memorised the data [44].

Algorithm 1: Train on Synthetic, Test on Real (TSTR) [44]

# Train on synthetic data
synthetic_train_data = generator(random_vector)
synthetic_train_RUL = get_labels_from_series(synthetic_train_data)
predictive_model.fit(synthetic_train_data, synthetic_train_RUL)

# Test on real data
source_test_data, source_test_RUL = get_source_data()
predictions = predictive_model.predict(source_test_data)
TSTR_score = evaluate(predictions, source_test_RUL)

12.5.4. General Metrics
Several general metrics to evaluate a GAN are summarised in this section. These are primarily based on
visualising and computing the distributions of the real and fake datasets.

Maximum Mean Discrepancy (MMD)
The maximum mean discrepancy (MMD) calculates the statistical distribution of two sets and assesses
whether they belong to the same distribution [55]. Minimising this metric corresponds to a better
performing generator. The MMD is based on a kernel, K, which calculates the distance between two
points in higher dimensional space. A commonly used kernel is the radial basis function (RBF): K(x, y) =
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PCA & t-SNE
Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) are both
statistical methods for dimensionality reduction and data visualisation. They enable visual inspection of
the data by comparing the distribution in lower dimensional space. Yoon, Jarrett, and Schaar [56] applied
these techniques to show the overlap between the generated and original data. An example of a t-SNE plot
is provided in Figure 12.9. In this particular example, the fake data appears to have a poor resemblance of
the real distribution.

Figure 12.9: An example of a t-distributed Stochastic Neighbor Embedding (t-SNE) graph visualising
the distribution of a real and fake dataset. Generation of the fake data should resemble the real

distribution as close as possible
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Conclusion

A substantial part of aircraft maintenance expenses results from turbofan engines [1]. Maintenance, Repair,
and Overhaul (MRO) engineers could see gain using Condition Based Maintenance to design cost-effective
maintenance strategies by monitoring the engine’s current health [2]. For this, MRO engineers resort to
sophisticated simulators, often based on Gas Path Analysis (GPA), to derive important health indicators
with the measured engine data [3].

Prognostics and Health Management (PHM) further extends this framework by predicting the future
health of the engine. Advanced machine learning techniques, such as Neural Networks, have demonstrated
strong capabilities in forecasting the Remaining Useful Life (RUL) of complex systems [7]. However, due to
the limited turbofan lifecycle data, a consequence of safety-critical systems, training these networks poses a
significant challenge [5].

This review offers a comprehensive analysis of the various data augmentation techniques designed to
mitigate the data scarcity issue in turbofan engines [33]. In an attempt to solve this issue, researchers have
simulated run-to-failure trajectories using GPA based models [8][9]. While these simulated datasets have
enabled more research in RUL prediction, especially for machine learning [6], their underlying assumptions
and limitations raise questions about their generalisability to real-world scenarios [15, 10, 11].

Generic augmentation techniques have proven to be useful in improving downstream prognostics models
for both simulated and industrial datasets [31]. However, these methods have inherent limitations and may
sometimes lead to lower quality samples [34]. Instead, generative models offer the potential for creating
new, high-quality samples coherent with the original data distribution [12]. In recent years, Generative
Adversarial Networks (GAN) have demonstrated promising results in the computer vision domain [34].
However, their role in sequential or time-series datasets remains relatively unexplored. This literature
review draws inspiration from other fields where Recurrent GANs have been utilized to generate classical
music [43], multi-variate medical time series [44], synthetic scenarios for autonomous vehicle datasets [47].
Current literature has limited focus on the specific application of GANs in turbofan datasets [28, 53].

Besides problems like mode collapse and vanishing gradients, a critical issue in training GANs is their
requirement for extensive data. Physics-informed Machine Learning (PIML) offers a potential solution by
narrowing down the search space using prior knowledge on turbofan physics and deterioration patterns
[13]. Moreover, researchers propose hybrid architectures or adapt the loss function to penalise the GAN
when health parameters deviate from from physical laws [51]. While a standardised evaluation technique in
time-series applications is yet to be established, existing methods such as expert assessment, latent space
interpolation, result replication, and other generalised metrics offer crucial insights into GAN performance
[40]. To increase confidence in the results, researchers often use multiple assessment methods to substantiate
their findings [54].

To conclude, an opportunity is presented to further narrow the research-industry gap by utilizing
KLM’s engine fleet data for GAN-based augmentation of turbofan lifecycle data. Furthermore, hybrid GAN
architectures that merge physics-based GPA models with data-driven techniques remain an unexplored
opportunity for research. Finally, we also identify an opportunity to contribute towards evaluating
time-series GANs as it remains an active area of research.
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