THE EFFECT OF BIOPHILIC GLARE CONTROL ON OCCUPANT PERCEPTION:

A laboratory experiment

Eleni Mousteri 04/07/2024

Supervisors: Alessandra Luna Navarro | Eleonora Brembilla Advisory board: Kynthia Chamilothori Company involved: VideowindoW

LITERATURE REVIEW

EXPERIMENTAL DESIGN

RESULTS & CONCLUSIONS

FAÇADE CELL

DAYLIGHTING

SHADING SYSTEMS & CHALLENGES

FACADES AND OCCUPANT INTERACTION

VIDEOWINDOW

BIOPHILIA CONCEPT & RELATED THEORIES

BIOPHILIC DESIGN & BIOPHILIC EXPERIENCE

	Direct experience of nature	Indirect experience of nature	Experience of space & place
Building level	Antoni Gaudi, La Sagrada Familia	Santiago Calatrava, Oriente Station	Frank Lloyd Wright, Falling water
	Antoni Gaudi, La Sagrada Parnina	Santiago Calatrava, Oriente Station	Frank Lloyd Wright, Failing water
Facade component	Stefano Boeri, Bosco Verticale	Toyo Yto, Suites Avenue	Wed Kahn, Brisbane Airport

BIOPHILIC CHARACTERIZATION

Direct experience

Indirect experience

LOCATION-GV

GV – Southeast orientation (google maps)

Dedicated part of the facade

View from the inside

BUILD-UP

CONTROL

* dynamic{}	camera_offset 0.5	Adjustable parameters
	camera_speed 1	
	* camera_template FrontCloseup 🗸	• Content
	camera_zoom 0.5	• Size
	growth_speed 1	
	shadow_lightness 0.4	Growth speed
	wind_strength 0.5	 Contrast
graphics_quali	ty VeryHigh ✓	• Wind - motion
tree_seed	139278	
* tree_type	Oak 🗸	Rotation
		► + Dimming effect

BIOPHILIC ACTUATION SYSTEM

Outdoor light sensor

Collection of outdoor data in lux

(0-100.000 lux)

Supporting components

Pass the value to the system & Modify the content

Algorithm

Reach a desired level of light transmittance & generate of the video

Facade

Physical Representation of the pattern A novel shading product that controls façade transparency has emerged, which can generate a variety of biophilic patterns and movements.

However, the **impact** of this technology on discomfort **glare**, outside **view perception**, and **visual satisfaction**, remains **uncertain**.

Controlling this technology properly might have a positive impact on occupants' well-being.

RESEARCH QUESTION

Does integrating **biophilic patterns** on building facades influence **occupants' perception** compared to nonnatural patterns or clear conditions?

Background questions

- > What is the evidence of the impact of biophilic design and patterns on occupants?
- What are the factors that affect discomfort glare?
- > What are the challenges of automation systems according to occupant perception?

Sub-questions

- Does the pattern affect occupants' glare sensation?
- > Does the pattern affect visual comfort and daylight satisfaction?
- Does the pattern affect satisfaction with the outdoor view?
- > Does the pattern itself affect visual satisfaction in terms of aesthetics?
- > Which pattern is most preferred by occupants based on their overall satisfaction and perceived connection with nature?

APPROACH & METHODOLOGY 😴

Natural Pattern (window)

No significant differences in visual comfort, visual interest, view satisfaction

Natural Content (window view) • ---->

Obstruction?

Real environment

EVIDENCE ON BIOPHILIC DESIGN ON OCCUPANTS

GLARE FACTORS

Observer

 \bigcirc

Fatigue

Influence factor scale

Almost certain

More likely

Somewhat likely \bigcirc

inconclusive Almost certainly null ()

EVIDENCE ON FAÇADE AUTOMATION & CONTROL

- Lack of understanding of user <u>individual</u> requirements on daylight, view
- Lack of understanding of the <u>impact of</u> control strategies on users
- Can be considered <u>disruptive</u>

<u>Aim</u>

Compare the effect of (static) biophilic patterns on building façade with non-natural patterns and homogeneous-clear conditions on occupant perception.

<u>Methodology</u>

Collect:

- Quantitative data: environmental measurements through equipment
- <u>Qualitative data</u>: user perception through questionnaires

<u>Through an experiment</u> at the Nonohouse building at the Green Village

ROOM LAYOUT - PARTITIONS

ARTIFICIAL LIGHTING & CURTAIN DESIGN

EQUIPMENT AND SET-UP

Equipment legend:

1. Canon EOS 70D camera 2. Konica Minolta illuminance meter 3. Li-cor illuminance meter 4. Li-cor illuminance meter 5. Hobo 6. Hobo 7. Workstation 8. Desk chair 9. Subject's head 10. Mouse 11. Monitor 12. Laptop connected to monitor 13. Alpha-log

EQUIPMENT AND SET-UP

- 1. Canon EOS 70D camera
- 2. Konica Minolta illuminance meter
- 3. Li-cor illuminance meter
- 4. Li-cor illuminance meter
- 5. Hobo
- 6. Hobo
- 7. Workstation desk

TEST SESSION UNDER DIRECT SUN

STATIC BIOPHILIC PATTERN

SUN POSITION IN THE FAÇADE GRID TOOL

BIOPHILIC PATTERN SELECTION

Better branch placement – proportion - uniformity

20 variations checked in the grid

OPTIONS FOR NON-BIOPHILIC PATTERN?

CREATION OF COMPARABLE STIMULI

Use of python script to calculate the average 'transparency' = 'shading' = 53%

(considering 100% = total white)

Histogram of Grey Shades (transparency level) for Striped pattern (Excluding white-transparent)

To create the striped pattern & the nopattern with the same average 'shading'

A. Tree pattern

C. No pattern
3 SELECTED STIMULI

C. No pattern

PARTICIPANT TASKS

QUESTIONNAIRE

Variables	Questions	Scale
(Q1) Glare perception	'At present, the level of glare I feel is: '	4-point scale (imperceptible, noticeable, uncomfortable, intolerable)
(Q2) Daylight satisfaction	'I am satisfied with the amount of daylight entering the room.'	
(Q3) Color of daylight satisfaction	'I am satisfied with the color of daylight through the window.'	
(Q4) Visual comfort	'I find the visual environment of the office comfortable for working.'	5-point Likert scale (strongly disagree, somewhat disagree, neither agree nor disagree, somewhat agree, strongly agree)
(Q5) Satisfaction with the view out	'I am satisfied with the view through the window.'	
(Q6) Acceptance of obstruction of view	'I don't find the pattern/dimming effect on the glazing to be an obstruction to the outdoor view.'	
(Q7) Pattern aesthetics	'I like the pattern/dimming effect on the glazing in terms of aesthetics.'	
(Q8) Sunlight pattern aesthetics	'I find the sunlight patterns created by the pattern/dimming on the glazing to be visually interesting.'	
(Q9) Room temperature feeling	'How do you feel in the room at the moment?'	7-point ASHRAE thermal sensation scale
(Q10) Psychological and emotional state	'Which of the following describes best your psychological or emotional state when exposed to the current scenario?	Sense of calm and relaxation, reduction of stress, mental fatigue recovery, improved productivity, fascination, other

44 PARTICIPANTS

General characteristics

- 36 males, 8 females ٠
- Age range: 22-39 y.o. ٠
- Wide range of cultural background ٠

Vision characteristics

- Optical correction: glasses (n=16), contact lenses (n=5), none (n=23)٠
- Contrast sensitivity: yes (n=13), unsure (n=11), no (n=20)٠
- Color blindness: none ٠

Age

Count

Experiment at Green Village

Thank you for your interest in participating in the experiment on human-window interaction. The experiment is a part of the research project at TU Delft University led by Eleni Mousteri under the supervision of Alessandra Luna Navarro and Eleonora Brembilla,

We are looking for participants to spend

Present state

Experience of space

INTRODUCTION	INTRODUCTION	LITERATURE REVIEW	EXPERIMENTAL DESIGN	RESULTS & CONCLUSIONS	
--------------	--------------	----------------------	------------------------	-----------------------	--

SKY CONDITION CLASSIFICATION

DGP & GLARE PERCEPTION

Linear Mixed Models Analysis (significant results)

•

Window scenario Variable Window scenario DGP Window scenario* DGP **Pairwise comparisons** p = .002 p = .011Glare perception 686. = q ******200. = q Tree vs Stripes Tree vs No-pattern p = .0611.0 Stripes vs No-pattern p = .637Meas. 0.9 (V) Juli Votes 0.8 0 22 **Significance** "At present, the level of glare I feel is:" 0.7 p<.05* 8% intolerable ** p<.01** 0.6 4 0 DGP p<.001*** 0.5 glare response vote 3% uncomfortable 3 0.4 7% noticeable 0.35 82% imperceptible 0.3 Х 2 \mathbf{x} X × 0.2 4=intolerable Х 3=uncomfortable 0.1 2=noticeable 1 1=imperceptible 0.0 Tree Stripes No-pattern No-pattern Tree Stripes 51 Window scenario Window scenario

POTENTIAL GLARE FACTORS

RESPONSES FROM QUESTIONNAIRES

DAYLIGHT AND VISUAL COMFORT

VIEW SATISFACTION & OBSTRUCTION

VIEW SATISFACTION & OBSTRUCTION

the view out

obstruction of view

Window congrig

	WINDOW SCENUIO
atisfaction with the view out	p = .002
cceptance of obstruction of view	p < .001

View satisfaction p = .198 p = .198 p = .001 ***

Pairwise comparisons	Acceptance of obstruction
Tree vs Stripes	p = .034 *
Tree vs No-pattern	p = .105
Stripes vs No-pattern	p <0.001***

Significance p<.05* p<.01** p<.001***

56

VIEW RATES UNDER CLEAR & PATTERN SCENARIOS

• Paired-sample t-tests

Condition	Mean satisfaction
Clear view	3.48
Tree pattern	3.39
Striped pattern	3.00
No-pattern	3.77

Comparison	p values	
Clear view vs. Tree	0.585	
Clear view vs. Stripes	0.031*	
Clear view vs. No-pattern	0.102	

PATTERN & SUNLIGHT PATTERN AESTHETICS

58

PATTERN & SUNLIGHT PATTERN AESTHETICS

aesthetics Sunlight patte

PSYCHOLOGICAL & EMOTIONAL STATE

PATTERN PREFERENCE & NATURAL CONNECTION

COMMENTS

'Irregular and organic features that enable natural connection'

'Natural variation of light and shadows'

'Natural - aesthetic – attractive'

'Calm, relaxing, cozy atmosphere

'Spacious feeling, mimicking the outdoor space'

'Resolution and blurry effects'

'Distraction for office activity'

'Practical appeal, minimize distractions' 'Sense of order, better concentration and focus'

'Familiarity with conventional window blinds'

'Uninviting space and coldness'

'Too geometric and artificial'

'Uncomfortable and obstructive'

'More sunlight in the room' 'Inviting and comfortable space' 'Unobstructed view outside'

'More glare situations'

'Light intensity'

CONCLUSIONS

Main question

Does integrating **biophilic patterns** on building facades influence **occupants' perception** compared to non-natural patterns or clear conditions?

- Glare perception
- Satisfaction with the view out
- Acceptance of obstruction of view _____
- Pattern aesthetics
- Sunlight pattern aesthetics

- Visual comfort <
- Daylight satisfaction

- Preference
- Association with nature

LIMITATIONS & FURTHER RESEARCH

PATTERN DESIGN

Denser patterns for glare protection

Patterns with inverted transparency for more access to the view outside

Distinctive patterns for minimum glare maintaining the biophilic characteristics

PATTERN DESIGN & POTENTIAL ON VIEW

Cover an unwanted view

Maintain a natural view

Add biophilic value

APPLICATION & CHALLENGES

APPLICATION & CHALLENGES

BRIDGING AUTOMATION & PERSONAL CONTROL

• Automated system

Occupancy detector

Photosensors for lighting data

Sun ray tracing

Zonal control for independent adjustments in the problematic areas

• User-friendly interface for personal control

THANK YOU!