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(Stochastic) Availability  The probability that an asset is functioning as required at a given time. 
 
Deterioration The continuous process of ageing of an asset, resulting in a decreasing 

performance in terms of reliability and/or availability.  
 
Imperfect repair A repair action that brings the concerned asset back to a condition state 

somewhere between “same as old” and “same as new”. 
 
Maintenance All actions regarding repairs, replacements and inspections.  
 
Maintenance strategy  A set of decision rules with respect to repairs, replacements and inspections. 
 
Minimal repair A repair action that brings the concerned asset back to the same condition 

state as it was in just before failure (“same as old”). 
 
One-unit system A system that is represented without further consideration of the 

configuration of its components.  
 
Perfect repair A repair action that brings the concerned asset back to a “same as new” 

state. 
 
Reliability The probability that an asset will not fail within a specified period of time. 
 
Repairable system “A system which, after failing to perform one or more of its functions 

satisfactorily, can be restored to fully satisfactory performance by any 
method, other than replacement of the entire system” (Ascher & Feingold, 
1984, p. 1) 
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Summary 

Water Treatment Plants (WTPs) play a key role in assuring water availability to citizens and businesses. 
Maintenance costs for these plants can take up to a quarter of the total operating budget. Therefore, the asset 
manager’s goal is to optimise maintenance strategies with respect to quantity, quality and cost. In this asset 
management context availability is an important indicator upon which these maintenance strategies or system 
modifications are put to the test.  
 
The complexity of WTPs and deterioration of their repairable assets are factors that influence the availability, 
making it not a constant measure. This research sets out to find a method for modelling the availability over 
time for a WTP with these three aspects (complex, repairable, and deteriorating assets). 
 
A review of the state-of-the-art reveals that there is currently no known modelling approach for modelling the 
availability of complex systems with deteriorating, repairable assets. However, there are models that can 
handle one or more of these aspects. Thus, the solution to this gap in the literature is to combine multiple 
models in order to achieve the defined research objective. 
 
The model approach proposed in this study consists of a two-level hierarchical model, which can be divided 
into the system level and the component level. At the system level there is one model: the Reliability Block 
Diagram (RBD). An RBD can deal with the complexity of a WTP by calculating the system availability based on 
the components’ availabilities, in accordance with the system configuration. At the component level two 
different deterioration models can be used: the Non-Homogeneous Poisson Process (NHPP) model and the 
Semi-Markov Process (SMP) model. These component models are able to model the availability over time for 
assets that are repairable and do deteriorate. Each block in the system RBD corresponds to a component in the 
system. For each of these components it must be decided which of the two component models to use. To 
facilitate in this decision-making the flowchart in Figure 1 should be used. 
 

 
Figure 1: Flowchart for optimal model selection at component level 

The proposed hierarchical model is accompanied with a method to assist asset managers in its application. The 
method consists of four steps: 

1. Set up an RBD at system level 
2. Apply the flowchart for choosing the appropriate component model for each block in the RBD 
3. Model the components’ availabilities with the component models 
4. Use the RBD to model the system availability 
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The method is applied on a fictitious case study of a Drinking Water Treatment Plant (DWTP), named Leeward 
Dune. The availability for several treatment steps is modelled, which are combined to obtain the system 
availability function (see Figure 2). 
 

 
Figure 2: Availability over time for the case study's system 'Leeward Dune' 

The conclusion of this research is that availability of complex, repairable systems with deteriorating assets can 
be modelled over time with a two-level hierarchical model, where the system level model is a Reliability Block 
Diagram (RBD) and the component level model is either a Non-Homogeneous Poisson Process (NHPP) or a 
Semi-Markov Process (SMP) model. This proposed modelling approach can facilitate asset managers in 
decision-making regarding system configuration and maintenance strategies. Another advantage is that this 
method can be used for modelling at different system scales. The case study shows how (part of) a WTP can be 
modelled with it, but it is also possible to model at the scale of one treatment step or even one asset. The 
system boundaries can be adjusted based on the desired level of detail in the RBD.  
 
In the end, some directions for further research are suggested. First, further investigation into the 
dependencies between components is recommended. Second, the inclusion of costs is proposed as a research 
topic in continuation of this study, to improve the optimisation process of maintenance strategies and system 
configurations. Third, an extension to the SMP model could be the addition of intermediate values for the 
instantaneous availability, since in the proposed methodology this is assumed to be a binary value. A fourth 
consideration might be the use of virtual age processes instead of the NHPP, in order to relax the assumption 
that only minimal repairs are possible. 
 

The method and key findings presented in this report will lead to a scientific publication. 
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1 Introduction 

Water Treatment Plants (WTPs) play a key role in ensuring water availability to citizens and businesses. These 
plants are highly complex systems and need proper asset management in order to satisfy demands in quantity 
and quality of the water available. Maintenance, quantity, quality and costs need to be balanced in order to 
find an optimal asset management strategy for a WTP.  
 
Maintenance of Water Treatment Plants 
Maintenance of Wastewater Treatment Plants (WWTPs) takes up 7 – 26% of total operational costs and for 
Drinking Water Treatment Plants (DWTPs) 11 – 21%, see Table 1. Cost information from 2018 for total drinking 
water production at Waternet gives ~28% (~€8 mln) maintenance costs of the total exploitation costs (~€30 
mln) for DWTPs and ~30% for WWTPs. Therefore, maintenance costs are an important part of the operational 
costs for both WWTPs and DWTPs.  
 
Table 1: Maintenance costs as part of the total operational costs 

WWTP Percentage DWTP Percentage 

Spain 7.4 (Hernández-Sancho & Sala-Garrido, 
2009) 

Australia 21 (NSW Department of Primary 
Industries, 2017) 

 8.4 (Gómez, Gémar, Molinos-Senante, 
Sala-Garrido, & Caballero, 2017) 

Netherlands 11 (Barrios, Siebel, van der Helm, 
Bosklopper, & Gijzen, 2008) 

 10.1 (Molinos-Senante, Sala-Garrido, & 
Hernández-Sancho, 2016) 

  

 13.2 (Molinos-Senante, Hernandez-
Sancho, & Sala-Garrido, 2014) 

  

 21 (Molinos-Senante, Hernández-
Sancho, & Sala-Garrido, 2010) 

  

Australia 26 (NSW Department of Primary 
Industries, 2017) 

  

Germany 20 (Wendland, 2005)   

Turkey 9 (Turkmenlera & Aslanb, 2017)   

 
 
Maintenance strategies 
Within asset management three different types of maintenance strategies are distinguished: corrective 
maintenance, preventive maintenance and maintenance improvement, see Figure 3. Predictive maintenance is 
a part of preventive maintenance and can be used to reduce unnecessary corrective and preventive (time-
driven) maintenance (Mobley, 2002). It has been proven that predictive maintenance minimises the 
maintenance costs and improves the system performance (Grall, Bérenguer, & Dieulle, 2002; Tan & Raghavan, 
2008). In the field of asset management there is a growing interest from asset owners as well as from the 
research community towards predictive maintenance (PwC & Mainnovation, 2017; Wu & Do, 2017). In order to 
be able to assess these maintenance strategies, the performance of the system under these regimes needs to 
be evaluated.  Reliability, Availability and Maintainability (RAM) have been introduced as indicators of this 
performance. 
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Figure 3: Different types of maintenance (Mobley, 2002) 

 
Characterisations of Water Treatment Plants 
In the context of asset management, WTPs have the following three characterisations: they are repairable, 
have a complex configuration and exhibit deteriorating characteristics.  
 
1) Repairable 

WTPs are repairable systems, since they “can be restored to fully satisfactory performance by any method, 
other than replacement of the entire system” (Ascher and Feingold, 1984, p. 1). In contrast, for non-repairable 
systems such as spaceships and disposable articles, one does not consider maintenance, but only replacement 
of the entire system to fulfil a certain function. 
 
2) Complex configuration 

The complexity of a WTP reveals itself in its configuration; it is an assembly of a multitude of structurally linked 
assets. Within an asset management context, one would like to know: 1) what the critical parts within a WTP 
are and 2) where and 3) when certain maintenance actions are necessary. This can only be understood if the 
configuration of a complex system is to be included in the assessment of maintenance strategies. 
 
3) Deteriorating assets 

Assets within WTPs are known to exhibit ageing characteristics (Rasmekomen & Parlikad, 2013); (Breysse, 
Vasconcelos, & Schoefs, 2007). This means that not only does performance of an asset change over time, it also 
deteriorates. Deterioration of assets thus needs to be incorporated within the assessment, in order to make a 
shift towards predictive maintenance possible (Baik, Jeong, & Abraham, 2006; Egger, Scheidegger, Reichert, & 
Maurer, 2013). In this research, deterioration is defined as the continuous process of ageing of an asset, 
resulting in a decreasing performance in terms of reliability and/or availability.  
 
Availability modelling  
This research focusses on the availability of the system. Reliability is of lesser importance than availability in 
predictive maintenance for complex, repairable systems: reliability only considers the frequency of 
interruptions, whereas availability also takes the impact of interruptions (i.e. downtime of the system) into 
account. Because WTPs are continuously operating systems, it is valuable for the asset manager to know what 
the probability is of a WTP being in an operating state (availability). It is of lesser value to know the probability 
of the number of times operation is interrupted or when the first interruption takes place (reliability). This 
research does consider literature on and the modelling of reliability, but only as a stepping stone towards the 
modelling of the availability.  
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The characterisations of the WTP invoke another necessity for the modelling method: the availability has to be 
considered as function over time. A WTP is a dynamic system and due to the ageing and repairable 
characterisations, the availability of the system does not necessarily stay the same over time. Therefore, as a 
fourth criterion for the modelling method, the change of availability over time will be considered as well. 
 
It should be noted that the instantaneous availability is assumed to be a binary measure, being either available 
(1) or non-available (0). In modelling, the availability is a probabilistic quantity and is known as the stochastic 

availability1, which is the probability of being available at a given point in time (Neil & Marquez, 2012; Qiu, Cui, 
& Gao, 2017): 

𝐴(𝑡) = 𝑃(𝐴(𝑡) = 1) 
 
Research goal 
The research goal is defined as follows: 

Developing a methodology for asset managers of Water Treatment Plants which makes predictions about the 
availability over time for a system that 1) is repairable, 2) has a complex configuration, and 3) consists of 
deteriorating assets. 
 

  

                                                                 
1
 When availability modelling is mentioned in this report, this is in fact regarding the stochastic availability. 
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2 Literature review on reliability and availability modelling 

Chapter 2 deals with the literature study on reliability and availability modelling. Table 2, page 28, shows the 
overview of the consulted references. The literature is evaluated based on the four research criteria as defined 
in the previous chapter: 

- The proposed methodology must be applicable for systems that: 
o are repairable; 
o have a complex configuration; 
o consist of deteriorating assets; 

- The proposed methodology must be capable of modelling the availability over time. 

Combinatorial methods are discussed first in section 2.1, showing that deterioration is not included within 
these models. Therefore, in section 2.2 deterioration modelling is investigated and in sub-sections 2.2.1 - 2.2.3 
different types of deterioration models are handled. Then, in section 2.3, hierarchical models are examined, 
which are based on combining multiple sub-models in order to reduce the model complexity. Section 2.4 
provides the overview of the consulted literature for this chapter. Finally, in section 2.5 a conclusion is drawn 
on this literature review on reliability and availability modelling.  
 

2.1 Combinatorial models  

The relatively simple way of performing a reliability or availability analysis for a complex system is to use 
combinatorial models such as a Reliability Block Diagram (RBD) or Fault Tree Analysis (FTA). In many studies 
that use an RBD or FTA for modelling the reliability or availability, average values are assumed for the 
performance of components. When the goal is to obtain a quick and rough estimation of the system 
performance this approach can be sufficient. Two examples of studies applying this approach into the field of 
water treatment are the studies by Bourouni (2013) and Taheriyoun and Moradinejad (2015), but literature 
from other engineering fields is consulted as well. 
 
The research by Bourouni (2013) is about the availability assessment of a Reverse Osmosis (RO) plant. Both the 
RBD and FTA method are presented in order to make the comparison between the two. Only average values 
are used as input for both methods, so just an estimation of the average availability for a certain time interval 
can be calculated this way. 
 
Taheriyoun and Moradinejad (2015) performed a reliability analysis for a Wastewater Treatment Plant (WWTP) 
by means of an FTA. Reliability is defined here as the complementary probability of no failure occurring in a 
given period (one year in this case). Based on the estimated reliability values for the processes in the WWTP 
the system reliability is calculated using the fault tree. In the end, the results are validated via Monte Carlo 
simulation. However, the purpose of doing a Monte Carlo simulation is not clear, since only average values are 
considered in the FTA and no distributions are used. The paper implies the input data for the FTA is also used 
for the Monte Carlo simulation. When enough simulations are performed, with Monte Carlo simulation the 
outcome then converges to the same result as calculated with FTA, meaning the Monte Carlo simulation would 
always give the same results as the FTA. Moreover, it should be clear that reliability calculations in general only 
provide information about the time to the first failure and do not account for maintenance actions, which 
makes it a measure of performance for non-repairable systems. This makes the reliability not an appropriate 
measure for the assessment of complex repairable systems.  
 
Choi and Chang (2016) applied FTA for the reliability and availability assessment of seabed storage tanks. The 
fault tree can be considered as complex due to its many AND and OR gates. The reliability of the system is 
plotted as a function of time, according to the formula R(t) = e

-λt
. However, all failure rates are assumed to be 

constant, so no deterioration is included. For the availability the average over a given period is calculated, 
similar to both studies described above.  
 
Velásquez and Lara (2018) executed a Reliability, Availability and Maintainability (RAM) analysis for an 
electrical power system, consisting of seven components in series. No RBD or FTA is shown in this work, 
probably because the configuration simply consists of seven components in series, but the basic calculation 
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rules for serial configurations are applied to compute the system results. The failure rate is taken as a measure 
for unreliability and the product of the failure rate and the average downtime per failure is said to be the 
(average) unavailability. A constant failure rate is assumed, meaning no deterioration is included. This study 
only provides average values for the reliability and availability of the components and thus the system values 
are computed as average values as well. 
 
In the work of Rao et al. (2009) a Dynamic Fault Tree (DFT) is used for the availability analysis of an electrical 
power supply system of a nuclear power plant. A Markov chain approach is applied for a simple system and 
Monte Carlo simulation approach for a complex system. Time-averaged expressions for availability are given, 
but, as the authors remark themselves, these can only be used for exponentially distributed failure and repair 
times (no deterioration). The unavailability is computed as a function of time, but it is approached as the 
unavailability during a certain mission time (“unavailability obtained is 4.8e-6 for a mission time of 10,000h with 
10

6
 simulations.” (Rao et al., 2009, p. 879). Furthermore, the authors give failure probabilities, but use failure 

distributions in their calculations. It is unclear how these failure probabilities and distributions are derived. 
Implicitly an Alternating Renewal Process (ARP

2
) is applied, which suggests the system is ‘same as new’ after 

repair. However, this assumption is not tested in the presented work. Also a simulation tool was created in this 
research, but in the paper an elaborate description is lacking. 
 
From the studies discussed above it can be concluded that ageing characteristics are not included into the 
modelling of the system’s performance in these studies and the combinatorial methods give a simplistic view. 
Therefore, models that include ageing characteristics (deterioration models) or models that are more 
sophisticated in other aspects are discussed hereafter. These are: renewal processes (2.2.1.1), Poisson process 
and virtual age process models (2.2.1.2), Markov models (2.2.2), Bayesian networks (2.2.3) and hierarchical 
models (2.3). 
 

2.2 Deterioration modelling 

Deterioration modelling can be an important tool within reliability and availability analysis. If deterioration 
models are well calibrated and validated, they provide useful information for asset management decisions with 
respect to maintenance and modification strategies (Caradot et al., 2017; Yuan, 2017).  
 
Commonly, three categories of deterioration models can be distinguished: physical models, statistical models, 
and artificial intelligence models (Ana & Bauwens, 2010; Caradot et al., 2017; Edirisinghe, Setunge, & Zhang, 
2013; Rokstad & Ugarelli, 2015; Yuan, 2017):  

 Physical models are based on understanding the physical processes causing deterioration of assets. 
They have not been widely applied in the water sector, mainly due to the complexity of the physical 
mechanisms behind the deterioration process. 

 Statistical models are driven by probabilistic relationships between input (history of asset conditions) 
and output (predicted deterioration) (Egger et al., 2013). They are used most often for complex 
infrastructure systems, since they are commonly the best suitable type of model considering the type 
of data available.  

 Artificial intelligence models (or machine learning models) can learn to identify relationships between 
input and output, based on data input. They are often seen as ‘black box’ models, which means there 
is no explicit relationship between input and output. These models require lots of data and a greater 
computational power compared to the other two model types. 

 
Based on the above, the scope of this research is limited to the group of statistical models. These are used most 
frequently for deterioration modelling of (water) infrastructure, since the statistical models have a better 
applicability in this field compared with the other two model types mentioned above. 
 
Yuan (2017) has introduced guidelines for the deterioration modelling of water and wastewater assets. He 
finds that “Traditional approaches emphasised the mean deterioration trend and heeded too little the 
characterisation of uncertainty involved.” (Yuan, 2017, p. 33). His objective is to “revert this trend and bring 
stochastic deterioration modelling back to focus”. He provides an eight-step procedure for a deterioration 

                                                                 
2
 See sub-section 2.2.1.1 at page 16 for more detailed explanation of the ARP. 
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modelling process, from which the sixth step (“Select a deterioration model for detailed analyses” (Yuan, 2017, 
p. 30)) will be examined more closely.  
 
In this procedure a flowchart is introduced for the selection of a deterioration model, see Figure 4 at page 21. 
Data based deterioration models considered in this flowchart are multi-state deterioration models, continuous 
deterioration models and point process models. Furthermore, if no data is available the flowchart suggests 
using the asset’s design life for the mean life of a lifetime distribution model. 
 
Continuous deterioration models are excluded from this review, since they are better equipped for very 
specific deterioration processes such as crack growth (Guida & Pulcini, 2011), resistance of carbon-film 
resistors (Li, Cui, & Lin, 2017) or light intensity of LED lamps (Pan, Wei, Fang, & Yang, 2018). We are not 
interested in the specific deterioration processes taking place in a system, but only in the overarching 
deterioration of the performance as seen in the reliability or availability over time.  
 
However, the other two groups of models mentioned in the flowchart by Yuan (2017) are extensively reviewed 
in this section. These are the multi-state deterioration models (Markov models) and point process models 
(renewal processes, Poisson process models, and VAP models). In addition, also Bayesian networks are 
discussed here, since they are also commonly used for deterioration modelling according to literature research. 
To summarise, the following types of models are addressed in this section: 

- Point process models: 
o Renewal processes 
o Poisson process models 
o Virtual age process models 

- Markov models 
- Bayesian networks 
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Figure 4: Flowchart from Yuan (2017) for deterioration model selection 
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2.2.1 Point process models 

A stochastic point process is in fact a counting process. Stochastic point processes, and in particular the 
renewal processes, Poisson processes and virtual age processes, are well known within the field of reliability 
engineering for modelling repairable systems (Ascher & Feingold, 1984; Birolini, 2017; Cha & Finkelstein, 2018). 
These different types are discussed in this sub-section. 
 

2.2.1.1 Renewal processes 

The definition of a renewal process is “a sequence of independent, identically distributed non-negative random 
variables 𝑋1, 𝑋2, …, which with probability 1 are not all zero” (Ascher & Feingold, 1984, p. 33). The term 
renewal indicates that the system is restored to a “same as new” state after repair, so one cannot model 
deterioration with it

3
. However, certain types are definitely relevant for this study, due to the suggested 

modelling techniques. A renewal process runs through so-called ‘renewal cycles’, where one cycle consists of 
an uptime and a downtime

4
. Many different applications and types of renewal processes exist, of which the 

most relevant literature is discussed below. 
 
Maciejewski and Caban (2008) apply an Alternating Renewal Process (ARP) to calculate the steady-state 
availability for a repairable system. There is no ageing in their model, since they use an exponential distribution 
for the ‘time to failure’. Furthermore, there is no complexity in the considered system.  
 
The ARP is applied by Van der Weide and Pandey (2015) as well, to model the unavailability of standby safety 
equipment. Their model does take ageing into account, but only ageing within a renewal cycle. Actually, this 
model can only be used if it is assumed that with every repair the whole system is renewed. This is a 
problematic assumption, since they are dealing with “an assembly of many sub-systems or components” (Van 
der Weide & Pandey, 2015, p. 97). Thus they do not include the complexity of the system into their model. 
 
A Quasi-Renewal Process (QRP) is applied by Rehmert and Nachlas (2009) for modelling the availability of a 
repairable system. Different from strict renewal processes (such as the ARP above) the QRP does not restore 
the system to a “same as new” state after repair, hence the addition of “quasi”. As with the ARP, the QRP by 
the authors runs through renewal cycles of an uptime followed by a downtime. The difference here is that the 
QRP “provides a useful representation of the operation of a system for which successive operating intervals are  
stochastically smaller” (Rehmert & Nachlas, 2009, p. 273), which means it can model ageing over cycles. 
However, the authors do not consider the complexity of the system and only model a one-unit system.  
 

2.2.1.2 Poisson process and Virtual Age Process models 

An often encountered method for availability and reliability modelling of repairable systems is the use of the 
(Non-) Homogeneous Poisson Process ((N)HPP) or Virtual Age Process (VAP) models. These point process 
models can incorporate deterioration through change in the failure intensity of the process over time. They can 
model minimal repair (NHPP), perfect repair (HPP) or imperfect repair (VAP). Parameter estimation methods 
for Poisson processes are well defined, which increases the applicability (Rigdon & Basu, 2000; Van Dyck & 
Verdonck, 2014). VAP models are specifically designed to model imperfect repair. They are based on other 
point processes, most notably on the Power Law Process (PLP), which is a specific form of the NHPP (De Toledo, 
Freitas, Colosimo, & Gilardoni, 2015; Doyen & Gaudoin, 2004, 2011; Ramírez & Utne, 2013).  
 
Spinato, Tavner, Van Bussel, and Koutoulakos (2009) determine failure intensities for different subsystems of a 
wind power turbine system. They assume these failure intensities are following an NHPP type of process, called 
the Power Law Process (PLP). They consider different subsystems, but do not aggregate to the system level: all 
subsystems are treated as individual one-unit systems. Furthermore, the authors do not look into repair times 
and consequently do not consider availability calculations. 
 

                                                                 
3
 The Quasi-Renewal Process (QRP) is able to model deterioration and is considered in this research (section 

4.3.5.2). However, technically it is not a renewal process, hence the name “quasi”. 
4
 Downtime might be considered zero, for modelling purposes. Then the renewal cycle consists of uptimes only. 
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Gonzalez, Torres, and Rios (2014) apply an NHPP with Monte Carlo simulation in order to assess the reliability 
and availability indices of a power distribution test system with failures attributed to adverse weather and 
ageing. Deterioration is modelled via the Power Law Process (PLP). They compare different cases with constant 
failure and repair rates, failures due to weather, failures due to ageing and failures due to weather and ageing. 
However, they consider average values for availability and reliability indices, thus the effects of the 
components’ ageing are hidden on the system level.  Moreover, they do not show how to compute system 
results from the obtained component results. 
 
De Toledo et al. (2015) model the reliability of dump trucks in the mining industry via Arithmetic Reduction of 
Age (ARA) and Arithmetic Reduction of Intensity (ARI) models, which are VAP models. These models allow for 
the possibility of imperfect repair (as opposed to perfect or minimal repair) and determine the failure intensity 
over time. The authors do not consider a complex system or repair times and only calculate reliability to the 
first failure. 
 
Kim and Singh (2010) incorporate ageing of subsystems into an NHPP model for calculating reliability indices for 
power systems. They show for one index the effect of one of the parameters, but it is not described how the 
system reliability index is calculated from the components’ reliabilities. Furthermore, from 32 components they 
consider five to be ageing and the rest not. The authors show many average reliability indices and one instance 
of a reliability index changing over time. Moreover, repair times are not included and thus availability 
modelling is not discussed in this work. 
 

2.2.2 Markov models 

Many deterioration models make use of the binary-state assumption, meaning the considered component or 
system is either in a working state or in a failed state. However, this assumption may not always be appropriate 
for accurate modelling (Soro, Nourelfath, & Aït-Kadi, 2010). Markov models are multi-state models that enable 
the inclusion of different asset condition states. With a Markov process, the modelled asset moves from one 
deterioration state to the next one. Maintenance actions can bring the asset back to a better condition state. 
Markov models can be used as an assisting tool for optimising the maintenance strategy of deteriorating 
systems. With these models the asset performance for deteriorating repairable systems can be computed, 
although deterioration and maintenance actions are not always included in the consulted studies. Some studies 
only provide the steady-state solution for the underlying Markov process, while others do consider the 
development of the performance over time.  
 
A disadvantage of this model type is the fact that for complex systems the total number of possible system 
states grows exponentially with the size of the model. This is called the state space explosion problem (Lanus, 
Yin, & Trivedi, 2003). Therefore, Markov models are only applied to a one-unit system or a simplistic system 
containing just a few components. For complex systems, consisting of multiple components, the use of a 
Markov model is inappropriate.  
 

2.2.2.1 Markov process 

In the study by Chan and Asgarpoor (2006) a Markov process is used to find the optimal value for the 
maintenance rate λm. The steady-state availability is computed as a function of λm. The optimal maintenance 
rate is assumed to be the one for which the steady-state availability is maximised. The availability cannot be 
modelled over time with this Markov process and the approach is applied to a one-unit system, so no 
complexity in system configuration is considered. 
 
Tan and Raghavan (2008) developed a practical framework for predictive maintenance scheduling of multi-
state systems. In their model a Markov process is used to analyse a small water pipe system, consisting of three 
elements (the first two elements are in parallel, followed by the third element in series). The modelled 
measure here is the mean performance for an operation cycle. The influence of maintenance operations on this 
mean performance is analysed in this study. The concerned performance index corresponds to the availability, 
but only mean values are computed (no modelling over time). Besides, the method cannot be applied to 
complex systems. 



24 
 

 
Zhu (2012) presents an availability analysis tool for large networking systems, with the main focus on 
configurations with redundancy. A Markov chain model is applied for steady-state availability calculations of 
redundant components. For non-redundant components the availability is computed based on the Mean Time 
Between Failures (MTBF) and the Mean Time To Repair (MTTR). With this method only steady-state results are 
computed with the Markov chain model. Also the inclusion of deterioration in this case is doubted. The 
concerned system is a k-out-of-n system, which deteriorates to the next state each time a component fails. This 
corresponds to deterioration at the system level, but deterioration at the component level is not included in 
this study. 
 
Soro et al. (2010) suggest a Markov model for the performance evaluation of multi-state systems. A discrete 
number of condition states is considered, where each condition state corresponds to a certain performance 
rate. The approach is capable of modelling the availability over time for deteriorating, repairable systems. 
However, the concerned system is handled as a one-unit system. Any complex system configuration is not 
regarded. 
 

2.2.2.2 Semi-Markov Process 

With the Markov process the holding times are exponentially distributed, meaning the probability of moving to 
the next state is the same for each time step. The so-called Semi-Markov Process (SMP) can handle with this 
limitation, since its holding times follow non-exponential distributions. For the analysis of deteriorating 
repairable assets, the latter is often assumed to be more appropriate (Barbu, Karagrigoriou, & Makrides, 2017; 
Black, Brint, & Brailsford, 2005; Thomas & Sobanjo, 2016; Tomasevicz & Asgarpoor, 2009; Vinayak & 
Dharmaraja, 2012; Wang, Cui, Zhang, & Peng, 2016). This enables the inclusion of time-dependency for the 
transition probabilities: the probability of moving to the next condition state depends on how long the asset is 
already in its current condition state. 
 
Kleiner (2001) developed an SMP based methodology for modelling asset deterioration. Four discrete 
deterioration states are assumed and the fifth state corresponds to failure. The approach is based on Weibull 
distributions for the holding times of the condition states, and results in a survival curve (reliability function 
R(t)) for a deteriorating asset. The work by Kleiner is well-known in the field of reliability engineering and his 
papers are referred to in many other studies (e.g. Black et al. (2005) and Kim, Choi, Suh, and Lee (2015)). 
However, maintenance is not included in the methodology, so it is limited to reliability calculations. 
Furthermore, it cannot be used for modelling of complex systems.  
 
Yin, Fricks, and Trivedi (2002) describe an SMP model to get closed-form formulas for the reliability R(t) and 
point availability A(t). Their method was applied to two types of power supply units, consisting of respectively 
three and four components. The SMP model can plot the availability as a function of time for repairable, 
deteriorating assets, but it cannot be applied for complex systems, due to the aforementioned state space 
explosion problem that occurs with multi-state models applied to complex systems. The authors also describe a 
Markov chain model for comparison and show this second model cannot be used to derive closed-form 
formulas. The reliability function is plotted over time for several failure rates, but for availability analysis only 
the steady-state solution can be computed. Also this Markov chain model cannot be used to analyse complex 
systems.  
 
Vinayak and Dharmaraja (2012) use a semi-Markov modelling approach to model deterioration of a one-unit 
system. Five discrete condition states are assumed here. Steady-state calculations for the SMP are presented 
that provide the steady-state availability, maintainability and Mean Time To Failure (MTTF) (as a measure for 
reliability). This approach cannot be used for modelling availability over time and it cannot be used for the 
analysis of complex systems as well. 
 
Kumar, Jain, and Gandhi (2013) perform an availability analysis for repairable mechanical systems based on the 
steady-state solution of an SMP. The considered system consists of two pumps in standby redundancy, each 
pump having three condition states: operating, failed, and standby. Combining the states of both pumps results 
in a total number of five system states. The steady-state availability is calculated analytically and Monte Carlo 
simulation is used to validate the results. The authors conclude that the results of both methods are matching. 
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However, the system considered here is very simplistic. The pumps are assumed to have only one operating 
state, instead of assuming several deteriorating states. Besides, only steady-state solutions are obtained. 
 

2.2.2.3 (Semi-)Markov Decision Processes 

The Markov Decision Process (MDP) and Semi-Markov Decision Process (SMDP) can be seen as an extension of 
the discussed Markov and semi-Markov processes. In addition to the underlying Markovian process, with 
decision processes also actions and rewards are included in the modelling. (S)MDPs are often used to model 
and assess different maintenance policies, in order to enable better grounded decision-making. (S)MDPs can be 
an important tool for optimisation problems within the field of asset management. Availability analysis is often 
part of this optimisation process.  
 
Ahmed, Khan, and Raza (2014) use an MDP to estimate the availability of a treatment unit in a gas processing 
plant. The unit is divided in 14 sub processes, for which the availability is determined based on the steady-state 
solution of the underlying Markov process. In the end, an RBD is used to calculate the (steady-state) system 
availability, so the availability is not modelled over time. Average failure and repair rates are used to estimate 
the availabilities of the sub processes, so deterioration is not included. The combination of the MDP and RBD is 
in fact a hierarchical model, but the authors never mention this term.  
 
Chen and Trivedi (2005) present the use of an SMDP to optimise condition-based maintenance. This approach 
is useful for repairable assets that deteriorate, but only calculations for the steady-state availability are 
provided. Moreover, the described case system is assumed as a one-unit system. The SMDP cannot cope with 
complex configurations. 
 
Tomasevicz and Asgarpoor (2009) also apply an SMDP and solve for the best maintenance policy by using a 
policy iteration method. First, the steady-state probabilities are calculated with the underlying SMP. Based on 
this, the steady-state availability can be computed as a function of the maintenance rate λm. The optimal 
maintenance rate is then determined as being the value for which the steady-state availability complies with 
the requirements. A numerical example is provided for an electric circuit breaker, having three discrete states 
of deterioration. However, only average values are used for the transition rates in the process. No parameters 
are given for any non-exponential distribution of the holding times in the SMP, which is remarkable. Also no 
complex system configuration is considered here, since a one-unit system is considered in the example. 
 

2.2.3 Bayesian networks 

Another modelling method for availability and reliability modelling of complex repairable systems is the use of 
a Bayesian network. A Bayesian network has two parts: 1) a directed acyclic graph and 2) a set of conditional 
probability functions. In reliability context these parts together define a probability density function of the 
failure probability of a system or component.  
 
Görkemli and Ulusoy (2010) present reliability and availability calculations for a production system by using a 
fuzzy Bayesian method. In contradiction with most studies, they do address the system structure. Failure times 
and repair times are assumed to be exponentially distributed and fuzzy Bayesian estimates for the failure rate λ 
and repair rate µ are used for calculations. With these estimations the interval reliability (the reliability R(t*) at 
t* being the end of the interval) and availability for the different components can be determined. The last step 
is combining the component results according to the system configuration, by using the minimal path sets 
method

5
. In this paper, deterioration of the system is not considered in the analysis. Moreover, the reliability 

and availability are not modelled over time, since only the interval availability is calculated.  
 
Cai et al. (2015) propose a two-stage Dynamic Bayesian Network (DBN) in order to evaluate the reliability of a 
subsea pipe ram blowout preventer system in real-time. The method couples root cause analysis, based on 
observable information from the system, and reliability evaluation. They examine the complex system’s 

                                                                 
5
 See Appendix 1  



26 
 

reliability to the first failure for several cases wherein different components fail at different times. Repair times 
are not considered here, and thus availability calculations cannot be provided. 
 
Cai, Liu, Zhang, Fan, and Yu (2013) assess the reliability and availability for a subsea blowout preventer, which is 
a repairable system with multiple components. The reliability and availability are calculated on the basis of a 
DBN, which itself is based on a fault tree where every basic event has multiple states. Within a basic event 
deterioration takes place by moving from a working state through deterioration states to a failed state. Perfect 
and imperfect repair are possible from the failed state. Finally, they show point reliability and availability for 
the event: “blowout, given a kick, while the drill string is running through the blowout preventer” (Cai et al., 
2013, p. 7551) under both perfect and imperfect repair. While this may look as meeting all criteria, there are 
some limitations to this study: (1) the transition rates between states are assumed to be constant and 
exponentially distributed, which simplifies the deterioration process, (2) the DBN is based on failure events, not 
on failing components, and (3) the model here is only able to consider simple configurations (i.e. combinations 
of serial or parallel configuration). 
 

2.3 Hierarchical models 

The third and last modelling method discussed in this chapter is the use of a hierarchical model. For the 
reliability and availability analysis of systems with complex configurations, a hierarchical model can be a 
practical solution. With these models, a hierarchical structure of sub-models is used in order to reduce the 
model complexity. This is a well-known approach to solve the state space explosion problem that occurs when 
Markov models are applied to complex systems (Ramezani, Latif-Shabgahi, Khajeie, & Aslansefat, 2016). In 
most cases the hierarchy consists of two levels: the component level (lower level) and the system level (upper 
level). The results of the component modelling form the input for the modelling at the system level. First, at the 
component level the availability is computed, and second, these component results are used as input for the 
model at the system level to obtain system results. 
 
Smith, Trivedi, Tomek, and Ackaret (2008) suggest a two-level hierarchical model to perform the availability 
analysis of blade server systems. Markov sub-models are used to calculate the steady-state availabilities of 
subsystems at the lower level and an FTA is applied to make the step towards system level. With the Markov 
sub-models it is possible to include multiple condition states of a subsystem, so the method would be suitable 
for including deterioration. However, the failure and repair rates are assumed to be constant, which is not 
realistic in many real-life situations. This method is not capable of modelling the availability over time, since 
only steady-state solutions can be obtained.  
 
Tang and Trivedi (2004) make use of a hierarchical Markov model for the interval availability evaluation of high-
available computer systems. The interval availability is defined as the average availability in an interval. Also 
the interval failure rate is calculated. Small intervals are used so the development of the availability and failure 
rate over time can be analysed (transient analysis), which is impossible with only steady-state analysis. This is 
illustrated by comparing the interval results and steady-state results. The system in the simple example model 
consists of two subsystems, which are both described by a Markov chain model. Both sub-models are 
combined in another simple Markov model at the system level. However, in the sub-models constant failure 
and repair rates are assumed, so asset deterioration is not incorporated in this paper. Also for the analysis of 
complex configurations, consisting of many components, this hierarchical Markov model is inappropriate. 
 
Lanus et al. (2003) describe a hierarchical modelling technique for the availability and performance analysis of 
complex systems. Markov sub-models are used to compute the steady-state availability for the different 
subsystems in one level of the hierarchy. The described technique is about aggregation of all upstates together 
and all downstates together, in order to derive an equivalent failure rate and repair rate. These measures are 
then used as input parameters for the next level in the hierarchy, which is modelled with another Markov 
model. Examples are provided where this procedure is applied for systems consisting of two or three different 
levels. This modelling approach does consider complex, repairable systems, but asset deterioration and 
availability modelling over time are not included. 
 
Ramezani et al. (2016) propose a hierarchical model for the computation of a Dynamic Fault Tree (DFT). With 
this methodology, for each dynamic gate in the fault tree the Markov model is converted into its equivalent 
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two-state Markov model. Based on this, the steady-state availability is computed for all gates. These results are 
then combined into a two-state Markov model for the total system in order to compute the system availability. 
Two examples are provided in the paper. One of them considers a cardiac assistant device, which also contains 
a pump section. This pump section is represented by a two-state Markov model with constant failure and 
repair rate, meaning no asset deterioration is included this way. Also the modelling of availability over time is 
not covered with this study.  
 
Trivedi, Kim, and Ghosh (2013) present different case studies in their paper. Two of them show the application 
of hierarchical models, where an RBD is used at the upper level (to deal with the complexity) and Markov 
chains at the lower level (that can model repairable, deteriorating components). Nevertheless, only steady-
state solutions are computed here. 
 
The work by Wong et al. (2006) provides a methodology to enable the availability assessment of tunnel 
designs, based on the Markov process. The main point of the authors is to convert multi-component systems 
into their two-state equivalents by grouping all upstates together and grouping all downstates together, in 
order to reduce the model complexity for systems with many condition states. The method is applied to five 
complex subsystems, for which the steady-state availability is computed. In the end, the system availability is 
computed through a simple fault tree, where the five subsystems are connected with an OR gate (when one of 
the subsystems fails, the system fails). Similar to the aforementioned methodologies, this method is not 
capable of modelling availability over time. 



 

 

Year Author(s) Method

Yes No Yes No

2001 Kleiner SMP X X X X 1 one-unit system

2002 Yin, Fricks, & Trivedi SMP, CTMC X X X X X X a) 3; b) 4 a)  Serial; b) Serial, Standby

2003 Lanus, Yin, & Trivedi Hierarchical model (Markov process) X Performability X X X 20 Series, Parallel, Redundant

2004 Tang & Trivedi Hierarchical model (Markov process) X Failure rate X X X 2 Unknown

2005 Chen & Trivedi SMDP X X X X 1 one-unit system

2006 Wong, Tsang, & Chung Hierarchical model (Markov process + FTA) X X X X 5 (complex) subsystems Series

2006 Chan & Asgarpoor Markov process X X X X 1 one-unit system

2008 Maciejewski & Caban ARP X X X X X 1 one-unit system

2008 Smith, Trivedi, Tomak, & Ackaret Hierarchical model (Markov process + FTA) X X X X Many Series, Parallel, Redundant

2008 Tan & Raghavan Markov process Performance Index X X X 3 Series, Parallel

2008 Spinato, Tavner, Van Bussel, & Koutoulakos NHPP Failure intensity X X X 1 one-unit system

2009 Durga Rao et al. FTA X X X X Many Unknown

2009 Tomasevicz & Asgarpoor SMDP X X X X 1 one-unit system

2009 Rehmert & Nachlas QRP X X X X 1 one-unit system

2010 Soro, Nourelfath, & Aït-Kadi Markov process X X Production rate X X X 1 one-unit system

2010 Görkemli & Ulusoy Fuzzy Bayesian method X X X X X Many Series, Parallel

2010 Kim & Singh NHPP, MCS Reliability Index X X X X Many Unknown

2012 Zhu Markov process (+ RBD) X X X X X Unknown (18) Series, Parallel, Redundant

2012 Vinayak & Dharmaraja SMP X X X X X 1 one-unit system

2013 Trivedi, Kim, & Ghosh Hierarchical model (CTMC + RBD) X X X X
a) 7                                                  

b) 18

a) Serial, Redundant, Standby                                 

b) Series, Parallel, Redundant

2013 Cai, Liu, Zhang,  Fan, & Yu DBN X X X X X Many Series, Parallel

2013 Kumar, Jain, & Gandhi SMP X X X X 2 Standby

2013 Bourouni RBD, FTA X X X X Many Series, Parallel, Redundant

2014 Ahmed, Khan, & Raza MDP + RBD X X X X 18 Series, Parallel

2014 Gonzalez, Torres, & Rios (N)HPP, MCS, (ARP)
Reliability Index & 

Availability Index
X X X Many Unknown

2015 Van der Weide & Pandey ARP X X X X X 1 one-unit system

2015 De Toledo, Freitas, Colosimo, & Gilardoni VAP X Failure intensity X X X 1 one-unit system

2015 Cai et al. DBN X X X X Many Unknown

2015 Taheriyoun & Moradinejad FTA X X X X Many Series, Parallel, Redundant

2016 Ramezani, Khajeie, Latif-Shabgahi, & Aslansefat Hierarchical model (Markov process + DFT) X X X X Many DFT gates: AND, OR, SPARE, PAND, FDEP

2016 Choi & Chang FTA X X X (Availability) X (Reliability) X X Many Series, Parallel

2018 Velasquez & Lara Minimal path sets X Failure rate X X X 7 Series

Average (Interval)
No. of components or 

subsystems
PointSteady-state

Calculated performance measure(s)

Availability Reliability Other

Type of calculations Is the methodology able to deal with: Complexity of concerned system

Repairability Deterioration
Configuration

2.4 Overview consulted literature

Table 2: Overview of the consulted literature regarding reliability and availability modelling 

 



 
 

2.5 Conclusions literature review  

For complex systems such as WTPs the availability assessment of the whole system is of main interest to the 
asset manager. However, many studies consulted for this literature review do not consider complex 
configurations, but stay on the component level or treat the considered system as a one-unit system (see Table 
2). Furthermore, the goal is to model the availability over time (point availability), which is not done in most 
studies as well. Often the steady-state or interval performance is computed, not providing any information 
about the development of the performance over time due to deterioration. From all literature reviewed in this 
research, seven of the papers meet at least three of the four criteria for the modelling approach

6
. These are 

briefly discussed first. Subsequently, general conclusions are presented for the model types that are handled in 
this chapter. 
 

2.5.1 Conclusions on consulted studies 

The study by Yin et al. (2002) describes both a Markov chain model and a Semi-Markov-Process (SMP) model. 
With the SMP model the point availability for a repairable system with deteriorating assets can be computed, 
but it can only be applied to a small system consisting of a few components. The same limitation counts for the 
paper by Soro et al. (2010), where a Markov model is applied to a one-unit system, the paper by Rehmert and 
Nachlas (2009) about a Quasi-Renewal Process (QRP) model, and the work by Van der Weide and Pandey 
(2015) concerning an Alternating Renewal Process (ARP). 
 
On the other hand, Kim and Singh (2010) do consider a complex configuration with their Non-Homogeneous 
Poisson Process (NHPP) model, but it is unclear how they aggregate the results on a component level to the 
system level. Furthermore, they provide mostly average figures of reliability indices and only one instance of a 
reliability index trend over time. More importantly, they do not consider repair times and thus their model is 
unable to model availability.  
 
The hierarchical modelling approaches by Wong et al. (2006), Smith et al. (2008) and Trivedi et al. (2013) do 
involve repair times and availability analysis, but these models are limited to steady-state results. Moreover, in 
these studies constant failure and repair rates are assumed between the different condition states in the 
Markov processes that describe the different subsystems. For the modelling of deteriorating assets within a 
WTP this is not a realistic assumption. 
 
The work of Cai et al. (2013) is the only consulted paper that meets all four criteria. However, there are some 
remarks on this paper which make it still unsuitable for the intended purposes of this research: 1) they simplify 
the deterioration process, 2) the method used is based on events, not on components and 3) it only considers 
minor complexity, i.e. combinations of serial and parallel configurations.  
 
Therefore, the conclusion is that none of the aforementioned literature presents a modelling approach that can 
model the availability over time for systems that meet all three system criteria (repairable and deteriorating 
assets, complex configuration). Below, also conclusions are given per model type that is discussed in this 
chapter. 
 

2.5.2 General conclusions on discussed modelling techniques 

From the literature review it can be concluded that the use of only a combinatorial model in the form of an 
RBD or FTA is too simplistic for the aim of this research. This approach can provide a relatively quick and easy 
estimation of the system performance, but the calculations are based on average or steady-state values for the 
component measures. The influence from maintenance and asset deterioration on the system performance, 
and how this develops over time, cannot be modelled with only an RBD or FTA. The deterioration models 
described in section 2.2 are more appropriate for modelling dynamic system behaviour. However, problems 

                                                                 
6
 See chapter 1 (Introduction) for the research criteria and Table 2 (at page 22) for an overview of the consulted 

literature and how this is evaluated. 
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occur when these models are applied to complex systems with a large number of components. Hierarchical 
models are not facing this limitation and can be a solution for the problems that appear with Markov models, 
point process models and Bayesian networks. 
 
Markov models 
The advantage of Markov models is that multiple condition states can be included in the model, instead of only 
one working state and one failed state (binary modelling). This makes that multiple asset deterioration states 
can be considered. Also the influence of maintenance actions can be taken into account with Markov models. 
Not only minimal or perfect repair can be modelled: due to the possibility of including multiple condition 
states, also the modelling of imperfect repair actions is enabled. 
 
The main disadvantage is the so-called state space explosion problem: the number of states grows 
exponentially with the size of the model. For this reason Markov models are only applied to one-unit systems 
or systems that consist of a few components.  
 
Point process models 
The advantages of the Poisson process and VAP models are that they are (1) able to model deterioration, (2) 
are well known within the field of reliability engineering and consequently have well defined parameter 
estimation methods, and (3) they can model perfect (HPP, VAP models), imperfect (VAP models) and minimal 
repair (NHPP, VAP models). Furthermore, parameter estimation methods for Poisson processes are well 
defined.  
 
However, when these models are applied to a complex system as a whole, also parameters need to be 
determined for the system as a whole. Especially for systems with high reliability and availability, such as WTPs, 
there is not enough failure data available for accurate modelling of the complete system with one point 
process model. Besides, applying one point process model to a complete complex system reduces the model 
accuracy. Also the critical components cannot be identified without considering the system configuration.  
 
Bayesian networks 
Bayesian networks could be a solution for modelling the reliability and availability of complex, repairable 
systems with deteriorating components. However, it is based on a fault tree which focusses on specific failure 
mechanisms. In order to include all relevant failure mechanisms related to deterioration for all components, 
the number of nodes in the Bayesian network explodes. This makes computation costly and time-consuming. 
Furthermore, fault tree approaches become harder to comprehend with increasing complexity and size of 
systems (see also sub-section 2.2.3).  
 
Hierarchical models 
Hierarchical models can be a practical solution for the problems that occur with the availability modelling of 
complex system configurations. However, in literature no hierarchical modelling approach was found that 
models the availability over time (in combination with the other three criteria). In many studies only steady-
state solutions are provided. In the next chapter the authors’ solution to this gap in literature is presented. 
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3 Solution: two-level hierarchical model 

From the literature study it was concluded that using only the use of a combinatorial model (RBD or FTA) or 
one of the discussed deterioration models (Markov models, point process models, and Bayesian networks) is 
insufficient for achieving the research goal as defined in chapter 1. Combinatorial models are too simplistic and 
the deterioration models are not suitable for complex system configurations. Therefore, a hierarchical model 
can be a practical solution to deal with these problems. To summarise, the two main advantages of using a 
hierarchical model are (Tang & Trivedi, 2004): 

1. Reducing the model complexity. 
2. Enabling the identification of critical subsystems or components. 

However, in literature no hierarchical modelling approach was found that could model the availability over 
time for complex, repairable systems with deteriorating assets. Therefore, the authors’ solution for this gap in 
literature is about combining multiple modelling techniques. 
 
First of all, a two-level hierarchical model is proposed, which can be divided into a component level (lower 
level) and a system level (upper level). The first step is constructing a combinatorial model, according to the 
configuration of the concerned system. For this step, typically an RBD or FTA is used (Distefano & Puliafito, 
2007; Smith et al., 2008; Tanino & Fukazawa, 1988; Yin et al., 2002). The next step is the availability modelling 
of the individual components (modelling at the component level). Only computation of the steady-state 
availability is not sufficient here. Therefore, at the component level the availability should be modelled over 
time by means of deterioration modelling. Then, the last step is combining the obtained component results 
with the constructed combinatorial model, in order to model the availability of the whole system.  
 
In this chapter first the modelling at system level is further described in section 3.1. The choice between using 
an RBD or an FTA is argued here. Thereafter, in section 3.2 the availability modelling at the component level is 
addressed. The theory behind the proposed deterioration models for availability modelling at the component 
level is further explained here. Finally, a flowchart is presented in section 3.3 which supports the asset 
manager’s decision-making on which deterioration model is the optimal choice for which asset. 
 

3.1 System level: combinatorial model 

The RBD and FTA are the two most widely used combinatorial models (Distefano & Puliafito, 2007). As their 
names might imply, the Reliability Block Diagram (RBD) is a success-oriented approach and the Fault Tree 
Analysis (FTA) is a failure-oriented approach (Rausand & Høyland, 2004; Wang, 2014). 
 

3.1.1 Reliability Block Diagram 

The RBD is a graphical analysis tool which expresses the contribution of individual components to the total 
system performance, in terms of reliability or availability (Guo & Yang, 2007). An RBD is drawn as a structure of 
linked blocks, where each block represents a function or a component. The output of such a block is True (or 1) 
when it is working, and False (or 0) when it is failed. The system can fulfil its function if an uninterrupted path 
of success is present from the beginning to the end of the RBD (Distefano & Puliafito, 2007). 
 
The two most common configurations are the serial and parallel configurations. With components in series, the 
system only works when all components are working. With a parallel configuration, the system works as long as 
at least one component is working (Kim, 2011; Nikolaidis, Ghiocel, & Singhal, 2004). 
 
With the RBD method, the system availability can be calculated as a function of the component availabilities. 
This can be expressed as: 

𝐴(𝑡) = 𝜓(𝐴1(𝑡), 𝐴2(𝑡), … , 𝐴𝑛(𝑡)) 

Where the structure function ψ depends upon the system configuration (Wang, 2014). For independent 
components, the system performance can be obtained by deriving the minimal path sets. Within an RBD, a 
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minimal path set is the minimal set of components whose functioning ensures the system working. A minimal 
path set is only a path of success when all components within the path are working. In other words, when one 
component is removed from a minimal path set, the set is no longer a path set (Kim, 2011; Mejjaouli & 
Babiceanu, 2016; Rausand & Høyland, 2004). The minimal path sets method is further described in Appendix 1 . 
 
For the most common configurations, general structure formulas are at hand for the computation of the 
system availability (Birolini, 2017; Wang, 2014). Among these are the serial and parallel configurations: 
 

- Series:  𝐴(𝑡) = ∏ 𝐴𝑖(𝑡)
𝑛
𝑖=1  

- Parallel:  𝐴(𝑡) = 1 − ∏ (1 − 𝐴𝑖(𝑡))
𝑛
𝑖=1  

 
To illustrate what an RBD looks like, Figure 5 shows an example of an RBD for a so-called bridge structure, 
which is widely used in the field of reliability and availability engineering. In this structure, the minimal paths 
would be {A,C}, {B,D}, {A,E,D} and {B,E,C} (Kim, 2011). The complete derivation of the structure function for the 
bridge structure can be found in Appendix 1 . 
 

 
Figure 5: Reliability Block Diagram for a bridge structure, from Kim (2011) 

 

3.1.2 Fault Tree Analysis 

A fault tree is a top-down (deductive) graphical model that is used to analyse which combinations of 
component failures could cause system failure (Distefano & Puliafito, 2007). The occurrence of a system failure 
is known as the top event and is the starting point for the FTA. Fault trees consist of events, describing the 
failures of components in the system, and logic gates, describing the relationship between the different events 
(Belland & Wiseman, 2016; Birolini, 2017; Wang, 2014).  
 
When an event in a fault tree is active, corresponding to a failure, the output of the event is True (or 1). On the 
other hand, when an event is non-active, the output is False (or 0) (Birolini, 2017). Based on the output of 
events and the connecting logic gates, the status of the top event can be determined. The two most well-
known and widely used gates are the AND and OR gates, see Figure 6. The former results in a True output 
(failure) if all input events are True, and the latter gives a True output when at least one of its input events is 
True. Compared to the RBD method, the AND gate is equivalent to the parallel configuration and the OR gate is 
equivalent to the serial configuration in an RBD (Wang, 2014). 
 
Similar to the RBD, the FTA method can be used to calculate the system availability as a function of the 
component availabilities, according to the system configuration. For fault trees, the system availability can be 
obtained by using the minimal cut sets, which are equivalent to the minimal path sets for an RBD. A minimal 
cut set is a minimal set of events that causes system failure. For the most common fault tree structures general 
structure formulas are known and present in literature (Birolini, 2017; Distefano & Puliafito, 2007; Mejjaouli & 
Babiceanu, 2016; Rausand & Høyland, 2004). Figure 7 shows an example of a fault tree for the same bridge 
structure as the RBD in Figure 5 was constructed for.  
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Figure 6: AND and OR gates as used in fault trees (Distefano & Puliafito, 2007) 

 

 
Figure 7: Fault Tree for a bridge structure (Kim, 2011) 

 

3.1.3 Conclusion on combinatorial models 

For the hierarchical modelling approach the choice must be made between using an RBD or FTA. Both are 
combinatorial models and for many systems, the RBD can even be converted into its equivalent fault tree, and 
vice versa (Distefano & Puliafito, 2007; Rausand & Høyland, 2004). When this is the case, the end results for 
both methods do not differ at all. However, both methods do have their own advantages and disadvantages. 
 
With a fault tree, all potential causes of system failure can be identified. So when the aim of the analysis is a 
better understanding of how a system might fail, the FTA method is recommended (Rausand & Høyland, 2004). 
On the other hand, the main advantage of the RBD is a better readability (Distefano & Puliafito, 2007). This is 
well illustrated by the examples for a bridge structure in Figure 5 and Figure 7. This is only concerning a 
structure containing five components, but when the configuration grows more and more in size and 
complexity, it becomes harder to read the systems’ fault tree and trace back the system structure.  
 
In this research, the goal is to model the system availability as a function of the component availabilities. 
Identification of possible failure causes is of less interest here. Therefore, the use of an RBD is more suitable for 
the intended purposes and will be used for the modelling at the system level of the hierarchical model. 
 

3.2 Component level: theory on proposed model types 

At the lower level of the hierarchical model, each component corresponds to a block in the RBD. For each 
component the availability must be modelled over time, before system results can be obtained. Several 
deterioration models can be used for this, as described in section 2.2. As concluded in section 2.5, the Bayesian 
networks are less useful than the Markov models and point process models for modelling the availability of 
deteriorating components within complex, repairable systems. Therefore Bayesian networks will be left out of 
this research from here on. Renewal processes, because of their inability to model deterioration, are not 
considered hereafter as well. This leaves the Markov models and the Poisson process and VAP models. This 
section is about the underlying theory of these models and based on this it is decided which specific models to 
use. 
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3.2.1 Markov models 

Markov models are based on Markovian processes. Several types can be distinguished, which are described in 
this section. The main distinction can be made between the Markov and semi-Markov process, which are 
discussed first. After that, also the (Semi-) Markov Decision Processes ((S)MDPs) are handled, which are 
extensions to the (semi-)Markov processes. At the end, it is argued which type of Markov model to use in the 
hierarchical model. 
 

3.2.1.1 Markov process 

The Markov process is characterised by its memoryless property (the Markov property), which means that the 
future state of a system or component only depends on the present state. What happened in the past has no 
influence on the probabilities of future condition states (Grabski, 2014; Ibe, 2013). Markov processes can have 
a discrete or continuous state space and a discrete or continuous time space (Ibe, 2013; Wong et al., 2006). 
Table 3 shows the four possible combinations of state space and time space. Moreover, a Markov process can 
be time-homogeneous or time-inhomogeneous (Ana & Bauwens, 2010).  
 

 
 

 
 
 
Continuous-state Markov processes (type 3 and 4 in Table 3) are hardly used in the field of reliability 
engineering (Ramakumar, 1993). As mentioned before, continuous deterioration models are useful when the 
goal is to analyse very specific deterioration processes. However, for the aim of this research (availability 
modelling in order to optimise maintenance and system configuration) a discrete number of condition states is 
more appropriate. This also makes the modelling process more convenient. Therefore, only Markov processes 
with a discrete number of condition states are considered here. Continuous-state Markov processes are not 
considered here.  
 
Markov chains 
A Markov process with a discrete state space is referred to as a Markov chain (type 1 and 2 in Table 3). With 
Markov chains, the total time that the process stays in a particular state is called the sojourn time or holding 
time of that state (Ibe, 2013; Tomasevicz & Asgarpoor, 2009). Each state corresponds to a distribution of its 
holding times. This also counts for failed states. A key characteristic of the homogeneous Markov process is the 
fact that the holding times are independent and exponentially distributed. This means that the probability of 
going from one state to another does not change over time.  
 
A Markov chain can be characterised as a jump process, that is a stochastic process making transitions between 
discrete states (Ibe, 2013). For continuous-time Markov chains these transitions can occur at any random time, 
while for discrete-time Markov chains the jumps only take place at fixed points in time.  
 
Discrete-time Markov chains are fully described by their transition probability matrix, containing all transition 
probabilities. Such a transition probability pij

t,t+1
 is the conditional probability of the process going from state i 

to state j in the time interval between t and t + 1 (Kleiner, 2001; Meyn & Tweedie, 1993). The transition 
probability matrix P is always a square n x n matrix, with n equal to the discrete number of condition states 
considered in the model. 
 

𝑃𝑡,𝑡+1 =

[
 
 
 
𝑝11

𝑡,𝑡+1 𝑝12
𝑡,𝑡+1 ⋯ 𝑝1𝑛

𝑡,𝑡+1

𝑝21
𝑡,𝑡+1 𝑝22

𝑡,𝑡+1 ⋯ 𝑝2𝑛
𝑡,𝑡+1

⋮
𝑝𝑛1

𝑡,𝑡+1
⋮

𝑝𝑛2
𝑡,𝑡+1

⋱ ⋮
⋯ 𝑝𝑛𝑛

𝑡,𝑡+1]
 
 
 
     ;      𝑝𝑖𝑗

𝑡,𝑡+1 ≥ 0 (𝑖 = 1,2, … , 𝑛) 

Table 3: Different types of Markov processes (Wong, Tsang, & Chung, 2006) 
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The sum of the probabilities in one row must be equal to 1, which makes it a stochastic matrix (Ibe, 2013). 
 

∑𝑝𝑖𝑗
𝑡,𝑡+1

𝑛

𝑗=1

= 1     ;      (𝑖 = 1,2, … . , 𝑛) 

 
With a time-inhomogeneous Markov chain, the transition probabilities themselves are functions of time, so the 
transition matrix contains different values for each time step.  
In case of a homogeneous Markov chain, the transition probabilities do not change over time, which makes 
pij

t,t+1
 = pij for all discrete time steps (Ibe, 2013).  This would simplify the matrix P to: 

 

𝑃 = [

𝑝11 𝑝12
⋯ 𝑝1𝑛

𝑝21 𝑝22
⋯ 𝑝2𝑛

⋮
𝑝𝑛1

⋮
𝑝𝑛2

⋱ ⋮
⋯ 𝑝𝑛𝑛

]   

 
In order to visualise the theory, Figure 8 shows the state transition diagram of a homogeneous discrete-time 
Markov chain with three discrete condition states (working, degraded and failure). The process fully depends 
on the transition probabilities, with pij being the transition probability from state i to state j. Due to the 
homogeneousness, the transition probabilities are constant over time in this example. 
 

 
Figure 8: State transition diagram of a homogeneous discrete-time Markov chain 

The probability of the process being in state i at time t is called ai
t
. The vector A(t) with dimensions 1 x n 

contains the probabilities of being in each individual state at a certain time t (Kleiner, 2001). 
 

𝑎𝑖
𝑡+1 = ∑ 𝑎𝑗

𝑡𝑝𝑗𝑖
𝑡,𝑡+1

𝑛

𝑗=1

     ;      (𝑖 = 1,2, … , 𝑛) 

 

𝐴(𝑡) = {𝑎1
𝑡 , 𝑎2

𝑡 , … , 𝑎𝑛
𝑡 }     ;      ∑𝑎𝑖

𝑡

𝑛

𝑖=1

= 1 

 
𝐴(𝑡 + 1) = 𝐴(𝑡)𝑃𝑡,𝑡+1 

 
For homogeneous Markov chains the transition matrix P does not change over time, so the vector A(t) can be 
calculated as follows: 

𝐴(𝑡) = 𝐴(0)𝑃𝑡  
 
where A(0) is the starting vector [a1

0
, a2

0
,…, an

0
] with ai

0
 being the probability of the process being in the state i 

at t = 0 (Baik et al., 2006). After numerous time steps the vector A(t) converges to a steady-state situation, 
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which means the influence of the starting vector A(0) decreases over time, and eventually becomes zero if the 
steady-state situation is reached. 
 
With discrete-time Markov chains the state transitions can only occur at discrete points in time, while with 
continuous-time Markov chains these jumps can occur at any point in time. With a continuous time space, the 
holding time of a condition state can be any value, according to its exponential distribution. When the process 
enters a certain condition state i, a value for the holding time is generated based on its exponential 
distribution. When this time has passed by, the process enters the next state j, based on the transition matrix P 
(Ibe, 2013). 
 

3.2.1.2 Semi-Markov Process 

As mentioned before, with the Markov process (due to the Markov property) it is defined that the state at time 
t + 1 only depends on the state at time t and the holding times are exponentially distributed. This means the 
transition probabilities are independent of how long the process is in a certain state (Black et al., 2005). 
However, for the description of a deterioration process a non-exponential distribution for the holding times is 
more appropriate (Barbu et al., 2017; Black et al., 2005; Thomas & Sobanjo, 2016; Tomasevicz & Asgarpoor, 
2009; Vinayak & Dharmaraja, 2012; Wang et al., 2016). This enables the inclusion of time-dependency for the 
transition probabilities: the time of the process being in a certain condition state influences the probability of 
moving to a next state. For example, when an asset is in a certain condition state for a long time already, as a 
result of deterioration the probability of moving to the next deterioration state is likely to be higher compared 
to the situation where the asset is in that condition state only shortly. With a regular Markov process these 
transition probabilities are always constant in time, but with the so-called Semi-Markov Process (SMP) they are 
not. For this reason, the SMP is often assumed to be more realistic for deterioration modelling. With the SMP, 
the holding times are random variables following non-exponential distributions. The transitions (or jumps) 
between the different states still occur via the Markov process, according to the transition probabilities. 
However, due to the non-exponential distributed holding times, the Markov property is not valid anymore for 
the whole process, but only at the jump instants. For this reason it is called a semi-Markov process (Kleiner, 
2001; Scheidegger, Hug, Rieckermann, & Maurer, 2011; Trivedi, Vaidyanathan, & Selvamuthu, 2015; Yuan, 
2017). 
 
The SMP shows some similarities with the non-homogeneous Markov process, because with both processes 
the transition probabilities change over time. However, with the non-homogeneous Markov process the 
transition probabilities are functions of the total process time, while with the semi-Markov process a transition 
probability is a function of the time the process is in a particular state already. Therefore, the Markov 
(memoryless) property is not valid for the SMP and this is the main difference with the non-homogeneous 
Markov process. 
 
Similar to the regular Markov process, the SMP can have a discrete or a continuous time space. Figure 9 shows 
the state transition diagram of a continuous-time SMP with three condition states, with Qij(t) being the 
conditional probability of moving from state i to state j with a holding time Hn no more than t (Ibe, 2013). This 
holds: 

𝑄𝑖𝑗(𝑡) = 𝑃[𝑋𝑛+1 = 𝑗, 𝐻𝑛 ≤ 𝑡 | 𝑋𝑛 = 𝑖] 
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Figure 9: State transition diagram of a continuous-time Semi-Markov Process 

 
In most studies, the two-parameter Weibull distribution is used to describe the holding times in an SMP. It has 
the characteristic that it can model a wide range of distributions, just by varying two parameters, the scale 
parameter and the shape parameter (Black et al., 2005). In the special case when the shape parameter = 1, the 
Weibull distribution equals an exponential distribution and the SMP is equal to a Markov process. More 
information about the two-parameter Weibull distribution can be found in Appendix 2.1. 
 
A complaint that is often heard is the fact that there is insufficient data available for constructing realistic 
holding time distributions (Scheidegger et al., 2011). Nevertheless, if insufficient hard data is available, it might 
be possible to obtain data based on expert judgement (soft data) (Kleiner, 2001; Yuan, 2017). As stated by 
Yuan: “The lack of hard data is no excuse for not modelling the performance deterioration” (Yuan, 2017). 
 

3.2.1.3 (Semi-)Markov Decision Processes 

Markov Decision Processes (MDPs) and Semi-Markov Decision Processes (SMDPs) are used to solve dynamic 
decision-making problems under stochastic conditions, and can be seen as an extension of the Markov or semi-
Markov process. (S)MDPs are used to model and asses different maintenance policies in order to enable better 
grounded decision-making. Therefore, these decision processes can be an important tool for optimisation 
problems within the field of asset management (Hu & Yue, 2007). 
 
In addition to the regular Markovian processes, with (S)MDPs also actions and rewards are included in the 
model. When the process enters a certain state i, an action a (e.g. do nothing, minimal repair, renewal) from 
the action set A(i) is chosen. A set of actions (decision rules) define a policy (Wirahadikusumah, Abraham, & 
Castello, 1999). Rewards or costs are assigned depending on the action, state, and the time of the process 
being in that particular state (Hu & Yue, 2007). For example, if a component is in a working state and the 
chosen action is doing nothing, the reward function is fully based on the operating costs. If the component is in 
the failed state the reward function is based on the costs due to failure and lost opportunities (Srinivasan & 
Parlikad, 2014). 
 
(S)MDPs consist of two main parts: first, the deterioration modelling based on the (semi-)Markov process, and 
second, modelling possible policies in order to find the optimal one (Amari, McLaughlin, & Pham, 2006; Black et 
al., 2005). The different policies can be compared by means of the objective value function V (Hu & Yue, 2007; 
Wirahadikusumah et al., 1999). This objective function is often expressed in rewards or costs over a defined 
time interval, or in costs or rewards per unit of time (White, 1993). Each policy results in a different value for 
the objective function and this way the different policies can be compared. However, in this research the first 
objective is to comply with the availability demands, so first of all the maintenance policies should be assessed 
based on the results of the availability modelling. After that, within the range of policies that meet the 
availability demands, the optimisation can be performed based on the objective value function V. 
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In practice, often the target availability is not necessarily the maximum availability, but there is a minimal 
threshold value that should be met. In that case, within the range of acceptable availabilities, the optimum 
policy can be found based on the objective function. This is often related to minimising the costs, while 
ensuring the demands are fulfilled (Tomasevicz & Asgarpoor, 2009). 
 

3.2.1.4 Conclusions on Markov models at component level 

Markov models are widely used for deterioration modelling. The distinction can be made between the Markov 
process and the semi-Markov process. With the Markov process the holding times are exponentially 
distributed, while the SMP is characterised by non-exponential holding time distributions. The former holds 
that the probability of moving to the next state is constant during the whole duration of the process being in a 
certain state. The latter means the transition probabilities are time-dependent: the time of the process being in 
a certain condition state determines the probability of moving to a next state.  
 
It is concluded that non-exponential distributions for the holding times are more appropriate for real-life 
situations. For this reason, the choice is made to use the SMP for the deterioration modelling at component 
level. At last, the use of an (S)MDP is not considered here, since this research is all about availability modelling. 
Optimising maintenance strategies through including costs is not in the scope, making an (S)MDP not relevant 
here. 
 

3.2.2 Poisson process and Virtual Age Process models 

Poisson process models and the closely related Virtual Age Process (VAP) models are characterised as point 
process models. These types of processes are also called counting processes, as they count the occurrence of 
events over a period of time. In the field of reliability engineering they are used to describe the occurrence of 
failures of a repairable system.  
 
The events described by a counting process, 𝑁(𝑡), can be represented by a sample path. This sample path 
shows how events of the counting process occur on a timescale. Figure 10 gives an example of a sample path, 
where five events occur over the period 𝑡0 − 𝑡5. The variable 𝑡𝑖  describes at which point on the timescale an 
event takes place. The other variable that is introduced here, 𝑥𝑖, is the interarrival time, which is the time 
between two consecutive events. Interarrival times play a crucial role in counting processes for reliability 
engineering, since the parameters of these processes are estimated from them.  
 
 

 
Figure 10: Sample path of a counting process, from Kim and Singh (2010) 
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In this sub-section the Poisson process and VAP models will be explained in more detail. Starting with general 
theory on Poisson Processes, going through the Homogeneous Poisson Process (HPP) and the Non-
Homogeneous Poisson Process (NHPP) and following up with discussing the VAP models. Finally a conclusion 
on these point process models is given. 

3.2.2.1 General theory on Poisson processes 

The definition of a Poisson process is as follows: a counting process 𝑁(𝑡)  is considered to be a Poisson Process 
if (Rigdon & Basu, 2000): 

1. 𝑁(0) = 0 
2. For any 𝑎 < 𝑏 ≤ 𝑐 < 𝑑, the random variables 𝑁(𝑎, 𝑏] and 𝑁(𝑐, 𝑑] are independent. 
3.  

𝜆(𝑡) =  lim
∆𝑡→0

𝑃(𝑁(𝑡, 𝑡 + ∆𝑡] = 1)

∆𝑡
 

4.  

lim
∆𝑡→0

𝑃(𝑁(𝑡, 𝑡 + ∆𝑡] ≥ 2)

∆𝑡
= 0 

 
The first condition (1) describes that the initial number of events of the counting process at time zero is zero. 
The meaning of the second condition (2) is that the counting process has the independent increments 
property. Basically, the independent increments property tells us that the number of events in two or more 
different intervals is independent of each other. Thirdly (3), there is a function, 𝜆, called the intensity function, 
which describes the occurrence of events. The last condition (4) indicates that there can’t be simultaneous 
events in the Poisson process.  
 
The intensity function, 𝜆(𝑡), also known as the Rate of Occurrence Of Failures (ROCOF)

7
, is an important notion 

for the theory on Poisson processes. The intensity function is an absolute rate which is “the time derivative of 
the expected number of failures during an interval” (Ascher & Feingold, 1984, p. 23). The failure intensity is an 
indicator for the behaviour of a system. Basically, the failure intensity tells us what the expected number of 
failures in a certain period of time is. 
 

3.2.2.2 Homogeneous Poisson Process 

The Homogeneous Poisson Process (HPP) is the simplest Poisson process describing failures of a repairable 
system, since its failure intensity is constant: 𝜆(𝑡) =  1/𝜃. A constant failure intensity means that the expected 
number of events for every interval of equal length stays the same. In terms of the interarrival times, 𝑥𝑖, from 
Figure 10: the times between events (failures) are independent, identical random variables from an 
exponential distribution with a mean of 1/𝜆. The effect of all this is that the HPP can only describe components 
with random failures. It cannot describe components that deteriorate over time.  
 

3.2.2.3 Non-Homogeneous Poisson Process 

The Non-Homogeneous Poisson Process (NHPP) differs from the HPP in the form of its failure intensity. 
Whereas the HPP has a constant failure intensity, the NHPP has a non-constant failure intensity. This difference 
can be seen in Figure 11 and Figure 12. In Figure 11 there is an HPP with a failure intensity of 𝜆(𝑡) =  1/𝜃 =
 1/10 and an NHPP with a failure intensity of: 

𝜆(𝑡) =  
𝛽

𝜃
(
𝑡

𝜃
)

𝛽−1

= 
3

10
(

𝑡

10
)

3−1

= 0.03𝑡2 

 
It is clear from this figure that the NHPP’s failure intensity increases with time. This corresponds to a 
deteriorating asset with decreasing interarrival times. Figure 12 displays two sample paths: one from an HPP 
and one from an NHPP. From this figure it follows that the expectation of the number of failures over time for 

                                                                 
7
 Sometimes confusingly called “failure rate”, see Ascher and Feingold (1984) for an elaborate explanation of 

the confusion due to this term in reliability engineering.  
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an HPP is linear and for an NHPP non-linear. For the latter the expected number of failures is increasing, 
indicating a deteriorating asset.  
 

 
Figure 11: Failure intensity for the Homogeneous and Non-Homogeneous Poisson Process 

 

 
Figure 12: Sample paths for the Homogeneous and Non-Homogeneous Poisson Process 

 
The Power Law Process 
The Power Law Process (PLP)

8
, a variant of the NHPP, is a popular model for modelling repairable systems, 

mainly because its estimation and prediction methods are simple (Pulcini, 2001) and its ability to model 
deterioration. It has been used in numerous papers, see for example Kim and Singh (2010), Korving, Clemens, 
and Van Noortwijk (2006), Block, Ahmadi, Tyrberg, and Kumar (2014), Gonzalez et al. (2014) and Kumar and 
Klefsjö (1992). Another commonly applied NHPP model is Log-Linear Process

9
 (LLP) model (Ascher & Feingold, 

1984, p. 83). These models are monotonic models, meaning they can only describe either increasing or 
decreasing intensity functions. From these two models the PLP model performs better  (Korving et al., 2006, p. 

                                                                 
8
 Also known under the name “Crow-AMSAA model” after its founders. 

9
 Also known under the name “Cox-Lewis model” after its founders. 
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1082). Furthermore, the methods for parameter estimation and confidence intervals are well described 
(Rigdon & Basu, 2000) 
 

The intensity function of the PLP takes the form of: 

𝜆(𝑡) =
𝛽

𝜃
(
𝑡

𝜃
)

𝛽−1

      𝑓𝑜𝑟 𝛽 > 0 ;  𝜃 > 0  

where: 
𝛽  =  the shape parameter 
𝜃  =  the scale parameter 

 
The shape parameter indicates whether the process has an increasing, decreasing or constant failure intensity, 
which has a different meaning in relation to the asset’s performance, see Table 4. 
 
Table 4: Values of the shape parameter of the Power Law Process and its consequences 

Shape parameter value: Failure intensity is…: The asset’s performance is…: 

𝜷 > 𝟏 increasing deteriorating 

𝜷 = 𝟏 constant neither deteriorating nor improving 

𝜷 < 𝟏 decreasing improving 

 

3.2.2.4 Virtual Age Process models 

VAP models are an answer to the problems that (N)HPP face: they can model imperfect repair. That means that 
conceptually they can account for repairs that bring a system to a state that is not “same as new” (HPP) or 
“same as old” (NHPP), but somewhere in between. They do this to the detriment of an extra parameter to be 
estimated. The general approach of these models is to reduce the virtual age of a system after repair. When a 
PLP is assumed this works as follows: the intensity function is manipulated in such a way that it resembles the 
intensity function at an earlier point on the timescale. This effect of the reduction of the intensity function of 
the VAP model can be seen in Figure 13. At time = 20, the failure intensity is reduced to the intensity at time 
11.  
 

 
Figure 13: Failure intensity of a Virtual Age Process 

 
Kijima has introduced imperfect repair models, known as Kijima I and Kijima II models (Kijima, 1989). The Kijima 
I model can restore the asset only to the state it was right after the last failure, thus the effect of the repair is 
minimally imperfect. The Kijima model II can restore the system to the virtual age of zero, meaning it can 
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model perfect as well as imperfect repair. Doyen and Gaudoin built two types of VAP models, based on the PLP: 
Arithmetic Reduction of Intensity (ARI) and Arithmetic Reduction of Age (ARA) models (Doyen & Gaudoin, 
2004). However, estimation methods for the repair efficiency (𝜌) are not yet extended to the case of unknown 
parameters 𝛽 and 𝜃, which is a common occurrence in practice (Doyen, 2010).  

3.2.2.5 Conclusions on NHPP and VAP models at component level 

Three different types of Poisson processes are described in this sub-section. The HPP is excluded from the 
scope of the research, because it cannot model deteriorating components. The NHPP and the VAP models are 
both able to model deteriorating components. The VAP models are more complex than the NHPP, since they 
make use of an extra parameter in order to include the repair efficiency in the model. In theory this makes that 
the VAP models approach the components’ real behaviour better than the NHPP. However, estimation of the 
repair efficiency parameter is not sufficiently described. The NHPP, and especially in the form of the PLP, have 
well established parameter estimation methods and have been applied in numerous cases. Therefore, the 
choice is made to apply the PLP as one of the models at the component level of the proposed two-level 
hierarchical model. 
 

3.3 Flowchart for model selection at component level 

As concluded in the previous section, the SMP model and the NHPP model are the two models proposed for 
availability modelling at component level of the two-level hierarchy. However, then the question arises which 
of these two models the asset manager should use for each block in the system RBD. To facilitate in this 
decision-making, the flowchart as shown in Figure 14 should be used. For each block in the RBD the flowchart 
should be used to decide which of the two models would be the optimal choice.  
 

 
Figure 14: Flowchart for optimal model selection at component level 

This flowchart is about the optimal model selection for a considered asset. The choice is mainly based on the 
asset characteristics and not only on the data that might be available. This latter is for instance the case for the 
flowchart provided by Yuan (2017). However, this way of reasoning does not always result in the optimal model 
choice. For example, it could be that for a particular asset only failure data is available and therefore an NHPP 
model is used to model the availability, although the SMP model is still the better choice for this asset and 
actually condition data should be registered. 
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The asset manager should not just make decisions based on the available data, since this does not always result 
in the optimal model choice. One should always wonder whether the right data is being recorded or not. The 
outcome might point out that another type of data should be recorded, in order to optimise the availability 
modelling of the component. 
 
First of all, the asset manager should determine if the risk of failure is acceptable or not. This question is not 
necesserily required for determining the optimal model selection. However, discussions with asset managers at 
Waternet showed that from an asset manager’s point of view this is often the first question that arises. 
Answering this question will be based on expert judgement. Within an organisation also risico matrices could 
be at hand to assist in this decision-making. When the risk of failure is said to be unacceptable, the NHPP model 
can directly be discarded. In that case failures due to deterioration are to be prevented by preventive 
maintenance, so there cannot be sufficient recorded failures. 
 
In case the risk of failure is acceptable, the next question is whether sufficient failure events can be recorded 
for using the NHPP model or not. For answering this question a second flowchart is constructed, see Figure 15. 
For assets that do not experience failures, logically failure events cannot be recorded and the question can be 
answered with ‘No’. If the asset does experience failure, the question arises whether these events have been 
recorded or not. If there are records of failure events, the asset manager must find out if there are sufficient 
records available. Rigdon and Basu (1989) give an indication for the number of failure events that should be 
sufficient for the parameter estimation of the PLP: ”if n<5, it is probably better to assume a Homogeneous 
Poisson Process than to assume a Power Law Process, since the Power Law Process involves two unknown 
parameters and the Homogeneous Poisson Process involves only one” (Rigdon & Basu, 1989, p. 449). Thus if less 
than five failures events are recorded, more events should be recorded until there are sufficient recordings for 
using the NHPP model. If five or more failure events are recorded, the NHPP model can already be used. If 
there are no records of failure events, the asset manager can start to record them. However, one should take 
into account the time it takes to record sufficient events (n > 4). Therefore, if it is not reasonable to wait long 
enough to have sufficient events recorded, the NHPP model should not be chosen. Otherwise, the failure 
events should be recorded and the NHPP model can be used after recording sufficient failure events. 
 

 
Figure 15: Flowchart for answering the question 'Could sufficient failure data be recorded?’ 

 
The last question in the main flowchart (Figure 14) is whether the condition of the asset can be determined or 
not. If condition monitoring is not possible, the SMP model cannot be used, since this model is based on 
condition data. On the other hand, if condition data can be recorded, the SMP model can be applied. However, 
there are some situations where this might not be valid. When the condition of an asset decreases very fast 
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before a failure occurs, a failure cannot be predicted on time. This implies the holding times of the last 
deterioration states are much smaller than the holding times of the earlier deterioration states, which makes 
that a failure occurs very suddenly and cannot be forecasted on time. In such an exeptional situation the SMP 
model should not be used, even if condition monitoring is possible.  
 
When both models cannot be applied, there is still input required for the hierarchical model. In that case the 
assumption can be made that the availability of the component is equal to the average availability at all times. 
For all other situations an economical consideration between the two or three possibilities is required, as 
shown in the flowchart. This means the costs for condition monitoring (SMP model) and failure event recording 
(NHPP model) should be investigated, to evaluate what is the best option. Although, it is unlikely that the use 
of average values is preferenced when the SMP model and/or the NHPP model can be used as well. This would 
only be the case when the application of these models would result in excessive high costs, such that the 
advantages do not outweigh these. In that case it could be preferred to use average values. However, when the 
required data is already available, the use of average values will not be considered.  
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4 Method description 

As concluded in the previous chapter, it is proposed to use a two-level hierarchical model for the availability 
modelling of complex, repairable systems with deteriorating assets. The distinction is made between modelling 
at the system level, by means of a Reliability Block Diagram (RBD), and modelling at the component level, by 
using either the Semi-Markov Process (SMP) model or the Non-Homogeneous Poisson Process (NHPP) model. 
The methodical approach is step by step described in this chapter: 

- Set up the RBD at system level (section 4.1) 
- Apply flowchart for model choice at component level (section 4.2) 
- Model availability at component level (section 4.3) 
- Use RBD for system calculations (section 4.4) 

 

4.1 Set up the RBD at system level 

The first step of the hierarchical modelling approach is creating the RBD of the system that is concerned. It is 
important to define the level of detail in the RBD. Each block in the RBD corresponds to a component in the 
system, so it should be clear what type of asset can be seen as a component. When a Water Treatment Plant 
(WTP) is analysed, for instance a pump or sand filter can be seen as one block (component) within the system 
RBD.  
 
When a higher level of detail is assumed, one could imagine that the RBD becomes too big to handle and too 
many model parameters are required as input. This would be the case if for example all parts of a pump within 
a WTP are regarded as components as well, and are all individually included in the system RBD. However, when 
the pump itself (or a number of pumps) is defined as the system to be modelled, regarding all parts of a pump 
as components can be justified. In that case the system scale is smaller, so the level of detail in the RBD is 
higher. On the other hand, when for example a complete treatment step of 12 pellet softening reactors is 
assumed as one single block in the system RBD, the level of detail is insufficient. This results in an RBD that 
does not reflect the complexity of the real system anymore and the modelling results provide too little 
information to the asset manager. To summarise, it is important to define the right level of detail within the 
RBD. This depends on the scale of the system the asset manager wants to apply the hierarchical model to. 
 
When using an RBD, the common assumption is that no dependencies between components exist. However, in 
many real-life systems dependencies do occur, for example due to common cause failures. It should be kept in 
mind that the RBD as used in this research, cannot model such dependencies as described above. 
 

4.2 Apply flowchart for model selection at component level 

When the RBD for the system is created, the next step is the model selection at the component level, for each 
block in the RBD. Since two different deterioration models at the component level can be used, for each 
component it must be decided which one to apply. In section 3.3 a flowchart is provided (see Figure 14 at page 
42) to assist in this decision making. The flowchart is about the optimal model choice for a considered asset. 
The choice is mainly based on the asset characteristics and not only on the data that might be available. For 
each component this flowchart should be used to come to the optimal model choice.  
 
It could be that no data is available for applying a model, even though it seems to be the optimal option for the 
concerned component. In such a situation it is of course not possible to use the optimal model and other 
options have to be investigated. Maybe another type of data is sufficiently available, so the other of the two 
possible deterioration models (the SMP model or the NHPP model that is apparently not the optimal choice) 
can be used. Nevertheless, it must be decided whether to start gathering the required data for the optimal 
model or not. If so, it could be used when enough data has been obtained. However, it could also be argued 
that the advantages of the optimal model do not outweigh the extra costs of monitoring new data. In that case 
the asset manager could decide not to use the optimal model at all, but keep using the other model. 
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If no data is available at all, simply average values have to be assumed for that component until sufficient data 
has been recorded to use the optimal model. When more and more data is recorded, the model calibration can 
be updated and will become more accurate with an increasing database.  
 

4.3 Model availability at component level 

This section handles the use of the deterioration models at the component level of the two-level hierarchical 
model and explains the details of using them. The whole approach is illustrated in Figure 16 below. The three 
parts of the modelling approach are discussed in sub-sections 0 (Inverse Transform Sampling), 4.3.2 
(constructing one iteration) and 4.3.3 (Monte Carlo simulation). In sub-sections 4.3.4 and 4.3.5 the SMP model 
and NHPP model are further explained and the distribution of the downtimes is presented in 4.3.6. 
Mathematical techniques regarding parameter estimation, trend tests and likelihood ratio tests can be found in 
Appendix 2  (SMP model), Appendix 3 (NHPP model) and Appendix 4 (lognormal distribution). Modelling can 
only be performed when these techniques are applied to the data in order to obtain the required model input. 
 

 
Figure 16: Method description of modelling the availability over time for components 
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4.3.1 Inverse Transform Sampling 

Simulation of the individual uptimes and downtimes is done via Inverse Transform Sampling (ITS). The general 
approach of this method is to use the distribution function of a random variable, take its inverse Cumulative 
Distribution Function (CDF) and generate random numbers according to this inverse CDF by using the uniform 
distribution (Zio, 2013):  

1. Let 𝐹(𝑥) be any invertible CDF of continuous random variable 𝑋  

2. Take 𝐹(𝑥) = 𝑈, where 𝑈 is a random generated number from the continuous uniform distribution 

𝑈[0,1] 

3. Then:  𝑋 = 𝐹−1(𝑈) 

Example of the ITS method 
As an example the exponential distribution is taken, defined by its PDF:  

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥  

ITS is then applied as follows: 

1. The CDF of the exponential distribution is given by: 

𝐹(𝑥) = 1 − 𝑒−𝜆𝑥 

2. 𝐹(𝑥) = 𝑈 →  1 − 𝑒−𝜆𝑥 = 𝑈 

3. 𝑋 = 𝐹−1(𝑈) = (1 − 𝑒−𝜆∗(𝑈))
−1

= −
1

𝜆
ln(1 − 𝑈) = −

ln(1−𝑈)

𝜆
 

In order to sample a random variable X from an exponential distribution, one has to take a λ and provide a 
random sample from the uniform distribution. The random sample from the uniform distribution can be 
provided by a pseudo random number generator, for example the RAND() function in MS Excel. The outcome  
X is thus a sample from the exponential distribution with parameter λ.  
 

4.3.2 Modelling cycles of up- and downtimes: one iteration 

Since there is no analytical or numerical solution to calculate the availability over time for the SMP or NHPP, a 
simulation method must be used to calculate the availability. The conceptual modelling approach that is used 
for both the SMP and NHPP model is an iteration, which consists of consecutive cycles of up- and downtimes as 
in Figure 17. During the uptime (𝑋𝑖) the component is in an ’available’ state and during the downtime (𝑌𝑖) in a 
‘non-available’ state, thus the availability can be determined. Together, an uptime and a downtime form a cycle 
(𝑍𝑖). Without the inclusion of the downtimes it is not possible to model availability and thus only reliability 
computations can be performed.  
 

 
Figure 17: Conceptual example of an iteration 
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The SMP and NHPP model slightly differ in their approach of simulating iterations. For the SMP the uptime 
consists of several consecutive holding times for the different condition states, see Figure 19 at page 50. With 
the NHPP, one uptime consists of one single interarrival time. These uptimes for the SMP and NHPP models are 
further described in sub-sections 4.3.4 and 4.3.5. In the SMP model there is more freedom in how to build up 
the iteration. For example, the number of states composing an uptime can be different from component to 
component and from cycle to cycle within an iteration. Downtimes within an iteration can be different too for 
the SMP model. An elaboration on this can be found in sub-section 4.3.4.The downtimes for both models are 
described by the lognormal distribution which is discussed in sub-section 4.3.6.  
 

4.3.3 Monte Carlo simulation 

With the ‘building blocks’ from sub-sections 0 and 4.3.2, it is now possible to simulate one iteration. However, 
with the simulation of one iteration only the availability over time determined by that single iteration can be 
computed. What is needed is the combined result of many simulated iterations, which can be done via Monte 
Carlo simulation. In general, Monte Carlo simulation is a “methodology for obtaining estimates of the solution 
of mathematical problems by means of random numbers” (Zio, 2013, p. 1). For each iteration the input model 
parameters are randomly picked from their distributions. The model run is repeated many times, to ensure the 
distributions of the sampled model parameters converge to the real posterior distributions. This way, the 
whole range of possible input values is included.  
 
A discrete time space is used for the modelling, so for each point in time the availability over n simulations is 
computed. The result approximates the stochastic availability of a component, which is defined as the 
probability of the component being available at time t: 
 

𝐴(𝑡) = 𝑃(𝐴(𝑡) = 1) =
∑ 𝐴𝑖(𝑡)

𝑛
𝑖=1

𝑛
 

 
This concept of modelling availability via Monte Carlo simulation is illustrated in Figure 18.  
 

 
Figure 18: Conceptualised Monte Carlo simulation of for availability modelling at component level 
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4.3.4 Semi-Markov Process: availability modelling at component level 

The Semi-Markov Process (SMP) can be used to model the deterioration of multi-state assets and is 
characterised by the non-exponential distributions of the holding times. When one SMP is used for the 
modelling of a complex system, the number of possible system states explodes and so does the complexity of 
the model (Lanus et al., 2003). However, for availability modelling at the component level this is no problem, so 
the SMP is suited. It can be used to model the (stochastic) availability over time for individual components. The 
performance of an SMP model strongly depends on the calibration of the holding time distributions, and 
calibration is often a major issue with deterioration models (Baik et al., 2006). 
 
The SMP model developed in this research is based on the methodology by Kleiner (2001). In his work a semi-
Markov modelling approach is described for a one-unit system. Five different condition states are assumed, 
where state 1 corresponds to same as new and state 5 to failure. For all condition states, the holding times 
follow a two-parameter Weibull distribution. Due to a lack of available data the parameters have been derived 
based on expert judgement. Furthermore, without repair or replacement the deterioration process is 
considered to be uni-directional. This means the process can only move from state i to j where j ≥ i, implying a 
decreasing asset condition. Another assumption is that the system deteriorates just one state at the time. So 
for example, it cannot go directly from state 1 to state 3 within one time step. 
 
The methodology developed by Kleiner is referred to in many other studies concerning deterioration modelling 
(e.g. the works by Black et al. (2005) Scheidegger et al. (2011) and Kim et al. (2015)) and it is also used as a 
starting point for this research. However, the model by Kleiner has its limitations. The approach does not 
consider any maintenance actions in the form of repairs or replacements, so the modelling only results in the 
reliability function (survival curve) for the one-unit system. Only the time until the first failure is described by 
Kleiner. This would only be sufficient for non-repairable systems because these are not used anymore after the 
first failure (a space shuttle for instance). However, repairable systems can undergo maintenance actions in 
case of failures in order to bring the system back to a working state. For this reason, the availability should be 
used as a performance index for repairable systems and therefore the model as described by Kleiner has to be 
extended for the goal of this study. 
 
For availability modelling, the downtime as a result of failure and maintenance has to be included. Compared 
to methodologies that only aim at reliability modelling, not only the available states (uptime), but also the non-
available states (downtime) should be included. For the non-available condition states (downstates), the 
holding times are defined by the time from the moment of failure until the moment the component is repaired 
or replaced. It is also possible that a component does not need to be in a working state directly after a 
maintenance action. When this is the case, the component remains non-active after the maintenance action is 
performed successfully. This is often relevant with parallel or redundant configurations. It should be clear that 
the holding time of a downstate ends at the moment the component is repaired or replaced, regardless of 
whether it is immediately taken into operation or not. 
 

4.3.4.1 Inverse Transform Sampling (SMP model) 

By using a semi-Markov modelling approach, multiple deterioration states can be included in the model, where 
each state has its own holding time distribution. The two-parameter Weibull distribution is used most often to 
describe the holding times of the upstates, since a wide range of distributions can be modelled with it by 
varying only two parameters (Black et al., 2005). When sufficient condition data is available the holding time 
distributions for the upstates can be estimated. In Appendix 2.1.1 the Maximum Likelihood Estimation (MLE) 
method is applied to the two-parameter Weibull distribution, so parameter estimations can be found there. 
 
For reliability modelling only the upstates are considered. In Appendix 2.2 an example of reliability modelling 
with the SMP model is elaborated. However, for availability modelling also the downstates need to be included. 
As will be explained in sub-section 4.3.6, the downstates are assumed to be lognormal distributed. The number 
of downstates depends on the maintenance strategy and the holding time distributions for the downstates 
should be derived based on the data that is available with respect to maintenance. The parameter estimation 
method for the lognormal distribution is provided in Appendix 4.1.  
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It must be noted that only one maintenance strategy can be modelled at a time. To compare several 
maintenance policies, different model runs based on different strategies have to be executed. 
 
To illustrate with a simple example, a decision rule as part of a maintenance policy could be:  

When component X is observed to be in condition state 4, a repair is performed that brings the 
component back to state 2.  

This means that for this downtime the holding time is defined as the time from the moment the maintenance 
starts (and thus the component is unavailable), until the moment the repair is successfully performed and the 
component is in state 2 again.  
 
The parameters for the holding time distributions of the uptimes and downtimes form the required input for 
the SMP model. The accuracy of the parameter estimation is directly related to the accuracy of the model 
(Tomasevicz & Asgarpoor, 2009). When the holding time distributions are all estimated, the ITS method can be 
applied. For the SMP, each cycle consists of several consecutive holding times, depending on the number of 
condition states and the maintenance strategy. This concept is illustrated in Figure 19. 
 

 
Figure 19: Inverse Transform Sampling for a Semi-Markov Process, from Welte (2008) 

 
Each time the component enters a new state the holding time for that particular stay in that particular state 
needs to be determined. The holding times of the various condition states are assumed to be independently 
distributed random variables. The earlier described ITS method is used to pick a holding time from its 
distribution. For the two-parameter Weibull distribution this procedure is applied as follows:  
 

1. Let F(x) be the CDF of the two-parameter Weibull distribution: 

𝐹(𝑥) = 1 − 𝑒
−(

𝑥
𝛽

)
𝛼

     ;      𝑥 > 0 

where: 
x = holding time 
β = Weibull scale parameter 
α = Weibull shape parameter 
 

2. F(x) = U, where U is a random generated number from the continuous uniform distribution U[0,1] 
 

3. The inverse of the CDF is
10

: 

𝑥 = −𝛽(ln(𝑈))
1
𝛼 

  

                                                                 
10

 See Appendix 6.1 at page 119 for complete derivation of the inverse CDF. 
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For the lognormal distribution this procedure is worked out in Appendix 4.2. With the outcomes of the ITS 
procedures now the holding times of the upstates and downstates can be generated. It should be noted that 
the SMP model is not limited to the Weibull and lognormal distributions that are concerned here. Other 
continuous distributions (e.g. gamma or normal distribution) can be used as well when it turns out they better 
resemble the data. 
 

4.3.4.2 Monte Carlo simulation (SMP model) 

An algorithm has been developed for performing the Monte Carlo simulation. A schematic overview of all the 
steps is shown in Figure 20.  Hereafter a detailed description is given per step in the algorithm. Before running 
the model, the modeller should define the total iteration time T and the number of iterations that is desired. 

 T = Iteration time interval 
 n = Number of iterations 

A discrete time space is used for modelling, so the time interval is divided in small time steps, denoted as Δt.  

 t = Discrete point in time, within T 
 Δt = Time step with length T/t 

 
The algorithm contains the following steps: 
 

1) With Monte Carlo simulation many iterations are repeated. This can be translated to programming 
code by using a loop, that is repeated n times. The algorithm starts with the first iteration, i= 1, where i 
defines the number of the iteration being executed. 

 
2) It is assumed the component is same as new (state 1) at the start of the iteration time. So at the start 

of each iteration, the first holding time is generated with ITS. It should be noted that another 
beginning condition can be used as well if this is desired. 
 

3) An iteration ends when iteration time interval T has passed (when j = T). For each time step j the 
condition state is determined. Therefore, a second loop is created that is repeated for every time step 
j within one iteration i. 
 

4) Within this loop, the algorithm checks whether the generated holding time has already been passed. If 
this is not true, the component stays in the same condition state. 
 

5) When the holding time has passed, the component makes a transition to the next condition state, 
depending on the maintenance strategy. 
 

6) The ITS procedure is repeated and a holding time for the new state is generated. 
 

7) In order to make the transition from condition state modelling to availability modelling, the following 
is assumed: 
- If the process is in an upstate, it is assumed to be available (availability = 1); 
- If the process is in a downstate it is said to be non-available (availability = 0).  
For each iteration this results in a one-dimensional array filled with the availabilities (being 0 or 1) for 
all t in the time interval T. 
 

8) If j < T, the inner loop is repeated for the next time step j. When the iteration time interval T has 
passed (when  j = T) the iteration is ended. 

 
9) If i < n, the next iteration is performed. After the n

th
 iteration, when i = n, the Monte Carlo simulation 

stops.  
 

10) For each t the stochastic availability is calculated as an average of all values (from all iterations) for the 
availability at that particular time t. This gives the stochastic availability: 
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𝐴(𝑡) = 𝑃(𝐴(𝑡) = 1) =
∑ 𝐴𝑖(𝑡)

𝑛
𝑖=1

𝑛
 

 
This A(t) is computed for every t. The result is the stochastic availability as a function of time.  

 
As mentioned before, the SMP model corresponds to a determined maintenance strategy. Therefore, it is 
important to check if the programming code corresponds to the policy that the modeller wants to use. When 
this is correct, and also the required input is given, the model can run. In 0 two examples are elaborated and 
the model results are provided. In the first example continuous condition monitoring is assumed, while in the 
second one it is presumed only periodic inspections are performed.  
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Figure 20: Algorithm for Monte Carlo simulation with the SMP model 
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4.3.5 NHPP: availability modelling at component level 

4.3.5.1 Inverse Transform Sampling (NHPP model) 

The NHPP model in this research is based on the paper of Kim and Singh (2010). The NHPP model of these 
authors is the NHPP variant called the Power Law Process (PLP). The method they use is called interval-by-
interval, which is a form of ITS. The method describes the sampling of uptimes

11
 of a PLP. Recalling from section 

0, in order to sample the uptimes the inverse of the CDF has to be taken. Kim and Singh (2010) give the CDF as 
well as the inverse CDF for the PLP. In Appendix 3.1 the intensity function and the CDF, with all the parameters, 
are given. Parameter estimations for the shape parameter and scale parameter of the PLP can be found in 
Appendix 3.1.1.  
 
The ITS procedure is applied as follows for the PLP: 
 

1. Let 𝐹𝑡𝑘+1
(𝑥) be the CDF of the PLP

12
: 

𝐹𝑡𝑘+1
(𝑥) = 1 − exp(−𝜃−𝛽{(𝑡𝑘 + 𝑥𝑘)

𝛽 − (𝑡𝑘)
𝛽}) 

 
where: 

𝑡𝑘 = (∑ 𝑥𝑖

𝑘−1

𝑖=1

) 

 
2. F(x) = U, where U is a random generated number from the continuous uniform distribution U[0,1] 

 
3. The inverse CDF is

13
:  

𝑥𝑘 = ((∑ 𝑥𝑖

𝑘−1

𝑖=1

)

𝛽

−
ln(𝑈)

𝜃−𝛽
)

1
𝛽

− ∑ 𝑥𝑖

𝑘−1

𝑖=1

 

 
The interval-by-interval method works by sampling the interarrival times 𝑥𝑘  of the failure events. The sampled 
value of 𝑥𝑘  can be obtained from the PLP inverse CDF 𝐹𝑡𝑘+1

(𝑥) with parameters 𝛽 and  𝜃 and a random 

number U from a uniform distribution U(0,1]. An example of the NHPP model for modelling reliability can be 
found in Appendix 3.4. 
 

4.3.5.2 Monte Carlo simulation (NHPP model) 

Recalling from sub-section 4.3.2, an iteration alternates between an uptime and a downtime. Furthermore, 
Monte Carlo simulation is used to obtain the availability over time. For this purpose, an algorithm is established 
that describes the simulation method for the NHPP model. The algorithm can be found in Figure 21 at page 56 
and the explanation is given below. The idea of this simulation approach is based on the Quasi-Renewal Process 
(QRP) as used by Rehmert and Nachlas (2009). The QRP is a specific form of the Alternating Renewal Process 
(ARP), where the successive uptimes and/or downtimes increase or decrease stochastically

14
. In the NHPP 

model the uptimes decrease stochastically and the downtimes stay stochastically the same. 

  

                                                                 
11

 In PLP context these are called interarrival times. 
12

 Kim and Singh use a different notation with λ instead of θ, see Appendix 6.2 at page 120 for the substitution 
of λ by θ.  
13

 See Appendix 6.3 at page 121 for complete derivation of the inverse CDF. 
14

Stochastically decreasing (increasing) uptimes signify deterioration (improvement) of components; decreasing 
(increasing) downtimes signify lengthening (improvement) of repairs. 
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Algorithm for modelling availability over time 
For the algorithm to be applicable, it is assumed that the parameters for the ITS of uptimes and downtimes are 
already known. Thus the parameters 𝛽 and 𝜃 for the PLP distributed uptimes and the parameters 𝜇 and 𝜎 for 
the lognormal distributed downtimes are already estimated by the asset manager, see Appendix 3.1.1 (PLP) 
and Appendix 4.1 (lognormal distribution) for the estimation of these parameters. The algorithm consists of 
several loops: the QRP-loop (steps 2-10), the mini-loop (steps 7-9) and the iteration-loop (steps 1-4 and 11-12). 
Appendix 3.5 gives an example for modelling the availability with the NHPP model.   
 
Start (step 1) 
First, the asset manager has to determine the period covered by the Monte Carlo simulation. Thus, if one wants 
to calculate the availability over the next 10 years, parameter 𝑇 = 10. Second, the number of Monte Carlo 
iterations has to be determined. If the asset manager chooses 1.000.000 iterations, 𝑛 = 1.000.000. 
Furthermore, 𝑁 signifies the current iteration number, 𝑖 signifies the cycle number and 𝐴(𝑡) signifies the point 
availability at time 𝑡, where time runs from zero to 𝑇 (0 ≤ 𝑡 ≤ 𝑇). At the start of the Monte Carlo simulation 
the stochastic availability for every point in time is equal to 1 (𝐴(𝑡) = 1).  
 
Step 2 
First, an uptime and a downtime have to be sampled from the equation 𝑥𝑘, page 54, respectively equation 𝑦𝑘, 
page 57 and 𝑥𝑁,𝑖 =  𝑥𝑘  and 𝑦𝑁,𝑖 = 𝑦𝑘 . Then, the cycle time (𝑡𝑁,𝑖) is determined by adding the downtime to the 

uptime: 

𝑡𝑁,𝑖 = 𝑥𝑁,𝑖 + 𝑦𝑁,𝑖 

 

Step 3 
The next step is to determine the point in time where the last uptime ends (𝑇𝑄𝑅𝑃). This is needed to determine 

in the next step if the QRP has already exceeded the specified time (𝑇) for which the asset manager wants to 
calculate the availability. Thus by adding the latest sampled uptime to the total of all foregoing cycles in the 
current QRP, the end point of the last uptime is calculated (𝑇𝑄𝑅𝑃 = 𝑡𝑗 + 𝑥𝑁,𝑖). 

 
Step 4 
In this step a decision (𝑇𝑄𝑅𝑃 ≥ 𝑇 ? ) has to be made: does end point of the last uptime exceed the specified end 

time (𝑇) of the model? If the answer is yes, the algorithm goes to step 11, where a decision is made to end or 
to continue the Monte Carlo simulation. If the answer is no, the algorithm goes to step 5. 
 
Step 5 
This step is where the total time of all cycles in the current iteration (𝑡𝑗) is calculated: 

𝑡𝑗 = ∑ 𝑡𝑁,𝑞

𝑖

𝑞=1

 

 
Step 6 
Then, in the sixth step, the start of the downtime of the last sampled cycle (𝑚) is calculated (𝑚 = 𝑡𝑗 − 𝑦𝑁,𝑖). 

The start of the downtime of the last sampled cycle calculated in this step is used to alter the availability at the 
whole period of time of the last sampled downtime. This is done in a mini-loop consisting of step 7, 8 and 9.  
 
Step 7 
The first step of the mini-loop described above consists of lowering the availability at time 𝑡 = 𝑚, by the value 
of 1/𝑛. Recall from the Start that the availability is equal to 1 at all points in time (𝐴(𝑡) = 1). For all 
downtimes this value is thus lowered by 1 divided by the total number of iterations.  
 
Step 8 
In the second step of the mini-loop a decision has to be made: has the end of the last sampled downtime been 
reached (𝑚 ≥ 𝑡𝑗 ? ). For the length of the last downtime the loop has to be ran through and stopped at the end 

of the last cycle (which is equal to the total time of all cycles in the iteration (𝑡𝑗)). If the answer is yes, the 

algorithm goes to step 10. If not, the mini-loop is continued with step 9. 
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Step 9 
The last step of the mini-loop is increasing variable 𝑚 with one time step (𝑚 = 𝑚 + 1). After this step the 
mini-loop is started again at step 7. 
 
Step 10 
The last step of the QRP loop is the increase of the cycle number (𝑖 = 𝑖 + 1). With this step complete, a whole 
cycle (uptime + downtime) has been run through and the availability has been lowered at the period of 
downtime. Then the QRP loop starts again with step 2.  
 
Step 11 
In this step of the iteration loop a decision has to be made: has the number of iterations reached the total 
number of iterations? (𝑁 ≥ 𝑛 ? ) If the answer is yes, the Monte Carlo simulation is ended at step 13. If the 
answer is no, the iteration loop is followed to step 12. 
 
Step 12 
The final step of the iteration loop resets the cycle number (𝑖 = 1) and the total time of all cycles in the 
iteration (𝑡𝑗 = 0). Furthermore, the iteration number is increased by one (𝑁 = 𝑁 + 1). After this step the 

iteration loop is started again with step 2.  
 

 
Figure 21: Algorithm for Monte Carlo simulation with the NHPP model 
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4.3.6 Downtime distribution: the lognormal distribution 

The lognormal distribution is a commonly chosen distribution for downtimes (repair times) (Birolini, 2017, p. 
464) and research finds that the lognormal distribution is the best fitting distribution in 2/3  of the repair time 
data sets (Kline, 1984). Therefore, the lognormal distribution is used for modelling the downtimes in both the 
SMP and the NHPP model. Other continuous distributions that have an inverse CDF, such as the exponential or 
Weibull distribution, can be used as well when the repair data resembles another distribution better than the 
lognormal distribution does. However, in this study it is assumed that all downtimes are lognormal distributed. 
The PDF of the lognormal distribution is given by: 

𝑓(𝑥) =
1

(√2𝜋𝜎2)𝑥
exp (−

(𝑙𝑛(𝑥) − 𝜇)2

2𝜎2
)        𝑤𝑖𝑡ℎ 𝑥 > 0 ; −∞ < 𝜇 < ∞ ;  𝜎 > 0 

with: 
 σ = shape parameter (standard deviation of log(x)) 
 µ = scale parameter (mean of log(x)) 
 
In Appendix 4.1 the parameter estimations according to the MLE method are given.  
 
When the inverse CDF is implemented in the ITS procedure, a sample for the repair time is given by: 

𝑦𝑘 = 𝑒𝑥𝑝 (𝜇 + 𝜎(𝛷−1(𝑈))) 

with: 
 𝛷−1(𝑈) = inverse CDF of the normal distribution 

𝑈 =  random number from the uniform distribution U(0,1] 
 σ = shape parameter (standard deviation of log(x)) 
 µ = scale parameter (mean of log(x)) 

 
The inverse CDF of the normal distribution (and thus the lognormal distribution) does not have a closed-form 
solution, thus approximations are being used. Many software applications, such as MS Excel, have built-in 
functions for approximating these inverse CDFs of the normal and lognormal distribution.  
 

4.4 Use RBD for system calculations 

To compute the system’s availability as a function of the availability of its components, the minimal path sets 
method can be used, which is explained in Appendix 1 . In this section, four common RBD structures are 
addressed. The two simplest ones are the serial and parallel structures, which are described first. Also the k-
out-of-n (redundant) configuration and the bridge structure are discussed. These four structures are the ones 
that are common ones to be present in a WTP. A wide range of RBDs for complex systems can be constructed 
with these four basic structures. For these configurations the structure functions are provided here. It should 
be noted that, when replacing A(t) with R(t), the same formulas can be used for calculations regarding the 
reliability.  
 
Serial 
In a serial configuration, the system fails when one of the components fails, and it is working as long as all 
components are working. A serial structure can therefore be named an n-out-of-n system. The RBD of a serial 
configuration is shown in Figure 22. Serial configurations can be found within all types of systems. Within a 
WTP, the different treatment steps are all connected in series. The water flows from one treatment step to the 
next one, so each treatment step can be represented by one component in the RBD in Figure 22.  
 

 
Figure 22: RBD for a serial configuration, from Birolini (2017) 
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The structure function for components in series is given by:  

𝐴𝑠(𝑡) = ∏ 𝐴𝑖

𝑛

𝑖=1

(𝑡) 

 
Parallel 
In a parallel configuration, the system fails when all the individual components are failed, and it is working as 
long as at least one of the components is working. A parallel configuration can thus be seen as a 1-out-of-n 
system. An RBD for a parallel configuration is presented in Figure 23. An example of a parallel configuration 
within a WTP could be a pump set-up, which is operating when at least one pump is functioning. 
 

 
Figure 23: RBD for a parallel configuration, from Birolini (2017) 

The availability for components in parallel can be computed with the structure function: 

𝐴𝑠(𝑡) = 1 − ∏(1 − 𝐴𝑖(𝑡))

𝑛

𝑖=1

 

 
k-out-of-n redundancy 
Including redundancy in the system design is a common method of improving the system reliability and 
availability. WTPs, and especially Drinking Water Treatment Plants (DWTPs), are known to contain a lot of 
redundancy, since a high availability is a strict requirement. Redundant configurations are often referred to as 
k-out-of-n structures, where n is the total number of components and k the number of components required to 
be working or failed in order to cause system working of failing. The distinction can be made between k-out-of-
n:F and k-out-of-n:G configurations. The former means that the system fails if at least k components are failed 
(failure-based), while the latter means that the system works if at least k components are working (success-
based). A k-out-of-n:F system can be treated as a (n – k + 1)-out-of-n:G system. The other way around, a k-out-
of-n:G system is equal to a (n – k + 1)-out-of-n:F system (Wang, 2014). 
 
Since an RBD is a success-based method, only the structure functions for the k-out-of-n:G configuration are 
included here. 
 
In case of independently and identically distributed (i.i.d.) components the availability functions of all 
components are the same, which means the system availability is given by: 

𝐴𝑠(𝑡) = ∑(
𝑛
𝑖
)

𝑛

𝑖=𝑘

[𝐴1(𝑡)]
𝑖[1 − 𝐴1(𝑡)]

𝑛−𝑖      ,     𝑖𝑓 𝐴𝑖(𝑡) = 𝐴1(𝑡) 

   
For non-i.i.d. k-out-of-n:G configurations the structure function changes to: 

𝐴𝑠(𝑡) =  ∑ ∑ ∏ 𝐴𝑚(𝑡)𝛿𝑚,𝑗(1 − 𝐴𝑚(𝑡))�̅�𝑚,𝑗

𝑛

𝑚=1

(
𝑛
𝑖
)

𝑗=1

𝑛−𝑘

𝑖=0

     ,     𝑘 = 1,… , 𝑛 

  

where 𝛿𝑚,𝑗  and  𝛿�̅�,𝑗  are complementary indicator functions for which 

 

∑ 𝛿𝑚,𝑗

𝑛

𝑚=1

= 𝑘     ;      ∑ 𝛿�̅�,𝑗

𝑛

𝑚=1

= 𝑛 − 𝑘 



59 
 

and  

𝛿𝑚,𝑗 = {
1 𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑚 𝑤𝑜𝑟𝑘𝑠

     0 𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑚 𝑖𝑠 𝑓𝑎𝑖𝑙𝑒𝑑
 

 
Bridge structure 
At last, the so-called bridge structure is described here. A bridge structure can be bi-directional (see Figure 24) 
and uni-directional. A bi-directional structure is assumed here, which means component E5 can be included 
both in the route from E1 to E4 and the route from E2 to E3 (Birolini, 2017). Bridge structures are often present 
in WTPs in the form of conduits with valves, so that the water can be by-passed in multiple ways. In case of a 
failure somewhere in one of treatment lanes in the WTP, the bridge structures can be used to by-pass around 
that failure, instead of closing that whole treatment lane.  
 

 
Figure 24: RBD for a bridge structure, from Birolini (2017) 

For independent components, the system reliability of the bridge structure can be obtained by using minimal 
path or minimal cut sets (Wang, 2014). The availability of a bi-directional bridge structure with five elements 
can be derived with the minimal path sets method, as shown in Appendix 1 . The final structure function for the 
bridge structure is given by: 
 

𝐴𝑠(𝑡) = 𝐴1(𝑡)𝐴3(𝑡) + 𝐴2(𝑡)𝐴4(𝑡) + 𝐴1(𝑡)𝐴5(𝑡)𝐴4(𝑡) + 𝐴2(𝑡)𝐴5(𝑡)𝐴3(𝑡) − 𝐴1(𝑡)𝐴2(𝑡)𝐴5(𝑡)𝐴3(𝑡)
− 𝐴1(𝑡)𝐴2(𝑡)𝐴5(𝑡)𝐴4(𝑡) − 𝐴1(𝑡)𝐴2(𝑡)𝐴3(𝑡)𝐴4(𝑡) − 𝐴1(𝑡)𝐴5(𝑡)𝐴3(𝑡)𝐴4(𝑡)
− 𝐴2(𝑡)𝐴5(𝑡)𝐴3(𝑡)𝐴4(𝑡) + 2𝐴1(𝑡)𝐴2(𝑡)𝐴3(𝑡)𝐴4(𝑡)𝐴5(𝑡) 

 
If the reliability functions Ai(t) of the individual components are known, then for each time step the availability 
of the bridge structure can be calculated with the given formula. 
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5 Case Study 

In this case study
15

 on Leeward Dune, Watercity’s Drinking Water Treatment Plant (DWTP), the method 
described in the previous chapter is applied. First the case study will be introduced in section 5.1. Second, the 
application of the method is given in section 5.2. For reasons of simplicity and comprehensibility only a part of 
Leeward Dune will be modelled. Several treatment steps are excluded to make the case fit-for-purpose: 
showing how to apply the method and models devised in the previous chapters 3 and 4.  
 

5.1 System description 

5.1.1 Leeward Dune: Watercity’s Drinking Water Treatment Plant 

The capital of the country of Waterland, Watercity, has 200,000 inhabitants. Its main DWTP is Leeward Dune.  
Leeward Dune’s process for making potable water is presented in Figure 61 at page 79. The focus in this case 
study is on three consecutive process steps: rapid sand filtration, ozonation and softening. Pumps and valves 
that are of relevance to the availability of the system as a whole are included in the case study as well. The 
interest of Leeward Dune’s asset managers lies in the development of the availability over a time for a period 
of 30 years.  
 
Due to constraints in the pre-treatment process, Leeward Dune has a maximum production capacity of 2,400 
m

3
/hour. In this case study it is assumed that the availability can be defined as the ‘probability that the system 

is able to meet the maximum production capacity’. Furthermore, it is assumed that every component either is 
in an ‘available state’, meaning it is able to operate at its maximum production capacity, or in a ‘non-available 
state’ where it is not able to operate at all. 
 

5.1.2 Rapid sand filtration 

The rapid sand filtration process step consists of six filters. These filters take out suspended particles in the 
water that flow in from the dunes, see Figure 25. Every once in a while, these filters have to be backwashed: 
water and air are pumped in reverse direction, which unclogs the filters as in Figure 26.   
 

 
Figure 25: Rapid sand filtration (own image) 

 
Figure 26: Unclogging of the sand filter (Waternet, 
2018c) 

Each filter has a maximum capacity of 600 m
3
/hour, making the maximum capacity of all filters combined 3,600 

m
3
/hour. Since Leeward Dune’s overall production capacity is constrained to 2,400 m

3
/hour, the rapid sand 

filtration needs four out of six filters to be working in order to meet maximum production capacity. From the 
sand filters the water flows through pipelines to the ozonation step.  
 

                                                                 
15

 Data and numbers on production capacities in this case study are fictional and do not represent real-world 
values.  
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5.1.3 Ozonation 

The next treatment step is the ozonation, which is a disinfection step that kills off bacteria, viruses and 
pesticides. Treatment takes place in a multi-chambered cellar, where the water is brought into contact with the 
ozone as in Figure 27. 
 

 
Figure 27: Outside view of the ozone treatment (Waternet, 2018b) 

 

Leeward Dune has two so-called “ozone streets”, ozone street 1 and 2. These streets consist of an ozone 
generator, a cooling system, a multi-chambered cellar and an ozone dispensing system. One ozone street can 
handle 2,800 m

3
/hour, thus one street is single-handedly able to meet the maximum production capacity. After 

the water is treated with ozone, it flows towards the parallel pump set-ups. Ozone street 1 is connected to 
pumps 1 and 2 and ozone street 2 is connected to pumps 3 and 4. 
 

5.1.4 Pumps 

After the ozonation, the water has to be pumped towards the softening process. This is done via two parallel 
pump set-ups, where pump 1 and 2 form one set-up and pump 3 and 4 the other set-up. One pump has a 
capacity of 2,500 m

3
/hour, which is enough to meet the maximum production capacity.  

 

 
Figure 28: Pumps 1 and 3 (own image) 

 

5.1.5 Valves 

Valves are used to direct flows of water through pipeline systems. In the case study’s system one important 
valve is included. The valve is located between the ozone streets and the pumps. Normally, water would flow 
from ozone street 1 to pumps 1 and 2 and from ozone street 2 to pumps 3 and 4. The valve makes it possible to 
direct (bypass) the water flow from ozone street 1 to pumps 3 and 4 and from ozone street 2 to pumps 1 and 2. 
The valve can handle flows of up to 3,600 m

3
/hour in both directions.  
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Figure 29: Valve (Waternet, 2018d) 

 
Figure 30: Valve (Waternet, 2018e) 

 

5.1.6 Softening 

After the water is pumped to the softening, it enters the softening reactors. In the softening reactors the water 
comes into contact with sodium hydroxide (NaOH). The sodium hydroxide lets calcium precipitate on sand 
grains. When the grains increase in size, they sink to the bottom, where they are subsequently drained from 
the softening reactor.  
 

 
Figure 31: Softening reactor inlet (own image) 

 
Figure 32: Softening reactors topsides (own image) 

 
There are four softening reactors in total, each with a maximum production capacity of 800 m

3
/hour. Thus, in 

order to meet the maximum production capacity of the total plant (2,400 m
3
/hour), at least three of the four 

softening reactors need to be operating at full capacity. After this softening process the water flows towards 
the next treatment step, the carbon filtration, which is not included in this case study. 
 

5.2 Application of the proposed methodology 

5.2.1 Set up the RBD at system level 

From the description of the system in section 5.1, a Reliability Block Diagram (RBD) can be constructed which 
includes all components and the system configuration, see Figure 33. The rapid sand filters are at the start of 
the RBD, in a k-out-of-n configuration, since four out of six are needed in order to meet maximum production 
capacity. After the rapid sand filtration the water flows through pipelines towards the two ozone streets. These 
pipelines are included in the RBD, but since it is assumed that these are always available they do not affect the 
system availability. Then after the ozonation the parallel pump set-ups are constructed in the RBD. They would 
form a series configuration with the ozone streets, were it not for the valve that is included in the system. 
Therefore the ozone streets, parallel pump set-ups and the valve form a so-called bridge structure, which is a 
well-known configuration type within the field of reliability engineering. The next component in the RBD is the 
cluster of pipelines from the pumps to the softening step, but as before it is assumed they do not affect the 
system availability. The softening step consists of four reactors in a k-out-of-n configuration, since three out of 
four are needed in order to meet maximum production capacity.  
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Figure 33: RBD of the case study system 
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5.2.2 Apply flowchart for model choice at component level 

The next step in the proposed methodology is the use of the flowcharts shown in Figure 14 at page 42 and 
Figure 15 at page 43. In this section, the flowcharts are applied to the different assets within the described 
system, to assist in the decision-making with respect to the optimal model selection at the component level 
(SMP model or NHPP model). Each choice is clarified in figures by either a green (yes) or a red (no) decision 
shape

16
. 

 

5.2.2.1 Model selection: Rapid sand filters 

The risk of failure of a rapid sand filter is considered to be acceptable, because of the redundancy in the 
configuration (four out of six sand filters need to be available). For the rapid sand filters sufficient failure events 
have been recorded over the past years (see Appendix 5.1.1), so according to the flowchart in Figure 35 the 
NHPP model could be used. According to the plant operators, the sand filtration is a relatively simple treatment 
step and the filters do not contain many mechanical parts, which makes there is no clear deterioration process 
observable and condition monitoring is hardly possible. Therefore, the SMP model cannot be applied for these 
assets. Following the flowchart outcome as shown in Figure 34, an economical consideration should be made 
between two possibilities: using the NHPP model and using average values. However, failures are already being 
recorded for the sand filters, so using the NHPP model will not lead to extra costs. Therefore, the NHPP model 
will be used to model the availability for the sand filters. 
 

 
Figure 34: Flowchart application for rapid sand 
filters 

 
Figure 35: Second flowchart application for rapid 
sand filters 

5.2.2.2 Model selection: Pumps 

For the pumps the risk of failure is presumed to be unacceptable, so using the NHPP model can be discarded. 
The condition of the pumps can be monitored continuously, so according to the flowchart (Figure 36) an 
economical consideration should be made between using the SMP model or using average values. However, 
condition-based maintenance is desired here, so the SMP model is the optimal model choice for availability 
modelling of the pumps and there is no reason to choose for average values here.  
 
  

                                                                 
16

 Figures might appear illegible in this sub-section, since they have been shrunk for reasons of space. However, 
colors indicate choices and legible versions of the flowcharts can be found at pages 37 and 38. 
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Figure 36: Flowchart application for pumps 

 

5.2.2.3 Model selection: Valve 

Operators and asset managers agree that risk of failing for the valve between the ozon streets and pump set-
ups is acceptable. The valve has failed only once and has been repaired after this failure but there is no record 
of this failure availabe. Since the valve is already in operation since its construction 34 years ago, the recording 
of sufficient events in reasonable time is not expected and thus the NHPP model cannot be used (see the 
flowchart in Figure 38). Condition of the valve is currently unknown and operators notice that some other very 
weared valves at Leeward still function properly, while some newer valves experience failures. They indicate 
that it is not possible to monitor the condition of the valve and therefore the flowchart suggests using an 
average availability, see Figure 37. It is estimated that the repair of the valve took two days and with 34 years 
of operation the average availability becomes:  

2 ∙ 24

34 ∙ 365 ∙ 24
= 0.99984 

 

 
Figure 37: Flowchart application for valve 

 
Figure 38: Second flowchart application for valve 

5.2.2.4 Model selection: Ozonation 

For the two ozone streets it is concluded by the asset managers that the risk of failure is unacceptable, so the 
NHPP model cannot be used. On the other hand, the condition can be monitored continuously and condition 
data has been recorded over the past years, so applying the SMP model is possible. This results in the 
economical consideration between using the SMP model and using average values, as indicated by the 
flowchart in Figure 39. However, since the risk of failure is unacceptable, condition-based maintenance is 
desired for the ozonation, making the SMP model the optimal choice. Simply using average values does not 
provide the right information to the asset manager. 
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Figure 39: Flowchart application for ozonation 

 

5.2.2.5 Model selection: Softening 

For the softening reactors the risk of failure is considered as being acceptable, due to the redundancy of the 
softening reactors. Sufficient failure events have been recorded over the past years (see Appendix 5.4.1), so 
using the NHPP model is possible (see Figure 41). The condition of the softening reactors can be determined by 
inspection, so the SMP model can be used as well. Considering the outcome of the flowchart in Figure 40, 
eventually the economical consideration must be made between all three options: the NHPP model, the SMP 
model, and using average values. Because both failure data and condition data are already available for the 
softening reactors, using average values does not make any sense here. Nevertheless, using the SMP model will 
cost more compared to the NHPP model, due to the required condition monitoring. Besides, the risk of failure 
is assumed to be acceptable, so therefore it is argued that the NHPP model is the optimal model choice for 
availability modelling of the pumps. 
 

 

Figure 40: Flowchart application for softening  

 

Figure 41: Second flowchart application for softening 

 

5.2.3 Model availability at component level 

In this sub-section the availability modelling for all described components is handled. Since the valve 
component is not modelled via either the NHPP or SMP model, but has an average availability, it will not be 
dealt with in this sub-section.  
 

5.2.3.1 Modelling results: Rapid sand filters 

In order to find out if there is a trend in the failure event data (which can be found in Appendix 5.1.1) 
suggesting deterioration, two separate trend tests with significance level α = 0.05 are executed for every filter. 
The findings of these trend tests are found in Table 5. Application of the trend tests for the rapid sand filters 
can be found in Appendix 5.1.2. The trend tests suggest that there is no trend in the data of any of the filters. 
This is in accordance with the suspicion of the operators that there is no deterioration process taking place at 
the rapid sand filters. Therefore, it is concluded that these filters can be modelled by a Homogeneous Poisson 
Process (HPP). In order to find out if the data from all filters can be pooled together, a likelihood ratio test is 
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performed. This test measures the equality of the filters based on the failure event data. The outcomes of the 
test are given in  
Table 6. In Appendix 3.3 it is described how this test is performed. 
 
Table 5: Trend tests on data for rapid sand filters 

Filter Test statistic MIL-HDBK-189 Test statistic Laplace Trend 
Test 

Outcome of tests (α = 0.05) 

1 32.17 0.03 No trend in data 

2 35.78 -0.97 No trend in data 

3 45.55 -1.79 No trend in data 

4 44.85 -0.91 No trend in data 

5 44.85 0.36 No trend in data 

6 44.07 -0.46 No trend in data 

 
Table 6: Likelihood ratio test on data for rapid sand filters 

Likelihood ratio statistic Outcome of test (α = 0.05) 

1.57 Identical components 

 
The likelihood ratio test confirms that the filters are identical in their failure event pattern, thus a single 
parameter, applicable to all filters, can be estimated. Since the filters are modelled via an HPP, only one 
parameter (θ) has to be estimated, while the other (β) is already determined, see Table 7. Application of 
parameter estimation can be found in Appendix 3.1.1. The repair time data (see Appendix 5.1.1) is assumed to 
be identically and lognormal distributed for all filters. Parameters are estimated for the lognormal 
distribution

17
, see Table 8, according to the method elaborated in Appendix 4.1. 

 
Table 7: Parameter estimations for the uptimes of HPP model for rapid sand filters 

Parameter Value Confidence bounds (95%) 

θ 683.12 571.04 831.95 

β 1 No confidence bounds since HPP β=1 

 
Table 8: Parameter estimations for lognormal distributed downtimes for rapid sand filters 

Parameter Value 

μ 4.89 

σ 0.98 

 
These parameter estimations form the input for the NHPP model. The outcome of the model, the availability 
over time for a rapid sand filter, is shown in Figure 42. At first the rapid sand filter starts at an availability of 1 
(initial condition), but soon descends to a steady availability of around 0.987. This steady availability is 
consistent with the HPP and its random failure behavior. 
 

                                                                 
17

 Data has been altered from hours to days to make it comparable to the uptimes 
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Figure 42: Availability over time for a single rapid sand filter 

 

5.2.3.2 Modelling results: Pumps 

The condition data and the repair time data for the pumps can be found in Appendix 5.2. The maintenance 
strategy that is assumed for the pumps consists of the following decision rules and assumptions: 
 

- Four discrete upstates are assumed for the component, where state 1 = same as new and state 4 = last 
deterioration state before failure; 

- For all four pumps the condition has been monitored over the last 16 years; 
- There is no uncertainty in inspection results; 
- When a pump is observed to be in state 4, a maintenance action is performed immediately; 
- For the first five times this occurs to one pump, an imperfect repair is performed that brings the pump 

back to state 2; 
- This downstate (imperfect repair from state 4 to state 2) is defined as state 5; 
- When a pump enters state 4 for the 6

th
 time, a perfect repair (renewal) is performed that brings the 

pump back to state 1 (same as new); 
- This downstate (perfect repair) is defined as state 6; 
- Thereafter, this cycle is repeated, so the 7

th
 maintenance action is again an imperfect repair (state 5); 

- When the component is in state 1, 2, 3 or 4 (the upstates), it is considered to be available (A = 1); 
when the component is in state 5 or 6 (the downstates), it is unavailable (A = 0); 

 
Based on the available condition data, the parameters for the holding time distributions are estimated by 
applying the MLE method for the two-parameter Weibull distribution (as explained in Appendix 2.1.1). Based 
on the available condition data, the following Weibull parameter estimations for the upstates are obtained: 
 
 State 1:  α = 4.378 
   β = 52.330 
 State 2:  α = 3.494 
   β = 39.893 
 State 3:  α = 3.908 
   β = 30.169 
 
Figure 43 shows the estimated Weibull distributions for these three upstates. It should be noted that the 
holding time distribution for state 4 cannot be estimated due to the active maintenance strategy. When a 
pump enters state 4, maintenance is performed immediately, so the holding time is cut off directly. In the SMP 
model the holding time for state 4 is always equal to one day, which makes that the holding time distribution 
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for state 4 does not influence the model outcome and it is not problematic that these parameter estimations 
are lacking.  
 
The holding time distributions for the two downstates can be estimated based on the repair data. For the 
imperfect repair (state 5) the downtime has been recorded 40 times, and for the perfect repair (state 6) the 
downtime has been recorded seven times. For both downstates the parameters for the lognormal distribution 
can be estimated with the MLE method, as described in Appendix 4.1. This results in the following parameter 
estimations for the downstates: 
 
 State 5:  µ = 0.350 
   σ = 0.561 
 State 6:  µ = 3.034 
   σ = 0.076 
 
Figure 44 shows the estimated distributions for both downstates. 
 

 
Figure 43: Estimated holding time distributions for 
the upstates of the softening reactors 

 
Figure 44: Estimated holding time distributions for 
the downstates of the softening reactors 

Based on the maintenance strategy and the estimated holding time distributions the SMP model provides the 
availability over time, see Figure 45. The influence of the different maintenance actions is clearly visible in the 
graph. Until t = 7 years the availability converges towards a steady-state situation, where the intervals with a 
negative slope represent deterioration and the intervals with a positive slope show the condition improvement 
due to maintenance actions. The peaks around t = 9, 18 and 26 years are the result of the perfect repairs (each 
6

th
 maintenance action for a pump). 
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Figure 45: Availability over time for a single pump 

 

5.2.3.3 Modelling results: Ozonation 

The condition data and the repair time data for the two ozone streets are listed in Appendix 5.3. The 
maintenance strategy that is assumed for the softening reactors consists of the following decision rules and 
boundary conditions: 
 

- Four discrete upstates are assumed for the component, where state 1 = same as new and state 4 = last 
deterioration state before failure; 

- For both ozone streets, the condition can be monitored continuously; 
- There is no uncertainty in inspection results; 
- When an ozone street is monitored to be in condition state 4, a maintenance action is performed; 
- The influence of the maintenance action for an ozone street decreases in time: 

o Repair number 1 – 3 bring the ozone street back to state 2; 
o Repair number 4 – 6 bring the ozone street back to state 3; 
o The 7

th
 repair action is a perfect repair (or renewal), bringing the ozone street back to state 1 

(same as new); 
o Thereafter, this cycle is repeated, so the 8

th
 repair is considered as the first repair of a new 

cycle; 
- All repair actions are corresponding to the same downstate, named state 5; 
- When the component is in state 1, 2, 3 or 4 (the upstates), it is considered to be available (A = 1); 

when the component is in state 5 (the downstate), it is unavailable (A = 0); 
 
One of the assumptions is that only one downstate is considered, with one distribution for all downtimes. It 
might seem more likely that the 7

th
 repair action of the cycle follows a different distribution, because it is a 

perfect repair (or replacement) instead of an imperfect repair, implying this action might take more time to 
perform by the maintenance crew. However, insufficient data is available regarding this perfect repair action, 
since it has been performed only a few times. For this reason, the downtime caused by the perfect repair is 
assumed to follow the same distribution as the downtime corresponding to the imperfect repair actions. 

 
Based on the available condition data, the parameters for the holding time distributions can be estimated by 
using the Maximum Likelihood Estimation (MLE) method. For the upstates this MLE method is used to estimate 
the parameters of the two-parameter Weibull distribution, as described in Appendix 2.1.1. For the downstate 
the MLE method is used to derive the parameter estimations for the lognormal distribution, see Appendix 4.1. 
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Based on the available condition data, the following Weibull parameter estimations for the upstates are 
obtained: 
 
 State 1:  α = 11.154 
   β = 100.460 
 State 2:  α = 5.468 
   β = 80.763 
 State 3:  α = 2.355 
   β = 72.775 
 

Similar as for the pumps, the holding time distribution for state 4 cannot be estimated as a result of the active 
maintenance strategy. However, as argued in sub-section 5.2.3.2, this does not influence the model outcome. 
For the downstate (state 5) the parameters for the lognormal distribution can also be estimated with the MLE 
method: 

 State 5:  µ = 1.019 
   σ = 0.294 
 

The estimated holding time distributions are shown in Figure 46 and Figure 47. 
 

 
Figure 46: Estimated holding time distributions for 
the upstates of the ozone streets 

 
Figure 47: Estimated holding time distribution for 
the downstate of the ozone streets 

 
The obtained parameter estimations are used as input for the SMP model, which results in the availability over 

time for one ozone street, see Figure 48. The several maintenance actions can be recognised in the graph. In 

the first years the availability is decreasing due to deterioration. Around t = 5 years the influence of the first 

repair can be seen, causing an increase in the availability. Until t = 10 years the function is fluctuating around a 

steady-state value. Thereafter, a clear decrease in the availability can be seen until t = 14 years, which can be 

explained by the fact that the fourth repair brings the ozone street back to state 3 instead of state 2. Because 

the influence of maintenance changes in time, the function does not converge towards a steady-state situation 

here. 
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Figure 48: Availability over time for a single ozone street 

 

5.2.3.4 Modelling results: Softening 

In Appendix 5.4.1 the available failure data for the four softening reactors is provided. In order to find out if 
there is a trend in the failure data suggesting deterioration, two separate trend tests with significance level α = 
0.05 are executed for every softening reactor. The findings of these trend tests are found in Table 9. More 
detailed outcomes of the trend tests for the softening reactors can be found in Appendix 5.4.2.  
 
Table 9: Trend tests on data for softening reactors 

Pump Test statistic MIL-HDBK-189 Test statistic Laplace Trend 
Test 

Outcome of tests (α = 0.05) 

1 11.47 6.81 Trend in data exists 

2 15.35 3.95 Trend in data exists 

3 3.87 12.60 Trend in data exists 

4 12.33 8.24 Trend in data exists 

 
The trend tests suggest that a trend in the data exists, but it is yet unknown if this is a deteriorating or 
improving trend. Nevertheless, the reactors are best modelled through a Non-Homogeneous Poisson Process 
(NHPP). In order to find out if the data from all reactors can be pooled together, a likelihood ratio test is 
performed. This test measures the equality of the reactors based on the failure event data. The outcomes of 
the test are given in Table 10. The likelihood ratio test is described in Appendix 3.3. 
 
Table 10: Likelihood ratio test on data for softening reactors 

Likelihood ratio statistic Outcome of test (α = 0.05) 

6.78 Identical components 

 
The likelihood ratio test confirms that the softening reactors are identical in their failure event pattern, thus a 
single parameter, applicable to all reactors, can be estimated. Since the reactors are modelled via a NHPP, two 
parameters have to be estimated (β and θ), see Table 11. The confidence bounds (95%) for the shape 
parameter (β) confirm that the assumption of a NHPP (instead of a HPP) is justified, since the value of β = 1 is 
not included in the interval. Application of parameter estimation and calculations can be found in Appendix 
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3.1.1. The repair time data (see Appendix 5.4.1) is assumed to be identically and lognormal distributed for all 
pumps. Parameters are estimated for the lognormal distribution

18
, see Table 12. 

 
Table 11: Parameter estimations for the uptimes of the NHPP model for softening reactors 

Parameter Value Confidence bounds (95%) 

β  2.84 2.13 3.54 

θ 4748.71 1547.46 14572.43 

 
Table 12: Parameter estimations for the downtimes of the NHPP model for softening reactors 

Parameter Value 

μ 4.00 

σ 1.81 

 
These parameter estimations are used for the NHPP model. The outcome of the model, the availability over 
time for a softening reactor, is given in Figure 49. At first the availability is equal to 1 and then starts to 
descend. First slowly, but accelerating in speed of decrease and does so until the end of the simulation at t = 30 
years. This behavior is consistent with a deteriorating NHPP: due to its minimal repair the ‘uptimes’ are 
stochastically decreasing with increasing time, which leads to an ever decreasing availability (assuming 
‘downtimes’ stay stochastically the same).  
 

 
Figure 49: Availability over time for a single softening reactor 

 

5.2.4 Use RBD for system calculations 

With the RBD provided in sub-section 5.2.1 and the availability results at component level the system’s 
availability can be calculated. In order to do so, the proper calculations have to be made with the RBD. First the 
order of calculations is determined. At the highest level in the RBD one main configuration can be 
distinguished: a serial configuration (Ser) of the rapid sand filters, the bridge structure (containing the ozone 
streets, valve and pumps) and the softening reactors, see Figure 50. 
 

                                                                 
18

 Data has been altered from hours to days to make it comparable to the uptimes 
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Figure 50: Leeward Dune system simple RBD 

 

 
In this series configuration the first and last step can be directly calculated, using the k-out-of-n calculation 
from section 4.3.6. The central step, the bridge structure, cannot be calculated directly, since it contains other 
configurations itself: the two parallel configurations of the pumps. So before the bridge structure can be 
calculated, the availability of the parallel configurations has to be calculated. This parallel configuration is 
transformed in a single block “Pump set-up”, see Figure 51 and Figure 52. The accompanying structure function 
for the calculation is: 

𝐴𝑠(𝑡) = 1 − ∏(1 − 𝐴𝑖(𝑡))

𝑛

𝑖=1

 

 

 

Figure 51: Representation of pump set-up 1 by a 
single block 

 

Figure 52: Representation of pump set-up 2 by a 
single block 

Now the availability function for the pump set-up is known, the bridge structure can be considered as well. The 
structure function for the bridge structure is given by: (see section 4.4) 
 

𝐴𝑠(𝑡) = 𝐴1(𝑡)𝐴3(𝑡) + 𝐴2(𝑡)𝐴4(𝑡) + 𝐴1(𝑡)𝐴5(𝑡)𝐴4(𝑡) + 𝐴2(𝑡)𝐴5(𝑡)𝐴3(𝑡) − 𝐴1(𝑡)𝐴2(𝑡)𝐴5(𝑡)𝐴3(𝑡)
− 𝐴1(𝑡)𝐴2(𝑡)𝐴5(𝑡)𝐴4(𝑡) − 𝐴1(𝑡)𝐴2(𝑡)𝐴3(𝑡)𝐴4(𝑡) − 𝐴1(𝑡)𝐴5(𝑡)𝐴3(𝑡)𝐴4(𝑡)
− 𝐴2(𝑡)𝐴5(𝑡)𝐴3(𝑡)𝐴4(𝑡) + 2𝐴1(𝑡)𝐴2(𝑡)𝐴3(𝑡)𝐴4(𝑡)𝐴5(𝑡) 

 
where: 
 A1(t) = Availability of ozone street 2 
 A2(t) = Availability of ozone street 1 
 A3(t) = Availability of pump set-up 2 
 A4(t)  = Availability of pump set-up 1 
 A5(t)  = Availability of the valve 
 
This calculation transforms the bridge structure into a single block called “Ozonation, Valve and Pumps”, see  
Figure 53. 
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Figure 53: Representation of the bridge structure by a single block 

 

The k-out-of-n calculations (3-out-of-4 and 4-out-of-6) for the first and last step of the series configuration 
result in the forming of two single blocks. One for the softening, see Figure 54, and one for the rapid sand 
filtration, see Figure 55. 
 

 

Figure 54: Representation of softening reactors by 
a single block 

 

Figure 55: Representation of rapid sand filters by a 
single block 

 
The structure function for a k-out-of-n configuration is: (see section 4.4) 

𝐴𝑠(𝑡) = ∑(
𝑛
𝑖
)

𝑛

𝑖=𝑘

[𝐴1(𝑡)]
𝑖[1 − 𝐴1(𝑡)]

𝑛−𝑖      ,     𝑖𝑓 𝐴𝑖(𝑡) = 𝐴1(𝑡) 

 
The RBD now has the form as shown in Figure 50 and the final serial configuration calculation can be made. 
This transforms the serial configuration into a single block representing the whole system of rapid sand filters, 
ozone streets, valve, pumps and softening reactors, see Figure 56. 
 

 
Figure 56: Representation of the case study system by a single block 
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The formula for calculating the availability of the serial configuration is:  

𝐴𝑠(𝑡) = ∏ 𝐴𝑖

𝑛

𝑖=1

(𝑡) 

 
Via a software program (such as MS Excel) this calculation can be repeated for every time step t that has been 
specified. In the final step the availability for the system is determined. The availability over time for the 
concerned system in this case study is given in Figure 57.  
 
 

 
Figure 57: System availability over time for the case study system 

 
The availability over time for Leeward Dune clearly shows a deteriorating trend in the availability. The main 
cause for this trend is the influence of the availability of the softening reactors: if the softening reactors are 
removed from the RBD computations, the system availability (Figure 58) follows a very different pattern. 
Without the softening, the availability resembles the course of the availability that the ozone streets follow 
(see Figure 48, page 72). In order to give an idea of the differences, if these were average availabilities, the 
inclusion of the softening means an increase in the average yearly unavailability from 0.35 – 0.96 hours to 
more than 40 hours (year 30). 
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Figure 58: System availability over time with exclusion of the softening 

When the ozone streets are taken out of the RBD computations as well (by making their availability equal to 1), 
the effect is that the system availability (Figure 59) resembles the availability of the rapid sand filters (Figure 42, 
page 68). It can be concluded from this figure that the availability of the pumps (Figure 45, page 70) is not 
influential on the system’s availability. This has probably to do with the fact that only one of the four pumps 
has to function, in order to be able to meet maximum production capacity.  
 
 

 
Figure 59: System availability over time with exclusion of the softening and ozonation 

An asset manager might be interested in improving the long-term availability of the system and therefore in 
finding out the effect of modifications to the system. It has already been discovered that the softening reactors 
are the most influential in the system’s availability. Thus the inclusion of an extra softening reactor and its 
effect on the system’s availability is investigated.  
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Figure 60: System availability with inclusion of an extra softening reactor 

The inclusion of an extra softening reactor means that the configuration of the softening process step goes 
from a 3-out-of-4 to a 3-out-of-5 configuration. The result to the system’s availability can be found in Figure 60. 
It shows that the system’s availability main influence is a mixture of both the ozone streets and the softening 
reactors. For the first 15-20 years the availability is mainly dependent on the availability of the ozone streets, 
thereafter the deteriorating trend of the softening takes over. Comparing Figure 60 with Figure 57, one can see 
clearly that the inclusion of an extra softening reactor is beneficial to the availability of the system.  
 

5.3 Conclusions on case study 

This case study shows the application of the method that has been described in chapter 4. It shows how an 
asset manager can go from a description of the system’s configuration and data on asset condition, failure 
events and repair times to the availability of the system. By means of excluding (or including) components from 
(or in) the calculations, their effect on the system’s availability can be clarified. In this case study it is found that 
the softening reactors have a large influence on the system’s availability. If the projected system’s availability is 
not meeting the requirements, the model can be used to investigate the effects of altering (parts of) the 
system. In the case study, an extra softening reactor and its effect on the system’s availability are modelled this 
way. Another change to the system, that has not been included in the case study, could be the alteration of 
maintenance strategies. Especially in the case of the SMP model, where different strategies can easily be 
incorporated in the model (see Appendix 2.3.1). Also, influence of decreasing repair times through altering the 
parameters of the downtime distributions, can be used to investigate for example shorter reaction times on 
failures or larger inventories.  
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Figure 61: Schematic overview of the treatment steps at Leeward Dune, from Waternet (2018a) 
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6 Conclusions 

This research sets out to find a method for modelling the availability over time for a water treatment plant, 
which has the following characteristics: 

- Complex configuration  
- Deteriorating assets 
- Repairable assets 

The models found in the state-of-the-art do not meet all these criteria. However, there are models that fulfil 
several of these criteria and therefore the proposed solution in this research is based on combining multiple 
modelling techniques. The overall model is a two-level hierarchical model, which can cope with complex 
configurations at the higher system level and with deteriorating and repairable assets at the lower component 
level.  
 
At the component level two models can be chosen by the asset manager, the Semi-Markov Process (SMP) 
model and the Non-Homogeneous Poisson Process (NHPP) model. The main distinction between these two is 
being a condition based respectively a failure based type of model. To assist the asset manager in deciding what 
model is the optimal one to choose, a flowchart is constructed. This decision-making is based on risk analysis, 
data availability, predictability of failures and economic considerations. The use of Inverse Transform Sampling 
in a Monte Carlo simulation method provides the stochastic availability over time at the component level.  
 
At the system level a Reliability Block Diagram (RBD) deals with the complex configurations within a water 
treatment plant. Availabilities of different components are aggregated to obtain the system availability, by 
taking into account their configuration within the system. Common configurations for water treatment plants, 
such as redundancy and bridge structures, can be dealt with in this way.  
 
The models and their application are incorporated in a method which consists of four steps: 

1. Set up an RBD at system level 
2. Apply the flowchart for choosing the appropriate component model for each block in the RBD 
3. Model the components’ availabilities with the component models 
4. Use the RBD to model the system availability 

The application of the method to a case study with sampled, but realistic, data shows how the system’s 
availability is computed. The benefits of the method for asset managers are gaining insight into the 
contribution of components to the system’s availability and the ability to alter the system configuration or 
maintenance strategy in order to optimise these. Another advantage is that the model can be used for 
modelling at different levels. The case study shows how (part of) a WTP can be modelled with it, but it is also 
possible to model at the level of one treatment step or even one asset. The system boundaries can be adjusted 
based on the desired level of detail in the RBD.   
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7 Discussion 

From an asset manager’s point of view, the aim is to optimise the system configuration and maintenance 
strategy in order to satisfy the availability demands in the most cost-efficient way. This challenge has caused a 
shift from preventive and corrective maintenance towards predictive, condition-based maintenance. To 
evaluate changes to system configuration and maintenance strategies, it is important to gain insights about the 
development of the system availability over time, influenced by asset deterioration and maintenance actions. 
The proposed methodology in this report has been developed to facilitate in this.  
 
An important feature of the methodology is that it is data driven and thus the adage “garbage in, garbage out” 
applies here. The SMP model is based on condition data, so it is important to know if and how the condition of 
assets can be determined. For some assets it is possible to monitor the condition continuously, which would be 
the ideal situation. For other assets the condition can only be determined through periodic inspections. Aiming 
for uniform condition monitoring, the NEN-2767 standard could serve as a guideline to asset managers, since it 
provides a methodology for consistent condition monitoring and registration for relevant assets. The NHPP 
model, on the other hand, is driven by failure data. It must be well defined when an asset has failed, and the 
recording of failures needs to be accurate and uniform. Likewise, the information regarding the performed 
maintenance actions must be well registered. What is the active maintenance strategy? What is the influence 
of a maintenance action on the asset condition? How long does it take to perform the maintenance action? 
This type of information is of much importance for accurate availability modelling. Without a proper definition 
and collection of condition data, failure data and maintenance actions, adoption of the methodology by asset 
managers and other users might prove difficult. Subsequently, the benefit of the proposed methodology is that 
it can be used as a demonstration of the usefulness of collecting data, since it produces tangible insights into 
future behaviour of assets. But, although proper data management is essential, not for all real-life systems 
sufficient hard condition and failure data will be available. Still, in that case methods are known for estimation 
of the required model parameters, such as expert judgement or estimation from zero-failure data. The 
modelling results will be less accurate, but until sufficient hard data is collected such methods can be used. 
 
Finally, some considerations for further research are suggested. First, in the proposed methodology it is 
assumed that individual components deteriorate and/or fail independent of each other, which is inevitable 
with an RBD. Although, dependencies between components can exist in real-life systems. A solution might be 
the addition of extra components in the RBD, representing the processes that cause these dependencies. 
However, further investigation into this topic is needed to enable more informed conclusions. 
 
Second, it should be noted that this study focusses on availability modelling, which is a first step in the 
optimisation process of maintenance strategies and system configurations. The second step would be the 
inclusion of costs, in order to find the optimal balance between ensuring a high availability on the one hand, 
and reducing costs on the other hand. Thus, the inclusion of costs is recommended as an extension to this 
study. Several options can be thought of: the Semi-Markov Decision Process (SMDP) as an extension of the SMP 
model could be used to find optimal maintenance strategies, and Life Cycle Costing (LCC) techniques such as 
using the net present value could be applied for discounting future revenue and expenses of maintenance 
strategies in both the NHPP and SMP model.  
 
Third, with the SMP model multiple condition states can be included, where each condition state is 
corresponding to a value for the instantaneous availability of the concerned component. In the proposed 
methodology this instantaneous availability is assumed to be a binary measure (either 1 or 0). Therefore, an 
extension to the SMP model could be the inclusion of intermediate values for the instantaneous availability, 
ranging from fully available to completely failed, which is for instance regarded in the work by Soro et al. 
(2010). This addition would allow the assumption of components being partly available as a result of 
deterioration. For example, within a WTP this could be relevant for different types of filters that experience 
clogging. 
 
Fourth, inclusion of other types of models at the component level could relax some assumptions. For the NHPP 
model the application of imperfect repair models, such as Virtual Age Process (VAP) models are recommended 
to be researched. They relax the assumption of minimal for the NHPP model (or perfect repair for the HPP 
model). VAP models such as the Arithmetic Reduction of Intensity (ARI) and the Arithmetic Reduction of Age 
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(ARA), introduced by Doyen and Gaudoin (2004) fit well with the Power Law Process used in the NHPP model. 
One should keep in mind, however, that with the generalisation to imperfect repair models, demands on data 
become more challenging: in addition to failures and repair times, the effect of repairs on the asset has to be 
estimated.  
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Appendix 1  Minimal path sets 

An RBD or fault tree can be used to derive the system performance. To do so, the so-called structure function 
must be derived according to the system configuration. With this structure function, the system performance 
can be calculated as a function of the performances of the individual components (Marichal, 2016; Mejjaouli & 
Babiceanu, 2016). 
 
The structure function of any configuration can always be derived by identifying all possible path sets (so all 
possible combinations of working and non-working components that do result in a functioning system) 
(Marichal, 2016): 
 

𝜙(𝑥) = ∑ 𝜙(𝐴) ∏ 𝑥𝑖

𝑖∈𝐴𝐴⊆𝐶

∏ (1 − 𝑥𝑖)

𝑖∈𝐶\𝐴

 

where: 
 x = the computed performance measure 

ϕ(x) = the structure function for performance measure x 
 A = a path set 

C = set of all components in the system 
i = # component 

 
However, when the complexity of the system increases, the number of possible path sets increases and it 
becomes too complex to derive the structure function this way. In order to reduce this complexity, minimal 
path sets (for an RBD) or minimal cut sets (for FTA) can be used.  
 
A minimal path set is the minimal set of components whose functioning ensures the system working. A minimal 
path set is only a path of success when all components within the path are working. In other words, when one 
component is removed from a minimal path set, the set is no longer a path set (Kim, 2011; Rausand & Høyland, 
2004).  
For a fault tree, the system solution is obtained by using the minimal cut sets, which are equivalent to the 
minimal path sets in an RBD. A minimal cut set is a minimal set of events in the fault tree that causes system 
failure (Birolini, 2017; Distefano & Puliafito, 2007; Rausand & Høyland, 2004). 
 
In this research the choice is made to use an RBD for the modelling at the system level (the upper level in the 
hierarchical model). Therefore, only the derivation of the system solution for an RBD is described here. 
Although, it should be noted that the minimal cut sets method is equivalent to the minimal path sets method. 
 
Solution 
Every system can be displayed as a parallel structure of its minimal path sets. When at least one minimal path 
set is working, the system as a whole is functioning (Rausand & Høyland, 2004). Based on this, the structure 
function can be derived (Marichal, 2016):  
 

                                                                           𝜙(𝑥) = 1 − ∏(1 − ∏𝑥𝑖

𝑖∈𝑃𝑗

)

𝑟

𝑗=1

                                              (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

where: 
 P = the set of minimal path sets 
 r = total number of minimal path sets 
 j = # minimal path set 
 
To apply this formula the right way, it should be noted that xi

k
 = xi for all i and k. This can be explained by the 

fact that a block in an RBD can only be successive once at the time (Rausand & Høyland, 2004). The application 
of the minimal path sets method will be illustrated with two examples. 
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Example 1 
Assume the bridge structure in Figure 62. The minimal path sets for this configuration are {1,4}, {2,5}, {1,3,5} 
and {2,3,4}. 

 
Figure 62: RBD for a bridge structure, from Rausand and Høyland (2004) 

Then, the bridge structure can be seen as a parallel structure of its minimal path sets, see Figure 63. 
 

 
Figure 63: Alternative representation of the bridge structure’s RBD, from Rausand and Høyland (2004) 

By applying Equation 1 the structure function is derived: 
 

𝜙(𝑥) = 1 − (1 − 𝑥1𝑥4)(1 − 𝑥2𝑥5)(1 − 𝑥1𝑥3𝑥5)(1 − 𝑥2𝑥3𝑥4) 
 

= 1 − (1 − 𝑥1𝑥4 − 𝑥2𝑥5 + 𝑥1𝑥2𝑥4𝑥5)(1 − 𝑥1𝑥3𝑥5 − 𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥3
2𝑥4𝑥5) 

 
= 1 − (1 − 𝑥1𝑥3𝑥5 − 𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥3

2𝑥4𝑥5 + 𝑥1𝑥4 + 𝑥1
2𝑥3𝑥4𝑥5 + 𝑥1𝑥2𝑥3𝑥4

2 − 𝑥1
2𝑥2𝑥3

2𝑥4
2𝑥5 − 𝑥2𝑥5

+ 𝑥1𝑥2𝑥3𝑥5
2 + 𝑥2

2𝑥3𝑥4𝑥5
2 − 𝑥1𝑥2

2𝑥3
2𝑥4𝑥5

2 + 𝑥1𝑥2𝑥4𝑥5 − 𝑥1
2𝑥2𝑥3𝑥4𝑥5

2 − 𝑥1𝑥2
2𝑥3𝑥4

2𝑥5

+ 𝑥1
2𝑥2

2𝑥3
2𝑥4

2𝑥5
2) 

 
Presuming xi

k
 = xi then reduces the solution to:  

  
𝜙(𝑥) = 𝑥1𝑥3𝑥5 + 𝑥2𝑥3𝑥4 + 𝑥1𝑥4 + 𝑥2𝑥5 − 𝑥1𝑥2𝑥3𝑥4𝑥5 − 𝑥1𝑥3𝑥4𝑥5 − 𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥3𝑥4𝑥5 − 𝑥1𝑥2𝑥3𝑥5

− 𝑥2𝑥3𝑥4𝑥5 + 𝑥1𝑥2𝑥3𝑥4𝑥5 − 𝑥1𝑥2𝑥4𝑥5 + 𝑥1𝑥2𝑥3𝑥4𝑥5 + 𝑥1𝑥2𝑥3𝑥4𝑥5 − 𝑥2𝑥3𝑥4𝑥5 
 

= 𝑥1𝑥4 + 𝑥2𝑥5 + 𝑥1𝑥3𝑥5 + 𝑥2𝑥3𝑥4 − 𝑥1𝑥2𝑥3𝑥4 − 𝑥1𝑥2𝑥3𝑥5 − 𝑥1𝑥2𝑥4𝑥5 − 𝑥1𝑥3𝑥4𝑥5 − 𝑥2𝑥3𝑥4𝑥5

+ 2𝑥1𝑥2𝑥3𝑥4𝑥5 
 
Now the structure function for the bridge structure is derived. 
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Example 2 
Assume the 3-out-of-4 system as illustrated in Figure 64. The minimal path sets for this redundant system are 
{1,2,3}, {1,2,4}, {1,3,4} and {2,3,4}.    
 

 
Figure 64: RBD for a 3-out-of-4 configuration 

The 3-out-of-4 system can also be displayed as a parallel structure of its minimal path sets, see Figure 65. 
 

 
Figure 65: Alternative representation of the RBD for the 3-out-of-4 configuration 

Applying Equation 1 results in the structure function for this configuration: 
 

𝜙(𝑥) = 1 − (1 − 𝑥1𝑥2𝑥3)(1 − 𝑥1𝑥2𝑥4)(1 − 𝑥1𝑥3𝑥4)(1 − 𝑥2𝑥3𝑥4) 
 
Solving this the same way as in Example 1 results in: 
 

𝜙(𝑥) = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 − 3𝑥1𝑥2𝑥3𝑥4 
 
which is the structure function for a 3-out-of-4 system. 
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Appendix 2  SMP model 

Appendix 2.1 Two-parameter Weibull distribution 

For the description of the holding times in multi-state models, in many studies the two-parameter Weibull 
distribution is used due to its flexibility (Dolas, Jaybhaye, & Deshmukh, 2014; Fung & Jardine, 1982; Kim et al., 
2015; Kleiner, 2001; Seki & Yokoyama, 1996; Thomas & Sobanjo, 2016). The Weibull distribution has the ability 
to model a wide range of shapes by varying just two parameters, the shape parameter and the scale parameter 
(Black et al., 2005; Cohen, 1965). The Cumulative Density Function (CDF) and Probability Density Function (PDF) 
of the two-parameter Weibull distribution are given by (Birolini, 2017, p. 458): 
 
CDF:      

𝐹(𝑥) = 1 − 𝑒
−(

𝑥
𝛽

)
𝛼

                   ;      𝑥 > 0  
 
PDF:      

𝑓(𝑥) =
𝛼

𝛽
(
𝑥

𝛽
)

𝛼−1

𝑒
−(

𝑥
𝛽

)𝛼

           ;      𝑥 > 0 

where: 
 x  = the variable that is described (the holding time) 
 α  =  the shape parameter 
 β =  the scale parameter 
 
In this research the shape parameter is named alpha and the scale parameter is named beta (α > 0; β > 0). 
Although, in literature there is no consistency in the naming of these parameters, so it is important to keep in 
mind which one is the shape parameter and which one is the scale parameter in order to avoid confusion and 
calculation mistakes. 
 
The shape parameter alpha is dimensionless and the scale parameter beta has the same units as the random 
variable, which is the holding in this case (Phan & McCool, 2009). 
When the shape parameter alpha = 1, this yields the exponential distribution (so a constant hazard rate). For 
alpha > 1, the hazard rate is strictly increasing and for alpha < 1, the hazard rate is strictly decreasing (Birolini, 
2017; Dolas et al., 2014; Yang, Xie, & Wong, 2007). 
 

Appendix 2.1.1 Parameter estimation: Weibull distribution 

The Maximum Likelihood Estimation (MLE) is one of the most applied analytical methods for estimating the 
parameters of the Weibull distribution (Barbu et al., 2017; Dolas et al., 2014; Seki & Yokoyama, 1996). MLE is 
relatively insensitive to scatter in the data and only a short computer program is required to perform the 
estimations. The MLE method is based on the maximisation of the likelihood function, under the condition that 
both parameters are larger than zero (Qiao & Tsokos, 1994; Ross, 1996). Since the log-likelihood function is 
better to use for mathematical calculations than the likelihood function itself, the natural logarithm of the 
likelihood is derived and used to solve the problem. The likelihood and log-likelihood functions are defined as 
followed:  
 

- Likelihood function:     

𝐿(𝛼, 𝛽) = ∏𝑓(𝑥𝑖)

𝑛

𝑖=1

 

with 𝑓(𝑥𝑖) being the PDF of the two-parameter Weibull distribution and n the total number of data 
samples. 

 
- Log-likelihood function:    
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𝐿𝐿 (𝛼, 𝛽) = ∑𝑙𝑛(𝑓(𝑥𝑖))

𝑛

𝑖=1

 

= ∑ [𝑙𝑛(𝛼) − 𝑙𝑛(𝛽) + (𝛼 − 1) 𝑙𝑛(𝑥𝑖) − (𝛼 − 1) 𝑙𝑛(𝛽) − (
𝑥𝑖

𝛽
)

𝛼

]

𝑛

𝑖=1

 

= 𝑛[𝑙𝑛(𝛼) − 𝛼 𝑙𝑛(𝛽)] + (𝛼 − 1) ∑𝑙𝑛(𝑥𝑖) − ∑(
𝑥𝑖

𝛽
)

𝛼
𝑛

𝑖=1

𝑛

𝑖=1

 

 
The parameter values that maximise the log-likelihood function (LL) also maximise the likelihood function (L) 
(McCool, 2012). Therefore, the parameter values for which the maximum value of the log-likelihood function is 
obtained are considered as the maximum likelihood estimators for alpha and beta (Ross, 1996). In order to 
solve this optimisation problem, one must obtain the values of alpha and beta for which the two partial 
derivatives of the log-likelihood function are equal to zero (McCool, 2012; Qiao & Tsokos, 1994). This means 
the following system of equations needs no be solved: 
 

1) 
𝜕LL

𝜕𝛼
=

𝑛

𝛼
− 𝑛 ln(𝛽) + ∑ ln(𝑥𝑖)

𝑛
𝑖=1 − ∑ ln (

𝑥𝑖

𝛽
) (

𝑥𝑖

𝛽
)
𝛼

𝑛
𝑖=1 = 0 

2) 
𝜕LL

𝜕𝛽
= −

𝑛𝛼

𝛽
+ 𝛼 ∑ 𝑥𝑖

𝛼 1

𝛽𝛼+1 
𝑛
𝑖=1 = 0 

 
From the second equation it follows: 

−
𝑛𝛼

𝛽
+

𝛼

𝛽
∑𝑥𝑖

𝛼
1

𝛽𝛼
 

𝑛

𝑖=1

= 0 

 

−1 +
1

𝑛
∑𝑥𝑖

𝛼
1

𝛽𝛼
 

𝑛

𝑖=1

= 0 

 

1

𝑛
∑𝑥𝑖

𝛼  

𝑛

𝑖=1

= 𝛽𝛼 

 
So the expression for the maximum likelihood estimator for the scale parameter beta is:   
       

�̂� = (
1

𝑛
∑𝑥𝑖

�̂�  

𝑛

𝑖=1

)

1
�̂�

 

 
Filling in this expression for beta in the first equation gives the maximum likelihood estimator for the shape 
parameter alpha: (Qiao & Tsokos, 1994; Ross, 1996; Srinivasan & Wharton, 1975)  
 

�̂� = [
∑ 𝑥𝑖

�̂� ln(𝑥𝑖)
𝑛
𝑖=1

∑ 𝑥𝑖
�̂�𝑛

𝑖=1

−
1

𝑛
∑ln(𝑥𝑖)

𝑛

𝑖=1

]

−1

 

 
This equation cannot be solved analytically: in order to find the estimator for the shape parameter alpha, an 
iterative numerical approach is required (McCool, 2012; Phan & McCool, 2009). A genetic algorithm can be 
used, for example the Newton-Raphson method (Heo, Salas, & Kim, 2001; Qiao & Tsokos, 1994; Ross, 1996). 
Software tools like MS Excel, Matlab or R can be used for this. 
 
Bias and censoring 
For large data sets the values for the maximum likelihood estimators converge to the true values and become 
normally distributed. However, for small data sets the shape parameter is known to be biased (McCool, 2012; 
Phan & McCool, 2009). The bias of the scale parameter is often negligible (Ross, 1996). The bias of the shape 
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parameter depends on the sample size and the degree of censoring (Yang et al., 2007). If there are no censored 
observations, the data set is called uncensored or complete (Ross, 1996). 
 
In the field of safety and reliability engineering, right censored data samples are a common occurrence. A 
sample is said to be right censored if it is known that the value is greater than a certain lower boundary value, 
but the exact value is unknown (McCool, 2012). For example, if ten years of condition data for an asset is 
available, one data sample equals one single holding time. At the end of those ten years the asset is in a certain 
state i, but because the data ends it is not known when the asset will enter the next condition state j. 
Therefore, this last data sample is only known to be greater than a certain value, but the exact value is not 
known. 
 
To overcome the bias for small data sets, bias correction methods can be used to obtain a more reliable 
parameter estimation. Two research papers that provide formulas for the unbiased estimation of the shape 
parameter are the works by Ross (1996) and Hirose (1999). 
 
According to Ross (1996) the unbiased estimation of the shape parameter is given by: 
 

�̂�𝑈 =
�̂�

1 +
1.37

𝑟 − 1.92
√

𝑛
𝑟

 

where:  
n  =  the number of data samples (observations) 

 r  =  the number of failures 
 
This formula for the unbiased shape parameter can be used for datasets that include right censored data, since 
both n and r are included here. In case there are no censored observations in the data set, the number of 
failures is equal to the number of observations (n = r). 
 
The formula provided by Hirose (1999) can only be used for a situation where there is no right censored data:  
 

�̂�𝑈 =
�̂�

1.0115 +
1.278

𝑟
+

2.001
𝑟2 +

20.35
𝑟3 −

46.98
𝑟4

 

In this case r is equal to n. 
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Appendix 2.2 Reliability modelling with SMP model: example 

As mentioned before, with the methodology developed by Kleiner (2001) the reliability function of a 
component can be determined. The first step is to estimate the distributions (the PDFs) of the holding times for 
each condition state. Due to a lack of historical data, the same conditon states and holding time distributions as 
used by Kleiner (2001) are assumed in this example. This means four upstates are used, which are described by 
two-parameter Weibull distributions. In Table 13 the Weibull parameters from the study by Kleiner are listed, 
where alpha is the shape parameter and beta is the scale parameter. Figure 66 shows the corresponding 
Weibull distributions. 

 
 

 
 

 
Figure 66: Weibull distributions for the holding times of the four upstates 

For reliability modelling no maintenance actions are included, so only the time until the first failure is 
considered. When the component leaves state 4, it is assumed to be failed. Via Monte Carlo simulation, based 
on the ITS method, the PDFs of the cumulative holding times can be constructed, see Figure 67.The PDF of the 
cumulative holding times for states 1+2+3+4 is equal to the distribution of the time to the first failure.  
 

State Alpha Beta

1 2.350 17.544

2 3.568 27.778

3 1.732 12.346

4 2.961 11.364

Table 13: Weibull parameters for the holding times used by Kleiner (2001) 
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Figure 67: Distributions of the cumulative holding times 

By making the transition from PDFs to CDFs for the cumulative holding times, the survival curves for the 
cumulative holding times are obtained (Figure 68). If a CDF is defined as F(t), the reliability function R(t) equals: 

𝑅(𝑡) = 1 − 𝐹(𝑡) 

In fact, the survival curve for states 1+2+3+4 is equal to the reliability function R(t) for the component, with 
respect to the first failure. 
 

 
Figure 68: Survival curves for the cumulative holding times 
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Appendix 2.3 Availability modelling with SMP model: examples 

Appendix 2.3.1 Example 1: continuous condition monitoring 

In this example the outcomes of the SMP model for two different maintenance strategies are compared. The 
first strategy is about condition-based maintenance, while the second one is about corrective maintenance. 
 
For both situations the following starting points and boundary conditions are presumed: 
 

- Four discrete upstates are assumed for the component, where state 1 = same as new and state 4 = last 
deterioration state before failure; 

- For the upstates, the Weibull parameters alpha and beta are listed in Table 14; 
- The PDFs of the holding times for the upstates are given in Figure 69; 
- The holding times of the upstates are multiplied by 7 to convert the units from weeks to days; 
- The condition can be monitored continuously; 
- There is no uncertainty in monitoring results; 
- At t = 0 the component is in condition state 1; 
- When the component is in an upstate, it is considered to be available (A = 1); when the component is 

in a downstate, it is unavailable (A = 0). 
 
Maintenance strategy 1 is defined as follows: 
 

- When component enters state 4, an imperfect repair is performed immediately that brings the 
component back to state 2;  

- Thus, the holding time of state 4 is always one time unit (= 1 day), because the process moves to a 
downstate immediately; 

- The downstate representing the repair from state 4 to state 2 is defined as state 5; 
- For state 5, the parameters mu and sigma for the lognormal distribution are listed in Table 15; 
- The PDF of the holding times for state 5 is given in Figure 70. 

 
Maintenance strategy 2 is defined as follows: 
 

- When the component fails, a perfect repair (or renewal) is performed that brings it back to state 1 
(same as new); 

- The downstate representing this perfect repair is defined as state 6; 
- For state 6, the parameters mu and sigma for the lognormal distribution are listed in Table 15; 
- The PDF of the holding times for state 6 is given in Figure 70. 

 
The modelling results for both strategies are shown in Figure 71 and Figure 72. It is observed that both 
availability functions converge to a steady-state, although the function of strategy 1 converges quicker. On 
average, maintenance strategy 1 leads to a bit higher availability. This example shows how the SMP model can 
be used to compare the influence of different maintenance strategies onto the availability function.  
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Table 14: Weibull parameters for the holding time distributions of the uptimes (Kleiner, 2001) 

 
 

 
Figure 69: Holding time distributions for the upstates 

 
Table 15: Lognormal parameters for the holding time distributions of the downtimes 

 
 

State Alpha Beta

1 2.350 17.544

2 3.568 27.778

3 1.732 12.346

4 2.961 11.364

State Mu Sigma

5 2.000 0.300

6 3.000 0.400
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Figure 70: Holding time distributions for the downstates 

 

 
Figure 71: Availability over time for maintenance strategy 1 
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Figure 72: Availability over time for maintenance strategy 2 

  



100 
 

Appendix 2.3.2 Example 2: Periodic inspections 

In Example 1 it is assumed the condition state of the component is monitored continuously. However, this 
would be the ideal situation and is not always true. Therefore, it is also possible to make use of inspection 
intervals in the SMP model. This means the condition is only determined periodic, where the average time 
between two inspections is the so-called inspection interval. Although, an inspection is not always performed 
exactly on the same day or time. For instance, a yearly inspection will not always take place at the first of 
January. Therefore, it is assumed that an inspection takes place at a random day somewhere in the inspection 
interval. Based on the outcome of the inspection it is decided which action to perform (e.g. do nothing, repair, 
renewal). An example is given here to illustrate the effect of using inspection intervals in availability modelling 
with the SMP model.  
 
In this example the following starting points and boundary conditions are used: 
 

- Four discrete upstates are assumed for the component, where state 1 = same as new and state 4 = last 
deterioration state before failure; 

- The inspection interval is 200 days, so an inspection is performed at a random day within a period of 
200 days; 

- It is assumed that the component is available during inspection; 
- There is no uncertainty in inspection results; 
- At t = 0 the component is in condition state 1; 
- When an inspection takes place and the component is observed to be in state 4, an imperfect repair is 

performed that brings the component back to state 2; 
- This downstate (imperfect repair from state 4 to state 2) is defined as state 5; 
- When the component fails before it is observed to be in state 4, a perfect repair (or renewal) is 

necessary, bringing the component back to state 1; 

- This downstate (perfect repair) is defined as state 6; 

- When the component is in state 1, 2, 3 or 4 (the upstates), it is considered to be available (A = 1); 
when the component is in state 5 or 6 (the downstates), it is unavailable (A = 0); 

- The PDFs of the holding times for the upstates are given in Figure 69 (similar to Example 1); 
- For the upstates, the Weibull parameters alpha and beta are listed in Table 14 (similar to Example 1); 
- The holding times of the upstates are multiplied by 30 to convert the units from months to days; 
- The PDFs of the holding times for the downstates are given in Figure 70 (similar to Example 1); 
- For the downstates, the parameters mu and sigma for the lognormal distribution are given in Table 15 

(similar to Example 1). 
 
Figure 73 provides a visualisation of the maintenance strategy and the transitions between the different 
condition states. Figure 74 shows the availability function. 
 

 
Figure 73: Visualisation of the maintenance strategy 
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Figure 74: Availability over time for periodic inspections 

 

Appendix 2.3.3 Discussion on availability modelling with SMP model 

It the two examples it is assumed that the condition monitoring or the result of an inspection is fully correct at 
all times. However, the outcome of an inspection contains uncertainty, mainly due to human errors. When data 
is available with respect to the variation in inspection observations, the uncertainty could be included in the 
modelling.  
 
Furthermore, the effect of maintenance actions could be uncertain as well. In Example 1, it is assumed a repair 
action brings the component back to condition state 2, at all times. However, the result of a maintenance 
action is likely to contain a certain variety as well. When the different transition probabilities for the semi-
Markov process can be derived from available data, this variability in maintenance results can be included in 
the availability modelling as well. 
 
With the SMP model the modeller can include many factors or processes that influence the component 
availability, aiming at a more realistic model. However, a more realistic model also comes with a price: more 
complexity means more required input data. The asset manager should find a balance between the model 
complexity on one hand, and the amount of required data on the other hand. 
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Appendix 3  NHPP model 

Appendix 3.1 The Power Law Process 

The Cumulative Distribution Function (CDF) for the k
th

 + 1 failure of the Power Law Process (PLP) model is 
derived from the intensity function. The intensity function is given by

19
:  

 

𝜆(𝑡)  =
𝛽

𝜃
(
𝑡

𝜃
)

𝛽−1

 

where: 
 𝛽  =  the shape parameter 
 α  =  the scale parameter 
 
And the CDF for the k

th
 + 1 failure is: 

 

𝐹𝑡𝑘+1
(𝑥) = 1 − exp(−𝜃−𝛽{(𝑞𝑡𝑘 + 𝑥𝑘)

𝛽 − (𝑞𝑡𝑘)
𝛽}) 

with: 

𝑡𝑘 = ∑ 𝑥𝑖

𝑘−1

𝑖=1

 

where: 
 q  =  the repair adjustment factor 
 tk  =  the time of the k

th
 failure 

 xi  =  the i
th

 interarrival time 
 
Theoretically the repair adjustment factor 𝑞 determines the state of the system after repair: 𝑞 = 0 for a “same 
as new” repair, which translates the PLP model into a renewal process; 𝑞 = 1 for a “same as old” or “minimal 
repair”, which means the reliability is exactly the same as before the repair; and 0 > 𝑞 > 1 for an “imperfect 
repair”, which means the system is repaired to a certain virtual age. 
 
For both reliability and availability modelling the assumption that 𝑞 = 1 is used, implying minimal repair. This 
has two reasons: 

1. 𝑞 = 0 is excluded. This would mean that no deterioration, but renewal is modelled. 
2. 0 > 𝑞 > 1 is excluded, since this would mean that another parameter has to be estimated (𝑞), which 

leads to an increase in the data needed for this model.
20

  
 
Thus, for 𝑞 = 1, 𝐹𝑡𝑘+1

(𝑥) becomes: 

 

𝐹𝑡𝑘+1
(𝑥) = 1 − 𝑒𝑥𝑝(−𝜃−𝛽{(𝑡𝑘 + 𝑥𝑘)

𝛽 − (𝑡𝑘)
𝛽})  

 

  

                                                                 
19

 Kim and Singh (2010) use slightly different notations, see for comparison Appendix 6.2 at page 120. 
20

 However, if a sufficient amount of data with a good enough quality is available, 0>q>1 might be incorporated 
in the model as well.  
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Appendix 3.1.1 Parameter estimation: Power Law Process 

The PLP parameters 𝛽 and 𝜃 can be estimated with the Maximum Likelihood Estimation (MLE) method.  
 
In case of failure truncated data these estimators are: 
 

�̂� =
𝑛

∑ 𝑙𝑛(
𝑡𝑛
𝑡𝑖

)𝑛−1
𝑖=1

  

𝜃 =
𝑡𝑛

𝑛1 �̂�⁄
 

 
In case of time truncated data the estimators are slightly different: 
 

�̂� =
𝑁

∑ 𝑙𝑛 (
𝑡
𝑡𝑖
)𝑁

𝑖=1

 

𝜃 =
𝑡

𝑁1 �̂�⁄
 

 
The information necessary for calculating the parameters is for the two cases is given in Table 16 below. 
 
Table 16: Information necessary for parameter estimation of the Power Law Process 

Failure 
truncated 

Time 
truncated 

Description 

𝒕𝒊 𝑡𝑖  Time at which the i
th

 failure event takes place 

𝒕𝒏  Time of the n
th

 failure event at which recording of failure events is ceased 

 𝑡 Time at which recording of failure events is ceased 

𝒏  Number of failure events at which recording is ceased 

 𝑁 Number of failure events from the start of recording until the cessation of the 
recording at time 𝑡 

 
The confidence intervals for the shape parameter are important in order to assess whether the NHPP reduces 
to a HPP or not. This happens when 𝛽 = 1 is included within the confidence interval. The confidence interval 
for the shape parameter can be constructed as follows: 
 

𝜒1−𝛼 2⁄
2 (2(𝑛 − 1))�̂�

2𝑛
< 𝛽 <

𝜒𝛼 2⁄
2 (2(𝑛 − 1))�̂�

2𝑛
 

where: 

𝜒1−𝛼 2⁄
2 (2(𝑛 − 1)) 

 

is the chi-square distribution with (2(𝑛 − 1)) degrees of freedom and confidence level  1 − 𝛼 2⁄  or 𝛼 2⁄ . 

with: 
 𝛼 = confidence level parameter  
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Appendix 3.2 Trend tests 

The trend tests use as input chronologically ordered arrival times 𝑇1, 𝑇2, … , 𝑇𝑖 . Interarrival times can be 
translated to arrival times by taking their cumulative, i.e.: 𝑇1 = 𝑋1, 𝑇2 = 𝑇1 + 𝑋2, … , 𝑇𝑖 = 𝑇𝑖−1 + 𝑋𝑖. 
 
There are two types of data collection possible, either failure truncated or time truncated. The collection of 
data in failure truncated data collection stops at a specified number of failures, where the last failure is 𝑇𝑖 = 𝑇𝑛. 
Whereas the collection of data in time truncated data collection stops at a specified time 𝑇 after the start of 
the data collection, where the last failure is 𝑇𝑖 = 𝑇𝑁. 
 

Appendix 3.2.1 Laplace Trend Test 

The Laplace Trend Test is a test to find out if a trend exists in the data. More specifically, it considers if the data 
supports an HPP or an NHPP(Wang & Coit, 2005). The hypotheses are: 
 

𝐻0: the data follow an HPP 
𝐻1: the data follow an NHPP 

 
The hypothesis 𝐻0 is rejected if the test statistic 𝑈𝐿is larger or smaller than the right tail or the left tail of the 
standard normal distribution (μ = 0, σ = 1): 

𝑈𝐿 < −𝑧𝛼 2⁄       𝑜𝑟       𝑈𝐿 > 𝑧𝛼 2⁄   

 
where: 

𝛼 = the desired significance level 
  
with the interarrival times the Laplace Trend Test statistic 𝑈𝐿 can be calculated: 
 

𝑈𝐿 =
[
1
𝑘

∑ 𝑇𝑖
𝑘
𝑖=1 ] −

1
2

𝑇∗

𝑇∗√ 1
12𝑘

 

 
where: 

𝑘 = 𝑚 − 1 for failure truncated data; 
𝑘 = 𝑚   for time truncated data; 
𝑇∗ = 𝑇𝑛  for failure truncated data; 
𝑇∗ = 𝑇  for time truncated data.  

with: 
  𝑚 = the number of failures 

𝑇  = the time at which data collection is stopped 
 

Appendix 3.2.2 Military Handbook Test (MIL-HDBK 189) 

The Military Handbook Test is a test to find out if a trend exists in the data. Specifically the MIL-HDBK 189 trend 
test considers if the data follow no trend versus following the PLP model (whereas the Laplace considers NHPP 
in general). The hypotheses are: 
 

𝐻0: the data do not follow a trend (HPP) 
𝐻1: the data follow a trend (PLP) 

 

The hypothesis 𝐻0 is rejected if the test statistic 𝑋𝑗
2 is larger than the right tail or smaller than the left tail of the 

chi-square distribution at significance level 𝛼: 
 

𝑋2𝑗
2 < 𝑋1−𝛼 2⁄

2 (2(𝑗))        𝑜𝑟         𝑋2𝑗
2 > 𝑋𝛼 2⁄

2 (2(𝑗)) 

with: 
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𝑋2(𝑗)
2 =

2𝑁

�̂�
 

where: 
 

�̂� =
𝑁

∑ 𝑙𝑛 (
𝑇
𝑇𝑖

)𝑁
𝑖=1

 

and 𝑗 = 𝑁, for time truncated data 
 

�̂� =
𝑛

∑ 𝑙𝑛 (
𝑇𝑛

𝑇𝑖
)𝑛−1

𝑖=1

 

and 𝑗 = 𝑁 − 1, for failure truncated data 
 
𝛼  =  the desired significance level 
𝑇  =   the time at which data collection is stopped 

 

Appendix 3.3 Likelihood Ratio test 

This is a test for finding out if the components are equal, based on the comparison of the shape parameter (β). 
The complete derivation can be found in Rigdon and Basu (2000) 
 
For time truncated data the Likelihood Ratio (LR) can be calculated as: 

LR = 𝑀log𝛽∗ − ∑ 𝑚𝑖log�̂�𝑖

𝑘

𝑖=1

 

where: 

𝛽∗ =
𝑀

∑
𝑚𝑖

�̂�𝑖

𝑘
𝑖=1

 

with: 
 

�̂�𝑖  = the MLE estimation of the shape parameter for component i (see Appendix 3.1.1)  
𝑚𝑖  = number of failures for component i 

𝛽∗ = weighted harmonic mean of all �̂�𝑖’s 
𝑀 = total number of failures from all components 
𝑘 = number of components 

 
The test statistic for this likelihood ratio test is: 
 

−
2 × LR

𝛾
 

where: 

𝛾 = 1 +
1

6(𝑘 − 1)
(∑

1

𝑚𝑖

−
1

𝑀

𝑘

𝑖=1

) 

 
The test statistic is approximately chi-square distributed with 𝑘 − 1 degrees of freedom. The null hypothesis 
(All shape parameters of all components are equal) is rejected when the test statistic is larger than the chi-
square distribution with 𝑘 − 1 degrees of freedom and a confidence level of 𝛼: 
 

−
2 × LR

𝛾
> 𝜒𝛼

2(𝑘 − 1) 
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Appendix 3.4 Reliability modelling with NHPP model 

Calculating reliability from the interarrival times 
The algorithm for determining the reliability to the k

th
 failure is as follows (see also Figure 75): 

 
1. Take  𝑛 = the number of Monte Carlo simulations 

𝑝 = number of failures of which one wants to know the reliability 

𝑁 = 1 

2. Sample 𝑥𝑘  from equation 𝑥𝑘  at page 54 for 𝑘 = 1 → 𝑝 

3. Take the sum 𝑡𝑁 of all 𝑥𝑖  for simulation 𝑁: 

𝑡𝑁 = ∑𝑥𝑖

𝑝

𝑖=1

 

 

4. If 𝑁 ≤ 𝑛, then 𝑅(𝑁) = 𝑡𝑁 and 𝑁 = 𝑁 + 1. Then go to step 2 

5. End simulation and give the distribution of 𝑅 

 

 
Figure 75: Algorithm for reliability modelling with the NHPP model 
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Appendix 3.4.1 Reliability modelling with NHPP model: example 

To determine the reliability over time for an asset the following was set up as an example: 
 

● 𝛽 = 3,83 
● 𝜃 = 2506,81 (𝜆 = 9,58E-14) 
● 𝑘 = 1 (this refers to the reliability to the first failure) 
● 𝑍 = random number from a uniform distribution 𝑈(0,1] 

 
With these parameters the interarrival times of failures can be sampled according to the formula above: 

𝑥𝑘 = ((∑ 𝑥𝑖

𝑘−1

𝑖=1

)

𝛽

−
ln (𝑍)

𝜃−𝛽
)

1
𝛽

− ∑ 𝑥𝑖

𝑘−1

𝑖=1

 

 
Table 17 table below gives two simulations of twenty sampled interarrival times (𝑥𝑘) and the cumulative time 
of the component in operation (𝑡𝑖): 
 
Table 17: Two simulations of 20 sampled interarrival times 

Interarrival time 
number 

Simulation 1 Simulation 2 

k 𝑥𝑘  𝑡𝑖  𝑥𝑘  𝑡𝑖  

1 2372 2372 2125 2125 

2 448 2820 467 2592 

3 54 2874 172 2764 

4 111 2986 302 3065 

5 27 3012 233 3299 

6 559 3572 92 3391 

7 38 3610 3 3394 

8 433 4043 24 3418 

9 397 4440 580 3999 

10 13 4453 172 4170 

11 43 4496 249 4419 

12 77 4573 35 4454 

13 160 4733 10 4464 

14 132 4865 205 4668 

15 258 5122 16 4684 

16 129 5251 168 4853 

17 20 5271 88 4941 

18 158 5429 105 5045 

19 107 5536 27 5073 

20 75 5611 24 5096 
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A sample path of the first simulation is given in Figure 76, where 𝑁(𝑡) denotes the cumulative number of 
failures. As time passes by, one can clearly see the failures succeeding each other more rapidly. 
 

 
Figure 76: Sample path for simulation 1 of the reliability example 

 
But, how to get from a single sample path to the reliability of an asset? First, 1,000,000 of these sample paths 
are simulated. Second, the first failure of every sample path is taken and these are grouped in a histogram. This 
creates a Probability Distribution Function (PDF) of the interarrival time to the first failure, see Figure 77. Third, 
this PDF is then modified into a Cumulative Distribution Function (CDF) and survival curve (inverted CDF), see 
Figure 78. Reliability is here defined as “the probability of no failure” and is thus equal to one minus the 
probability of the first failure, which is equal to the survival curve, see Figure 79.  
 

 
Figure 77: Probability Density Function of the interarrival time to the first failure (β = 3.83, λ = 9.58E-14) 

 



109 
 

 
Figure 78: Cumulative Distribution Function of the interarrival time to the first failure (β = 3.83, λ = 9.58E-14) 

 

 
Figure 79: Reliability to the first failure (β = 3.83, λ = 9.58E-14) 
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Appendix 3.5 Availability modelling with NHPP model: example 

To determine the availability over time for an asset the following was set up as an example
21

: 
 

● Power Law Process parameters: 
○ 𝛽 = 3.83  
○ 𝜃 = 2506.81  

● Parameters for the lognormal distribution of the downtime:  
○ 𝜇 = 2.73 
○ 𝜎 = 0.73 

● 𝑍 = random number from a uniform distribution 𝑈(0,1] 
● 𝑇 = 2135.9 
● 𝑛 = 1 

 
With these parameters the up- and downtimes can be sampled according to the algorithm described in sub-
section 4.3.5. 
 
Table 18 gives a Monte Carlo simulation of one iteration with twenty sampled cycles with uptimes (𝑥𝑘) and 
downtimes (𝑦𝑘). All sampled times are in days. To illustrate the alternation of the process, the start and end 
times of the up- and downtimes are also given in Table 18. Furthermore, the availability of this simulation is 
illustrated in Figure 80. The starting date of the simulation process is March 28, 2018 0:00 hour. The first failure 
takes place exactly 410 days after the start at 0:00 hour, May 12, 2019. After being under repair for 18.6 days, 
the component is available again at 14:20 hour, May 30, 2019. As expected with deterioration, the uptimes of 
the component become shorter as time passes.  
 

 
Figure 80: Availability over time for a single component in one simulation 

 
  

                                                                 
21

 These parameters have been chosen in such a way that it gives a clear impression of the availability in Figure 
80. 
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Table 18: A simulation of 20 cycles for the availability of a single component 

Monte Carlo Simulation with one iteration 
(all times in days) 

Cycle Sample times Uptime Downtime 

k 𝑥𝑘  𝑦𝑘  Start time End time Start time End time 

1 410.0 18.6 0 410.0 410.0 428.6 

2 150.0 44.7 428.6 578.6 578.6 623.3 

3 256.7 14.7 623.3 880.0 880.0 894.8 

4 82.2 6.4 894.8 977.0 977.0 983.4 

5 115.0 7.8 983.4 1098.4 1098.4 1106.2 

6 24.9 25.1 1106.2 1131.1 1131.1 1156.2 

7 14.3 20.1 1156.2 1170.5 1170.5 1190.6 

8 183.0 15.6 1190.6 1373.6 1373.6 1389.2 

9 111.5 17.2 1389.2 1500.7 1500.7 1517.8 

10 2.8 21.5 1517.8 1520.7 1520.7 1542.1 

11 11.1 4.7 1542.1 1553.3 1553.3 1557.9 

12 22.4 48.0 1557.9 1580.3 1580.3 1628.3 

13 72.9 28.3 1628.3 1701.2 1701.2 1729.5 

14 27.8 15.6 1729.5 1757.3 1757.3 1772.9 

15 79.2 4.7 1772.9 1852.1 1852.1 1856.7 

16 17.8 6.3 1856.7 1874.5 1874.5 1880.8 

17 66.3 17.0 1880.8 1947.1 1947.1 1964.0 

18 23.9 17.5 1964.0 1987.9 1987.9 2005.4 

19 20.0 23.0 2005.4 2025.4 2025.4 2048.4 

20 69.2 18.2 2048.4 2117.6 2117.6 2135.9 
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Appendix 4  Lognormal distribution 

The two-parameter lognormal distribution is described by its PDF: 
 

𝑓(𝑥) =
1

(√2𝜋𝜎2)𝑥
exp (−

(𝑙𝑛(𝑥) − 𝜇)2

2𝜎2
)        𝑤𝑖𝑡ℎ 𝑥 > 0 ; −∞ < 𝜇 < ∞ ;  𝜎 > 0 

with: 
 σ = shape parameter (standard deviation of log(x)) 
 µ = scale parameter (mean of log(x)) 
 

Appendix 4.1 Parameter estimation: lognormal distribution 

The derivation of the maximum likelihood estimators for µ and σ
2
 is given below. The full derivation can be 

found in the work by Ginos (2009). 
 
The likelihood function L of the lognormal distribution is defined as:     
 

𝐿(𝜇, 𝜎2) = ∏𝑓(𝑥𝑖)

𝑛

𝑖=1

 

 
with 𝑓(𝑥𝑖) being the PDF of the lognormal distribution and n the total number of data samples. This can be 
elaborated: 

𝐿(𝜇, 𝜎2) = ∏ (
1

(√2𝜋𝜎2)𝑥𝑖

exp (−
(𝑙𝑛(𝑥𝑖) − 𝜇)2

2𝜎2
))

𝑛

𝑖=1

 

 

= (2𝜋𝜎2)−𝑛/2 ∏ (
1

𝑥𝑖

exp (∑−
(𝑙𝑛(𝑥𝑖) − 𝜇)2

2𝜎2

𝑛

𝑖=1

))

𝑛

𝑖=1

 

 
The log-likelihood function (LL) is then derived by taking the logarithm of the likelihood function L, resulting in: 
 

𝐿𝐿(𝜇, 𝜎2) = −
𝑛

2
ln(2𝜋𝜎2) − ∑ln(𝑥𝑖)

𝑛

𝑖=1

−
∑ ln(𝑥𝑖)

2𝑛
𝑖=1

2𝜎2
+

∑ ln(𝑥𝑖) 𝜇𝑛
𝑖=1

𝜎2
−

𝑛𝜇2

2𝜎2
 

 
The estimators for µ and σ

2
 are the values that maximise the log-likelihood function. To find these, one must 

take the partial derivatives of LL with respect to µ and σ
2
 and set them equal to 0. In the end, this results in the 

maximum likelihood estimators for the lognormal distribution: 
 

�̂� =
∑ ln(𝑥𝑖)

𝑛
𝑖=1

𝑛
 

 

�̂�2 =
∑ (ln(𝑥𝑖) −

∑ ln(𝑥𝑖)
𝑛
𝑖=1

𝑛
)

2
𝑛
𝑖=1

𝑛
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Appendix 4.2 Inverse Transform Sampling: lognormal distribution 

The CDF of the lognormal distribution is given by: 

𝐹𝑥(𝑋) = 𝛷 (
𝑙𝑛(𝑥) − 𝜇

𝜎
) 

with: 

𝛷(𝑥) =
1

√2𝜋
∫𝑒−

𝑡2

2  𝑑𝑡

𝑥

−∞

 

being the CDF of the normal distribution 
 
The repair time sampling follows the Inverse Transform Sampling (ITS) method introduced in section 0: 
The ITS method consists of three steps: 
 

1. Let 𝐹(𝑥) be any invertible CDF of continuous random variable 𝑋  
2. Take 𝐹(𝑥) = 𝑈, where 𝑈 is a continuous uniform distribution on (0,1]. 
3. Then:  𝑋 = 𝐹−1(𝑈) 

 
where: 

  X  =  sampled repair time 
  𝑈 =  random number from uniform distribution 𝑈(0,1] 
  F

-1
(x)  =  Inverse CDF 

 
For the lognormal distribution this procedure results in the following: 
 

1.  

𝐹𝑥(𝑋) = 𝛷 (
𝑙𝑛(𝑥) − 𝜇

𝜎
) 

with: 

𝛷(𝑥) =
1

√2𝜋
∫𝑒−

𝑡2

2  𝑑𝑡

𝑥

−∞

 

2. Take 𝐹(𝑥) = 𝑈(0,1]. 
 

3. The inverse CDF of the lognormal distribution is given by: 
 

𝐹𝑥
−1(𝑥) = 𝑒𝑥𝑝 (𝜇 + 𝜎(𝛷−1(𝑥))) 

 with: 

𝛷−1(𝑦) = 𝜇 + 𝜎√2𝑒𝑟𝑓−1(2𝑦 − 1) 
 

being the inverse CDF of the normal distribution, where: 
 

𝑒𝑟𝑓−1(𝑧) = ∑
𝑐𝑘

2𝑘 + 1
(
√𝜋

2
𝑧)

2𝑘+1∞

𝑘=0

 

 
is the inverse error function, with: 

𝑐𝑘 = ∑
𝑐𝑚𝑐𝑘−1−𝑚

(𝑚 + 1)(2𝑚 + 1)

𝑘−1

𝑚=0

 

  
Thus, a lognormal distributed repair time can be sampled as follows: 
  

𝑋 = 𝐹𝑥
−1(𝑈) = 𝑒𝑥𝑝 (𝜇 + 𝜎(𝛷−1(𝑈))) 
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Appendix 5  Case study: data and calculations 

Appendix 5.1 Rapid sand filters: data and calculations 

Appendix 5.1.1 Rapid sand filters: data 

 
Table 19: Failure data for rapid sand filters (in days) 

Filter number 1 2 3 4 5 6 

Failure number       

1 23-03-1984 02-10-1985 14-05-1985 13-12-1984 11-10-1984 18-08-1983 

2 10-01-1985 23-06-1986 07-08-1987 23-10-1987 14-05-1985 17-10-1983 

3 16-07-1985 02-09-1986 19-08-1987 20-12-1987 11-11-1989 12-10-1984 

4 18-07-1992 19-01-1988 05-12-1987 08-05-1991 27-11-1989 18-01-1987 

5 04-02-1993 04-11-1992 19-06-1988 27-05-1991 02-07-1991 09-11-1990 

6 25-07-1994 14-12-1996 26-11-1989 30-10-1991 22-11-1992 24-02-1996 

7 02-07-1998 05-01-1997 29-01-1991 14-11-1991 16-06-1994 23-02-1998 

8 14-12-2005 02-07-1998 12-10-1992 08-01-1992 27-09-1995 01-08-1998 

9 01-02-2007 02-02-1999 12-10-1993 22-06-1992 19-04-2000 15-12-1998 

10 09-10-2007 09-09-1999 23-05-1994 29-06-1994 22-09-2000 08-08-1999 

11 29-01-2008 22-02-2002 01-12-1995 02-10-1994 16-10-2001 04-05-2003 

12 20-10-2009 26-09-2002 25-11-1996 29-04-1996 01-04-2006 02-12-2003 

13 26-03-2010 05-03-2004 15-04-1998 14-07-2000 13-12-2006 03-02-2006 

14 13-10-2010 28-01-2005 29-07-1999 08-07-2002 09-07-2010 03-02-2007 

15 31-07-2012 20-10-2005 17-09-1999 03-09-2002 27-05-2011 30-04-2013 

16  10-03-2006 05-01-2003 02-04-2003 13-06-2012 06-10-2014 

17  22-12-2008 29-06-2009 03-11-2006 25-03-2014 14-08-2016 

18   03-05-2012 09-11-2006 13-04-2015  

19   23-03-2015 15-07-2008 09-11-2016  

20    27-09-2010   

21    04-10-2010   

22    23-03-2015   

 
Table 20: Downtime data for rapid sand filters (in hours) 

Filter number 1 2 3 4 5 6 

Failure number       

1 1 2 3 4 5 6 

2 91 41 14 177 242 53 

3 61 42 1633 66 89 113 

4 174 314 333 61 171 50 

5 104 165 98 264 156 68 

6 384 241 122 48 286 343 

7 147 362 845 58 353 55 

8 154 93 606 63 354 98 

9 398 263 65 99 389 72 

10 29 49 98 54 224 106 

11 944 181 224 41 81 50 

12 903 128 18 61 26 503 

13 24 223 210 368 575 67 

14 61 89 91 247 729 170 

15 800 71 80 70 119 45 

16 459 58 314 818 72 471 

17  71 18 201 1184 279 
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18  191 25 98 41 94 

19   115 151 191  

20   92 776 38  

21    59   

22    104   

 

Appendix 5.1.2 Rapid sand filters: trend tests 

Two trend tests are considered, the MIL-HDBK-189 and Laplace Trend Test. The calculation methods can be 
found in Appendix 3.2. The confidence bounds for both tests, given a confidence level of α = 0.05, are given in 
Table 21. The test statistic that is calculated, and whether it falls inside or outside the confidence bounds, is 
given in Table 22. If the test statistic falls within the confidence bounds, the null hypothesis (no trend in data) 
cannot be rejected. In the case of the rapid sand filter, both tests show that for all filters the null hypothesis 
cannot be rejected (with confidence level = 95%). Thus, it is assumed that there is no trend in the data. 
 
Table 21: Confidence bounds for trend tests on data for rapid sand filters 

Filter Confidence bounds MIL-HDBK-189 (α = 0.05) Confidence bounds Laplace Trend Test (α = 
0.05) 

 Lower Upper Lower Upper 
1 16.79 46.98 -1.96 1.96 
2 19.81 51.97 
3 22.88 56.90 
4 27.57 64.20 
5 22.88 56.90 
6 19.81 51.97 

  
Table 22: Test statistics for trend tests on data for rapid sand filters 

Filter Test statistic MIL-
HDBK-189 

Inside or outside 
confidence bounds? 

Test statistic Laplace 
Trend Test 

Inside or outside 
confidence bounds? 

1 32.17 Inside 0.03 Inside 
2 35.78 Inside -0.97 Inside 
3 45.55 Inside -1.79 Inside 
4 44.85 Inside -0.91 Inside 
5 35.09 Inside 0.36 Inside 
6 44.07 Inside -0.46 Inside 
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Appendix 5.2 Pumps: data 

 
Table 23: Condition data for pump 1 

 
 
Table 24: Condition data for pump 2 

 
 
Table 25: Condition data for pump 3 

 
 
Table 26: Condition data for pump 4 

  

holding time end date holding time end date holding time end date holding time end date holding time end date holding time end date

[weeks] dd-mm-yyyy [weeks] dd-mm-yyyy [weeks] dd-mm-yyyy [days] dd-mm-yyyy [days] dd-mm-yyyy [days] dd-mm-yyyy

54 11-01-2001 48 16-12-2001 21 09-05-2002 1 10-05-2002 1.4 12-05-2002 20.7 24-05-2008

54 26-11-2009 24 28-10-2002 24 17-04-2003 1 18-04-2003 1.9 20-04-2003

24 05-10-2003 21 29-02-2004 1 01-03-2004 1.5 02-03-2004

34 25-10-2004 27 01-05-2005 1 02-05-2005 2.3 05-05-2005

37 16-01-2006 33 01-09-2006 1 02-09-2006 2.4 04-09-2006

47 28-07-2007 40 02-05-2008 1 03-05-2008 1.7 29-07-2010

25 26-11-2009 35 27-07-2010 1 28-07-2010 1.2 21-09-2011

38 24-04-2011 21 19-09-2011 1 20-09-2011 1.8 03-11-2012

42 14-07-2012 16 31-10-2012 1 01-11-2012 2.9 02-04-2014

33 21-06-2013 40 29-03-2014 1 30-03-2014 3.0 20-09-2015

39 03-01-2015 37 16-09-2015 1 17-09-2015

59 10-11-2016

State 1 State 6State 2 State 3 State 4 State 5

holding time end date holding time end date holding time end date holding time end date holding time end date holding time end date

[weeks] dd-mm-yyyy [weeks] dd-mm-yyyy [weeks] dd-mm-yyyy [days] dd-mm-yyyy [days] dd-mm-yyyy [days] dd-mm-yyyy

29 22-07-2000 28 06-02-2001 25 27-07-2001 1 28-07-2001 0.7 29-07-2001 23.9 08-09-2007

43 25-02-2009 33 18-03-2002 35 16-11-2002 1 17-11-2002 2.0 19-11-2002 18.2 02-06-2015

40 23-08-2003 43 18-06-2004 1 19-06-2004 0.9 20-06-2004

37 07-03-2005 18 13-07-2005 1 14-07-2005 1.3 16-07-2005

31 16-02-2006 27 24-08-2006 1 25-08-2006 2.4 28-08-2006

21 18-01-2007 30 14-08-2007 1 15-08-2007 0.9 05-06-2009

33 25-02-2009 14 03-06-2009 1 04-06-2009 1.5 10-07-2010

27 10-12-2009 30 07-07-2010 1 08-07-2010 0.7 12-09-2011

30 07-02-2011 31 11-09-2011 1 12-09-2011 1.3 11-10-2012

23 23-02-2012 33 09-10-2012 1 10-10-2012 1.7 15-04-2014

56 11-11-2013 22 12-04-2014 1 13-04-2014

30 14-11-2014 26 14-05-2015 1 15-05-2015

State 1 State 6State 2 State 3 State 4 State 5

holding time end date holding time end date holding time end date holding time end date holding time end date holding time end date

[weeks] dd-mm-yyyy [weeks] dd-mm-yyyy [weeks] dd-mm-yyyy [days] dd-mm-yyyy [days] dd-mm-yyyy [days] dd-mm-yyyy

44 03-11-2000 43 28-08-2001 33 19-04-2002 1 20-04-2002 2.9 23-04-2002 19.9 22-08-2008

58 16-04-2010 33 10-12-2002 19 19-04-2003 1 20-04-2003 2.9 22-04-2003 20.6 19-11-2016

30 20-11-2003 23 28-04-2004 1 29-04-2004 1.1 30-04-2004

51 23-04-2005 30 20-11-2005 1 21-11-2005 1.7 23-11-2005

26 21-05-2006 32 28-12-2006 1 29-12-2006 2.1 31-12-2006

57 01-02-2008 26 01-08-2008 1 02-08-2008 0.8 03-11-2010

28 16-04-2010 28 01-11-2010 1 02-11-2010 1.1 04-02-2012

36 13-07-2011 29 02-02-2012 1 03-02-2012 1.0 12-07-2013

46 24-12-2012 28 10-07-2013 1 11-07-2013 1.4 02-07-2014

29 03-02-2014 21 29-06-2014 1 30-06-2014 0.9 05-11-2015

36 10-03-2015 34 03-11-2015 1 04-11-2015

27 11-05-2016 24 29-10-2016 1 30-10-2016

State 6State 1 State 2 State 3 State 4 State 5

holding time end date holding time end date holding time end date holding time end date holding time end date holding time end date

[weeks] dd-mm-yyyy [weeks] dd-mm-yyyy [weeks] dd-mm-yyyy [days] dd-mm-yyyy [days] dd-mm-yyyy [days] dd-mm-yyyy

39 29-09-2000 38 19-06-2001 32 26-01-2002 1 27-01-2002 1.9 29-01-2002 21.7 03-12-2008

64 09-07-2010 26 28-07-2002 25 17-01-2003 1 18-01-2003 0.8 18-01-2003 20.9 30-08-2016

42 05-11-2003 28 17-05-2004 1 18-05-2004 6.3 24-05-2004

55 14-06-2005 42 05-04-2006 1 06-04-2006 1.0 07-04-2006

52 09-04-2007 32 19-11-2007 1 20-11-2007 0.2 20-11-2007

32 03-07-2008 19 10-11-2008 1 11-11-2008 1.0 04-09-2010

20 09-07-2010 8 02-09-2010 1 03-09-2010 2.3 20-01-2012

44 06-07-2011 28 17-01-2012 1 18-01-2012 1.1 04-05-2013

29 10-08-2012 38 02-05-2013 1 03-05-2013 1.0 03-09-2014

54 18-05-2014 15 01-09-2014 1 02-09-2014 1.0 15-11-2015

36 13-05-2015 26 13-11-2015 1 14-11-2015

16 06-03-2016 22 08-08-2016 1 09-08-2016

State 1 State 2 State 3 State 4 State 5 State 6
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Appendix 5.3 Ozonation: data 

 
Table 27: Condition data for ozone street 1 

 
 
Table 28: Condition data for ozone street 2 

 

  

holding time end date holding time end date holding time end date holding time end date holding time end date

107 18-05-1985 84 28-12-1986 36 08-09-1987 1 09-09-1987 3.0 12-09-1987

102 12-04-2002 71 18-01-1989 84 29-08-1990 1 30-08-1990 1.3 31-08-1990

80 13-03-1992 45 25-01-1993 1 26-01-1993 5.7 01-02-1993

93 17-11-1994 86 13-07-1996 1 14-07-1996 2.2 16-07-1996

78 11-10-2003 44 19-05-1997 1 20-05-1997 4.7 25-05-1997

51 09-02-2007 65 22-08-1998 1 23-08-1998 2.7 26-08-1998

61 05-09-2010 87 25-04-2000 1 26-04-2000 3.1 30-04-2000

74 30-08-2013 123 16-02-2006 1 17-02-2006 3.3 20-02-2006

124 29-06-2009 1 30-06-2009 4.1 04-07-2009

81 24-03-2012 1 25-03-2012 3.6 29-03-2012

37 19-05-2014 1 20-05-2014 2.6 23-05-2014

58 30-06-2015 1 01-07-2015 3.1 04-07-2015

31 06-02-2016 1 07-02-2016 2.1 09-02-2016

State 1 State 2 State 3 State 4 State 5

holding time end date holding time end date holding time end date holding time end date holding time end date

98 18-03-1985 98 29-01-1987 42 22-11-1987 1 23-11-1987 2.2 25-11-1987

91 29-12-2001 59 10-01-1989 92 15-10-1990 1 16-10-1990 2.5 19-10-1990

88 23-06-2016 86 11-06-1992 91 08-03-1994 1 09-03-1994 2.8 12-03-1994

70 17-07-1995 53 22-07-1996 1 23-07-1996 3.0 26-07-1996

97 11-11-2003 39 27-04-1997 1 28-04-1997 1.9 30-04-1997

68 29-12-2006 75 09-10-1998 1 10-10-1998 2.7 13-10-1998

56 17-08-2008 76 26-03-2000 1 27-03-2000 2.6 29-03-2000

73 04-02-2011 95 03-09-2005 1 04-09-2005 3.5 07-09-2005

29 20-07-2007 1 21-07-2007 1.8 22-07-2007

55 09-09-2009 1 10-09-2009 2.7 12-09-2009

15 23-05-2011 1 24-05-2011 2.6 26-05-2011

69 18-09-2012 1 19-09-2012 2.5 21-09-2012

75 03-03-2014 1 04-03-2014 3.4 08-03-2014

31 14-10-2014 1 15-10-2014 2.3 17-10-2014

State 1 State 2 State 3 State 4 State 5
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Appendix 5.4 Softening reactors: data and calculations 

Appendix 5.4.1 Softening reactors: data 

 
Table 29: Failure data for softening reactors (in days) 

Pump number 1 2 3 4 

Failure number     

1 10-02-1992 07-11-1989 05-08-2005 30-04-1989 

2 31-03-1998 16-02-1995 14-05-2008 25-11-1997 

3 02-10-2000 11-05-1998 06-12-2008 21-12-1998 

4 19-11-2001 24-04-2000 11-12-2009 30-05-2000 

5 10-06-2003 10-05-2006 25-07-2012 26-05-2001 

6 07-11-2006 23-06-2006 16-08-2013 27-07-2005 

7 06-04-2008 22-10-2006 20-06-2014 15-09-2009 

8 06-03-2011 07-07-2007 04-12-2014 12-09-2010 

9 12-08-2011 26-02-2008 16-12-2014 19-09-2011 

10 27-09-2012 25-06-2009 12-04-2015 21-02-2013 

11 01-08-2013 17-12-2010 25-07-2015 02-03-2014 

12 18-08-2013 06-10-2011 30-08-2016 20-10-2014 

13 12-11-2013 02-05-2012  07-10-2016 

14 09-06-2015 15-06-2012  19-04-2017 

15 21-08-2016 10-09-2012   

16 01-11-2016 26-11-2012   

17  03-03-2013   

18  16-07-2015   

19  19-05-2016   

 
Table 30: Downtime data for softening reactors (in hours) 

Pump number 1 2 3 4 

Failure number     

1 63 812 558 146 

2 10 134 15 12 

3 2 385 445 116 

4 2146 35 119 31 

5 238 285 70 4 

6 9 11 4 10 

7 34 23 11 1051 

8 18 23 32 1538 

9 8 9 241 6 

10 30 1753 158 28 

11 66 40 179 104 

12 32 21 2 2141 

13 300 194  207 

14 244 104  62 

15 9 429   

16 55 30   

17  13   

18  1   

19  9   
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Appendix 5.4.2 Softening reactors: trend tests 

Two trend tests are considered, the MIL-HDBK-189 and Laplace Trend Test. The calculation methods can be 
found in Appendix 3.2. The confidence bounds for both tests, given a confidence level of α = 0.05, are given in 
Table 31. The test statistic that is calculated, and if it falls inside or outside the confidence bounds, is given in 
Table 32. If the test statistic falls within the confidence bounds, the null hypothesis (no trend in data) cannot be 
rejected. In the case of the pump, both tests show that for all pumps the null hypothesis can be rejected (with 
confidence level = 95%). Thus it is assumed a trend in the data exists here. 
  
Table 31: Confidence bounds for trend tests on data for softening reactors 

Pump Confidence bounds MIL-HDBK-189 (α = 0.05) Confidence bounds Laplace Trend Test (α = 
0.05) 

 Lower Upper Lower Upper 
1 18.29 49.48 -1.96 1.96 
2 22.88 56.90 
3 12.40 39.36 
4 15.31 44.46 

 
Table 32: Test statistics for trend tests on data for softening reactors 

Pump Test statistic MIL-
HDBK-189 

Inside or outside 
confidence bounds? 

Test statistic Laplace 
Trend Test 

Inside or outside 
confidence bounds? 

1 11.47 Outside 6.81 Outside 
2 15.35 Outside 3.95 Outside 
3 3.87 Outside 12.60 Outside 
4 12.33 Outside 8.24 Outside 
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Appendix 6  Mathematical additions 

Appendix 6.1 Inverse Transform Sampling: Weibull distribution 

For the two-parameter Weibull distribution, the inverse of the CDF is derived as follows: 

𝑒
−(

𝑥
𝛽

)
𝛼

= −(𝐹(𝑥) − 1) 

−(
𝑥

𝛽
)

𝛼

= ln(−𝐹(𝑥) + 1) 

−
𝑥

𝛽
= (ln(−𝐹(𝑥) + 1))

1
𝛼 

𝑥 = −𝛽(ln(−𝐹(𝑥) + 1))
1
𝛼 

F(x) is equal to a random generated number 𝑈 from the continuous uniform distribution U(0,1]. 

𝑥 = −𝛽(ln(−𝑈 + 1))
1
𝛼  

(-U + 1) is also a random number in [0,1], so (–𝑈 + 1) can be replaced by 𝑈.  

𝑥 = −𝛽(ln(𝑈))
1
𝛼 

𝑈 may not be exactly 0 because the natural logarithm of 0 is minus infinity, so the notation U(0,1] should be 
used instead of U[0,1] to point out that the random generated number cannot be exactly 0. In terms of 
modelling, when the random generated number is exactly 0, simply a new random number is generated. 
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Appendix 6.2 Intensity function: Power Law Process 

Kim and Singh use the following notation for the intensity function of the Power Law Process (Kim & Singh, 
2010): 

𝜆(𝑡)  = 𝜆𝛽(𝑡)𝛽−1 
 
This notation leads to some confusing between the intensity function symbol 𝜆(𝑡) and the scale parameter 𝜆. 
Therefore, we use the more commonly used notation with 𝜃 instead of 𝜆: 

𝜆(𝑡)  =
𝛽

𝜃
(
𝑡

𝜃
)

𝛽−1

 

Results are the same for:  

𝜃 = 𝜆
−

1
𝛽 

Proof: 

𝜆(𝑡) = 𝜆𝛽(𝑡)𝛽−1 =
𝛽

𝜃
(
𝑡

𝜃
)

𝛽−1

 

Thus: 

𝜆𝛽(𝑡)𝛽−1 = 𝛽𝜃−1 (
𝑡

𝜃
)

𝛽

(
𝑡

𝜃
)

−1

 

𝜆(𝑡)𝛽−1 = 𝜃−1 (
𝑡

𝜃
)

𝛽

(
𝑡

𝜃
)

−1

 

𝜆𝑡𝛽𝑡−1 = 𝜃−1𝑡𝛽 (
1

𝜃
)

𝛽

𝑡−1 (
1

𝜃
)

−1

 

𝜆 = 𝜃−1 (
1

𝜃
)

𝛽

(
1

𝜃
)

−1

 

𝜆 = (
1

𝜃
)

𝛽

= 𝜃−𝛽 

And thus: 

𝜃 = 𝜆
−

1
𝛽 

Furthermore: 

𝜆 = 𝜃−𝛽
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Appendix 6.3 Inverse Transform Sampling: Power Law Process 

𝑈 = 𝑃𝑟(𝑥 ≤ 𝑈) =  𝐹(𝑥) 
So that: 

𝑥 =  𝐹−1(𝑈) 
 
Thus: 

𝑈 = 𝐹𝑡𝑘+1
(𝑥) = 1 − 𝑒𝑥𝑝(−𝜃−𝛽{(𝑡𝑘 + 𝑥𝑘)

𝛽 − (𝑡𝑘)
𝛽}) 

 
And since 𝑈 has the same probability distribution as 1 − 𝑈:  
 

𝑈 = 𝑒𝑥𝑝(−𝜃−𝛽{(𝑡𝑘 + 𝑥𝑘)
𝛽 − (𝑡𝑘)

𝛽}) 

 

ln (𝑈) = −𝜃−𝛽{(𝑡𝑘 + 𝑥𝑘)
𝛽 − (𝑡𝑘)

𝛽} 

 

−
ln (𝑈)

𝜃−𝛽
= (𝑡𝑘 + 𝑥𝑘)

𝛽 − (𝑡𝑘)
𝛽 

 

−
ln (𝑈)

𝜃−𝛽
+ (𝑡𝑘)

𝛽 = (𝑡𝑘 + 𝑥𝑘)
𝛽 

 

((𝑡𝑘)
𝛽 −

ln (𝑈)

𝜃−𝛽
)

1
𝛽

= 𝑡𝑘 + 𝑥𝑘 

 

((𝑡𝑘)
𝛽 −

ln (𝑈)

𝜃−𝛽
)

1
𝛽

− 𝑡𝑘 = 𝑥𝑘 

with: 

𝑡𝑘 = ∑ 𝑥𝑖

𝑘−1

𝑖=1

 

Thus: 

𝑥𝑘 = ((∑ 𝑥𝑖

𝑘−1

𝑖=1

)

𝛽

−
ln (𝑈)

𝜃−𝛽
)

1
𝛽

− ∑ 𝑥𝑖

𝑘−1

𝑖=1

 


