
 
 

Delft University of Technology

The Human Factors of AI-Empowered Knowledge Sharing

Kernan Freire, Samuel

DOI
10.1145/3544549.3577044
Publication date
2023
Document Version
Final published version
Published in
CHI 2023 - Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems

Citation (APA)
Kernan Freire, S. (2023). The Human Factors of AI-Empowered Knowledge Sharing. In CHI 2023 -
Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems Article 502
(Conference on Human Factors in Computing Systems - Proceedings). Association for Computing
Machinery (ACM). https://doi.org/10.1145/3544549.3577044
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3544549.3577044
https://doi.org/10.1145/3544549.3577044


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



The Human Factors of AI-Empowered Knowledge Sharing 
S. Kernan Freire

Delft University of Technology 
Delft, The Netherlands 
s.kernanfreire@tudelft.nl

ABSTRACT 
Many industries are facing the challenge of how to capture workers’ 
knowledge such that it can be shared, in particular tacit knowl-
edge. The operation of complex systems such as a manufactur-
ing line is knowledge-intensive, especially if the operator must 
frequently reconfgure it for diferent products. Considering the 
breadth and dynamic nature of this knowledge, existing solutions 
for sharing knowledge (e.g., word-of-mouth, issue reports, docu-
ment creation, and decision support systems) are inefcient and/or 
resource-intensive. Conversational user interfaces are an efcient 
way to convey information that mimics the way humans share 
knowledge; however, we know little about how to design them 
specifcally for this purpose, especially regarding tacit knowledge. 
In this work, my main goal is to investigate how a cognitive assis-
tant can be designed to facilitate (tacit) knowledge transfer between 
users of dynamic complex systems. I aim to achieve this by out-
lining the design requirements, challenges, and opportunities in 
factories; by collaboratively designing, implementing, and evaluat-
ing a cognitive assistant for sharing knowledge; studying the efects 
of design characteristics on aspects such as user experience; and 
fnally, creating a set of design guidelines. 

CCS CONCEPTS 
•Human-centered computing → Empirical studies in HCI;
Interactive systems and tools; Natural language interfaces.

KEYWORDS 
cognitive assistant, chatbots, industry 5.0, human-centred AI, knowl-
edge sharing 
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1 INTRODUCTION 
Operating a complex system, such as an agile production line, is a 
knowledge-intensive task. A single operator may need to confg-
ure, optimize, and maintain a system that consists of more than a 
dozen machines for more than a hundred diferent products. Over 
time, operators learn the intricacies of their production line and 
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how to optimally tune the system for each product and quickly fx 
issues. This is not simply a matter of entering the best parameters 
every time, as there are many contextual factors, for example, am-
bient temperature and the quality of raw products, that afect the 
system. In addition, the introduction of new products, the adjust-
ment of existing ones, or changes in the mechanical systems result 
in highly dynamic best practices. As such, any system designed 
to support knowledge sharing should be able to dynamically up-
date its knowledge base and associate it with contextual factors. 
Currently, training and knowledge sharing occurs through human-
to-human interaction in industrial settings, that relies on extended 
1-on-1 interaction. As a result, training new operators is highly
resource-intensive [42]. Furthermore, it might take months before
two operators have the opportunity to share their knowledge about
a specifc topic, and if one leaves, they take a lot of their valuable
(tacit) knowledge with them. Experts can create instructional mate-
rial for later consumption; however, our investigations in factories
revealed that this material is rapidly out of date, difcult to access
and maintain, and thus rarely used. Issue reports or shift reports are
another, usually more up-to-date source of knowledge; however,
they are often of poor quality or illegible recorded and therefore
not useful [14]. An ubiquitous cognitive assistant with a conversa-
tional user interface could serve as an intermediary in the sharing
of knowledge between operators. Unlike human colleagues, it is
always available and, therefore, acquires and shares knowledge at
scale.

My research goal is to investigate how to design a cognitive 
assistant that facilitates the transfer of (tacit) knowledge between 
operators of complex systems. In doing so, I will improve knowledge 
sharing regarding complex systems and advance the possibilities 
for successful human-AI collaborations in professional contexts. To 
accomplish this, the main objectives of my Ph.D. are as follows: 

(1) Defne requirements, opportunities, and challenges for knowl-
edge sharing cognitive assistant in the context of agile man-
ufacturing.

(2) Design, implement, and evaluate an cognitive assistant for
knowledge sharing in the context of agile manufacturing.

(3) Map the impact of design characteristics (e.g., modality,
proactivity, conversation style) on aspects such as user expe-
rience, task performance, cognitive load, knowledge sharing,
and learning outcomes.

(4) Create design guidelines for cognitive assistants that share
knowledge.

To achieve the objectives listed above, we performed a con-
text analysis of agile manufacturing operators that included semi-
structured interviews, a thematic analysis of problem descriptions,
and collaborative design sessions. To get the full picture, we collected
information from the operators themselves, but also from the per-
spective of their team leaders, maintenance personnel, managers, 
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process engineers, quality control, and factory directors. Literature 
reviews were used to inform the design of the cognitive assistant. 
We conducted usability studies to improve our cognitive assistants 
in preparation for user studies. Furthermore, we use qualitative 
methods, such as content analysis, to identify areas for improvement. 
We use comparative user studies to evaluate our system compared 
to the current situation in factories and the efect of design char-
acteristics (e.g., modality) on aspects such as user experience (UX), 
operator performance, and knowledge retention. Here, we make 
use of both subjective measures (e.g., user experience questionnaire 
(UEQ)) and objective measures (e.g., task duration and physiological 
measurements). We conduct lab studies where we can control more 
variables and achieve a higher number of participants. In addition, 
we conduct user studies in situ when possible (i.e., in factories) for 
ecological validity. We plan to use crowd-sourcing for large-scale 
online studies when we examine a large number of design charac-
teristics in parallel or those with more subtle efects. Finally, our 
objective is to create design guidelines by consolidating the fnd-
ings in our studies, organize workshops, and perform a systematic 
literature review of AI-empowered knowledge sharing. 

2 BACKGROUND 
Many industries face challenges in sharing knowledge between 
workers, especially tacit knowledge. Inherently, tacit knowledge 
is implicit, making it more difcult for individuals and companies 
to acquire and disseminate it [18]. Workers acquire tacit knowl-
edge on the job to overcome the challenges of agile manufacturing. 
However, tacit knowledge is rarely generalized, explained, or for-
malized. Although several defnitions of tacit knowledge state that 
it cannot be expressed verbally, Nonaka and Takeuchi [35] sug-
gest that it can be divided into inexpressible and expressible types. 
This categorization indicates that tacit knowledge has multiple di-
mensions related to the ability to express it in words, formulas, 
trade secrets, rules of thumb, and tricks [33]. Recent studies of tacit 
knowledge in manufacturing have shown the enormous value that 
tacit knowledge holds [20]. Now we know that tacit knowledge 
can be converted into explicit knowledge and that they exist on 
a continuum [36]. Despite this, it remains resource intensive to 
collect and share. Researchers have manually acquired tacit knowl-
edge through human motion capture, videos, and feld interviews 
with experts and beginners in the manufacturing industry [17] – a 
process that requires skilled analysts. If data is available that details 
the actions of workers, data analysis techniques can be used to 
identify tacit knowledge [39],[46]. However, these techniques do 
not enable the knowledge holder to describe the reasoning behind 
their actions or add additional details, as an expert might when 
teaching a novice. To solve some of these challenges, a cognitive 
assistant could facilitate the sharing of tacit knowledge in a factory 
through dialectic interactions [15]. To our knowledge, no existing 
AI system has demonstrated the ability to collect and share tacit 
knowledge in agile manufacturing settings. 

Whereas manufacturing automation has focused on replacing 
humans, we are now entering a new phase in which intelligent sys-
tems will fully merge with the physical world in cooperation with 
human intelligence [34]. Industrial applications for conversational 

agents—similar to Alexa, Google Assistant, or Siri—are an emerg-
ing research topic. Several AI assistants have emerged in diferent 
research communities with diferent names (e.g., digital assistants, 
software robots, or just chatbots). AI assistants can have signifcant 
benefts in manufacturing [48]. These include, for instance, central 
access to heterogeneous information systems, the delegation of 
tasks, and providing ubiquitous decision support [4, 40]. Using a 
voice-based conversational user interface (CUI) allows workers to 
keep their hands and eyes free to work on the machines. Further-
more, studies in the automotive context have shown positive efects 
of the use of CUIs on aspects such as cognitive demands/workload 
and environmental participation [27]. They can support workers 
in predictive maintenance [47] and augmented data analytics in 
manufacturing [49]. Longo et al. demonstrated an AI assistant in-
tegrated into an augmented reality application to train machine 
operators [31]. Their prototype provides information about safety 
measures, potential hazards, machine status and operations, and 
quality control procedures. Besides, it instructs users on lubrica-
tion, greasing, cleaning, checking, and restoring hydraulic pressure 
or fuids for maintenance. Rabelo, Romero and Zambiasi demon-
strated how software robots, a concept overlapping with AI assis-
tants, can assist operators [37]. They extended their solution so it 
can evaluate shop-foor information, identify production problems, 
assess operations performance, and use business analytics to sup-
port decision-making [3, 38]. Listl, Fischer, and Weyrich described 
an AI assistant connected to a plant simulation tool [30]. Their 
demonstrator allows users to adjust simulation parameters, model 
topology, and schedules. However, these systems are mainly based 
on predefned knowledge bases that require a lot of resources to 
create and maintain [13]. 

In an efort to bootstrap the population of knowledge bases, pre-
vious research has explored natural language processing (NLP) on 
existing maintenance reports to automatically discover knowledge, 
but numerous data quality issues were found [14]. Others concluded 
that technicians often describe problems informally, leading to in-
consistencies and inaccuracies in the data; certain maintenance 
data, such as the actual root cause of a problem, are not always 
collected; and once the data is collected, it is often not used for 
future diagnosis [41]. Clearly, the poor quality of reports inhibits 
(AI-facilitated) knowledge sharing among technicians. CUIs have 
been shown to be a viable alternative to creating reports on paper 
or with graphical user interfaces, for example, voice-based CUIs are 
increasingly prevalent in the healthcare domain to support clinical 
workfows [32, 44]. CUIs in healthcare relieve physicians of the 
burden of documentation by using a digital scribe [11, 43]. In fact, 
CUIs have a positive impact on the accuracy and productivity of 
documentation [21]. Giving a verbal description of your actions and 
thoughts is intuitive, and designers use CUIs to better understand 
the user’s thought process [12, 29]. 

A cognitive assistant is a smart system designed to “augment 
human intellect” by endowing one with cognitive capacities be-
yond what is humanly possible. Cognitive assistants have been 
found to reduce cognitive load when making decisions and taking 
actions [1, 6, 28]. By continuously learning from workers’ experi-
ences, cognitive assistants are able to adapt to changing physical 
environments, dynamic social contexts, and user needs [1]. Kimani 
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et al. proposed an cognitive assistant called Amber that uses a sens-
ing framework that could record users’ faces, speech, and app usage 
in order to aid users with job prioritization, provide reminders, and 
inhibit social media diversions [25]. Natural language mechanism 
and context awareness could also enable cognitive assistants to 
efciently acquire high-quality (tacit) knowledge shared by expe-
rienced workers and pass it on to novices [22]. Unlike systems 
designed to replace humans in specifc tasks (e.g., industrial robots), 
cognitive assistants strive to complement human abilities to accom-
plish complex tasks, such as aiding life-long education and machine 
operation [1, 2, 28]. In addition, such assistants often outperform 
human capacities for communication and memory in a variety of 
ways, such as simultaneously providing dependable and repeat-
able communication between numerous users [1, 2]. To achieve the 
aims mentioned above, cognitive assistants should support efcient 
human-machine interfacing via natural language processing, inter-
pretation of gestures, perception, vision, and sounds, augmented 
reality to provide additional layers of information, and others [1, 2]. 
Furthermore, advances in context awareness make it possible to 
improve a cognitive assistant’s usefulness. For example, acquiring 
more accurate knowledge about city locations by asking questions 
when users are there [7] or inferring context from user utterances 
to provide more relevant tourist recommendations [10]. 

Researchers have recently made great progress in efciently 
building and maintaining knowledge bases for AI systems [9], for 
example, by crowd-sourcing the process [26], extracting knowledge 
from online forums [19], and interactively learning from users [7]. 
All of the above solutions show promise and could be integrated 
into one system. However, knowledge cannot be reduced to simple 
rules. As Davenport and Prusak (1998) defne it, “knowledge is a fuid 
mix of framed experience, values, contextual information, and expert 
insights that provide a framework for evaluating and incorporating 
new experiences and information. It originates in and is applied in the 
minds of knowers [8].” In addition, it is difcult to understand the 
user’s experience (UX), impressions and values without interacting 
with the user, for example, via a CUI [45]. To our knowledge, no 
existing solution has ever acquired (tacit) operator knowledge to 
structure it, store it, and share it again with others in real time and 
on the shop foor. 

3 PRELIMINARY RESULTS 
As a result of literature review, context analysis, and co-design, we 
designed and implemented a cognitive assistant for agile manu-
facturing operators in mid-2022. In the accompanying article, we 
describe its architecture, user interaction scenarios, and discuss the 
opportunities and challenges we face [24]. In addition to presenting 
the challenges, we also outline how we tackle them, such as using 
context awareness to overcome the shortcomings of NLP to convey 
precise information quickly and using user feedback to maintain 
an ever-growing knowledge base. 

We conducted a lab study (� = 24) to evaluate the use of a (voice) 
conversational user interface (CUI) to create maintenance reports 
using a Technology Probe [5]. We compare two groups that change 
the inner tube of a bicycle and report their work. Participants in 
one condition report their work during the task by voice, while 
the other group writes a report on paper afterward. We measure 

the duration of tasks, perceived workload, and the quality of re-
ports. Overall, report quality was signifcantly in favor of the “CUI” 
group/condition. Interestingly, CUI-based reporting was not found 
to afect maintenance task completion time. In fact, the time to 
change the inner tube did not difer signifcantly between the two 
conditions (“CUI” and “Paper”). When reporting time is factored 
in, using a CUI can save technicians and their frms a signifcant 
amount of time. Clearly, the ability to report by voice during the 
maintenance task, rather than afterward, was the reason. Surpris-
ingly, the overall perceived workload did not difer signifcantly 
between the “CUI” and “Paper” conditions. However, the perceived 
temporal demand for the “CUI” group was reported as signifcantly 
higher than that for the “Paper” group. The signifcance of this 
fnding should be noted, as it suggests that designers of conversa-
tional systems for on-the-job knowledge acquisition should adjust 
conversational fow to task progress. 

In another study, we explored one of the major challenges in 
acquiring knowledge from humans using a natural language in-
terface, namely, how to reliably process precise domain-specifc 
information [16]. We realized that it would be impossible to train 
the NLP model to understand all possible user utterances immedi-
ately. As such, conversation breakdowns are inevitable; however, 
each breakdown is also a learning opportunity to improve. There-
fore, we explored user preferences regarding whose responsibility 
it is to learn from conversation breakdowns; namely, the user, the 
cognitive assistant, or both. We recruited 26 factory workers and 
compared user preferences for diferent learning mechanisms. Our 
result showed that users prefer to share the learning burden with 
the CA (61.3%), followed by completely outsourcing the learning 
burden to the CA (60.7%) as opposed to themselves. 

Recently, we conducted a user study with 83 participants who 
performed eight knowledge exchange tasks with a cognitive assis-
tant, completed a survey, and provided qualitative feedback [23]. 
Our results provide a deeper understanding of how prior training, 
context expertise, and interaction modality afect the user experi-
ence of cognitive assistants. We draw on our results to create de-
sign and evaluation guidelines for cognitive assistants that support 
knowledge exchange in fast-paced and demanding environments, 
such as an agile production line. 

4 NEXT STEPS 
Our next study will investigate the efect of using a cognitive as-
sistant for knowledge sharing on task performance, knowledge 
retention, cognitive load, and user experience. We have created a 
simulated agile production line environment to perform this in a 
controlled laboratory environment. In addition to the objectives 
mentioned above, we will investigate several ways of prompting 
end-users to elicit (tacit) knowledge through conversational AI. In 
parallel, our goal is to run a crowd-sourced study to study the efect 
of several design characteristics (e.g., emoji use and explainable AI) 
on the trustworthiness and engagement with cognitive assistants 
for knowledge sharing. Lastly, we will perform usability studies 
of two assistant systems in the wild. When conducting studies in 
the wild, we must be careful not to negatively afect the produc-
tion performance or safety of factory workers. Furthermore, we 
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must be aware of ethical concerns, such as power imbalances be-
tween managers and workers, the collection of personal data (e.g., 
related to work performance) and how an individual’s knowledge 
is a valuable asset to them, as well as their employer. 
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