
Dynamix: A Domain-Specific Language
for Dynamic Semantics

Master’s Thesis

Thijs Molendijk

Dynamix: A Domain-Specific Language
for Dynamic Semantics

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Thijs Molendijk
born in Ede, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2022 Thijs Molendijk.

The source code for this thesis can be found online:
https://github.com/metaborg/spoofax-pie
https://github.com/metaborgcube/metaborg-tiger
https://github.com/molenzwiebel/metaborg-chocopy
https://github.com/molenzwiebel/metaborg-ministratego

https://github.com/metaborg/spoofax-pie
https://github.com/metaborgcube/metaborg-tiger
https://github.com/molenzwiebel/metaborg-chocopy
https://github.com/molenzwiebel/metaborg-ministratego

Dynamix: A Domain-Specific Language
for Dynamic Semantics

Author: Thijs Molendijk
Student id: 4730739
Email: t.molendijk@student.tudelft.nl

Abstract

The dynamic semantics of a programming language formally describe the runtime
behavior of any given program. In this thesis, we present Dynamix, a meta-language for
dynamic semantics. By writing a specification for a language in Dynamix, a compiler for
the language can be derived automatically.

Dynamix specifications compile source programs to the Tim intermediate represen-
tation, a language-agnostic target IR designed to be able to be efficiently interpreted or
compiled. Dynamix and Tim make use of the continuation-passing style to abstract over
control flow, giving language developers fine-grained access to control flow primitives in
their specification. A novel abstraction in Dynamix allows the construction of these CPS
terms without the traditional friction involved. Dynamix is fully typed and integrated
within the Spoofax language workbench. This allows language developers to interact di-
rectly with other parts of the workbench, including automatic type signature generation
and the ability to query the results of static analysis.

Through case studies for miniStratego and ChocoPy with exceptions, we show that
Dynamix is capable of succinctly representing a wide range of source language features
and paradigms. Current performance is acceptable, with the foundations for a future
efficient compiler for the Tim IR already in place.

Thesis Committee:

Chair: Prof. dr. A. van Deursen, Faculty EEMCS, TU Delft
Committee Member: Dr. C. Bach Poulsen, Faculty EEMCS, TU Delft
Committee Member: Prof. dr. A. Tolmach, Dept. of Computer Science,

Portland State University

Thesis advisor: Prof. dr. E. Visser, Faculty EEMCS, TU Delft

t.molendijk@student.tudelft.nl

Preface

I did not expect to be here, 9 months later, without Eelco. He approached me back when I
was but a simple compiler construction student, proclaiming that he had the perfect thesis
idea for me. As a true salesman, he sold me the idea of working on Dynamix. Little did I
know what I had gotten myself into.

My timeworking on Dynamix has been wonderful. Language development has always been
a hobby, and Dynamix gave me the opportunity to design something that was truly new.
Eelco was heavily invested in the project, and his spirit remains in Dynamix even after his
untimely passing.

I am enormously grateful for the others that helped me throughout the project. In particu-
lar, Andrew Tolmach, whose feedback was already impeccable before Eelco’s passing, and
who continued his support without missing a beat even after Eelco’s death, Casper Bach
Poulsen, who gracefully stepped in as thesis advisor after Eelco’s passing and helped guide
me through the remainder of my thesis, and Ruben van Baarle, whowas always present even
though his own thesis has yet to start.

An additional thank you goes out to my parents and my sister, who continued supporting
and encouraging me even though they had no clue what I was working on, despite my best
efforts at explaining. A final thank you to William and Matěj, for taking the time out of your
day to proofread my occasionally incoherent ramblings.

Let this be a warning to all future master’s students. If someone approaches youwith a ”fun”
thesis idea, don’t be tempted. Before you know it, you’ll be spending all your time on the
formal definition of not one, but two programming languages.

Thijs Molendijk
Delft, the Netherlands

August 24, 2022

iii

Contents

Preface iii

Contents v

1 Introduction 1

2 Background 5
2.1 Programming language specifications . 5
2.2 The Spoofax language workbench . 8
2.3 Dynamic semantics in Spoofax . 13

3 Objectives 17
3.1 Overarching goal . 17
3.2 Concrete requirements . 17

4 Designing a DSL for runtime semantics 19
4.1 The anatomy of a formal runtime semantics specification 19
4.2 From specification to evaluation . 23
4.3 Considering control flow . 25

5 The Tim intermediate representation 31
5.1 A first impression . 31
5.2 Syntax . 34
5.3 Dynamic semantics . 35
5.4 Static semantics . 40
5.5 The Tim runtime . 43

6 An introduction to the Dynamix meta-language 45
6.1 Implementing Tiger in Dynamix . 45
6.2 Accessible CPS through abstractions . 58

7 Formalizing Dynamix Core 69
7.1 Grammar . 69
7.2 Dynamic semantics . 70
7.3 Static semantics . 79
7.4 Rule specificity . 86

8 Dynamix in Spoofax 89
8.1 Project structure . 89

v

CONTENTS

8.2 Compiling Dynamix specifications . 89
8.3 Type signature generation . 91
8.4 Constraint analyzer integration . 92

9 Case studies 95
9.1 ChocoPy with exceptions . 95
9.2 miniStratego . 105
9.3 Evaluation . 108

10 Related work 115
10.1 Meta-languages for dynamic semantics . 115
10.2 CPS as a tool for compilation . 119

11 Future work 121
11.1 The Tim intermediate representation . 121
11.2 The Dynamix meta-language . 122

12 Conclusion 125

A Grammar of the Dynamix meta-language 128

Bibliography 131

Acronyms 137

vi

Chapter 1

Introduction

While the advent of computing has broughtwith it a large swathe of programming languages,
wildly varying in levels of abstraction, capabilities, and use cases, we can reduce each of
them down to just three components acting in unison to form a ”programming language”:
the grammar, the static semantics, and the dynamic semantics.

The grammar governs how the programmer writes code. It specifies what lexical structures
the language expects, what keywords, operators, literals, and expressions it supports, and
how the language converts this textual representation to a format more suitable to work on,
the abstract syntax tree (AST).

The static semantics govern what programs are statically valid. It encompasses all rules that
can be checked at compile time, such as the validity of name bindingwithin the program and
whether it violates any typing rules. Some languages thrive around (strict) static semantics,
whereas other languages, particularly dynamic scripting languages, may not have any at all.

Finally, the dynamic semantics of a language describe what a program produces. It formal-
izes that an addition of two numbers will indeed lead to a single number that is the sum of
the two. At the same time, it describes what might happen to the result should the addition
of the numbers overflow.

It is the collection of these properties that forms a programming language, not a specific im-
plementation. Anyone can write a compiler for the C++98 programming language, as long
as they adhere to the formal specification of C++98 as written in ISO/IEC 14882:1998 [26].
Someone wanting to implement a new JavaScript engine needs only to follow ECMA-262
[18]. Any virtual machine compliant with the Java Language Specification [23] is able to
run any and all valid Java programs.

That’s the theory, at least. In practice, bugs in implementations, ambiguities in the natural
language used in the specification, as well as choices left up to the implementationmean that
even trivial C++ programs that run flawlessly when compiled by GCC [21] may behave en-
tirely different when compiled by LLVM’s Clang [14]. Which one of the observed behaviors
is the correct one can only be judged by consulting the specification.

Many other programming languages, even extremely popular ones, do not have a specifica-
tion. This is completely understandable. After all, it is a herculean task to formally describe
every construct and behavior in one’s programming language. For these languages, the ref-
erence implementation of the language is the specification. Creating an alternative imple-
mentation of these programming languages amounts to carefully observing and replicating

1

1. INTRODUCTION

E ` e1 ⇓ i1 E ` e2 ⇓ i2 v = i1 +signed 32-bit i2

E ` e1 + e2 ⇓ v

1 rules
2 compileExpr(Add(left, right)) = {
3 lv <- compileExpr(left)
4 rv <- compileExpr(right)
5 #i32-add(lv, rv)
6 }

Figure 1.1: A formal dynamic specification for the behavior of integer addition (top), and an
equivalent Dynamix specification expressing the same behavior (bottom).

what the reference compiler does, and ensuring that this behavior stays consistent with the
reference as both implementations continue to improve and evolve.

In this thesis, we introduce a new domain-specific language (DSL) called Dynamix for use
in the Spoofax language workbench [57]. Dynamix aims to unify the specification and im-
plementation of the dynamic semantics of a programming language, by offering a language
that is high-level enough to function as a formal specification of the language, while at the
same time allowing this specification to be turned into an efficient compiler for the language.

An example of Dynamix in action can be seen in Figure 1.1. It describes that the addition
operator should be implemented by evaluating the values of each sub-term in left-to-right
order, then yielding the 32-bit signed addition result of the two values. The Dynamix source
describes exactly the same behavior as the formal definition above it, while additionally be-
ing capable of turning this specification directly into a compiler for the language.

Dynamix is designed to be used within the Spoofax language workbench [57], an environ-
ment designed for the design and implementation of (domain-specific) programming lan-
guages. Dynamix’s integration within Spoofax offers many benefits, including the ability to
interact with the results of static analysis, the ability to type check specifications using the
algebraic signature of the source language, and the ability to invoke Dynamix as part of a
language implementation test-suite. Dynamix requires no specific language design, allow-
ing existing Spoofax workbench projects to seamlessly start using the meta-language.

This thesis makes the following contributions:

• We informally describe Dynamix, a newmeta-language used for defining the dynamic
semantics of a programming language, throughnumerous examples (Chapters 6 and 8).

• We introduce and formalize Tim, a language-agnostic intermediate representation for
programs and the target language for Dynamix (Chapter 5).

• We formalize a limited subset of Dynamix, called Dynamix Core, defining the formal
static and dynamic semantics of the language (Chapter 7).

• We provide a complete implementation of the Dynamix interpreter, as well as a base-
line interpreter for the Tim IR. These implementations are fully integrated in the Spoofax
language workbench, including signature generation and interoperation with other
meta-languages (Chapters 5 and 8).

2

• We present two case studies that evaluate the performance and capabilities of Dynamix
by implementingDynamix specifications for the ChocoPy programming language [48]
extended with exception handling, and a subset of the Stratego [67] programming lan-
guage (Chapter 9).

The remainder of this document is structured as follows:

• We discuss the background around the subject of programming language specifica-
tions, the Spoofax language workbench, and previous iterations of dynamic specifica-
tion meta-languages within this workbench (Chapter 2).

• We establish the main objectives of the Dynamix project, so that they may guide our
design process in the remainder of the document (Chapter 3). Based on the established
objectives, we discuss how one might design a DSL for runtime semantics, and what
properties such a DSL should have (Chapter 4).

• We introduce and subsequently formalize the Tim intermediate representation, which
functions as the compilation target for the Dynamix meta-language (Chapter 5).

• We informally introduce the Dynamix meta-language, by discussing a specification for
a simple language and describing the abstractions it uses to simplify the creation of
specifications (Chapter 6).

• We formalize a subset of the Dynamix language, discussing the formal semantics of the
most interesting parts of the meta-language (Chapter 7).

• We discuss how theDynamixmeta-language is integratedwithin the Spoofax language
workbench and how it allows for tight interoperationwith other parts of theworkbench
(Chapter 8).

• We evaluate the performance and capabilities of Dynamix by discussing two different
case studies implementing a specification for ChocoPy with exceptions [48] and a sub-
set of Stratego [67] respectively (Chapter 9).

• We discuss howDynamix performs compared to alternative implementations and com-
peting tools for the specification of runtime semantics (Chapter 10). We continue by
discussing what future steps might be taken to improve the Dynamix meta-language
and the Tim intermediate representation (Chapter 11).

3

Chapter 2

Background

In this chapter, we will first explore some background related to both formal (dynamic) lan-
guage specifications, as well as the Spoofax language workbench. Both are essential parts of
the Dynamix language and some understanding of their design, conventions, and use will
greatly help us contextualize the requirements, goals, and results outlined in the remainder
of this thesis.

Section 2.1 elaborates on the current state of (formal) language specifications, discussing the
various styles of language specifications, the goals of writing such a specification, as well as
how these specifications relate back to their concrete language implementation(s).

Section 2.2 will provide a brief introduction to the Spoofax language workbench for readers
unfamiliar with it. It discusses the ”programming language design pipeline” of which Dy-
namix will become a part. As part of this, we will briefly introduce the other meta-languages
in the workbench, and specifically the features relevant for the Dynamix language. Readers
already familiar with the Spoofax language workbench may want to skip this section.

Finally, Section 2.3 specifically discusses the history of dynamic specifications in the Spoofax
workbench. Dynamix is hardly the first foray into this domain, so we ought to learn from
our predecessors.

2.1 Programming language specifications
At its core, a language specification is some form of documentation that outlines the behavior
of a language, whose contents are agreed upon by both the implementors and the users of the
language. A language specification is the ”single source of truth” for these languages: if the
real-world behavior of the language differs from the specification, the language implemen-
tation is divergent from the specification and hence incorrect1. Through this, a specification
allows one to unambiguously decide what the meaning of any program is.

Specifications for a language exist for various reasons. From a mathematical perspective,
having a specification is simply the right thing to do. After all, how could one possibly trust a
language that does not have a (proven) formal definition? Others may create a specification
as a form of direct user documentation, such that a user does not have to consult the lan-
guage implementation to find out the exact behavior of a certain language feature. Similarly,

1In practice, humans are not perfect. Specifications often contain errors or oversights, or the language de-
signers may consider a previously formally defined behavior to be unwanted. It is often more appropriate to say
that, especially in languages with only a single implementation, the specification and the implementation evolve
hand-in-hand.

5

2. BACKGROUND

a language specificationmight be created to help unify several different (semi-)incompatible
language implementations under a common semantics, or as an attempt to promote alterna-
tive implementations.

Specifications come in several forms. Most commonly seen are explicit definitions: docu-
ments outlining the grammar, static, and dynamic semantics of the language using either
natural language or formal semantics. Not infrequently, these documents are written by a
committee and part of a standardization process. Examples include ISO/IEC 9899:1990 [29]
for the C programming language, ISO/IEC 14882:1998 [26] for the C++ programming lan-
guage, and ECMA-262 [18] for the JavaScript programming language. Others may exist as
publications, such as the Java Language Specification [23] or ChocoPy language specifica-
tion [49].

These explicit definitions are generally written in either natural language or formal notation.
When formal notation is used, it is often through one of several mathematical frameworks
designed for such semantics, such as the big-step notation (also known as natural seman-
tics) popularized by Gilles Kahn [31]. Examples of language specifications that use formal
notation are the definition of Standard ML by Milner et al. [44] and the ChocoPy language
specification [49] (we discuss the ChocoPy specification in more detail in Chapters 4 and 9).
The benefit of using a formal notation is that it prevents the ambiguities that are inherent in
natural language. By using a formal notation where every operation has a clearly defined
meaning, it should2 be unambiguous exactly how each language feature is defined. Going
beyond just specifying the language, it is also possible to use formal specifications to build a
mechanized proof3 that a certain compiler or runtime performs exactly as stated by the pro-
gramming language. One such example is the CompCert compiler [11], which implements
a formally verified compiler for ISO C99 and ANSI C.

For specifications written in natural language, authors must be careful to be explicit in their
intentions to avoid the ambiguities inherent in natural language. An example of a formal
definition written in natural language can be seen in Figure 2.1. Observe that one must be
careful to list exactly all of the possible behaviors, even if some of those behaviors are invalid
or undesirable. However, a specification in natural language is often easier to both read and
write, causing it to remain a popular choice for formal specifications. We further discuss both
formal notation, natural notation, and the differences between the two in Chapter 4.

Despite explicit definition documents being the most common, they are not the only form
of language specification. Two other common forms are that of a reference implementation,
in which a single implementation of a language is designated to be the ”correct” implemen-
tation from which the behavior should be derived, as well as that of a designated test suite
for the language, which defines behavior in terms of examples and their expected outcome.
Many languages also combine these: Test2624 is an official test suite for conformance against
the ECMAScript specification [18].

2Even with formal notation, it is still possible for ambiguity to slip in. Authors must be careful to ensure that
only a single rule applies at a time, that rules do not contradict each other, and that every possible situation has
been accounted for.

3A proof that can be checked by a machine. Mechanized proofs are often written using ”proof assistants”,
such as Coq [62] or Agda [1].

4https://github.com/tc39/test262

6

https://github.com/tc39/test262

2.1. Programming language specifications

Bitwise shift operators
Syntax

shift-expression
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Constraints

Each of the operands shall have integral type.

Semantics

The integral promotions are performed on each of the operands. The type of the result
is that of the promoted left operand. If the value of the right operand is negative or is
greater than or equal to the width in bits of the promoted left operand, the behavior is
undefined.

The result of E1 « R2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros.
If E1 has an unsigned type, the value of the result is E1 multiplied by the quantity
2 raised to the power E2, reduced modulo ULONG_MAX+1 if E1 has type unsigned long,
UINT_MAX+1 otherwise. (The constants ULONG_MAX and UINT_MAX are defined in the header
<limits.h>.)

[...]

Figure 2.1: An example of a language specification written in natural language. This de-
scribes the syntax and behavior of the bitwise-shift operator in the C programming language.
Parts are omitted for the sake of brevity. Adapted from the ANSI C definition, ISO/IEC
9899:1990 [29].

Official language specifications are common in programming languages, but not ubiquitous.
This can be seen even in some of the most popular programming languages: an informal
survey of some of the most popular programming languages currently in use yields the fol-
lowing list5:

• JavaScript: Formalized in ECMA-262 [18]. Defines dynamic semantics using natural
language.

• HTML/CSS: Formalized by the W3C across several different specifications, including
HTML 5.3 [45] and CSS2 [40]. Dynamic semantics not applicable.

• Python: No official specification.

• SQL: First formalized as ISO/IEC 9075:1992 [28]. Several (incompatible) dialects exist.
Dynamic semantics not applicable.

• Java: Formalized per language version, most recently as ”The Java Language Specifica-
tion, Java SE 18 Edition” [22] and ”The Java Virtual Machine Specification, Java SE 18

5These languages have been chosen according to their popularity as indicated on the StackOverflow devel-
oper survey 2021 [58], a survey on programming languages and technologies taken by more than 80,000 devel-
opers.

7

2. BACKGROUND

Edition” [41] for the Java language and virtual machine, respectively. Defines dynamic
semantics using natural language.

• TypeScript: No official specification.

• C#: First formalized as ISO/IEC 23270:2003 [27]. Defines dynamic semantics using
natural language.

• Bash/Shell: Base feature set formalized as part of the POSIX standards family in IEEE
1003.1-2008 [25]. Defines dynamic semantics using natural language.

• C++: First formalized as ISO/IEC 14882:1998 [26]. Defines dynamic semantics using
natural language.

• PHP: Efforts ongoing to write a specification6. Current efforts define dynamic seman-
tics using natural language.

2.2 The Spoofax language workbench
The Spoofax languageworkbench [57] is a software suite that combines variousmeta-languages7
and tools to allow users to easily design and implement (domain-specific) programming
languages. Beyond parsing, static analysis, and execution, the language workbench is capa-
ble of automatically generating various IDE features including syntax highlighting, inline
error markers, go-to-definition, hover annotations, and more. A standalone plugin for the
Eclipse IDE providing these features can be automatically generated from a Spoofax lan-
guage project.

The most recent stable version of Spoofax, as of the time of writing, is Spoofax 2 [34]. How-
ever, work has been ongoing on Spoofax 3, which retains the same meta-languages and
pipeline setup, but integrates this pipeline using PIE [37], a framework for incrementalizing
build tasks. Using PIE, various aspects of Spoofax 3 gain support for incremental compila-
tion ”for free”, leading to considerable performance gains in both the language development
process, as well as the performance of the artifacts produced by the workbench. All projects
discussed in this paper, particularly Tim and Dynamix, have been integrated directly into
Spoofax 3.

The Spoofax language workbench consists of a family of meta-languages that each describe
an aspect of a programming language. These meta-languages are often declarative and in-
spired by academic work, such that it is easy for users to get started if they are familiar with
the programming languages academic field. Creating a new language using the Spoofax lan-
guage workbench amounts to defining each section of the ”compiler pipeline” using the ap-
propriate meta-language. Figure 2.2 shows the current compiler pipeline for use in Spoofax.
We briefly discuss each step in more detail.

6https://github.com/php/php-langspec
7A programming language that describes some aspect of another programming language.

Figure 2.2: The Spoofax language workbench pipeline. Source code is parsed using SDF3,
analyzed using Statix, then compiled or executed using Stratego.

8

https://github.com/php/php-langspec

2.2. The Spoofax language workbench

1 lexical sorts INT ID
2 lexical syntax
3 INT = [1-9] [0-9]*
4 ID = [A-Za-z] [A-Za-z0-9]*
5 LAYOUT = [\ \n\r\t]
6

7 context-free sorts Exp
8 context-free syntax
9 Exp = <(<Exp>)> {bracket}

10 Exp.Add = <<Exp> + <Exp>> {left}
11 Exp.Sub = <<Exp> - <Exp>> {left}
12 Exp.Mul = <<Exp> * <Exp>> {left}
13 Exp.Div = <<Exp> / <Exp>> {left}
14

15 Exp.Var = <<ID>>
16 Exp.Int = <<INT>>
17

18 Exp.Let = <let <ID> = <Exp> in <Exp>>
19

20 context-free priorities
21 {left: Exp.Mul Exp.Div} > {left: Exp.Add Exp.Sub} > {Exp.Let}

Figure 2.3: A simple SDF3 grammar for an arithmetic language that supports variable bind-
ings.

2.2.1 Syntax definition and parsing
The natural first part of a language workbench is the ability to declare a grammar for the
language. For this purpose, Spoofax offers the Syntax Definition Formalism 3 (SDF3) meta-
language [55]. Using SDF3, a user can declare both lexical and context-free syntax produc-
tions for their language. From this declaration, SDF3 generates a scannerless parser with
support for error recovery, a pretty-printer, and a syntax highlighter [56].

Figure 2.3 shows an example of an SDF3 definition for a simple arithmetic language. Two
lexical sorts are defined, INT and ID, which represent an integer literal and variable iden-
tifier respectively. A single context-free sort is defined, Exp, which represents an arbitrary
expression. The distinction between lexical and context-free sorts determines is similar to
that between grammar productions and lexical tokens in other parsers, and mainly deter-
mines the way in which the resulting value is represented in the AST (a lexical production
yields a string of its contents, whereas a context-free production produces a tuple containing
its subterms).

SDF3 has various features that simplify the creation of a grammar. The LAYOUT syntax produc-
tion on line 5, for example, indicates which layout characters (e.g. whitespace) are allowed
between nonterminals in context-free productions. Similarly, the context-free priorities
section allows for disambiguation betweenproductionswith different precedence levelswith-
out resorting to unique sorts per precedence level. By marking a production with {bracket}
(line 9), we can indicate to the generated pretty-printer that brackets should only be included
if they are necessary to preserve the meaning of the AST.

The parser generated by SDF3 outputs an AST in the annotated term format (ATerm). This

9

2. BACKGROUND

1 let x = 10 in
2 let y = 20 in
3 let z = x + y in
4 (10 + x) * y / z

1 Let(
2 "x",
3 Int("10"),
4 Let(
5 "y",
6 Int("20"),
7 Let(
8 "z",
9 Add(Var("x"), Var("y")),

10 Div(
11 Mul(Add(Int("10"), Var("x")), Var("y")),
12 Var("z")
13)
14)
15)
16)

Figure 2.4: An example expression in the arithmetic language declared in Figure 2.38. The
parsed AST in ATerm format as produced by the generated parser can be seen on the right.

term ::= int literal Integer literal
| string literal String literal
| identifier(terms) Constructor
| [terms] List literal
| (terms) Tuple literal
| term{terms} Annotated term

terms ::= ϵ
| term
| term, terms

int literal ::= '-'? [1-9] [0-9]*
string literal ::= " string char* "
identifier ::= [A-Za-z] [A-Za-z0-9._-]*

Grammar 2.1: The grammar for the ATerm data representation format.

format originated in theASF+SDF formalism [17], a precursor to the Spoofax languagework-
bench. It is a simple data transfer format that supports strings, integers, lists, tuples, tagged
tuples (constructors), and annotations. The grammar for the ATerm format can be seen in
Grammar 2.1. ATerms are used pervasively across the Spoofax language workbench and are
supported as data format in all Spoofax meta-languages. Figure 2.4 shows an example of the
parsing output for a simple program using the grammar defined in Figure 2.3.

Spoofax will automatically derive an algebraic signature from all SDF3 declarations. Such a
signature dictates the exact structure that an ATerm expression can take such that it is a valid
AST9. These signatures are used by various other meta-languages in the Spoofax language
workbench to provide better static analysis features. Figure 2.5 shows the signature for the

8The syntax highlighting in this snippet is exactly the syntax highlighting that the Spoofax language work-
bench automatically generates from the given grammar definition.

9Here, valid AST means that it is an AST that can be produced by the parser (i.e. it has a lexical equivalent),
and not necessarily that this AST is valid according to the static and dynamic semantics of the language.

10

2.2. The Spoofax language workbench

1 signature
2 sorts
3 INT = string
4 ID = string
5 Exp
6

7 constructors
8 Add : Exp * Exp -> Exp
9 Sub : Exp * Exp -> Exp

10 Mul : Exp * Exp -> Exp
11 Div : Exp * Exp -> Exp
12 Var : ID -> Exp
13 Int : INT -> Exp
14 Let : ID * Exp * Exp -> Exp

S = {INT, ID, Exp}

Σ = { Add : Exp× Exp → Exp,

Sub : Exp× Exp → Exp,

Mul : Exp× Exp → Exp,

Div : Exp× Exp → Exp,

Var : ID → Exp,

Int : INT → Exp,

Let : ID× Exp× Exp → Exp }

Figure 2.5: The algebraic signature for the grammar in Figure 2.3. Left shows the signature
of the grammar defined in the Statix meta-language, right shows the grammar in equivalent
formal term algebra notation. The left source is automatically derived from the grammar
definition by SDF3 as part of the compilation process.

example grammar in both formal and Spoofax syntax formats.
Other features that SDF3 offers include the ability to specify layout constraints for grammar
productions (often crucial for languages that have significant whitespace such as Python
and Haskell) and automatic error recovery and placeholder insertion (needed for robust
autocomplete). For more information on SDF3 and parsing within the Spoofax language
workbench, the reader is invited to consult the relevant academic work, particularly the work
by Visser et al. across various papers [33, 57, 55, 56, 32, 69].

2.2.2 Static analysis with constraint solvers
The current meta-language used for static analysis in the Spoofax workbench is Statix [5].
Statix is a declarative language that performs static analysis through the use of constraints.
A Statix specification consists of a set of declarative rules that specify constraints that should
hold for a program to be valid. If the Statix logic solver can find a solution for which all
constraints hold for a given input AST, a program is considered well-typed. Name binding
correctness is asserted through the use of scope graphs [4], although their exact semantics are
beyond the scope of this paper. The reader is referred to the work by van Antwerpen et al.
[4, 5, 3] should they be interested in their exact workings.

Figure 2.6 shows an example typing rule in both formal notation and Statix syntax. The
typeOfExpression rule and Γ ` v : T notation are equivalent, in that they both describe the
relationship between an expression and its type. Within the head of the Statix rule, the Div(a,
b) node is pattern-matching on exactly the ATerm that is output by the parser. Indeed, all
values in Statix (including the INT() term) are ATerms. Using the signatures generated by
SDF3 (see Section 2.2.1, Figure 2.5), the Statix meta-language can statically ensure that these
pattern-matching operations are valid.

Beyond simply indicating whether some input AST is valid according to the Statix specifi-
cation, the Statix solver also allows users to attach properties to arbitrary AST nodes. These
properties are arbitrary ATerm values that can later be read from outside Statix. Common
properties used in Statix specifications are the ref and type properties, which represent the
declaring node and the type of a node respectively. The Spoofax language workbench has

11

2. BACKGROUND

1 rules
2 typeOfExpression(s, Div(a, b)) = INT() :-
3 typeOfExpression(s, a) == INT(),
4 typeOfExpression(s, b) == INT().

Γ ` a : INT
Γ ` b : INT T-Division

Γ ` a / b : INT

Figure 2.6: An example typing rule for integer division in both Statix notation and formal
notation. Here s and Γ are analogous and correspond to the context in which the expression
appears. Other rules, such as the type of an integer literal, are omitted.

1 rules
2 typeOfExpression(s, n@Div(a, b)) = INT() :-
3 typeOfExpression(s, a) == INT(),
4 typeOfExpression(s, b) == INT(),
5 @n.type := INT().

Figure 2.7: An example showing the ability to attach properties to nodes in Statix. The high-
lighted line (left) sets the type property on the AST node representing the division expres-
sion. This value is later read by Spoofax to provide editor services such as hover information
(right).

built-in support for reading the values of these two properties to provide editor services such
as hover hints and go-to-definition. An example of the type annotation, as well as the tooltip
generated as a result, can be seen in Figure 2.7. It is worth noting that both the type and ref
properties are simply conventions. A user can assign arbitrary values to a property, and can
read these values from other meta-languages within the Spoofax language workbench.

2.2.3 Transformations with Stratego

Finally, we will briefly discuss the Stratego transformation language [67]. Unlike SDF3 or
Statix, Stratego is more of a general imperative programming language centered around the
concept of transformations, instead of a (hyper-specialized) meta-language. As a result, it
generally functions as a general purpose language that, while traditionally used for inter-
pretation or compilation at the end of the Spoofax pipeline, may also appear between other
stages to perform intermediate transformations.

An example of a simple Stratego program can be seen in Figure 2.8. Pattern-matching is per-
formed on input terms, with matches transformed accordingly. The data format in use for
Stratego is again the ATerm format, with additional static analysis provided using the alge-
braic signature automatically derived from the SDF3 grammar.

Due to its general nature, many Spoofax features and meta-languages offer a Stratego API.
This allows Stratego strategies to interact with other parts of the Spoofax workbench, such as
the ability to query the results of static analysis. Consider the example in Figure 2.9, which
uses Statix APIs to distinguish between integer addition and string concatenation, both of
which are syntactically represented as Add(a, b).

We will further discuss Stratego and its semantics when we introduce the mini-Stratego case
study in Chapter 9. Readers interested in learningmore about Stratego and its term rewriting
paradigm are encouraged to read the appropriate work by Visser et al. [32, 67].

12

2.3. Dynamic semantics in Spoofax

1 rules
2 fold = innermost(fold-term)
3

4 fold-term: Add(Int(a), Int(b)) -> Int(<addS> (a, b))
5 fold-term: Sub(Int(a), Int(b)) -> Int(<subtS> (a, b))
6 fold-term: Mul(Int(a), Int(b)) -> Int(<mulS> (a, b))
7 fold-term: Div(Int(a), Int(b)) -> Int(<divS> (a, b))
8

9 fold-term: Eq(Int(a), Int(a)) -> Int("1")
10 fold-term: Eq(Int(a), Int(b)) -> Int("0") where not(<eq> (a, b))

Figure 2.8: A simple Stratego program that performs constant folding in an arithmetic lan-
guage. The fold strategy will apply the fold-term strategy until a fixpoint is reached.

1 imports
2 statix/api
3

4 rules
5 compile-expr: n@Add(a, b) -> <compile-int-addition> (a, b)
6 where a := <stx-get-ast-analysis> n; INT() := <stx-get-ast-type(|a)> n
7

8 compile-expr: n@Add(a, b) -> <compile-string-concatenation> (a, b)
9 where a := <stx-get-ast-analysis> n; STRING() := <stx-get-ast-type(|a)> n

Figure 2.9: Many Spoofax meta-languages expose Stratego APIs. Here, the result of a Statix
analysis is used to emit integer addition or string concatenation based on the type of the
expression.

2.3 Dynamic semantics in Spoofax
As already briefly alluded to, Dynamix is not the first attempt at adding dynamic semantics
support to the Spoofax language workbench. In fact, several projects, including some under
the Dynamix name, predate the work done in this thesis.

The first effort at implementing dynamic semantics in the Spoofax language workbench was
the DynSemmeta language [64]. DynSemwas conceivedwith goals similar to Dynamix, but
was intentionally designed to mimic the notation often used by big-step operational seman-
tics. The DynSem compiler converts such a specification into an interpreter for the language
written in Java. An example of a DynSem specification can be seen in Figure 2.10. We further
discuss DynSem as part of the related work section in Chapter 10.

One of the main problems with DynSem was that its use of big-step rules with explicit con-
trol flow meant that certain language features, particularly non-linear control flow such as
exceptions and generators, require non-trivial boilerplate and state threading in virtually ev-
ery rule, including those not concerned with the feature. This meant that as these features
were added, the complexity of the rules increased to a degree where rules were no longer
ergonomic to write. Additionally, the interpreter generated by DynSem was not particularly
performant. While this performance was greatly increased in follow-up work by Vergu et al.
[66, 65], they note that the generated interpreter still performed a factor of 4 slower than a
hand-written interpreter for the same language. As a result of these two main drawbacks,

13

2. BACKGROUND

1 rules
2 Lit(s) --> NumV(parseI(s)).
3

4 Plus(e1, e2) --> NumV(addI(i1, i2))
5 where
6 e1 --> NumV(i1);
7 e2 --> NumV(i2).
8

9 Ifz(NumV(ci), e1, e2) --> v
10 where
11 case ci of {
12 0 => e1 --> v
13 otherwise => e2 --> v
14 }.

Figure 2.10: An example of a specification written using the DynSem meta-language [64].
The --> ”arrow” is intended to be analogous to a Kahn-style big-step evaluation relation.

the DynSem language saw little use within the Spoofax workbench and was eventually dep-
recated.

To remedy these issues, the Dynamixmeta-language10 was conceived as part of Chiel Bruin’s
master’s thesis [13]. Inspired byDynSem, theDynamix languagewas designed as a dynamic
specification meta-language compatible with the semantics of the ”Roger” target language,
introduced in the same thesis. Figure 2.11 shows an example snippet in Bruin’s Dynamix
meta-language.

Bruin’s Dynamix targeted the FrameVM, a virtual machine designed around the concepts of
scopes-as-frames [52] and control frames. Control frames were designed as an abstraction
over a direct continuation-passing style (CPS)-based language: Bruin argues that pure CPS
needlessly increases bookkeeping and complexity by enforcing explicit control flow even in
situations where implicit control flowwould suffice. Bruin’s Dynamix compiled to Roger, an
instruction set that runs natively on the FrameVM. We discuss the FrameVM in more detail
as part of the section on related work in Chapter 10.

While Bruin’s work showed that an approach for dynamic specifications using continuations
(or abstractions around them)was capable of producing specifications for even complex con-
structs like Scheme’s call/cc, it was not always practical to use. The introduction of control
framesmeant that the languagewas hard to pick up, and theDynamix languagewas perhaps
too low-level. Performance, while not a consideration, was also a large blocker: programs
were regularly several orders of magnitude slower than a hand-written implementation. Ul-
timately, these issues meant that Bruin’s Dynamix and the FrameVM were never integrated
in the Spoofax language workbench.

Despite this, using continuations as a tool to model dynamic semantics seemed promising.
In late 2020, Eelco Visser and Andrew Tolmach started exploratory work on ”Dynamix V2”.
The intent was to retain most of the ideas behind the Dynamix language, but to compile to a
new continuation-based target language. If the resulting target language was able to be effi-

10Not to be confused with the Dynamix language presented in this paper. Except for this section, the term
Dynamix will always refer to the language presented in this paper.

14

2.3. Dynamic semantics in Spoofax

1 rules
2 eval-exp(Int(v)) = return(int(v))
3

4 eval-exp(Plus(left, right)) =
5 v1 <- eval-exp(left);
6 v2 <- eval-exp(right);
7 return(iadd(v1, v2))
8

9 eval-exp(Var(name)) =
10 path = resolve(name, "Var");
11 return(get(cur(), path))
12

13 eval-exp(Ifz(cond, then, else)); k(v1) =
14 !v1;
15 c <- eval-exp(cond);
16 jumpz(c, else_b, then_b);
17

18 then_b = <
19 ~v1 <- eval-exp(~then);
20 jump(~k)
21 >;
22 else_b = <
23 ~v1 <- eval-exp(~else);
24 jump(~k)
25 >

Figure 2.11: An example program in the Dynamix meta-language designed by Chiel Bruin.
Adapted from Figures 6.5 and 6.7 from Bruin’s thesis [13].

ciently compiled or interpreted, this approach could resolve the runtime performance issues
that both DynSem and the FrameVM suffered from. DynSem’s other main problem, that of
control flow, could also be resolved by using continuations, as evident from Bruin’s work.
At the same time, this was a good opportunity to explore potential approaches for DSLs to
simplify the process of building CPS terms.

The Dynamix language discussed in this thesis11 is a spiritual successor to these efforts by
Visser and Tolmach. Many components were revamped in order to generalize their exper-
imental prototype to a large array of languages and programming paradigms, and to fully
integrate the resulting product in the Spoofax language workbench. The remainder of this
thesis discusses these efforts and shows that the resulting meta-language is indeed capable
of resolvingmany of DynSem’s original issues. We should stress that no previous knowledge
of the Dynamix meta-language as it appeared in Bruin’s thesis is required: we will introduce
the language from scratch.

11Dynamix, as presented in this paper, should really be called Dynamix v2.5. However, since the version of
Dynamix designed by Bruin never made it into the Spoofax language workbench, the Dynamix presented in this
paper is the first publicly usable iteration of the meta-language. To avoid potential confusion for Spoofax users,
we decided that it would be more appropriate to call the language Dynamix, without a version number.

15

Chapter 3

Objectives

Now that we have discussed all the necessary background, let us elaborate on the objectives
of the Dynamix project as introduced in Chapter 1. The remainder of this thesis will use
these objectives as pillars to guide the design and implementation of the Dynamix project.

3.1 Overarching goal
The primary goal of the Dynamix project is to provide a widely applicable and performant
meta-language for the specification of dynamic semantics within the Spoofax language
workbench. Dynamix must offer all the infrastructure required to implement dynamic spec-
ifications within Spoofax, with a level of support, stability, and integration that is to be ex-
pected from a first-class Spoofax meta-language.

As a guiding principle, Dynamix should strive to be as declarative as possible, so as to re-
tain its correspondence with the domain of formal programming language specifications.
Where possible, Dynamix should operate at an abstraction level that allows it to be treated
as a formal specification, with the additional benefit that a language implementation can be
directly derived from this specification. As a consequence of this requirement, the Dynamix
meta-language should be largely declaratively oriented and offer an abstraction level compa-
rable to those used in formal specifications. Only in cases where this abstraction level may
hinder the usability or applicability of the Dynamix meta-language should other, possibly
imperative, language features be considered.

3.2 Concrete requirements
Based on the aforementioned overarching goals, we now discuss several concrete require-
ments for both theDynamixmeta-language, aswell as its implementationwithin the Spoofax
language workbench.

Simplicity
A large focus should be on the simplicity and adoptability of the DynamixDSL, especially for
existing users of the Spoofax language workbench. One vehicle for achieving this simplicity
is a resemblance to existing formalisms and conventions for (formal) dynamic specifications.
Such resemblances will help users familiarize themselves by giving them the ability to asso-
ciate constructs within the DSL with concepts and approaches that they already understand.
A similaritywith existing formalisms additionally helps establish a close tiewith formal spec-
ifications, supporting the guiding principle that a Dynamix specification should be similar
to a formal language specification.

17

3. OBJECTIVES

Applicable to a wide variety of language paradigms
The Dynamix DSL should offer abstractions capable of handling a large number of program-
ming paradigms. Users should be able to implement their language of choice without being
limited by a lack of DSL features. This does not imply that every language should be sup-
ported, but rather that features within the DSL should be chosen and designed in a way
where they do not unnecessarily limit the general applicability of the DSL.

Must be able to yield a performant runtime
Desiring a fast runtime for a language should be a validmotivator forwriting a language spec-
ification using the Dynamix DSL. The Dynamix project must be designed in a way where it
is possible to produce language runtimes that perform within an order of magnitude com-
pared to a hand-written implementation. The initial implementation, as discussed in this
thesis, does not have to perform at this level, but there should be no technical limitations
preventing a performant runtime from being created. The abstraction level of both the DSL
and the target language should consider the runtime performance.

High-quality integration within the Spoofax workbench
TheDynamix project should have a tight and idiomatic integrationwith othermeta-languages
in the Spoofax language workbench. Users should be able to easily write dynamic specifica-
tions for their existing Spoofax projects, without overhauling parts of their projects. The de-
sign and behavior of the language should, where applicable, be consistentwith other Spoofax
meta-languages to allow for easier adoption.

18

Chapter 4

Designing a DSL for runtime
semantics

In this chapter, wewill establish some of the core design decisions behind the Dynamixmeta-
language by discussing approaches for designing and implementing a DSL for runtime se-
mantics. This design approach is guided by the objectives outlined in Chapter 3, and will
discuss how we might structure the language, what features would help widen the range of
source languages the DSL might be applicable for, and what kind of interaction with other
parts of the compilation process is appropriate.

Within this chapter, we use the term source language to refer to the language under com-
pilation (i.e. the language for which a runtime semantics specification is written). Unless
otherwise specified, the termDSL refers to the DSL for dynamic specification whose design
we are considering (i.e. the Dynamix meta-language). The term rule refers to the runtime
semantics for a single source language construct (e.g. a single rule may define the behavior
of integer multiplication). The term specification refers to the set of all runtime semantics
rules (for the source language) written in the DSL.

4.1 The anatomy of a formal runtime semantics specification
We will start our design process by taking a look at existing formal specifications of several
programming languages. Doing so allows us to derive a minimal set of features needed to
replicate these specifications in our newDSL, while at the same time giving us a general idea
of what the syntax of the DSL may look like. In particular, we will consider the formal speci-
fications of the plus (+) operator, responsible for both numerical addition and string concate-
nation. This operation was chosen for several reasons: it is a common and well-understood
operation, it involves different behavior based on the types of its sub-expressions, and one
has to consider the underlying data storage (such as the bit-width of the numeric types and
the wrapping behavior when addition may overflow) when defining the operation.

The languages specifications that we will consider are those of the ChocoPy programming
language [48], as well as the ECMAScript specification for the JavaScript programming lan-
guage [18]. Thesewere chosen for several reasons: they vary in notational style (theChocoPy
specification uses big-step denotational semantics1, the ECMAScript specification uses natu-
ral language), they represent different languagedesigns (ChocoPy is statically typed, JavaScript
is dynamically typed), and they target different platforms (ChocoPy is intended to be com-

1Big-step denotational semantics, also known as natural semantics or Kahn-style semantics, are a notational
style for dynamic semantic specifications due to Gilles Kahn [31]. In big-step semantics, the notation ρ ⊢ E ⇒ α
indicates that the expression E, when evaluated in the environment ρ, yields the value α.

19

4. DESIGNING A DSL FOR RUNTIME SEMANTICS

G,E, S ` e1 : str(n1, s1), S1, _
G,E, S1 ` e2 : str(n2, s2), S2, _

v = str(n1 + n2, s1||s2) [STR-CONCAT]
G,E, S ` e1 + e2 : v, S2, _

G,E, S ` e1 : int(i1), S1, _
G,E, S1 ` e2 : int(i2), S2, _

v = int(i1 + i2) [INT-ADDITION]
G,E, S ` e1 + e2 : v, S2, _

Figure 4.1: Examples of the runtime semantics for string concatenation and integer addition
in formal notation for the ChocoPy language. Adapted from the ChocoPy reference manual
by Padhye et al. [49].

EvaluateStringOrNumericBinaryExpression(leftOperand, +, rightOperand)
• Let lref be the result of evaluating leftOperand.

• Let lval be ? GetValue(lref).

• Let rref be the result of evaluating rightOperand.

• Let rval be ? GetValue(rref).

• Let lprim be ? ToPrimitive(lval).

• Let rprim be ? ToPrimitive(rval).

• If Type(lprim) is String or Type(lprim) is String, then

– Let lstr be ? ToString(lprim).
– Let rstr be ? ToString(rprim).
– Return the string-concatenation of lstr and rstr.

• Note: at this point it must be a numeric operation.

• Let lnum be ? ToNumeric(lval).

• Let rnum be ? ToNumeric(rval).

• [NaN and infinite cases omitted]

• Assert: lnum and rnum are both finite.

• If lnum is −0F and rnum is −0F, return −0F.

• Return F(R(lnum) + R(rnum)).

Figure 4.2: Examples of the runtime semantics for string concatenation and number addition
in the JavaScript programming language. Certain steps are omitted for the sake of brevity.
Adapted from the ECMAScript 2023 language specification [18].

20

4.1. The anatomy of a formal runtime semantics specification

piled to RISC-V assembly, JavaScript is generally interpreted). Figures 4.1 and 4.2 show for-
mal specifications of the plus operator for ChocoPy and JavaScript, respectively.

The ChocoPy specification of the plus operator (Figure 4.1) is described using formal no-
tation. The store parameter S, which represents the values of all locations currently in use
by the program, is explicitly specified as an input and output parameter to each operation.
Since the evaluation of e2 uses store S1, it must logically be evaluated after e1. As a result, if
evaluating e1 had side effects, those effects must be visible when e2 is evaluated. The speci-
fication also considers the underlying data representation of the values. String values (str)
are defined to carry both the length and the contents of the string as separate fields, and
the concatenation explicitly notes that the resulting string length is the sum of the individual
lengths. How exactly integers are stored, and how overflow should be handled, is mentioned
elsewhere in the ChocoPy manual [49]: integers are signed 32-bit values, and the behavior
when this addition overflows is undefined2.

The ECMAScript specification of the plus operator (Figure 4.2) uses natural language in-
stead of formal notation to describe the operation. Here, unlike the ChocoPy specification,
there is no explicit ”state-threading”. Instead, it is implicitly assumed that operations are
performed in the order in which they are listed, and that any underlying changes to the pro-
gram environment as a result of these operations are reflected in the next step. Indeed, the
current environment in which the expressions are evaluated (G,E, S in the ChocoPy specifi-
cation) is implicitly inherited from the environment that contained the addition expression.
The specific data representations of both numbers and strings, as well as the exact behavior
of string-concatenation and the F andR operators, are defined elsewhere in the specification.

Both specifications perform conditional behavior to determine whether to apply numeric or
string addition. For the ECMAScript specification, this branching is explicitly done at run-
time: the type of the operands is derived only after they are both evaluated. This is a natural
choice for JavaScript: it is impossible to always statically predict the runtime types of expres-
sions due to its dynamically typed nature3. The ChocoPy specification is more ambiguous
in how a specific rule is selected. It is clear that the premises of the [STR-CONCAT] and [INT-
ADDITION] rules are disjoint (after all, a value cannot be both an integer and a string at the
same time), but there is no explicit process described for exactly when to select a rule. Since
ChocoPy is statically typed, a compiler that unconditionally emits either string concatena-
tion or integer addition code based on the types involved would adhere to the specification.
However, an implementation that performed this check at runtime would be equally valid
(since the ChocoPy specification imposes no specific restrictions on both the data representa-
tion of values and the time complexity of the addition operation). This shows an interesting
aspect of formal specifications for programming languages: their primary aim is to describe
how programs are executed, but this description does not necessarily translate to the most
optimal4 implementation.

2”Undefined behavior” is a common term in formal language specifications and indicates a complete lack of
obligations on a particular implementation of the language when such behavior occurs. Returning an arbitrary
value, crashing the program, or even shutting down the computer would all be behaviors consistent with the
specification.

3It should be noted that even though JavaScript is dynamically typed, advanced JavaScript engines are able
to elide the vast majority of type checks through a combination of static and runtime analysis. This elision does
not conflict with the specification, since it is only performed in situations where the engine is able to prove that
it is safe to do so.

4Generally, a language implementation is considered more optimal if it runs faster. However, different re-
quirements may call for a different definition of optimal (e.g. consider a lightweight implementation meant for
low-power electronics, which may favor simplicity over performance).

21

4. DESIGNING A DSL FOR RUNTIME SEMANTICS

Based on the two discussed specification examples, we can derive the following categories
of features that our DSL should support. These give a baseline set of requirements that the
designed DSL should conform to in order to replicate the ChocoPy and ECMAScript speci-
fications. We justify these requirements by highlighting the appropriate sections in the dis-
cussed examples.

• Static rule selection. The DSL should be able to offer some deterministic method for
selecting which rule(s) are applicable for any specific language construct. It should
be possible to indicate that one rule applies to the multiplication operator, whereas
another applies to the subtraction operator.

– In the formal notation used by the ChocoPy specification, the applicable rules
for some expression e are the ones for which G,E, S ` e : v, S′, _ appears in the
conclusion. The ECMAScript specification uses natural language to indicate that a
binary expression should defer to the appropriate EvaluateStringOrNumericBinary
Expression implementation.

• Runtime conditional behavior. A rule in the DSL should be able to perform condi-
tional behavior based on values derived at runtime, for situations where an applicable
rule cannot be selected statically. It should be possible to only conditionally evaluate
(sub-)expressions.

– The ECMAScript specification performs conditional behavior at runtime to dif-
ferentiate between numerical addition and string concatenation. The discussed
ChocoPy examples do not perform any conditional behavior. Conditional evalu-
ation is essential to in order to be able to specify branching behavior (e.g. if-then-
else statements, loops).

• Clear ordering of operations. It should be unambiguous in what order operations are
evaluated in a DSL rule, and how these operations affect the surrounding state of the
program.

– The ChocoPy example explicitly threads stores by using Sn. The ECMAScript
specification implicitly specifies that operations are executed in exactly the listed
order. Both specifications explicitly require the left-hand side of the addition op-
erator to be evaluated before the right-hand side.

• Access to primitive operations. It should be possible to express ”primitive” operations
in the DSL, such as arithmetic operations, I/O operations, and interacting with the
operating system.

– Both the ChocoPy and ECMAScript specifications use the addition operator in
its mathematical sense. This is a primitive operation, as it cannot be expressed
using other operations within the language. Such operations must therefore be
provided by the runtime platform (e.g. ChocoPy addition might be performed
using the add RISC-V instruction), and exposed by the DSL.

• Appropriate control over data representation. A rule in the DSL should be able to
control the runtime data representation of values within the language, to a certain de-
gree. A user should be able to specify representation-dependent options, such as the
bit-width of integer values and their wrapping behavior. A user should be able to form
composite values, such as tuples, records, or structs.

– Neither the ChocoPy nor the ECMAScript specification fully specifies the runtime
data representation of its values, opting to allow the implementation to choose an

22

4.2. From specification to evaluation

appropriate representation. However, both specifications put requirements on the
data representation of certain values: integers in ChocoPy must be 32-bit signed,
and numbers in ECMAScript must be 64-bit IEEE 754-2019 [24] double-precision
floating point numbers.

4.2 From specification to evaluation
So far, we have only discussed the definition aspects of a runtime semantics DSL. An equally
important part is the ability to transform a specification into some method of running the
source programs. Without this capability, the DSL would simply be yet another notation
for runtime semantics. In this section, we discuss several different approaches for using a
specification written in our DSL to automatically run source language programs.

Broadly speaking, we have established that a formal specification essentially acts as a list
of instructions to perform when a certain language construct should be executed. These
instructions interact with the runtime environment of the program (such as its memory or
variables) and dictate which constructs should be evaluated next, in what order, and how
their results are used. Logically, this means that ”running” a specification with some source
program as input effectively involves repeatedly selecting the appropriate rule to apply, then
evaluating all steps for that rule until the program reaches termination. There are multiple
ways of doing this, each with their own set of upsides and downsides. The most common
solutions include:

• A DSL interpreter. A single program takes both a specification and a source program
AST as parameters. The interpreter selects the appropriate ”entry rule” for the input
AST, then (recursively) executes each instruction in the rule. This style of interpretation
is also known as meta-interpretation, since it is the meta-language that is the subject of
interpretation.

• Automatic interpreter/compiler generation. The specification is used to generate a
specialized interpreter or compiler for the target language. The resulting program can
be used to directly run or compile source programs.

• A DSL meta-compiler. The dynamic specification is interpreted using a source pro-
gramAST as input. Instead of directly performing runtime operations as they are inter-
preted (as is donewithmeta-interpretation), operations are instead collected into some
target intermediate representation (IR). The resulting output is a language-agnostic
set of instructions corresponding to exactly the operations taken by the input program,
which can subsequently be compiled or interpreted directly. The meta-compiler name
derives from the fact that this approach compiles a source program to a language-
agnostic target language, with this compilation being driven by the meta-language
rules.

Let us briefly discuss each of these approaches and consider their strengths and weaknesses
in more detail.

Direct interpretation

Arguably the simplest approach is to write a direct interpreter for the DSL. This involves
using an input (desugared, type-checked) AST to guide which rule(s) should be executed,
with each specification instruction executed in order. Since a specification is effectively a
formal description of an interpreter for the language, this approach typically is not very per-
formant due to the ”nested” interpretation (the interpreter interprets the DSL, which in turn

23

4. DESIGNING A DSL FOR RUNTIME SEMANTICS

interprets the source language). However, this approach is very portable (a single inter-
preter is capable of running every specification on every source snippet) and generally easy
to implement and debug. This is the approach taken by PLT Redex [42] (further discussed
in Chapter 10).

Specialized interpreter/compiler generation

The abstract specification is transpiled5 to an interpreter or compiler in a concrete program-
ming language. The resulting program can be used to directly run source ASTs. This is
often a more performant approach to running the specification, as the overhead of the meta-
language largely disappears. An example of a project that uses this approach is the DynSem
[64] dynamic specification language, which automatically translates a specification into an
AST-based interpreter running on the Java virtual machine (we further discuss DynSem in
Chapter 10). The final performance of the generated interpreter or compiler depends largely
on how it is implemented. For example, subsequent work by Vergu et al. [66] on the same
DynSem framework demonstrated performance increases of up to 15x by improving the gen-
erated interpreter.

Meta-compilation

The final approach we will discuss is that of meta-compilation. This approach lends itself to
the observation that, due to the nature of a dynamic specification, a program where every
source construct is replaced with the body of the appropriate dynamic specification rule be-
haves exactly the same (after all, the behavior of the source program is defined through the
specification). As we will discuss later, this is the approach used by Dynamix for executing
source programs. An example of this approach can be seen in Figure 4.3.

The meta-compilation technique is quite similar to symbolic execution6, but unlike symbolic
execution it only considers rule selection and recursive rule invocation based on the input
source language AST. Any operations that require runtime state (such as access to memory,
variables, or conditional jumps) are deferred. The resulting output is effectively the (partial)
application of the specification on the specific input. For the example in Figure 4.3, observe
that the numeric literal 10 has been inlined into the declaration for LetDeclaration, but that
all memory operations have been retained.

The benefit of the meta-compilation technique is that it is able to generically transform ev-
ery source language for which a specification exists into a single language-agnostic format.
The resulting format can be directly interpreted or compiled into a target program. Since
this language-agnostic format is common between all possible specifications and source lan-
guages, it is comparatively simpler to efficiently compile or run the program (compared
to the interpreter generation approach, which cannot make any assumptions about the lan-
guage which it is interpreting). As a downside, such a language-agnostic IR must be generic
enough to support a wide range of languages, and therefore may not be capable of repre-
senting every language construct as efficiently as would be possible with a more specialized
approach.

5Source-to-source compilation between two languages of a similar abstraction level.
6A method of executing a program in an abstract manner, where every possible behavior of the source pro-

gram is considered. Originally introduced by James C. King [35], it is a common analysis technique used for
testing, verifying, and debugging programs. Unlike symbol execution, meta-compilation does not consider sym-
bolic values and only evaluates all (potential) program control flow.

24

4.3. Considering control flow

1 on Program(stmts):
2 - execute each stmt in `stmts` sequentially
3

4 on LetDeclaration(name, value):
5 - let `v` be the result of executing `value`
6 - assert: there is no global variable `name`
7 - assign `v` to the global variable `name`
8

9 on IntLiteral(value):
10 - yield the 32-bit signed representation of `value`
11

12 on Print(value):
13 - let `v` be the result of executing `value`
14 - let `str` be the result of converting `v` to a string representation
15 - output `str` to standard output, followed by a newline character (0x0A, '\n')

1 let x = 10;
2 print x;

1 let `v` be the 32-bit signed integer 10
2 assign `v` to the global variable `x`
3 let `v1` be the value of the global variable `x`
4 let `str` be the string representation of `v1`
5 output `str` to standard output, followed by a newline character (0x0A, '\n')

Figure 4.3: A dynamic specification (top) and input program (middle) for a fictional lan-
guage. The bottom program represents the result of applying meta-compilation on the
source program, yielding a new program where every source language construct has been
replaced with the appropriate instructions in the specification language.

4.3 Considering control flow
One aspect of a language specification we have so far largely glossed over is that of control
flow. While Section 4.1 considers control flow from the aspect of evaluation order, we have
yet to discuss constructs like conditionals, loops, and exceptions. With our intent to provide
a DSL capable of describing a large number of source languages, we must make an effort to
support most, if not all, of these constructs in an easy manner.

4.3.1 Control flow in existing specifications

The natural approach to implementing control flow in a dynamic specification is by simply
abstracting it through conditional rule selection. Consider the example in Figure 4.4. The
method for selecting the appropriate rule that applies to the while statement is used as a
method to perform control flow: the conditional check implicitly introduced by the rule se-
lection is used to perform the conditional behavior that a while loop must perform at the
start of each iteration. A similar definition can be used to conditionally evaluate statements,
such as an if-then-else expression.

This abstraction becomes much less simple in the presence of statements that can abruptly
jump to a different part of the program, such as the return statement. In fact, the ChocoPy

25

4. DESIGNING A DSL FOR RUNTIME SEMANTICS

G,E, S ` e1 : bool(true), S1, _ [WHILE-FALSE]
G,E, S ` while e1 : b1 : _, S1, _

G,E, S ` e1 : bool(false), S1, _
G,E, S1 ` b1 : _, S2, _

G,E, S2 ` while e1 : b1 : _, S3, _ [WHILE-TRUE]
G,E, S ` while e1 : b1 : _, S3, _

Figure 4.4: Control flow as seen in the ChocoPy reference manual [49]. The appropriate rule
is chosen based on the evaluation of the condition expression e1. The [WHILE-TRUE] case uses
recursive invocations to the same rule as a means of performing multiple loop iterations.

G,E, S ` e1 : bool(true), S1, _
G,E, S1 ` b1 : _, S2, R

R is not _ [WHILE-TRUE-RETURN]
G,E, S ` while e1 : b1 : _, S2, R

Figure 4.5: A specialized case of thewhile construct as seen in the ChocoPy referencemanual
[49]. This case aborts control flow if some statement in the body of the loop performed an
early return.

reference manual defines another case as part of the while loop semantics, specifically for
handling early returns. This case can be seen in Figure 4.5. The last value in the output
triplet, R, indicates the value returned from the function. Every other rule that affects con-
trol flowmust consider this value, and possibly immediately return it without evaluating the
rest of the construct (e.g. a function body must not execute the remaining instructions if an
early return is encountered).

This approach is manageable if one only needs to support early returns, but it doesn’t scale
verywell7. The ECMAScript specification [18] handles this bywrapping the result of an eval-
uation inside a continuation. This continuation indicates whether execution should continue
normally, or whether it should move elsewhere (e.g. because an exception was thrown).
The ? character prefixed to certain operations in the ECMAScript example discussed earlier
(Figure 4.2) is part of this abstraction: it indicates that if the result of the following function
call was an abrupt completion (i.e. an exception was thrown), this result should immediately
be propagated upwards without continuing the remainder of the rule.

This approach is powerful enough to handle a wide range of control flow features, including
early returns, loop breaking, generators, asynchronous functions, and exceptions. However,
it comes at the cost of additional complexity in the specification (e.g. the possibility of an
exception must be handled in every rule that can indirectly cause one) and has substan-
tial overhead if a language implementation directly implements control flow in this manner.
Clearly, both the usability and performance of our DSL would benefit from an alternative
implementation for control flow that does not suffer from these issues.

4.3.2 Control flow through continuations
An alternative approach to control flow within a dynamic specification borrows from a tech-
nique first described by Strachey and Wadsworth [60]. They propose the use of continu-

7Perhaps this is the reason why ChocoPy does not support the continue and break constructs.

26

4.3. Considering control flow

ations8, an abstract term representing ”the meaning of the rest of the program” (Reynolds,
[53]), as amethod ofmodeling themathematical semantics of a programming languagewith
jumps. The core insight is to no longer consider the semantics of each language construct in
isolation. As Strachey and Wadsworth put it:

The solution to this problem is to abandon the idea of giving the state transforma-
tion for each command in isolation. Wemust define, instead, a semantic function
that yields, for every command γ, in a program, the state transformation which
would be produced from there to the end of the program.

Particularly, we will add an additional parameter to our evaluation relation, indicating the
continuation of the expression. This continuation is some abstract representation of a point
in the program (e.g. a label or a function) where evaluation should continue after the evalu-
ation relation has completed.

Consider the example in Figure 4.6. We introduce a new continuation parameter, repre-
senting a label to which execution9 should jump after the completion of the computation
described in the body of the function. For the evaluation of the subexpressions leftOperand
and rightOperand, we simply indicate that they should continue directly on the next line at
the AFTERLEFT and AFTERRIGHT labels. Conceptually, this transformation just makes the im-
plicit returning behavior of functions (i.e. that they jump back to the callee directly after the
call expression) explicit.

The real benefit of a continuation-based approach becomes clear when we perform control
flow. Figure 4.7 contains a fictional implementation of the evaluation of statements in EC-
MAScript. In the case that the statement is a sole expression, it is directly evaluated, with
execution continuing at AFTEREXPRESSIONSTATEMENT. This simply discards the result of the
expression, then jumps to continuation (which presumably represents the next statement).
However, if the statement represents an early return, we instead execute the expression with
the continuation label $RETURNFROMFUNCTION (assumed to have been defined when we en-
tered the current function). This simple change has big consequences: because we never
jump to continuation, control flow never continues ”past” the return statement. The callee
never has to consider an early return, as it won’t even continue execution in the case where
such an early return has occurred.

Other control flows can be implemented in a similar way. For example, exceptions can be
handled by designating a $HANDLEEXCEPTION continuation. Throwing an exception can then
be implemented by virtue of simply continuing execution at this label, instead of the sup-
plied continuation. Analogously, the break statement might be implemented by defining a
continuation label positioned after the body of the loop.

As far as I am aware, no current language specification makes use of continuations as an
abstraction over control flow, despite their promising abilities. Perhaps the increase in cog-
nitive complexity when reading the specification makes them an unattractive abstraction.
However, a continuation-based approach to control flow lends itself excellently to our DSL.

8Continuations were independently conceived by several different computer scientists, but the version used
by Strachey et al. originates from thework byMazurkiewicz [43]. Reynolds’s ”The Discoveries of Continuations”
[53] discusses the full origins of the continuation concept.

9We use the term execution here, but it is important to consider that this use of continuations is only within the
dynamic specification. A specific implementation of the language is not required to use the specific continuation
implementation, or even use continuations at all. We use the term execution only because it is convenient to view
a dynamic specification as a set of instructions to be followed at runtime.

27

4. DESIGNING A DSL FOR RUNTIME SEMANTICS

EvaluateStringOrNumericBinaryExpression(leftOperand, +, rightOperand,
continuation)

• Evaluate leftOperand with continuation label AFTERLEFT.

AFTERLEFT(lref):

• Let lval be ? GetValue(lref).

• Evaluate rightOperand with continuation label AFTERRIGHT.

AFTERRIGHT(rref):

• Let rval be ? GetValue(rref).

• [several steps omitted]

• Let result be F(R(lnum) + R(rnum)).

• Jump to continuation with value result.

Figure 4.6: A rewritten version of the ECMAScript addition example from Figure 4.2 that
uses continuation labels for control flow. The highlighted sections indicate changes needed
to support continuations. Text in SMALL CAPS indicates a definition or reference to a continu-
ation label.

EvaluateStatement(statementType, subExpression, continuation)
• If statementType is ExpressionStatement:

– Evaluate subExpression with continuation label AFTEREXPRESSIONSTATEMENT.

• If statementType is ReturnStatement:

– Evaluate subExpression with continuation label $RETURNFROMFUNCTION.

• [other cases omitted]

AFTEREXPRESSIONSTATEMENT(discarded):

• Jump to continuation.

Figure 4.7: Using continuations to implement the return statement. We assume that the
continuation label $RETURNFROMFUNCTION has been defined earlier and that it implements
the process of returning a value from a function.

28

4.3. Considering control flow

Efficient compilation of programs that use continuations is awell-understood problem10, and
a structural approach to continuations aided by effective static analysis will relieve some of
the cognitive complexity of working with continuations.

10The book ”Compiling with Continuations” by Andrew W. Appel [6] is an excellent introduction to tech-
niques for compilation using continuation-passing style (CPS).

29

Chapter 5

The Tim intermediate representation

Before we discuss the Dynamix language, we must first take a detour and discuss the lan-
guage that it targets. As briefly alluded to in Chapter 4, Dynamix converts a language speci-
fication into a runnable program through the technique of meta-compilation (see Section 4.2).
However, instead of directly converting a source program into a sequence of Dynamix run-
time instructions, we instead transform the source program into a more specialized inter-
mediate representation (IR) containing only the subset of Dynamix instructions that would
actually be executed at runtime. By doing so, we can independently work on the Dynamix
meta-language and the interpreter or compiler for the output IR.

The specific IR that Dynamix compiles1 to is a new Spoofax meta-language called Tim2. Tim
is a human-readable languagewith a relatively low level of abstraction that is designed to use
continuation-passing style (CPS) (this choice coincides with the choice to use continuations
as abstractions for control flow in Dynamix). Its grammar and semantics are largely inspired
by the CPS IR used by the StandardML compiler and described in AndrewW. Appel’s book,
Compiling with Continuations [6].

In this chapter, we first introduce Tim by discussing how a simple source program translates
to Tim (Section 5.1). After this, we move on to the formal definition of the language by
discussing Tim’s syntax (Section 5.2), dynamic semantics (Section 5.3) and static semantics
(Section 5.4). Finally, we discuss the Tim interpreter (Section 5.5). We discuss future work
for the Tim language later, in Chapter 11.

5.1 A first impression
Let us introduce Tim by considering how a snippet of an imperative source language would
look if it was written directly in Tim. Doing so will give us a good intuition of what the
language looks like, how ”traditional” operations correspond to operations in Tim, and how
the control flow of ”conventional” languages translates to CPS. Despite us calling Tim an IR
in the introduction, it has a fully defined grammar and semantics3. Naturally, we can write
programs directly in Tim, and run them using Tim’s interpreter.

1For the remainder of this thesis, wheneverweuse the term compilationwithin the context ofDynamix, itwill
refer to the process of meta-compiling a Dynamix specification on a given input source. The name ”compilation”
is not inappropriate for this process. After all, Dynamix translates the input source to a lower-level specialized
instruction set.

2The name Tim originates from Target InterMediate language.
3Calling Tim an IR is mainly motivated by the fact that it is not intended to be used as a language directly,

but rather only a compilation artifact of running Dynamix. In this aspect, it is quite similar to the LLVM IR in
use by the LLVM project [38].

31

5. THE TIM INTERMEDIATE REPRESENTATION

As a source program, we will use the following Tiger4 snippet. Tiger is a simple imperative
language used in Andrew Appel’s book Modern Compiler implementation in Java [8]5. Our
snippet involves some literals, arithmetic, and function calls:

1 let
2 function getRandomNumber(): int = 4 // chosen by fair dice roll
3 in
4 let
5 var rnd: int := getRandomNumber() + 1
6 in
7 print("The random number, incremented by 1, is: ");
8 print(rnd)
9 end

10 end

If we directly translate this snippet to Tim, attempting to preserve roughly the same layout as
the source program,we obtain the following straightforward program. Identical background
colors between the two snippets indicate correspondence between the line(s) in the Tiger
snippet and the line(s) in the Tim snippet.

1 fix {
2 fun getRandomNumber(c) = c(4)
3 } in
4 fix {
5 fun c0(a0) =
6 #int-add(a0, 1) => rnd;
7 fix {
8 fun c1() =
9 print(rnd, c2)

10 fun c2() =
11 #exit()
12 } in
13 print("The random number, incremented by 1, is: ", c1)
14 } in
15 getRandomNumber(c0)

First, let us discuss the translation to continuation-passing style. We add an explicit contin-
uation argument c to getRandomNumber, transforming the implicit return into an explicit call
to the continuation. On the caller’s side, we extract the remainder of the program into an
anonymous function (c0), and pass it as continuation to the function call.6 We perform simi-
lar translations for the calls to print (we assume that print is defined elsewhere), and insert
an explicit call to #exit after the final statement. Continuations c1 and c2 capture the rnd
variable.

4We will use Tiger as an example language throughout the remainder of this thesis.
5Prof. Stephen A. Edwards has written an excellent reference manual for Tiger: http://www.cs.columbia.

edu/~sedwards/classes/2002/w4115/tiger.pdf.
6When compiling source programs to Tim, later lines often tend to be ”sandwiched” by earlier ones. This

is simply an artifact of Tim’s fix syntax, requiring functions (which contain the ”continuation”) to be defined
before they can be used. When reading Tim snippets, be prepared to often shift between the top and bottom of
the snippet.

32

http://www.cs.columbia.edu/~sedwards/classes/2002/w4115/tiger.pdf
http://www.cs.columbia.edu/~sedwards/classes/2002/w4115/tiger.pdf

5.1. A first impression

The only real computation in our source snippet, the integer addition, is implemented as a
call to #int-add. ”Functions” like these, prefixed with a #, are primitives. Primitives are Tim’s
approach to compiler intrinsics: functions whose body is implemented directly by the Tim
compiler or runtime. Through primitives, Tim can expose operations like integer addition
and access to composite data structures without the need to introduce explicit new grammar
for these actions. Tim also diverges from the IR used in ”Compiling with Continuations” in
this aspect: while both IRs have the concept of primitive operations, the IR used in Appel’s
book limits the available primitive operations to a fixed set, whereas primitives in Tim are
allowed to be any valid identifier. Similarly, some operations that have their own constructs
in Appel’s IR, such as RECORD, OFFSET and SELECTED, are represented using primitive calls in
Tim instead.

Primitives come in three forms: calls, tail calls, and conditionals. Primitive tail calls usually
perform some form of control flow and as a result must appear in the tail call position. Non-
tail calls to primitives do not break theCPS expectation that callsmust be in a tail call position:
while primitives may look like function calls, their bodies are directly inlined and non-tail
call primitives are not allowed to perform control flow. Conditional primitives7 are only
valid in if-then-else expressions and allow for conditional branching based on a compiler-
implemented test (e.g. integer equality). Figure 5.1 shows an example Tim program that
makes use of primitives for records and conditionals.

7Youmay wonder why Tim has a separate if-then-else conditional primitive construct when such a construct
can also be implemented by simply passing two separate continuations to a primitive tail call. The reason is
simply because it allows Dynamix to have an if-then-else construct that directly correlates with a Tim construct.
It has the added benefit of making Tim programs slightly more readable.

33

5. THE TIM INTERMEDIATE REPRESENTATION

1 fix {
2 // Print the name of the user. If the first name is
3 // empty, only print the last name.
4 fun print_name(user, c) =
5 #record-read(user, "first") => first;
6 #record-read(user, "last") => last;
7 if #str-eq(first, "") then
8 #print(last) => tmp0;
9 c()

10 else
11 #str-add(first, " ") => tmp0;
12 #str-add(tmp0, last) => tmp1;
13 #print(tmp1) => tmp0;
14 c()
15 } in
16 fix {
17 fun c0() =
18 #exit()
19 } in
20 #record-new("first", "John", "last", "Doe") => user;
21 print_name(user, c0)

Figure 5.1: An example program that shows the use of primitives in a Tim program. Primi-
tives allow for the introduction of new operations and new data structures, without the need
for specialized syntax. Here, primitives are used to provide access to record data structures
and to perform operations on string values.

5.2 Syntax
Let us now formally define the syntax for Tim. Unlike the CPS IR from ”Compiling with
Continuations” [6] that Tim is based on, Tim has a formally defined syntax (Appel only con-
siders the semantics of the CPS IR, and does not propose a syntax). Just like Appel’s IR, our
grammar syntactically ensures that the program is in a valid CPS form. Grammar 5.1 shows
the full grammar for the Tim IR.

Grammar Notation Within this section, the superscript suffix * represents that the preced-
ing term may be repeated 0 or more times. Similarly, the superscript suffix + represents that
the preceding term may be represented 1 or more times, and the superscript suffix ? indi-
cates that some term is optional. If a repetition qualifier is applied to a sequence of terms
within angled brackets, it indicates that the given terms may be repeated using the trailing
terminal symbols of the group as separator (e.g. the notation 〈 cexp, 〉∗ represents zero or
more comma-separated expressions). If the same non-terminal is defined multiple times,
the syntax for the non-terminal should be interpreted as the disjunction of all definitions for
it. Any number of whitespace is supported between productions in any non-terminal rule,
unless (the lack of) such whitespace would cause the resulting code to be parsed differently.
On digital versions of this thesis, clicking a non-terminal reference will navigate you to the
definition of that non-terminal.

34

5.3. Dynamic semantics

program ::= cexp

cexp ::= cval(〈 cval, 〉∗) tail call
| #primitive(〈 cval, 〉∗) => id; cexp primitive call
| #primitive(〈 cval, 〉∗) primitive tail call
| if #primitive(〈 cval, 〉∗) then cexp else cexp conditional primitive
| fix { cfun∗ } in cexp function definition
| let 〈 id = cval, 〉+ in cexp let definition

cval ::= int integer literal
| string string literal
| id variable reference

cfun ::= fun id(〈 id, 〉∗) = cexp

id ::= [a-zA-Z_$] [a-zA-Z0-9_$-]∗

int ::= -? [1-9] [0-9]∗

string ::= " string-char∗ "

primitive ::= [A-Za-z0-9_+*/-]∗

Grammar 5.1: The grammar of the Tim intermediate representation.

One particular property of the Tim grammar, aswell as its corresponding algebraic signature,
is that it isCPS-by-construction. That is, the design of the grammar automatically enforces that
certain properties of the CPS hold for any well-formed Tim term. In particular, the grammar
enforces that calls are always in the tail position, and that arguments to calls are atomic val-
ues (i.e. literals or variable references, but not complex sub-expressions).

Enforcing proper tail call behavior is done by carefully modeling how multiple expressions
combine. Instead of a sequencing operator (e.g. cexp ',' cexp) or a flat block statement
(e.g. '{' cexp* '}'), each expression in Tim directly embeds the next expression. The only
expressions that do not specify their subsequent expression are function calls and primitive
tail calls. This trivially makes them the final expression in a sequence, and hence enforces
that every call is a tail call. Note that this property alsomeans that every expressionmust end
in a tail call: it is simply not possible to terminate a sequence of expressions with anything
other than a (primitive) tail call.

Enforcing that expressions (and function calls in particular) do not contain complex sub-
expressions is done simply by making these a different sort. cvals are defined to be solely the
expressions that directly yield a value: integer literals, string literals, and variable references.
Only cvals may be passed to function and primitive calls.

5.3 Dynamic semantics
We first focus on the runtime semantics of Tim. While the Tim language resembles that of
Appel’s IR inCompilingwithContinuations [6], the use of a dynamic set of value, expression,

35

5. THE TIM INTERMEDIATE REPRESENTATION

and conditional primitivesmeans that it departs enough fromAppel’s IR that it is worth fully
specifying the language. We defer the discussion of Tim’s static semantics until Section 5.4,
as they naturally follow from the runtime semantics of the language.

5.3.1 Notation

We formally define the runtime semantics of Tim through Kahn-style big-step operational
semantics [31]. To do so, let us first define some notation.

The store, S, is a mapping from variable names to their concrete values. Since Tim variables
are immutable once created, we do not require a separate environment and store. In order to
still support mutable values, we provide the heap,H , which functions as amapping from ad-
dress to value. The heap is not exposed to any Tim language constructs, but it may be freely
accessed by the implementations of certain primitives. We use the syntax S′ = S[x 7→ y]
(respectively H ′ = H[x 7→ y]) to extend S with a new mapping from x to y, yielding the
store S′ (respectively heap H ′). If S already contained a mapping for x, it is shadowed by the
new value y in S′, but remains accessible in S. The syntax S[x] retrieves the value bound to
x in store S.

Values are denoted as v = X(a1, a2, ..., an). Here X is the discriminant, indicating the type of
the value. The content of the data is included in the arguments a1 through an. The core Tim
language has three different value sorts: int(i), str(s) and func(S, args, body). For the function
sort, the associated S indicates the environment that the function closes over. Primitives can
return additional data types not in this list. These data values are prefixed with # and are
opaque to core Tim constructs. They can only be handled by primitives that support these
data types.

We will use two different relations to define the behavior of Tim. For cvals, we will use the
notation S ` e → v to indicate that the cval e evaluates to the value vwithin the store S. Since
cval terms cannot have side effects, we do not have to consider any changes to S. Similarly,
cval terms cannot access the heap H . For expressions, we use the notation S,H ` e ⇓ H ′ to
indicate that evaluating the expression e eventually yields the heapH ′. Note that, due to the
nature of CPS, this relation represents the result of evaluating the program to the end from a
given expression e. Because of this, we do not consider any values produced by this relation.8

In some cases, we will use an overhead bar to indicate that something represents a vector or
a vector operation. For instance, the notation S ` e → v indicates that the list of cval terms
e evaluates to the list of values v. One special case is that of extending a store with multiple
elements at once: S[x 7→ y]. This operation is only valid if all names in x are distinct9.

The behavior of primitives is implemented through three functions. We use TAILPRIMITIVE(H,
x, v) = H ′ to indicate that calling primitive x in a tail call positionwith arguments v and heap
H yields the new heap H ′. Similarly, we use PRIMITIVE(H,x, v) = v,H ′ to indicate that the
value primitive x yields value v and changed heap H ′ when invoked with arguments v and
heap H . Finally, we use the notation CONDITIONALPRIMITIVE(H,x, v) = b,H ′ for conditional
primitives. Here, b is either true or false, depending onwhich branch of the conditional state-
ment should be taken. We list some example implementations of primitives in Section 5.3.3.

8After all, a CPS expression must end with either a tail call or a call to the #exit primitive. Neither can
produce a value that we could reasonably consider the ”result” of the expression.

9This is generally asserted as part of the static semantics of the language.

36

5.3. Dynamic semantics

5.3.2 Semantics of the core language
With the notation defined, we can discuss the semantics of the Tim core10 language. Let us
start simple by defining the behavior of cvals. String and integer literals directly convert to
their runtime equivalents. For variables, we perform a lookup in the store.

V-INT LITERAL
S ` i → int(v)

V-STRING LITERAL
S ` s → str(s)

v = S[x]
V-VARIABLE REFERENCE

S ` x → v

With cvals out of the way, let us tackle the expressions. A let-binding simply extends the
store with a new name for a value. Newly defined variables are only visible in the body, and
not in subsequent bindings of the same let.

S ` e → v
Sl = S[x 7→ v]

Sl,H ` b ⇓ H ′
E-LET

S,H ` let x = e in b ⇓ H ′

fix expressions are used to declare functions. Functions declared within the same fix block
are allowed to refer to each other, as well as any variables declared in a higher scope (they
capture their scope).

f1 = func(S′, args1, body1)

f2 = func(S′, args2, body2)

...
fn = func(S′, argsn, bodyn)

S′ = S[x1 7→ f1, x2 7→ f2, ..., xn 7→ fn]

S′,H ` b ⇓ H ′
E-FIX

S,H ` fix { fun x1(args1) = body1 · · · fun xn(argsn) = bodyn } in b ⇓ H ′

The tail call expression can be used to call functions. For a call to be valid, it must resolve
to a value of type func with a matching number of arguments. We substitute the argument
names into a new environment based on the captured environment from the function, then
evaluate the body with the newly formed environment to compute the result of the function
call.

S ` e → func(Sf , argn, body)

S ` a → v
S′
f = Sf [argn 7→ v]

S′
f ,H ` body ⇓ H ′

E-TAIL CALL
S,H ` e(a) ⇓ H ′

10We define ”Tim core” to be the parts of the Tim language that are statically defined, i.e. anything but the
behavior of primitives.

37

5. THE TIM INTERMEDIATE REPRESENTATION

The primitive tail call is very similar, but we defer the next continuation as well as the result-
ing heap to the implementation of the primitive. It is an error to call a primitive that is not
defined. We discuss the semantics of several primitives in Section 5.3.3.

S ` a → v
H ′ = TAILPRIMITIVE(H, #id, v)

E-PRIMITIVE TAIL CALL
S,H ` #id(a) ⇓ H ′

Non-tail calls to primitives are similar, but instead of returning a continuation return a value
directly. Note that even non-tail call continuations are allowed to change the heap.

S ` a → v
vp,H1 = PRIMITIVE(H, #id, v)

S1 = S[x 7→ vp]

S1,H1 ` e ⇓ H2 E-PRIMITIVE CALL
S,H ` #id(a) => x; e ⇓ H2

Finally, conditional primitives simply invoke the primitive function and branch based on the
result of this invocation. It should be noted that the true and false in the semantics here
are simply indications on which branch should be taken, with no particular requirements on
exactly how these values are represented.

S ` a → v
b,H1 = CONDITIONALPRIMITIVE(H, #id, v)

e =

{
e1 if b is true
e2 if b is false

S,H1 ` e ⇓ H2 E-PRIMITIVE CONDITIONAL
S,H ` if #id(a) then e1 else e2 ⇓ H2

5.3.3 Semantics of various primitives
Now let us discuss the semantics of some of the primitives available to Tim programs. Since
Tim offers an API for language designers to implement their own primitives, it is impossible
to provide an exhaustive list of all primitives and their semantics. Rather, this section is in-
tended as a way to show how primitives may be implemented and how they are capable of
significantly extending the features available to Tim programs.

The #exit primitive is the only way to gracefully terminate execution. Perhaps surprisingly,
this is achieved by doing nothing. Due to the nature of CPS, not calling any continuations is
effectively the same as terminating execution: the only way in which #exit can be called is
through a primitive tail-call, which by definition is the last expression. This means that if we
do nothing to explicitly continue execution, the program will exit.

PRIM-EXITTAILPRIMITIVE(H, #exit) = H

38

5.3. Dynamic semantics

Simple operations, such as integer addition, #int-add, are expressed through primitives. But
primitives are not limited to only performing a single operation: the #str-add primitive per-
forms string concatenation, a considerably more complex operation.

PRIM-INT ADDPRIMITIVE(H, #int-add, int(a), int(b)) = int(a+ b),H

PRIM-STRING ADDPRIMITIVE(H, #str-add, str(a), str(b)) = str(a||b),H

Conditional primitives such as #int-eq are implemented by evaluating the conditional and
returning either true or false.

b =

{
true if a = b

false otherwise
PRIM-INT EQUALITYCONDITIONALPRIMITIVE(H, #int-eq, int(a), int(b)) = b,H

Tim variables are immutable. The #ref-new, #ref-fetch, and #ref-store primitives allow for
(shared) mutable values by allocating a value on the heap, and returning an opaque value
that contains a reference to the allocated value, noted as #ref(x).

x = new address not occupied in H

H ′ = H[x 7→ v]

vh = #ref(x)
PRIM-REF NEWPRIMITIVE(H, #ref-new, v) = vh,H

′

v = H[x]
PRIM-REF FETCHPRIMITIVE(H, #ref-fetch, #ref(x)) = v,H

H ′ = H[x/v]
PRIM-REF STOREPRIMITIVE(H, #ref-store, #ref(x), v) = v,H ′

Primitivesmay also be used to introduce newdata structures. The #record-new, #record-read,
and #record-write primitives define and use a #record data structure, which functions as a
heap-allocated list of key-value pairs. We use the notation r = rec(k1 = v1, ..., kn = vn) to
construct such a list, r[k1] to retrieve the value bound to k1 in record r, and r[kx 7→ vx] to
extend r with a new mapping from kx to vx, possibly shadowing the previous value. It is a
runtime error to retrieve a value for an undefined key.

x = new address not occupied in H

r = rec(k1 = v1, k2 = v2, ..., kn = vn)

H ′ = H[x 7→ r]

vout = #record(x)
PRIM-RECORD NEWPRIMITIVE(H, #record-new, str(k1), v1, str(k2), v2, ..., str(kn), vn) = r,H ′

r = H[x]

v = r[k]
PRIM-RECORD READPRIMITIVE(H, #record-read, #record(x), str(k)) = v,H

r = H[x]

r′ = r[k 7→ v]

H ′ = H[x 7→ r′]
PRIM-RECORD WRITEPRIMITIVE(H, #ref-store, #record(x), str(k), v) = v,H ′

39

5. THE TIM INTERMEDIATE REPRESENTATION

5.4 Static semantics
Let us now discuss the static semantics for Tim. The reason we only discuss them now is
because there simply isn’t much to do here. Just like the CPS IR from ”Compiling with Con-
tinuations”, Tim is dynamically typed. Variables and function arguments have no statically
declared type and be assigned any value, regardless of its type. Tim also has arbitrary prim-
itives, with the ability for a language designer to define their own. As a consequence of this,
we cannot perform much in terms of static analysis. In fact, the static semantics specification
for Tim only defines the behavior of name binding, which we will discuss in Section 5.4.1.

However, the lack of static typing does not prevent us frommaking an attempt at performing
static analysis. While the formal definition of Tim only includes the name binding rules,
I have written an Statix specification for Tim for use within the Spoofax workbench. This
specification uses the constraint engine from Statix to infer types of variables in order to
statically reject some invalid programs. We will discuss this specification in Section 5.4.2.

5.4.1 Name binding semantics
Let us define the environment O as the set of variables in scope. We will then define the
judgement O ` e (O ` v) to indicate that cexp e (respectively cval v) has valid name bind-
ings with respect to environment O. To extend an environment O with a new binding x, we
use the syntaxO′ = O∪{x}. IfO already contained a binding x, it will be shadowed, such that
any references to xwithin O′ refer to the new value (note that the binding within O remains
the original x). We use the shorthand O ` v1, v2, ..., vn to indicate that values v1 through vn
must have valid name bindingwithin the environmentO. Aswith the dynamic semantics no-
tation, wewill use the overline bar, a, to indicate that something represents a vector of values.

Figure 5.2 lists the full name binding rules for Tim. Generally, language features that intro-
duce new bindings do so by extending their scope, shadowing any previous bindings with
the same name. There is only a single namespace for both variables and functions (since
functions are first-class values in Tim), and no access visibility modifiers. Within fix and
let constructs, names that reside within the same scope (e.g. function names within a fix
block, argument names in a single function) must be distinct.

5.4.2 Approximating static analysis with Statix
While Tim’s design does not lend it well to static analysis beyond name binding, some at-
tempts can be made to infer types of variables and functions based on their declaration sites
and uses. To aid language designers in debugging their programs, the Tim implementation
in the Spoofax language workbench includes a static specification using Statix [5] (see also
Section 2.2.2 for more information on Statix). This specification checks name binding ac-
cording to the rules discussed in Section 5.4.1, but it also attempts to type-check variables,
function calls, and primitive calls by inferring types of values. This way, the specification
acts as a ”smoke test”11 that gives users an opportunity to see whether their Tim program
has trivial errors.

Within the Statix specification for Tim, types of variables are inferred from their assigned
values. Since variables are immutable once created, and it is impossible to declare a name
without immediately assigning a value to it (with the exception of function arguments), we
can directly infer the type of a variable from the type of the value assigned to it. For function

11A test that checks whether some system at least appears to function properly. Smoke tests are often very
coarse-grained and assert things like ”does the program start without immediately crashing”.

40

5.4. Static semantics

B-INT LITERAL
O ` i

B-STRING LITERAL
O ` s

x ∈ O B-VARIABLE REFERENCE
O ` x

O ` v0, v1, ..., vn B-CALL
O ` v0(v1, v2, ..., vn)

O ` v1, v2, ..., vn

O′ = O ∪ {x}
O′ ` e B-PRIMITIVE CALL

O ` #primitive(v1, v2, ..., vn) => x; e

O ` v1, v2, ..., vn B-PRIMITIVE TAIL CALL
O ` #primitive(v1, v2, ..., vn)

O ` v1, v2, ..., vn
S ` e1
S ` e2 B-PRIMITIVE CONDITIONAL

O ` if #primitive(v1, v2, ..., vn) then e1 else e2

f1, f2, ..., fn distinct
all elements in ai distinct for all i ∈ [1, n]

Of = O ∪ {f1, f2, ..., fn}
O1 = Of ∪ a1

O1 ` b1
...

On = O ∪ an
On ` bn
Of ` e

B-FIX
O ` fix { fun f1(a1) = b1 · · · fun fn(an) = bn } in e

x1, x2, ..., xn distinct
O ` e1, e2, ..., en

O′ = O ∪ {x1, x2, ..., xn}
O′ ` b B-LET

O ` let x1 = e1, x2 = e2, ..., xn = en in b

Figure 5.2: The name binding rules for Tim.

41

5. THE TIM INTERMEDIATE REPRESENTATION

Figure 5.3: Type inference in the Statix specification for Tim. Statix is able to determine that
the type of a is an integer based on its use, and rejects the function call with the wrong
argument type.

arguments, we use the constraint-solving engine to infer the type of an argument from its
uses, by assigning it an unconstrained wildcard variable. Figure 5.3 shows an example of
this inference in action.

There are several drawbacks to the Statix specification that prevent it from becoming a com-
plete static specification for Tim. These drawbacks are also the reasonwhy the language defi-
nition for Tim, despite the existence of a complete Statix specification, only formally specifies
the name binding rules. In particular, these constraints are the following:

Type signatures of primitives must be defined inside the Statix specification. In order to
properly infer types, the Statix specification must know the type signature of each primitive.
Since there is no syntax to declare these signatures, they must be directly hardcoded in the
specification. As a result, only a select handful of default primitives are supported by the
Statix specification.

The type system used is (too) simplistic. In order to avoid specifying a complete type sys-
tem for Tim, the types used in the Statix specification are very simplistic and have no concept
of subtyping. New types introduced by primitives (e.g. records, arrays) are opaque and do
not consider their contents. As a result, operations like #record-read cannot check whether
the field exists within the record. An example of this can be seen in Figure 5.4 (top).

Type inference cannot handle polymorphic functions. The constraint solver used by Statix
will unify constraints on a first-come, first-served basis. Once a variable has been unified,
any other constraints it participates in will be evaluated as equality constraints. As a result
of this, a polymorphic function will unify its arguments with the first function invocation,
and assume this to be the function signature. The bottom snippet in Figure 5.4 shows this
restriction. The type of a cannot be inferred from the body of id, so it is inferred from the first
call (with an argument of type INT). The second call is then rejected, even though it would
work properly at runtime.

Despite these flaws, Spoofax ships with the Statix specification enabled by default. Personal
experience during the development of various test specifications, as well as the two case
studies discussed later in this document (Chapter 9), has shown that the Statix specification
delivers tangible benefits and allows for easier tracing of miscompilation artifacts caused by
erroneous Dynamix specifications. In cases where the static analysis rejects a Tim program
that is valid at runtime, the user is not blocked from actually executing the code; the static

42

5.5. The Tim runtime

1 #record-new("foo", 1) => a;
2 #record-read(a, "Foo") => foo;
3 #print(foo) => tmp0;
4 #exit()

1 fix {
2 fun id(x, c) = c(x) // polymorphic fn(T, fn(T)) for all T
3

4 fun c0() = id(1, c1) // OK, types `x` as INT()
5 fun c1(_) = id("A", c2) // errors, STRING() != INT()
6 fun c2(_) = #exit()
7 } in c0()

Figure 5.4: Two examples of limitations within the Statix specification for Tim. In the above
example, no errors are raised even though the "Foo" field does not exist in a. In the bottom
example, an error is raised because the type system used in the Statix specification is unable
to represent polymorphic functions.

analysis is completely optional12.

5.5 The Tim runtime
In order to run Tim programs, the Spoofax implementation of Tim ships with an interpreter
for the language written in Stratego. This interpreter was written as a base implementation
of Tim and focuses on a correct language implementation over performance. As a result, its
main purpose is the ability to run Tim programs from within the Spoofax language work-
bench, such as during language development and as part of language test suites.

Stratego was chosen as an implementation language because it has direct integrations with
most other meta-languages within the Spoofax language workbench. This allows it to be
invoked from other parts of the language workbench and allows users to easily extend the
language with new primitives by invoking the appropriate Stratego strategies. Since Tim ref-
erence implementation itself is also a Spoofax project, the Tim interpreter is also able to take
advantage of the static type checking available in Stratego 213. The Tim interpreter directly
implements the dynamic semantics described in Section 5.3. As such, we will refrain from
discussing the entire implementation in this thesis14.

One aspectwewill briefly discuss is how the Tim interpreter performs tail calls. Neither Strat-
ego, nor Java (to which Stratego compiles), has native support for tail calls. Since Tim is a
CPS-based language, it is imperative that it supports proper tail calls. A lack of tail call sup-
port would mean that any non-trivial Tim program will eventually run out of stack space.
Tim resolves this issue by modeling an expression as returning a continuation value. This
value indicates whether execution should continue (and if yes, where), or whether it should

12There have been several discussions during my thesis on whether the static analysis should emit errors or
warnings, since itmay reject valid programs. In the end, we settled on errors as they are correct the overwhelming
majority of the time and almost always indicate a serious issue in the generated code.

13Stratego 2 is a partial rewrite of the Stratego language and introduces incremental compilation and gradual
typing, among other things. At the time of writing, Stratego 2 is still in development and there have yet to be any
publications.

14If the reader is interested, the code for the Tim interpreter is available online at https://github.com/
metaborg/spoofax-pie/blob/develop/lwb/metalang/tim_runtime/tim_runtime.spoofax2/trans

43

https://github.com/metaborg/spoofax-pie/blob/develop/lwb/metalang/tim_runtime/tim_runtime.spoofax2/trans
https://github.com/metaborg/spoofax-pie/blob/develop/lwb/metalang/tim_runtime/tim_runtime.spoofax2/trans

5. THE TIM INTERMEDIATE REPRESENTATION

1 signature
2 sorts Continuation
3 constructors
4 ContinueAt : scope * Exp -> Continuation
5 Exit : Continuation
6

7 strategies
8 // `while` implemented iteratively in Java
9 external native-while(c, s|)

10

11 rules
12 eval-exp(|scope): TailCall(target, args) -> ContinueAt(fnBodyScope, fnBody)
13 with
14 FunctionValue(capturedScope, argNames, fnBody) := <eval-exp(|scope)> target
15 // [remaining code omitted]
16 eval-exp(|scope): PrimitiveTailCall("exit", []) -> Exit()
17 // [other cases omitted]
18

19 eval-continuation: Exit() -> Exit()
20 eval-continuation: ContinueAt(scope, exp) -> <eval-exp(|scope)> exp
21

22 eval-program =
23 eval-exp(|<scope-new>)
24 ; native-while(not(?Exit()), eval-continuation)

Figure 5.5: A sketch of how the Tim interpreter in Stratego implements tail-calling by model-
ing expressions as returning a continuation value. The native-while strategy is used to avoid
issues with the recursively-implemented while strategy from Stratego’s standard library.

abort. Evaluating a program is done by iteratively performing execution on an expression
using the while strategy until a termination continuation term is received. A sketch of this
approach can be seen in Figure 5.5. One particularity is that the while strategy from the Strat-
ego standard library uses recursion to perform iteration15. As a result, early versions of the
Tim interpreter were not actually properly tail calling, despite appearing to be. A custom
native strategy16 that works iteratively instead of recursively is needed to achieve proper tail
calls.

The Tim language has no major design decisions that prevent a more performant implemen-
tation, such as an ahead-of-time compiler, in the future. Such an implementation must sup-
port first-class functions that capture scope, first-class tail call support, as well as efficient
implementations of common primitives (e.g. the record primitive, which is effectively a
hash table). Other points that must be considered include the memory model of the lan-
guage (the Tim interpreter relies on the Java GC), the runtime representation of types, and
potential interoperation with other languages. We briefly discuss such a potential compiler
in Chapters 10 and 11.

15This is likely an oversight since a similar strategy, repeat, does not suffer from this issue. A bug was filed to
correct the issue: https://github.com/metaborg/stratego/issues/34.

16A Stratego strategy implemented directly in Java.

44

https://github.com/metaborg/stratego/issues/34

Chapter 6

An introduction to the Dynamix
meta-language

In this chapter, we will introduce the Dynamix meta-language in the form of a partial Dy-
namix specification for the Tiger programming language. Throughwriting a specification for
Tiger, we will gradually introduce the language syntax and features of the Dynamix meta-
language, so that we may develop an intuition on how one writes specifications with Dy-
namix. This introduction will also help us understand some of the peculiarities of the case
studies we will later discuss in Chapter 9.

This chapter serves as an informal introduction to the Dynamix meta-language and its con-
ventions. We will first discuss the specification for Tiger in Section 6.1. Afterwards, we dis-
cuss how several of Dynamix’s abstractions help us keep Dynamix specifications concise,
while at the same time generating valid CPS terms.

6.1 Implementing Tiger in Dynamix
One of the best ways to get acquainted with the Dynamix meta-language is to write a simple
Dynamix specification for a source language. In this section, wewill gradually introduce Dy-
namix and its features by working on a specification for Tiger. Tiger, a simple programming
language used inAndrewAppel’sModern Compiler Implementation family of books [8, 7, 9], is
a typed imperative language that supports function definitions, records, arrays, control flow,
and common arithmetic operations. This makes it an excellent choice for an introduction to
Dynamix.

The version of Tiger we will be using is the one described in Prof. Stephen A. Edwards’s
reference manual for the language1. A partial grammar for this language, containing only
the constructs which we will discuss in this chapter, can be seen in Grammar 6.1. For the
sake of brevity, this chapter only discusses the Dynamix specification for Tiger, omitting the
SDF3 grammar and Statix specification aspects of the language definition. It should be noted
that our main intention here is to explore the Dynamix meta-language, and not to write a
complete specification for Tiger. We will therefore only discuss the specifications for certain
language features if their implementation introduces an important part of Dynamix (e.g. we
will discuss the implementation of while-loops, but omit the largely similar implementation
for for-loops). Readers interested in the full language project, including the grammar and
full Dynamix specification, are advised to consult the source code available online2.

1http://www.cs.columbia.edu/~sedwards/classes/2002/w4115/tiger.pdf
2https://github.com/metaborgcube/metaborg-tiger

45

http://www.cs.columbia.edu/~sedwards/classes/2002/w4115/tiger.pdf
https://github.com/metaborgcube/metaborg-tiger

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

expr ::= string string literal
| int int literal
| lvalue lvalue
| expr + expr addition
| lvalue := expr assignment
| id(〈 expr, 〉∗) function call
| (〈 expr, 〉∗) expression sequence
| if exp then exp else exp if-then-else
| type-id { 〈 id = expr 〉∗ } record literal
| while expr do expr while loop
| break break
| let decl+ in expr∗ end let binding

lvalue ::= id variable
| lvalue.id record member access

decl ::= type type-id = type type declaration
| var id := expr var declaration
| var id: type-id := expr var declaration
| fundecl+ mutually recursive fun declarations

fundecl ::= function id(〈 id: type-id, 〉∗) = expr function declaration
| function id(〈 id: type-id, 〉∗): type-id = expr function declaration

type ::= type-id type reference
| { 〈 id: type-id, 〉∗ } record type

Grammar 6.1: The grammar for the Tiger language constructs discussed in this chapter.
Based on the grammar listing from Stephen A. Edwards’ reference manual for Tiger1.

Within this section, we will omit the Dynamix type signatures for any rules we discuss. This
is primarily because Dynamix’s type system requires an understanding of both the general
meta-language, as well as the abstractions it uses to fluently compile to a CPS language, in
order to be properly understood. When we formally define Dynamix’s type-system in Sec-
tion 6.2.4, we will return to the signatures of some of the rules discussed.

46

6.1. Implementing Tiger in Dynamix

evalExp︸ ︷︷ ︸
name

(
argument pattern︷ ︸︸ ︷
String(i)) = str(s)︸ ︷︷ ︸

body

Figure 6.1: The structure of a rule definition in Dynamix.

6.1.1 Literals
We start our actual specification with the simplest language constructs that Tiger has to of-
fer: literals. Tiger has integer and string literals, represented in the AST as Int("...") and
String("...") respectively. Since Tim natively supports these literals, our specification for
these constructs suffices by constructing the equivalent Tim literals:

1 rules
2 // The first rule invoked by Dynamix is compileFile. We will delegate
3 // it to evalExp, since a file consists of a single expression.
4 // compileFile :: [type signature omitted]
5 compileFile(Mod(exp)) = evalExp(exp)
6

7 // evalExp :: [type signature omitted]
8 evalExp(Int(i)) = int(i)
9 evalExp(String(s)) = str(s)

A single Dynamix rule, such as evalExp, consists of a set of implementations. Each imple-
mentation follows the structure outlined in Figure 6.1, declaring a set of patterns that the
arguments must match in order for the body of the rule to apply. Our evalExp rule accepts
a single argument representing an Exp AST node. Just like other Spoofax languages, Dy-
namix uses the ATerm format for representing the source AST and allows pattern matching
of constructors, literals, lists, and variables. We define two implementations for the rule: one
pattern matches the input on an Int pattern, and one pattern matches the input on a String
pattern. Should we try to invoke the evalExp rule with an argument that does not match
any of the implementation patterns, it will raise an error during the source compilation pro-
cess. Rule implementations are tried in order of their pattern specificity (see also Section 7.4).

We have named our expression rule evalExp, but you should not be deceived by this name.
Dynamix remains a declarative language used for compilation of source programs, and not
interpretation. However, it turns out that writing Dynamix specifications is quite similar to
writing a declarative interpreter. If we view a dynamic specification as a set of steps to per-
form to evaluate some language construct, then it makes sense for the relation representing
the evaluation of some expression to be called evalExp.

The bodies of our literal evalExp cases invoke the int and str language constructs. These
accept a literal string value (i.e. a value known at compile-time) and return the equivalent
Tim literal.

6.1.2 Simple arithmetic
Let us continue with some simple arithmetic operators. We will assume that the source snip-
pet has been type-checked, so we do not need to do any runtime type checks. This means
that our arithmetic is as simple as evaluating the sub-expressions, and performing the ap-
propriate native operation. To perform the operations, we will use the #int-X family of Tim
primitives (see Section 5.1) that ships with Dynamix by default.

47

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

1 rules
2 evalExp(Plus(a, b)) = {
3 av <- evalExp(a)
4 bv <- evalExp(b)
5 #int-add(av, bv)
6 }
7 // other arithmetic operators omitted

Note that we perform pattern matching for the appropriate arithmetic rules here, but we
do not redefine the rule. Instead, these rules simply add to the rules for literals that we al-
ready defined earlier. Due to the abstractions that Dynamix offers, these implementations
are straightforward enough that they can be understood at a glance even by someone not
familiar with the language. However, there are some peculiarities involved.

One such peculiarity is that the <- operator is required in this snippet: directly doing #int-add(
evalExp(a), evalExp(b))will be rejected by the Dynamix type-checker. We discuss the exact
reason behind this in Section 6.2.4, but for now it suffices to say that Dynamix distinguishes
between computations and values. The call to evalExpwill return a computation, which needs
to be performed in order to obtain a value. The <- operator will perform this operation, bind-
ing the resulting value to the left-hand side identifier3.

Note that the call to #int-add uses orange syntax-highlighting. In general, any Dynamix lan-
guage constructs that correspond with an output Tim expression (e.g. arithmetic, control
flow) use this color to indicate that they will result in computations performed by the com-
piled program4. Constructs with a different color are part of the meta-language and will be
interpreted as part of the compilation process. This syntax highlighting is integrated directly
in the Eclipse IDE used for Spoofax language development, and all source snippets in this
document are highlighted using the same highlighting engine.

6.1.3 Short-circuiting logic operators

Let us now consider a simple expression that requires control flow. Tiger’s logic operators, &
(And) and | (Or), are short-circuiting. If evaluating the left-hand side of the operator is enough
to determine its value, the right-hand side should never be evaluated. In order to do this, we
will need to perform conditional control flow in our Dynamix specification. Consider the
implementation of And:

3At least, that is how it looks. We should not forget that the Dynamix meta-language is declarative and
performs compilation, not interpretation. The actual behavior of the arrow operator is more akin to giving us an
address at which the computed value will reside, instead of the actual value.

4We use the orange color for any construct that appears in some form in the output program, regardless
of whether that construct performs actual computation. For example, int(x) is highlighted as orange, but this
does not mean that the integer is parsed from a string at runtime. Rather, the Tim literal derived from the
input will appear in the compiled program. If we consider the Dynamix compilation process to be a form of
partial evaluation, orange terms would be conceptually similar to the residual expressions emitted by this partial
evaluation.

48

6.1. Implementing Tiger in Dynamix

1 rules
2 evalExp(And(a, b)) = {
3 av <- evalExp(a) // evaluate the left-hand first
4

5 // if the left-hand evaluated to zero
6 if #int-eq(av, int('0)) then {
7 // immediately jump to the end with zero (false)
8 after@([int('0)])
9 } else {

10 // else, evaluate the right-hand and use that as result
11 bv <- evalExp(b)
12 after@([bv])
13 }
14 } label after/1:

We first evaluate the left-hand and store the result in av. We then compare this result with
the integer literal 0. In the case where it is equal (i.e. the left-hand value evaluated to false),
we immediately perform a CPS tail-call to after with 0. In the case where it is anything
else (i.e. the left-hand value evaluated to true), we evaluate the right-hand side and tail call
after using the result of this evaluation. Dynamix’s type system requires us to always tail-call
within the branches of the if-statement (lending to the fact that the Tim grammar expects us
to specify two full CPS terms for a conditional), so it would be a type error to omit either of
the calls to the after continuation. Note that both branches will be present in the compiled
binary since the if-expression must be evaluated at runtime (as also indicated by the orange
syntax highlighting).

The after continuation that both branches jump to originates from the label syntax. In partic-
ular, the syntax { a* } label x/1: b introduces a new continuation function with b as body.
This continuation function is in scope for the computation of a*, such that it can refer to the
continuation. The /1 indicates that the continuation should accept a single argument (there
is also a /0 variant). Figure 6.2 shows an example of how the label construct is compiled
to Tim. We discuss the label syntax, as well as its underlying abstraction, in more detail in
Section 6.2.

1 result <- {
2 a <- int('0)
3 if #int-eq(a, int('1)) then {
4 after@([str('"What?")])
5 } else {
6 after@([str('"Ok!")])
7 }
8 } label after/1:
9

10 tmp0 <- #print(result)
11 #exit()

1 fix {
2 fun after0(a0) =
3 #print(a0) => tmp0;
4 #exit()
5 } in
6 if #int-eq(0, 1) then
7 after0("What?")
8 else
9 after0("Ok!")

Figure 6.2: An example of how the label syntax in Dynamix abstracts away the process of
creating a continuation. The Dynamix specification (left) compiles to the given Tim program
(right). Sections with a matching background color indicate a correspondence between the
Dynamix specification and the Tim output. Note that the meta-variable result is automati-
cally bound to the argument a0 of the continuation. We discuss the label abstraction in more
detail in Section 6.2.

49

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

6.1.4 Variables
Let us continue by implementing variables. This is no simple task. In order to fully imple-
ment Tiger’s variables, we will need to implement let-bindings, variable reference expres-
sions, and assignment expressions. Let us start simple, by implementing variable references
and assignments:

1 rules
2 // variable references are lvalues in Tiger, and lvalues are exps
3 evalExp(ExpLValue(LValueVar(Var(x)))) = #ref-fetch(var(x))
4

5 // we will only consider assignment to variables for now
6 evalExp(Assign(LValueVar(Var(x)), exp)) = {
7 v <- evalExp(exp)
8 #ref-store(var(x), v)
9 }

The var(...) construct will convert the given constant string into a direct reference to a vari-
able in Tim. This allows us to construct a corresponding Tim variable for every Tiger variable.
Since Tim’s scoping rules are similar to Tiger’s, representing each Tiger variable as a Tim vari-
able yields us correct shadowing behavior for free. Since Tim variables are immutable, we
need to wrap each variable in a reference using the #ref- family of primitives, which provide
access to mutability by storing the value on the heap through an indirection.

Note that Tiger is slightly odd in that certain expressions (e.g. assignment, loops, break) pro-
duce no value. Even though static analysis will ensure that the ”values” produced by these
expressions can never be read, our definition of evalExp still requires us to return a value.
For this implementation, we simply return whatever #ref-store returns, which happens to
be the value stored in the ref (v).

Before we implement let-bindings, we first need to implement some helper functions. The
body of a let-binding may contain any number of expressions. We will need to evaluate all
of them, but we are only interested in the result of the last expression. For this we will use a
helper rule, evalExps, that will recursively invoke itself and yield only the last result.

1 rules
2 // evalExps :: [type signature omitted]
3 evalExps([a]) = evalExp(a)
4 evalExps([hd|tl]) = {
5 evalExp(hd) // eval head
6 evalExps(tl) // and recursively eval tail
7 }

Recursive invocations are themainmethod for implementing operations on lists in Dynamix.
Pattern matching allows us to unfold the list of expressions one at a time until we reach the
list with a single element left. Note that this implementation will fail during compilation if
we attempt to compile an empty list of expressions, as there is no implementation of evalExps
that matches an empty list. This is fine for our use case, as we will assume that the preceding
static analysis phase of compilation rejects such invalid programs.

A Tiger let-binding allows for defining multiple Dec(laration)s at the same time. Let us also
define a helper evalDecs, which simply delegates to evalDec (which we will define later):

50

6.1. Implementing Tiger in Dynamix

1 rules
2 // evalDecs :: [type signature omitted]
3 evalDecs([]) = hole
4 evalDecs([hd|tl]) = {
5 evalDec(hd)
6 evalDecs(tl)
7 }

New in this snippet is the hole syntax. Roughly speaking, this syntax represents a lack of
computation, or a placeholder. Using hole effectively tells Dynamix ”please fill this with the
computation that you have determined should come after the current computation”. For
this snippet, it means that after we have evaluated all declarations, we should continue at
whichever operation comes after the invocation of evalDecs (presumably the body of the let-
binding). We discuss the hole abstraction in more detail in Section 6.2.

We can now go ahead and implement evalDec. Since we are only concerned with variable
declarations, we will opt to ignore the function declaration construct for now. For each vari-
able declaration, we will evaluate its value, then introduce a new Tim let-binding with the
value:

1 rules
2 // evalDec :: [type signature omitted]
3 evalDec(VarDec(n, _, exp)) = evalVarDec(n, exp)
4 evalDec(VarDecNoType(n, exp)) = evalVarDec(n, exp)
5

6 // evalVarDec :: [type signature omitted]
7 evalVarDec(name, exp) = {
8 v <- evalExp(exp)
9 ref <- #ref-new(v)

10 let var(name) = ref in
11 hole
12 }

Note that we again use the hole syntax. This allows us to ”emit” a let-binding as a standalone
operation, without needing to know what should be the body of the binding5. Note that we
wrap the value inside a ref, as discussed earlier.

With all helper functions implemented, the rule for the let-expression itself becomes trivial:

1 rules
2 evalExp(Let(decs, body)) = {
3 evalDecs(decs)
4 evalExps(body)
5 }

5We’re talking about a Tim let-binding here, not to be confused with a Tiger let-binding. Note the orange
syntax highlighting.

51

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

6.1.5 Functions
Let us now consider the other form of declaration that can appear in a let-binding: func-
tions. Since Tiger functions are allowed to be mutually recursive when defined in the same
let-binding, we have to take a slightly different approach than what we did with variable
declarations. Let us first define some boilerplate:

1 rules
2 // evalFuns :: [type signature omitted]
3 evalFuns([]) = []
4 evalFuns([h|t]) = {
5 hh <- evalFun(h)
6 tt <- evalFuns(t)
7 [hh|tt]
8 }
9

10 // evalFun :: [type signature omitted]
11 evalFun(FunDec(name, args, _, body)) = evalFunImpl(name, args, body)
12 evalFun(ProcDec(name, args, body)) = evalFunImpl(name, args, body)

The highlighted line shows our first use of meta-lists. As the name suggests, these are lists
that exist purely during the Dynamix specification evaluation. Meta-lists are mainly used for
working with unknown quantities of constructs, and are accepted by Dynamix features like
function definitions, continuation calls, and calls to certain primitives. For our use case, we
will build a meta-list of function definitions, so that we may insert them all inside a single
Tim fix block (Tim supports mutual recursion between functions defined in the same fix
block).

Beforewe can consider the implementation of evalFunImpl, wewill need to define somemore
boilerplate. In particular, we will need to be able to turn a list of FArgs, the AST node rep-
resenting a function argument, into a list of Tim variables (for declaring the function). In
order to allow assignment to function arguments, we will also need to wrap each FArg in a
#ref.

1 rules
2 // fargsToArgNs :: [type signature omitted]
3 fArgsToVars([]) = []
4 fArgsToVars([FArg(n, _)|t]) = [var(n)|fArgsToVars(t)]
5

6 // wrapFArgsInRefs :: [type signature omitted]
7 wrapFArgsInRefs([]) = hole
8 wrapFArgsInRefs([FArg(n, _)|t]) = {
9 ref <- #ref-new(var(n))

10 // shadow the formal argument with a new ref
11 let var(n) = ref in
12 wrapFArgsInRefs(t)
13 }

52

6.1. Implementing Tiger in Dynamix

Note that we again use the hole construct to avoid having to pass the body of our function
as argument. With these helper functions defined, we can now define evalFunImpl:

1 rules
2 // evalFunImpl :: [type signature omitted]
3 evalFunImpl(name, args, body) = {
4 n <- var(name)
5 return <- fresh-var(return)
6 argNames <- fArgsToVars(args)
7

8 fun n(argNames ++ [return]) = {
9 wrapFArgsInRefs(args)

10 v <- evalExp(body)
11 return@([v])
12 }
13 }

Since Tim is a CPS language, we need to introduce an explicit return continuation. To do so,
we allocate a fresh (i.e. guaranteed to be unique) return variable, add it to the list of argu-
ments, and explicitly invoke it as tail call with the final result of the function body.

Now we can implement our function definition handling for let-bindings. Our grammar is
set up such that sequences of functions within a let-binding are a single FunDecs node. We
simply need to compile each function declaration with the list, then place them all in a single
fix block in order to support mutual recursion:

1 rules
2 evalDec(FunDecs(fundecs)) = {
3 funs <- evalFuns(fundecs)
4 fix {
5 funs
6 }
7 }

This is all we need. The remainder of the let-binding logic was already taken care of when
we implemented the variable declarations, so by just implementing evalDec for a FunDecs in-
stance is enough to extend our let-binding support to functions.

To finalize our let-declaration rule, we need to add an additional evalDec implementation to
handle type declarations. Recall that the Dynamix interpreter will abort compilation if a rule
is invoked with arguments that do not match any implementation. Even though type decla-
rations do not compile to anything, we still need to handle them in a evalDec implementation
to avoid failing compilation when we encounter one. We simply add an implementation that
accepts the wildcard pattern _:

1 rules
2 evalDec(_) = hole

53

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

As mentioned in Section 6.1.1, Dynamix evaluates rule patterns in order of specificity. The
wildcard pattern, _, is the least specific pattern. As a result, this fallback rule will only be
evaluated if none of the other rules match, regardless of where it is located in the file. For
the Tiger AST, this comes out to only type declarations.

We finish our function implementation by implementing calls:

1 rules
2 // evalExpList :: [type signature omitted]
3 evalExpList([]) = []
4 evalExpList([h|t]) = {
5 v <- evalExp(h)
6 tv <- evalExpList(t)
7 [v|tv]
8 }
9

10 evalExp(Call(id, args)) = {
11 {
12 argvs <- evalExpList(args)
13 tgt <- var(id)
14 tgt@(argvs ++ [after])
15 } label after/1:
16 }

We again use the label construct to introduce a new continuation, and pass this as the return
continuation to the function we call. The meta-list of arguments passed to our tail-call will
correspond to formal parameters when compiled to Tim.

6.1.6 Control flow

Let us now consider the implementation of control flow constructs in Dynamix. For the sake
of brevity, we will only discuss the implementation of the while statement and the accompa-
nying break expression.

Let us start by declaring a new scoped meta-global, $break. Meta-globals allow us to share data
with other rule implementations, without manually passing it around. For our purposes, we
will be using the meta-global to store the continuation used to break out of the loop, so that
we can tail-call it when we implement the break expression.

1 rules
2 // Meta-globals start with a $ and must be declared before use.
3 // '@cval' is the type of the global. We can ignore it for now.
4 $break :: @cval

We implement thewhile-loop by introducing a new function that contains the loop condition.
When a non-zero (i.e. truthy) value is encountered, we execute the body and unconditionally
tail-call the same function again. If the value is zero (i.e. falsy), we instead tail-call the
continuation representing the end of the loop:

54

6.1. Implementing Tiger in Dynamix

1 rules
2 evalExp(While(cond, body)) = {
3 {
4 bdy <- fresh-var(body)
5

6 fix {
7 fun bdy([]) = {
8 v <- evalExp(cond)
9 if #int-neq(v, int('0)) then {

10 with $break = after do
11 evalExp(body)
12 bdy@([])
13 } else {
14 after@([])
15 }
16 }
17 }
18

19 bdy@([])
20 } label after/0:
21

22 // Return a dummy value.
23 int('0)
24 }

We assign a value to the scoped meta-global $break we previously declared using the with
syntax, updating the value of themeta-global within the body of the binding. After the body
finishes execution, the value will be restored to the value it had prior. This allows us to sup-
port nested loops and still invoke the appropriate continuation in a break expression, and is
the reason why we refer to Dynamix’s meta-globals as ”scoped”.

We can now trivially implement our break expression by simply tail calling the $break meta-
global, which we have bound to the appropriate after continuation. Note that no other lan-
guage constructs need to concern themselves with the possibility that a break may occur,
even though the expression might be arbitrarily nested.

1 rules
2 evalExp(Break()) = $break@([])

6.1.7 Records

The final Tiger language feature we will discuss is records. Perhaps surprisingly, we will not
need any new Dynamix features to implement them. The Tim #record- family of primitives,
which we can trivially call in our Dynamix specification, are enough to implement records.
Let us first consider the implementation of record literals:

55

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

1 rules
2 // evalFields :: [type signature omitted]
3 evalFields([]) = []
4 evalFields([InitField(name, val)|rest]) = {
5 v <- evalExp(val)
6 r <- evalFields(rest)
7 [str(name), v|r]
8 }
9

10 evalExp(Record(_, fields)) = {
11 fv <- evalFields(fields)
12 #record-new(fv)
13 }

This is a straightforward implementation which calls the #record-new primitive with alter-
nating field names and their values, transforming the expression Foo{ a = 1, b = 2 } into
#record-new("a", 1, "b", 2). The #record-new primitive is defined to take a meta-list of ar-
guments, which is transformed into a concrete list when compiled to Tim (similarly to how
e.g. tail calls accept a meta-list of arguments). It is worth pointing out that meta-lists in
Dynamix are homogeneous. Both the str(x) literals, as well as the evaluated values of each
field, are Tim cval instances, and thus are allowed to be combined in the samemeta-list6. We
ignore the type name specified in the record literal. Since there are no language features in
Tiger that support querying the type of a value at runtime, we are under no obligation to
carry this information around at runtime.

Our implementation of field reading and writing is trivial. We just need to refactor some
things to account for the fact that we now also support field lvalues:

1 rules
2 // evalLValue :: [type signature omitted]
3 evalLValue(LValueVar(Var(x))) = #ref-fetch(var(x))
4 evalLValue(FieldVar(lv, member)) = {
5 v <- compileLValue(lv)
6 #record-read(v, str(member))
7 }
8

9 evalExp(Assign(FieldVar(lv, member), exp)) = {
10 indexee <- evalLValue(lv)
11 v <- evalExp(exp)
12 #record-write(indexee, str(member), v)
13 }
14

15 // we replace the previous definition for variable reading:
16 // evalExp(ExpLValue(LValueVar(Var(x)))) = #ref-fetch(var(x))
17 // in favor of
18 evalExp(ExpLValue(lv)) = evalLValue(lv)

6In other words, the Dynamix type system keeps track of whether something represents a Tim cval, but not
the exact type of the value produced by this cval.

56

6.1. Implementing Tiger in Dynamix

Note that we do not wrap record fields in #refs, as we did with variables. This is because
records provide interior mutability for their fields. Generally, Tim data types are mutable if
their data is stored behind an indirection (e.g. a record, an array, or a heap-allocated refer-
ence). We explicitly wrap local variables and arguments in #refs to introduce this indirec-
tion.

6.1.8 Interacting with static analysis
Finally, let us consider a situation where we need to interact with the results of static analy-
sis. Tiger lacks any language features that require the use of static analysis, but there are other
ways in which we can use Dynamix’s ability to interact with static analysis results. Currently,
we unconditionally wrap local variables in #refs in order to provide mutability. If we were
able to determine exactly which subset of variables is actually assigned to, we would be able
to limit our reference insertion to only these variables.7 Dynamix itself is not nearly powerful
enough to perform this analysis directly, but it is possible to perform this analysis as part of
a Statix [5] specification. We will use Dynamix’s ability to query the results of static analysis,
allowing us to use this information within our specification.

Wewill assume that our Statix specification assigns the ref property (see Section 2.2.2) on ev-
ery use of a variable, pointing back to the definition. We will also assume that the writtenTo
property is assigned a value on this declaration if it is written to at any point in the pro-
gram. An absence of this property will indicate that it is never written to. Let us first update
evalVarDec accordingly:

1 signature
2 constraint-analyzer
3 // Declare the properties.
4 property ref :: 'string
5 property writtenTo :: 'int
6

7 rules
8 // we replace our previous implementation of evalVarDec with
9 evalVarDec(name, exp) = {

10 v <- evalExp(exp)
11 ref <- wrapInRefIfNeeded(writtenTo(name), v)
12 let var(name) = ref in
13 hole
14 }
15

16 // wrapInRefIfNeeded :: [type signature omitted]
17 wrapInRefIfNeeded([], x) = x
18 wrapInRefIfNeeded(_, x) = #ref-new(x)

When we declare a new constraint analyzer property, it will introduce a function with the
same name that accepts any source AST term. Invoking the function will attempt to look
up the Statix analysis results for the appropriate node, and retrieve the property value. The
resulting value is an empty meta-list if the property did not appear on the node, or a non-
empty list if the node was assigned one (through :=) or multiple (through +=) values. For
this implementation, we use the pattern matching facilities of a helper rule to distinguish

7This is (intentionally) a somewhat silly example. An optimizing compiler for Tim would likely have no
problemoptimizing away extraneous references, whichwouldmake this a classic case of premature optimization.

57

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

between the case where no writtenTo property was on the node (and therefore no #ref is
needed), and the case where there was a value (and therefore a #ref is needed). We will
also need to adjust wrapFArgsInRefs in a similar way, but we will omit that implementation
here for the sake of brevity.

For variable references, we will use the ref property to resolve the declaring node. We will
then query the writtenTo on this property to determine whether we need to ”unwrap” the
value of the variable or not.

1 rules
2 // we replace our previous implementation of evalLValue(LValueVar(...)) with
3 evalLValue(LValueVar(Var(x))) = unwrapVarHelper(ref(x), var(x))
4

5 // unwrapVarHelper :: [type signature omitted]
6 unwrapVarHelper([refNode], x) = unwrapRefIfNeeded(writtenTo(refNode), x)
7

8 // unwrapRefIfNeeded :: [type signature omitted]
9 unwrapRefIfNeeded([], x) = x

10 unwrapRefIfNeeded(_, x) = #ref-fetch(x)

Since the only method of conditionally invoking expressions in Dynamix is rule pattern
matching, we need to introduce two helper functions here. The first, unwrapVarHelper, un-
wraps the result of the ref property lookup (we assume that a variable always has a single
ref). This then delegates to the second helper, which conditionally returns either the input,
or fetches the value from the input ref. This is everything we need in order to only condition-
ally wrap variables in #ref values.

6.2 Accessible CPS through abstractions

In our interactive introduction to Dynamix, we came across the hole expression several times.
In this section, we will take a look at how this expression, alongside several others, allows
us to greatly simplify the process of writing a specification that targets a CPS language like
Tim.

6.2.1 Creating CPS fragments with holes

One of the core difficulties of working with a CPS target language is that constructing a tar-
get expression requires us to specify the entire remainder of the execution, up until a tail
call. After all, it is impossible for us to construct a Tim expression that does not eventually
tail call, as its grammar was designed to enforce the properties of CPS (see also Section 5.2).
This property makes it impossible for a compiler to consider the compilation of a single ex-
pression in isolation.

To illustrate this, consider the following pseudo-code snippet for the compilation of integer
addition in a hypothetical compiler that uses Tim as target language:

58

6.2. Accessible CPS through abstractions

1 function compileAdd(left: Exp, right: Exp) =
2 TPrimitiveExprCall(
3 "int-add",
4 compileExp(left),
5 compileExp(right),
6 newUniqueName(),
7 cont // what to put here?
8)

We cannot create a call to #int-add, as we have no suitable value for cont. This is by design.
After all, cont represents the continuation of the program, something which we explicitly do
not know since we are compiling the expression in isolation.

The easiest solution to this issue would simply be to not compile expressions in isolation.
By instead modeling our compiler as a right fold, we can ensure that we compile later ex-
pressions before we compile earlier ones. However, this approach becomes more complex
when we consider that the bindings of (intermediate) values must flow from left to right,
completely opposite the direction of a right fold8. Not to mention that traditional (formal)
language specifications usually define the semantics of language features in isolation, which
means that a folding approach to compilation is a significant departure from the formal spec-
ification. It would be beneficial if we could somehow retain the ability to consider the com-
pilation of terms in isolation, without having to give up our CPS target language.

The way Dynamix solves this issue is by deferring the continuation part of a Tim term. It
introduces a new expression, hole, which acts as a valid continuation when inserted in a Tim
term. Through this expression, we are able to create fragments of Tim terms that, instead
of ending in a tail call, end with a placeholder. As long as we ensure that we fill this hole
with a proper CPS term before emitting the output program, we never violate the rules of
the continuation-passing style9. Terms that contain a hole are referred to as pluggable terms,
referring to the fact that we can ”plug” the hole in the term by providing it a proper contin-
uation later. Similarly, we refer to CPS terms that do not have a hole in them (and therefore
adhere to all the rules of the CPS) as finalized terms, referring to the fact that they require no
further manipulation. Pluggable termsmay only contain a single hole, but this hole does not
necessarily need to be in the continuation slot of an expression (e.g. it may also be in the
body of a function). Examples of pluggable terms can be seen in Figure 6.3.

Pluggable terms are used throughout the Dynamixmeta-language, although they are largely
transparent to the user. Calls to primitives for example, implicitly produce a Tim primitive
call expression with a hole as continuation. Some of Dynamix’s abstractions, such as the
label syntax briefly discussed in Section 6.1.3, are also simply syntactic sugar over the hole
expression, as can be seen in Figure 6.4.

It is important to restate that the hole expression is an abstraction that purely exists on the
meta-level. Since hole allows us to trivially violate the CPS-by-construction guarantees that

8In order to compile an earlier expression, we must have already compiled the later ones so that we can pass
them as continuation (they flow right-to-left). However, to compile later expressions we must know the names
of the variables to which the results of earlier expressions are bound (they flow left-to-right). This means that a
trivial left- or right-fold is generally not enough to implement compilation with Tim as target. There are ways to
make this work of course, but they generally involve quite a bit more boilerplate.

9This approach of leaving the continuation unspecified and filling it in later is similar to the technique of
backpatching used in many compilers to defer the exact addresses of jump targets. An excellent introduction to
backpatching can be found in the ”Dragon book” [2].

59

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

1 if #int-eq(a0, 10) then
2 #print("Illegal argument.") => tmp0;
3 #exit()
4 else
5 hole

1 fix {
2 fun c0(a0) =
3 #print(a0) => tmp0;
4 hole
5 } in
6 c0(10)

Figure 6.3: Two examples of pluggable terms, representing a fragment of a Tim program
with a continuation left unspecified. The hole expressions are highlighted.

1 {
2 if #int-eq(int('1), int('1)) then
3 after@([])
4 else
5 #exit()
6 } label after/0:

1 fix {
2 fun c0() =
3 hole
4 } in
5 if #int-eq(1, 1) then
6 c0()
7 else
8 #exit()

Figure 6.4: The label/0 abstraction from Dynamix is simply a syntactic sugar that produces
a new continuation with a hole as body. Composition (Section 6.2.2) will ensure that any
code after the label will be placed inside c0.

Tim offers, we must eliminate each occurrence of hole as part of the specification-guided
compilation process. If the final term produced by a Dynamix specification still contains
a hole, it will be plugged by a call to #exit() to fulfill this requirement. This operation is
generally appropriate, because hole is a substitute for the remainder of the program. A hole
in the final program should therefore be replaced with whatever comes after running the
program, which is a graceful exit.10

10Earlier iterations of Dynamixwould raise an error if compilation produced a pluggable term instead of a full
CPS term. This was not very user-friendly, since understanding the error required understanding the entirety of
the hole abstraction. Since the final operation is almost always #exit(), we opted to instead automatically plug
the hole. Users can still manually plug the hole in their specification if they desire a different behavior.

60

6.2. Accessible CPS through abstractions

6.2.2 Composing pluggable terms
Pluggable terms and the use of hole allow us to model the compilation of language features
in isolation, but they produce fragments of CPS programs that have nomeaning on their own.
We need some way of composing several pluggable terms together, so that we can gradually
build a target program from these individual fragments.

Composition of pluggable terms is a core concept in the Dynamix meta-language. Within
a Dynamix block ({ stmt∗ }) the result of each statement is composed with the next, as if
there was a right-associative11 composition operator inserted between each pair of adjacent
statement.12. This composition operator, denoted a ⋊⋉ b, ”plugs” the hole in a by replacing it
with the contents of b, yielding either a larger pluggable term (if bwas pluggable), or a com-
plete CPS term (if b was already a complete CPS term). An example of composition being
applied can be seen in Figure 6.5.

Let us consider this composition by taking a look at how we might write a specification for
a list of statements in Dynamix:

1 rules
2 evalStmts([]) = hole
3 evalStmts([h|t]) = {
4 evalStmt(h)
5 evalStmts(t)
6 }

11Technically, it does not matter whether composition is left- or right-associative, since the behavior is the
same in both cases. We model it as right-associative here, as that is how Dynamix implements it.

12Readers familiar with functional programming languages, specificall Haskell’s implementation of monadic
composition, may recognize this approach as being quite similar to do-blocks. This similarity actually goes be-
yond just the implicit composition, as we will see later in this chapter.

1 fix {
2 fun c0(a0) =
3 hole
4 } in
5 print("Hello, world!", c0)

1 let a0 = "den Berg" in
2 let a1 = "van " in
3 #string-add(a1, a0) => a2;
4 #record-new("lastname", a2) => a3;
5 hole

1 fix {
2 fun c0(a0) =
3 let a0 = "den Berg" in
4 let a1 = "van " in
5 #string-add(a1, a0) => a2;
6 #record-new("lastname", a2) => a3;
7 hole
8 } in
9 print("Hello, world!", c0)

Figure 6.5: The result of composing two pluggable terms by substituting the second term in
the hole of the first term. The background colors indicate from which input term the line
originated. Terms are inserted directly, i.e. we do not perform capture-avoiding substitution.
Note that the resulting composed term is itself a pluggable term, since it contains a hole
expression.

61

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

We will use the symbolic input evalStmts([a, b, c]). First, we inline the recursive invoca-
tions to evalStmts, yielding the following:

1 rules
2 evalStmts([a, b, c]) = {
3 evalStmt(a)
4 evalStmt(b)
5 evalStmt(c)
6 hole
7 }

Next, we remove the block and instead explicitly insert the composition operator between
each consecutive statement, remembering that this operator is right-associative:

1 rules
2 evalStmts([a, b, c]) =
3 evalStmt(a) ⋊⋉ (evalStmt(b) ⋊⋉ (evalStmt(c) ⋊⋉ hole))

From this, it becomes clear that the computations for each individual statement are composed
together to form a larger pluggable term. The final composition with hole is effectively a no-
op, as it simply replaces a hole with a new hole. This means that the output of evalStmts([a,
b, c]) is equivalent to performing the operations from evalStmt(a), followed by the compu-
tations for evalStmt(b), and finally by those for evalStmt(c).

The core benefit of the automatic composition between statements in a Dynamix block is that
it makes linear control flow once again implicit. This tackles one of the core issues also iden-
tified in Chiel Bruin’s Dynamix thesis [13], which is that a pure CPS target language is often
cumbersome to work with because it enforces explicit control flow even in the cases where
implicit control flow would suffice. At the same time, the composition approach formalizes
the understanding from formal specifications that operations are performed exactly in the
order in which they are listed in the specification. Automatic composition also means that
the hole expression gives us a natural way to state that no operation should be performed,
but that future control flow should continue at the position of the hole, without needing to
introduce a special-cased no-op construct.

One aspect of composition worth considering in more detail is the behavior of the ⋊⋉ opera-
tor when the left-hand side is a finalized CPS term. One would expect this operation to be
illegal. After all, the left-hand side lacks a hole in which the right-hand side can be inserted.
However, it turns out that it is trivial for specifications to encounter this situation. Consider
the example in Figure 6.6. If a branch of an if-statement contains a return statement, then
invoking evalBlock(b)will yield a completed CPS term. This term will then be attempted to
be composed with the tail call to after.

The particularity here is that evalBlock can yield both pluggable terms (if there is no early re-
turn) and finalized CPS terms (if there is an early return). This makes it impossible to guard
against the scenario where we attempt to compose two finalized CPS terms, since we simply
must include the unconditional tail call to after for the cases in which evalBlock yields a
pluggable term.13 To resolve this conflict, we define composition such that the right-hand

13The bodies of conditional primitive calls must produce finalized terms. Allowing them to return pluggable
terms could lead to a situation where a pluggable term contains two holes, which would violate our assumption
that pluggable terms have exactly one hole.

62

6.2. Accessible CPS through abstractions

1 rules
2 evalStmt(If(cond, ifThen, ifElse)) = {
3 condv <- evalExp(cond)
4 if #int-eq(condv, int('1)) then {
5 evalBlock(ifThen)
6 after@([])
7 } else {
8 evalBlock(ifElse)
9 after@([])

10 }
11 } label after/0:
12

13 evalStmt(Return()) = $return@([])

Figure 6.6: A situation in which two finalized terms may be composed with each other. The
if-statement unconditionally jumps to the code afterwards, but the body of the statement
may perform an early return, therefore yielding a finalized CPS term. We must discard the
tail call that occurs later to preserve correct behavior.

side of composition will be discarded if the left-hand side is already a finalized CPS term.
While this may sound as if it could lead to an unintentional loss of computations, the case
studies performed with Dynamix have shown that this approach almost always reflects the
user’s intended behavior for the specification.

This informal introduction to composition as a method for gradually building CPS terms
lacks some finer details of the composition. We omit these details, which involve the behavior
of the composition operator for other types of values (such as meta-level values like meta-
lists) and the mechanics for type-checking composition, because they are not essential in
grasping the concept of composition. They are fully discussed when we consider the formal
semantics of the Dynamix meta-language in Chapter 7.

6.2.3 Attaching values to pluggable terms
The observant reader may have noticed that the hole expression alone is not actually suffi-
cient to implement some of the abstractions we have used to write our Tiger specification.
Consider integer addition, implemented in Tim as #int-add(a, b) => c; d. Note that this
node does not directly produce a value (as is common behavior for expressions in CPS lan-
guages). Instead, it binds the result of the addition to c. This distinction is important, because
it means that the pluggable term of the call to #int-add is not enough to be used on its own:
anything that wants to make use of the result also needs to know to which identifier the re-
sult was bound.

Dynamix solves this issue through ”paired pluggables”. A paired pluggable, denoted 〈v, t〉,
is a pluggable term t that has been pairedwith value v. What distinguishes paired pluggables
from an arbitrary pair is that Dynamix will enforce that value v can only ever be used within
the hole of term t. This allows the value-half of the paired pluggable to have a dependency on
t, such as when t contains the terms necessary to compute v.14 Our earlier example of integer
addition is representable as the following paired pluggable:

14Within Dynamix, the majority of paired pluggables represent the result of some computation, alongside the
terms needed to produce this value. But this is not a requirement. The value-half of a paired pluggable can be
completely separate from the term-half.

63

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

〈 c, #int-add(a, b) => c; d 〉

Having a dedicated data structure for values associated with a pluggable term gives us the
ability to enforce the requirement that a value may only be used in a context where the plug-
gable term has been ”included”. In particular, the only method for extracting the value from
a paired pluggable is by using the <- operator. This operator is only valid in Dynamix blocks,
and the name bound to the value is only available for subsequent statements. By virtue of
the implicit composition within blocks, the statements for which the value is in scope are
guaranteed to be composed with the computation for that value. Consider the following
example:

1 rules
2 evalExpr(Add(a, b)) = {
3 av <- evalExpr(a)
4 bv <- evalExpr(b)
5 #int-add(a, b)
6 }

We first desugar the <- operator into a binding for the value-half and an explicit composition
for the term-half:

1 rules
2 evalExp(Add(a, b)) = {
3 〈tmp0, tmp1〉 := evalExp(a)
4 {
5 tmp1
6 av := tmp0
7 〈tmp2, tmp3〉 := evalExp(b)
8 {
9 tmp3

10 bv := tmp2
11 out := fresh-var(out)
12 〈out, (#int-add(av, bv) => out; hole)〉
13 }
14 }
15 }

As we can see, each use of the <- operator creates a new scope for the remainder of the block.
This ensures that the bindings av and bv are only visible to statements located after the ar-
row operator. The pluggable halves of the pairs, tmp1 and tmp3, have already been composed
(by virtue of residing inside a Dynamix block) before the bindings are introduced, so we are
guaranteed that the values to which av and bv point have been initialized.

We can continue desugaring this by removing the blocks in favor of explicit composition. We
will also simplify the program a little by eliminating the tmp0 and tmp2 bindings in favor of
simply directly binding av and bv:

64

6.2. Accessible CPS through abstractions

1 rules
2 evalExp(Add(a, b)) =
3 〈av, tmp1〉 := evalExp(a);
4 〈bv, tmp3〉 := evalExp(b);
5 out := fresh-var(out);
6 〈out, tmp1 ⋊⋉ tmp3 ⋊⋉ (#int-add(av, bv) => out; hole)〉

From this, we can clearly see that the <- operator, combined with implicit composition, al-
lows us to cleanly combine the computations needed to produce av and bv with the call to
#int-add. Note that the original call to #int-add has also been desugared into a paired plug-
gable, allocating a new fresh variable for the result of the addition operator. This way, the
user need not concern themselves over where the results are stored, nor about correct com-
position of the terms.

Paired pluggables are also used to implement the label/1 abstraction. This abstraction is
very similar to that of the label/0 construct shown in Figure 6.4, except that it yields a paired
pluggable instead of just a pluggable term. This pair consists of the generated continuation
(now accepting a single argument instead of none) and the argument name, so that the <-
operator may be used to retrieve the ”result” of the continuation call.

Paired pluggables are not restricted in what types of values they may contain. While Tim
cval terms (e.g. integer literals, variable references) are most common, meta-level values
like meta-lists may also be contained in paired pluggables (in such a pair, all values in the
meta-list may have a dependency on the computation half of the pair). Several rules defined
in theDynamix specification for Tiger, such as evalExpList in Section 6.1.5, use this capability.
We formally define exactly how paired pluggables interact with composition in Chapter 7.

6.2.4 Enforcing CPS using types

Finally, we will briefly discuss Dynamix’s type system. Beyond asserting that name binding,
rule definitions, and pattern matching operations are valid, the Dynamix type system is a
core component of the meta-language that ensures that specifications will always produce
complete CPS terms. In particular, the type system encodes the behavior of the composition
operator and how it manipulates pluggable CPS terms.

Types in Dynamix can be grouped into three categories. Source types are prefixed with '
and represent the signature of the input AST. They are derived from the algebraic signature
of the input language and are generally automatically generated by Dynamix as part of the
Spoofax build process. Target types are prefixed with @ and represent different types of Tim
AST nodes (recall that Tim terms are first-class values in Dynamix). Finally, meta-types lack
a specific prefix and represent the types of values that only exist during evaluation of the
specification and have no concrete representation in either the source or the target language.

65

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

Most of the Dynamix meta- and target types correspond directly with abstractions discussed
earlier in this chapter. A brief overview of the different sorts and their meanings:

• '<source-type>: A type describing the structure of an ATerm value, such as string, int,
or a user-defined algebraic signature.

• List(T): A meta-list consisting of elements of type T.

• Pluggable: A TimCPS expression term thatmay contain a hole. Unlike pluggable terms,
which are guaranteed to contain exactly one hole, values of type Pluggable may either
be pluggable terms or finalized terms.

• Pluggable(T): A paired pluggable 〈v, t〉 where v is of type T and t is of type Pluggable.
Using the arrow operator <- on a value of type Pluggable(T) produces a binding with
type T.

• @cval: A Tim cvalAST node, such as a variable reference, string literal, or integer literal.
Allowed to be used as arguments to Tim tail calls and primitives.

• @cexp: A Tim cexp AST node. Values with this type are guaranteed not to contain any
holes.

• @cfun: A Tim cfun AST node. Only valid when used in a fix expression. We treat Tim
function terms as first-class values to allow defining an arbitrary number of functions
inside a single fix block.

While source types are largely used to assert that pattern matching operations are correct,
meta and target types are vital in ensuring that a Dynamix specification produces a TimAST
that adheres to the rules of the continuation-passing style. To see why this is the case, let us
consider the type signature of a call to #int-add:

1 // #int-add :: @cval * @cval -> Pluggable(@cval)
2 #int-add(a, b)

The return type, Pluggable(@cval), indicates that the primitive returns a paired pluggable,
where the value half of the pair is of type @cval. This corresponds to what we already ob-
served in Section 6.2.3: expression primitives return a paired pluggable consisting of the
variable to which the result was bound, and the Tim AST cexp node for invoking the prim-
itive. To enforce the continuation-passing style (CPS), we require that both arguments to
#int-add are instances of @cval. Since values of type @cval represent Tim cval nodes, this
ensures that the arguments to our primitive call will be side effect free.

To enforce that functions always tail call, Dynamix requires that the bodies of functions, let
bindings, and the if-then-else are of type @cexp. This type represents a finalized CPS ex-
pression, and can only be created by performing a (primitive) tail call or by composing a
pluggable term with a finalized term. An example showing how this enforces proper tail
calls can be seen in Figure 6.7.

The behavior of the implicit composition between statements in a Dynamix block is modeled
in the type system by performing a similar composition operation on the types of the state-
ments. For instance, Pluggable ⋊⋉ Pluggable = Pluggable, and Pluggable ⋊⋉ @cexp = @cexp.
The exact rules for this composition are discussed in Chapter 7.

66

6.2. Accessible CPS through abstractions

1 rules
2 evalBlock :: 'Block -> Pluggable
3

4 evalExpr(Lambda(name, body)) = {
5 return <- fresh-var(return)
6 fix {
7 fun var(name)([return]) =
8 // Invalid: The body of a function must be @cexp. evalBlock returns
9 // Pluggable, which is not guaranteed to be a completed CPS term.

10 evalBlock(body)
11

12 fun var(name)([return]) = {
13 // Valid: unconditional tail calls are of type @cexp.
14 evalBlock(body)
15 return@([])
16 }
17 }
18 var(name)
19 }

Figure 6.7: An example showing how Dynamix’s type system enforces that the rules of CPS
are followed. The body of the declared fun must be of type @cexp, which can only be created
by performing a tail call. Since evalBlock returns a pluggable term, which by definition is
not a finalized CPS term, it is rejected by the type system.

In order to make it easier to write specifications in Dynamix, the type system offers some
quality-of-life features for common situations. In particular, several types can be implicitly
coerced to other types in situations where this coercion can be automatically deduced. These
coercions include:

• Values of type T can be automatically coerced to Pluggable(T), by implicitly construct-
ing 〈v, hole〉. This allows us to use expressions like var(x) (which returns an @cval) in
contexts expecting a Pluggable(@cval).

• Values of type Pluggable(T) can be automatically coerced to Pluggable. We can simply
discard the value half of the pair, without impacting the behavior of the program.

• Values of type @cexp can be coerced to Pluggable. This follows trivially from the defini-
tion of Pluggable, which states that it represents either a pluggable or a finalized CPS
term.

• Values of type @cexp can be coerced to Pluggable(T). This is a legal operation, because
the unconditional tail call ensures that the value embedded in the paired pluggable can
never be read at runtime.

These implicit coercions are frequently used across specifications. Figure 6.8 lists some ex-
ample cases where these coercions are useful.

67

6. AN INTRODUCTION TO THE DYNAMIX META-LANGUAGE

1 rules
2 evalStmt :: 'Stmt -> Pluggable
3 evalExpr :: 'Expr -> Pluggable(@cval)
4

5 evalExpr(Int(i)) = int(i) // coerces @cval to Pluggable(@cval)
6 evalExpr(Throw(e)) = {
7 v <- evalExpr(e)
8 $throw@([v]) // coerces @cexp to Pluggable(@cval)
9 }

10

11 evalStmt(Exp(e)) = evalExpr(e) // coerces Pluggable(@cval) to Pluggable
12 evalStmt(Return()) = $return@([]) // coerces @cexp to Pluggable

Figure 6.8: An example showing how the implicit coercions in Dynamix’s type system allow
formore expressive specifications, and inwhich situations each type of coercionmight apply.

68

Chapter 7

Formalizing Dynamix Core

After our informal introduction to Dynamix, wewill provide a formal definition for themeta-
language in this chapter. The complete Dynamix meta-language has a considerable number
of language features, grammar productions, and expressions. This is largely due to the re-
quirement that it must cleanly operate with both the source language (and therefore expose
ATerm primitives), as well as the target language (and all of the idioms and features that
come along with it). Many of these language features have straightforward semantics, so for
the sake of brevity we will not discuss them.

Instead, we will define a subset of Dynamix called Dynamix Core. This subset contains all
language features for which the typing rules or implementation is non-trivial, and in partic-
ular those powering the CPS abstractions discussed in Section 6.2. We formally define the
grammar, dynamic semantics, and static semantics for Dynamix Core, and in some cases
elaborate on how these definitions extend to the full Dynamix meta-language.

This chapter serves as a formal definition of the behavior we informally described in Chap-
ter 6. In particular, all details glossed over in the informal introduction are fully specified
in this chapter. We also assert some meta-properties of the Dynamix language, such as the
exact set of guarantees provided by the type system (we make no attempt at proving these
assertions, however). Readers that are particularly interested in the precise semantics of Dy-
namix or its abstractions will find that this chapter serves as a complete definition of them.
Readers that are not directly concerned about the formal semantics of Dynamix can freely
skip this chapter, as we do not introduce any new behavior or semantics not already infor-
mally discussed.

Terminology
Within this chapter, we use the term source language to refer to the language under compi-
lation (i.e. the language for which a runtime semantics specification is written). Similarly,
we use the term target language to refer to the language to which Dynamix compiles, i.e.
Tim. Features and syntax unique to Dynamix (e.g. rules, patterns) may also be referred to
as meta features, because they appear solely as part of the Dynamix meta-language.

7.1 Grammar
We will first briefly outline the AST grammar for Dynamix Core. Dynamix Core is based
on the grammar of the full Dynamix meta-language (documented in Appendix A), but it
is not directly compatible with the full meta-language. Instead, certain productions have
been simplified so that it is simpler to discuss their semantics. We retain most of the opera-
tions that produce target constructs, those that concern the pluggable term abstraction, and

69

7. FORMALIZING DYNAMIX CORE

program ::= decl∗

decl ::= rule-impl

rule-impl ::= ID(〈 pattern, 〉∗) = expr pattern-matched rule body

pattern ::= _ wildcard
| ID variable pattern
| ID(〈 pattern, 〉∗) ATerm constructor pattern
| STRING string literal pattern
| INT int literal pattern
| [] nil meta-list pattern
| [pattern|pattern] cons meta-list pattern
| ID@pattern bound pattern

expr ::= { statement+ } block
| $ID meta-global reference
| ID meta-variable reference
| with 〈 $ID = expr, 〉+ do expr scoped meta-global
| [] nil meta-list
| [expr|expr] cons meta-list
| fresh-var(ID) fresh variable
| var(expr) Tim variable from ATerm string
| expr@(expr) Tim tail call
| #ID(expr) Tim primitive call
| fix { expr } Tim fix block
| fun expr(expr) = expr Tim function
| expr label ID/1: unary label
| expr label ID/0: nullary label
| hole hole
| ID(〈 expr, 〉∗) rule invocation

statement ::= ID <- expr bind term
| expr expression

Grammar 7.1: The expression grammar for Dynamix Core.

those needed to provide baseline meta-language features (e.g. meta-variables, rules). The
grammar of Dynamix Core can be seen in Grammar 7.1, using the same notation previously
described in Section 5.2. Note that this grammar represents the AST structure of Dynamix
Core, and that it should not be interpreted as a concrete grammar for the language.

7.2 Dynamic semantics
We first discuss the dynamic semantics of Dynamix Core. As with the definition for Tim in
Section 5.3, we will use Kahn-style big-step operational semantics [31] to do so. We will use
largely the same notation, but restate it here for the sake of clarity.

70

7.2. Dynamic semantics

1 datatype Value =
2 Source of ATerm
3 | Plug of CExp
4 | Plug2 of CVal * CExp
5 | CExp of CExp
6 | CVal of CVal
7 | CFun of CFun
8 | List of MValue list
9

10 datatype CExp =
11 CExpTailCall of CVal * CVal list
12 | CExpPrimitiveTail of string * CVal list
13 | CExpPrimitiveExp of string * CVal list * string * CExp
14 | CExpLet of string * CVal * CExp
15 | CFix of CFun list * CExp
16 | Hole
17

18 datatype CVal = CValVar of string
19 datatype CFun = CFun of string * string list * CExp
20

21 datatype ATerm =
22 AInt of int
23 | AString of string

Figure 7.1: The signature for values in Dynamix Core, written in Standard ML notation. A
MValue represents a (meta) value in the Dynamix Core interpreter. A CExp represents a Tim
cexpAST node. A CVal represents a Tim cvalAST node. A ATerm represents any valid ATerm
node. Tim expressions in a Plug or Plug2 may contain holes. Tim expressions in a CExp must
not contain holes.

Our evaluation relation for expressions is modeled as S,G,D ` e ⇓ v. Here, S is the store,
containing values for local meta-variables. G is the global store, used for meta-globals. D is
the set of rule definitions within the program, used to perform calls to rules. For S and G,
we will use the notation S′ = S[x 7→ y] to extend S with a newmapping from x to y, possibly
shadowing an existingmapping for x. The syntax S[x] retrieves the value bound to x in store
S.

Similarly to our Tim specification, we will occasionally use overhead bars, v, to indicate that
some term represents a vector or a vector operation. For instance, S,G,D ` e ⇓ v will eval-
uate the list of expressions e to the list of values v. Similarly, S′ = S[x 7→ y] will produce a
new store S′ that extends S with a list of new mappings, provided that all names in x are
distinct.

The semantics defined in this chapter only cover valid programs. If some case is not covered
by any of the rules, it should be interpreted as being disallowed. Should a language imple-
mentation encounter such a situation at runtime (e.g. when a function call matches none of
the implementation patterns), an error should be issued and evaluation should halt without
producing a result.

7.2.1 Value sorts

71

7. FORMALIZING DYNAMIX CORE

Values in Dynamix Core, denoted v, can be one of several sorts. An algebraic signature of
these sorts can be seen in Figure 7.1. We will briefly elaborate on each of the runtime value
types.

Source values represent source AST nodes. They must be ATerm compatible, such that they
can represent the full range of possible ASTs produced by an SDF3-based source language.
Source terms are primarily used in pattern-matching operations.

Plug values represent pluggable target Tim AST nodes that contain exactly one hole expres-
sion. The representation of Tim AST nodes used in this formal definition uses a representa-
tion similar to the SDF3 grammar for Tim.

Plug2 values represent paired pluggables. They are a combination of an arbitrary runtime
value and a pluggable target Tim AST node. The value half of a Plug2 may contain bindings
that are defined in the pluggable half, as the design of Dynamix will guarantee that such
bindings are bound in all situations where the value can be used.

CExp values represent a finalized target Tim cexp node. Unlike Plug and Plug2 values, the
value of a CExp is guaranteed to be a legal CPS expression (and therefore does not contain
any holes).

CVal values represent a target Tim cval AST node. CVal values in Dynamix Core only con-
tain CValVar instances (i.e. an AST node representing a variable reference), although in the
full Dynamix meta-language they may also contain string and integer literals. Arguments to
function and primitive calls must be CVals.

List values represent a meta-list. Meta-lists are heterogeneous and may contain any type of
runtime value. They are exposed to the user as cons-nil pairs, but the implementation does
not necessarily have to use this representation. To indicate that a meta-list must be homo-
geneous of a specific type, we will use the overhead bar notation also used for vectors (e.g.
List([CVal(v)]) requires a meta-list of CVal terms, and binds these values to v).

We will refer to Tim expression nodes that contain a hole as pluggable terms. We will refer
to Tim expression nodes that do not contain a hole as finalized (since they cannot be further
extended).

7.2.2 Expressions

We begin by defining the dynamic semantics for each expression sort. As mentioned, the
evaluation of an expression depends only on the store S, global store G and rule declara-
tions D.

Literals

Meta-variables and meta-globals simply yield the value as declared in the appropriate store.
Meta-lists can be created through the empty list literal and the cons expression, which prepends
the left element to the right list. The hole literal yields a pluggable term consisting entirely
of a hole.

72

7.2. Dynamic semantics

Note that meta-globals initially lack a value, asG is initialized to an empty store. This means
that it is illegal behavior to read the value of ameta-global before it has been assigned a value
through the with statement.

v = G[x]
V-GLOBAL

S,G,D ` $x ⇓ v

v = S[x]
V-VARIABLE

S,G,D ` x ⇓ v

V-NIL
S,G,D ` [] ⇓ List([])

S,G,D ` e1 ⇓ v1

S,G,D ` e2 ⇓ List([v2]) V-CONS
S,G,D ` [e1|e2] ⇓ List([v1, v2])

V-HOLE
S,G,D ` hole ⇓ Plug(Hole())

Scoped globals

The with expression introduces new bindings in the global store. Bindings are applied all at
once, and are only visible in the body of the expression.

S,G,D ` e ⇓ v

G′ = G[x 7→ v]

S,G′, D ` eb ⇓ vb V-WITH
S,G,D ` with $x = e do eb ⇓ vb

Tim value expressions

The fresh-var expression simply creates a new Tim cval term with a fresh name, prefixed
with the given name. The var expression creates a new Tim cval variable with the given
name.

n = fresh unique variable name prefixed with x

v = CVal(CValVar(n))
V-FRESH VAR

S,G,D ` fresh-var(x) ⇓ v

S,G,D ` e ⇓ Source(AString(x))
v = CVal(CValVar(x))

V-VAR
S,G,D ` var(e) ⇓ v

Tail calls

The tail call expression creates an equivalent Tim term. The target must be a CVal, and the
argument must be a homogeneous List of CVal terms.

S,G,D ` et ⇓ CVal(vt)

S,G,D ` ea ⇓ List([CVal(va)])
v = CExp(CExpTailCall(vt, va)) V-TAIL CALL

S,G,D ` et@(ea) ⇓ v

73

7. FORMALIZING DYNAMIX CORE

Tim fix declarations

The fix expression creates a new Tim fix block with a hole as continuation. The body of the
expression must evaluate to a meta-list of function declarations.

S,G,D ` e ⇓ List([CFun(v)])
v = Plug(CFix(v, Hole()))

V-FIX
S,G,D ` fix { e } ⇓ v

In order to create such a meta-list of function declarations, the fun expression evaluates to a
CFun instance. The body of the function must evaluate to a value of type CExp, and therefore
must be free of holes.

S,G,D ` en ⇓ CVal(CValVar(vn))

S,G,D ` ea ⇓ List([CVal(CValVar(va))])
S,G,D ` eb ⇓ CExp(vb)
v = CFun(vn, va, vb) V-FUN

S,G,D ` fun en(ea) = eb ⇓ v

Primitives

Primitive calls are implemented by generating a fresh variable to which the result will be
bound, then yielding a Plug2 value consisting of this variable alongside the pluggable term
for the primitive call. The argument must be a meta-list of cval nodes.

n = fresh unique variable name
S,G,D ` e ⇓ List([CVal(v)])

v = Plug2(CVal(CExpVar(n)), CExpPrimitiveExp(x, v, n, Hole())) V-PRIMITIVE
S,G,D ` #x(e) ⇓ v

Labels

The label abstractions generate a new Tim function with a hole, inserting the preceding code
such that the newly generated function is in scope. The unary label abstraction generates a
continuationwith a single argument and yields a Plug2, whereas the nullary label abstraction
generates a continuation without arguments and yields a Plug. The preceding term must
yield a CExp (i.e. unconditionally tail call), such that the resulting term contains exactly one
hole.

nf = fresh unique variable name
na = fresh unique variable name
S′ = S[x 7→ CVal(CExpVar(nf))]

S′, G,D ` e ⇓ CExp(t)
v = Plug2(CVal(CExpVar(na)), CFix([CFun(nf , [na], t)], Hole())) V-UNARY LABEL

S,G,D ` e label x/1: ⇓ v

nf = fresh unique variable name
S′ = S[x 7→ CVal(CExpVar(nf))]

S′, G,D ` e ⇓ CExp(t)
v = Plug(CFix([CFun(nf , [], t)], Hole())) V-NULLARY LABEL

S,G,D ` e label x/0: ⇓ v

74

7.2. Dynamic semantics

Rule calls

Rule calls select the most specific implementation of a given rule that matches the argument
patterns. In case no such implementation exists, a runtime error is issued. We define the
semantics of pattern matching, as well as the ChooseRule function, in Section 7.2.4.

S,G,D ` ea ⇓ va

(Sf , eb) = ChooseRule(D,x, va)

Sf , G,D ` eb ⇓ v
V-CALL

S,G,D ` x(ea) ⇓ v

Blocks

We define the semantics of blocks through an inductive definition. For a block containing
only a single statement, the block simply evaluates to the result of the statement. If the single
expression is an arrow operator, we ignore the binding operation.

S,G,D ` e ⇓ v
V-BLOCK UNARY BIND

S,G,D ` { x <- e } ⇓ v

S,G,D ` e ⇓ v
V-BLOCK UNARY EXP

S,G,D ` { e } ⇓ v

For blocks with more than one expression, the result of evaluating the block is the result
of composing the result of the expression with the result of the remainder of the block. The
composition operator, ⋊⋉, is defined in Section 7.2.3. The bind statement extends the current
store with a new binding, and uses this store to evaluate the remainder of the block.

S,G,D ` e ⇓ ve

vb =

ve if ve is a Source
ve if ve is a List
ve if ve is a CVal
ve if ve is a CFun
v′e if ve is Plug2(v′e, t)
S′ = S[x 7→ vb]

S′, G,D ` { s } ⇓ vs V-BLOCK BINARY BIND
S,G,D ` { x <- e s } ⇓ ve ⋊⋉ vs

S,G,D ` e ⇓ ve
S,G,D ` { s } ⇓ vs V-BLOCK BINARY EXP

S,G,D ` { e s } ⇓ ve ⋊⋉ vs

7.2.3 Composition
The composition operator, ⋊⋉, is used to combine pluggable terms by substituting hole ex-
pressions in the term. This composition happens automatically between expressions that
reside in a block.

The exact behavior of the composition operator is largely invisible to the user, as composition
happens implicitly and unavoidably. It is therefore imperative that the rules of composition

75

7. FORMALIZING DYNAMIX CORE

lead to expected and intuitive behavior for the user. As a general rule of thumb, the com-
position operator is designed to propagate the computation that pluggable terms represent
across the execution of a specification. Accordingly, a pluggable term can never be lost or
discarded, except for when it is composed with a completed CPS term. This ensures that
potential computations are not discarded, which would lead to incorrect compilation. We
perform hole substitution in the case where both sides of the composition operator contain
pluggable terms. This generally leads to the behavior that a user of Dynamix would expect,
even if they do not fully grasp the exact mechanics of the composition operator.

In order to define the behavior of the composition operator, we introduce an auxiliary oper-
ator t1⊕ t2. This operator produces a term t by substituting the hole expression in pluggable
term t1 with the term t2. If t2 was a pluggable term, the resulting term t is also a pluggable
term. If t2 was a finalized CPS term, t is also a finalized CPS term.

For any non-pluggable values, the composition operator simply yields the right-hand side
of the operator. This behavior ensures that the result of the last expression within a block is
returned as value, even in cases where no pluggable terms are present:

v1 is a Source, CVal, CFun, or List COMPOSE-RHSv1 ⋊⋉ v2 = v2

If the left-hand side of the composition operator is a finalized term, we discard the right-hand
side. We discuss why this behavior is desirable in Section 6.2.3.

COMPOSE-FIN
CExp(t) ⋊⋉ v2 = v1

If the left-hand side is a Plug term, then we either form a Plug2 if the right-hand side does
not contain any (pluggable) AST term, or perform a hole substitution otherwise.

v2 is a Source, CVal, CFun, or List COMPOSE-PLUG SIMPLE
Plug(t) ⋊⋉ v2 = Plug2(v2, t)

COMPOSE-PLUG PLUG
Plug(t1) ⋊⋉ Plug(t2) = Plug(t1 ⊕ t2)

COMPOSE-PLUG CEXP
Plug(t1) ⋊⋉ CExp(t2) = CExp(t1 ⊕ t2)

COMPOSE-PLUG PAIR
Plug(t1) ⋊⋉ Plug2(v2, t2) = Plug2(v2, t1 ⊕ t2)

Finally, if the left-hand side is a Plug2 term, then we substitute only the value half for any
non-CPS right-hand side. If the right-hand side contains a CPS term, then we substitute
appropriately.

v2 is a Source, CVal, CFun, or List COMPOSE-PLUG2 SIMPLE
Plug2(v1, t) ⋊⋉ v2 = Plug2(v2, t)

COMPOSE-PLUG2 PLUG
Plug2(v1, t1) ⋊⋉ Plug(t2) = Plug(t1 ⊕ t2)

COMPOSE-PLUG2 TERM
Plug2(v1, t1) ⋊⋉ CExp(t2) = CExp(t1 ⊕ t2)

COMPOSE-PLUG2 PAIR
Plug2(v1, t1) ⋊⋉ Plug2(v2, t2) = Plug2(v2, t1 ⊕ t2)

76

7.2. Dynamic semantics

7.2.4 Rule declarations and patterns
A Dynamix Core specification consists of a list of rule implementations. A single named
rule may have multiple implementations, as long as the argument patterns of these imple-
mentations do not overlap per the definition Section 7.4. When a rule is invoked with a list
of concrete arguments, these arguments are tested against each implementation’s argument
patterns in order of specificity (see Section 7.4).

In order to express this functionality, we introduce several helper functions to perform pat-
tern matching and rule selection.

Pattern matching

The function Match(p, v) = S attempts to match pattern p against value v. This is a par-
tial function, only defined for the cases where this match is successful. In case of success,
the returned value S represents the store of variables bound by this pattern. The function
MatchAll(p, v) = S is a partial function that performs this match operation on a list of input
patterns and values. In the case that all patterns match all values, the returned store S is the
union of the stores returned by the individual pattern matching operations, as long as these
stores as disjoint.

We define MatchAll inductively through two rules:

MATCHALL-NILMatchAll([], []) = {}

S1 = Match(p, v)
S2 = MatchAll(P , V)

S1
⋂

S2 = {}
MATCHALL-CONS

MatchAll([p|P], [v|V]) = S1 ∪ S2

Match is defined through the following set of rules, which outline each of the cases in which
a pattern matches. If none of the rules apply to a given pair of pattern v and value v, we state
that pattern p does not match value v, and that the value of Match(p, v) is undefined.

MATCH-WILDCARDMatch(_, v) = {}

MATCH-IDMatch(x, v) = {x 7→ v}

v = Source(AConstructor(x, vc))
S = MatchAll(p, vc) MATCH-CONSTRUCTORMatch(x(p), v) = S

v = Source(AString(s))
MATCH-STRINGMatch(s, v) = {}

v = Source(AInt(i))
MATCH-INTMatch(i, v) = {}

v = List([])
MATCH-NILMatch([], v) = {}

77

7. FORMALIZING DYNAMIX CORE

v = List([vh|vt])
S1 = Match(ph, vh)

S2 = Match(pt, List(vt)) MATCH-CONSMatch([ph|pt], v) = S1 ∪ S2

Si = Match(pi, v)
S = Si ∪ {x 7→ v}

MATCH-BOUNDMatch(x@pi, v) = S

Rule selection

In the evaluation relation S,G,D ` e ⇓ v, we define D to be a mapping from rule name to a
list of implementations, such that D[x] yields a list of all implementations for rule x. These
implementations are denoted (p, e) ∈ D[x], representing the list of argument patterns and
the body of the implementation.

The function FirstMatch(O, a) returns the first rule implementation (p, e) ∈ O such that the
patterns pmatch the arguments a. This is a partial function, only defined for the cases where
such an element exists.

O = [(p, e)|r]

o =

{
(p, e) if MatchAll(p, a) is defined
FirstMatch(r, p) otherwise

FIRSTMATCHFirstMatch(O, a) = o

The function ChooseRule(D,x, v) = (S, e) selects the most specific rule implementation for
rule x that matches the arguments v. It returns the body of the function e, as well as the store
representing the variables bound by the patterns, S. This is a partial function, only defined
if there is a matching implementation for the given rule name and arguments. We give the
exact definition of rule specificity in Section 7.4.

O = D[x], sorted by specificity, descending
(p, e) = FirstMatch(O, v)

S = MatchAll(p, v)
CHOOSERULEChooseRule(D,x, v) = (S, e)

7.2.5 Specification evaluation
We define a Dynamix Core specification to consist of a list of rule implementations (x, p, e) ∈
S representing the name of the rule x, the argument patterns p and the body of the implemen-
tation e. In order to evaluate an entire Dynamix Core specification S, we require the ”initial
rule” xi, as well as the input source AST vi. We define the function Evaluate(S, xi, vi) = v to
yield the result of evaluating the rule xi with argument vi in specification S. We uncondi-
tionally compose this result with a call to the #exit primitive, to eliminate any possible holes
in the final term.

78

7.3. Static semantics

We require that every rule implementation in a specification S is unique, such that the set
of values matched by their argument patterns is not equal between two different rule imple-
mentations. This ensures that there is an unambiguous pattern-matching order for all rule
implementations. We refer to the CompareAll function for this, defined in Section 7.4.

∀(x1, p1, e1), (x2, p2, e2) ∈ S : (x1 = x2 ∧ e1 6= e2) → CompareAll(p1, p2) 6= Equal
D = all rule implementations in S, grouped by name

(S, e) = ChooseRule(O, xi, [vi])

S, {}, D ` e → v

v′ = v ⋊⋉ CExp(CExpPrimitiveTail("#exit", []))
EVALUATEEvaluate(S, xi, vi) = v′

There are no formal requirements on the name of the initial rule, although it is conventionally
named compileProgram in the Spoofax implementation of Dynamix. Implementations are
recommended to offer a method of configuring the initial rule.

7.3 Static semantics
We now discuss the static semantics for Dynamix Core. In order to do so, we must extend
the AST structure outlined in Section 7.1 with productions describing the type system and
type signatures for rules. These extensions can be seen in Grammar 7.2.

TheDynamixCore type systemdistinguishes between integer and string sourceATerm types,
declared ATerm constructor sorts, different types of Tim target AST nodes, pluggable terms,
paired pluggables, and meta-lists. These types correspond with the different sorts of run-
time values outlined in Section 7.2. Within the formal specification of the type system, we

decl ::= rule-sig
| global-decl
| aterm-sort-decl

global-decl ::= global $ID :: type meta-global type signature

aterm-sort-decl ::= constructor ID :: 〈 type * 〉∗ -> ID ATerm constructor signature

rule-sig ::= rule ID :: 〈 type * 〉∗ -> type rule type signature

type ::= 'int ATerm integer
| 'string ATerm string
| 'ID ATerm sort reference
| @cval Tim cval node
| @cexp Tim cexp node
| @cfun Tim cfun node
| Pluggable pluggable term
| Pluggable(type) pluggable term with value
| List(type) meta-list type

Grammar 7.2: Extensions to the Dynamix Core grammar for type-checking purposes.

79

7. FORMALIZING DYNAMIX CORE

will use the grammar from the type sort in Grammar 7.2 to represent types.

The Dynamix Core type system prevents the overwhelming majority of possible runtime er-
rors. In particular, we claim that a specification that is valid according to the static semantics
outlined in this chapter, will either abort compilation due to a call to a rule with arguments
for which no implementation exists, abort compilation because a meta-global is used before
being assigned a value, or successfully compile a source AST to a Tim program. All other
classes of potential runtime errors, such as invalid name bindings or illegal CPS operations,
are prevented directly on the type system level. Unfortunately, a lack of time means that we
cannot formally prove this claim.

We define the static semantics of Dynamix Core through the use of inference rules. In the
case that no particular inference rule matches a given situation, it should be interpreted as a
disallowed situation and an error should be issued.

7.3.1 Type coercion
Certain types in Dynamix Core can be implicitly converted to other types. To model this
behavior, we introduce the partial helper function Compatible(T1, T2). This expression is de-
fined if a value of type T1 is assignable to a context expecting a value of T2. The following
inference rules describe the behavior of Compatible.

T1 = T2 COMPATIBLE-EQCompatible(T1, T2)

COMPATIBLE-DROP VALUECompatible(Pluggable(T1), Pluggable)

T1 = T2 COMPATIBLE-INSERT HOLECompatible(T1, Pluggable(T2))

COMPATIBLE-TAIL TO PLUGGABLECompatible(@cexp, Pluggable)

COMPATIBLE-TAIL TO PLUGGABLE PAIRCompatible(@cexp, Pluggable(T2))

When we refer to Compatible with vector arguments, e.g. Compatible(Ta,Tb), we require that
the two vectors must be of equal lengths, with their elements pairwise compatible.

7.3.2 Expressions
We use the relation S,R,G,A ` e : T to indicate that expression e has type T when evaluated
in store S and with global rule definitionsR. The store S represents the types of bound iden-
tifiers, such that S[x] = T retrieves the type T ofmeta-variable x. The notation S′ = S[y 7→ T]
creates a new store S′ in which identifier y maps to type T , possibly shadowing an earlier
binding.

R represents the set of declared rules, as an associative function mapping a rule name to a
tuple consisting of the argument types and return type. We use the notation R[x] = (Ta, Tr)
to fetch the argument types Ta and return type Tr of rule x. Similarly, G represents the set
of declared meta-globals, such that G[x] = T retrieves the type T of meta-global x.

A represents a mapping of declared ATerm sort constructors. We use the notation A[x] =
(Ta, xs) to state that constructor x accepts parameters of type Ta, yielding a term of sort xs.
Unlike Dynamix, Dynamix Core does not require the separate definition of ATerm sorts.

80

7.3. Static semantics

Literals

Meta-variables and meta-globals perform a lookup in the environment for their value. The
cons list literal simply asserts that the expression type matches the element type of the list
operand. The empty list literal returns a list with an unbound element type. In a case where
such an empty list literal is used, the type checking should succeed if and only if a valid
instantiation for the unbound element type can be found that satisfies the remainder of the
program. In the case that no valid instantation can be found, or in the case that multiple
valid instantiations exist, the program should be rejected. This means that certain uses of the
empty list literal, e.g. x <- [], are illegal.1.

T = G[x]
T-GLOBAL

S,R,G,A ` $x : T

T = S[x]
T-VARIABLE

S,R,G,A ` x : T

T-NIL
S,R,G,A ` [] : List(T)

S,R,G,A ` e1 : T

S,R,G,A ` e2 : List(T) T-CONS
S,R,G,A ` [e1|e2] : List(T)

Scoped globals

The with expression must reference existing globals, and their values must be compatible
with the declared type of the global.

S,R,G,A ` e : Ta

Tb = G[x]

Compatible(Ta, Tb)

S,R,G,A ` eb : T T-WITH
S,R,G,A ` with $x = e do eb : T

Tim value expressions

Both var expressions generate a new value of type @cval. The var expression requires that
its argument is an ATerm string.

T-FRESH VAR
S,R,G,A ` fresh-var(x) : @cval

S,R,G,A ` e : 'string
T-VAR

S,R,G,A ` var(e) : @cval

Tail calls

The tail call target must be a Tim cval term. The arguments must be a meta-list of Tim cval
terms. Tail calls produce a completed cexp term.

S,R,G,A ` et : @cval
S,R,G,A ` ea : List(@cval)

T-TAIL CALL
S,R,G,A ` et@(ea) : @cexp

1If x is used elsewhere in the program, then one could conceivably infer the required list element type from
the context in which it is used. Such a level of inference is not required.

81

7. FORMALIZING DYNAMIX CORE

Tim fix declarations

The body of a fix expression must be a meta-list of @cfun values. Values of type @cfun can be
created through the fun expression, which requires that both the name and the arguments
are @cval instances. The body of the functionmust be @cexp, to ensure that it unconditionally
tail calls.

S,R,G,A ` e : List(@cfun)
T-FIX

S,R,G,A ` fix { e } : Pluggable

S,R,G,A ` en : @cval
S,R,G,A ` ea : List(@cval)

S,R,G,A ` eb : @cexp T-FUN
S,R,G,A `` fun en(ea) = eb : @cfun

Primitives

Calls to primitives assert that the passed argument is a list of @cval terms. The expression
yields a paired pluggable, Pluggable(@cval). Dynamix Core does not validate whether a
primitive exists, or whether the number of arguments is valid for the specific primitive in-
voked.

S,R,G,A ` e : List(@cval)
T-PRIMITIVE

S,R,G,A#x(e) : Pluggable(@cval)

Labels

Both label constructs extend the current store with a new binding for the label continu-
ation of type @cval. The nullary label yields a Pluggable value, the unary label yields a
Pluggable(@cval) value. The body of the label must evaluate to @cexp.

S′ = S[x 7→ @cval]
S′, R,G,A ` e : @cexp

T-UNARY LABEL
S,R,G,A ` e label x/1: : Pluggable(@cval)

S′ = S[x 7→ @cval]
S′, R,G,A ` e : @cexp

T-NULLARY LABEL
S,R,G,A ` e label x/0: : Pluggable

Rule calls

Calls to a meta-rule assert that the rule is defined and that the types of the arguments match
the declared argument types.

(Ta, Tr) = R[x]

S,R,G,A ` ea : Tv

Compatible(Tv, Ta) T-CALL
S,R,G,A ` x(ea) : Tr

82

7.3. Static semantics

Blocks

Blocks implicitly compose the type of any two adjacent statements, such that the final type
of the block is equal to that of the composition of each of the statements within the block.
Composition is performed by the type composition operator, ⋊⋉T , defined in Section 7.3.4.
Arrow statements introduce a new binding for the remainder of the block, the type of which
is determined by the type of the bound expression. We define the typing rules for blocks
inductively.

S,R,G,A ` e : T
T-BLOCK UNARY BIND

S,R,G,A ` { x <- e } : T

S,R,G,A ` e : T
T-BLOCK UNARY EXP

S,R,G,A ` { e } : T

S,R,G,A ` e : Te

Tb =

{
Th if Te = Pluggable(Th)

Te if Te ∈ {'int, 'string, 'x, @cval, @cfun, List(Tl)}
S′ = S[x 7→ Tb]

S′, R,G,A ` { s } : Ts T-BLOCK BINARY BIND
S,G,D ` { x <- e s } : Tb ⋊⋉T Ts

S,R,G,A ` e : Te

S,R,G,A ` { s } : Ts T-BLOCK BINARY EXP
S,R,G,A ` { e s } : Te ⋊⋉T Ts

7.3.3 Declarations and patterns
We now consider the static semantics of the various type declaration sorts, as well as the rule
implementation declaration.

Rule, ATerm, and global declarations

Rules, ATerm constructors, and globals must be defined before they can be used inside a
specification. Their declarations reside in different namespaces, such that a global and a
rule with the same name do not cause conflicts. We use the relation R,G,A ` d to indicate
that declaration d is valid in the given rule namespace R, global namespace G, and ATerm
constructor namespace A.

R[x] = (Ta, Tr) D-RULE DECL
R,G,A ` rule x :: Ta -> Tr

A[xc] = (Ta, xs) D-CONSTRUCTOR
R,G,A ` constructor xc :: Ta -> xs

G[x] = T
D-GLOBAL

R,G,A ` global $x :: T

83

7. FORMALIZING DYNAMIX CORE

Patterns

Argument patterns assert that the argument type is compatible with the values matched by
the pattern. We define the partial function TMatch(A, p, T) = S to indicate that pattern p
is capable of matching values of type T , yielding a store S representing any local variables
bound by the pattern. This function is only defined if p can successfully match values of type
T . The argument A represents the set of declared constructors, as per the definition given
earlier in this section.

Tomake the definition of TMatchmore concise, wedefinepartial functionTMatchAll(A, p, T) =
S. This function tests that each pattern element of p is compatible with each appropriate ele-
ment of T . The resulting store S is the union of the stores bound by each pattern in the vector
p. The identifiers bound by each pattern must be distinct. We define TMatchAll inductively:

TMATCHALL-NILTMatchAll(A, [], []) = {}

Sh = TMatch(A, ph, Th)

St = TMatchAll(A, pt, Tt)

Sh
⋂
St = {}

TMATCHALL-CONS
TMatchAll(A, [ph|pt], [Th|Tt]) = Sh ∪ St

The individual implementations of TMatch are trivial.

TMATCH-WILDCARDTMatch(A, _, T) = {}

TMATCH-VARTMatch(A, x, T) = {x 7→ T}

TMATCH-INT LITERALTMatch(A, i, 'int) = {}

TMATCH-STRING LITERALTMatch(A, s, 'string) = {}

TMATCH-NILTMatch(A, [], List(T)) = {}

Sh = TMatch(A, ph, T)
St = TMatch(A, pt, List(T))

Sh
⋂
St = {}

TMATCH-CONSTMatch(A, [ph|pt], List(T)) = Sh ∪ St

A[xc] = (Ta, xs)

S = TMatchAll(A, p, Ta) TMATCH-CONSTRUCTORTMatch(A, xc(p), 'xs) = S

Si = TMatch(A, p, T)
x /∈ Si

S = Si ∪ {x 7→ T}
TMATCH-BOUNDTMatch(A, x@p, T) = S

84

7.3. Static semantics

Rule implementations

For a rule implementation, we assert that the rule has been declared, that the given argument
patterns are valid for the declared argument types, and that the type of the body is compat-
ible with the declared return type. The initial store used to type-check the body is derived
from the bindings produced by the argument patterns.

R[x] = (Ta, Tr)

S = TMatchAll(A, p, Ta)

S,R,G,A ` e : Te

Compatible(Te, Tr) D-RULE IMPL
R,G,A ` x(p) = e

Specification validity

In order for a single specification unit to be valid, we simply require that all declarationsmust
be valid. We use the notation ` S to state that specification S is valid.

R = {}
G = {}
A = {}

R,G,A ` d
T-SPECIFICATION

` d

7.3.4 Type composition
To correspond with the dynamic composition operator ⋊⋉, we define the type composition
operator ⋊⋉T . This operator models the result of composing two values of a given type, such
that T1 ⋊⋉T T2 yields the type of the value created by composing a value of type T1 with a
value of type T2. This composition operator is implicitly applied between two adjacent state-
ments in a block.

We define the type composition operator using inference rules. If a specific combination of
types is not defined in any inference rule, it is undefined and any program attempting to
compose such types should be rejected.

If the left-hand side of type composition is a source type, meta-list, @cval, or @cfun, we yield
the right-hand side.

T1 ∈ {'int, 'string, 'x, @cval, @cfun, List(Tl)} TCOMPOSE-RHS
T1 ⋊⋉T T2 = T2

Combining a Pluggable typewith a @cexp unconditionally turns it into a completed CPS term,
regardless of whether the Pluggable value represented a pluggable term or a completed CPS
term.

T1 ∈ {Pluggable, Pluggable(...)}
TCOMPOSE-FILL

T1 ⋊⋉T @cexp = @cexp

Composing Pluggable(T) and Pluggable yields the right-hand side of the composition.

TCOMPOSE-PLUGT PLUGTPluggable(T1) ⋊⋉T Pluggable(T2) = Pluggable(T2)

85

7. FORMALIZING DYNAMIX CORE

TCOMPOSE-PLUGT PLUGPluggable(T1) ⋊⋉T Pluggable = Pluggable

TCOMPOSE-PLUG PLUGTPluggable ⋊⋉T Pluggable(T2) = Pluggable(T2)

TCOMPOSE-PLUG PLUGPluggable ⋊⋉T Pluggable = Pluggable

Composing any pluggable term with a type that isn’t pluggable itself yields a Pluggable(T).

T2 /∈ {Pluggable, Pluggable(...)}
TCOMPOSE-PLUG OTHERPluggable ⋊⋉T T2 = Pluggable(T2)

T2 /∈ {Pluggable, Pluggable(...)}
TCOMPOSE-PLUGT OTHERPluggable(T1) ⋊⋉T T2 = Pluggable(T2)

7.4 Rule specificity
In order to provide a deterministic order in which multiple implementations for the same
rule are pattern-matched against their arguments, Dynamix Core defines a method of de-
riving the relative ”specificity” of each pattern. This approach is unlike most programming
languages that support patternmatching (which evaluate the patterns in order of definition),
but it allows a user to define rule implementations in separate files without causing ambigu-
ity on the order in which they should be evaluated. This same approach of rule specificity is
also used in a different Spoofax meta-language, Statix [5].

We define the function Compare(p1, p2) = o, where o ∈ {Equal, LessSpecific, MoreSpecific,
Uncomparable}, to evaluate the specificity of p1 relative to that of p2. This function evaluates
the subset of possible values matched by pattern p1, and compares it to the subset of possible
values matched by p2. If p1 captures exactly the same subset of values as p2, it yields Equal.
If the values captured by p2 are a subset of the values captured by p1, it yields LessSpecific
(i.e. p1 captures more values and as a result is less specific than p2). Similarly, if the values
captured by p1 are a subset of the values captured by p2, it yields MoreSpecific. If neither is
the case, it yields Uncomparable. This is the case if two patterns have no overlap in the set of
values that theymatch (e.g. onematches an integer literal, the other matches a string literal).

Note that patterns in Dynamix Core are linear: each variable bound by a pattern must be
unique. A pattern such as Pair(a, a) is illegal and should be rejected. This restriction is
encoded in the definition of the union of two stores, which exists if and only if the set of
variables in both sets is disjoint.

Definition of CompareAll

The helper function CompareAll(p1, p2) = o compares each individual element of the two
given lists of patterns using Compare. If each element of p1 compares equal to the corre-
sponding element of p2, CompareAll returns Equal. Otherwise, it yields the first comparison
result for which the two elements are not equal. This function is defined inductively:

COMPAREALL-NILCompareAll([], []) = Equal

oh = Compare(p1, p2)

o =

{
oh if oh 6= Equal
CompareAll(pa, pb) otherwise

COMPAREALL-CONSCompareAll([p1|pa], [p2|pb]) = o

86

7.4. Rule specificity

Definition of Compare

We define the Compare(p1, p2) function through several inference rules. In the case that sev-
eral rules match for a given input, the first rule listed should be preferred.

In the cases where we can show a trivial equality (i.e. the AST representation of the two
patterns is equal), we immediately yield Equal:

p1 = p2 COMPARE-TRIVIAL EQCompare(p1, p2) = Equal

Bound patterns have the same specificity as the pattern that they bind, and delegate their
comparison to the underlying pattern:

COMPARE-BOUND 1Compare(x@p1, p2) = Compare(p1, p2)

COMPARE-BOUND 2Compare(p1, x@p2) = Compare(p1, p2)

Wildcards and variable patterns are equal in specificity, regardless of the name of the variable.
They are less specific than anything else.

p1 is a variable or wildcard pattern
p2 is a variable or wildcard pattern

COMPARE-VAR WILDCARD EQCompare(p1, p2) = Equal

p1 is a variable or wildcard pattern
p2 is not a variable or wildcard pattern

COMPARE-VAR OTHERCompare(p1, p2) = LessSpecific

p1 is not a variable or wildcard pattern
p2 is a variable or wildcard pattern

COMPARE-OTHER VARCompare(p1, p2) = MoreSpecific

ATerm constructor patterns are uncomparable if their constructor name does notmatch. Else,
their specificity depends on the specificity of each of the argument patterns, compared using
CompareAll.

x1 6= x2 COMPARE-CONS NEQCompare(x1(p1), x2(p2)) = Uncomparable

x1 = x2 COMPARE-CONS EQCompare(x1(p1), x2(p2)) = CompareAll(p1, p2)

p2 is not a constructor pattern
COMPARE-CONS OTHERCompare(x1(p1), p2) = Uncomparable

ATerm integer and string patterns are only equal to themselves, and uncomparable with
anything else. The equality case is handled in rule COMPARE-TRIVIAL EQ.

p1 is an integer or string pattern
COMPARE-LITERAL OTHERCompare(p1, p2) = Uncomparable

87

7. FORMALIZING DYNAMIX CORE

The meta-list nil pattern is uncomparable with anything but itself. The equality case is han-
dled in rule COMPARE-TRIVIAL EQ.

COMPARE-NIL OTHERCompare([], p2) = Uncomparable

The meta-list cons pattern is only comparable with other cons patterns. For these patterns,
the head is compared. If the head patterns are equal, the tail pattern is compared.

COMPARE-CONS OTHERCompare([pa|pb], p2) = Uncomparable

oh = Compare(pa, px)

o =

{
oh if oh 6= Equal
Compare(pb, py) otherwise

COMPARE-CONS CONSCompare([pa|pb], [px|py]) = o

Examples

We give several examples here that show the behavior of the Compare function on different
input patterns.

Compare(_, foo) = Equal

Compare(foo, bar) = Equal

Compare([_|1], []) = Uncomparable

Compare([_|1], [_|2]) = Uncomparable

Compare([_|1], [1|_]) = LessSpecific

Compare([a|[b|c]], [a|b]) = MoreSpecific

Compare([a|[b|[]]], [a|[]]) = Uncomparable

Compare(A(1), A(1, 2)) = Uncomparable

Compare(A(1), A(x)) = MoreSpecific

Compare(A(_), A(y)) = Equal

Compare(x@_, y) = Equal

88

Chapter 8

Dynamix in Spoofax

While we have extensively discussed the formal semantics of the Dynamix meta-language,
we have thus far largely ignored the concrete implementation of the language within the
Spoofax language workbench. In this chapter, we elaborate on the concrete implementation
of Dynamix, how it interacts with other parts of the Spoofax language workbench, and com-
ment on how some of its design decisions were influenced by existing conventions within
the Spoofax ecosystem. Readers that are mainly interested in the design of Dynamix and its
abstractions may prefer to skip this chapter.

8.1 Project structure
The Dynamix and Tim meta-languages are integrated directly in Spoofax 3, the newest it-
eration of the Spoofax language workbench. While Spoofax 3 is currently still under devel-
opment, the decision was made to directly integrate Dynamix into this version in order to
ensure that it receives proper development and maintenance, as well as the ability to benefit
from the improvements in Spoofax 3. In particular, Dynamix and Tim are able to make use
of the new PIE [37] framework for incremental build tasks.

Both Dynamix and Tim are themselves languages written using the Spoofax language work-
bench. They use SDF3 [55] for syntax specification, Statix [5] for static analysis, and Stratego
2 [67] for the implementation of their interpreters. This choicewas a natural one: the Spoofax
language workbench abstracts a lot of language design work, the internal Spoofax 3 project
has first-class support for adding newmeta-languages that themselves are Spoofax language
projects, and the overlap in technologies used between the languages allows for easy inter-
operation between them.

Meta-languages within Spoofax 3 essentially act as language projects that are shipped with
the editor by default. This allows them to be available when a language project depends on
them,without requiring the user to install them. Both TimandDynamix function in thisman-
ner. Beyond the implementation of the concrete language, the implementation of Dynamix
within the language workbench also involves extensions to the Spoofax project configuration
language and new PIE tasks for auxiliary file generation and specification compilation. We
will omit the exact details for these extensions, as they are effectively implementation details.

8.2 Compiling Dynamix specifications
Dynamix has first-class support for spreading out a specification over multiple files. For
this, it uses a module system that is consistent with other Spoofax meta-languages: each
file constitutes a named ”module”, which can be imported into any other file located within

89

8. DYNAMIX IN SPOOFAX

1 module foo
2

3 imports bar
4

5 signature
6 constructors
7 Return : Exp -> Exp
8

9 rules
10 evalExp :: 'Exp -> @cval
11 evalExp(Int(i)) = int(i)
12 evalExp(Return(e)) = {
13 v <- evalExp(e)
14 $return@([v])
15 }

1 module bar
2

3 imports foo
4

5 signature
6 sorts Exp
7 constructors
8 Int : string -> Exp
9 Var : string -> Exp

10

11 rules
12 $return :: @cval
13

14 evalExp(Var(x)) = var(x)

Figure 8.1: An example of a Dynamix specification spread across multiple files. The foo
module declares the evalExp module, using a sort imported from the bar module. The bar
module adds another implementation to the imported declaration of evalExp.

the same project. When such an import occurs, all identifiers and declarations are imported.
This is a straightforward multi-file model that works as expected in most cases, although it
can occasionally cause name binding ambiguities due to the inability to only import parts of
a module, as well as the lack of namespaces or other methods of qualifying an exact declara-
tion. Figure 8.1 shows an example Dynamix specification spread out over two files.

When a language project that uses Dynamix is built, Dynamix will perform a merging step
as part of compilation. This step ensures that several files are combined into a single spec-
ification, such that the Dynamix interpreter does not need to concern itself with the exact
semantics of multi-file specifications. This merging step uses information assigned by the
Statix specification for Dynamix. In particular, Statix keeps track of exactly which declara-
tion any specific rule implementation, global, or rule call references. Each declaration addi-
tionally tracks the name of the module in which it was defined. As part of compilation, a
Stratego strategy queries this information to transform each input specification by replacing
any reference to a declaration with a fully qualified name (an example of this process can be
seen in Figure 8.2). An example showing the merged form of the example from Figure 8.1
can be seen in Figure 8.3.

Static analysis information is also used for desugaring purposes. Any references to constraint
analyzer property lookups, which have a syntax identical to the invocation of a rule, are dese-
rialized into a specialized AST node that indicates that a constraint analyzer lookup should
be performed. Similarly, calls to expression primitives are distinguished from calls to state-
ment primitives, as they must generate different Tim AST nodes when evaluated. Doing this
transformation at compile time ensures that the implementation does not need to resolve the
definition of the rule or the primitive at runtime.

The final compilation result is a serialized form of the Dynamix specification that contains
all desugared rule implementations in a single file. When a source program needs to be com-
piled, theDynamix interpreterwill sort these implementations by the specificity of their argu-
ment patterns (see Section 7.4), then attempt to execute the starting rule (main!compileFile
by default) with the input AST as argument.

90

8.3. Type signature generation

1 rules
2 // bar(a, b, c) -> foo!bar(a, b, c)
3 dx--fully-qualify:
4 MExprCall(name, args) -> MExprCall(<dx--qualify-ast-name> name, args)
5

6 // helper that takes an ast node that references a declaration,
7 // with that declaration having a "declaringModule" statix prop,
8 // and returns the name with that mod name prefixed to it
9 dx--qualify-ast-name: name -> $[[refMod]![name]]

10 with
11 a := <stx-get-ast-analysis> node;
12 ref := <stx-get-ast-ref(|a)> node;
13 refMod := <stx-get-ast-property(|a, "declaringModule")> ref

Figure 8.2: An example showing how Dynamix merges multiple modules during compila-
tion. All nodes within a module are fully qualified by interacting with the results of static
analysis through the Statix API for Stratego.

1 module merged
2

3 rules
4 foo!evalExp(Int(i)) = int(i)
5 foo!evalExp(Return(e)) = {
6 v <- foo!evalExp(e)
7 $bar!return@([v])
8 }
9 foo!evalExp(Var(x)) = var(x)

Figure 8.3: The compilation result of merging the foo and bar modules from Figure 8.1. All
references to rules and globals are fully qualified, and all declarations not necessary for in-
terpretation have been removed.

8.3 Type signature generation
The Dynamix type system ensures that operations such as patternmatching and source term
literals are fully typed. In order to do this, the user must specify the exact algebraic signa-
ture of their input AST, such that the type system can properly type check its use. This is
an approach common in all typed Spoofax meta-languages, including Statix and Stratego 2.
As source languages grow, maintaining this algebraic signature for each meta-language be-
comes a tiring and error-prone task. To combat this, the Spoofax meta-languages generally
include the option to automatically derive algebraic ”signatures” from the SDF3 grammar
of the source language. These signatures are automatically generated as part of the build
process, and can be included through themulti-file specification support in those languages.

As part of the Dynamix implementation into the Spoofax language build, a similar signature
generator for Dynamix was built. This signature generator supports both lexical and context-
free sorts, inferring the signature of theAST from the sorts referenced in the grammar of each
production. An example of an SDF3 grammar and the Dynamix source generated by the sig-
nature generator can be seen in Figure 8.4.

91

8. DYNAMIX IN SPOOFAX

1 module foo
2

3 lexical sorts ID
4 lexical syntax
5 ID = [a-zA-Z] [a-zA-Z0-9_]*
6

7 context-free sorts Exp Literal
8 context-free syntax
9 Exp = Literal

10 Exp.Add = <<Exp> + <Exp>>
11

12 Literal.Var = <<ID>>

1 module signatures/foo-sig
2

3 signature
4 sorts
5 ID Exp Literal
6

7 constructors
8 : string -> ID
9 : Literal -> Exp

10 Add : Exp * Exp -> Exp
11 Var : ID -> Literal

Figure 8.4: An example of a simple SDF3 grammar, and the type signature automatically
generated by Dynamix. Importing signatures/foo-sig in the specification will give access
to the type information, without needing to manually define the signature. The highlighted
line contains an injection, specifying that literals may be implicitly converted to expressions.

In order to properly support all SDF3 grammars, the Dynamix type system also offers rudi-
mentary support for ”injections”: the ability to specify that some sort can be implicitly con-
verted to some other sort. This support is on a best-effort basis and supports the majority
of languages that use injections sparingly, but limitations in Statix prevent some legal pro-
grams from type checking properly1. This tradeoff was deemed acceptable, as the use of
SDF3 grammars with injections is generally considered a bad practice.

8.4 Constraint analyzer integration
As briefly discussed in Section 6.1.8, Dynamix has first-class support for interacting with the
results of static analysis. In particular, Dynamix offers the ability to read any property that
has been assigned by Statix [5] during the analysis of the source program. Since Statix uses
the ATerm representation for property values, Dynamix natively offers first-class support for
any potential value that can be assigned by a Statix specification.

Interoperation with Statix in a Dynamix specification is done by declaring the property, as
well as the type of values assigned to it. This ensures that Dynamix remains able to type
check operations performed on values obtained from querying static analysis properties. If
the user uses an ATerm sort not derived from the SDF3 grammar (e.g. a custom sort for rep-
resenting semantic types), they will need to also define this sort in Dynamix. An example of
the declaration and use of static analysis properties can be seen in Figure 8.5.

In order to model optional properties, Dynamix returns a meta-list when querying any prop-
erty. An empty list indicates that the property was not present, while a non-empty list indi-
cates that at least one value was assigned to the property (Statix allows you to assign more
than one value to a property). Unfortunately, limitations in the Stratego application program-
ming interface (API) exposed by Statix mean that it is impossible to distinguish between a
list assigned as a property (@foo.prop := [1, 2, 3]), and multiple values assigned to the
same property (@foo.prop += 1). This is generally not a problem, as multiple assigned prop-

1The Dynamix specification is generally able to ”see through” a single layer of injections. Multiple layers of
injections quickly turn type-checking into a path-finding problem (”is there a sequence of injections I can take
to convert type A into type B?”), which Statix is not properly equipped to handle.

92

8.4. Constraint analyzer integration

1 signature
2 sorts TYPE
3 constructors
4 INT : TYPE
5 BOOL : TYPE
6 LIST : TYPE -> TYPE
7 STRING : TYPE
8

9 constraint-analyzer
10 property type :: 'TYPE
11

12 rules
13 // compile a + b by switching on the type of the expression
14 compileExp(a@Add(_, _)) = compileAdd(type(a), a)
15

16 compileAdd :: List('TYPE) * 'Exp -> Pluggable(@cval)
17 compileAdd([INT()], Add(a, b)) = {
18 // <integer addition omitted>
19 }
20 compileAdd([LIST(_)], Add(a, b)) = {
21 // <list concatenation omitted>
22 }
23 compileAdd([STRING()], Add(a, b)) = {
24 // <string concatenation omitted>
25 }

Figure 8.5: An example declaration for interacting with the results of static analysis. The
type Statix property is declared, returning a value representing the semantic type of the node.
The compilation of the addition expression uses the type information to distinguish between
integer addition, list concatenation, and string concatenation.

erties are exceedingly rare and generally not mixed with direct assignments.

Internally, property lookups are done bypreserving the attachments and annotations2 present
on source ATerms. By carefully ensuring that none of the transformation and evaluation
steps done by the Dynamix interpreter touch these attachments, the Statix runtime is able
to resolve the appropriate analysis results for a given node. Any source nodes created by
the source term literal expression, '<term>, lack such annotations and therefore always yield
empty meta-lists when a lookup is performed.

2Annotations are the ”A” in ATerm, as discussed in Chapter 2. Attachments are invisible annotations that
are only accessible by native Stratego strategies. Due to unfortunate decisions and legacy code, most APIs that
resolve node information require both of them to be carefully preserved, which is not always trivial.

93

Chapter 9

Case studies

To evaluate the effectiveness of the Dynamix meta-language and Tim runtime, specifications
were written for several different programming languages. Outside of the Tiger specification
discussed as part of Section 6.1, two extensive specifications were written for the ChocoPy
programming language [48] and for a subset of the Stratego programming language [67].
These two languages were chosen because of the author’s familiarity with the languages, as
well as the different language paradigms they represent.

We first briefly discuss the implemented specification for each language, highlighting the
techniques used to implement certain language features and discussing challenges encoun-
tered while writing the specification. Afterwards, we refer back to the original design objec-
tives for Dynamix, using the implemented case studies as amethod for determiningwhether
the objectives have been successfully achieved.

We do not discuss the full specifications for either case study in this document. Instead, we
will only include relevant snippets from the Dynamix specification, foregoing the grammar
and static analysis definitions for both languages entirely. Readers interested in the entire
Dynamix specification can find the source code for both the ChocoPy1 and miniStratego2

case studies online.

9.1 ChocoPy with exceptions
We first discuss the Dynamix specification for ChocoPy with exceptions. ChocoPy [48, 49] is
a typed fully specified subset of Python [63] designed for use in teaching compiler construc-
tion and language design courses. ChocoPy features include static type checking, classes
with dynamic dispatch, lists, and nested functions. Within the TU Delft, ChocoPy is used as
the source language for the CS4200 Compiler Construction course.

ChocoPy was chosen as a case study because it represents a ”classical” fully defined imper-
ative language with a wide range of language features. In particular, the ability to write
a complete Dynamix specification for ChocoPy would indicate that Dynamix is capable of
representing at least all of the features present in ChocoPy, which include features common
across most popular imperative programming languages. Additionally, the typed nature of
ChocoPy allows us to verify that Dynamix is capable of compiling typed languages by tak-
ing advantage of its static analysis interoperability features. Finally, because it is used as the
language for compiler construction courses, we are able to reuse the large suite of tests to

1https://github.com/molenzwiebel/metaborg-chocopy
2https://github.com/molenzwiebel/metaborg-ministratego

95

https://github.com/molenzwiebel/metaborg-chocopy
https://github.com/molenzwiebel/metaborg-ministratego

9. CASE STUDIES

verify that the specification is correct.

We will not discuss the exact design of the ChocoPy language in this document. Instead, we
refer the reader to the excellent formal specification for ChocoPy [49], which outlines the ex-
act static and dynamic semantics of the language. Wewill briefly elaborate on the extensions
made to ChocoPy to support extensions in Section 9.1.1, but for the sake of brevity we will
omit a formal definition for these features.

With this case study, we demonstrate that Dynamix is capable of:

• Implementing an imperative languagewith control flowconsisting of linear fallthrough,
function calls, early returns, loops, and conditional statements.

• Compiling and using composite data structures such as lists and classes.

• Performing run-time dynamic dispatch and other object-oriented features.

• Taking advantage of type analysis to implement overloaded operators and to optimize
the representation of values (”autoboxing”).

• Implementing a language that has exceptions in a clean manner, isolating this imple-
mentation only to the language constructs that directly throw or catch them.

9.1.1 Exceptions in ChocoPy
In order to explore the more advanced control flow features available in Dynamix, this case
study extends the original ChocoPy language, as defined in the formal specification written
by Padhye et. al [49], with support for Python 3.6+-style exceptions. In particular, our ver-
sion of ChocoPy adds the raise and try-except-finally statements.

An example of ChocoPywith exceptions can be seen in Figure 9.1. Exceptions are unchecked,
meaning that they can be raised at any time and are not part of the signature of a function.
Unlike in Python, exceptions in ChocoPy do not need to inherit from an Exception base class,
but instead can be any class instance. Every except block must specify the type of the ex-
ception that it wishes to catch, but unlike Python this type must match exactly. If the raised
exception is a subclass of the declared class, it will not be handled by the except block.3 Note
that the variable bound as an exception must already be declared. This is consistent with
other ChocoPy constructs, but it increases the density of the code slightly due to the numer-
ous declarations of locals with an initial value of None.

The finally block follows the same semantics as in Python 3. In particular, the block is guar-
anteed to run, even in cases where the try or except block raises an exception or performs
an early return. If the finally block performs an early return, or raises an exception, this will
override any of the same actions performed in the try or except blocks. An example of this
behavior can be seen in Figure 9.2.

Exceptions thrown propagate upwards until the nearest except block that accepts the specific
exception type. In the case that such a handler is not found, a default exception handler is
invoked, printing a message and exiting the application.

3This restriction exists to simplify the implementation, since it means that objects can be compared by class
name instead of walking the inheritance tree.

96

9.1. ChocoPy with exceptions

1 class InvalidArgumentException(object):
2 pass
3

4 class NotDivisibleBy2Exception(object):
5 pass
6

7 def halve_element(elements: [int], index: int):
8 value: int = 0
9

10 if index >= len(elements) or index < 0:
11 raise InvalidArgumentException()
12

13 value = elements[index]
14 if value % 2 == 1:
15 raise NotDivisibleBy2Exception()
16

17 elements[index] = value // 2
18

19 elements: [int] = None
20 iax: InvalidArgumentException = None
21 ndb2x: NotDivisibleBy2Exception = None
22

23 elements = [1, 2, 3, 4]
24 try:
25 halve_element(elements, 1) # OK
26 halve_element(elements, 0) # not divisible by 2
27 except InvalidArgumentException as iax:
28 print("Invalid index passed to halve_element")
29 except NotDivisibleBy2Exception as ndb2x:
30 print("Element is not cleanly divisible by two")
31 finally:
32 print("Done!")
33 print(elements[0]) # prints 1
34 print(elements[1]) # also prints 1

Figure 9.1: An example program written in our version of ChocoPy. The second invocation
of halve_element raises an exception, which is caught by the except block.

97

9. CASE STUDIES

1 class Exception(object):
2 pass
3

4 def reraise() -> int:
5 ex: Exception = None
6 try:
7 print("A")
8 raise Exception()
9 return 1

10 except Exception as ex:
11 print("B")
12 raise ex
13 finally:
14 print("C")
15 return 2 # overrides the raise from line 12
16 return 3
17

18 def hijack_return() -> int:
19 try:
20 return 1
21 finally:
22 return 2 # overrides the return from line 20
23 return 3
24

25 print(reraise()) # Prints A, B, C, 2
26 print(hijack_return()) # Prints 2

Figure 9.2: An example showing how the finally block is invoked even in the case of an
uncaught exception or early return. Any raises or returns performed in the finally block take
precedence over any performed prior to the block.

9.1.2 Basic ChocoPy in Dynamix

To quantify the relative effort of adding exceptions to an existing specification, an initial ver-
sion of a Dynamix specification for ChocoPy was constructed that implements the entirety
of the ChocoPy reference manual, but lacks any of the exception features described earlier.
This implementation is fairly straightforward, with most rule implementations resembling
the equivalent implementation from the Tiger specification discussed in Chapter 6 . We will
limit our discussion of this specification to only those aspects of the specification that fea-
ture interesting or creative approaches to implementing a specific language feature. The full
Dynamix specification can be found online4.

Mutually recursive functions

ChocoPy functions that are declared adjacently to each other are allowed to perform mu-
tually recursive function calls. In order to ensure that we correctly compile such cases, we
must ensure that all functions within a scope are located in a single Tim fix expression5. We
must also ensure that any variable definitions are compiled before the fix block, such that all

4https://github.com/molenzwiebel/metaborg-chocopy
5Recall: functions located in a fix expression are allowed to be mutually recursive.

98

https://github.com/molenzwiebel/metaborg-chocopy

9.1. ChocoPy with exceptions

1 def foo(a: int) -> object:
2 def bar(b: int) -> object:
3 return print(a + b)
4 return bar(10)
5

6 foo(10)

1 fix {
2 fun $fn_foo(a, return5) =
3 fix {
4 fun $fn_bar(b, return6) =
5 #int-add(a, b) => y21;
6 $fn_printInt(y21, return6)
7 } in
8 $fn_bar(10, return5)
9 } in

10 fix {
11 fun return9(a130) =
12 #exit()
13 } in
14 $fn_foo(10, return9)

Figure 9.3: An example of how nested functions in ChocoPy trivially translate to nested func-
tions in Tim. The right-hand side is the output of the Dynamix specification, although sim-
plified to remove several indirections and features not relevant to this example. Note how
the Tim function $fn_bar (corresponding to ChocoPy function bar) is nested within the Tim
function $fn_foo, just as in the ChocoPy program.

functions can refer to them. This reordering does not change the semantics of the program.

The Dynamix specification for ChocoPy solves this by iterating over the list of definitions
twice. First, variable and class definitions are processed. Afterwards, only functions are
processed into a List(@cfun). This approach is similar to that outlined in Section 6.1.5. In
order to model the potential lack of a value, the specification uses meta-lists of size zero (to
indicate None) and one (to indicate Some). This encoding is the same as commonly used in
Statix specifications.

Nested functions and nonlocals

ChocoPy supports the definition of functions inside other functions. Such nested functions
can access both arguments and locals defined in parent functions. Unlike full closures how-
ever, they do not need to persist beyond the call to the outer-most function (as functions are
not first-class values in ChocoPy).

The implementation of nested functions with Dynamix is trivial, as Tim has first-class sup-
port for nested functions that capture their parent scope. Since the scoping rules for ChocoPy
are compatible with those for Tim, simply defining Tim variables with the same name as the
corresponding ChocoPy variable is enough to capture the behavior of nested functions in
ChocoPy. An example of a nested function and the corresponding Tim program can be seen
in Figure 9.3.

Classes and dynamic dispatch

ChocoPy has limited support for classes and dynamic dispatch. Classes can carry both data
and virtual functions, and children can both inherit and redeclare functions from their par-
ent class. However, the ability to call the parent implementation of a function, as well as the
ability to downcast from a parent class to a child class, is not supported in ChocoPy. This
makes the implementation of objects in the Dynamix specification considerably easier.

99

9. CASE STUDIES

Object instances are implemented as records. The $vtable field references another record,
containing function instances representing the virtual functions of the class. The $type field
is a string representation of the type of the class, used for exception type matching and type
dispatch in certain native functions (e.g. the print function). All fields of the object also live
inside this record. Since fields in ChocoPy may not contain a dollar-sign character, they can-
not conflict with the virtual method table and type fields. Figure 9.4 shows an example of a
pair of classes and how their values are structured.

A class definition is modeled by converting it into a pair of Tim functions. The first function,
$initialize_<name> is responsible for initializing an already allocated class object with the
appropriate class member values, and the object virtual method table with the appropriate
function instances. This function starts by first invoking the appropriate initialization func-
tion of the parent class, such that the resulting object already contains all fields and virtual
method table entries for the parent class. Any functions that were overridden in the child
class will be replaced in the virtual method table, such that a lookup will return the child im-
plementation. The second function, $fn_<name>, is responsible for allocating the class record,
invoking the appropriate initialization function, retrieving the __init__method from the vir-
tual method table, and finally invoking it. This is the function that will be invoked when a
new instance of the class is constructed by the user.

Since it is impossible to downcast values in the ChocoPy language, we do not need to keep
track of the inheritance tree of objects. We do not need to insert any explicit upcasting code
either, as the ”shape” of a child object (consisting of the set of declared fields and methods)
is a superset of the parent, and hence directly compatible.

Automatic boxing of primitives

Beyond a formal language specification for ChocoPy, the authors of the ChocoPy specifica-
tion also provide an implementation guide [50] for compiling the language to RISC-V as-
sembly. In this guide, the authors choose to represent integer and boolean values as native
integer values such that arithmetic operations can be performed directly and efficiently. If
integers or booleans are used in a context that requires an object6, they are implicitly con-
verted to an object representation by a process known as ”boxing”.

In order to evaluate the static analysis interoperation features of Dynamix, the decision was
made to implement this boxing behavior in the Dynamix specification for ChocoPy.7 Inte-
gers and booleans will be represented directly as Tim integers, and only converted to objects
if they are passed to a context expecting an object argument. Unlike the RISC-V implemen-
tation guide, we additionally also use unboxed strings whenever possible.

Automatic boxing is implemented by assigning the box property in the Statix specification to
any expressions used in a contextwhere coercion froma rawprimitive value to an object form
is required. The Dynamix specification retrieves this property and conditionally branches on
the result to potentially box the value. Figure 9.5 shows an outline of this technique.

9.1.3 Adding exceptions

6All values in Python are descendants of the object class, even integers, strings, and booleans.
7It should be noted that in the ideal case, the language author should not have to worry about the efficiency

of their value representation. Even if all values are always boxed, a sufficiently advanced compiler or runtime for
Tim should be able to recognize and optimize caseswhere a boxed representation can be elided. It is unrealistic to
expect this for all possible source languages and data representations though, which is why it is good to confirm
that Dynamix is able to support more complex data representations like implicit (un)boxing.

100

9.1. ChocoPy with exceptions

1 class Foo(object):
2 a: int = 1
3

4 def foo(self: Foo) -> int:
5 return self.a
6

7 def bar(self: Foo) -> int:
8 return 10
9

10 class Bar(Foo):
11 b: int = 1
12

13 def bar(self: Bar) -> int:
14 return self.b

Foo Instance

+ $vtable: Foo VTable

+ $type: string = "Foo"

+ a: int = 1

Bar Instance

+ $vtable: Bar VTable

+ $type: string = "Bar"

+ a: int = 1

+ b: int = 1

Foo VTable

+ __init__: Function

+ foo: Function

+ bar: Function

Bar VTable

+ __init__: Function

+ foo: Function

+ bar: Function

def Foo.bar

def Bar.bar

def object.__init__

def Foo.foo

Figure 9.4: A visualization of how object instances are modeled in the Dynamix specification
for ChocoPy. Objects contain a type tag, a vtable for dynamic dispatch, and the class fields.
The default implementation of __init__ simply returns immediately.

After completing an initial specification for ChocoPy that lacks any exception support, the
existing specification was augmented to add exceptions. This was done intentionally, so that
the effort needed to add a new form of control flow to the language can easily be quantified
(the results of which we discuss in Section 9.3).

First, each function definition is extended with an additional continuation invoked when
an exception is thrown. This argument works similarly to the return argument in the Tiger
specification (see Section 6.1.5). The meta-global $raise is configured to always point to the
nearest exception continuation, and its value is used as the exception continuation for calls
to functions. This requires adjustments in the implementation of function declarations (both
normal and class member functions) and (member) function calls.

The raise statement simply invokes the current $raise handler. In the case that no try-except-
finally block has been defined, this defaults to a top-level function that prints a message and
then exits the program. Raising an exception does not require changes in any other rules.

101

9. CASE STUDIES

1 rules
2 // boxExpIfNeeded(exp, given type, expected type)
3 boxExpIfNeeded : Exp * TYPE * TYPE
4 boxExpIfNeeded(x, INT(), OBJECT()) :- @x.box += "int".
5 boxExpIfNeeded(x, BOOL(), OBJECT()) :- @x.box += "bool".
6 boxExpIfNeeded(x, STRING(), OBJECT()) :- @x.box += "str".
7 boxExpIfNeeded(x, _, _) :- @x.box += "other".
8

9 stmtOk(s, _, Return(e), RT) :- {T}
10 expOk(s, e) == T,
11 // possibly insert box if RT is object and T is int/bool
12 boxExpIfNeeded(e, T, RT),
13 isSubtype(RT, T).

1 rules
2 compileExpBoxing :: 'Exp -> Pluggable(@cval)
3 compileExpBoxing(e) = {
4 compiled <- compileExp(e)
5 compileExpBoxingHelper(box(e), compiled)
6 }
7

8 compileExpBoxingHelper :: List('string) * @cval -> Pluggable(@cval)
9 compileExpBoxingHelper(["int"|_], e) = boxInt(e)

10 compileExpBoxingHelper(["str"|_], e) = boxString(e)
11 compileExpBoxingHelper(["bool"|_], e) = boxBool(e)
12 compileExpBoxingHelper(_, e) = e
13

14 compileStmt(Return(e)) = {
15 v <- compileExpBoxing(e)
16 $return@([v])
17 }

1 def foo() -> object:
2 return 1 + 2
3

4 print(foo())

1 fix {
2 fun $fn_foo(return14) =
3 #int-add(1, 2) => y43;
4 #record-new("$type", "int", "value", y43) => y44;
5 return14(y44)
6 fun return15(a133) =
7 #exit()
8 fun return16(a134) =
9 $fn_print(a134, return15)

10 } in
11 $fn_foo(return16)

Figure 9.5: An outline showing how the automatic boxing of primitive values for the return
statement is implemented in the Dynamix specification for ChocoPy. The Statix specification
(top) assigns a box property to each expression that may need to be boxed. The Dynamix
specification (middle) reads this property and conditionally boxes an expression based on
its value. The example ChocoPy snippet (bottom left) shows how the boxing is compiled to
a Tim program (bottom right). Note how the addition operator uses normal integers, boxing
only the final return value.

102

9.1. ChocoPy with exceptions

1 rules
2 compileStmt(Try(body, excepts, NoTryFinally())) = {
3 handler <- fresh-var(handler)
4 raised <- fresh-var(raised)
5

6 fix {
7 fun handler([raised]) =
8 compileExcepts(excepts, raised, after)
9 }

10

11 with $raise = handler do
12 compileBlock(body)
13

14 after@([])
15 } label after/0:
16

17 compileExcepts :: List('TryExcept) * @cval * @cval -> @cexp
18 compileExcepts([], v, _) = $raise@([v]) // no excepts matched, re-raise
19 compileExcepts([TryExcept(Type(t), id, body)|rest], val, after) = {
20 exnty <- #record-read(val, str('"type"))
21 if #str-eq(exnty, str(t)) then {
22 vref <- #ref-new(val) // wrap exn in ref
23 let var(id) = vref in {
24 compileBlock(body)
25 after@([])
26 }
27 } else {
28 compileExcepts(rest, val, after)
29 }
30 }

Figure 9.6: The implementation of the try-except statement in ChocoPy, when no finally block
is given. The implementation is trivial, requiring only a redefinition of the $raise handler
and sequential comparisons for the type of the exception thrown.

If a try block has no finally, it is implemented by simply replacing the $raise meta-global
with a handling function within the scope of the try. In case an exception is caught, it is dis-
patched to the correct except block based on the type of the exception, or bubbled upwards
to the previously defined $raise if it did not match any of the defined except blocks. This
implementation is trivial, as seen in Figure 9.6.

If a try block has a finally block, the implementation is more complex. Not only must the
$raise continuation be wrapped in the body of the try block, but both early returns and
exceptionsmust also be handled in both the try block aswell as all except blocks. This is done
by wrapping the existing handlers and invoking the finally block. In the case that the finally
block does not perform an early return or exception raise, we invoke the original handler
with the intercepted exception or return value. An annotated version of the try-except-finally
construct from the Dynamix specification for ChocoPy can be seen in Figure 9.7.

103

9. CASE STUDIES

1 compileStmt(Try(body, excepts, TryFinally(finallyBody))) = {
2 finallyFromReturn <- fresh-var(finallyRet)
3 finallyFromException <- fresh-var(finallyExn)
4 finallyFromNormalExecution <- fresh-var(finallyCont)
5 onException <- fresh-var(handler)
6 val <- fresh-var(val)
7

8 fix {
9 fun onException([val]) = {

10 // invoke the appropriate except block, wrapping $return and $raise
11 with $return = finallyFromReturn, $raise = finallyFromException do
12 compileExcepts(excepts, val, finallyFromNormalExecution)
13 }
14

15 // the continuation invoked when control flow naturally falls
16 // through to the finally block (either after the end of try or
17 // after the end of an except body)
18 fun finallyFromNormalExecution([]) = {
19 compileBlock(finallyBody)
20 after@([]) // if the finally block did not return, continue
21 }
22

23 // the continuation invoked when any part of the try-except-finally
24 // attempts to perform an early return. `val` is the returned value
25 fun finallyFromReturn([val]) = {
26 compileBlock(finallyBody)
27 $return@([val]) // if the finally block did not return, propagate
28 }
29

30 // the continuation invoked when any except block attempts to raise
31 // a new exception. `val` is the raised exception
32 fun finallyFromException([val]) = {
33 compileBlock(finallyBody)
34 $raise@([val]) // if the finally block did not return, propagate
35 }
36 }
37

38 // run the body of the try block, wrapping $return and replacing
39 // the $raise handler with our except dispatch function
40 with $return = finallyFromReturn, $raise = onException do
41 compileBlock(body)
42

43 // if we reach this, it means that the try body did not raise
44 // an exception. Invoke the finally block normally
45 finallyFromNormalExecution@([])
46 } label after/0:

Figure 9.7: The implementation of the try-except-finally statement in our version of ChocoPy.
We must carefully handle control flow such that the finally block is guaranteed to be called,
even in the presence of early returns or unhandled exceptions.

104

9.2. miniStratego

program ::= def∗

def ::= ID(〈 ID, 〉∗|〈 ID, 〉∗) = strategy named strategy definition

strategy ::= fail unconditional failure
| id unconditional success
| ?term pattern match current term
| !term construct term from pattern
| strategy; strategy sequence
| strategy < strategy + strategy guarded choice
| prim(string, 〈 strategy, 〉∗|〈 term, 〉∗) primitive strategy
| some(strategy) succeed if at least 1 subterm succeeds
| one(strategy) succeed if 1 subterm succeeds
| all(strategy) succeed if all subterms succeed
| ID(〈 strategy, 〉∗|〈 term, 〉∗) invoke strategy with args
| let 〈 def 〉∗ in strategy end let binding

Grammar 9.1: The strategy grammar for the miniStratego language. The grammar for terms,
literals, and identifiers are omitted.

9.2 miniStratego
The second case study evaluates the difficulty of implementing a specification for the Strat-
ego core language [67]. Stratego is a programming language centered around the concept
of term rewriting and rule failure. Unlike conventional languages, functions (called ”strate-
gies” in Stratego) can either succeed with a value, or fail. Failure is a first-class citizen, and
built-in language constructs exist for composing strategies, handling failures, and generically
applying strategies to input terms. Strategies are also first-class values, allowing them to be
passed as arguments to other strategies.

The full Stratego language has a large amount of constructs, but almost all of them can be
desugared or rewritten to a core set of constructs as observed by Visser and Benaissa [68].
As a consequence, showing that we are able towrite a specification in Dynamix for these core
Stratego constructs also shows that Dynamix is capable of representing the entire Stratego
language. For this case study, we implement the set of strategy primitives listed in Gram-
mar 9.1. To avoid confusion with the core Stratego language, we name our small language
miniStratego. miniStratego uses the same term syntax as ATerms, but it lacks support for
annotations.

Wewill omit the exact semantics ofminiStratego in this section. Readers not familiarwith the
concepts of transformation strategies are recommended to read the informal introduction to
Stratego by Eelco Visser [67], as well as the formal semantics for some of the core language
structures [68].

With this case study, we demonstrate that Dynamix is capable of:

• Implementing a language that performs non-linear control flowas a first-class language
feature.

• Handling a dynamically typed language, such that types must be tracked at runtime.

105

9. CASE STUDIES

• Implementing advanced matching features, such as arbitrarily nested non-linear pat-
tern matching.

• Taking advantage of static analysis features to implement a language with implicit vari-
able definitions.

9.2.1 Dynamically typed values
Since all values in Stratego are dynamically typed8, it becomes necessary to keep track of
the exact type of every value. Unlike the boxing approach discussed in the ChocoPy case
study (Section 9.1.2), we cannot get away with only boxing non-primitive values. This is be-
cause Tim lacks any primitives for identifying the type of a specific value at runtime9. Conse-
quently, every Stratego value is represented as a Tim record with a type field. The remaining
fields of the record depend on the type of the data. For example, lists contain an additional
value field with a Tim array value.

Many operations on Stratego values are implemented directly as hand-written Tim functions.
These functions are comparable to standard library functions, or perhaps assembly snippets,
and abstract out common logic such as value type checks, equality checks, and the implemen-
tation of the one/some/all strategies. By extracting the definitions into separate functions,
the generated code for any given source program becomes less verbose. At the same time,
this approach simplifies the implementation of the Dynamix specification, as it is generally
more cumbersome to write a Tim function in Dynamix if there are nometa-variables or other
source terms involved.

9.2.2 Pattern matching and implicit definitions
Whenever an identifier is used in a miniStratego match construct, it will either act as a bind-
ing wildcard pattern (in the case that the variable has not already been bound to a value), or
as an equality test for the specific value of the variable (if it has already been bound). For in-
stance, the strategy ?Pair(a, a) applied to the input Pair(1, 2)will first bind a to 1 (as it does
not yet have a value), and then attempt tomatch this bound value to 2 (failing in the process).

This behavior can be implemented at runtime by keeping track of the currently bound vari-
ables, and performing the appropriate behavior based on whether or not a specific identifier
was already bound. However, the order in which patterns are evaluated is deterministic
(depth-first, left-to-right). This means that static analysis is capable of determining which
use of a variable will bind the variable, and which uses will match against an earlier bound
value. By exposing this information to the Dynamix specification, variables in patterns can
be turned directly into Tim variables. This avoids the overhead of having a dynamic envi-
ronment of bound variables.

The match strategy is implemented by sequentially checking each component of the match
pattern. In the case that any such pattern fails, it immediately invokes the failure continua-
tion of the strategy. If a variable pattern is encountered, it either introduces a new let bind-
ing (if this use was a declaration), or matches the previously bound value against the cur-
rent term. Any subsequent strategies (e.g. through the sequencing operator or the guarded
choice operator) will have their bodies placed such that the let bindings from the pattern

8An in-development partial rewrite of the Stratego compiler, dubbed Stratego 2, adds support for incremental
static type checking to the language.

9It would technically be possible to add such primitives to the Tim interpreter. However, we intentionally do
not add such primitives as they may impede the performance of a future optimizing compiler for Tim.

106

9.2. miniStratego

1 rules
2 matchTerms :: @cval * @cval * List('Term) -> Pluggable
3 // matching no patterns always succeeds
4 matchTerms(_, _, []) = hole
5

6 // match index `i` of Tim array `vals` against pattern `hd`
7 matchTerms(vals, i, [hd|tl]) = {
8 v <- #array-read(vals, i) // read value
9 matchTerm(v, hd) // match value against pattern

10

11 // Increment the index for the next value to be matched against.
12 // We would ideally do this at compile time (as these are constant
13 // numbers), but Dynamix lacks the ability to perform arithmetic.
14 inext <- #int-add(i, int('1))
15 matchTerms(vals, inext, tl)
16 }

Figure 9.8: The lack of compile-time arithmetic support for source integers means that we
must compute pattern value indices at runtime, even though they could be determined stat-
ically.

are in scope for the remainder of the strategy declaration.

When a sequence of patterns needs to be matched against a sequence of input values (as
is the case with lists or constructor arguments), this is compiled by sequentially comparing
each of them. However, Dynamix lacks the ability to do compile-time arithmetic on source
operators. This means that it is impossible to compute the index of each pattern at compile
time. The current specification works around this by instead incrementing a Tim integer by
1 on every iteration, as seen in Figure 9.8. While this approach works, it delegates a computa-
tion to runtime that can be trivially performed at compile time. In order to properly support
this, Dynamix would need to be extendedwith compile-time support for source termmanip-
ulation, which is not included in the version of Dynamix described in this thesis. We discuss
this in more detail in Chapter 11.

9.2.3 Proper scoping through pluggable meta-globals
TheminiStratego specification uses pluggable values in a somewhat unconventional manner.
Specifically, the $success and $failure meta-globals used to store the current continuations
for success and failure are of type Pluggable(@cval), instead of @cval. To discuss the rea-
son for this, let us consider the most ”obvious” implementation of the sequencing strategy,
shown in Figure 9.9.

We evaluate the left-hand strategy with an overridden success continuation. This new con-
tinuation evaluates the right-hand strategy with the output term. If this also succeeds, the
original success continuation is called. If either of the strategies fails, the failure continuation
is called. This is seemingly a completely valid implementation of the sequencing operator.
However, this approach runs into scoping issues. The reason is that we compile the right-
hand strategy lexically before the left-hand strategy. If the left-hand strategy introduces any
new bindings (as is the case with variables bound by a match strategy), they will not be
visible within the body of the right-hand strategy, as the body of the right-hand strategy is

107

9. CASE STUDIES

1 rules
2 evalStrategy(t, Seq(a, b)) = {
3 success <- fresh-var(suc)
4 t2 <- fresh-var(t)
5 fix {
6 fun success([t2]) = evalStrategy(t2, b)
7 }
8 with $success = success do
9 evalStrategy(t, a)

10 }

Figure 9.9: The most obvious implementation of the sequencing operator. While seemingly
correct, this implementation runs into issues if strategy ‘a‘ introduces any new bindings.

1 fix {
2 fun suc1(t) =
3 // <implementation for !a>
4 // error, `a` is not in scope
5 suc0(a)
6 } in
7 // <implementation for ?a>
8 let a = t in
9 suc1(a)

1 // <implementation for ?a>
2 let a = t in
3 fix {
4 fun suc1(t) =
5 // <implementation for !a>
6 // works, `a` is in scope
7 suc0(a)
8 } in
9 suc1(a)

Figure 9.10: Two approaches to compiling ?a; !a. The left Tim program is produced by the
”obvious” implementation of the sequencing operator, but runs into scoping issues because
the bound variable is not in scope for the right-hand side body. The right Tim program
delays the insertion of the right-hand side until the continuation is called. This ensures that
any bindings introduced by the left-hand side are in scope for the right-hand side.

located in an outer scope. This is a problem that we cannot solve by changing our implemen-
tation of the sequencing operator.

The solution is to delay the insertion of the right-hand strategy body until just before the
continuation is called. Figure 9.10 illustrates why this approach solves the scoping issues.
To implement this delayed insertion of the right-hand side body, we use Pluggable meta-
globals. Recall that such values represent Tim program snippets, that get inserted into the
final program through composition. By using Pluggable globals, we can compose into the
program only just before we need them. This approach can be seen in Figure 9.11, and is the
approach used in the specification for miniStratego.

9.3 Evaluation

The case studies for ChocoPy with exceptions and miniStratego have shown that Dynamix
is capable of representing specifications for two languages with widely different paradigms.
However, just the ability to implement a specification for a language alone does not show that
Dynamix succeeds in the goals we set out to achieve in Chapter 3. In the remainder of this
chapter, we will evaluate the performance of the Dynamix project by reviewing the original
design objectives and relating them back to the case studies.

108

9.3. Evaluation

1 rules
2 evalStrategy(t, Seq(a, b)) = {
3 success <- fresh-var(suc)
4 t2 <- fresh-var(t)
5 with $success = {
6 fix {
7 fun success([t2]) = evalStrategy(t2, b)
8 }
9 success

10 } do
11 evalStrategy(t, a)
12 }

Figure 9.11: A fixed implementation of the sequencing operator that uses pluggable meta-
globals for the success and failure continuations. This ensures that the insertion of the com-
pletion handler is delayed until when it is invoked.

9.3.1 Simplicity and adoptability
One of the core design goals for the Dynamix DSL was to provide an easy to adopt meta-
language, especially for existing users of the Spoofax language workbench. It is hard to
quantify this aspect objectively, so instead we will highlight which design decisions for the
meta-language help and harm this objective.

Generally, theDynamixmeta-language follows the same conventions set out in other Spoofax
meta-languages. This includes the use of ATerms as data format, the same module system
as used in SDF3, Statix, and Stratego, and similar syntax for rule and signature declarations.
These similarities increase adoptability for existing users of the Spoofax workbench.

The presence of a strict type system for the meta-language helps adoption by offering in-
stant feedback for erroneous specifications. However, the use of new abstractions, such as
pluggable terms, makes the type system hard to grasp without at least a surface-level un-
derstanding of their implementation. As a result, the presence of the type system trades
simplicity for adoptability.

The Dynamix DSL has a relatively small amount of language constructs, with little syntac-
tic sugar. A basic understanding of a typical Dynamix specification can easily be used to
write new specifications, especially since Dynamix specifications often tend to have similar
implementations for similar features. This is exemplified by the specification for ChocoPy,
which shares a lot of similarities with the specification for Tiger discussed in Chapter 6. This
increases adoptability, especially if the user has access to example specifications.

A lack of syntactic sugar constructs harms the usability of the language. In particular, a lack
of generics means that users are required to redefine certain operations on lists for every pos-
sible sort they wish to work with. Within the ChocoPy andminiStratego specifications alone,
there are 16 instances of rules that are variations on map or reduce operations (an example
of such a rule can be seen in Figure 9.12). Generics, first-class rules, or syntactic sugar such
as Statix’s maps construct, could help reduce the amount of redundant code.

Despite this verbosity, the ChocoPy and miniStratego specifications are reasonably compact.
Both languages can be fully represented in less than 800 lines of Dynamix source, with the

109

9. CASE STUDIES

1 rules
2 compileExps :: List('Exp) -> Pluggable(List(@cval))
3 compileExps([]) = []
4 compileExps([h|tl]) = {
5 eh <- compileExp(h)
6 etl <- compileExps(tl)
7 [eh|etl]
8 }

Figure 9.12: Small variations on mapping and folding operations, such as the one shown
in this figure, occur throughout the specifications for both case studies. Syntactic sugar or
support for generics could help eliminate some of this duplicate code.

Size of specification in lines of code
ChocoPy with exceptions 723
miniStratego 585

Table 9.13: The size of the specifications implemented. Line counts exclude generated
sources such as type signatures, as well as empty lines and comments.

Dynamix specification for ChocoPy even being smaller than the Statix specification for the
same language. Table 9.13 shows an overview of the size of the implemented case study
specifications.

As previously mentioned, the TU Delft also uses ChocoPy for the CS4200 Compiler Con-
struction course. The reference compiler written by course staff, which compiles ChocoPy
to RISC-V assembly, is approximately 1600 lines of Stratego source. This is more than twice
the length of the ChocoPy specification, and this difference increases when we consider that
the reference compiler has no support for exceptions. While it is not a fair comparison to
directly compare a specification to a complete compiler, it shows that extracting out a com-
mon runtime platform (i.e. the Tim interpreter) has tangible benefits in reducing the size
and complexity of specifications.

9.3.2 Language paradigm applicability

The second core goal of the Dynamix project is to design a DSL that can be applied to a large
variety of source languages. As with the simplicity goal, it is not trivial to ascertain this prop-
erty based solely on the work done in this project.

Dynamix was intentionally built on the CPS target platform to allow low-level access to the
control flow of the program. As shown in the ChocoPy with exceptions case study, this ap-
proach allows for complex control flow while at the same time isolating this control flow to
just the language features that participate in it. Table 9.14 shows an overview of the over-
head of adding exception support to an existing ChocoPy specification, including changes
needed to existing rules. The relatively small changes needed to existing code, compared to
a specification that uses small- or big-step semantics (as discussed in Section 4.3), suggests
that CPS is a suitable tool for abstracting over complex control flow language features.

110

9.3. Evaluation

Adjustments to existing code
Rules changed 5†
Lines added 3
Lines modified 11

New code
Lines added 84

Table 9.14: The number of code changes needed to extend the ChocoPy specification with
support for exceptions. Empty lines are omitted.

Through the specifications written for both Tiger and ChocoPy with exceptions, we have al-
ready shown that the Dynamix DSL is powerful enough to represent classical imperative
programming languages. Through the case study for miniStratego, we have also shown that
a less conventional programming paradigm with failure as a first-class citizen can be rep-
resented in Dynamix without major restrictions. While this does not necessarily show that
Dynamix is capable of every possible language paradigm, it does show promise.

The primitive system in Dynamix and Tim, while only used for simple operations in the lan-
guages discussed in this document, also lends itself well to possibly extending the range of
supported languages by Dynamix. One such example might be the development of dedi-
cated unification primitives, such that a logic programming language like Prolog might be
represented in the Dynamix language.

9.3.3 Performance
The Tim target language was designed such that it will be possible to write a performant
compiler for the language as future work. While the current implementation of both the
Dynamix and Tim interpreters has no focus on performance, there are no major design deci-
sions in either of the languages that would hamper the development of a faster runtime. For
completeness’ sake, we will briefly discuss the performance of the current Dynamix inter-
preter and Tim runtime, and compare it against the reference compiler used in the CS4200
Compiler Construction course at the TU Delft, which is written in Stratego and compiles the
source program to RISC-V assembly.

Performance on language conformance test-suite

We first compare the performance of the Dynamix specification against the reference com-
piler on the test suite that we use for student code in the CS4200 Compiler Construction
course at the TU Delft. This test suite consists of 329 tests that assert the correct behavior of
the compiler. Both of implementations use the same SDF3 and Statix specifications, allowing
us to compare exactly the performance differences between the two for both the compilation
stage, as well as executing the compiled program. The results of this benchmark can be seen
in Table 9.15.

These benchmarks show that Dynamix has no performance issues running a large test suite
of small programs. This is a good sign, as that is the most common use of Dynamix and the
baseline Tim interpreter. One of the benefits of having Dynamix directly integrated within

†Adjustments were made to the implementation of class definitions, function definitions, function calls, and
class member calls. These adjustments include the addition of the raise continuation as parameter, and passing
the current continuation as argument.

111

9. CASE STUDIES

Compiler Compile (avg. per testcase) Running (avg. per testcase)
Dynamix specification 11,663ms (35.4ms) 819ms (2.5ms)
Reference compiler 17,341ms (52.7ms) 2,090ms (6.4ms)

Table 9.15: The time needed to run all 329 test cases in the ChocoPy test suite for both the
Dynamix specification and the reference compiler used at the TU Delft. Both implementa-
tions pass all tests. Time spent only tracks compilation and runtime performance, as both
implementations use the same SDF3 and Statix specifications for parsing and static analysis.

Testcase Compiler Analysis time Compilation time (l/s) Run time
prime.cpy Dynamix 932ms 67ms (448 l/s) 1,530ms
25 LOC Reference 932ms 74ms (405 l/s) 29ms
exp.cpy Dynamix 918ms 65ms (385 l/s) 386ms
30 LOC Reference 918ms 80ms (312 l/s) 35ms
tree.cpy Dynamix 1,078ms 206ms (403 l/s) 7,779ms
83 LOC Reference 1,078ms 280ms (296 l/s) 215ms

Table 9.16: The time it takes to compile and run various ChocoPy benchmark snippets for
both the Dynamix specification and the CS4200 reference compiler. Analysis time is shared
between the two implementations, as both of themuse the same Statix specification. Statistics
in brackets indicate represent the amount of source code lines compiled per second.

the Spoofax language workbench is the ability for language designers to quickly iterate on
specifications, which generally involves repeated runs of a language test suite. Indeed, the
benchmarks show that both the Dynamix meta-interpreter and the Tim interpreter are fast
enough to allow such workflows.

Performance on benchmark programs

The performance of the Tim runtime falls off significantly when we specifically consider pro-
grams intended for benchmarking the performance of the language. Such programs are gen-
erally much larger and perform more control flow, exposing the performance penalties in-
curred by the unoptimized implementation of tail calls in the Tim interpreter. Table 9.16 lists
the performance of both compilers for a series of simple benchmark programs.

It is clear that the extra effort done by the reference compiler, which includes dataflow anal-
ysis and register allocation, positively benefits the runtime performance of its generated pro-
grams. Despite needing to run in a RISC-V emulator, the programs produced by the refer-
ence compiler are an order ofmagnitude faster than those of the naive Tim interpreter. While
this shows that the performance of the current Tim interpreter is nowhere near fast enough
to conform to the performance goals outlined in Chapter 3, one must consider that this Tim
interpreter is not designed for performance. Future work on a faster Tim runtime can signif-
icantly improve the performance of any source languages that use Dynamix.

However, these benchmarks reaffirm that the meta-interpretation performance of the Dy-
namix meta-language is sufficient even for larger programs. If one only needs to inspect the
generated Tim IR, even compilation of larger programs can be done in less than a second.
In daily use of the Spoofax language workbench, the time spent on static analysis using the
Statix constraint solver easily dwarves the time spent on meta-compilation. We therefore
conclude that the performance of the meta-compiler is no cause for concern.

112

9.3. Evaluation

9.3.4 Integration within Spoofax
As the final requirement for Dynamix, we established that the language is designed specifi-
cally for use within the Spoofaxworkbench. As a result, we expect first-class interactionwith
other parts of the workbench, as well as easy integration within existing projects.

The case studies show that Dynamix passes both of these requirements. Type signatures
are automatically generated from the SDF3 grammar of a language, and both the ChocoPy
and miniStratego case studies make use of Dynamix’s integration with the Statix constraint
solver. This interaction is frictionless, requiring no additional setup on the user end. Static
analysis features for Dynamix are on-par with other languages in the workbench, and the
ability to execute Dynamix either manually or as part of automated testing is integrated di-
rectly within the Eclipse IDE.

The ChocoPy case study additionally made use of an existing Spoofax language workbench
project, consisting of an SDF3 grammar definition and a Statix specification. Integrating a
Dynamix specification for the language into this project required no changes to the grammar
of the language, nor the Statix specification. Only minor changes were needed to the Statix
specification to support automatic boxing of values, but this boxing approach is not necessary
to write a complete and correct specification (an earlier version of a Dynamix specification
for ChocoPy did not automatically box, and hence required no changes to the Statix specifi-
cation).

113

Chapter 10

Related work

The Dynamix project is by no means the first attempt at the creation of a meta-language
for dynamic semantics. In fact, a significant portion of the concepts used in Dynamix orig-
inates from earlier work done within the programming languages research community. In
this chapter, we briefly discuss related work in the domain of dynamic semantics, meta-
languages, and the compilation of CPS-based languages.

10.1 Meta-languages for dynamic semantics
Dynamix on the FrameVM

Chiel Bruin’s Dynamix on the FrameVM [13] is the closest comparable project to Dynamix.
It offers a meta-language comparable in features and expressiveness to the Dynamix from
this paper, but targets the FrameVM: a virtual machine abstracting over CPS using control
frames. Control frames are sequences of VM instructions that operate uniformly over control
flow, akin to basic blocks in traditional compiler design. The Dynamix project presented in
this document inherits its name from Bruin’s project, as discussed in Section 2.3.

The primary goal of Bruin’s Dynamix was to develop a minimal set of instructions for a tar-
get machine that could still support a large variety of source languages. To this extent, the
FrameVM and the accompanying bytecode language Roger were developed. Control flow
within the FrameVMuses CPS, with code organized in blocks called ”control frames”. These
frames have linear control flowwithin them, terminating by jumping into a different frame or
invoking a continuation. These frames additionally share a single set of addressable memory
locations, similar to a stack frame. These memory frames are based on the concept of scopes-
as-frames introduced by Bach Poulsen et al. [52]. Bruin’s Dynamix is a meta-language for
compiling source programs to the Roger bytecode.

While the general aim of both Bruin’s FrameVM and our Tim IR is similar, the two are widely
different in implementation. The hole abstraction used in Dynamix exists solely on the meta-
level, whereas Bruin’s use of frames is deeply ingrained in both Dynamix, Roger, and the
FrameVM. Roger is also decidedly lower-level than Tim: conditionals must be modeled as
jumps, and variables must be addressed using indices instead of names. The primitive oper-
ations available to Roger programs are also hardcoded, as opposed to the extensible model
used in Tim.

Similar to the version of Dynamix presented in this paper, Bruin’s Dynamix was designed to
be integratedwithin the Spoofax languageworkbench. Its integrationwithin this workbench
is arguably deeper than this project, as it directly integrates the scope graph [4] generated by
static analysis into the memory layout of the target program. However, it lacks integration

115

10. RELATED WORK

with the SDF3 grammar of a language, as Bruin’s Dynamix does not offer static analysis
features beyond asserting name binding correctness.

DynSem

DynSem [64] was the first attempt at designing a meta-language for dynamic specifications
within the Spoofax language workbench. Within DynSem, dynamic semantics are modeled
as reduction rules. Users can define arbitrary reduction ”arrows” and declare which input
patterns should evaluate to which result. Control flow is implemented through inductive
rules and conditional reduction rules.

The design of DynSem is heavily inspired by the style of formal language specifications. Each
reduction rule is implicitly parameterized with both an environment and a heap, with syn-
tactic sugar allowing the user to omit most of this notation for rules that do not require direct
access to the environment (an approach similar to Scala’s implicit arguments). While the re-
duction notation used by DynSem is closer to the formal specifications that inspired it, this
similarity comes at the cost of a significantly more complex specification when non-linear
control flow (e.g. exceptions, early returns) is desired. Such non-linear control flow is gener-
ally implemented by yielding an algebraic data type representing either a concrete value, or
a flag indicating that some non-linear control flow should be performed. While this is a valid
approach, it requires every rule to check for, and possibly propagate, non-linear control flow
flags whenever it performs a recursive invocation of a reduction rule.

DynSem specifications are fully type-checked and support signature generation from SDF3
specifications. However, it is not possible to interact with the results of static analysis. It
is therefore not possible to conditionally evaluate some construct based on the type of the
expression, nor is it possible to access other static analysis information such as the fields of
a composite type.

DynSem specifications are directly compiled to a Java AST-based interpreter. Primitive op-
erations are modeled through ”native operators”, which are implemented directly as Java
source code. The performance of this generated interpreter is acceptable, and later work
on the project [66, 65] improves the performance to within an order of magnitude of a hand-
written interpreter by running the interpreterwithin theGraalVMand integrating static anal-
ysis results into thememorymodel of the interpreter (the Scopes-describe-Frames paradigm
[52]).

K Semantic Framework

The closest comparable project to Dynamix that does not use the Spoofax language work-
bench is the K Semantic Framework [54]. K is a framework that provides tools for defin-
ing language grammar definitions, type systems, and formal semantics. Unlike Dynamix or
DynSem, K’s primary focus is not on the generation of language runtimes, but rather on the
systematic definition of the language semantics so that they may be tested, analyzed, or ver-
ified.

Semantics in K are defined as rewrite rules that operate within a specific cell. Cells are K’s
representation of a configuration of the program, such that a collection of all cells represents
the exact state of the program at a specific point in time. K cells may contain program terms,
locals, input, output, or any other data required for the execution of the language. Rewrite
rules can be defined as acting on one or more cells at a time, updating the contents of these
cells. One example is the k cell, which conventionally starts with the entire program and

116

10.1. Meta-languages for dynamic semantics

carries the current remainder of the program.

Complex control flow is simple to perform in K due to the cell architecture. An example is
the Scheme call/cc construct, which is trivially implemented in K due to the access it pro-
vides to the remainder of the computation (exactly the thing that the k cell represents). Other
control flow structures, such as loops, are defined through inductive rewriting rules, similar
to how they might be represented in a formal definition of the language.

The primary use of the K Semantic Framework is for program and specification verification.
While recent developments have created an LLVM [38] backend capable of yielding impres-
sive performance, a more common use of specifications written in K is to verify certain in-
variants in the language using the Z3 [46] solver. K specifications exist for a large number of
languages and platforms, many of which double as the most complete specification of that
language. Currently maintained specifications include specifications for WebAssembly, the
Ethereum Virtual Machine, and the C programming language.

PLT Redex

A project similar to the K Semantic Framework is PLT Redex [19]. PLT Redex is a DSL for
the Racket [20] programming language that allows users to define grammars, type systems,
and dynamic semantics using a scheme-like notation.

Dynamic semantics are defined in PLT Redex through reduction rules. The language au-
thor is able to specify a pattern that the input should match, as well as the substitution that
should be performed. Unlike the pattern matching done in Dynamix and DynSem, PLT Re-
dex allows the reduction of arbitrarily nested terms through the in-hole abstraction. This
abstraction can identify a subterm that satisfies a given input, producing both the subterm
and the original term with the subterm replaced by a hole1. This hole is then filled by the
reduced subterm. Through the in-hole abstraction, reduction rules in PLT Redex can apply
to any arbitrary sub-term of the input.

While reduction rules in PLT Redex operate solely on terms of the input grammar, this gram-
mar can be wrapped by some state representation in order to expose this state to reduction
rules. Control flow can be performed through conditional reduction rules, or by using the
in-hole abstraction, which is powerful enough to implement Scheme’s call/cc. Combining
these abstractions allows for the simulation of a large range of language constructs, including
concurrent ones.

The main objective of PLT Redex is not to provide an efficient runtime for languages, but
rather the visualization, analysis, and verification of the semantics of a language. For this
purpose, Redex ships with various tools that can visualize all possible reduction trees for a
source program, first-class support is included for testing reductions, and automatic random
test cases can be generated and verified for any given grammar.

JetBrains MPS

MPS [47] is a developer tool created by JetBrains for the development of domain-specific
languagess. Unlike the other projects mentioned, DSLs created using MPS do not have a

1Not to be confused with the hole from Dynamix. While both conceptually have the same function, the
deferment of completion of some term by acting as a placeholder, the use of holes in Dynamix is significantly
different from the use of holes in PLT Redex

117

10. RELATED WORK

concrete grammar. Instead, an editor is generated that works directly on the AST of the lan-
guage. A benefit of this approach is that the ”syntax” of a language does not necessarily
have to be text: languages developed in MPS can include tables, graphics, and other visual
elements directly inside a program. However, it no longer becomes possible to develop pro-
grams outside of the editor generated by MPS.

Languages developed using MPS cannot specify dynamic semantics directly within MPS.
Instead, the language author must define how each AST node ”compiles” to some target
language. For example, one may define how their language constructs map to Java source
code, which can then be subsequently compiled and executed. This compilation process is
a direct translation between the source (meta-language) AST and the target AST, although
this AST can be pretty-printed to generate target program source files. While MPS has first-
class support for generating Java source, it can also be used to generate JavaScript, LaTeX,
XML, and more.

Attribute grammars

Beyond dedicated projects for dynamic semantics, some parser generation suites support the
specification of runtime semantics through attribute grammars [36]. Such grammars allow
the inline specification of how a certain language construct should be compiled or evaluated.
While attribute grammars do not directly specify the semantics of the language construct,
they instead rely on the semantics of the language to which they compile. Popular parser
generator suites that support this feature include Yacc [30], ANTLR [51], and Bison [16].

Monadic interpreters

Dynamix’s definition of the hole abstraction, alongside the use of implicit composition and
the <- operator, heavily borrows from ideas found in the domain of monadic interpreters
[70] and monadic semantics. Indeed, the block notation in Dynamix is effectively a hyper-
specialized version of Haskell’s do-notation, with pluggable term composition and the arrow
operator acting similar to the monad’s bind function.

One of the core benefits of monadic interpreters, as Wadler identifies in Monads for func-
tional programming [70], is that interpreters written in an imperative style require substantial
changes to existing code when a language is extended (exactly the same problem that deno-
tational semantics suffers from). By parameterizing an interpreter with some monad M , it
becomes possible to abstract the operations that require changing, such that the behavior of
an interpreter can be extended (e.g. adding exception support) without requiring significant
changes to existing code. As a downside to this approach, it generally becomes harder to im-
plement multiple extensions (e.g. adding both exception support and non-determinism), as
monads do not always easily compose with each other. Liang, Hudak, and Jones [39] resolve
this issue through the introduction of ”monad transformers”, allowing for trulymodular def-
initions of interpreters and their features.

Closer to the efforts described in this paper, Bernard Bot’s master thesis [12] discusses the
use of command trees in monadic interpreters. Command trees are an abstraction based
on the concept of free monads, whose ability to represent truly modular data types was by
popularized by Swierstra [61]. Bot compares the process of writing a CPS-based compiler in
”plain”Haskell to an equivalent compiler thatmakes use of the command tree abstraction. In
his thesis, he shows that command trees allow for ”expressing compiler transformations typi-
cally, declaratively, andmodularly”. Whereas Dynamix only borrows the concept of monads
and do-notation from functional languages, Bot’s thesis shows how free monads and com-

118

10.2. CPS as a tool for compilation

mand trees can be modeled to provide succinct and type-safe compiler transformations in a
language like Haskell.

10.2 CPS as a tool for compilation
The use of a CPS-based IR as part of the compilation pipeline is not new. In fact, research into
the use of CPS for compiler optimizations, the lowering of CPS into target machine code, and
the benefits and drawbacks of CPS as a tool for compilation has been actively ongoing ever
since the first large use of CPS in the Rabbit Scheme compiler [59], more than 40 years ago.
While ”pure” CPS is uncommon in modern-day compilers, many compilers use techniques
either derived from the CPS or shown to be isomorphic to concepts from CPS-based IRs. In
Compiling with Continuations, or without? Whatever. [15], Cong et al. succinctly describe
the recent research into CPS-based intermediate representations.

Most of this research does not directly apply to Dynamix at this point in time. Dynamix
performs the compilation of source ASTs to a CPS-based IR, but it performs no further op-
timizations or lowering on this IR. However, the choice to make use of CPS was directly
influenced by the fact that a large amount of research related to efficient CPS-based compi-
lation exists. Potential future work on improving the Tim runtime is expected to make use
of this research to increase the performance of code generated using aDynamix specification.

The use of CPS for defining the mathematical semantics of a language is not new either. In
fact, one of the first known formulations of the concept of continuations is by Strachey and
Wadsworth [60], who use it as a tool to describe the mathematical semantics of program-
ming languages. They observed that continuations can function as a useful primitive for
abstracting over the remainder of a computation, and that this abstraction allows for a very
straightforward method of describing the mathematical semantics of languages with jumps.
The decision to use CPS as a target IR for Dynamix was directly inspired by this work.

Finally, the specific design of the Tim CPS IR is greatly influenced by the description of the
CPS datatype in Andrew Appel’s book, Compiling with Continuations [6]. While this doc-
ument only defines the static and dynamic semantics of the CPS, Appel’s book goes much
further and also outlines the compilation techniques used to efficiently compile such a CPS
IR to machine code.

119

Chapter 11

Future work

While the version of Dynamix presented in this paper is capable of representing a large vari-
ety of languages, it has a large number of aspects that can be improved upon. In this chapter,
we discuss some of the obvious next steps for both the Dynamix meta-language, as well as
the Tim intermediate representation.

11.1 The Tim intermediate representation
The current features of the Tim IR are complete enough to represent everything that the
Dynamix meta-language requires. However, the performance of the interpreter is lacking
and Tim programs must be a single file. We will consider some logical extensions to the Tim
IR. It should be understood that many of these changes may require similar changes in the
Dynamix meta-language.

11.1.1 Support for multi-file programs
Currently, a Tim program consists of a single expression in a single file. While this is suf-
ficient for compilation from Dynamix, it becomes impossible to compile files of a multi-file
source language in isolation. A lack of a Tim module system also means that any standard
library included as part of a language must be embedded directly in the output Tim file, as
opposed to being included in the output file.

A module system for Tim should be considered that allows for the definition of a single Tim
program across multiple files. Such a systemmay also need to consider the ability for files to
be compiled in parallel, in order to allow incremental compilationwhen changes only affect a
singlemodule. As part of amodule system, the Tim grammar should be extended to support
multiple top-level definitions beyond a single expression. A potentialmodule system for Tim
could be inspired by the module system used in Appel’s Compiling with Continuations [6],
as the Tim IR is inspired by the CPS language used in this book.

11.1.2 Introduction of a type system
Tim lacks any static semantics beyond name binding. An experimental Statix specification
exists (see Section 5.4.2) that is able to detect several classes of errors, but it is imprecise and
may reject valid code. The introduction of a type system into the languagewould allow static
analysis to reject erroneous programs, turning a large number of runtime errors into compi-
lation errors. The addition of a type system may additionally help improve the performance
of the Tim runtime, as it allows for the shapes of objects to be known ahead of time.

121

11. FUTURE WORK

If a type system is designed, careful consideration should be taken for the features present.
Tim is intended as the target representation for a wide array of source languages, so the type
system must not needlessly restrict which languages can be compiled using Dynamix. The
type system should also consider the presence of arbitrary primitives, which may require
or introduce new types. If a type system is introduced, the Dynamix meta-language should
also be extended to allow it to derive and emit the appropriate Tim types for corresponding
source programs.

11.1.3 Improve runtime performance
The current Tim interpreter has no special performance considerations. In order to achieve
performance similar to an interpreter generated by DynSem [64], a performant (JIT-capable)
interpreter or compiler for Tim should be created. Such a runtime can perhaps be based on
the CPS compilation techniques discussed by Appel [6], as Tim is based on the language pre-
sented in his book. As part of an optimized runtime for Tim, it may be beneficial to introduce
more specialized primitives for common operations. Similarly, a type system (as discussed
earlier) would likely improve the performance of the runtime.

A compiler backend of Tim must also consider a memory model for the language. The cur-
rent Tim interpreter is written in Stratego, and hence relies on the JVM garbage collector to
handle memory management. A Tim compiler that compiles to machine code must either
expose memory management primitives, or must include some form of garbage collection
or reference counting. Special care must be taken if one wishes to support source languages
where deallocation is observable (e.g. finalizers in C# or Java, the Drop trait in Rust, or de-
structors in C++).

11.2 The Dynamix meta-language
Beyond the future work that can be done on the Tim target language, various improvements
can be made to the Dynamix meta-language to make it more approachable for users of the
Spoofax language workbench. Most of this future work focuses on making the Dynamix
meta-language easier to use, or allowing it to emit simpler or more performant Tim pro-
grams.

11.2.1 Decrease verbosity through syntactic sugar
As mentioned in Section 9.3, performing operations on lists of sorts is excessively verbose in
Dynamix. The possibility of introducing syntactic sugar into the language should be consid-
ered, such that these operations can be simplified. One such approach may be to implement
syntax similar to Statix’s maps syntax, which automatically generates a rule that maps over a
list of inputs. When introducing such syntactic sugar, the existing case study specifications
should be reviewed to identify commonpatterns suitable for simplification through syntactic
sugar.

11.2.2 Extend type system with generics or first-class meta-functions
An alternative approach to reducing the verbosity of the language is to introduce support
for generic functions in the Dynamix type system. Such an extension would likely have to
be paired with support for first-class meta-functions, as seen in Chiel Bruin’s version of Dy-
namix [13]. Proper support for generics and first-class functions could greatly increase the
usability of the language, without requiring dedicated syntactic sugar for common language

122

11.2. The Dynamix meta-language

constructs. One may additionally consider the creation of a Dynamix ”standard library”,
containing implementations of common operations such as maps or folds.

11.2.3 Expand source term computation support
Currently, source language AST ATerms in Dynamix are largely opaque to the specification.
They can be matched upon with rules and can be passed to str, int, or var. If the source
term is a string, it can additionally be concatenated to another string using the + operator.
However, it may be useful to expose a wider range of computations to specifications. For
example, it is currently impossible to compute the length of a source list in Dynamix alone,
as it is impossible to perform arithmetic on source integers. Consequently, it is impossible
to conditionally compile a construct based on the length of a source list.

One possible approach could be to design a separate embedded ”constant operations” lan-
guage that exposes arithmetic, comparisons, and potentially even certain functions to source
terms. Such a language could be similar to e.g. constexpr in C++ or const functions in Rust.
However, this might be an overkill approach and one would need to be careful to ensure that
it is unambiguous to users which operations are performed during compilation and which
are performed at runtime.

11.2.4 Support for multi-file source languages
The current Dynamix meta-language is only able to compile a single source file at a time.
While it is likely possible to compile multi-file source languages in this manner, first-class
support for multi-file source languages should be considered, as multi-file languages are
directly supported in the Spoofax languageworkbench. Adding support formulti-file source
languages would likely also require a module system for Tim, as otherwise the specification
would be forced to perform ”merging” of several files source by itself.

11.2.5 Deeper integration with scope graphs
The current interaction that Dynamix has with the results of static analysis is limited to the
ability to query properties on AST nodes. A future improvement to Dynamix could extend
this support to full interaction with the scope graph [4] of the program, allowing the speci-
fication to directly query the structure of scopes and types. This concept could be extended
even further into the domain of scopes-describe-frames [52], allowing composite datatypes
to be based directly on the structure of the scope graph. Support for this paradigm would
require similar changes to the Tim language.

11.2.6 Explore support for more exotic programming languages
While the case studies of ChocoPy and miniStratego represent two different programming
paradigms, both of them are undoubtedly imperative programming languages. It is still
unknown whether Dynamix is able to represent languages that depart from this paradigm.
Future work could investigate whether Dynamix is capable of representing logic program-
ming languages like Prolog [71], query languages like SQL [28], or concurrent programming
languages like Erlang [10].

11.2.7 Explore using specifications for other goals than compilation
While the Dynamix DSL was designed specifically as a tool for compilation of source lan-
guages to the Tim IR, this does not necessarily need to be the only use of Dynamix. After
all, a specification in Dynamix is a machine-readable specification of the dynamic semantics

123

11. FUTURE WORK

of the language. Future work in this space could explore the usage of a Dynamix specifica-
tion for applications such as formally proving the equivalence of two source programs, or
asserting that some refactoring does not alter the behavior of the program.

124

Chapter 12

Conclusion

Most programming languages are defined through language specifications. Specifications,
commonly written in natural language or occasionally defined using formal notation, de-
scribe exactly the behavior of the language. However, one must manually verify that a given
implementation of a language actually conforms to the language specification, since the two
are distinct. Meta-languages for dynamic specifications attempt to solve this problem, by
treating a language specification as a domain-specific language and automatically generat-
ing a language runtime from this specification.

In this thesis, we presented Tim andDynamix. Dynamix is a newmeta-language for dynamic
specifications, using the technique of meta-compilation to produce programs in the Tim in-
termediate representation. Novel to the domain of dynamic specification meta-languages is
Dynamix’s use of continuation-passing style for control flow, which is an expressive method
for specifying the control flow of languages while isolating this control flow only to the sec-
tions of the language that are directly affected by it. In order to avoid the traditional verbosity
of buildingCPS terms, Dynamix introduces the hole abstraction. This abstraction allows frag-
ments of CPS to be built in isolation, automatically combining them when needed.

Tim programs, the compilation target for Dynamix, are fully completed CPS terms. Prim-
itives expose operations such as arithmetic, composite data types, and conditionals to the
language. To increase the number of languages that can be represented, language authors
can additionally implement their own primitives. Currently, Tim programs are interpreted
by an interpreter written in Stratego. However, the language has been carefully designed to
allow for efficient compilation as future work.

Dynamix is situated within the Spoofax language workbench. It has direct integration with
the SDF3 meta-language for automatic AST type signature generation, as well as the ability
to query the results of static analysis performed using Statix. Dynamix can be integrated into
existing Spoofax language projects and its compilation artifacts can be automatically tested
using the Spoofax testing language.

To confirm that Dynamix is capable of representing various paradigms of languages, we dis-
cussed specifications for Tiger, ChocoPy with exceptions, and miniStratego. Each of these
specifications was able to represent the entirety of the language in a concise manner, indicat-
ing that Dynamix is capable of representing non-trivial language features with relative ease.

Future work on Tim can significantly increase the performance of the language by develop-
ing an optimizing compiler for the language. As part of these efforts, a type and module
system for the language could also be considered. Future work on Dynamix is suggested to

125

12. CONCLUSION

explore syntactic sugar or type system extensions for making the language more concise, as
well as investigating whether Dynamix is able to represent languages whose paradigms are
further removed from those of traditional languages, such as logic programming languages
like Prolog or query languages like SQL.

126

Appendix A

127

A. GRAMMAR OF THE DYNAMIX META-LANGUAGE

Grammar of the Dynamix
meta-language

MID ::= [a-zA-Z] [a-zA-Z0-9_/-]∗ module ID
RID ::= LID rule ID
LID ::= [a-z] [a-zA-Z0-9_]∗ lowercase ID
UID ::= [A-Z] [a-zA-Z0-9_-]∗ uppercase ID
GID ::= $LID global ID
PID ::= [-+*/A-Za-z0-9_]+ primitive ID

INT ::= -? [0-9]+ integer literal

STRING ::= " string-char∗ " string literal
string-char ::= \n

| \"
| \\
| any character except ” or newline

program ::= module MID section∗

section ::= imports MID∗ module imports
| signature signature-decl∗ algebraic signature declarations
| constraint-analyzer constraint-decl∗ constraint analyzer interop declarations
| primitives primitive-decl∗ target primitive declarations
| rules rule-decl∗ rule declarations

rule-decl ::= GID :: meta-type global declaration
| RID :: rule-signature rule declaration
| RID(〈 pattern, 〉∗) = expr rule implementation

pattern ::= _ wildcard
| LID bind variable
| UID(〈 pattern, 〉∗) constructor
| [〈 pattern, 〉∗] list pattern
| [〈 pattern, 〉∗|pattern] head-tail list pattern
| STRING source string literal
| INT source int literal
| LID@pattern bound pattern

signature-decl ::= sorts UID∗ sort declarations
| constructors constructor-decl∗ constructor declarations

constructor-decl ::= UID : UID singleton constructor
| UID : 〈 constructor-arg * 〉+ -> UID named constructor
| : constructor-arg -> UID injection

128

constructor-arg ::= UID sort reference
| string source string
| int source int
| List(constructor-arg) list type

constraint-decl ::= property ID :: meta-type constraint analyzer property

primitive-decl ::= expression #PID(〈 meta-type, 〉∗) expression decl
| statement #PID(〈 meta-type, 〉∗) statement decl
| conditional #PID(〈 meta-type, 〉∗) conditional decl

source-type ::= UID aterm sort reference
| string aterm string type
| int aterm integer

meta-type ::= 'source-type source type
| @target-type target type
| List(meta-type) meta-list type
| Pluggable(meta-type) pluggable type
| Pluggable pluggable with value type

target-type ::= value Tim value
| statement Tim CPS type
| fun Tim function decl

expr ::= 'source-term source term literal
| expr + expr source string concatenation
| { statement+ } block
| LID meta-variable reference
| GID meta-global reference
| RID(〈 expr, 〉∗) rule call
| with 〈 binding, 〉+ do expr scoped meta-global binding
| [〈 expr, 〉∗] meta-list literal
| [〈 expr, 〉∗|expr] meta-list literal
| expr ++ expr meta-list concatenation
| nameof(expr) extract name of fun
| int(expr) coerce to target int
| str(expr) coerce to target string
| var(expr) coerce to target var
| fresh-var(ID) generate unique target var
| expr@(expr) tail-call
| #PID(〈 expr, 〉∗) primitive call
| fun expr(expr) = expr function decl
| fix { expr∗ } fix decl
| let expr = expr in expr let decl
| if #PID(〈 expr, 〉∗) then expr else expr conditional primitive call
| expr label LID/1: unary label
| expr label LID/0: nullary label
| @tim-expr embed Tim expression (deprecated)
| hole hole

129

A. GRAMMAR OF THE DYNAMIX META-LANGUAGE

statement ::= ID <- expr assignment
| expr expression

binding ::= GID = expr scoped meta-global binding

source-term ::= INT int literal
| STRING string literal
| UID(〈 source-term, 〉∗) constructor
| [〈 source-term, 〉∗] list

130

Bibliography

[1] Agda. URL: https://wiki.portal.chalmers.se/agda/pmwiki.php.
[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, 1986. ISBN: 0-201-10088-6.
[3] Hendrik van Antwerpen. “A Constraint-based Approach to Name Binding and Type

Checking using Scope Graphs”. Available at http : / / resolver . tudelft . nl / uuid :
7a555c92 - ee75 - 4e64 - b58b - d8f09662f412. MA thesis. Delft University of Technol-
ogy, Jan. 2016. URL: http://resolver.tudelft.nl/uuid:7a555c92-ee75-4e64-b58b-
d8f09662f412.

[4] Hendrik van Antwerpen et al. A Constraint Language for Static Semantic Analysis based
on Scope Graphs with Proofs. Tech. rep. TUD-SERG-2015-009. Available at http://swerl.
tudelft.nl/twiki/pub/Main/TechnicalReports/TUD- SERG- 2015- 009.pdf. Software
Engineering Research Group, Delft University of Technology, Sept. 2015. URL: http:
//swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2015-009.pdf.

[5] Hendrik van Antwerpen et al. “Scopes as types”. In: Proceedings of the ACM on Pro-
gramming Languages 2.OOPSLA (2018). DOI: 10.1145/3276484. URL: https://doi.org/
10.1145/3276484.

[6] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
ISBN: 0-521-41695-7.

[7] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge University Press,
1998. ISBN: 0-521-58390-X.

[8] AndrewW.Appel.ModernCompiler Implementation in Java. CambridgeUniversity Press,
1998. ISBN: 0-521-58388-8.

[9] AndrewW.Appel.ModernCompiler Implementation inML. CambridgeUniversity Press,
1998. ISBN: 0-521-58274-1.

[10] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Book-
shelf, 2007. ISBN: 193435600X.

[11] Sandrine Blazy and Xavier Leroy. “Mechanized Semantics for the Clight Subset of the
C Language”. In: Journal of Automated Reasoning 43.3 (2009), pp. 263–288. DOI: 10.1007/
s10817-009-9148-3. URL: http://dx.doi.org/10.1007/s10817-009-9148-3.

[12] BernardBot. “CompilingwithCommandTrees”.Available at http://resolver.tudelft.
nl/uuid:05092e06-d67e-404a-b1ab-74bef499d3f2. MA thesis. Delft University of Tech-
nology, May 2021. URL: http://resolver.tudelft.nl/uuid:05092e06-d67e-404a-b1ab-
74bef499d3f2.

131

https://wiki.portal.chalmers.se/agda/pmwiki.php
http://resolver.tudelft.nl/uuid:7a555c92-ee75-4e64-b58b-d8f09662f412
http://resolver.tudelft.nl/uuid:7a555c92-ee75-4e64-b58b-d8f09662f412
http://resolver.tudelft.nl/uuid:7a555c92-ee75-4e64-b58b-d8f09662f412
http://resolver.tudelft.nl/uuid:7a555c92-ee75-4e64-b58b-d8f09662f412
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2015-009.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2015-009.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2015-009.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2015-009.pdf
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1007/s10817-009-9148-3
http://dx.doi.org/10.1007/s10817-009-9148-3
http://resolver.tudelft.nl/uuid:05092e06-d67e-404a-b1ab-74bef499d3f2
http://resolver.tudelft.nl/uuid:05092e06-d67e-404a-b1ab-74bef499d3f2
http://resolver.tudelft.nl/uuid:05092e06-d67e-404a-b1ab-74bef499d3f2
http://resolver.tudelft.nl/uuid:05092e06-d67e-404a-b1ab-74bef499d3f2

BIBLIOGRAPHY

[13] Chiel Bruin. “Dynamix on the Frame VM: Declarative dynamic semantics on a VM
using scopes as frames”. Available at http://resolver.tudelft.nl/uuid:ddedce14-
65ad-4f16-912e-6b0658eaecc0. MA thesis. Delft University of Technology, Apr. 2020.
URL: http://resolver.tudelft.nl/uuid:ddedce14-65ad-4f16-912e-6b0658eaecc0.

[14] Clang: A C language family frontend for LLVM. URL: https://clang.llvm.org/.
[15] Youyou Cong et al. “Compiling with continuations, or without? whatever”. In: Pro-

ceedings of the ACM on Programming Languages 3.ICFP (2019). DOI: 10.1145/3341643.
URL: https://doi.org/10.1145/3341643.

[16] Robert Paul Corbett. “Static Semantics and Compiler Error Recovery”. PhD thesis.
EECS Department, University of California, Berkeley, June 1985. URL: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/1985/5514.html.

[17] Arie van Deursen, Jan Heering, and Paul Klint, eds. Language Prototyping. An Algebraic
SpecificationApproach. Vol. 5. AMAST Series in Computing. Singapore:World Scientific,
Sept. 1996.

[18] ECMA Ecma. “262: Ecmascript language specification”. In: ECMA (European Associa-
tion for Standardizing Information and Communication Systems), pub-ECMA: adr, (1999).

[19] Matthias Felleisen, Robby Findler, and Matthew Flatt. Semantics Engineering with PLT
Redex.MITPress, 2009. ISBN: 978-0-262-06275-6. URL: http://mitpress.mit.edu/catalog/
item/default.asp?ttype=2&tid=11885.

[20] Matthew Flatt. PLT. Reference: Racket. Tech. rep. Technical Report PLT-TR-2010-1, PLT
Inc., 2010. http://racket-lang. org/tr1, 2010.

[21] GCC, the GNU compiler collection. URL: https://gcc.gnu.org/.
[22] James Gosling et al. The Java Language Specification, Java SE 18 Edition. 1st. 2022.
[23] James Gosling et al. The Java Language Specification, Java SE 8 Edition. 1st. Addison-

Wesley Professional, 2014. ISBN: 013390069X.
[24] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2019 (Revision of IEEE

754-2008) (2019), pp. 1–84. DOI: 10.1109/IEEESTD.2019.8766229.
[25] “IEEEStandard for InformationTechnology–PortableOperating System Interface (POSIX(TM))

Base Specifications, Issue 7”. In: IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008)
(2018), pp. 1–3951. DOI: 10.1109/IEEESTD.2018.8277153.

[26] ISO. ISO/IEC 14882:1998: Programming languages — C++. Available in electronic form
for online purchase at http://webstore.ansi.org/. Sept. 1998, p. 732. URL: http://www.
iso.ch/cate/d25845.html.

[27] ISO. ISO/IEC 23270:2003: Information technology—C#Language Specification. 2003, pp. xiii
+ 471. URL: http://standards.iso.org/ittf/PubliclyAvailableStandards/c036768_
ISO_IEC_23270_2003(E).zip;%20http://www.iso.org/iso/en/CatalogueDetailPage.
CatalogueDetail?CSNUMBER=36768.

[28] ISO. ISO/IEC 9075:1992: Title: Information technology—Database languages—SQL. Avail-
able in English only. 1992, p. 587. URL: http://www.iso.ch/cate/d16663.html.

[29] ISO. ISO/IEC 9899:1990: Programming languages — C. 1990. URL: http://www.iso.ch/
cate/d17782.html.

[30] Stephen C. Johnson and Ravi Sethi. “Yacc: A Parser Generator”. In: UNIX Vol. II: Re-
search System (10th Ed.)USA:W. B. SaundersCompany, 1990, pp. 347–374. ISBN: 0030475295.

[31] Gilles Kahn. “Natural Semantics”. In: STACS 87, 4th Annual Symposium on Theoretical
Aspects of Computer Science, Passau, Germany, February 19-21, 1987, Proceedings. Ed. by
Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin Wirsing. Vol. 247. Lecture
Notes in Computer Science. Springer, 1987, pp. 22–39. ISBN: 3-540-17219-X.

132

http://resolver.tudelft.nl/uuid:ddedce14-65ad-4f16-912e-6b0658eaecc0
http://resolver.tudelft.nl/uuid:ddedce14-65ad-4f16-912e-6b0658eaecc0
http://resolver.tudelft.nl/uuid:ddedce14-65ad-4f16-912e-6b0658eaecc0
https://clang.llvm.org/
https://doi.org/10.1145/3341643
https://doi.org/10.1145/3341643
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1985/5514.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1985/5514.html
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11885
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11885
https://gcc.gnu.org/
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2018.8277153
http://www.iso.ch/cate/d25845.html
http://www.iso.ch/cate/d25845.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/c036768_ISO_IEC_23270_2003(E).zip;%20http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36768
http://standards.iso.org/ittf/PubliclyAvailableStandards/c036768_ISO_IEC_23270_2003(E).zip;%20http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36768
http://standards.iso.org/ittf/PubliclyAvailableStandards/c036768_ISO_IEC_23270_2003(E).zip;%20http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36768
http://www.iso.ch/cate/d16663.html
http://www.iso.ch/cate/d17782.html
http://www.iso.ch/cate/d17782.html

Bibliography

[32] Karl Trygve Kalleberg and Eelco Visser. “Spoofax: An Interactive Development En-
vironment for Program Transformation with Stratego/XT”. In: Proceedings of the Sev-
enth Workshop on Language Descriptions, Tools and Applications (LDTA 2007). Electronic
Notes in Theoretical Computer Science. Braga, Portugal: Elsevier, Mar. 2007. URL: http:
//swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-018.pdf.

[33] Lennart C. L. Kats and Eelco Visser. “The Spoofax language workbench”. In: Compan-
ion to the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, SPLASH/OOPSLA 2010, October 17-21, 2010, Reno/-
Tahoe, Nevada, USA. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard.
ACM, 2010, pp. 237–238. ISBN: 978-1-4503-0240-1. DOI: 10.1145/1869542.1869592. URL:
http://doi.acm.org/10.1145/1869542.1869592.

[34] Lennart C. L. Kats and Eelco Visser. “The Spoofax language workbench: rules for
declarative specification of languages and IDEs”. In:Proceedings of the 25thAnnual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2010. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard.
Reno/Tahoe, Nevada: ACM, 2010, pp. 444–463. ISBN: 978-1-4503-0203-6. DOI: 10.1145/
1869459.1869497. URL: https://doi.org/10.1145/1869459.1869497.

[35] James C. King. “Symbolic Execution and Program Testing”. In: Communications of the
ACM 19.7 (1976), pp. 385–394.

[36] Donald E. Knuth. “Semantics of Context-Free Languages”. In: Theory Comput. Syst. 2.2
(1968), pp. 127–145. URL: http://www.springerlink.com/content/m2501m07m4666813/.

[37] Gabriël Konat et al. “Precise, Efficient, and Expressive Incremental Build Scripts with
PIE”. In: Second Workshop on Incremental Computing (IC 2019). 2019.

[38] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation”. In: 2nd IEEE / ACM International Symposium
on Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA.
IEEEComputer Society, 2004, pp. 75–88. ISBN: 0-7695-2102-9. URL: http://csdl.computer.
org/comp/proceedings/cgo/2004/2102/00/21020075abs.htm.

[39] Sheng Liang, Paul Hudak, and Mark P. Jones. “Monad Transformers and Modular
Interpreters”. In: POPL. 1995, pp. 333–343.

[40] Chris Lilley et al. Cascading Style Sheets, level 2 (CSS2) Specification. W3C Recommen-
dation. https://www.w3.org/TR/2008/REC-CSS2-20080411/. W3C, Apr. 2008.

[41] Tim Lindholm et al. The Java Virtual Machine Specification, Java SE 18 Edition. 1st. 2022.
[42] Jacob Matthews et al. “A Visual Environment for Developing Context-Sensitive Term

Rewriting Systems”. In: Rewriting Techniques and Applications, 15th International Confer-
ence, RTA 2004, Aachen, Germany, June 3-5, 2004, Proceedings. Ed. by Vincent van Oost-
rom. Vol. 3091. Lecture Notes in Computer Science. Springer, 2004, pp. 301–311. ISBN:
3-540-22153-0. URL: http://springerlink.metapress.com/openurl.asp?genre=article&
amp;issn=0302-9743&volume=3091&spage=301.

[43] AntoniW.Mazurkiewicz. “ProvingAlgorithms byTail Functions”. In: Inf. Comput. 18.3
(Apr. 1971), pp. 220–226.

[44] Robin Milner, Mads Tofte, and Robert Harper. Definition of standard ML. MIT Press,
1990. ISBN: 978-0-262-63132-7.

[45] SangwhanMoon et al.HTML5.3.WDnot longer in development. https://www.w3.org/TR/2021/NOTE-
html53-20210128/. W3C, Jan. 2021.

133

http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-018.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-018.pdf
https://doi.org/10.1145/1869542.1869592
http://doi.acm.org/10.1145/1869542.1869592
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
http://www.springerlink.com/content/m2501m07m4666813/
http://csdl.computer.org/comp/proceedings/cgo/2004/2102/00/21020075abs.htm
http://csdl.computer.org/comp/proceedings/cgo/2004/2102/00/21020075abs.htm
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3091&spage=301
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3091&spage=301

BIBLIOGRAPHY

[46] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed. Ed. by
C. R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes in Computer Science.
Springer, 2008, pp. 337–340. ISBN: 978-3-540-78799-0. DOI: 10.1007/978-3-540-78800-
3_24. URL: http://dx.doi.org/10.1007/978-3-540-78800-3_24.

[47] MPS: The domain-specific language creator by JetBrains. URL: https://www.jetbrains.com/
mps/.

[48] Rohan Padhye, Koushik Sen, and Paul N. Hilfinger. “ChocoPy: A Programming Lan-
guage for Compilers Courses”. In: Proceedings of the 2019 ACM SIGPLAN Symposium
on SPLASH-E. SPLASH-E 2019. New York, NY, USA: Association for Computing Ma-
chinery, 2019. ISBN: 9781450369893. DOI: 10.1145/3358711.3361627. URL: https://doi.
org/10.1145/3358711.3361627.

[49] Rohan Padhye et al. ChocoPy v2.2: Language Manual and Reference. University of Cali-
fornia, Berkeley. Nov. 2019.

[50] Rohan Padhye et al. ChocoPy v2.2: RISC-V Implementation Guide. University of Califor-
nia, Berkeley. Oct. 2019.

[51] T.J. Parr and R. W. Quong. ANTLR: A Predicated-LL(k) Parser Generator. 1995.
[52] Casper Bach Poulsen et al. “Scopes Describe Frames: A Uniform Model for Memory

Layout in Dynamic Semantics”. In: 30th European Conference on Object-Oriented Pro-
gramming, ECOOP 2016, July 18-22, 2016, Rome, Italy. Ed. by Shriram Krishnamurthi
and Benjamin S. Lerner. Vol. 56. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2016. ISBN: 978-3-95977-014-9. DOI: 10.4230/LIPIcs.ECOOP.2016.20. URL: http:
//dx.doi.org/10.4230/LIPIcs.ECOOP.2016.20.

[53] John C. Reynolds. “The Discoveries of Continuations”. In: Higher-Order and Symbolic
Computation 6.3-4 (1993), pp. 233–248.

[54] Grigore Rosu and Traian-Florin Serbanuta. “An overview of the K semantic frame-
work”. In: Journal of Logic and Algebraic Programming 79.6 (2010), pp. 397–434. DOI:
10.1016/j.jlap.2010.03.012. URL: http://dx.doi.org/10.1016/j.jlap.2010.03.012.

[55] Luis Eduardode SouzaAmorim. “Declarative SyntaxDefinition forModern Language
Workbenches”. base-search.net (fttudelft:oai:tudelft.nl:uuid:43d7992a-7077-47ba-b38f-
113f5011d07f). PhD thesis. Delft University of Technology, Netherlands, 2019. URL:
https://www.base-search.net/Record/261b6c9463c1d4fe309e3c6104cd4d80fbc9d3cc8fbc66006f34130f481b506f.

[56] Luis Eduardo de Souza Amorim and Eelco Visser. “Multi-purpose Syntax Definition
with SDF3”. In: Software Engineering and Formal Methods - 18th International Confer-
ence, SEFM 2020, Amsterdam, The Netherlands, September 14-18, 2020, Proceedings. Ed. by
Frank S. de Boer and Antonio Cerone. Vol. 12310. Lecture Notes in Computer Science.
Springer, 2020, pp. 1–23. ISBN: 978-3-030-58768-0. DOI: 10.1007/978-3-030-58768-0_1.
URL: https://doi.org/10.1007/978-3-030-58768-0_1.

[57] Spoofax: The LanguageDesigner’sWorkbench. https://www.spoofax.dev/. 2021. URL: https:
//www.spoofax.dev/.

[58] Stack overflow developer survey 2021. URL: https://insights.stackoverflow.com/survey/
2021.

[59] Guy L. Steele. Rabbit: A Compiler for Scheme. Tech. rep. USA, 1978.
[60] Christopher Strachey and Christopher Wadsworth. “Continuations: A Mathematical

Semantics for Handling Full Jumps”. In: Higher-Order and Symbolic Computation 13
(Apr. 2000), pp. 135–. DOI: 10.1023/A:1010026413531.

134

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://www.jetbrains.com/mps/
https://www.jetbrains.com/mps/
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.4230/LIPIcs.ECOOP.2016.20
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.20
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.20
https://doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1016/j.jlap.2010.03.012
https://www.base-search.net/Record/261b6c9463c1d4fe309e3c6104cd4d80fbc9d3cc8fbc66006f34130f481b506f
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/10.1007/978-3-030-58768-0_1
https://www.spoofax.dev/
https://www.spoofax.dev/
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://doi.org/10.1023/A:1010026413531

Bibliography

[61] Wouter Swierstra. “Data types à la carte”. In: Journal of Functional Programming 18.4
(2008), pp. 423–436. DOI: 10.1017/S0956796808006758. URL: http://dx.doi.org/10.
1017/S0956796808006758.

[62] The Coq Proof Assistant. URL: https://coq.inria.fr/.
[63] GuidoVanRossumandFredLDrake Jr.Python referencemanual. CentrumvoorWiskunde

en Informatica Amsterdam, 1995.
[64] Vlad A. Vergu, Pierre Néron, and Eelco Visser. “DynSem: A DSL for Dynamic Seman-

tics Specification”. In: 26th International Conference on Rewriting Techniques and Appli-
cations, RTA 2015, June 29 to July 1, 2015, Warsaw, Poland. Ed. by Maribel Fernández.
Vol. 36. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 365–
378. ISBN: 978-3-939897-85-9. DOI: 10.4230/LIPIcs.RTA.2015.365. URL: http://dx.doi.
org/10.4230/LIPIcs.RTA.2015.365.

[65] Vlad A. Vergu, Andrew P. Tolmach, and Eelco Visser. “Scopes and Frames Improve
Meta-Interpreter Specialization”. In: 33rd European Conference on Object-Oriented Pro-
gramming, ECOOP 2019, July 15-19, 2019, London, United Kingdom. Ed. by Alastair F.
Donaldson. Vol. 134. LIPIcs. SchlossDagstuhl - Leibniz-Zentrum fuer Informatik, 2019.
ISBN: 978-3-95977-111-5. DOI: 10.4230/LIPIcs.ECOOP.2019.4. URL: https://doi.org/10.
4230/LIPIcs.ECOOP.2019.4.

[66] Vlad A. Vergu and Eelco Visser. “Specializing a meta-interpreter: JIT compilation of
Dynsem specifications on the Graal VM”. In: Proceedings of the 15th International Con-
ference on Managed Languages & Runtimes, ManLang 2018, Linz, Austria, September 12-14,
2018. Ed. byEli Tilevich andHanspeterMössenböck.ACM, 2018. ISBN: 978-1-4503-6424-
9. DOI: 10.1145/3237009.3237018. URL: https://doi.org/10.1145/3237009.3237018.

[67] Eelco Visser. “Transformations for Abstractions”. In: 5th IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM 2005), 30 September - 1 October 2005,
Budapest, Hungary. IEEEComputer Society, Oct. 2005. ISBN: 0-7695-2292-0. DOI: 10.1109/
SCAM.2005.26. URL: http://dx.doi.org/10.1109/SCAM.2005.26.

[68] Eelco Visser and Zine-El-Abidine Benaissa. “A core language for rewriting”. In: Elec-
tronic Notes in Theoretical Computer Science 15 (1998), pp. 422–441. DOI: 10.1016/S1571-
0661(05)80027-1. URL: http://dx.doi.org/10.1016/S1571-0661(05)80027-1.

[69] GuidoWachsmuth,Gabriël Konat, andEelcoVisser. “LanguageDesignwith the Spoofax
Language Workbench”. In: IEEE Software 31.5 (2014), pp. 35–43. DOI: 10.1109/MS.2014.
100. URL: http://dx.doi.org/10.1109/MS.2014.100.

[70] Philip Wadler. “Monads for functional programming”. In: Program Design Calculi, Pro-
ceedings of the NATO Advanced Study Institute on Program Design Calculi, Marktoberdorf,
Germany, July 28 - August 9, 1992. Ed. by Manfred Broy. Vol. 118. NATO ASI Series.
Springer, 1992, pp. 233–264. ISBN: 978-3-662-02880-3. DOI: 10.1007/978-3-662-02880-
3_8. URL: https://doi.org/10.1007/978-3-662-02880-3_8.

[71] JanWielemaker et al. “SWI-Prolog”. In: Theory and Practice of Logic Programming 12.1-2
(2012), pp. 67–96. ISSN: 1471-0684.

135

https://doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1017/S0956796808006758
https://coq.inria.fr/
https://doi.org/10.4230/LIPIcs.RTA.2015.365
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.365
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.365
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://doi.org/10.1145/3237009.3237018
https://doi.org/10.1145/3237009.3237018
https://doi.org/10.1109/SCAM.2005.26
https://doi.org/10.1109/SCAM.2005.26
http://dx.doi.org/10.1109/SCAM.2005.26
https://doi.org/10.1016/S1571-0661(05)80027-1
https://doi.org/10.1016/S1571-0661(05)80027-1
http://dx.doi.org/10.1016/S1571-0661(05)80027-1
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1109/MS.2014.100
http://dx.doi.org/10.1109/MS.2014.100
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3_8

Acronyms

API application programming interface

AST abstract syntax tree

ATerm annotated term format

DSL domain-specific language

CPS continuation-passing style

IR intermediate representation

137

	Preface
	Contents
	Introduction
	Background
	Programming language specifications
	The Spoofax language workbench
	Dynamic semantics in Spoofax

	Objectives
	Overarching goal
	Concrete requirements

	Designing a DSL for runtime semantics
	The anatomy of a formal runtime semantics specification
	From specification to evaluation
	Considering control flow

	The Tim intermediate representation
	A first impression
	Syntax
	Dynamic semantics
	Static semantics
	The Tim runtime

	An introduction to the Dynamix meta-language
	Implementing Tiger in Dynamix
	Accessible CPS through abstractions

	Formalizing Dynamix Core
	Grammar
	Dynamic semantics
	Static semantics
	Rule specificity

	Dynamix in Spoofax
	Project structure
	Compiling Dynamix specifications
	Type signature generation
	Constraint analyzer integration

	Case studies
	ChocoPy with exceptions
	miniStratego
	Evaluation

	Related work
	Meta-languages for dynamic semantics
	CPS as a tool for compilation

	Future work
	The Tim intermediate representation
	The Dynamix meta-language

	Conclusion
	Grammar of the Dynamix meta-language
	Bibliography
	Acronyms

