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A B S T R A C T

Continuous fiber fused filament fabrication (CF4) is a layer-by-layer additive manufacturing
technique that deposits continuous fiber fused filaments (CFFFs) with a significant in-plane
variation of the fiber trajectory, thereby offering great flexibility in fabricating variable-stiffness
composite laminates (VSCLs). We introduce a topology optimization method for the design
of additively manufactured VSCLs made of overlapping, fiber-reinforced bars. The proposed
method is based on geometry projection (GP) techniques, whereby the bars are represented
by high-level geometric primitives. As in other GP techniques, this high-level parameterization
is mapped onto a fixed structured finite element mesh for conducting analysis, as in density-
based topology optimization techniques. However, unlike previous GP techniques that have
demonstrated their applicability in designing structures as assemblies of individual fiber-
reinforced components, this work focuses on the design of composite structures that adhere
to CF4 manufacturing processes. Therefore, we first formulate a material interpolation scheme
that better captures the stiffness at the composite’s joints obtained from bar overlaps as a stack.
Second, the proposed material interpolation employs composite laminate theory to capture the
in-plane and out-of-plane behavior of the structure. Third, to produce designs that conform
to the CF4 process, we also proposed a novel length constraint formulation in the form of
penalization on the projection scheme, which ensures a minimum length for all the bars. This
minimum length limit does not require adding a constraint to the optimization problem. The
efficacy and efficiency of the proposed method are demonstrated by a series of compliance
minimization problems with in-plane and/or out-of-plane loading. The methodology is also
applied to the design of a displacement inverter compliant mechanism.

1. Introduction

Several additive manufacturing methods are being developed to realize the next-generation lightweight composite structures,
including variable stiffness composite laminates (VSCLs) made of continuous fiber-reinforced polymers (CFRPs). Some of these
methods include continuous fiber-fused filament fabrication (CF4) [1] and automated fiber placement (AFP) [2], which can realize
spatially varying material fractions and orientations that can further tailor the VSCLs’ mechanical behavior. However, manufacturing
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Fig. 1. Simple part modeled (on the left) to illustrate the CFFF trajectories that can be deposited in a layer using the CF4 3D-printer from 9tlabs. The CFFF
trajectories (obtained using 9tlabs’s slicing software Fibrify®) can be laid horizontally and continuously in a layer, in an ‘‘line follower’’ (middle) or ‘‘face
follower’’ (right) pattern. The line follower type creates fibers for input curves/edges, while the face follower type creates line followers following the input
faces.

VSCLs with AFP processes imposes strict limitations on the maximum curvature [3–5]. This is because the process simultaneously
layers a large number of independent tows, which necessitates limiting the fiber steering to reduce the occurrence of defects. On the
other hand, CF4 processes that utilize a dual extruder mechanism [6,7] — one for heating and depositing the matrix (e.g., Onyx®, a
short-fiber-reinforced nylon) and the other for depositing the continuous fiber fused filament (CFFF) — extrude a continuous prepreg
tow that can accommodate small radii of curvature and sharp changes in fiber direction while retaining fiber continuity throughout
the printing process, as illustrated in Fig. 1.

VSCLs are defined as an assembly of layers (also called plies or laminae) with different fiber orientations that are tailored to
attain the required mechanical properties, e.g., to maximize the stiffness-to-weight ratio. The fiber orientation in each layer, the
layers’ thickness, and the stacking sequence — i.e., the order in which individual laminae are placed on top of one another —
determine the overall VSCLs’ mechanical response. At the same time, it is necessary to satisfy manufacturing constraints imposed by
the fabrication process. For example, conventional manufacturing techniques allow layers only with rectilinear fiber reinforcement
in the laminate. A common choice is quasi-isotropic orientations (0◦, ±45◦, 90◦), which mitigates the effects of membrane-bending,
membrane-shearing, and bending-shearing coupling responses. In contrast, advanced automated manufacturing techniques like AFP
and CF4 can produce layers with variable-fiber reinforcement to tailor the laminate’s stiffness (or flexibility), which can also reduce
material and manufacturing costs. AFP, however, imposes strict limitations on steering the prepreg tows and/or a maximum ply
drop [8], while for CF4 processes ensuring fiber continuity in each layer requires restrictions on the smallest feature size that can be
reinforced [9]. Despite the increased flexibility in the fiber reinforcement, obtaining autoclave-level mechanical properties for VSCL
fabricated via CF4 is challenging. Studies have reported that the comparatively high void content (10%–12%) and poor interfaces
severely affect the mechanical performance of printed CFRP parts [10,11]. Therefore, to obtain the best possible performance of
components manufactured by CF4, it is necessary to formulate computational design techniques tailored to the design freedom and
manufacturing constraints of this process; this is the focus of the present work.

Compared to designing composite laminates that are made of several straight-fiber plies [12], optimizing variable stiffness
composite laminates is challenging since the arrangement of fiber orientation and the thickness of the fiber can all vary throughout
the composite laminate [13]. Consequently, VSCLs are analyzed using discretization techniques — e.g., the finite element method
(FEM) — assuming a constant fiber orientation within each finite element. As a result, optimizing VSCLs cannot escape the
inordinately large number of design variables. Therefore, exploring the vast design space of additively manufactured VSCLs mandates
a systematic approach, for which computational design tools have proven to be effective [14]. One such procedure is topology
optimization (TO), which can also assist in leveraging CF4’s manufacturing capabilities.

Topology optimization is an iterative design procedure that is used to find an optimized distribution of material in a given
design domain by minimizing a quantifiable objective function subject to constraints [15–19]. When optimizing VSCLs using the
TO approach, a material orientation parameterization is formulated to obtain an optimized distribution of fiber orientations within
the design domain. In this context, the choice of parameterization — i.e., the representation of material orientation in the design
space — plays a key role in the optimization. Several parameterization schemes have been proposed in the literature [20]: The
continuous fiber orientation (CFO) approach [21–25] naturally becomes a suitable parameterization scheme for CF4 processes
because it optimizes for continuous orientations in the range [−𝜋 , 𝜋] at each design point, thus providing the highest freedom for
designing VSCLs. Curvilinear parameterization schemes represent the fiber path along the principal stress direction, thereby yielding
designs with fewer variables than those obtained with elemental fiber angles, all while ensuring that the fiber path continuity is
maintained [26–28]. As an alternative to continuous parameterization approaches, discrete material orientation (DMO) methods
optimize for a set of discrete fiber orientations using gradient-based optimizers [29]. DMO has been investigated for multi-layer
composite laminate designs [30–34] as it can realize practical designs by accommodating restrictions that conform to design
guidelines for better structural integrity [35]. Subsequent works combine aspects of CFO and DMO to reduce the risk of falling
into local optima without sacrificing fiber continuity [36–39].
2 
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Density-based TO methods — e.g., the solid orthotropic material with penalization — are adopted mainly for CFRP materials [40].
These procedures enable the optimization of both the material distribution and the fiber orientation, either simultaneously or
sequentially. Density-based TO has a straightforward computer implementation and has proven effective in solving a wide range
of problems with coupled differential equations (which we loosely refer to as multiphysics) [41]. However, when designing for
CF4 [42–45], the designer must identify standard geometric features from the attained topology (e.g., based on computer-aided-
esign (CAD) representations) to avoid manufacturing defects and/or unfeasible geometries for the printing process [46]. In addition,

these methods yield free-form designs that need to be further post-processed before fabrication through shape and size optimization
until the structure satisfies the manufacturing constraints—to the detriment of the mechanical performance of the optimized design.
Instead of parameterizing material orientations at the finite element level and then enforcing fiber continuity constraints, an
alternative approach can use geometric primitives to represent the fibers and thus ensure manufacturability while simultaneously
ecoupling the material orientations’ space from the finite element discretization; this way, the primitives’ geometric parameters
ecome the design variables for the TO problem. These feature mapping TO methods [47] become attractive in these cases, mainly

when dealing with anisotropic materials, as pursued in this work.
One feature-mapping TO method that decouples the finite element discretization used for analysis from the design’s geometric

eatures is the geometry projection (GP) method [48]. GP uses geometric primitives such as bars and plates endowed with CFRP
material properties, which can move freely within the computational design domain. These primitives, which are described by a
few design parameters (e.g., the radius of the primitives and the coordinates of the endpoints of its medial axis), are mapped onto a
ensity field that is subsequently discretized by the finite element mesh for analysis. Because this mapping is differentiable, design
ensitivities can thus be computed via the chain rule to update the design parameters. By allowing a dual representation of geometric
rimitives (geometric parameters/densities) and decoupling the design representation from the finite element mesh, GP provides a
rade-off between the conventional component-wise assembly of engineering features and the free-form design of CFRP structures,
hich is advantageous for applications that benefit from this geometric restriction.

GP has been successfully used to optimize the layout of FRBs for maximum structural stiffness [49], both in 2D and 3D, and
he technique was later advanced to consider primitives made of fiber-reinforced plates [50,51]. However, GP has mainly been

used to design structures as assemblies of individual fiber-reinforced components, and thus, its applicability in designing monolithic
composite structures is yet to be demonstrated [52]. A GP technique that produces a design that adheres to the CF4 processes requires
apturing the composite stiffness of fiber-reinforced components that form out-of-plane overlaps (or stacks). Subsequently, this can
ield bar intersections in the design, which is crucial in lowering the strain energy because the intersection of fibers optimizes the

orthotropic ratio (𝐸2∕𝐸1) such that the stiff fiber direction aligns with all the intersecting load paths. This presents a challenge with
he current GP methodology because the softargmax function implementation pushes the design to attain a discrete component
hoice instead of aligning the primitives with all intersecting load paths. That is, in current GP techniques, points that lie at the
ntersection of two or more primitives (i.e., joints) are assigned the material of one of the primitives, which means they do not
apture the mechanical behavior at joints that would be obtained from overlapping components.

In this paper, we build upon the work of Smith and Norato [49] and formulate a novel GP technique to enable the design of
SCLs. While using FRBs as features, we extend GP methods in several important aspects. First, by employing theories that describe
omposite laminates [53], we endow the GP with the ability to model overlapping FRBs in the design, thus allowing stacking
nidirectional plies or lamina. These overlapping regions are then represented in the density field by exploiting the dual nature of
P. Specifically, the equivalent single-layer model based on first-order shear deformation theory is used to compute the laminate

stiffness matrices, which also allows the consideration of out-of-plane and/or in-plane loading. Second, we formulate a simple
aterial interpolation approach, which considers the effect of overlapping FRBs by summing the contribution of bars’ elasticity

ensors. Importantly, when computing the bending stiffness 𝐷𝐵 𝑒 of the laminate, we assume that all the layers are located at the
same distance from the bending axis to be consistent with a simple sum material interpolation; in doing so, the contribution of the
stacking sequence to the bending stiffness is neglected. Despite the assumption, capturing the mechanical behavior of overlapping
FRBs based on composite laminate theory can help the optimizer in finding a topology with continuously varying and intersecting
fiber trajectories, thereby producing a design that accommodates the design freedom offered by CF4 processes. Finally, to ensure that
the proposed method yields print-ready designs, we impose a minimum length limit on the bars by using a penalization technique
that assigns a length-dependent weight to each component. This weight becomes zero for bars shorter than the minimum length
limit, thus effectively removing the bar from the design. The imposition of the minimum length limit via penalization precludes the
need for additional constraints in the optimization problem. As a result of the aforementioned contributions, the proposed method
enables the topology optimization of VSCLs made of FRBs, which is not possible with existing techniques.

2. The geometry projection

The geometry projection (GP) method is a topology optimization technique that represents the design using geometric com-
onents — e.g., 2D flat or 3D cylindrical bars or 3D rectangular plates — that are mapped onto a density field. This field is then
iscretized using a fixed analysis finite element mesh

(

 ⊂ R2), avoiding the need to re-mesh upon design updates. The GP mapping
s differentiable, readily allowing for sensitivity calculations with respect to the geometric parameters so that efficient gradient-based
onlinear programming methods can be employed for the optimization. As the chain rule used to compute sensitivities requires

derivatives of the optimization functions with respect to the densities, the technique can benefit from sensitivity formulations already
developed for density-based topology optimization approaches. First, and for completeness, we briefly describe the GP method for 2D
fiber-reinforced bars (FRBs); we roughly follow the presentation of the GP method given in [54]. The proposed LGP-AM formulation
for monolithic structures is subsequently introduced.
3 
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Fig. 2. 2(a) A fiber-reinforced bar with geometric design variables and material orientation. 2(b) Projection of a bar at 𝒙.

2.1. Definition of components and their projected densities

We model a given design by combining multiple FRBs, which form an out-of-plane overlap. The 𝑏th bar 𝛺𝑏 ∈ R2 (with 𝑏 the
index taken from the index set  of all bars, i.e., 𝑏 ∈ ), is represented as shown in Fig. 2(a). It is characterized by an offset solid
whose medial axis is a line segment, which corresponds to a rectangle with semicircular ends. The bar is completely defined by its
two endpoints (𝒙1𝑏,𝒙2𝑏), and a radius 𝑟𝑏 that defines the semicircles and the offset from the medial axis. A membership variable
𝛼𝑏 ∈ [0, 1] is assigned to each bar and penalized as in density-based methods, which allows the optimizer to remove it from the
design or reinsert it. Thus, the 𝑏th bar has design variable vector

𝒛𝑏 =
(

𝒙1𝑏,𝒙2𝑏, 𝑟𝑏, 𝛼𝑏
)

. (1)

The GP method maps the design variables of the 𝑏th component onto a component-wise density field 𝜌𝑏
(

𝒙; 𝒛𝑏
)

, where 𝒙 is the
cartesian coordinate in the design region. As illustrated in Fig. 2(b), the projected density at a point 𝒙 is defined as the intersection
between 𝛺𝑏 and a ball with radius 𝑟 centered at 𝒙, i.e.,

𝜌𝑏(𝒙; 𝒛𝑏) =
|

|

|

𝐵𝑟𝒙 ∩𝛺𝑏
(

𝒛𝑏
)

|

|

|

|

|

𝐵𝑟𝒙||
. (2)

In 2D, assuming 𝑟 is much smaller than the bar’s dimensions, then 𝜕 𝛺𝑏 in 𝐵𝑟𝒙∩𝜕 𝛺𝑏 can be approximated as a line segment. Therefore,
the area fraction of (2) can be computed as the area fraction of the circular segment of height ℎ = 𝑟 − 𝜙𝑏, where 𝜙𝑏 denotes the
signed distance from 𝒙 to 𝜕 𝛺𝑏. That is, the projected density for bar 𝑏 is a single-valued function of 𝜙𝑏, which effectively constitutes
a regularized Heaviside function, i.e.,

𝜌𝑏(𝒙; 𝒛𝑏) = �̃�
(

𝜙𝑏(𝒙; 𝒛𝑏)
𝑟

)

. (3)

The expression for �̃� is given in Appendix A.2. We follow the convention that the signed distance from points that are inside the bar
(i.e., 𝒙 ∈ 𝛺𝑏) is positive, while the signed distance to points outside the bar (i.e., 𝒙 ∉ 𝛺𝑏) is negative. The signed distance function
for a bar is thus the offset minus the distance to the medial line segment, as detailed in the Appendix A.1.

The dual representation — i.e., via geometric parameters or density — can be used to treat individual components as either
high-level geometric objects or field variables in component densities. By taking advantage of this dual nature, and as demonstrated
in [49], it is possible to incorporate local orthotropic material behavior with a transversely isotropic material response, thus
expanding the material design space for designing and optimizing VSCL, as explained later in Section 3.

A penalized density is computed for each bar that is subsequently used to calculate its elastic stiffness tensor using a method
similar to the solid-isotropic material with penalization (SIMP) widely used in density-based topology optimization [55]. The
penalized density is given by

( )𝑞
�̆�eff
𝑏 (𝒙; 𝒛𝑏) = 𝛼𝑏𝜌𝑏(𝒙; 𝒛𝑏) , (4)

4 



Y. Gandhi et al.

t

d
o

p

t

m

i
S
s

m
i

Computer Methods in Applied Mechanics and Engineering 435 (2025) 117663 
where we recall 𝛼𝑏 is the bar’s membership variable, and 𝑞 is a penalization parameter. As described below, this penalized density is
used to determine the material properties as in SIMP topology optimization techniques. A zero penalized density means the 𝑏th bar
does not affect the material properties at 𝒙. As noted in [54], the membership variable and the projected density must be penalized
o ensure that intermediate density regions satisfy the Hashin–Shtrikman bounds.

For the finite element analysis, we assume each finite element has a uniform projected density. As such, the element projected
ensity 𝜌𝑏𝑒 is computed at its centroid 𝒙𝑒. The sample window radius 𝑟 is fixed and taken to be at least the smallest semi-diagonal
f the element.

2.2. Combination of components

Section 2.1 describes the geometry projection of a single bar. In previous GP techniques used to design with fiber-reinforced
rimitives (cf., [49–51]), the intent was to have structures made of individually manufactured fiber-reinforced primitives that are

subsequently assembled. In that case, the combination of components is done such that at overlapping regions, only one of the
reinforcements of the intersecting bars is selected; in other words, no overlaps of fiber reinforcements were considered. This work,
on the other hand, focuses on continuous fiber reinforcement and, therefore, on overlaps where multiple reinforcements are present.

In the GP method of [49], when considering multiple FRBs, the combined element density is defined as a convex combination
of each component, i.e.,

�̆�eff
𝑒 =

𝑛𝑏
∑

𝑏=1
𝑤𝑏𝑒�̆�

eff
𝑏𝑒 (5)

such that 𝑤𝑏𝑒 ∈ [0, 1] is the weight for the 𝑏th component, and ∑𝑛𝑏
𝑏 𝑤𝑏𝑒 = 1, with 𝑛𝑏 the number of components. These weights

hus denote the fractional contribution of each bar to the penalized element density, analogously to the DMO method [29]. The
GP method employs the softargmax function as an aggregation function to calculate the weights of overlapping components. The
softargmax applies the exponential function to each component density and normalizes these values by dividing by the sum of all
these exponentials, as shown in Appendix A.2. The normalization ensures that the sum of the components’ weights is 1. As the
softargmax parameter 𝛽 tends to infinity, the softargmax function converges to the argmax function.

This means that the highest penalized effective densities for the intersecting components at a point can be identified, which allows
to single out the dominant feature at that point. However, a high value of 𝛽 results in a highly nonlinear aggregation function, which
can cause issues (as discussed in Section 5) when using gradient-based optimizers. Therefore, a finite value of 𝛽 = 100 is typically
used (cf. [49]), making the weights 𝑤𝑏𝑒 approach the discrete one-hot vector that identifies the true maximum. The element elasticity
tensors are subsequently calculated by combining the contributions of all elasticity tensors as

𝑪𝑒 = 𝑪𝑣 +
𝑛𝑏
∑

𝑏=1
𝑤𝑏𝑒�̆�

eff
𝑏𝑒

(

𝑪𝑏 − 𝑪𝑣
)

. (6)

The elasticity tensor interpolation 𝑪𝑒 given by (6) can be used to interpolate between the solid material (bar material 𝑪𝑏) and void
aterial 𝑪𝑣.

3. Geometry projection formulation for variable-stiffness composite laminates

To enable the topology optimization of VSCLs with FRBs, this work proposes a GP technique based on the following novel
ngredients. First, we formulate a material interpolation rule to combine components that accounts for their out-of-plane overlap.
econd, a novel length constraint is introduced by modifying the projected density to penalize bars of a length shorter than a
pecified value 𝓁. Finally, we formulate an elasticity tensor and, subsequently, element-stiffness matrices based on the proposed

material interpolation and on composite laminate theory, that allows for consideration of out-of-plane loads.

3.1. Combination of components in proposed LGP-AM method for VSCL

Using (6) to optimize VSCLs may result in a suboptimal solution. This is because this material interpolation does not correctly
model the stiffness resulting from the overlap of various reinforced bars. This can significantly impact the design and optimization
process for VSCLs, as demonstrated later in Section 5. To circumvent this issue, a straightforward approach is to discard the maximum
function approach (which corresponds to a Boolean union of the bars), and compute instead the element’s elasticity tensor as the
sum of all elasticity tensors:

𝑪𝑒 = 𝑪𝑣 +
𝑛𝑏
∑

𝑏=1
�̆�eff
𝑏𝑒

(

𝑪𝑏 − 𝑪𝑣
)

. (7)

Correspondingly, the combined density for the proposed method is given by

�̆�eff
𝑒 =

𝑛𝑏
∑

𝑏=1
�̆�eff
𝑏𝑒 . (8)

This approach was considered for bars made of isotropic materials in [48] and only for in-plane loading. This work considers bars
ade of an anisotropic material (with the anisotropy endowed by the fiber reinforcement), and it considers out-of-plane loading

n addition to in-plane loading. To account for out-of-plane loading, we consider the bending stiffness 𝑫 of the laminate, which
𝐵 𝑒

5 
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Fig. 3. For 𝓁 = 10—A distribution of length penalty curves are plotted by linearly scaling the steepness parameter, 𝜂, from 0 to 1.

is computed by considering the stacking sequence and it is nonlinear [56] (since the moment area of inertia for bending depends
nonlinearly on the distance of the laminate relative to the bending neutral axis). The method proposed herein, however, does not
account for the stacking sequence. Hence, we assume a uniform contribution of each overlapping feature to the bending stiffness,
which is equivalent to assuming all the plies in the laminate lie at the same distance from the bending axis. This assumption is
consistent with the simple sum material interpolation of (7).

3.2. Minimum length penalization

To ensure the VSCL can be fabricated, it is necessary to prevent components from being too short. To ensure this, we introduce a
constraint on the minimum length of each component. Instead of explicitly introducing this requirement as an additional constraint
function in the optimization problem, we propose a modification of the projected density 𝜌eff

𝑏𝑒 of the 𝑏th bar, which penalizes the
presence of bars with a length less than a specified minimum length 𝓁. This is achieved by introducing a weight 𝑤𝑏 ∈ [0, 1], i.e.,

𝜌eff
𝑏 (𝒙; 𝒛𝑏) = 𝜌𝑏(𝒙; 𝒛𝑏) 𝛼𝑏 𝑤𝑏(𝓁𝑏(𝒙)). (9)

Correspondingly, the penalized density of Eq. (4) becomes

�̆�eff
𝑏 (𝒙; 𝒛𝑏) =

(

𝜌𝑏(𝒙; 𝒛𝑏) 𝛼𝑏 𝑤𝑏(𝓁𝑏(𝒙))
)𝑞 . (10)

The weight 𝑤𝑏 is calculated using the sigmoid function, given by

𝑤𝑏(𝓁𝑏(𝒙)) ∶= 1
2

[

1 + er f
(

𝑘
(

𝓁𝑏 − 𝓁
)

√

2

)]

, (11)

where er f is the error function (see Appendix A.2), and 𝓁𝑏 = ‖𝒙2𝑏 − 𝒙1𝑏‖ ≡ ‖𝒗𝑏‖ is the length of the medial axis vector (see
Appendix A.1). The constant 𝑘 = exp(𝜂), with 𝜂 ∈ [0, 1], defines the steepness of the sigmoid curve, as shown in Fig. 3. When the
length of the bar 𝓁𝑏 is less than the minimum 𝓁, the weight 𝑤𝑏 approaches zero. As with the membership variable, this means the
bar will have no stiffness and it is effectively removed from the design.

3.3. Assumptions on overlapping components

Consider a bar 𝛺𝑏 that overlaps with other bars
{

𝛺𝑖
}

𝑖∈∖{𝑏}. In the proposed method, a bar corresponds to a ply; therefore,
these terms are used interchangeably. The stack of bars forming the overlapping region can be modeled using composite laminate
theories. For manufacturing via CF4, a uniform thickness 𝐻 is assigned to all FRBs in the stack. We consider the composite laminate
formed by the superposition of the bars to have a symmetrical stack up. The symmetry assumption is advantageous as it eliminates
the membrane-bending coupling matrix 𝑫𝑀 𝐵 and minimizes the wrapping of the printed laminate; thus, only 𝑛𝑏 plies (i.e., bars in
the optimization) are modeled.

When considering the position of a ply in the stack, each ply 𝑏 is defined by the planes 𝑧 = ℎ𝑏 and 𝑧 = ℎ𝑏+1, with ℎ𝑏 ≤ 𝑧 ≤ ℎ𝑏+1
nd ℎ −ℎ = 𝐻 . The proposed method, however, simplifies the stacking sequence by disregarding it. Therefore, the effect on the
𝑏+1 𝑏
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out-of-plane bending stiffness is not considered due to the position in the stack. Expressly, we assume ℎ𝑏 = 0 for all plies. While
his assumption introduces some inaccuracy in modeling the out-of-plane stiffness of the laminate, it renders a lower stiffness and,
herefore, leads to a conservative design.

It is assumed the laminate satisfies plane-stress conditions. We also make the assumptions of first-order shear deformation theory
(FSDT) to model the mechanical behavior of VSCLs. Other hypotheses have been considered to model composite laminates, as
iscussed elsewhere [53,57]. With FSDT, classical laminate theory [58] is relaxed by considering that the transverse normal does

not remain perpendicular to the mid-plane (𝑧 = 0) after deformation; this implies the theory assumes a linear variation of the in-plane
displacements through the thickness, which results in constant transverse shear strain. This involves incorporating the transverse
shear strain into the theory, which allows the extension of the elastic displacement in the FSDT to take the following form:

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜓0𝑥(𝑥, 𝑦),
𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜓0𝑦(𝑥, 𝑦),
𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦),

(12)

where 𝑢0, 𝑣0, 𝑤0 correspond to the displacements of the laminate’s mid-plane, and 𝜓0𝑥 and 𝜓0𝑦 the rotations of the normals to the
mid-plane about the 𝑦- and 𝑥-axis, respectively. The proposed method assumes that the continuous displacement field between the
plies satisfies Eq. (12).

3.4. Bar elasticity tensor

The material coordinate system (MCS) of a bar, shown in Fig. 2(a), is denoted by
{

�̂�1𝑏, �̂�2𝑏, �̂�3𝑏
}

, and the laminate coordinate
system (LCS) is denoted by

{

𝒆1, 𝒆2, 𝒆3
}

. It is assumed the fiber reinforcement is aligned with �̂�1𝑏; and �̂�2𝑏 is defined so that it is
perpendicular to �̂�1𝑏, and so that 𝒆3 = �̂�1𝑏 × �̂�2𝑏 corresponds to the global out-of-plane axis, leaving the page in Fig. 2(a). The
omponents of the coordinate transformation matrix between these coordinate systems can be obtained from the direction cosines
𝑏
𝑖𝑗 = 𝒆𝑖 ⋅ �̂�𝑗 𝑏. The components of the elasticity tensor 𝑪𝑏 of bar 𝑏 in LCS are given by

(

𝑪𝑏
)

𝑖𝑗 𝑘𝑙 =
∑

𝑝,𝑞 ,𝑟,𝑠
𝑅𝑏𝑖𝑝𝑅

𝑏
𝑗 𝑞𝑅𝑏𝑘𝑟𝑅𝑏𝑙 𝑠

(

�̂�𝑏
)

𝑝𝑞 𝑟𝑠 , (13)

where �̂�𝑏 is the elasticity tensor in MCS. For plane stress of the laminate, this transformation reduces to
𝑪𝑝
𝑏 = 𝑻 ⊤1 �̂�

𝑝
𝑏𝑻 1 and 𝑪𝑠

𝑏 = 𝑻 ⊤2 �̂�
𝑠
𝑏𝑻 2, (14)

with

𝑻 1 =
⎡

⎢

⎢

⎣

𝑐2 𝑠2 𝑐 𝑠
𝑠2 𝑐2 −𝑐 𝑠

−2𝑐 𝑠 2𝑐 𝑠 𝑐2 − 𝑠2

⎤

⎥

⎥

⎦

, 𝑻 2 =
[

𝑐 −𝑠
𝑠 𝑐

]

, (15)

where 𝑐 = cos 𝜃 , 𝑠 = sin 𝜃, and 𝜃 is the angle between the axes �̂�1 and 𝑥, as shown in Fig. 2(a). The 3 × 3 matrix �̂�𝑝
𝑏 relates the

in-plane strains {𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦} to the stresses {𝜎 , 𝜎𝑦, 𝜏𝑥𝑦} in LCS; similarly, the 2 × 2 matrix �̂�𝑠
𝑏 relates the out-of-plane shear strains

{𝛾𝑥𝑧, 𝛾𝑦𝑧} to the stresses {𝜏𝑥𝑧, 𝜏𝑦𝑧} in LCS.

3.5. Laminate elasticity matrix

Using the material interpolation (7), the effective laminate elasticity tensor is given by

𝑫 = 𝑪𝑣 +
𝑛𝑏
∑

𝑏=1
�̆�eff
𝑏𝑒

(

𝑫0𝑏 − 𝑪𝑣
)

, (16)

where

𝑫0𝑏 =
⎡

⎢

⎢

⎣

𝑫𝑀 𝑏 𝟎3×3 𝟎3×2
𝟎3×3 𝑫𝐵 𝑏 𝟎3×2
𝟎2×3 𝟎2×3 𝑫𝑆 𝑏

⎤

⎥

⎥

⎦

. (17)

In the above, 𝑫𝑀 𝑏, 𝑫𝐵 𝑏, and 𝑫𝑆 𝑏 are the membrane, bending, and shear matrices for bar 𝑏, respectively, given by

𝑫𝑀 𝑏 = (ℎ𝑏+1 − ℎ𝑏)𝑪𝑝
𝑏 (18)

𝑫𝐵 𝑏 = 1
3
[

ℎ3𝑏+1 − ℎ
3
𝑏
]

𝑪𝑝
𝑏 (19)

𝑫𝑆 𝑏 = (ℎ𝑏+1 − ℎ𝑏)𝜅𝑪𝑠
𝑏, (20)

with 𝜅 = 5∕6 the shear correction factor. The off-diagonal blocks of (17) are zero, following the assumption that the laminate has
 symmetric stack up, eliminating the membrane-bending coupling matrix 𝑫𝑀 𝐵 𝑏. Finally, the assumption of uniform ply thickness
𝐻 renders (ℎ − ℎ ) = 𝐻 and the assumption that the effect of stacking on the bending stiffness is disregarded (with ℎ = 0) leads
𝑏+1 𝑏 𝑏

7 



Y. Gandhi et al.

t

W
m

e

Computer Methods in Applied Mechanics and Engineering 435 (2025) 117663 
to (ℎ3𝑏+1 − ℎ3𝑏) = 𝐻3 for all bars. Note that 𝑫0𝑏 is design-dependent because the matrices 𝑪𝑝
𝑏 and 𝑪𝑠

𝑏 for bar 𝑏 in LCS depend on
he orientation 𝜃 of the bar through the transformation in (14), which in turn depends on the endpoints 𝒙1𝑏 and 𝒙2𝑏 of the bar’s

axis.

3.6. Element stiffness matrix and FE assembly

Using the laminate elasticity matrix from the previous section, we now construct the element stiffness matrices for the analysis.
ithout loss of generality, we consider four-node, bilinear, quadrilateral, and plane-stress elements. For brevity, the element stiffness
atrix for the 𝑒th element is parameterized by the master coordinate (𝜉 , 𝜂) from the reference canonical element 𝛺 = [−1, 1] × [−1, 1].

The bar density �̆�eff
𝑏 is evaluated at the element centroid (i.e., (𝜉 , 𝜂) = (0, 0)) and considered uniform within the element. Consequently,

the laminate stiffness matrix is also assumed to be uniform in the element.
The displacements and rotations are interpolated within element 𝑒 as

𝒖𝑒 (𝜉 , 𝜂) =
4
∑

𝑖=1
𝑁𝑖 (𝜉 , 𝜂)𝒂(𝑒)𝑖 , (21)

where 𝒖𝑒 =
[

𝑢0 𝑣0 𝑤0 𝜓𝑥 𝜓𝑦
]⊤ is the field vector, 𝒂(𝑒)𝑖 =

[

𝑢0𝑖 𝑣0𝑖 𝑤0𝑖 𝜓𝑥𝑖 𝜓𝑦𝑖
]⊤, its corresponding local degree of

freedom vector containing displacements and rotations, and 𝑁𝑖(𝜉 , 𝜂) is a bilinear shape function. Eq. (21) can be expressed in matrix
form by defining the shape functions 𝑵(𝜉 , 𝜂) as:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑁1 0 0 0 0 ⋮ ⋮ 𝑁4 0 0 0 0
0 𝑁1 0 0 0 ⋮ ⋯ 0 𝑁4 0 0 0
0 0 𝑁1 0 0 ⋮ ⋮ 0 0 𝑁4 0 0
0 0 0 𝑁1 0 ⋮ ⋯ 0 0 0 𝑁4 0
0 0 0 0 𝑁1 ⋮ ⋮ 0 0 0 0 𝑁4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

The element’s local stiffness matrix 𝒌𝑒 is finally given by

𝒌(𝑒) = ∫𝛺𝑒
𝑩⊤𝑫(𝑒)𝑩 d𝛺 = ∫□

𝑩⊤𝑫(𝑒)𝑩 𝑗 d𝝃 d𝜼 , (22)

where the last integral is conducted on the canonical element (denoted by □) using Gaussian quadrature, and thus 𝑗 is the Jacobian
of the transformation, 𝑫(𝑒) is computed with (17), and the 𝑩 matrix — which relates displacements and rotations to strains and
curvatures, respectively — for the Q4 element is 𝑩 =

[

𝑩1 𝑩2 𝑩3 𝑩4
]

, where for the 𝑖th node

𝑩𝑖 =

⎡

⎢

⎢

⎢

⎣

𝑩𝑚𝑖
𝑩𝑏𝑖
𝑩𝑠𝑖

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 𝑁𝑖
𝜕 𝑥 0 0 0 0

0 𝜕 𝑁𝑖
𝜕 𝑦 0 0 0

𝜕 𝑁𝑖
𝜕 𝑦

𝜕 𝑁𝑖
𝜕 𝑥 0 0 0

0 0 0 − 𝜕 𝑁𝑖
𝜕 𝑥 0

0 0 0 0 − 𝜕 𝑁𝑖
𝜕 𝑦

0 0 0 − 𝜕 𝑁𝑖
𝜕 𝑦 − 𝜕 𝑁𝑖

𝜕 𝑥
0 0 𝜕 𝑁𝑖

𝜕 𝑥 −𝑁𝑖 0

0 0 𝜕 𝑁𝑖
𝜕 𝑦 0 −𝑁𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (23)

Similarly, assuming the absence of body forces, the local force vector is computed as:

𝒇 𝑒 = ∫𝜕 𝛺𝑒
𝑵⊤ �̄� d𝛺 = ∫𝜕□

𝑵⊤ �̄� 𝑗 d𝝃 , (24)

where �̄� is the prescribed traction on the boundary. Note that the local force vector 𝒇 𝑒 is computed on the edges of elements that
intersect the Neumann boundary.

Lastly, the global stiffness matrix and the global force vector are obtained as:

𝑲 =
𝑁

A
𝑒=1

𝒌(𝑒) and 𝑭 =
𝑁

A
𝑒=1

𝒇 (𝑒), respectively, (25)

where, A denotes the standard assembly operator, 𝑁 is the total number of elements in the discretization. The final system of linear
quations that describes equilibrium is then

𝑲 𝑼 = 𝑭 , (26)

where we solve for the global degree of freedom vector 𝑼 containing both displacements and rotations.
8 
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4. Optimization problem and sensitivity analysis

We consider two optimization problems to demonstrate the proposed approach. The first is the compliance minimization problem
subject to a volume fraction, stated as

min{𝒛𝑏} 𝑓 ∶= log(𝑐 + 1)
subject to:

𝑣 ≤ �̄�
𝑲 𝑼 = 𝑭
𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖, 𝑖 = 1, 2,… , 𝑛𝑧,

(27)

where 𝑐 = 𝑼⊤𝑭 is the compliance,
[

𝑧𝑖, ̄𝑧𝑖
]

are lower and upper bounds on the 𝑖th design variable, �̄� is a prescribed upper-limit on
he volume fraction, and 𝑣 is the volume fraction defined as

𝑣 ∶=
∑

𝑒 𝑣
(𝑒)

∑

𝑒
|

|

𝛺(𝑒)|
|

. (28)

The second problem corresponds to the design of a linear compliant mechanism that maximizes the output displacement at a given
oint, for which the objective function of Eq. (27) is redefined as:

min{𝒛𝑏} 𝑢𝑜 ∶= −𝑳𝑇𝑼 , (29)

where 𝑳 is a zero vector except for a unity value at the degree of freedom corresponding to the output port.
In the proposed method, the element volume is calculated as

𝑣(𝑒) ∶= |

|

|

𝛺(𝑒)|
|

|

𝑛𝑏
∑

𝑏=1
𝜌eff
𝑏𝑒 . (30)

Importantly, we use the notation 𝜌eff
𝑏𝑒 to denote the evaluation of the penalized density �̆�eff

𝑏𝑒 of (10) using 𝑞 = 1. As known in geometry
rojection techniques (cf. [48,59]), this is necessary for the penalization of the membership variables to be effective, similar to SIMP
ethods for density-based methods for topology optimization.

We employ various strategies to promote good convergence of the optimization, cf. [48,49]. First, we employ the log-scaled
compliance 𝑓 (𝒛) = log(1 + 𝑐(𝒛)), which damps large oscillations in compliance when the structure becomes disconnected from the
loads or supports. Second, we scale the design variables and impose a uniform move limit 𝑚 on the scaled variables at each iteration
𝐼 as

�̂�𝑖 ∶=
𝑧𝑖 − 𝑧𝑖
�̄�𝑖 − 𝑧𝑖

max
(

0, 𝑧𝐼−1𝑖 − 𝑚
)

≤ 𝑧𝐼𝑖 ≤ min
(

1, 𝑧𝐼−1𝑖 + 𝑚
)

.
(31)

Lastly, a continuation technique (as commonly used in topology optimization techniques, cf. [60]) is applied to slowly increase 𝜂
nd therefore the steepness of the error function of (11)), which ensures the length penalization does not eliminate components at
arly optimization iterations.

Due to the cost of the finite element analysis necessary to compute the compliance for a given design, it is desired to employ
efficient gradient-based nonlinear programming methods to solve problem (27). This requires computation of the design sensitivities
f the objective and constraints in the optimization. The design sensitivity of the penalized effective density of (10) with respect to

a design variable 𝑧𝑖 is given by
𝜕 ̆𝜌eff

𝑏
𝜕 𝑧𝑖

= 𝑞
(

�̆�eff
𝑏
)1−1∕𝑞

[

𝛼𝑏
𝜕 𝜌𝑏
𝜕 𝑧𝑖

𝑤𝑏 + 𝜌𝑏
𝜕 𝛼𝑏
𝜕 𝑧𝑖

𝑤𝑏 + 𝜌𝑏
𝜕 𝑤𝑏
𝜕 𝑧𝑖

𝛼𝑏

]

. (32)

We omit a presentation of the derivatives 𝜕 𝜌𝑏∕𝜕 𝑧𝑖 and 𝜕 𝛼𝑏∕𝜕 𝑧𝑖 for brevity as they are provided in prior works, see for example [50].
The derivatives of the length-penalization weights 𝑤𝑏 with respect to the endpoints of the bar’s axis can be readily obtained as

𝜕 𝑤𝑏
𝜕 𝑧𝑖

=

⎧

⎪

⎨

⎪

⎩

𝜕 𝑤𝑏
𝜕𝓁𝑏

(

𝒙1𝑏 − 𝒙2𝑏
)

∕𝓁𝑏 if 𝑧𝑖 ≡ 𝒙1𝑏,
𝜕 𝑤𝑏
𝜕𝓁𝑏

(

𝒙2𝑏 − 𝒙1𝑏
)

∕𝓁𝑏 if 𝑧𝑖 ≡ 𝒙2𝑏,

0 if 𝑧𝑖 ≡ 𝛼𝑏.

(33)

The term 𝜕 𝑤𝑏∕𝜕𝓁𝑏 can be obtained from (11) as

𝜕 𝑤𝑏
𝜕𝓁𝑏

= 𝑘
√

2𝜋
exp

(

−
𝑘2

(

𝓁𝑏 − 𝓁
)2

2

)

. (34)

Problem (27) is self-adjoint; hence, the sensitivity of the compliance is computed as

𝜕𝑧𝑖 𝑐 = −
∑

𝑒
𝒖⊤

(

𝜕𝑧𝑖𝒌
(𝑒)
)

𝒖. (35)

The derivative of the objective function is 𝜕𝑧𝑖𝑓 = 1∕(1 + 𝜕𝑧𝑖 𝑐). The term 𝜕𝑧𝑖𝒌
(𝑒) is obtained by differentiating (22):

𝜕 𝒌(𝑒) = 𝑩⊤𝜕 𝑫(𝑒)𝑩 d𝛺(𝑒) ; (36)
𝑧𝑖 ∫𝛺(𝑒)
𝑧𝑖
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Table 1
Material properties used for all the examples.

Material 𝐸1 [GPa] 𝐸2 [GPa] 𝑣12 𝐺12 [GPa] 𝐺13 [GPa] 𝐺23 [GPa]

Carbon epoxy AS4/3501-6 113.6 9.650 0.334 6.0 6.0 3.1

and from (16), we obtain

𝜕𝑧𝑖𝑫
(𝑒) =

𝑛𝑏
∑

𝑏=1

[

𝜕 ̆𝜌eff
𝑏𝑒

𝜕 𝑧𝑖
(

𝑫0𝑏 − 𝑪𝑣
)

+ �̆�eff
𝑏𝑒

(

𝜕𝑧𝑖𝑫0𝑏

)

]

. (37)

As noted in Section 3.5, 𝑫0𝑏 depends on the positions of the endpoints of the bar’s axis. The derivative of the transformation in (14)
is straightforward to obtain but omitted here for brevity; the reader is referred to [49] for details.

Similarly, for the compliant mechanism problem (29), the derivative of the output displacement is obtained from Eq. (36) as
𝜕 𝑢𝑜
𝜕 𝑧𝑖

= 𝝀⊤𝜕𝑧𝑖𝒌
(𝑒)𝒖, (38)

where 𝝀 is the solution to the adjoint load problem 𝑲 𝝀 = 𝑳.
The derivative of the volume constraint is simply given by

𝜕𝑧𝑖𝑣 =
1

∑

𝑒
|

|

𝛺(𝑒)|
|

(

∑

𝑒

|

|

|

𝛺(𝑒)|
|

|

𝑛𝑏
∑

𝑏=1

𝜕𝑧𝑖𝜌
eff
𝑏𝑒

𝜕 𝑧𝑖

)

, (39)

where 𝜕𝑧𝑖𝜌
eff
𝑏𝑒 ∕𝜕 𝑧𝑖 can be obtained from (32) with 𝑞 = 1.

5. Examples

The method outlined in this paper is demonstrated with four numerical examples, shown in Fig. 4. All examples consider bars
ade of CCFRP with fiber reinforcement aligned with the bar’s axis. Table 1 lists the corresponding material properties. The first

four examples consider the compliance minimization problem, and the last example corresponds to a compliant mechanism design
roblem.

The following settings are considered for all the examples unless otherwise noted. The method-of-moving-asymptotes (MMA) [61]
is employed for the optimization, with the default parameters described in [62], i.e., 𝑎0 = 1 for the objective function, and
𝑎𝑖 = 0, 𝑐𝑖 = 1000 and 𝑑𝑖 = 1 for every constraint 𝑖 in the optimization. The void material is isotropic with Young’s modulus
𝐸void = 10−3𝐸1 and Poisson’s ratio 𝑣void = 0.3. The radius of the bars in the initial design is the midpoint of the radius bounds.
The initial values of the membership variables are all set to 𝛼 = 0.5. The move limit on the scaled design variables is 𝑚 = 0.02.
Finally, the steepness parameter 𝜂 for the length constraint is increased at each iteration from 0 to 1 with a step of 0.025.

The optimization is stopped based on the satisfaction of any of the three conditions. The first condition is met when the 2-norm
of the change in the design variable vector is less than 0.002. The second criterion is reached when the Karush-Kuhn–Tucker (KKT)
condition norm is less than 0.002. The third criterion is satisfied when the change in the objective function in consecutive iterations
is less than 10−9. Finally, the optimization is stopped at 450 iterations if the foregoing criteria are not satisfied.

The projected densities of the bars in the plots corresponding to the GP method are shown in the same way as in [49], namely,
colors for each orientation are determined by the color wheel shown in Fig. 5. Since, in that method, there are no out-of-plane
ar overlaps, this coloring scheme is useful to identify which reinforcement orientation has been assigned by the optimizer in
egions where bars intersect. This type of distinction is unnecessary for the method proposed here since bars overlap out-of-plane

at intersections. For a similar reason, transparency is used in the color of the bars for the LGP-AM designs to help distinguish
overlapping components. It should be noted that, when comparing the results produced by the proposed method to those of the GP
method, we are specifically referring to the GP method of [49].

5.1. MBB beam

The first example considers a simply supported beam in 3-point bending of dimensions 300 mm × 50 mm. This is a well-known
benchmark in topology optimization for minimal compliance, referred to as the (Messerschmitt–Bölkow–Blohm) MBB beam. The
volume fraction limit is set to 0.5. Since the problem is symmetric, only one-half of the design region is modeled, and symmetry
boundary conditions are used for the analysis, as depicted in Fig. 4. A 1 k N load is applied at the beam’s midpoint. The initial design
consists of 27 bars, and the design variables have the following bounds:
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. (40)

In this particular scenario, in which a single load is applied, it is known that the minimum-compliance structure made of elastic,
heterogeneous orthotropic materials is one for which the load members are aligned with the principal stress directions at each
10 
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Fig. 4. Design region, boundary conditions, and initial design, for example, problems: beam in 3−point in-plane bending (top left); rectangular plate in pure
torsion (middle left); cantilever beam under in- and out-of-plane bending (top right); square membrane in out-of-plane bending (middle right) and single
input–output complaint mechanism.

point in the design [63]. Moreover, as this result also applies to structures made of isotropic materials, we expect the result of the
proposed method to obtain similar designs to well-known Michell-type solutions for the MBB beam.

Table 2 shows the optimal designs obtained with the GP and the proposed method with and without a minimum length constraint.
While both methods produce designs that are reminiscent of well-known Michell-type solutions for the MBB beam, the GP method
design appears to produce a ‘bulkier’ design. This occurs because no overlaps are allowed in the GP method of [49]; therefore, to
increase the stiffness of the beam, the optimizer makes the bars wider. In the LGP-AM method, on the other hand, the optimizer can
increase the stiffness by ‘piling up’ bars in the out-of-plane direction. In other words, while the GP method only increases the stiffness
by adding material in the plane, the LGP-AM method can add material in and out of the plane. For the same reason, the LGP-AM
designs appear more slender, although all designs have the same amount of material. Also, for the same reason, the LGP-AM designs
are stiffer because the overlap of bars (particularly along the top and bottom edges of the beam) can render a larger second-moment
area of inertia and, consequently, higher bending stiffness for the same amount of material. That is, the increase in width of bars
made by the GP method in bars along, e.g., the bottom edge of the beam is akin to increasing the thickness of the flange of an
I-beam, whereas the overlapping of bars in the LGP-AM method is akin to increasing the width of the flange (cf. [48]). For an
equal-volume increase, the latter will render a higher bending stiffness. The LGP-AM design with no minimum length constraint
11 
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Fig. 5. Color wheel used for combined density plots corresponding to designs obtained with the GP method. The color indicates the orientation of the primitive.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Objective (left) and volume constraint (right) histories for the MBB beam designs of Table 2 corresponding to the GP design (𝑓𝐺 𝑃 and 𝑣𝐺 𝑃 ), and the
LGP-AM designs with no minimum length constraint (𝑓0 and 𝑣0) and with a 6 mm minimum length constraint (𝑓6 and 𝑣6).

(i.e., with 𝓁 = 0 mm) renders a short bar with 𝓁 = 3.4734 mm (highlighted in Table 2 with a thicker boundary). However, the design
attained with the minimum length constraint 𝓁 = 6 mm does not produce short bars. The plot in Fig. 6 shows that the optimization
process exhibits a typical behavior for compliance minimization, namely with a significant decrease in the first few iterations,
ollowed by smaller adjustments to the design variables in subsequent iterations. In the case of LGP-AM with a length constraint,

some jumps occur when features with lengths below 𝓁 are removed, occasionally resulting in a disconnected structure with increased
ompliance. A pronounced peak indicates the removal of components near the load application or disconnected structure, while less
ntense peaks correspond to the removal of bars for which the structure remains connected. Despite the occurrence of these jumps
uring optimization, the LGP-AM converges smoothly in the later stages, demonstrating the method’s effectiveness. It is important

to note that, as discussed in [47], feature-mapping techniques like the GP method are more dependent on the initial design than,
.g., density-based and level-set techniques. Nevertheless, as shown by the designs in Table 2, the optimizer has no problem finding

good designs that resemble well-known optimal solutions from the arbitrarily selected initial designs.

5.2. Rectangular plate under torsion

The second example considers a rectangular plate of dimensions 350 mm × 50 mm under out-of-plane torsion, as depicted in Fig. 4.
Using anti-symmetry conditions and assuming a symmetric design, the FE analysis and the optimization are performed on half of
the plate. The design region is discretized using 175 × 50 bilinear, quadrilateral elements. The midpoint of the left-hand side edge
is fixed to restrict rigid motion. Concentrated, out-of-plane loads are applied at the right edge’s vertices, producing an equivalent
12 
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Table 2
Optimal designs and combined density for the MBB beam. The color of the bars for the optimal designs in the third column corresponds to their
penalized membership variable value 𝛼𝑞𝑏 , and the bars are plotted with transparency to facilitate the visualization of all bars. In the last column,
the density plots for the GP (top row) and LGP-AM (second and third row) methods correspond to the combined densities of Eqs. (5) and (8),
respectively.

torque of 50 k N mm. Away from the point of application of the loads, by Saint-Venant’s principle, the plate is under pure torsion.
The initial design consists of 29 bars (see Fig. 4), and the bounds imposed on the design variables are as follows:
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. (41)

We consider four cases for this example: two volume fraction limits of �̄� = 0.4 and �̄� = 0.5, each without a minimum length
constraint and with a length constraint 𝓁 = 6 mm. Table 3 shows the optimization result with the proposed LGP-AM and GP
methods. In all the LGP-AM cases, the optimal designs generally exhibit bars at angles of ≈ ±45◦ relative to the plate axes,
with bar intersections located along the plate axes. This is expected since the plate is subjected to torsion, which leads to most
of the plate being under pure shear, and consequently, the maximum shear stresses occur at ±45◦. Consequently, and since the
reinforcement of the bars is along the bar’s axis, we expect the bars to be aligned with these directions to minimize compliance.
Also, the pure-torsion state means the in-plane (𝐷𝑀33 and 𝐷𝐵33) and out-of-plane torsional stiffness 𝐷𝑆 components of the laminate
are the main contributors to minimizing the plate’s compliance. The first row of Table 3 shows the design obtained for �̄� = 0.4
with no minimum length constraint. This design exhibits some short bars that cannot be manufactured and some disconnected bars.
Also, the optimization reaches the maximum number of iterations, as shown in Fig. 7. When the length constraint is introduced,
as shown in the second row of Table 3, the design no longer exhibits short bars and is fully connected. The optimization exhibits
better convergence (it satisfies the stopping criteria in 350 iterations, as shown in Fig. 7), and the compliance is noticeably lower
than in the previous case, likely due to the disconnected features in the design without length constraint. The third and fourth rows
of Table 3 correspond to the designs with �̄� = 0.5 and with 𝓁 = 0 mm and 𝓁 = 6 mm, respectively. The topology of the designs
with �̄� = 0.5 and �̄� = 0.4 is similar, however the former has more short bars, primarily located on the overlaps. The introduction
of the length constraint for the design with �̄� = 0.5 eliminates the short bars and, interestingly, produces a design with a similar
compliance value to the one with no length constraint. This means the length constraint in this example does not impose a penalty
on compliance and leads the optimization to a better design in terms of manufacturability. Moreover, when comparing the LGP-AM
designs with the GP design, it is observed that the GP method converges to a suboptimal design. Unlike the LGP-AM method, in
which overlaps can have reinforcement in multiple directions (in the case of this example, ±45◦), the GP method enforces a single
reinforcement orientation at every point in the structure via the softargmax maximum approximation. It is possible that this leads
the optimizer to converge to a poor local minimum in the GP method. This example demonstrates that the proposed LGP-AM method
is better suited than the GP method to design VSCLs.

Finally, we consider an optimized design with a volume fraction of 40% and a minimum length constraint of 6 mm obtained
with the LGP-AM method. This design can be seamlessly printed using the CF4 process from 9tlabs [6] . Fig. 8 shows a solid-model
interpretation of the symmetric optimized design created using CAD software (SolidWorks® 2024, Dassault Systèmes). The solid
model is then exported as a stereolithography file (STL) and imported into the 9tlabs’ slicing software, Fibrify®, to create fiber
trajectories using a ‘‘line follower’’ fill type.
13 



Y. Gandhi et al. Computer Methods in Applied Mechanics and Engineering 435 (2025) 117663 
Table 3
Optimal designs and combined density for a plate under out-of-plane torsion load. Rows 1–4: LGP-AM designs. Last row: GP design.

Fig. 7. Objective (left) and volume constraint (right) histories for the designs shown in Table 3 correspond to the LGP-AM designs. The subscripts and superscripts
in the curve labels indicate the minimum length constraint and volume fraction limits, respectively.

5.3. Square plate under out-of-plane point load

The third example considers a fixed square plate of dimensions of 150 mm × 150 mm under an out-of-plane concentrated load
of 50 k N applied at the center of the square plate, as shown in Fig. 4. The design region is discretized using 150 × 150 bilinear,
quadrilateral elements. Although the analysis problem has two planes of symmetry, we consider the entire design region to determine
the extent to which the optimization produces a symmetric design. The design is initialized with 24 bars, and the bounds imposed
on the design variables are as follows:
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(42)

The expected optimal solution for this problem consists of a cross shape connected to the midpoints of the sides of the design
region, as has been demonstrated both for isotropic (Pedersen) and short fiber-reinforced [65] materials. The optimization is
performed with the proposed LGP-AM method with minimum length constraints of 𝓁 = 0 mm and 𝓁 = 12 mm.

Table 4 shows the designs with and without the minimum length constraint. As expected, the optimization produces a cross-
shaped design. However, the design is slightly asymmetric. This is not unexpected since it is known that the more restrictive design
representation imposed by the bars, which employs far fewer variables than density-based and level-set methods, may lead to an
optimal design that is asymmetric. This is consistent with similar findings for topology optimization of truss structures. To understand
why this occurs, consider a symmetric design whose volume fraction is slightly below or above the volume fraction constraint and
14 
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Fig. 8. The first row displays the bars’ skeleton (left) of the optimized design (2nd row of Table 3), while the updated skeleton (right) is obtained by modifying
the bars’ endpoints. The second row depicts two CFFF trajectories obtained by modifying the bars’ radii, ensuring fiber continuity in each layer while retaining the
intersecting fiber trajectories in the design. The last row illustrates a symmetric solid-model interpretation (left) of the optimized design, while CFFF trajectories
are created within Fibrify® on the right.

whose bars attain the upper bound on the radius. In the former case, since compliance is monotonic with volume, adding material
will always decrease the compliance. However, since the bars cannot be made wider without violating the upper bound on the radius,
a better design will be obtained by lengthening one or more bars, which will lead to an asymmetric design. In the latter case, the
optimizer will shorten one or more bars to satisfy the volume constraint, again leading to an asymmetric design. It should be noted
that this asymmetry is purely a result of the more restrictive design representation and not of the technique used to perform the
analysis. The reader is referred to the discussion regarding symmetry in feature mapping methods in Wein et al. and the references
therein.

It can also be observed that the optimization overlaps several bars around the point of load application, which is also expected.

5.4. Rectangular plate under out-of-plane torsion and in-plane shear load cases

The fourth example considers a rectangular plate of dimensions 160 mm × 80 mm that is fixed on the left edge and subjected to
two loads applied on the right edge and corresponding to two separate load cases. The design region is discretized using 160 × 80
bilinear, quadrilateral elements. The first load case consists of concentrated out-of-plane loads applied at the vertices of the right
edge, resulting in an equivalent torque of 50 k N mm; the second load case corresponds to a downward load of 1 k N applied to the
bottom right vertex. The boundary conditions and load cases are shown in Fig. 4. The initial design comprises 41 bars, and the
design variables are subject to the following bounds:
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. (43)

In this example, we define the objective compliance function for the two load cases as the sum of the compliance for each load case,
i.e., 𝑐 ∶= ∑

𝑐𝑖, and the objective function is the same as before.
When printing a part using CF4, commonly imposed constraints on the fiber filament deposition include, among others, the

minimum width of the reinforced features, the smallest reinforced area in each feature, and the minimum fiber length. The proposed
method can readily accommodate these geometric constraints by imposing lower bounds on the bar’s radius and length and,
subsequently, all of the aforementioned quantities. While it is possible to impose a separate constraint in the optimization for the
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Table 4
Optimal designs and combined density for a square plate under out-of-plane point load.

area of each bar, here we adopt the simpler approach that the lower bounds on the radius and the length of the bar satisfy the
minimum area requirement. For this example, three different minimum length constraints 𝓁 = 0 mm, 5 mm and 8 mm are imposed,
with a fixed volume fraction limit �̄� = 0.4. The minimum reinforced area requirement corresponding to the length constraint and
the lower bound on 𝑟𝑏 is 𝐴min = 2𝑟𝑏𝓁 + 𝜋 𝑟2𝑏 . The foregoing values of the length constraint and the lower bound on radius listed in
Eq. (43) are 0 mm2, 32.56 mm2 and 44.56 mm2, respectively.

The optimization results for this example are shown in Table 5. The top row shows the LGP-AM design with no minimum length
constraint, producing a design with an approximately symmetric topology and, as expected, several short bars. Note, however, that
the design need not be symmetric because the second load case is not symmetric. The second and third rows of Table 5 correspond
to the designs with 𝓁 = 5 mm and 8 mm, respectively, which effectively eliminate short bars.

It should be noted that our numerical experiments indicate that the initial design has to be chosen so that all the bars satisfy
the minimum length constraint. Otherwise, the optimizer will eliminate all bars in the first iterations of the optimization, leading
to divergence.

5.5. Displacement inverter compliant mechanism

The last example corresponds to a displacement inverter design problem with a single input–output port. An input displacement
𝑢𝑖𝑛 is prescribed at the input port modeled by a spring with stiffness 𝑘𝑖𝑛 = 0.1 k N∕mm. The prescribed input displacement in turn
produces an output displacement 𝑢𝑜 at the output port, where again a spring with stiffness 𝑘𝑜 = 0.1 k N∕mm is used to simulate the
reaction force from the workpiece.

A fixed design domain of dimensions 80 mm × 80 mm and the boundary conditions of the displacement inverter problem are shown
in Fig. 4. The corners of the left-hand side edge are fixed, and an input displacement of 𝑢𝑖𝑛 = 1 mm is prescribed at the input port
located at the midpoint of the left-hand side boundary; the output port is located at the midpoint of the right-hand side boundary
of the design domain. Since the problem is symmetric, only the bottom half of the design region is optimized, and thus, symmetry
boundary conditions are used for the analysis. The design region is discretized using 80 × 40 bilinear quadrilateral elements. The
volume fraction is set to 30%. The initial design consists of 22 bars, and the bounds imposed on the design variables are
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Table 5
Optimal designs and combined density for the multi-load example.

Fig. 9. Objective (left) and volume constraint (right) histories for the designs shown in Table 6 correspond to the LGP-AM designs.

Table 6 shows the optimal designs obtained with and without a minimum length constraint with the proposed method. Both
optimizations produce designs similar to well-known solutions obtained using the density-based method. The design with no
minimum length constraint (i.e., 𝓁 = 0 mm) renders short bars, and the design obtained with the minimum length constraint
𝓁 = 5 mm does not produce short bars, as expected, again demonstrating the effectiveness of the length constraint. Fig. 9 shows that
the optimization reaches the maximum number of iterations for the optimization without a length constraint, while significantly
fewer iterations are needed to converge for the optimization with a minimum length constraint. This example illustrates that the
minimum length constraint does not hamper the convergence behavior of the method when extended to consider other problems.

6. Conclusions

The numerical experiments presented demonstrate the effectiveness of the proposed LGP-AM for the topology optimization of
VSCLs made of FRBs. The proposed computational technique is effective in its ability to produce competitive designs for minimum-
compliance and linear compliant mechanism problems. The objective function histories indicate the proposed method converges
smoothly, and it satisfies the convergence criteria in a number of iterations that are commensurate with that of other geometry
projection techniques and density-based methods. The computational cost of the proposed method is also similar to that of other
geometry projection techniques and density-based methods since the cost of the geometry projection is negligible compared to
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Table 6
Optimal designs and combined density for a displacement inverter problem.

the cost of the finite element analyses, as usual in topology optimization techniques. The robustness of the proposed method is
demonstrated by solving several design problems with in-plane and/or out-of-plane loading conditions for different initial designs
and arbitrary design domains, which consistently produced optimized designs that satisfied minimum-length constraints for the
CF4 process. The examples demonstrated that the proposed minimum length constraint proposed in this work, which is based on
penalization techniques and does not introduce additional constraints in the optimization problem, is effective and does not hamper
the optimization convergence.

From a manufacturing point of view, the designs obtained with the proposed method are amenable to CF4 manufacturing
techniques. Nevertheless, the designs produced by our method may require additional post-processing steps to reduce support
structures; thus, an effective fiber path planning strategy (e.g., [66]) would be beneficial. Additionally, the proposed method is
limited to a single-layer approach that does not consider the stacking sequence and thus underestimates the out-of-plane bending
stiffness. Therefore, it is important to incorporate the stacking sequence in the optimization; this development will be addressed in
future work.
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Appendix

A.1. Distance function

The distance to the medial segment from 𝒙 is given by
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In these expressions, 𝑷 ⟂
𝑏 and 𝑷 ∥

𝑏 denote the perpendicular and parallel projectors to the medial axis vector 𝒗𝑏 of bar 𝑏, respectively,
and ⊗ denotes the tensor product.

A.2. Smooth functions

The regularized Heaviside and softargmax functions used in the formulation and their sensitivities are given by:
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The error function, often denoted by er f , is defined as
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