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Abstract 

The Digital Twin (DT) concept, as understood nowadays, appeared in the early 2000s as an 
attempt to create virtual replicas of physical assets, such as bridges, that can be used to ex-
amine, monitor and manage their performance. Up to this day, it has been successfully ap-
plied in the fields of aeronautics, manufacturing, medicine, and more recently, in the 
architecture, engineering, and construction industry. The DT of a bridge requires the creation 
of a virtual replica of the real-life asset, along with the connection and feedback of infor-
mation channel between the two of them. This connection is currently achieved through the 
generation of real-time data by the placement of sensors in the real bridge and the applica-
tion of structural health monitoring techniques to analyze such data. This connection could 
result in a complex, time-consuming, and expensive process which would hinder the creation 
of DT prototypes for development purposes in the bridge engineering field. This paper aims at 
exploring the currently available synthetic data generation methodologies and tools, which 
could be used as a faster and a more economically feasible alternative to real monitoring, for 
the creation and development of DT prototypes of bridges, for both industry and research-
oriented purposes. A synthetic data generation framework is proposed that can produce FAIR 
benchmark databases that are based on Findability, Accessibility, Interoperability, and Re-
use, which could be used in the prototyping of bridge DTs. Finally, tentative future improve-
ments in this topic are discussed.  
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1 INTRODUCTION 

Digital twins (DTs) are virtual replicas of physical assets, such as bridges, that can be used 
to monitor and manage their performance. By creating a digital twin of a built asset, the Ar-
chitecture, Engineering, and Construction (AEC) professionals can monitor its performance in 
real-time and identify potential issues before they become serious problems. This can lead to 
improved safety and reduced maintenance costs, especially for the case of vulnerable cultural 
heritage structures [1, 2] where there are additional challenges because of the special nature 
and requirements for these valuable assets [3, 4]. 

The DT paradigm is nowadays in its early stages of development/adoption within the AEC 
industry. Nevertheless, and despite all the challenges and constraints that need to be overcome 
for its full deployment and broad implementation, there seems to be a unified vision and con-
sensus toward the future adoption of DT for bridge design, management, and operation among 
the scientific community and bridge practitioners [5]. Thus, further research is required before 
a proper application framework is well established and widely adopted by the industry. 

Among the several frameworks proposed for the materialization of DTs for bridges, one 
that can account also for the cultural heritage of existing bridges was proposed as the integra-
tion of fully inter-operable data, geometry, finite element, and data-driven modules within an 
As-Is [6] Historical Bridge Information Model (AI-HBrIM). The interconnection between the 
real and digital assets within this AI-HBrIM (and also within other frameworks) is achieved 
through the continuous real-time collection of multi-metric [7] structural, environmental, and 
operational data. These data are normally collected by a series of sensors organized within a 
Bridge Health Monitoring (BHM) system. To optimize the data collection, processing, and 
storage, such a framework would implement optimized sampling methodologies along with 
fog and cloud computing services.  

The main advantages of implementing a DT paradigm are that the data-driven surrogate 
models allow real-time damage detection and early warning alerts, whereas the detailed finite 
element models of the asset are used for damage prognosis purposes and the simulation of 
what-if scenarios that, in combination with probabilistic and reliability analysis, aid asset 
managers to take informed decisions about the optimal maintenance, retrofitting and repairing 
of the physical asset. This new paradigm results in extended life, operation cost reduction, as 
well as increased resilience and sustainability of the built environment. 

Unfortunately, BHM demands a lot of resources, both economic ones and in terms of time. 
Other than a few well-known benchmark bridges, i.e., Z24 [8], Dona [9], I-40 [10], data are 
not available for exploitation on open-source databases by researchers working in the field. 
Moreover, to develop tools capable of damage detection [11], the collection of meaningful 
data (an actual damage scenario) may not be available within the time frame of most research 
and development projects (for example, an MSc or Ph.D. thesis, a Postdoctoral research pro-
ject, etc). Furthermore, the data collected through BHM can be affected by both epistemic and 
aleatory uncertainties [12] and it is necessary to implement adequate strategies to reduce the 
estimation error of prediction models using such data [13]. 

Therefore, the need for a reliable database of benchmark data arises so that new technolo-
gies and algorithms can be properly tested and validated within the prototyping stage for 
bridge DTs. Prototypes are essential means to move from design to production and implemen-
tation, thus allowing to overcome the classic gap between ideation and implementation [14]. 
Furthermore, for the implementation of any new technologies and/or materials [15, 16] on 
bridges with cultural heritage value, such interventions need to be thoroughly validated before 
they could be considered adequate in accordance with the guidelines of the ICOMOS Interna-
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tional Scientific Committee on the Analysis and Restoration of Structures of Architectural 
Heritage (ISCARSAH Guidelines) [17]. 

In this paper, we propose a new synthetic data generation framework within the context of 
the DT paradigm. The framework will be used to generate a series of benchmark databases 
containing meaningful data including different damage scenarios which could be used in the 
development and validation of DT components thus reducing the time and money required for 
the creation of novel prototypes. Within that context, the synthetically generated data would 
mock the physical asset components of the DT. This data will be particularly suitable for the 
prototyping of model-based, data-driven, and/or physics-informed components used for dam-
age detection, localization, description, and prognosis of bridge DT. In Section 2 of this paper, 
the required data is described. In Section 3 the proposed framework is exposed and discussed. 
Finally, in Section 4 conclusions are drawn, and further work is proposed. 

2 REQUIRED DATA 
The benchmark data required for prototyping validation depends on the type of anomaly 

detection algorithm being tested. Anomaly detection algorithms can be classified into four 
general categories: (i) vibration-based; (ii) strain-based; (iii) visual-based; and (iv) mixed, as 
shown schematically in Figure 1. 

 
Figure 1. Anomaly detection types are classified based on the data type required, how data is collected, the type 

of data collected along with environmental and operational conditions. 

Vibration-based damage identification on bridges typically requires data on the dynamic 
response of the bridge [18], which can be obtained through various types of sensors, such as 
accelerometers, strain gauges, and displacement transducers (Linear Variable Differential 
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Transformers, LVDTs) [19]. This data is used in Structural Health Monitoring (SHM) to de-
termine the natural frequencies, mode shapes, damping ratios, and modal participation factors 
of the bridge before and after damage occurs [20]. 

On the other hand, strain-based damage detection on bridges is based on strain distribution 
data along the bridge, which can be obtained through strain gauges or fiber optic sensors [21]. 
The data should include strain measurements at multiple locations on the bridge, both under 
undamaged and damaged scenarios [22]. 

Another alternative approach is the so-called visual-based damage detection [23]. The dif-
ferent methodologies implementing this approach, exploit high-resolution images or videos of 
the bridge surface and its components, which can be obtained through visual inspection, Un-
manned Aerial Vehicles (UAVs), or other imaging technologies [24]. 

Finally, Mixed damage detection on bridges typically involves the combination of multiple 
types of data to enhance the accuracy and reliability of the damage detection results [25]. The 
required data can vary depending on the specific combination of techniques used but typically 
involves a combination of vibration-based, strain-based, and visual-based data [26]. 

In addition to the collection of the required data for each anomaly detection type, it is also 
necessary to collect accurate information on the bridge’s geometry, material properties, and 
loading conditions. This can include details such as the bridge span, cross-sectional area, 
modulus of elasticity, and the types and weights of vehicles that typically cross the bridge. 
Furthermore, it is important to have data on environmental conditions, such as temperature, 
wind speed, and precipitation, as these factors can affect the dynamic response of the bridge. 
Finally, it is essential to have a baseline dataset of the measurements on the undamaged 
bridge, so that changes in data patterns can be identified and interpreted as damage. Overall, 
the more comprehensive the data set is and the lower the data uncertainties are, the more ac-
curate and reliable the damage detection results will be. 

3 PROPOSED FRAMEWORK AND DISCUSSION 
The proposed novel framework for the creation of synthetic data that could be used to form 

benchmark study cases for prototyping and validation of DT components is shown schemati-
cally in Figure 2. 

The data generated by a BHM system come in the form of time series, i.e., data collected 
over time at certain intervals, also known as sampling rates. Therefore, the first component of 
the proposed synthetic data generation framework is the sync main module. This element en-
sures the correct alignment in time of the different time series data generated, i.e., synthetic 
monitoring data, environmental data, and operational conditions data. To achieve the syn-
chronization of the different synthetic time series generated within the proposed framework, a 
Dynamic Time Warping (DTW) function is suggested [27]. 

The synthetic data artificially generated by the proposed framework, namely, vibration, 
strain, and visual data, will provide information that can be used in place of real historic data. 
For such purposes, the generated data will have to be programmable. In other words, the sta-
tistical features of the data could be rebalanced, imputed, or have a stricter or looser adher-
ence to the original distributions and correlations [28]. This will allow improving DT bridge 
model prototyping performance by enabling the simulation of what-if scenarios and the gen-
eration of test data with an improved ability to test and validate prototypes. Several Python 
libraries readily available have the required features to effectively generate programmable da-
ta such as PyOD [29], which is a specialized, comprehensive and scalable library for the de-
tection/generation of outlying objects; and ctgan [30], which is a collection of high fidelity 
synthetic data generators based on deep learning algorithms. Both libraries’ capabilities will 
be integrated and combined within the proposed synthetic data generation framework.  
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Figure 2. The proposed framework for synthetic data generation, which accounts for uncertainties and could be 

used in the prototyping of DTs. 

The generation of vibration, strain, and visual data will be done within a mixed data com-
ponent. This sub-module will be developed to generate benchmark databases of multi-metric 
data which could be used by mixed anomaly detection algorithms prototyping requirements.  

The operational conditions data can be used to easily differentiate between damaged and 
undamaged scenarios, as anomaly conditions often reflect on the properties of the bridge 
structural components, such as supports, stiffness of members, extraordinary loads leading to 
permanent deformations, etc. Accounting for environmental data is also of paramount im-
portance within the context of synthetic data generation, as it has been proved by several au-
thors [31, 32] that environmental conditions can modify some properties of the bridge, which 
does not necessarily mean the asset has suffered some damage.  

The framework considers both epistemic and aleatory uncertainties, which are key features 
to be accounted for in the validation process of any newly developed technology. The uncer-
tainties component of the framework is presented and discussed in more detail in another 
study of the authors [33]. 

It is worth mentioning that the data generated by the proposed framework could be used 
for the prototyping and validation of either model-based or data-driven algorithms as well as 
by the more complex physics-informed ones. It is important to highlight that the proposed 
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framework aims to produce realistic data capable of depicting general bridge management and 
operation scenarios, not to accurately replicate the observable data of a specific bridge study 
case. Thus, the data produced, should serve as a benchmark, so that novel prototypes can be 
tested and validated, consequently preparing them for their real-world deployment. 

Although the creation of similar synthetic benchmark datasets has been proposed in the 
past [34], such alternatives are hard to find and even harder to access. Therefore, it is of par-
amount importance that the data generated comply with the FAIR principles having to do with 
the “Findability, Accessibility, Interoperability, and Reuse” of digital assets [35], i.e. the data 
needs to be findable, accessible, interoperable, and usable. To ensure these requirements are 
fully met, the proposed framework will follow the steps highlighted in the Three-point FAIR-
ification Framework [36]. 

4 CONCLUSIONS AND FURTHER WORK 
In this article, the shift towards a Digital Twin paradigm by all stakeholders in the engi-

neering, architecture, and construction industry is recognized. As this new approach is cur-
rently in its early stages of development and adoption, new proposals to optimize its 
application need to be explored and developed. Such attempts require the development of pro-
totypes that need to be validated against benchmark data. 

Overall, synthetic data used for the creation of “what-if” scenarios for bridge digital twins 
can provide valuable insights into the bridge’s performance under different conditions, allow-
ing AEC professionals to identify potential issues and make informed decisions about mainte-
nance and design challenges. 

In this paper, a framework for the creation of a synthetic data generation tool has been pro-
posed. Such framework produces high-quality FAIR data that allows novel developed proto-
types to be validated and consequently be implemented in further stages of the Digital Twin 
creation for real infrastructure assets. The main characteristics of the proposed framework are 
the following: 

• It accounts for the creation of multi-metric data, namely, vibration, strain, visual and 
mixed synthetic data under both undamaged and damaged scenarios. 

• Both environmental and operational conditions can be fine-tuned and included in the 
data generation. 

• A synchronizing module ensures that all data can be correctly tracked over time. 
• It considers both epistemic and aleatory uncertainties for the adequate generation of re-

al-world-like scenarios. 
• The data generated is suitable for its use in the development and validation of model-

based, data-driven, and physics-informed components of a digital asset. 
Further work needs to be done, mainly within three directions: (i) operationalization of the 

proposed framework; (ii) self-validation of the generated synthetic data; and (iii) continuous 
maintenance/support. The results of these attempts will be presented by the authors in future 
publications. 
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GLOSSARY 
AEC Architecture, Engineering, and Construction 
AI-HBrIM As-Is Historical Bridge Information Model 
BHM Bridge Health Monitoring 
DT Digital Twin 
DTW Dynamic Time Warping 
FAIR Findability, Accessibility, Interoperability, and Reuse 
HBrIM Historical Bridge Information Model 
ICOMOS International Council on Monuments and Sites 
ISCARSAH International Scientific Committee on the Analysis and Restoration of Structures of 

Architectural Heritage 
SHM Structural Health Monitoring 
UAV Unmanned Aerial Vehicle 
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