
Computer Engineering
Mekelweg 4,
2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2011

MSc THESIS

A flexible high level modelling methodology for
power and energy consumption

Omar Esli Jimenez Villarreal

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-31

With the increasing complexity of current embedded applications, and the
mobility required in embedded devices, new approaches are being proposed
to optimize the power and the energy consumed by an application, at higher
levels of abstraction levels and in earlier stages in a design flow. However,
one essential part of a structured and guided optimization process, is the
early prediction of the power and energy consumption using only the avail-
able information at early design stages. These predictions are used as
function costs in optimization algorithms to prune the design space ex-
ploration in different design stages. In this thesis we aim to improve the
partitioning process of the Delft Workbench design flow, for this purpose,
we propose a modelling methodology that can generate power and energy
models. The models can provide quantitative data that can be used to
guide the decisions made in the partitioning process. The partitioning pro-
cess in the DWB uses as level of abstraction a function described in a high
level language (HLL), such as C-code, and targets heterogeneous architec-
tures. Therefore, the methodology we propose can generate models that
predict the power and energy consumed by a kernel when is running in a
processing element of heterogeneous architectures, such as a general pur-
pose processor (GPP) or an PPGA. For the validation of this methodology
we designed a set of experiment that create models of power and energy

consumption for a StrongARM processor (using the Sim-Panalyzer simulator), and a Virtex 5 FPGA (using the xpwr
tool of Xilinx). A maximum absolute rooted mean squared error (RMSE) of 60mW was obtained for the power
models, and a maximum absolute RMSE of 8.69×10−6 was obtained for the energy models.





A flexible high level modelling methodology for

power and energy consumption
Generation of prediction models of energy and power

consumption that require a HLL description as input

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Omar Esli Jimenez Villarreal

born in Oaxaca, Mexico

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology





A flexible high level modelling methodology for

power and energy consumption

by Omar Esli Jimenez Villarreal

Abstract

W
ith the increasing complexity of current embedded applications, and the mobility required

in embedded devices, new approaches are being proposed to optimize the power and the

energy consumed by an application, at higher levels of abstraction levels and in earlier

stages in a design flow. However, one essential part of a structured and guided optimization

process, is the early prediction of the power and energy consumption using only the available

information at early design stages. These predictions are used as function costs in optimization

algorithms to prune the design space exploration in different design stages. In this thesis we

aim to improve the partitioning process of the Delft Workbench design flow, for this purpose,

we propose a modelling methodology that can generate power and energy models. The models

can provide quantitative data that can be used to guide the decisions made in the partitioning

process. The partitioning process in the DWB uses as level of abstraction a function described in

a high level language (HLL), such as C-code, and targets heterogeneous architectures. Therefore,

the methodology we propose can generate models that predict the power and energy consumed by

a kernel when is running in a processing element of heterogeneous architectures, such as a general

purpose processor (GPP) or an PPGA. For the validation of this methodology we designed a set

of experiment that create models of power and energy consumption for a StrongARM processor

(using the Sim-Panalyzer simulator), and a Virtex 5 FPGA (using the xpwr tool of Xilinx). A

maximum absolute rooted mean squared error (RMSE) of 60mW was obtained for the power

models, and a maximum absolute RMSE of 8.69×10−6 was obtained for the energy models.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-31

Committee Members :

Advisor: K.L.M. Bertels, CE, TU Delft

Chairperson: K.L.M. Bertels, CE, TU Delft

Member: K.L.M. Bertels, CE, TU Delft

Member: G.K. Kuzmanov, CE, TU Delft

Member: Dr.ir. T.G.R.M. van Leuken, ME, TUDelft

i



ii



Esta tésis la dedico con todo mi cariño a mi familia, especialmente a mis padres,
hermanos y mi sobrino. Gracias al cariño, apoyo y libertad que siempre me han brindado,
tengo el orgullo y satisfaccin de terminar mi maestŕıa en Embedded Systems en TUDelft
con este trabajo de investigación. También dedico este trabajo a mis supervisores de
tésis y a todos mis amigos, en México y Delft, y les agradezco por su amistad y apoyo!

I dedicate this work to my family, especially to my parents, my sister, my brother, and
my nephew. Thanks for the love, support and freedom you have given me, I’m proud
and satisfied now that I finish my MSc in Embedded Systems in TUDelft. I also dedicate
this work to my thesis supervisors, and to all my friends (in México and Delft).

iii



iv



Contents

List of Figures viii

List of Tables ix

Acknowledgements xi

1 Introduction 1
1.1 Need of a power-aware design flow . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Scope of this research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Research 7
2.1 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 FPGA-micro architecture Power Modeling . . . . . . . . . . . . . . 8
2.1.2 Low-level Power Modeling . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 High-level abstraction Power Modeling . . . . . . . . . . . . . . . . 11
2.1.4 Summary of Power Models for FPGAs . . . . . . . . . . . . . . . . 14

2.2 Power estimation in General Purpose Processors (GPP) . . . . . . . . . . 14
2.2.1 Summary of Power Models for GPP . . . . . . . . . . . . . . . . . 20

2.3 Research Context and Background . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Delft Workbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 The MOLEN Polymorphic Processor . . . . . . . . . . . . . . . . . 23
2.3.3 QUAD - A memory access pattern analyzer . . . . . . . . . . . . . 25
2.3.4 High Level Quantitative Hardware Prediction . . . . . . . . . . . . 26

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Experimental Methodology and Setup 33
3.1 Modelling methodology: rationale and description . . . . . . . . . . . . . 34

3.1.1 Kernel Isolation Process . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.1.1 The ARGS tool . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2.1 Static Metrics . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2.2 Dynamic Metrics . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Physical Measurements . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1.1 System Monitor (SysMon) technichal characteristics . . . 48
3.2.1.2 Experiment PowerPC.Virtex5.GPP.A.1 description . . . . 49
3.2.1.3 AUT description . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Simulation framework . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



3.2.2.1 Description of the automated experimental . . . . . . . . 54
3.2.2.2 Experiment the VIRTEX5.Xpwr.FPGA.B.2 . . . . . . . . 56
3.2.2.3 Experiment StrongARM.SimPanalyzer.GPP.B.1 . . . . . 57

4 Results and Analysis. 59
4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Experiment PowerPC.Virtex5.GPP.A.1 . . . . . . . . . . . . . . . 60
4.1.1.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.2 Experiment StrongARM.SimPanalyzer.GPP.B.1 . . . . . . . . . . 65
4.1.2.1 Modelling results . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.3 Experiment VIRTEX5.Xpwr.FPGA.B.2 . . . . . . . . . . . . . . . 78
4.1.3.1 Modelling results . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Conclusions and future research. 87
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Glossary 93

Bibliography 98

6 Appendix 99
6.1 Software Complexity Metrics List . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Configuration parameters of Sim-Panalyzer . . . . . . . . . . . . . . . . . 101
6.3 Energy and Power relationship . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 The kernel library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.5 Experiment StrongARM.SimPanalyzer.GPP.B.1 - energy relationship . . . 107
6.6 Experiment StrongARM.SimPanalyzer.GPP.B.1 - Power relationship . . . 113
6.7 Models generated in the experiment VIRTEX5.Xpwr.FPGA.B.2 . . . . . 119

vi



List of Figures

1.1 Simplified design information flow as presented in [20] . . . . . . . . . . . 3

2.1 The Delft Workbench Design Flow as presented in [5] . . . . . . . . . . . 22
2.2 MOLEN machine organization as presented in [39] . . . . . . . . . . . . . 24
2.3 Architectural overview of QUAD as presented in [28] . . . . . . . . . . . 26
2.4 QUAD within the Profiling Framework of DWB . . . . . . . . . . . . . . . 27
2.5 Block diagram of the Quipu modelling approach as presented in [22]. . . 28
2.6 Tradeoff in prediction models of hardware metrics. . . . . . . . . . . . . . 31

3.1 Modelling methodology diagram . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Common memory-segments layout used by C compilers in a x86 architecture 38
3.3 Typical Activation Record structure . . . . . . . . . . . . . . . . . . . . . 39
3.4 ARGS tool Software Architecture . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Decision Flow of Memory Access Filter module in ARGS tool. . . . . . . . 43
3.6 Experimental Framework for experiment PowerPC.Virtex5.GPP.A.1 . . . 49
3.7 Experimental setup using simulation frameworks . . . . . . . . . . . . . . 53

4.1 Power measurement results of the PowerPC ISA in a Virtex 5 . . . . . . . 61
4.2 Histogram of power data per instruction . . . . . . . . . . . . . . . . . . . 62
4.3 Histograms of Voltage, Current and Power measured for the addcr in-

struction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Experiment StrongARM.SimPanalyzer.GPP.B.1: Energy summary . . . . 68
4.5 Experiment StrongARM.SimPanalyzer.GPP.B.1: Power summary . . . . . 69
4.6 Relation between energy and its strongest predictors . . . . . . . . . . . . 70
4.7 Relation between power and its strongest predictors . . . . . . . . . . . . 71
4.8 Energy model for the StrongARM GPP, with SCMs as predictors . . . . . 72
4.9 Power model for the StrongARM GPP, with SCMs as predictors . . . . . 73
4.10 Energy model for the StrongARM GPP, with static & dynamic predictors 74
4.11 Power model for the StrongARM GPP, with static & dynamic predictors 75
4.12 Energy model for the StrongARM GPP, with static predictors & the num-

ber of instructions commited as predictor. . . . . . . . . . . . . . . . . . . 76
4.13 Energy model for the StrongARM GPP, with static predictors & the

args.data metric as predictor. . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.14 Experiment VIRTEX5.Xpwr.FPGA.B.2: Total power summary . . . . . . 80
4.15 Experiment VIRTEX5.Xpwr.FPGA.B.2: Dynamic power summary . . . . 81
4.16 Experiment VIRTEX5.Xpwr.FPGA.B.2: Static power summary . . . . . . 82
4.17 Experiment VIRTEX5.Xpwr.FPGA.B.2: Energy summary . . . . . . . . . 83

6.1 Relation between energy and modelling parameters, graph1 . . . . . . . . 107
6.2 Relation between energy and modelling parameters, graph2 . . . . . . . . 108
6.3 Relation between energy and modelling parameters, graph3 . . . . . . . . 109
6.4 Relation between energy and modelling parameters, graph4 . . . . . . . . 110
6.5 Relation between energy and modelling parameters, graph5 . . . . . . . . 111

vii



6.6 Relation between energy and modelling parameters, graph6 . . . . . . . . 112
6.7 Relation between power and the modelling predictors, graph1 . . . . . . . 113
6.8 Relation between the power and the modelling predictors, graph2 . . . . . 114
6.9 Relation between power and the modelling predictors, graph3 . . . . . . . 115
6.10 Relation between power and the modelling predictors, graph4 . . . . . . . 116
6.11 Relation between power and the modelling predictors, graph5 . . . . . . . 117
6.12 Relation between power and the modelling predictors, graph6 . . . . . . . 118
6.13 Energy model for the Virtex 5 FPGA, with static predictors . . . . . . . . 119
6.14 Total power consumption model for the Virtex 5 FPGA, with static pre-

dictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.15 Static power consumption model for the Virtex 5 FPGA, with static pre-

dictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.16 Dynamic power consumption model for the Virtex 5 FPGA, with static

predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.17 Energy model for the Virtex 5 FPGA, with static & dynamic predictors . 121
6.18 Total power consumption model for the Virtex 5 FPGA, with static &

dynamic predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.19 Dynamic power consumption model for the Virtex 5 FPGA, with static

& dynamic predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.20 Static power consumption model for the Virtex 5 FPGA, with static &

dynamic predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

viii



List of Tables

2.1 Comparison of presented previous work related to model-driven power
optimization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Presented power and energy power models for GPP . . . . . . . . . . . . . 21

3.1 Initial set of dynamic metrics . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Comparison of two experimental setups implemented in this work. . . . . 46
3.3 Design tools used in the experiments of this thesis . . . . . . . . . . . . . 46
3.4 Architectural parameters used in sim-panalyzer . . . . . . . . . . . . . . . 57

4.1 Main characteristics of experiment PowerPC.Virtex5.GPP.A.1 . . . . . . . 60
4.2 Results of physical measurements performed on a Virtex 5 using an oscil-

loscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Main characteristics of experiment StrongARM.SimPanalyzer.GPP.B.1 . . 65
4.4 Kernel IDs of the kernels used in experiment Stron-

gARM.SimPanalyzer.GPP.B.1 . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Comparison of the RMSE in the models created in experiment Stron-

gARM.SimPanalyzer.GPP.B.1 . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6 Main characteristics of the experiment VIRTEX5.Xpwr.FPGA.B.2 . . . . 78
4.7 Summary of the power data in experiment VIRTEX5.Xpwr.FPGA.B.2 . . 79
4.8 Kernel IDs of the kernels used in experiment VIRTEX5.Xpwr.FPGA.B.2 . 79
4.9 Correlation coefficients of predictors in the experiment VIR-

TEX5.Xpwr.FPGA.B.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.10 Summary of the models created in the experiment VIR-

TEX5.Xpwr.FPGA.B.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Summary of the RMSE of the models using SCMs as predictors . . . . . . 87
5.2 Summary of the RMSE of the models using SCMs & some dynamic metrics

as predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Quipu Software Complexity Metrics . . . . . . . . . . . . . . . . . . . . . 101
6.2 Summary of kernel library . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ix



x



Acknowledgements

I want to express my grattitude to my thesis supervisors: Dr. Koen Bertels for super-
vising my work and for his inspiration, to Roel Meeuws and Arash Ostadzadeh for the
endless hours they have spent supervising and revising my work. Furthermore, I want
to thank Roel Meeuws for his work in Quipu, which is the base of this work, and to
Arash Ostadzadeh for his work in Quad, whose work is used in this thesis. Thanks to
Dr. Anca Molnos for all her support and for taking the time to review Chapter 3 of my
thesis report. I would like to thank to the members of my thesis committee, Dr. G.K.
Kuzmanov and Dr.ir. T.G.R.M. van Leuken, for the time spend reading and assesing
my thesis research. And special thanks to all the Computer Engineering group who were
always helpful and provided me support and guide during this thesis work.

Omar Esli Jimenez Villarreal
Delft, The Netherlands
October 28, 2011

xi



xii



Introduction 1
Nowadays, there are many factors that increase the ammount of power consumption
in Embedded systems. Among the most important we can list: technology scaling,
the rise of operational frequency and the increasing complexity of Embedded systems.
Power consumption has been an important research topic because of the negative effects
induced in Embedded systems. We can divide these negatives effects as follows:

• Temperature-related problems, where more complex and expensive cooling systems
are required to reduce heating of chips, in order to avoid damage and the degra-
dation of performance in the system.

• Reduction of battery life in mobile systems. Battery life is impacted by the energy
consumption of internal components of an Embedded system.

These effects have increased because of the growth of power consumption in current
applications. Thus the reduction of power consumption has becoming a key design
challenge.

This problem has been tackled at different abstraction levels. At the lowest abstrac-
tion level, the design of computer realizations has focused on the reduction of power
consumption by reducing sillicon area, optimizing the geometry of transistors, decreas-
ing voltage of the power source required by the designs, and others optimizations that
aim to reduce the power required by IC designs. On higher levels, the design of computer
implementations have presented an oportunity to reduce power consumption by optimiz-
ing clock-trees architecture or using algorithmic optimization and RTL transformations.
However, these optimizations have addressed reduction of power consumption in general
Computer commodities used in customized Embedded Architectures. But with the ever-
increasing complexity of these systems it is required to reduce power consumption in a
higher level of abstraction, while reducing design efforts and time to market (TTM).

Recent work has been done to reduce power consumption at System design level
(SDL). Nevertheless one of the main problems at SDL is that it is difficul to determine
the effect of decisions made at this level, on the eventual power consumption. Usually,
the hardware is not available yet, or the required time to physically measure the effects
on power consumption is too time-consuming, so that it is not feasible to try multiple
design options to find the optimal choice.

This problem requires a faster method to predict the power consumption caused by
System design decisions. The methods currently used to predict power consumption rely
on power models that abstract away from unnecessary details, in order to reduce the
prediction time at the cost of a reduced accuracy.

At SDL, different prediction methodologies have been proposed, that use power mod-
els of lower abstraction levels to predict power consumption. Although these method-
ologies are accurate, the complexity of modern systems increase the prediction time. As

1



2 CHAPTER 1. INTRODUCTION

a result, we propose in this thesis a modelling methodology that can be used to generate
power and energy models of functions running in processing elements, such as a GPP or
FPGA. These models can be used at SDL, because the models require as input the HLL
(C-code) description of a function.

Finally, since the ultimate goal is to find the most optimal system design that fits
the required specifications (including power consumption), it is important to introduce
the prediction models in the design flow of Embedded Systems.

1.1 Need of a power-aware design flow

In recent days, the heterogeneous architectures have become more and more common
in embedded systems. They are composed of computer commodities like General Pur-
pose Processors (GPP), Digital Signal Processors (DSP), or, recently, the usage of Field
Programmable Gate Arrays (FPGA), along with memory blocks arranged in different
hierarchies, types, and pheripherals. These architectures acknowledge the basic char-
acteristic of Embedded systems: its composition. Embedded systems are formed by
hardware and software modules. In the design of Embedded systems the right combi-
nation of hardware and software has to be chosen, which results in the most efficient
product that meets the specifications required. This type of design is called HW/SW
co-design, as explained in [20], which takes into account the behavioral specification of
the product and also the available components. This design encourages reuse which is
very important when coping with the increasing complexity of new Embedded systems
and stringent time-to-market requirements.

The HW/SW co-design is an structured design flow that aims to optimize different
design metrics, such as, performance, or cost. The structured flow, provides the op-
portunity to use optimization algorithms in order to improve the design metrics of an
embedded system.

Therefore, in order to reduce the power consumption of Embedded systems a power
aware design flow has to be followed, which can led to products that meet the spec-
ifications, using less power. In [20], we find a simplified design information flow for
embedded systems. The diagram is depicted in Figure 1.1. This design flow starts with
the idea of a product to be designed. This idea is captured in a formal way through a
design specification. Once a specification is available, designers start an iterative pro-
cess to implement the specification until a final product that meets the requirements is
obtained.

In the design flow presented in Figure 1.1, a series of activities is depicted that are
carried out during the development process of an Embedded system. These activities
take place after a specification is available and include:

• Task level concurrency management. During this activity, the tasks that will be
present in the final system are identified.

• High-level transformations. This activity involves the application of transforma-
tions in the specification (assuming that part of the specification is depicted as a
C sequential code). These transformation aim to optimize certain design metrics,
like performance.



1.1. NEED OF A POWER-AWARE DESIGN FLOW 3

Figure 1.1: Simplified design information flow as presented in [20]

• Hardware/Software partitioning. During this activity the tasks identified are
mapped to either hardware or software.

• Compilation. This activity includes the compilation of tasks mapped to software.

• Scheduling. This activity is performed in several stages of the design, for instance:
HW/SW partitioning, task level concurrency management. And involves setting
star-time to the tasks.

• Design space exploration Usually different designs meet the requirements of a sys-
tem, thus a selection of one design is made during this stage.

The previously presented activities can have different orderings. The order in which
these activities are performed constitutes a design flow also called design methodology.

In [13], a review of design methodologies used in recent years was presented. This
review is presented as follows:

• Bottom-Top. This methodology is based on an intuitive approach of building blocks
before the final product is assembled. In this methodology designers start from the
lower abstraction level and build modules that will be stored in libraries. These
libraries will be used later in the design of more modules in a higher abstraction
layer.

• Top-Bottom. In this methodology, the layout of the entire design is made before
the structure of the components that constitute the Model of Computation (MoC)
is defined. After the layout of components in the higher level of abstraction is
defined, a refinement process is started in the next lower level of abstraction to
define the structure of the modules. This process continues until all the structures
of each modules is defined.

• Meet-in-the-middle. This methodology takes advantage of Bottom-Top and Top-
Bottom methodologies by starting the design with a MoC but using a top-down
methodology for higher abstraction levels and bottom-top methodology for lower
abstraction levels. The starting abstraction level is based on the current available



4 CHAPTER 1. INTRODUCTION

CAD tools. Where in lower abstraction levels these CAD tools are mature and
well known by designers, in higher abstraction levels they do not exist or are still
under development.

• Platform Methodology. This methodology relies on predetermined platforms de-
fined by well-known platforms suppliers or in-house developed platforms. These
platforms are composed of some standard components arranged in well-defined lay-
outs and are used as the starting point of a design. These platforms are further
customized, by adding customized components which are designed in the lower
abstraction level. These customized components are built as standard cells which
are used to modify the layout of higher level components. The predefined layout
is modified using customized components to produce a final layout for the design.

For this research thesis the design flow and methodology used are defined in the
Delft Workbench (DWB) project [5]. Further details of DWB are presented in Chapter
2. Therefore, this thesis aims to improve the partitioning process in the HW/SW co-
design flow of DWB project. The goal is to predict the power and energy consumed by
a task when it is mapped to a processing unit, such as, a GPP or an FPGA. Afterwards,
the predictions are used to optimize the HW/SW partitioning process.

1.2 Scope of this research

The scope of this thesis research can be explained as follows:

• Analyze the characteristics of the HW/SW partitiong process in the DWB design
flow.

• Based on the analysis, derive a modelling approach which can be used to build
power and energy models of processing units in heterogenous architectures.

• Implement the modelling methodology to build an energy and a power model for
two processing elements in heterogeneous architectures, the GPP and the FPGA.

• Validate the accuracy of the models.

1.3 Research questions

In order to achieve the proposed goal of this thesis, it is important to answer the following
questions during the course of this thesis research:

• Would an automatic high level modelling methodology help to investigate the dif-
ferent parameters that affect power consumption?

• Are the low level details of a HW processing unit necessary during the modelling
process? Does considering the HW processing unit as a black-box provides more
flexibility and scalability to the methodology?



1.4. OVERVIEW 5

• Does using a HLL (C code) as input for a prediction model reduces the prediction
time of the model? Do the predictions obtained with this model provide qualitative
data useful for the partitioning process in the DWB design flow?

1.4 Overview

The rest of the thesis is organized as follows. Power consumption analysis, prediction and
optimization have been addressed by the research community in several works. Therefore,
Chapter 2 presents a review of the relevant work within the scope of this thesis and
describes the motivation of this research work. In Chapter 3 we present the modelling
methodology proposed in this thesis, the rationale of the methodology is presented as
well. In order to validate this methodology, we designed a set of experiments. The
experimental setup of these experiments is also presented in Chapter 3. Finally, in
Chapter 4 the analysis of the experimental results are presented, along with the results
of the modelling process that generates the models of power and energy. In Chapter 4,
we also present the validation method to validate the accuracy of the models generated
with the methodology. Finally Chapter 5 presents the conclusions and suggestions for
future work of this thesis research.



6 CHAPTER 1. INTRODUCTION



Related Research 2
The problem of reducing power consumption, in the design of embedded systems, has
been exhaustively investigated in the past decades. The problem has been addressed at
different levels of abstraction:

• Transistor level

• Register Transfer Level (RTL)

• Algorithmic level

• System level

The solutions to this problem include the optimization of hardware and software compo-
nents, as well as methodologies to reduce power consumption in the design of embedded
systems. In this thesis we are proposing a solution to evaluate power and energy con-
sumption during HW/SW partition process. This evaluation can be used to optimize
energy consumption and control the maximum power consumed by the complete design.
Hence it is important to present the related work and background of this thesis work.

As explained in the previous chapter, the HW/SW partitioning process is one of the
earliest design stages of HW/SW co-design. During this design stage, the tasks to be
present in the final system are mapped to processing units. A processing unit can be
a General Purpose Processor (GPP), a special purpose processor like a Digital Signal
Processor (DSP) , or an acceleration unit like a Field Programmable Gate Array (FPGA).
The work carried out in this thesis is made in the context of the Delft Workbench (DWB)
project. Therefore, we narrow down this survey to two components used in heterogeneous
systems, GPPs and FPGAs.

This chapter is organized as follows, Section 2.1 presents the previous modelling
techniques that predict power consumption in FPGAs at different abstraction levels.
Section 2.2 presents a survey of the existing prediction methodologies to predict power
and energy in GPPs. Section 2.3 presents the background of this thesis, which provides
the contextual information for this work. Finally section 2.4 presents a conclusion of the
survey presented in this chapter.

2.1 FPGA

Currently different types of accelerators exist in heterogeneous architectures. These
accelerators are designed to improve the performance of the entire system by accelerating
tasks which are frequently executed. Some accelerators can provide a high performance
for specific applications, but suffer performance degradation with other applications.

7



8 CHAPTER 2. RELATED RESEARCH

This degradation is caused by the low flexibility of the ASIC design used to build these
accelerators.

Among the accelerators currently available, the FPGA offers the higher flexibility
compared with ASIC-based accelerators. And although the performance of a FPGA
is still lower compared with ASIC designs, the design time is shorter. The popularity
of FPGAs has increased, especially with the improvement of FPGA fabrics and tech-
nology scaling. FPGA-based designs have even been introduced in mobile embedded
designs although with low and medium production ranges. However, the FPGAs have
not been introduced in embedded systems produced in large scale, because, their power
consumption is still higer compared to ASIC design.

In order to reduce the power consumption of heterogeneous systems containing FP-
GAs, it is important to have models which predict power consumption that can be used
to optimize power consumption of a design. Such modelling efforts for FPGAs at dif-
ferent level of abstraction have been proposed earlier. In this section, recent works in
modelling power consumption in a FPGA are presented. The remainder of this section
is organized as follows:

• FPGA-micro architecture Power Modelling. Presents the research made to
model power consumption at low abstraction level (transistor level).

• Low-level Power Modelling. This section presents modelling techniques for
power consumption at RTL level. The difference with subsection 2.1.3 is that the
models presented in this section require as input low abstraction-level information
to predict power consumption.

• High-level Power Modeling. Presents modelling techniques used to optimize
FPGA-based designs at system level or algorithmic level.

2.1.1 FPGA-micro architecture Power Modeling

A general approach to reduce power consumption of FPGA-based designs is to model
and optimize the power consumed by the internal components of an FPGA. Using this
approach any future FPGA-based design is improved. In this subsection, we present
previous research that follows this general approach. The models presented here are
used to optimize the micro-architecture of FPGAs.

We have to notice that the modelling techniques used during ASIC design can also be
used during FPGA micro-architecture design, because the design is conducted at tran-
sistor level. Nevertheless, there are other modelling techniques, which take into account
specific characteristics of FPGAs to model power consumption. Therefore in this subsec-
tion we only present the modelling techniques fully influenced by FPGA characteristics
and leave the ASIC modelling techniques out.

A specific way to predict power consumption is to use a known model of a lower
abstraction level and then through simulation of a design, obtain the power consumed
by the design. This approach is followed by Poon et.al. in [31]. A power model that esti-
mates dynamic, short circuit, and leakage power is presented in [31]. This model targets
island-type FPGAs with logic blocks, switch blocks, connection blocks, routing elements



2.1. FPGA 9

and an H-tree network. The work proposed was integrated in the VPR Computer Aided
Design (CAD) tool. The additions made to VPR include an activity estimator mod-
ule and a transistor level power model applied to each component of the FPGA. The
Activity estimator tool calculates switching activity using transition density of a signal
(calculated per Look-Up Table(LUT)). Then a transistor level model for each element of
the FPGA is used (clock-tree, flip-flops, input mux, LUT and routing resources) along
with the calculated transition density, to calculate dynamic power consumption. The
short-circuit power is assumed to be 10% of dynamic power. And a leakage power model
at transistor level is used to obtain the static power consumption. The models presented
in [31] were validated against HSPICE, but no exact information was provided about the
error of the models. Nevertheless, the authors state that a significant absolute error can
be found using this model, but that it is still accurate enough to evaluate architectural
trade-offs in FPGA design, and assessment of efficiency of CAD tools. Although, this
approach provides information of power consumption, it usually involves high simulation
times and requires detailed information of the design implementation.

Another approach is used in [11] based on existing models, which can be used to
predict the power consumption of each component in a FPGA. Then those predictions
are scaled, based on the resource utilization of each of those components. Concretely
[11] presents a pre-silicon dynamic power estimation methodology. The methodology is
applied to a coarse-grained FPGA architectural model, specifically to Spartan-3 FPGA.
The programmable fabrics, routing elements, and clock distribution mechanism are re-
sources considered in this prediction methodology. The first step in the methodology
consists of the characterization of each resource using simulation tools (HSPICE or
Nanosim) to find capacitance of each block. Then the dynamic power consumption
is predicted, based on resource utilization of a design, switching activity (both are ob-
tained from output files of after route and place in ISE), and the characterized block
capacitance. The accuracy of the prediction methodology was compared against silicon
measurements. It reports an average error of 18% with a max of 27%.

An evaluation in terms of energy and power consumption of bi-directional and uni-
directional FPGA routing architectures is presented in [16]. Although this work doesn’t
present a modelling technique itself, it performs an analysis of FPGA components which
are integrated into a CAD tool which predicts power consumption. The work presents
general observations on how these two types of architectures affect speed, area, and
power consumption. Also, it describes the effect on the critical path delay, power, and
energy consumption of FPGAs, caused by the buffer size of routing elements. From
the results obtained the authors concluded that a unidirectional architecture performs
better in terms of area, performance, and energy consumption under most of the cases.
However, bi-directional architectures consume less energy at the cost of an increase of
area when the operating frequency is between any values in KHz to 10 MHz. The results
of this work have been integrated in VPR5.0 a power estimation framework created by
[31].

The work presented in this subsection provides a flexible way to predict power con-
sumption of an FPGA component. The main advantage is that it can be adapted for
different FPGAs architectures. However, the power models and the energy models, re-
quire as input a detailed transistor-level design description, which is not available in



10 CHAPTER 2. RELATED RESEARCH

earlier stages of design.

2.1.2 Low-level Power Modeling

In this subsection we present related models and techniques that aim to optimize power
consumption of FPGAs during architectural design. The difference between the tech-
niques lies in the prediction model used. Each model uses different input parameters of
the components used in a design. The granularity of the FPGA used to build the models
is also different. The main characteristic of the models presented in this section is that
the power prediction is made using architectural design parameters and statistical signal
metrics. However, since the signal metrics are obtained from a detailed description of
the circuit implementation, these models cannot be used in architectural design without
having transistor level design information of the design.

One model for power consumption prediction in FPGA-based design is presented
in [34]. The model uses input/output signal statistics (average signal probability, input
signal transition density, input signal spatial correlation, output signal transition density)
to relate dynamic power consumption in a design. The model is built using a set of input
signal samples, which are simulated in a timing simulator, to obtain input/output signal
statistics. Since this model is built from input samples, not all possible input samples
can be used for training, thus a statistical regression method is used to cope with this
problem. Results show that this model has a similar error when input traces of a design
are completely different to input samples used to train the model. The average relative
error of this model is 3.1% for completely different input signals, and 1.7% with similar
input signals.

In [17] a model of power dissipation at RTL level is presented. The power macro-
model presents an equation to relate power consumption with each operator found in a
Hardware Description Language (HDL) file (like adder, subtractor, multiplier, divider,
or logic operations like AND, OR, etc.). It uses input design metrics like average input
transition density, average input spatial correlation and input bit width. Thus this model
takes into account internal configuration of a module plus input signal statistics. The
accuracy of the macro-model is validated with XPower tool available in the ISE suite of
Xilinx. And an average error of 3.14% is reported.

In [27] presents a power prediction tool developed in Java. The tool aims to calculate
power consumption of a design implemented in a FPGA. The prediction is made using
two inputs files. One file is a configuration file produced by FPGA CAD tools, which
describes the configuration and connections of the Configuration Logic Blocks(CLBs)
for a determined custom computing design implemented in an FPGA. The other file is
an input signal activity file, where all input signals connected to a custom computing
design are associated to probabilistic parameters that characterize each input signal. The
equation that models power consumption per signal uses the distance between CLBs, the
capacitance of resources, the voltage level of the FPGA, the frequency, and the activity
density of the signal. In the previous equation the capacitance is unknown, therefore a
set of test-benches implemented in an FPGA were used to derive the capacitance of the
different elements in the design. The test-benches used to calibrate the tool were two
Finite Impulse Response (FIR) filters. An average prediction error of 5% was reported



2.1. FPGA 11

for designs similar to the test-benches, however, a larger error (less than 10%) appeared
for designs which were not similar to the filters used for calibration. The accuracy of
this tool was compared with real on-chip measurements.

The techniques presented in this section provide high accuracy in the prediction.
The drawback is that the design-time of a system increases because the models require
input/output signal statistics. Getting the signal statistics involves transition simulation
of the design. For instance the signal activity of a design, can be provided as output
files generated by FPGA CAD tools. Therefore, an early design space exploration of
an architecture using these techniques would be really slow. This problem makes these
techniques nearly impossible to be used for power prediction in early design stages, such
as HW/SW partitioning.

2.1.3 High-level abstraction Power Modeling

In this subsection, recent work that proposes power optimization in FPGA-based designs
at high-abstraction levels, like architectural or algorithmic design level, is presented. The
main characteristics of the research presented are:

• The power prediction does not require statistical information about input/output
signals of a design.

• Functional blocks in the FPGA-based design are identified, then the power con-
sumed by each block is characterized during the modelling phase. Only blocks to
be implemented in an FPGA are considered by these models.

The models of each functional block implemented in the FPGA are used to optimize
power consumption of the entire design. Consequently, the design optimization process
can be conducted faster when it is compared with the techniques presented in subsections
2.1.1 and 2.1.2.

A review of design optimizations at high-abstraction-level for FPGA-based design is
presented in [8]. In this work a classification of design optimization techniques is done
deriving two main areas for optimization.

• System Level techniques with algorithmic and behavioral transformations.

• Architectural Level techniques using parallelism and pipelining.

At System Level, Distributed arithmetic is identified as an algorithmic optimization tech-
nique which reduces area at expense of circuit complexity. However, overall reduction in
power consumption is achieved. Parallelism and pipelining are identified as techniques
to reduce power consumption at Architectural Level. These techniques reduce the op-
erational frequency at the expense of increased area. Finally, Functional Level Power
Analysis and Modeling (FLPAM) are proposed as a novel approach to model power
consumption.

In [9] a High-Level (System Level) model to predict power consumption of FPGA-
based designs is presented. The model is integrated in a design flow to allow an iterative
power optimization process. The model was build following these stages:



12 CHAPTER 2. RELATED RESEARCH

1. Build a power chart by measuring power for each individual component that affects
dynamic power, i.e. signal, logic, clock freq, I/O, etc.

2. Identify system variables that affect a design: frequency, area, vector length, supply
voltage.

3. Choose a mathematical model for each of the components found in 1.

4. Derive coefficients for each model that relates system variables identified in 2 with
the individual components that affect dynamic power. The coefficients are derived
from power charts that contained the measured data in step 1.

5. Optimize model in an iterative process looking for convergence of coefficients.

6. Determine optimal function parameters to build the final model.

With this model system variables like frequency, area, vector length, and power supply
can be used at system level design to predict power consumption of a design. The
methodology presented to derive a model can be followed again if a change in platform is
required. The accuracy of the model is between 92% and 100%, considering each model
separately. However, it is not specified what validation methodology was used for each
model.

For more complex designs implemented in an FPGA, like a soft-processor, the work
presented in [43] proposes a hybrid power model to predict the power consumed by an
application running on the soft-processor. The hybrid model is integrated by Functional
Level Power Analysis (FLPA) and Instruction Level Power Analysis (ILPA). The FLPA
is used to model the functional blocks of the soft-core (Arithmetic Logic Unit (ALU),
register file, fetch unit). On the other side ILPA is used to model assembler instructions
that run in the soft-core. The general power model is build by adding the sub models
that relate functional units of the soft-core with instructions. ILPA is used to group
instructions in categories, which are affected by similar internal components of the soft-
core. The coefficients that are used in the model to relate functional modules with
power consumption are obtained through FLPA. Then, these coefficients are further
customized depending on the category to which an instruction belongs. The validation
of the accuracy of this model is performed using on-chip power measurements. The
reported average error is 4.1% with 8.45% as maximum.

An FPGA power aware design flow is presented in [12]. The design flow focuses on
high-level optimizations and incorporates a power model for prediction. The design flow
performs the optimizations after HW/SW partitioning takes place, in order to optimize
power consumption of hardware modules to be implemented in the FPGA. The result of
the optimization using this model is an optimized HDL file implementing the required
hardware modules. The authors enclose in libraries the set of power models proposed.
These libraries are used in the design flow to predict power consumption and build a
hardware module that meets the requirements of power consumption. Two types of
libraries are identified in the design flow, one for IP-Cores (Intellectual Property Cores)
and one for operators models. Depending on the availability of IP-cores in the FPGA,
the design flow considers the selection of IP-cores or creates a custom computing machine



2.1. FPGA 13

that implements the required hardware module. In this context, the models are used to
select the most optimal components in terms of power. Aside from the design flow, the
authors explain that FLPA is used to derive the models for both IP-cores and operators
used in HDL (like adder, multiplier, divider, etc). For IP-cores clock frequency and
algorithmic related variables are chosen as variables that relate power consumption with
the IP-cores, since the latter are considered as black-box. For operator variables the
clock frequency, the number of I/O ports, the clock edge number, the activity rate of
operators, and the utilization rate of operators are used to relate power consumption
with the operators in HDL. The accuracy of the models is validated against the Xilinx
XPower tool and on-chip measurements. The error for algorithmic models (IP-cores)
is on average 12.4% with a maximum of 34.73%, for architectural models (operators) a
average error of 13.7% is reported with a maximum of 31.8%.

A cycle-accurate FPGA energy measurement tool that characterizes energy consump-
tion on FPGA-based designs is presented in [18]. This methodology targets reduction of
power consumption in a FPGA-based design taking into account technology parameters
of the FPGA fabric, resource utilization, but also considers the interaction between a
microprocessor and an FPGA. Three scenarios to reduce power consumption are foreseen
by the methodology:

1. The architecture of the design is fixed and changes in partitioning, mapping, and
place and routing aim to reduce power.

2. The power reduction is achieved by changing the architecture of the design.

3. The designer reduces power consumption by modifying the interaction of the FPGA
with the microprocessor.

In order to allow the reduction of power consumption in the three previous scenarios, the
methodology relies on characterization of energy of the FPGA using switched capacitor
methods to measure the energy. The measurements are captured by an automatic data
acquisition system connected to a PC-based control application. The tool provides cycle-
accurate energy consumption. The energy consumption is analyzed and existing power
reduction techniques are used to reduce power consumption. In this work, an online
measurement tool is proposed, instead of a model, to know the power consumption.
However this tool is useful also in system-wide optimizations, since it provides cycle-
accurate measurements which can help software designers to use less-consuming low level
designs or modify access method to the FPGA-based peripherals. The Root Mean Square
(RMS) error of the measurement tool is 4.9% when compared with on-chip measurements
performed by high-precision multimeters.

The work presented in this subsection is in general less accurate compared to that
presented in subsection 2.1.2. However the time spent in design and optimizations is
reduced because detailed information of the design implementation is not required for
power prediction. The only exception is [18], which proposed a tool that characterizes
energy consumption based on on-the-fly measurements of a design.

Nonetheless, any of the presented papers in this subsection is suitable for our purposes
because the input of the models it is still HDL which is not available before partitioning
process. And although nowadays exist C-to-VHDL translator tools, for a design space



14 CHAPTER 2. RELATED RESEARCH

exploration during partition process, the time spend in the translation has a high impact
in the overall partition process.

2.1.4 Summary of Power Models for FPGAs

Table 2.1 summarizes the literature review presented in section 2.1. A description of
each of the columns is given as follows:

• The Category is based on the categorization defined for this section.

• The Target Optimization Level shows the abstraction level where the model(or
methodology) is used to optimize power consumption.

• The Prediction Input shows the required input data which is required to predict
power consumption.

• The Validation Method presents the methodology used to validate the accuracy
of each work.

• The Avg Error & Max Error shows the reported average and maximum error.

• The Optimization Methodology describes if the presented work was included
in an automatic design flow or is manual.

It can be seen in the Table that in general the higher the abstraction level, the higher
the average error of the prediction methodology is. We can also observe in that in the
survey conducted, HDL is the highest abstraction used to predict power and energy of
FPGA-based designs. Therefore we proposed a High Level modelling technique which
can predict power consumption of FPGA-based design using C-code as input.

2.2 Power estimation in General Purpose Processors
(GPP)

The GPP has been the core component of Embedded designs in the past decades. Thus
there is a vast amount of research in this field. Moreover, the reduction and estimation
of power consumption has been a widely discussed topic in the research. Consequently,
we present in this survey the most important methodologies used to estimate the cost
(in terms of power) of running an application on such a GPP.

One of the earliest approaches to predict the power consumed by software, running
on a GPP, is presented by Tiwari et al. [38]. In this work a methodology to develop
and validate an instruction level power model for any processor is presented. The main
idea behind the model is to measure the current drawn by a processor as it repeatedly
executes certain assembly instructions (or short sequences of instructions). In this way,
the authors obtain a power cost of a program for that processor.

The methodology assigns to each instruction of the processor’s Instruction Set Ar-
chitecture (ISA), a fixed energy cost. The energy cost is a cycle-accurate average value,
and it’s measured when the instruction is isolated from external effects like circuit state,



2.2. POWER ESTIMATION IN GENERAL PURPOSE PROCESSORS (GPP) 15

Reference Category Target Prediction Validation Avg Error Max Error Optimization
Optimization Level Input Method % % Methodology

[31] FPGA Architectural Signal statistics HSPICE N/A N/ A Automatic
architecture Circuit description (VPR tool)

[11] FPGA Architectural Resource utilization on-chip 18 27 Manual
architecture Signal statistics measurements

[16] FPGA Architectural Circuit description N/A N/A N/A Automatic
architecture file (VPR tool)

[34] Low-level RTL Signal statistics N/A 3.1 5.0 Manual

[17] Low-level RTL Signal statistics Xpower 3.14 20.19 Manual

[27] Low-level RTL Resource utilization on-chip 5 10 Manual
Signal statistics measurements

[9] High-level System Frequency On-chip 8 N/A Manual
Design Area measurements

Circuit design(HDL) CAD tools
Vector length

[43] High-level Application Circuit design On-chip 4.1 ** 8.45 Manual
(HDL) measurements

[12] High-level RTL Circuit design XPower 12.4 IP-cores 34.7 IP-cores Manual
(HDL) 13.7 operators 31.8 operators

[18] High-level System N/A * On-chip 4.9 *** N/A Manual
RTL measurement

Application Multimeter

* This is an online measurement tool, not a model to predict either power or energy.
** Error of a hybrid model, which predicts the power consumed by an application running on a soft-processor implemented in a FPGA.
*** This is the RMS error of the measurement tool presented in this work. A model is not presented.

Table 2.1: Comparison of presented previous work related to model-driven power opti-
mization techniques

pipeline stalls, or cache misses. For instructions that take more than one cycle to execute,
the instruction cost is multiplied by the number of cycles required by the instruction. In
order to characterize the power consumed by the external effects, controlled test cases
were designed. The test cases are used to measure the power consumption caused by the
external effects. The following external effects were measured:

• Effect of Circuit State: executing different instructions in sequence increases
the switching activity in the processor. This work assumes that the change of one
instruction to another increases the switching activity the most. Therefore, mea-
suring the extra energy consumed by each pair of instructions, allows the inclusion
of average energy per pair in the final energy estimation of a program block.

• Effect of Resource constraints (stalls): resource sharing in a processor leads to
stalls of certain instructions. This problem will lead to an increase of the execution
time of an instruction. Therefore, an increase of energy per instruction will occur.
In order to account for this problem, this work proposes controlled experiments
to determine a base cost of each type of stalls. Then, performing manual code
traversal, the different type of stalls and occurrences in a program can be found.
Finally, the energy consumption caused by resource constraints can be obtained
by adding the energy caused by each stall type. The cost of each type of stalls is
determined by multiplying the base cost of a stall, times the number of occurrences
of the stall.

• Effect of cache misses: since a cache miss leads to an increment of execution



16 CHAPTER 2. RELATED RESEARCH

time of an instruction, the same procedure explained for resource constraints is
applied for cache misses. The average energy consumed by a cache miss is obtained
using controlled experiments. Then, the number of cache misses is determined in a
program through code traversal. Finally, the average cost of cache misses and the
number of cache misses are multiplied to obtain the total cost of energy caused by
cache misses.

This work proposes a manual prediction flow which is defined as follows: the assembler
code is split into basic blocks. The base cost of each basic block is determined using the
base cost of each instruction. After circuit state and pipeline stalls effects are analyzed,
its cost is added to the basic block cost. When a basic block is executed more than once,
the number of block executions is determined and the program cost is determined by
adding all the basic block costs (considering iterations). Finally, cache miss analysis is
conducted and the result is added to compose the final energy estimation. However, no
information about accuracy or validation method is presented in this work. This work
was designed for small programs, which still can be manually analyzed by a software
designer. However, if the complexity or the number of programs to analyze increases,
this work becomes infeasible.

Another approach, proposed in [40] uses a cycle-accurate ARM simulator enhanced
with power and performance models. The author considers the components of a processor
as black boxes, thus the power models of each component were obtained from vendors
datasheets. Several components are identified during simulation. These components
are: the processor, the L1 cache, the L2 cache, the memory, and the DC-DC converter.
Interconnect is modeled as a separate module. Using this organization, a power model
is assigned to each component. Finally, the power consumption of the processor is the
sum of the power consumed by each of the components in one cycle. In order to obtain
the power of each component, the software under evaluation has to be simulated using
the ARM simulator. An error of 5% is found when the simulator is compared with a
prototype. The same operational frequency was used in both, the simulator and the
prototype. This work, although it can be integrated in an automatic design flow, is not
suitable for our purposes, because the simulation increases the Design Space Exploration
(DSE) time.

In [35], Steinke et al. present an energy model at instruction level targeting a
RISC processor with Harvard architecture. The modelling process takes into account bit
toggling of internal and external busses, and accesses to off-chip memory to create the
model. The goal of the presented work is to use this model to help in the optimization
process of software within a compiler. The optimizations are focused on bus coding to
reduce power consumption.

The structure of functional units within the processor and off-chip memory is the
basis of the model. Since a RISC processor with load/store architecture is used in this
work, separate memory for data and instructions are identified. Also a multiplier, a
barrel shifter, and an ALU were identified in the processor. Using this structure, the
model was built by adding the energy consumed per instruction, as depicted in the
formula 2.1:

Etotal = ECPU instr + ECPU data + Emem instr + Emem data (2.1)



2.2. POWER ESTIMATION IN GENERAL PURPOSE PROCESSORS (GPP) 17

ECPU instr is the instruction-dependent energy cost inside the CPU. This value is cal-
culated taking into account the dependencies between 0’s and 1’s of immediate values,
register numbers, register values, and instruction addresses.
ECPU data is the data-dependent energy cost inside the CPU. Its calculation is based on
dependencies between 0’s and 1’s of data addresses, the data itself, and the direction
(R/W).
Emem instr is the instruction-dependent energy cost in the instruction memory. Its value
is computed using word width. Also the bit switching of the data and address of the
instruction bus is considered. Emem data is the data-dependent energy cost in the data
memory. The word width and the bit switching ( of address and data) in the data bus
are considered.
After a mathematical model was established, physical measurements in the processor
and memory were performed to obtain the parameters which were not defined in the
vendor’s datasheets. The author assumes that the voltage doesn’t change between in-
structions, so only the current is measured. With the results of the measurements, linear
regression was made to find relation between current and the missing parameters. The
model shows an error of 1.7% in a sequence of 12 instructions within an endless loop.
This work provides a good accuracy, however, the design flow is still manual and the
input for the model is assembly code. Both previously mentioned factors increase the
time for DSE.

A real-time cycle-accurate energy measurement technique for digital systems is pre-
sented in [10]. The technique proposes an instrumentation using switched capacitors
to measure the voltage of a processor free from spiky noise. The work presents an in-
house measurement tool with real-time acquisition capability. The proposed tool also
samples control and address signals to associate each instruction with a value of en-
ergy. Using this tool, a multi-dimensional characterization is performed which includes
as parameters: the instruction fetch address, the opcode encoding, the operation, the
register number, the memory address, the register value, and the immediate operand.
Even though, more parameters were found in this work, these parameters where chosen
because they can be affected by software designers. This approach gives the real-time
capabilities and avoids the deliberate omission of power hungry instructions or sequence
of instructions. However, it becomes more complex to implement because of the in-house
measurement tool presented.

Abrar et.al. propose in [1], a cycle accurate activity-based energy model for embed-
ded processors. A characterization methodology is presented that doesn’t require special
hardware. The presented methodology can be used at different levels of abstraction. The
paper describes the energy consumed in a cycle with the Formula 2.2.

Ei = Base(Ii) +
∑

sǫS

asAs
i (2.2)

Where Base(Ii) is the base cost of an instruction and
∑

sǫS asAs
i is the energy consumed

because of switching activity on all modeled signals/buses. The key idea is to use a
Least Squares method to find the correspondence between energy values measured in a
processor and the transitions on signals. An energy analyzer is presented based on the
proposed method with an error of 10%. This work is similar to the work presented in



18 CHAPTER 2. RELATED RESEARCH

[35].

[30] presents a methodology to characterize power consumption at instruction-level
(single instructions and pairs of instructions). The SPARC Leon3 processor is used
for power characterization. The methodology uses simulation of back-annotated gate-
level netlists and takes into account the effect of switching activity and register relation
(which was not validated experimentally). The paper presents two models, one for
single instructions and another for pair of instructions to take into consideration inter
dependence between instructions:

• Single Instruction Model. For each instruction of the ISA, a loop of 100 exe-
cutions is used to obtain the average energy consumption of each instruction. The
body of the loop is composed of five NOP instructions followed by the instruction
under analysis and another five NOP instructions. This sequence tries to isolate a
single instruction to reduce external effects in the calculation of the base cost of a
single instruction.

• Pairs of Instructions Model. Uses them same idea as the single instruction
model, but the loop body is composed of five NOP instructions, followed by Inst1,
then Inst2 and finally another five NOP instructions. The Inst1 & Inst2 represents
each possible combination between instructions of the ISA.

The Data switching analysis proposed in this work, was made using only AND instruc-
tions. Based on simulation results, it was found that the power consumed when all bits
are changing is twice as big as when no bit was switching at all. However, to reduce
the simulation time, the switching distribution was found and a representative value
was chosen to obtain average instruction-level energy consumption. The model of en-
ergy was validated against gate-level simulation with an average error of 3.68%, when
no-switching activity was considered. The average error when switching activity was
included was 4.14%. The model of pairs of instructions has an error or 6% with no-cache
analysis included and 12% with cache analysis. This work suffers from the same draw-
backs found in previous works, it takes assembly as input and the design flow is manual,
which greatly impacts the duration of DSE.

The work presented by Tan T.K. et.al. in [37], describes a high-level software energy
estimation methodology using characterization-based macro-modeling. The proposed
modelling methodology works at the functional level of a software program. Two ap-
proaches are proposed for macro-modeling of embedded software. Each approach has
different efficiency and accuracy characteristics:

• Complexity-based. This approach is focused on data-intensive functions. The
variables that determine the complexity of an algorithm are used as macro-
modeling parameters.

• Profiling-based. This approach is focused on control-intensive functions
(branches, loops, etc). The internal profiling statistics of a function are used as
parameters for macro-modeling.

The main steps of the methodology are:



2.2. POWER ESTIMATION IN GENERAL PURPOSE PROCESSORS (GPP) 19

1. Determine the parameters that characterize energy.

2. Determine typical input data according to function and application area.

3. Obtain the energy consumption of function for every input data at lower level of
abstraction.

4. Then, using a relation function and regression analysis, determine the coefficients
that relate each of the parameters of step 1 with the energy dissipation.

The methodology was used for SPARC lite and SimpleScalar processors. The model
based on complexity-based parameters has an average error of 4.85% for SPARC Lite, and
5.65% for SimpleScalar. Profiling-based model has a max error of 22% for SimpleScalar
and 7.4% for SPARC Lite. The work presented in by Tan T.K. has the advantage
that uses c-code as input for the model, it also predicts the power consumption of a
function. However, the methodology used to determine the representative input data of
the functions under characterization is manual, which makes it slow. It also expects that
using a big number of input sets, it ensure that the input data is representative, which is
not always true. Finally the methodology it’s not enclosed in an automated design flow,
which reduces the scalability of this approach when a change of hardware is required.

In [25], a black-box modelling approach is proposed to estimate the energy of in-
structions. A processor is divided into small modules like ALUs, register files, controllers,
etc. Then, a power model for each module is assigned and integrated in a profiler that
provides information of the use of the modules per instruction. The profiler simulates
and profiles the program execution and obtains the signal activity data for the modules
in the processor. Using the signal activity and power models of the switched capacitance,
the power consumed by each module is calculated. The error of the prediction is 8%.
This approach has the disadvantage that the design details of the processor are required,
which is not always available.

A model integrated in a simulation framework is used in [33] to estimate the energy
dissipation of the PRI900 processor. A speedup of 200 is obtained with a loss of 1.4% of
accuracy compared with gate-level simulation. The model is based on Tiwari et al. [38],
where the base cost per instruction, circuit state effects, and cache miss effects are used
to estimate the power consumption. The work presented uses the DIESEL-verilog gate-
level power tool from Phillips for simulation. This work doesn’t provide a comparison
with others works and it requires simulation of a program to measure the power, which
increases DSE time.

Static code simulation is proposed in [2] to predict power and energy. The proposed
methodology has three main components:

• Instruction power profile. Using the Formula 2.3 characterizes energy dissipa-
tion per instruction.

E = EB + EOV + Eextra (2.3)

Where EB is the base cost of an isolated instruction, EOV is the energy consumed
because of the switching activity measured between pairs of instruction, and Eextra



20 CHAPTER 2. RELATED RESEARCH

is the energy consumed because of stalls and cache misses. The profiling method-
ology measures the current per instruction, the switching activity, the number of
stalls, and the cache misses.

• Static analysis of code. It uses a Control Flow Graph (CFG) built from the
program code. The CFG is used as input to the branch predictor, the loop ana-
lyzer and the path generator. The branch predictor assigns probability values to
branching events and annotates the edges of the CFG. The loop analyzer identifies
loops in the CFG and determines the number of interactions of each loop. The
path generator identifies general paths that reach the end of the program and loop
paths that reach the end of a loop. The loops paths are used to estimate loop cost
in terms of power energy and time.

• Power estimation. Finally, the information from the static analysis and the
instruction power profiler is used to estimate power and energy values.

An error of less than 20% with respect to real measurements is obtained. This work uses
previously presented works and proposes an improvement to determine the dynamic
behavior of an application using a profiler. However, the input of the model are still
assembly instructions, furthermore, static profiling analysis is required, which increases
DSE time.

2.2.1 Summary of Power Models for GPP

Table 2.2 presents a summary of the research presented in section 2.2. A description
of each column is given as follows:

• The Processor column presents the GPP used to build the model.

• The Model Input shows the input required by the model to predict power or
energy.

• The Validation Method presents the methodology used to validate the accuracy
of each work.

• The Avg Error & Max Error shows the reported average and maximum error.

• The Design Flow describes if the presented work was included in an simulation
framework or is manually used.

From the survey conducted, we can identify two types of prediction methodologies:
the manual prediction and the approach integrated in a simulation framework. Most of
the work presented, use assembly instructions as the input for the prediction, only one
work uses C code as input. The error in average is less than 10%.



2.3. RESEARCH CONTEXT AND BACKGROUND 21

Reference Processor
Model Validation Avg Error Max Error Design
Input Method % % Flow

[38] NA Ass. Inst. NA NA NA Manual

[40] ARM Ass. Inst. Phys Measure. 5 NA Simulator

[35] RISC Ass. Inst. Phys Measure. 1.7 NA Manual/Math

[10] NA Ass. Inst. NA NA NA Real-time
measurement tool

[1] NA Ass. Inst. NA 10 NA Manual/Math

[30] SPARC Ass. Inst. Simulation 3.68 - No switching NA Manual
Leon3 (Single Inst) 4.14 - Switching NA

[30] SPARC Ass. Inst. Simulation 6 - No cache NA Manual
Leon3 (Pair of Inst) 12 - Cache NA

[37] SPARC Lite C code NA 4.85 NA Manual
SimpleScalar (Complexity) 5.65 NA

[37] SPARC Lite C code NA NA 7.4 Manual
SimpleScalar (Profiling) 22

[25] NA Ass. Inst. NA 8 NA Simulation

[33] PRI900 Ass. Inst. Gate Level Sim 1.4 NA Simulation

[2] NA Ass. Inst. Phys Measure. NA 20 Static code
simulation*

*Power estimation is predicted using pre-calculated power profiles and automatic analysis of code using a simulation tool.
Ass. Inst.: Assembly Instructions
Phys Measure.: Physical Measurements

Table 2.2: Presented power and energy power models for GPP

2.3 Research Context and Background

In this section, we present the previous work used as the base for this thesis. This work
is carried out in the context of the Delft Workbench project (DWB), therefore, in Sec-
tion 2.3.1 we present the background of DWB. The DWB project targets reconfigurable
embedded processors, specifically the MOLEN polymorphic architecture which is pre-
sented in Section 2.3.2. In Section 2.3.3, we present QUAD, a memory access pattern
analyzer, which is used as a basis to build a tool for power characterization process in
our modelling methodology. In Section 2.3.4, we present QUIPU, a modelling approach
used to create the models presented in this thesis.

2.3.1 Delft Workbench

The Delft Workbench (DWB) project is presented in [5]. The authors identify a great
potential for reconfigurable computing, but identify two main problems that have to be
addressed in order to adopt this technology into large scale:

• A machine organization is required, which can provide a generic way in which
components of a GPP and reconfigurable devices can be combined.

• A tool-set is required, which provides a (semi)automated development platform
that transforms (existing or new) applications in order to use the reconfigurable
computing units.

The first problem is addressed by the Molen Programming Paradigm [39]. The second
problem is addressed by the DWB project, which is based on the Molen programming
paradigm. In the rest of this section we explain the details of the DWB design flow.



22 CHAPTER 2. RELATED RESEARCH

The Molen Programming Paradigm is discussed in Section 2.3.2. The design flow of the
DWB is shown in Figure 2.1.

Figure 2.1: The Delft Workbench Design Flow as presented in [5]

The following steps constitute the DWB design flow:

1. Profiling. It is defined as the identification of those parts in an application, which
can be mapped onto the reconfigurable hardware. The profiling process is combined
with an optimization process to ensure that the part of an application that is
mapped to the FPGA is within the boundaries defined by the design constraints.
In the partitioning process different optimization parameters are considered, which
combined with a high number of candidates, that can be mapped in the FPGA,
produce a large design space that have to be explored. Therefore, an automatic
approach is required in the partitioning process.

2. Graph Transformation. The components identified by the profiler are analyzed
usingGraph Restructuring and Loop Transformation in order to select and optimize
the components which will become new instructions in the instruction set.

3. Retargetable Compilation. When the new instructions were selected, the tar-
get architecture has to be augmented and the compiler has to exploit these new
features. For the Molen programming paradigm, a SET and an EXECUTE instruc-
tions are required for each new hardware function. In this context, the compiler



2.3. RESEARCH CONTEXT AND BACKGROUND 23

has to schedule the SET instruction in advanced before the EXECUTE instruction
is executed, to avoid an overhead caused by the reconfiguration time. The compiler
has to decide also, where to place the instruction in the FPGA. To address these
spatial-temporal constraints, the DWB introduced advanced instruction scheduling
and area allocation algorithms.

4. VHDL Generation. This step involves the generation of a hardware specification
for the identified new instructions. In the DWB design flow, the hardware is
specified using VHDL, a commonly used HLL. If the hardware description of an
instruction is not available as IP-core, during this step the HLL specification has
to be generated either manually or automatically.

In order to validate both, the Molen programming paradigm and the current available
toolset of DWB, a set of algorithms are implemented in the Molen Polymorphic Proces-
sor. As a validation example, the symmetric encryption algorithm AES is implemented
in a Xilinx Virtex II, which embeds a PowerPC as GPP. A maximum speedup of 750
times was reported for this example.

2.3.2 The MOLEN Polymorphic Processor

A new programming paradigm, a new Instruction Set Architecture, a micro-coded based
architecture, and a compiler methodology which together constitute the MOLEN poly-
morphic processor [39]. MOLEN allows the incorporation an arbitrary number of func-
tions to extend its functionality by exposing the new hardware functionalities to the
programmer/designer. The main contributions of MOLEN are:

• For a given ISA a one-time architecture extension is required to address almost an
arbitrary number of functionalities. The approach followed in MOLEN solves the
op-code explosion problem found in similar Heterogeneous Reconfigurable Archi-
tectures.

• MOLEN presents a new processor organization along with a new programming
paradigm which together solve the co-existence problem of the reconfigurable co-
processor and the general purpose processor, found in heterogeneous architectures.

• The compiler back-end technology presented allows to target a micro-architecture
based on reconfigurable emulation (ρµ-code), and the compiler implementation
allows executing the compiled code.

The Machine Organization. Figure 2.2 depicts the MOLEN machine organization
as presented in [39]. The MOLEN organization consists of the following elements:

• A “Core Processor” which is a General Purpose Processor (GPP).

• The Register File of the GPP.

• A “Reconfigurable Processor” (RP).



24 CHAPTER 2. RELATED RESEARCH

• A set of exchange registers (XREG) used to transfer data between the RP and
the GPP.

• An Arbiter that issues instruction to the GPP.

• A Data Fetch unit, which fetches and stores data.

• A Memory MUX unit, which distributes/collects data.

The RP is further divided into a ρµ-code unit which controls the execution of single
instructions or blocks of instruction (through emulation) using the custom configured
unit (CCU) which consists of reconfigurable hardware. In these CCUs, the extended
functionalities are implemented.

Figure 2.2: MOLEN machine organization as presented in [39]

The execution flow. The GPP executes all the code of an application besides the
selected sections which are implemented in the RP to speed up the entire application.
The execution of a function, in the RP, is performed in two phases:

1. SET phase, where the CCU is configured to execute certain functionality.

2. EXECUTE phase, where the actual execution of the functionality takes place.

The division of Set and Execute allows better instruction scheduling to cope with
reconfiguration latency.

Polymorphic Instruction Set Architecture (π ISA). In order to expose the
functionalities in the RP to the designer, a sequential consistent programming paradigm
is proposed. It allows parallel hardware execution and is intended for single program
execution. The programming paradigm requires only a one-time architectural extension.



2.3. RESEARCH CONTEXT AND BACKGROUND 25

The number of instructions to be added depends on the MOLEN architecture to be
implemented.

For a complete implementation, the following instructions are added to the ISA to
form a polymorphic Instruction Set Architecture (π ISA):

• Six instructions which are required to control the reconfigurable hardware: a partial
set, complete set, execute, set prefetch, execute pre-fetch and break.

• Two instruction to transfer data between the register file and the XREGs: movtx
and movfx.

For a basic implementation of MOLEN only four basic instructions are needed: the
complete set, the execute, the movtx, and the movfx instructions.

2.3.3 QUAD - A memory access pattern analyzer

As explained in [28], QUAD (Quantitative Usage Analysis of Data) is a sophisticated
memory access tracing toolset that provides a comprehensive quantitative analysis of
memory access patterns of an application with the primary goal of detecting actual data
dependencies at function level. QUAD provides a thorough analysis of the memory
access behavior of an application to improve the development, tuning and optimization
processes. QUAD is a profiler that analyzes the behavior of an application at run-time,
it detects actual data dependencies which arise when a function consumes data that is
produced earlier by another function. The actual data dependencies traced by QUAD
core are based on the journey of bytes through the memory addresses. As main features
of QUAD we can distinguish:

• Quad provides actual data dependencies at function level, which involves higher
accuracy when it is compared with similar tools that provide conventional data
dependencies.

• QUAD does not require any modification of the binaries, and it does not have
compiler dependences other than debug information.

QUAD is a Dynamic Binary Analysis (DBA) toolset implemented using the Pin
[19] framework. Pin allows a transparent instrumentation, which does not have any
dependence on the compiler or the source code language, it only requires the application
to be compiled in a common binary format.

In the Figure 2.3 we can observe the architectural overview of QUAD, including the
components of Pin. Two main components can be identified:

1. QUAD. It contains the instrumentation and analysis routines and it is linked
with Pin via the Instrumentation API (Application Programming Interface). The
main module is the Memory Access Tracing (MAT) module, which is responsible
of tracing and maintaining the memory accesses information.

2. Pin. Pin is the engine that instruments the application. It is composed of a Virtual
Machine (VM), a code cache and the Instrumentation API.



26 CHAPTER 2. RELATED RESEARCH

Figure 2.3: Architectural overview of QUAD as presented in [28]

The MAT module is based on a data structure called trie. The trie is composed of
trie nodes and corresponding data blocks. The trie nodes are implemented as an array
of 16 pointers which are used to trace the address of memory accesses. The data blocks
store the data which resides in memory addresses. The address of a memory access is
virtually stored and traced in a trie, using an arrangement of 8 levels of trie nodes. Each
level in the trie hierarchy corresponds to a hexadecimal digit in a 32 bits address. The
trie data structure is implemented in a dynamic fashion, which means that the trie nodes
and the data blocks are allocated on demand, resulting in memory overhead reduction.

QUAD was developed in the context of the DWB project. Therefore, we present
QUAD within the Profiling Framework of DWB in Figure 2.4.

2.3.4 High Level Quantitative Hardware Prediction

The work presented by R. Meeuws et.al. in [24] and [22], is used as a base for the
research conducted in this thesis.

In [24], a high level model for hardware predictions that helps in the partitioning
process of HW/SW co-design is presented. The predictions made with this modelling
methodology are used to prune the design space to find an optimal solution for different
hardware characteristics. The model is based on software complexity metrics obtained
from C-code. The software complexity metrics are used to characterize the hardware
metrics that need to be predicted. The characterization methodology is made using the
DWARV C-to-VHDL compiler [42] to automatically obtain synthesizable VHDL code
from which hardware characteristics are obtained using the Xilinx design tools. Linear
regression techniques are used to find the relationship between the obtained hardware
characteristics and the software metrics. A mean error of 68% is reported for flip-flop
prediction when this approach is validated against the results provided by Xilinx design
tools after the design synthesis.

In [22], R. Meeuws et.al. present a high level quantitative prediction modelling ap-
proach that accurately models the relation between hardware and software metrics, based
on several statistical techniques. Compared to [24], in [22] the authors propose benefi-
cial enhancements in the statistical techniques used for modelling. The contributions of
this work were:

• It demonstrates that the proposed approach can generate comparable and appro-



2.3. RESEARCH CONTEXT AND BACKGROUND 27

Figure 2.4: QUAD within the Profiling Framework of DWB

priate prediction models for two independent tool-chains and platforms. One tool-
chain is composed of the DWARV C-to-VHDL compiler [42] used with the Xilinx
ISE Synthetizer for the Virtex 4 platform. The other tool-chain is composed of the
Altera Stratix IV FPGA and the C-toVerilog compiler from the Haifa University
[3].

• It uses different statistical techniques in the modelling process to reduce the pre-
diction error of the models. The error is reduced, ranging from 15% to 34%. The
techniques used are Artificial Neural Networks (ANN), model selection, logistic
regression, and data transformations.

• It provides a detailed prediction of hardware parameters of an FPGA, such as clock
wires, logic wires, and power wires.

• It improves the relevance of the produced models by using a set of 181 kernels,
opposed to similar works which use at most tens of kernels.

A detailed explanation of Quipu modelling approach and the enhancements proposed in
this work are presented as follows:



28 CHAPTER 2. RELATED RESEARCH

Quipu models and criteria. In [24] and [23], Software Complexity Metrics
(SCM) were introduced as indicators of specific characteristics of a software code. 58
SCMs were used to characterize hardware metrics of an FPGA. Using these SCMs, a
model was selected, which approximately relates the SCMs and the hardware metrics.
The model is presented in the Equation 2.4.

ŷHW = ĝ(X̃SCM ) + ǫ̂ (2.4)

The approximation ĝ(·) can be, for example, an ad-hoc model, a Linear Regression Model
(LRM), a Generalized Linear regression Model (GLM), or an ANN. The hardware metric
to be predicted is ŷHW . The vector containing the SCMs is X̃SCM .

Quipu Tools and Kernel Library. Quipu consists of a set of tools and a Kernel
Library, which are presented in the Figure 2.5. Quipu extracts SCMs and hardware
performance metrics from a kernel library. In this work the library contains 181 kernels
from a wide variety of domains. The SCMs can be extracted using Quipu Metrica-
tion tool. The hardware performance metrics can be extracted using Quipu Hardware
Measurement tool. The SCMs and the hardware measurements compose the HW data.
The HW data was analyzed with a set of modelling scripts that automatically evaluate
different statistical modelling techniques and generate a model.

Figure 2.5: Block diagram of the Quipu modelling approach as presented in [22].

Quipu regression techniques. In [24] and [23], LRM, GLM, and Partial Least
Squares Regression (PLSR) were introduced as the techniques used for Quipu modelling.
The following statistical techniques are introduced and employed in Quipu:

1. Stepwise Model Selection (SMS). Some SCMs used in this work can measure more
or less the same software characteristic of a code, this is called collinearity between
SCMs. The collinearity is a problem during regression analysis because certain
software metrics (or predictors) are overrepresented. Therefore, in order to reduce



2.3. RESEARCH CONTEXT AND BACKGROUND 29

the chance of collinearity the number of SCMs (predictors) can be reduced. For this
purpose SMS is used. The SMS is an iterative process where different predictors
are added and removed step-by-step. Then, the significance of each predictor is
measured and the predictors that do not increase the error are removed. This
process continues until no single predictor can be added or removed to improve the
model. In this work, the SMS process was used only for GLM models.

2. Data Transformations. Many of the metrics used in this work did not show a
linear relation with the hardware metrics to be predicted. Therefore, the author
used the Box-Cox power transform [7], a known data transformation technique,
which reduces the variance of the dataset and makes the sample distribution more
similar to the normal distribution. Given the data set used in this work, the author
used for all the metrics a log transformation, which is one of the transformations
in the Box-Cox power transformation.

3. Artificial Neural Networks (ANN). Despite the data transformations discussed, the
non-linear problem was still present to some extent. Hence, ANN was included in
Quipu. The author used a ANN training package called nnet from the R statistical
computing environment.

4. Logistic Regression and Count Regression. Apart from collinearity and non-linear
behavior of the data set, the author identified many non-negatives values in the data
set. For this reason, it was possible and beneficial to use GLM techniques instead
of regular linear regression techniques. With GLM the error can be modelled
more accurately using Poisson or Negative Binomial distributions. However, GLM
requires that the dataset does not contain many zeroes, hence, Logistic Regression
was used to determine if GLM could be applied.

To evaluate the predictive quality of the statistical models generated with Quipu
a technique known as cross-validations was used. In specific, a method called K-fold
cross-validation was chosen by the author using 10-Fold cross-validation (K=10). In the
K-fold cross-validation the most common error summary is the Relative Rooted Mean
Square Error of prediction (RMSEp), therefore, Quipu reports RMSEp for the generated
models. Also Quipu reports the cross-validated coefficient of determination (R2) which
shows how much of the variance of the original dataset is explained by the model and
does not contribute to the error.

The Quipu modelling methodology was implemented in two scenarios:

1. With the DWARV C-to-VHDL compiler and Xilinx ISE 11.5, targeting Xilinx
Virtex 4 LX200 FPGA. For this scenario the RMSEp ranges from 3% up to 34%
for different hardware metrics.

2. With the C-to-Verilog compiler developed at the University of Haifa [4] along with
Quartus II 9.0 Build 235, targeting the Altera Stratix IV EP4SE530 FPGA. The
RMPSEp ranges from 13% up to 82% for different hardware metrics.



30 CHAPTER 2. RELATED RESEARCH

2.4 Conclusion

We presented in this chapter, a review of the previous research focused on power and
energy modelling. This thesis aims to improve the HW/SW co-design flow of the DWB.
We presented the previous works for modelling power and energy consumption of two
components found in heterogeneous architectures, a GPP and an FPGA. The survey
presented can be summarized as follow:

• General Purpose Processor (GPP). This component has been the subject of
a thorough research with respect to power and energy predictions at all levels of
abstraction. In the higher abstraction levels (e.g. C code) there are already works
which can predict the power consumption of one single instruction and forese the
overall power consumption of a program. However, the methodologies proposed
are completely manual, which increases the modelling time when a change of un-
derlying hardware is necessary.

• FPGA. The problem to predict power consumption has been addressed from lower
abstraction levels (RTL) up to SDL. However, there is no current work that predicts
power consumption using a HLL (e.g. C code) level. Furthermore the current
methodologies are manually applied and they are not fully integrated in CAD
tools.

According to the literature research conducted we conclude that using models for the
prediction of hardware metrics, such as power or energy consumption, involves a tradeoff
between accuracy and prediction time. This tradeoff can be explained with Figure 2.6.

In lower abstraction levels the detailed information of the hardware implementa-
tion of a design is higher. Therefore, a model using this detailed information can provide
a higher prediction accuracy. However, the prediction of power and energy consumption
requires dynamic information of a design, such as switching activity or effective capaci-
tance. This dynamic information can be calculated using mathematical models, but only
if the detailed information of the hardware implementation is available. Moreover, for
small designs the mathematical models are still feasible to use, but for complex designs
the common approaches to obtain this information are simulation and complex mea-
surements on the chip. Therefore, a prediction methodology that requires simulation or
physical measurements to obtain power or energy requires a high prediction time.

On the other hand, a higher abstraction model abstracts many details away of the
underlying hardware. The abstraction of details allows faster predictions. Nevertheless,
the accuracy of the prediction is reduced because the model is missing details of the
hardware implementation.

This thesis aims to model power and energy consumption at SDL, therefore, our
challenge is to the reduce the prediction time, meanwhile keeping enough accuracy to
perform the design space exploration in the HW/SW partitiong process. In order to
find an optimal solution for the previously mentioned modelling trade-off, we believe it
is important to solve the following issues in this thesis:

• Since the power and energy consumption is strongly determined by the characteris-
tics of the hardware component to be modelled, an automatic high level modelling



2.4. CONCLUSION 31

���������	 
���

����������	


���
 ������
��
	������

������������


������
������ ������

�
��������	 ����� ����

����������	�����	 �����������

����

������������

Figure 2.6: Tradeoff in prediction models of hardware metrics.

methodology is required in order to investigate different hardware metrics that
affect power consumption. This will help to reduce the modelling effort when
different hardware characteristics should be analyzed.

• A high level modelling methodology should not require low level details of the hard-
ware component to be modelled. If the HW component is considered as a black-box
during the modelling process, the methodology would be more flexible and scalable.
Hence, it would be possible to use it for different hardware components.

• For our purpose, we require a model which takes as input a HLL (C code) and
predicts power and energy consumption of a hardware component. The most im-
portant requirement of this model is the prediction time, because it should be
small to allow a broad design space exploration during HW/SW partitioning. The
model should also be able to provide predictions that allow qualitative comparison
during HW/SW partitioning. Even though, the absolute accuracy of the model
is not required to be as high as the models that require low level details of the
hardware.



32 CHAPTER 2. RELATED RESEARCH



Experimental Methodology

and Setup 3
The experimental setup described in this chapter is built on the conclusions derived in
Chapter 2. These conclusions are summarized here for your convenience, in the form of
research questions:

• Would an automatic high level modelling methodology help to investigate the dif-
ferent parameters that affect power consumption?

• Are the low level details of a HW processing unit necessary during the modelling
process? Does considering the HW processing unit as a black-box provides more
flexibility and scalability to the methodology?

• Does using a HLL (C code) as input for a prediction model reduces the prediction
time of the model? Do the predictions obtained with this model provide qualitative
data useful for the partitioning process in the DWB design flow?

Based on these questions, in this Chapter we propose a modelling methodology that
can be used to build prediction models of the power and the energy consumed in pro-
cessing units, such as a GPP or an FPGA. In Section 3.1, we explain the rationale
and description of the proposed modelling methodology. In section 3.1.1, we describe
the first step of the modelling methodology: the kernel isolation process. Finally, in
Section 3.1.2, we describe the evaluation criteria to select the metrics for power and
energy characterization.

Using the modelling methodology proposed, we design a set of experiments that are
described in Section 3.2. These experiments are categorized as follows:

A. Physical Measurements. In this category we measure the power consumed by
a kernel using physical measurements in a chip. The following experiment is the
only one designed for this category:

1. Experiment PowerPC.Virtex5.GPP.A.1.

B. Simulation framework. In this category, we use a simulation framework to
measure the power consumed by a kernel during its execution in the processing
unit. The following two experiments were designed for this category:

1 Experiment StrongARM.SimPanalyzer.GPP.B.1.

2 Experiment VIRTEX5.Xpwr.FPGA.B.2.

In order to assist in the identification of the experiments, and provide a proper
structure in this report, we define the following naming convention for the exper-
iments: ModellingHW .MeasurementHW .UUTtype.Category.Experiment#. Where,

33



34 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

the ModellingHW is the hardware which is being modelled, the MeasurementHW is
the chip being measured or the simulation framework being used, the UUTtype defines
in general for which UUT this experiment is made, the Category is the category of the
test, and the Experiment# is the number of experiment in that specific category.

3.1 Modelling methodology: rationale and description

The final goal of the power models, built with our modelling methodology, is to improve
the partitioning process in the HW/SW co-design of embedded systems. As we explained
in Chapter 1, HW/SW partitioning is an activity where the tasks identified in early design
stages are mapped to either hardware or software. In the context of Delft Workbench,
the tasks are C-coded functions (throughout this thesis we refer to these functions as
kernels). Thus, the models built with the proposed modelling methodology will predict the
power consumption of kernels, defined in an application source code.

In order to provide a fast and accurate estimation of the power and energy consumed
by a function, we should characterize the power, consumed by the function, using a set of
high-level metrics that describe the function and the underlying hardware. In the scope
of this thesis, we used the Software Complexity Metrics (SCM) presented in [24] and
we envision an automated approach that allows the configuration, or even the change,
of the underlying hardware. This work uses, as base, the QUIPU modelling approach
presented in [22], with an already selected set of software metrics describing a C-coded
function.

Using these assumptions we design the modelling methodology presented in Figure
3.1.

Kernel
Library

(Benchmarks)

ARGS tool
(Isolation
Process)

Quipu
Metrication

Tool

Power/Energy
Model

Application
binary

Input 
dataset

Application 
source code

x86
GCC

HW specific 
toolchain

Power & Energy
Measurement

HW under test

Kernel source code 
(Pre-processor 
output)

QUIPU 
Modelling
Scripts

Power Data

Data 
metrics

H
W

 C
on

fig
ur

at
io

n

SCMs Cross
validation

Predictions

Figure 3.1: Modelling methodology diagram



3.1. MODELLING METHODOLOGY: RATIONALE AND DESCRIPTION 35

The methodology uses a Kernel library which contains a set of common applications
and benchmarks. The applications are collected from different domains, such as, Multi-
media, Cryptography, Error Correction, Physics, and Mathematics. These libraries were
selected because they are commonly used in high performance computing, which is the
target of the DWB project.

For each application in the Kernel library one (or more) kernel(s) were selected for
characterization. The selected kernels have the following properties:

• Candidacy for hardware implementation. It should be possible to get a
synthesizable hardware component for the FPGA using a C-to-VHDL transla-
tor. Therefore, the kernel should not have function calls, because they cannot be
mapped to hardware by the DWARV C-to-VHDL compiler [42]. Also the func-
tions do not use globals variables, because in the Molen organization the value of
a global variables cannot be passed to a function, unless is passed as a argument
of the function.

• No loops. In the scope of this thesis, we only select kernels that do not have
loops, because the number of times the body of a loop is executed influences the
energy consumption. Analysis of kernels with loops is left as future research of this
thesis.

The Table 6.2 in the appendix 6.4, provides a summary of the kernel library.
We can describe the proposed overall modelling methodology with the following steps:

1. Kernel Isolation Process. For each kernel execution, we obtain the data passed
to the kernel (through the arguments). This step is carried out using a tool de-
veloped in this work, called ARGS. In Section 3.1.1, we provide further details of
this step.

2. Metrics Extraction. Extract the metrics that will be used for characterization.
We define two types of metrics: the static metrics (SCMs), and the dynamic metrics
(such as the number of cycles required to execute the kernel, or a metric that
describes the data passed to a kernel). The static metrics are obtained using the
qpm-metricator tool [22]. The dynamic metrics are extracted using the ARGS
tool and a set of bash scripts. Section 3.1.2 presents a detailed description of the
metrics used in this work, and the details of the extraction process.

3. Power Measurement. Obtain the power consumed by the kernel using a con-
trolled experiment. This experiment uses the datasets obtained in step 1. The
datasets are used as input for the kernel during the measurement of power and
energy. It is important to mention that in this work two type of experiments were
designed, one using physical measurements, and another using simulation. These
experiments are categorized as follows:

(a) Physical Measurements. In this category we measure the power consumed
by a kernel using physical measurements in a chip. The characteristics of
this experimental setup are presented in Section 3.2.1. One experiment was
designed in this category, and is described as follows:



36 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

i. Experiment PowerPC.Virtex5.GPP.A.1. In this experiment we
measured the power consumed in a PowerPC processor, embedded in
a Virtex 5 chip. The details of this experiment are presented in Section
3.2.1.2

(b) Simulation framework. In this category, we use a simulation framework to
measure the power consumed by a kernel during its execution in the processing
unit. The details of this experimental setup are presented in Section 3.2.2.
We designed two experiments that are summarized as follows:

i. Experiment StrongARM.SimPanalyzer.GPP.B.1. This experi-
ment uses the Sim-Panalyzer simulator, configured as a StrongARM pro-
cessor, to obtain the power consumption by a kernel running in the Stron-
gARM processor. The StrongARM is configured with a clock of 200MHz
and a voltage source of 1.8v. The complete configuration file is presented
in Section 6.1. The details of this experiment are presented in Section
3.2.2.3.

ii. Experiment VIRTEX5.Xpwr.FPGA.B.2. This experiment uses the
xpwr tool of Xilinx to estimate the power consumption of a kernel imple-
mented in a Virtex 5 XC5VFX130TFF1738-2 FPGA (with the MOLEN
machine organization). The details of this experiment are presented in
Section 3.2.2.2.

4. Power Data Matrix consolidation. Create a power data matrix with the
measured values and the extracted metrics.

5. Model Building. The Quipu modelling methodology is used to obtain a power
and energy model in this step. The power data matrix is used as input for Quipu.
In section 2.3.4, we presented the details of the Quipu modelling approach.

3.1.1 Kernel Isolation Process

Initially, in this section, we present the reasoning behind the first step in our modelling
methodology, the Isolation Process. Subsequently, we describe the implementation de-
tails.

In order to reduce the complexity of measuring the power and energy consumption
of a kernel during its execution in a processing unit (GPP or FPGA), we can execute
the kernel isolated from its application. However, if we only execute the kernel, we need
to provide input data through the arguments as well. The data passed through the
arguments of a function (kernel) determines its dynamic behavior and, thus, the power
that will be consumed during the execution of the function. For instance, if we pass
randomly generated data to the function we might replicate the same dynamic behavior
of the function over and over again and miss important execution paths. As a result, it
is important to provide representative data to the function in order to exercise the most
typical execution paths (power-wise) within the function. Moreover, since the type and
values of the data determine the dynamic behavior of the function, it is also important
to select valid data that ensures a correct execution of the function.



3.1. MODELLING METHODOLOGY: RATIONALE AND DESCRIPTION 37

With the Kernel Isolation Process we mean the selection of representative and valid
data of any function, which allows its isolation from an application. This process could
be manually performed through code traversal. However, a manual approach would
increase the complexity and time of the isolation process. Therefore, we assume that
it is important to use an automatic approach to select the input data of any function
in order to reduce the time of the kernel isolation process. In addition, the automatic
approach should be able to select representative and valid input data.

For this purpose, we designed the ARGS tool that automatically performs the Kernel
Isolation Process. The ARGS tool executes the entire application, and for each kernel
execution, the input data (passed through the arguments) is recorded. With this ap-
proach we ensure that valid and representative data is selected. The ARGS tool uses
Pin (a toolkit for dynamic instrumentation of a program) to trace and record the input
data passed to the kernel. In the following subsection, we describe the implementation
details of ARGS.

3.1.1.1 The ARGS tool

The ARGS tool was designed for two purposes:

• Kernel isolation. The ARGS tool isolates the kernel from its application by
extracting the input data passed to a function. For each execution of the kernel,
ARGS traces and stores the data present in the memory of the arguments before
it is modified by the function. We call this data the input dataset.

• Validation of the kernel. After the kernel is executed, the function could have
modified the memory regions of the arguments or the return value. Therefore,
ARGS traces and stores the data present in the memory arguments after it is
modified by the function. We call this data the output dataset. This dataset is
used for validation purposes.

We use the Pin toolkit to instrument the application in order to extract the input
and output data of a kernel. However, Pin does not provide a function that returns
all the data passed to a function or modified by a function. Therefore, we use the Pin
API to trace all the memory accesses occurred during the kernel execution, in order to
associate the corresponding accesses with each of the arguments in the function. As a
result, we developed the ARGS tool, a customized tool that uses the Pin API to trace
memory accesses, which are used to obtain the input and the output data of a function.

Since the ARGS tool traces memory accesses in an x86 processor, we consider it is im-
portant to present an introduction of the memory-segments layout in an x86 architecture
used by C compilers:

Figure 3.2 shows the memory-segments layout commonly used by C compilers in
an x86 architecture with Linux, as presented in [36]. We are mainly interested in two
areas, Heap and Stack. Heap holds the dynamically allocated variables in a program
and stack holds the Activation Records of the functions. These segments contain the data
passed to a function through the arguments, thus we need to trace the memory accesses
made in these regions. As shown in Figure 3.2, stack grows downwards (from high to low
memory addresses), and heap grows upwards (from low to high memory addresses). The



38 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

������� ���	
���
�	���

���
	�������	�� �������	�

������������	 
�����
���

����������	 
���

���� ��� �		����

���� �		����

�����������

�����

����

Figure 3.2: Common memory-segments layout used by C compilers in a x86 architecture

Extended Stack Pointer (ESP) defines the boundary between these segments. The stack
region expands each time a function call is made in the program. The actual process to
call a function is determined by the compiler. As explained in [14], for each function
call found in the source code of a program, the compiler generates assembly code that
performs the following actions:

1. Provide a new environment for the called function with some temporary memory
to store local variables.

2. Pass the parameters of the called function to the new environment.

3. Transfer the control flow to the called function.

4. Return information and control flow from the called function to the calling function
(in a successful and normal execution).

The new environment is a data structure called activation record, which is stored in
the stack in a Last In First Out (LIFO) fashion. The activation record contains the
information required to associate a function call in a program. The typical structure of
an activation record is shown in Figure 3.3, based on the structure presented in [14].
One should note that the details of the construction of the activation record is out of
the scope of this work.

When the activation record is made, Pin is able to deliver the memory addresses of
the Extended Base Pointer (EBP) and the ESP to ARGS. These pointers are used to de-
termine the accessed memory region when a memory Read or Write is performed. Apart
from EBP and ESP, it is necessary to know the Effective Address (EA) of the arguments
(or parameters) passed to the functions. This information is important because we want



3.1. MODELLING METHODOLOGY: RATIONALE AND DESCRIPTION 39

�������� 	
�������


��
���

����������

�	�
�
�����
��


�������
��

���������
�����

����

�
�� �		����

��� �		����

�������
����

�����

���� ��
����

�����

!"�����

���
���
��

#����	

���� 

Figure 3.3: Typical Activation Record structure

to associate a memory read or write to the appropriate function argument. The EA of
the arguments is provided by Pin.

Following this brief overview, we now explain how the data passed to the function,
through the arguments, is traced in ARGS. The general steps for this procedure are as
follows:

1. Get and store the EA the address pointed by the arguments passed by reference.

2. Trace all the memory read and write operations while the function is running.

3. Filter the memory accesses, during the execution of the function, that read or write
to the memory regions of each argument, using the EA extracted in step 1, ESP
and EBP.

4. While the function is running, we store, temporarily in RAM, the input and output
data, and the addresses of the filtered accesses.

5. After the execution of the function and before its return, we associate the filtered
memory accesses to each memory region of the arguments.

6. Before the function returns, we store in one file the input data of the function. In
another file, we store the output data of the function.

Using the general steps outlined above, we design the software architecture of ARGS
tool, which is presented in Figure 3.4. In the following subsections, we describe the
implementation details of each module in ARGS.



40 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

����

�����	
��


����	��

����	����

����������


��
����



���
���

�	����
���	��
�����
����	�

��
���	
�	����
����
������	
��������	�
��
�

�	���
	
�
�	����
����
������	

��

����

��
����

 ��	


!
��������	

����������

"�
���
������������������

#�����


�����	��

$
���


�����	��

Figure 3.4: ARGS tool Software Architecture

The Pin Toolkit . ARGS uses Pin, a dynamic instrumentation toolkit presented in
[19], to extract runtime information of an application. The data provided by Pin is used
for different purposes in the modules of the ARGS tool.

ARGS receives as input a binary of an application compiled for x86 architecture.
ARGS also receives the name and the prototype of the function to be isolated. This in-
formation is used by Pin to provide runtime data to the modules of ARGS. The following
data is provided by Pin during the execution of an application:

• Runtime Addresses of the arguments. The EA of each argument in the
function are passed to the Arguments Address Collector module.

• Memory Access Data. During the function execution, all the memory accesses
(R/W) are traced by Pin, and the data and the addresses are passed to the Memory
Access Filter module.

• EBP & ESP. The EBP and ESP of the current activation record are passed to
the Memory Access Filter module each time a memory access is detected.

• Start/Stop signals of the function. Pin provides a start and stop signal to the
Memory Access Filter and the Runtime Memory Data Storage modules.



3.1. MODELLING METHODOLOGY: RATIONALE AND DESCRIPTION 41

The implementation details to gather the information outlined above are presented
as follows. The Pin toolkit works as a Just In Time (JIT) compiler. Because it allows the
dynamic inclusion of arbitrary code (C or C++) before or after executing any machine
instruction. In addition, Pin also allows the inclusion of code using higher abstractions,
such as, a binary image, or a function.

At any abstraction level, it is necessary to define in Pin a mechanism which decides
the code to insert and the exact place to do it , this code is grouped in instrumenta-
tion functions. The functions which analyze and gather any dynamic information of an
application are called analysis functions.

In the ARGS tool, we insert an instrumentation and an analysis function for the
following abstraction levels:

• Binary image. It is necessary to insert an instrumentation function before loading
a binary image, because we need to search in the symbol list (only available when
loading the image), the name of the kernel to be analyzed. If the kernel symbol is
found, we insert an analysis function before the kernel is executed; this function
stores the EA of any number of arguments in the kernel and signals the start of the
kernel execution. We also insert an analysis function after the kernel is executed
to signal the end of the kernel execution.

• Function. Before and after any function is executed we insert an analysis function
to check if the kernel is running. This function was added to allow the scalability
of ARGS, because it allows executing any other function inside the kernel.

• Instruction. We insert an instrumentation function that inserts (different) anal-
ysis functions before and after a memory read or write instruction is executed.
Before a memory R/W instruction is executed, the inserted analysis function ob-
tains the data present in memory before the instruction is executed. After the
memory R/W instruction is executed, the inserted analysis function obtains the
data present in memory after the instruction is executed. Both analysis functions
obtain the ESP, the EBP, and a flag which shows if the memory operation is a
read, or a write.

Arguments Address Collector . This module stores the EA of the arguments and
passes this data to the Memory Access Filter.

Memory Access Filter (MAF): . This module acts as a runtime filter of the memory
accesses traced by Pin during the execution of an application. The memory accesses
are triggered by read or write instructions, and for each memory access, this module
receives the data, the address, along with the ESP and EBP pointers. The following
rules define which memory accesses are passed to the Runtime Memory Data Storage
(RMDS) module:

• No pointers. If the prototype of the function does not contain pointers, there is
no need to trace any memory access because Pin can directly provide the data of
the arguments passed by value.



42 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

• Kernel is running. Only the memory accesses occurring during the execution of
the kernel are passed to the RMDS module.

• Access below the Lowest Argument EA (L.Arg.EA). Any access below
the lowest EA of the arguments is ignored. Because, we assume that the address
pointed by the EA of an argument, is the lowest address a function will access. We
also assumed that the functions to be profiled do not use globals variables, because
the Molen organization do not pass global variables to a function, unless they are
passed as arguments. As a result, the globals region, that is below the heap, will
not be accessed at all.

• Heap Access. All accesses to the heap are stored, except if the base address of the
access is the EBP. This restriction is defined because when the called function starts
execution, writes the values of the registers, which are going to be restored when the
function returns, in the current heap region. This operation is, in principle, pushing
the register in the stack, however what actually happens is that the register data
is stored in the current heap and then the ESP is modified to point to the end of
the last stored value (expanding the stack). These memory accesses have the ESP
as the base address, and don not modify the memory regions of the parameters.

• Local Variable Access. All memory accesses to the local variable segment in
the stack are ignored because there are only two regions where the arguments can
be stored:

1. In the heap, if the memory region of the argument is dynamically allocated.

2. In the arguments region (above the EBP), which is not part of the local
variables segment.

The mentioned rules are graphically shown in the decision flow presented in Figure 3.5.

Runtime Memory Data Storage (RMDS) . The purpose of this module is to
temporarily store the data of the memory accesses filtered by the MAF module, during
the execution of the kernel. At the end of the kernel execution, the data is processed
by the Permanent Memory Data Storage module and the data in the RMDS module
is invalidated. We based this module in the QUAD toolset [28]. The authors propose
an efficient Memory Access Tracing (MAT) module for the storage and retrieval of data
associated with memory addresses. The MAT module is part of the QUAD toolset.

For each execution of the kernel, two datasets are stored in the RMDS module,
the data contained in the memory regions of the parameters before it is modified by
the function (input dataset), and after probable modification by the function (output
dataset). As a result, one trie data structure is used in the RMDS module, the Memory
Data trie, which stores the input dataset and the output dataset. The procedure to store
the input/output datasets is as follows:

We search in the memory data trie for each memory address filtered by the MAF
module. If we cannot find the address, it means that it has not been accessed during
the current execution of the kernel. Therefore, we store the data present in the memory
location in the input and output data blocks.



3.1. MODELLING METHODOLOGY: RATIONALE AND DESCRIPTION 43

���������

�	
����
���


���� ����������

���

��

���

���� � ���

����� ������

����



�	
����� �����

�������	��� �����

��	��

�
�

��

��

���

���

���� ������
��	� 
�	��


������

����� ������

��

���

��

���
��

� 

�
�

��

���

Figure 3.5: Decision Flow of Memory Access Filter module in ARGS tool.

If we can find the address in the memory data trie, it means that this address has
already been accessed in the current kernel execution. Therefore, we need to determine
if a read or write instruction triggered the memory access, because only after a write
operation the output data block is updated.

However, we need a pre-processing step in order to determine if the instruction that
triggered the memory access would modify the memory address. We can use Pin to
determine if the instruction is a read or write. However, Pin does not provide the data
to be written in memory until the write instruction is executed. On the other hand,
after the execution of an instruction Pin can only provide the address of the instruction
executed. Therefore, before executing a write instruction we store in the Instruction
Address trie the address of the instruction and the EA to be modified. Then, after the
execution of any instruction we search in the Instruction Address trie the address of
the instruction, if the address exists in the trie it means that this instruction is a write
instruction, stored previously, and we can get the EA modified. Using now the modified
EA and the size provided by Pin we filter the useful memory accesses using the MAF
module and finally, the RMDS module stores the data modified in the output data block.



44 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

Permanent Memory Data Storage (PMDS) After the kernel is executed, the
PMDS module traverses the memory data trie contained in the RMDS module to asso-
ciate the stored data with each of the arguments passed to the function. This module
produces two output files one containing the input dataset and another one with the
output dataset. Both files contain continuous blocks of memory associated with the ar-
guments of the function. In order make the memory blocks continuous, we inserted
zeroes in the memory regions that were accessed (R/W) during the execution of the
kernel.

3.1.2 Evaluation criteria

In order to characterize power consumption of a function using metrics, we need to find
the high level abstraction parameters that can be associated with the power consumed
by a function, while reducing prediction time and maintaining the required accuracy.
The required accuracy is defined by the purpose of the power or energy prediction, for
instance, in early design decisions (specifically partitioning process) a lot of predictions
are required, thus a reduced prediction time is preferred and a prediction that can provide
qualitative data for comparison is required. Therefore, the absolute accuracy of the
prediction it is not the main concern.

For this thesis, we foresee two types of parameters that can be used for power char-
acterization:

1. Parameters that describe a C-code function statically, meaning that no informa-
tion regarding the dynamic behavior of the function is described by using these
parameters. For instance, the Software Complexity Metrics (SCM) that de-
scribe some characteristics of a software code, such as, the number of basic blocks,
the number of local variables, or the number of loads and stores to memory can be
used. The main characteristic of these parameters is that no dynamic profiling is
required.

2. Parameters that describe the dynamic behavior of the function. As an example,
for the GPP model, the average number of cycles taken by the function call, or
the input data passed to a function through the arguments, can be used. These
parameters share the characteristic that we need dynamic profiling to obtain them.

In the rest of this thesis, we refer to the parameters selected in this step as metrics.
In Section 3.1.2.1 we describe the static metrics that we chose for characterization, and
in Section 3.1.2.2 we present the dynamic metrics. It is important to mention that the
set of metrics described in the following subsections are not the final metrics used to
build the model. Later in Section 4 we analyze the power data obtained during power
characterization and define a final set of metrics that have higher correlation with the
power consumption.

3.1.2.1 Static Metrics

In [22], the authors select a set of SCMs to build models that predict hardware metrics
of FPGAs. We based our work in [22], therefore, we use the same SCMs. The SCMs



3.2. EXPERIMENTAL SETUP 45

and a brief description of each metric, are presented in the appendix 6.1 in the Table
6.1.

3.1.2.2 Dynamic Metrics

Along with the SCMs, we select the amount of data transferred to the function through
the arguments on each execution, for characterization. Specifically, this metric refers
to the memory regions of the arguments consumed by the function, measured in bytes.
Each memory regions is bounded by the address passed through the argument (lower
bound) and the last consequent memory address accessed by the function.

Also for each model we can use specific dynamic information of the underlying hard-
ware for characterization. As an example for a GPP, we can use the number of in-
structions committed, and the number of cycles that the function takes to execute, the
number of loads and store. This information should be extracted when the function is
executed in the underlying hardware. Specifically for our GPP model, we use an ARM
simulator [26] and the simulation results provide the information that is utilized for
power characterization.

Table 3.1 also provides a list of dynamic variables selected for power characterization
along with a brief description.

Metric Description Target Model

data.consumed Data consumed by a kernel function GPP/FPGA

sim cpi Cycles per instruction GPP

sim cycle Total simulation time in cycles GPP

sim ipc Instructions per cycle GPP

sim num insn Number of instructions committed GPP

sim num refs Number of loads and stores GPP

Table 3.1: Initial set of dynamic metrics

3.2 Experimental Setup

In this section we describe the implementation details of the modelling methodology
proposed in this thesis. In general, the experimental setup is composed of a Unit Under
Test (UUT) which accepts inputs (parameters) and produce outputs (power data) after
an action is performed. The UUT can be any processing unit, such as, a GPP or an
FPGA, and it is possible to use a simulation framework or physical measurements on a
chip to obtain the power values. During the modelling process, the UUT is considered as
a black box in order to make the experimental setup scalable by allowing the exchange
of different UUTs.

For this thesis, two different category of experimental setups were designed and im-
plemented. For each category at least one experiment was designed, as explained in
Section 3.1. In Table 3.2, we present a comparison of the main characteristics of each
experiment. For the experiments presented in Table 3.2, we use the design tools detailed
in Table 3.3.

The experimental setup that uses physical measurements on a chip can provide more
accurate values of power consumption and, as such, the quality of the prediction models.



46 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

However, this approach proved to be time consuming and a non-trivial task, because it
requires high-end measurements tools.

Alternatively, the experimental setup with simulation frameworks is useful to prove
the modelling methodology proposed in this work. It allows a wider exploration of hard-
ware parameters that affect the power and energy consumption in a UUT. As an example,
the Sim-Panalyzer simulator [26] used in our experiments allows changing the clock fre-
quency, the number of cache levels, the cache memory size, and other architecturals
parameters of a GPP, which can be included in the modelling process to investigate its
corelation with power or energy consumption.

In Section 3.2.1, we present the implementation details of the experimental setup
using physical measurements. It is important to clarify that the results using physical
measurements were not satisfactory, because the used measurement tool does not have
the required technichals characteristics to accurately measure the experiments designed.
However, we present the details of the measurements and provide relevant discussions of
the results.

In Section 3.2.2 we present the implementation details of the experimental setup
using the simulation frameworks presented in Table 3.2.

3.2.1 Physical Measurements

The experimental setup category that uses physical measurements aims to detect slight
differences in current and voltage, caused by the execution of specific actions in a UUT.
Throughout this thesis we call these actions as, Action Under Test (AUT). The start
and end of the AUT is controlled and monitored in order to measure only the AUT. The
AUT is a designed experiment which accepts modification of its dynamic characteristics
using the parameters selected for modelling.

As an example, with a GPP as the UUT we can use the ISA as the abstraction
level, and the bit-switching activity of the operators as a parameter that characterize
the power consumed by an instruction. Then, an AUT would exercise different values

Experiment PowerPC.Virtex5.GPP.A.1 StrongARM.SimPanalyzer.GPP.B.1 VIRTEX5.Xpwr.FPGA.B.2

UUT GPP GPP FPGA
PowerPC 440 StrongARM Virtex 5 XCVFX130TFF1738

Input of the model ISA Functions in C code Functions in C code

Measurement method Physical measurements: Simulation framework: Simulation framework:
using SysMon on-chip module Sim-Panalyzer 2.0.3 Xilinx xpwr tool

Clock frequency 475 MHz [41] 200 MHz 100 MHz

Power supply voltage 1 v 1.8 v 1 v

Table 3.2: Comparison of two experimental setups implemented in this work.

Design tool Version

Sim-Panalyzer 2.0.3

Xilinx ISE suite 12.2

Xilinx Chipscope 11.2

Command line tools of Xilinx 12.2

ModelSim 6.5

DWARV C-to-VHDL compiler r945M

Table 3.3: Design tools used in the experiments of this thesis



3.2. EXPERIMENTAL SETUP 47

of bit switching activity of the operators, to allow the power characterization of the
switching activity. As a result, it is necessary that the AUT allows the change of the
switching activity of the operatiors in an instruction.

As a result, the AUT should admit the change of bit switching activity of the oper-
ators.

In this experimental setup the principal concern is the accurate measurement of power
consumption. This problem can be addressed in many different ways, and the choice de-
pends on the available resources and the UUT to be measured. This research is conducted
in the context of DWB, and uses the MOLEN architecture [39] as the chosen heteroge-
nous architecture. MOLEN is implemented in a Virtex 5 Chip (XC5VFX130TFF1738-2)
that contains reconfigurable fabric and two PowerPC 440 cores embedded in the same
chip.

We present a detailed description of the available resources for this experimental
setup as follows.

• The PowerPC 440 cores and the FPGA fabrics are enclosed in a single chip, as a
result, we cannot measure independently the power consumed by each UUT (the
GPP and the FPGA). Therefore, we measure the power consumption of the entire
chip and carefully design experiments that isolate the power of each UUT.

• The Virtex 5 device has an on-chip hardware module composed of Analog to Digital
Converters (ADC) called SystemMonitor (SysMon). SysMon is able to measure the
voltage, and the current of the power source of the chip. The current is measured
indirectly by measuring the voltage drop in a Kelvin resistor that is in series with
the power source.

• The Virtex 5 chip is placed in a ML510 development board which already integrates
the Kelvin resistor with a value of 2.2 mΩ. The ML510 board provides also two
test points that allow access to the terminals of the Kelvin resistor for external
measurement.

• Xilinx provides the tools (ChipScope) to control SysMon and get the power mea-
sured, using a JTAG I/F. Moreover, Xilinx provides a Tcl interface which can be
used for an automated solution.

Apart from the available resources summarized above, there are some requirements
which were considered for this experimental setup:

• The number of tests to be made is high, we want to measure the different per-
mutations between the 71 instructions of the PowerPC ISA. Consequently, the
experimental setup should be automated and allow unattended execution of the
tests.

• We want to measure power consumption only during during the execution of the
AUT. Hence, the experimental setup should be able to precisely start and stop a
measurement.



48 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

Since the main element of this experimental setup is the instrument used to measure
the power consumption, we provide a detailed description of the technical characteristics
of SysMon. This description is provided in the following section.

3.2.1.1 System Monitor (SysMon) technichal characteristics

The SysMon is a built-in hardware module in the Xilinx Virtex 5 chip which can measure
the following characteristics:

• The voltage in the power sources of the chip (Vcc and Vccaux).

• The chip temperature, provided in C.

• Voltage off-chip with 16 ADCs.

• Differential off-chip voltage using the dedicated VpVn channel.

All the ADCs integrated in SysMon have a sampling frequency of 200 Ksamples per
second. When the SysMon is enabled, it provides the measured values in a set of registers
available through the JTAG interface.

The SysMon does not integrate a way to measure current of the Vcc power source
directly. However, with the ML510 board, the setup to measure current of Vcc consists
of VpVn inputs connected to a 2.2 mΩ Kelvin resistor that is connected in series with
Vcc. The VpVn channel can measure differential voltage between Vp and Vn inputs. As
a result, we can indirectly measure the current of the power supply (Vcc) using Ohms
law.

Further details of the resolution of the sensors of SysMon are as follows.

Resolution of the power supply voltage sensor According to the Xilinx documen-
tation, the Virtex 5 integrates an on-chip power supply sensor that allows measurement
of the voltage in the power supply. The sensor samples and attenuates the voltage of the
power supplies ,Vccint and Vccaux, by a factor of three. The range of measurements are
in the range of 0 volts to 3 volts with a resolution of one least significant bit (LSB) =
2.93 mV. Equation 3.1 describes the transference function of the power supply sensor:

SupplyV oltage[volts]=
ADCcode× 3

1024
(3.1)

The output code of the sensor is 10-bit long, therefore, the digitized data of the sensor
can present up to 1024 different values, with a range from 0 up to 0x3FFh.

Resolution of the power supply current sensor A 2.2 mΩ resistor is connected
in series with the Vcc power supply, and VpVn inputs are used to measure the voltage
drop in the resistor, which indirectly give us the current.

The VpVn inputs are connected to an ADC with 10-bit output code, configured in
differential mode. In this mode the VpVn ADC provides values from -500(0x200h) to
499(0x1FFh), with one LSB = 0.977 mV.



3.2. EXPERIMENTAL SETUP 49

Now that we know the resolution of the VpVn ADC, we can obtain the resolution of
the current measurements using Ohm’s law. The resolution of the current measurements
is shown in Formula 3.2.

ILSB =
V pV nLSB

R
=

0.977mV

2.2mΩ
= 443.892mA (3.2)

3.2.1.2 Experiment PowerPC.Virtex5.GPP.A.1 description

Based on the presented conditions and requirements, we have designe the Experimental
Framework shown in Figure 3.6. The experimental setup consist of two parts, the Power
Measurement Tool (PMT) and an accompanying set of bash scripts. These scripts drive
the Xilinx tools, such as Chipscope and Impact, to get data from SysMon and program
the board, respectively. Furthermore, the interface with the PMT. This tool, which is
written in Java, orchestrate the execution of the experiment and gathers the data. The
main features of PMT are:

• It provides remote access to the PC connected to the board, using an open source
SSH library (Remote Connector module).

• The AUT can be scheduled using First In First Out(FIFO) scheduling policy (Test
Scheduler module).

• It has a Graphical User Interface (GUI) to upload the AUT to the scheduler. For
each AUT, the user has to provide a description, a name, and a bit file required to
program the AUT in the board.

The Figure 3.6 shows the software architecture of the PMT within the experimental
framework.

PMT

Virtex 5

SysMon
SysMon I/F

RS-232

port

Test

Runner

Test

Scheduler

R
e
m
o
te
 C
o
n
n
e
c
to
r

Programmi

ng I/F

J

T

A

G

Log

Module

Test

Loader

GUI

SCRIPTS HL Language (Java)

Figure 3.6: Experimental Framework for experiment PowerPC.Virtex5.GPP.A.1

3.2.1.3 AUT description

. In the Virtex 5 FPGA we require the following two files to program the board:

1. A bitstream that contains the information to configure the reconfigurable fabrics
and HW modules available in the FPGA. This file is generated with the Xilinx
design tools.



50 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

2. An object file in the Executable and Linkable Format (ELF) that contains an
executable image which is executed in the PowerPC processor.

Both files are wrapped in a single file (download.bit) that can be loaded to the Virtex
5 to program the board. The startup process, after loading the download.bit file, starts
with one PowerPC Core booting, after the booting procedure finishes, the main function
is executed. When the main functions starts execution, the control flow is given to the
program stored in the ELF file. For our experimental setup, after the control flow is
given to the main function we disable the cache memory and enable the UART of the
PowerPC, and then the AUT is started.

For the FPGA, the reconfigurable fabrics are configured using the bitstream. The
functionality and the control flow depend entirely on the design implemented. For the
MOLEN architecture, the PowerPC acts as the master component in the Processor Local
Bus (PLB). The Custom Computing Unit (CCU) is an slave in the PLB, therefore, for
the FPGA and the GPP the PowerPC will start the AUT.

We present the implementation details of the AUT for the GPP as follows.

Description of the AUT in the GPP. For the GPP we select the ISA of the Pow-
erPC as the abstraction level, similar to the work presented in [38]. Based on the ab-
straction level chosen we defined a template for AUT which is composed of the following
elements:

• An ELF file which contains the main function with a loop that executes a specific
number of times a single assembly instruction of the ISA.

• A BIT file that contains the configuration information to implement MOLEN ar-
chitecture in the Virtex 5 FPGA.

The pseudo-code presented in Listing 3.1, sketches the template in C code that was
used to create the ELF files for power characterization:

Listing 3.1: Template to create ELF file for PowerPC

1 int main ( ) {
2 i n i t p l a t f o rm ( ) ; // Disab l e caches and enab l e UART por t .
3 s i g n a l s t a r t ( ) ; // Send charac t e r through s e r i a l por t
4 // to s i g n a l s t a r t o f AUT.
5 while ((−− i t e r a t i o n s )>0) {
6 loop ( ) ; // Loop o f one ISA i n s t r u c t i o n
7 // repea ted mu l t i p l e t imes .
8 }
9 s i gna l end ( ) ; // Send a charac t e r through s e r i a l por t
10 // to s i g n a l end o f AUT.
11 }

The loop( ) function inlines the assembly instruction to be repeated multiple times.
The average number of instructions that are inlined in a loop is 500. And the number



3.2. EXPERIMENTAL SETUP 51

of repetitions in the outer (while) loop is 40 million. Therefore, one single instruction is
executed on average 20× 109 times per AUT.

The code in Listing 3.2, shows an example of a loop function for an add instruction.
As can be seen in the code, the add instruction uses registers to transfer data, as many
other instructions. Therefore, we tried to randomize the data passed to the instructions
by changing the order of the registers used to transfer data, with the purpose to account
for the effects of the registers, in the power consumption. In the Listing 3.2 we can
observe the randomization method we are referring to.

Listing 3.2: Example of an AUT in the PowerPC

1 #define loop ( ) a sm v o l a t i l e (\
2 ”add %%r4 , %%r3 , %%r2 \n”\
3 ”add %%r3 , %%r4 , %%r2 \n”\
4 . . . .
5 ”add %%r2 , %%r3 , %%r4 \n”\
6 ”add %%r2 , %%r2 , %%r4 \n”\
7 : / no ou tpu t s /\
8 : / no inpu t s /\
9 : ”%r3 ” , ”%r2 ” , ”%r4 ” \
10 ) ;
11 #endif

Following a similar structure as the one shown in Listing 3.2, a set of loops were
created to measure the power of all the instructions in the ISA of the PowerPC.

Finally, in order to measure the power consumption of each instruction, we send
a character through the serial port to signal the start of the AUT. Since the serial
port is monitored by the PMT tool, when it receives the start character, it begins the
measurements, using SysMon. When the AUT ends, it sends a character to the PMT
tool to stop the SysMon measurements. All the measurements made by SysMon are
obtained through the JTAG interface and does not affect the operation of the GPP.

Notice that the results and analysis presented in Section 4.1.1, were not satisfac-
tory. We will present that the results obtained with SysMon present a non-repeatable
behavior. In order to root the problem of this behavior, we perform a validation exper-
iment that uses an oscilloscope to measure the voltage dropped in the Kelvin resistor.
This experiment is referred as PowerPC.Virtex5.GPP.A.1.4 during this thesis, and the
characteristics of the experiment are presented as follows:

1. The same bit files used during the experiments with SysMon were used in these
experiments.

2. Since the measurements made with the oscilloscope were completely manual, we
did not test all the instructions measured with SysMon.

3. We add two instructions in this experiment, the lbz and machhw instructions, in
order to include more types of instructions.



52 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

4. We add a new experiment that executes an entire application, the CCU-addition.
In this application the PowerPC executes a loop of additions using an adder im-
plemented as a CCU of the MOLEN architecture. This experiment is a modified
version of a validation test provided in the implementation of MOLEN in the Vir-
tex 5. The only change we add was disabling the output of the results through
serial port.

5. The test CCU-add-serial was included, this test is similar to the test CCU-addition
but the results were transferred using the serial port. This experiment is a valida-
tion test provided in the implementation of MOLEN in the Virtex 5.

This behavior was rooted to, the inadequacy of the sampling rate of SysMon required
by the signal to be measured.

Conclusions . Based on the results and analysis presented in Section 4.1.1, we ob-
served a non-repeatability of the results obtained with SysMon. This behavior was rooted
to, the inadequacy of the sampling rate of SysMon required by the signal to be measured.
As a result, we did not use the results of this experiment to create a model, however,
as we mention at the beginning of this section, the success of making a model, based
on physical measurements, depends on the available resources. Therefore, based on the
experience obtained in this experiment we provide the following general conclusions:

1. It is important to know the characteristics of the signal to be measured, in order
to decide whether the available instrumentation is able to measure the signal with
the required accuracy.

2. The current complexity of MPSoC, such as the Virtex 5, provides a new challenge
for modelling power with data obtained from physical measurements. The main
problem is measuring the (sligh) power consumed in the chip, caused by an AUT,
because the percentage of logic used for the AUT is becoming smaller in comparison
with all the logic inside the chip.

3. The lower the abstraction level of the AUT, the more difficult its to measure its
power consumption. Two approaches can be used to solve this problem, either se-
lect high-end instruments to perform the measurements, or increase the abstraction
level of the AUT to be measured.

4. If a high-end instrument it is chosen as the solution, the sampling rate of the
instrument is an important characteristic used to select the right measurement
tool to model power consumption. The reason is that current MPSoC can work
at high clock frequencies, therefore an instrument with a high sampling frequency
would help to improve the repeatability of the power measurements, by getting
more samples of the AUT.

5. In this emperimental framework we did not include temperature measurements
but in the deep submicron (DSM) technology, the temperature is becoming an
important factor that affects power consumption, therefore, it is important to



3.2. EXPERIMENTAL SETUP 53

include it in the modelling methodology in order to reduce the non-repeatability
of the power measurements between experiments.

6. The experimental setup should provide a high controllability to start and stop
the measurements in the shortest possible amount of time in order to reduce the
disturbances caused by the measurements of activities different than the AUT.

3.2.2 Simulation framework

In this section we present the experimental framework that uses a simulation framework
as UUT. Figure 3.7, presents the modelling methodology when a simulation framework
is used as UUT. The experimental framework proposed in this section has the following
advantages:

• A simulation framework provides the opportunity to fully automate the experimen-
tal setup. As a result, we can explore different architectural parameters that affect
power consumption by configuring the simulation framework, or even changing the
UUT.

• A simulation framework provides the opportunity to validate the modelling
methodology proposed, and to save time in the implementation because we do
not need complex physical measurents.

Kernel
Library

(Benchmarks)

ARGS tool
(Isolation
Process)

Quipu
Metrication

Tool

Power/Energy
ModelApplication

binary

Input 
dataset

Application 
source code

x86
GCC

HW specific 
toolchain

Power & Energy
Measurement

Kernel source code 
(Pre-processor 
output)

QUIPU 
Modelling
Scripts

Power Data

Data 
metrics

H
W

 C
on

fig
ur

at
io

n

SCMs Cross
validation

Predictions

Application
(benchmark)

Kernel 
name

Kernel 
prototype

Application 
files

Simulation 
Framework

Figure 3.7: Experimental setup using simulation frameworks

However, one of the main disadvantages of this experimental framework is that the
accuracy of the high level models is bounded by the accuracy of the simulation framework.



54 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

In previous sections we have discussed the implementation details of some modules
present in the modelling methodology. Therefore, in Section 3.2.2.1 we focus on the
general implementation of the automated experimental setup. The implemented experi-
mental framework has the flexibility of changing the UUT. However, it requires one-time
modifications to build a new model for a different UUT. Therefore, in Section 3.2.2.3,
we present the changes required to use the Xpower tool of Xilinx, to create a model for
a Virtex 5 FPGA. In Section 3.2.2.2, we present the changes required to use an ARM
simulator as UUT for the GPP model.

3.2.2.1 Description of the automated experimental

The experimental setup is implemented in a Linux machine with Suse OS and x86 pro-
cessor. Therefore, we choose the bash scripting language and make utility to automate
the experimental setup. The design goals of this automated experimental setup are:

• Scalability. We consider important to provide an easy way to include more ap-
plications (with kernels) in the kernel library.

• Flexibility. This experimental setup should allow an easy one-time modification
to include a different UUT.

In order to achieve the goal of scalability, we consider each application as a plug-able
module, which is implemented as a folder that contains the source code of the applica-
tion, and a folder called PowerModel. The PowerModel folder contains the following
information required by the experimental setup:

• Kernel file. This is a plain text file that contains, on one line, the name of the
function to be measured and its prototype. As a suggestion this file should have
the extension *.kernel to allow an easy identification in the PowerModel folder.
The following format must be used to define the function name and prototype:
function name:arg1 type:arg2 type:arg3 type.... To define an argument passed by
reference the user has to include the asterisk symbol (*) after the type. As an exam-
ple, to define an integer passed as reference the user would use: kernel name:int*....

• Application file. This is a plain text file that contains on one line the C-files that
compose the application, each file has to be separated by a space. In the current
implementation, the name of the application file should match the name of the
application, because this information is used by the scripts that obtain the power
and provide results.

• Metrics file. This is a plain text file that contains on one line the name of the file
where the kernel is defined. The source code file defined in the metrics file might
require pre-processing by the gcc and maybe some manual modifications to allow
the qpm-metricator tool, presented in [22], to extract the SCMs.

• Cflags file. For a UUT that requires cross-compilation of the source code, defined
in the application file, we define in this plain text file the compilation flags required
to compile the application.



3.2. EXPERIMENTAL SETUP 55

The flexibility in the experimental setup is achieved by programming in bash scripts
the one-time modifications required for a new UUT. The actions that these scripts per-
form depend on the UUT, but in general can be described as follows:

• Pre-process the kernel source code. The pre-processing includes actions such
as, creating a header file for each input dataset provided by the ARGS tool (for a
GPP model), or translating the kernel C source code to VHDL, using a C-to-VHDL
translator (for an FPGA model).

• Execution of the UUT toolchain. The required actions depend entirely on the
toolchain provided by the UUT vendor, for instance, for a GPP model an action
is the cross-compilation of the source code, but for an FPGA model, the actions
include synthesis, mapping, and place & route.

• Power Measurement. This action depends on the simulation framework being
used as UUT.

• Power data consolidation. In this step, the power data obtained for an specific
UUT is consolidated in a single file, along with the SCMs of the kernel and the
data metrics of the input datasets provided by the ARGS tool.

These scripts use the information stored in the PowerModel folder, such as the kernel
file, and the application file. The scripts are stored in a folder called PowerModelBin
that is exported in the Linux path to be used by any application module. As a result,
any modification in the scripts will affect all the applications in the kernel library.

Finally, in order to automate the measurement of power with the experimental setup,
we use the make command of Linux. For each application folder, we include a Makefile
which contains a ’recipe’ with the actions outlined above. In order to provide an easy way
to include more kernels to an application, and more applications to the kernel library,
the makefile has to include a set of general rules defined in another makefile, that is
stored in the PowerModelBin folder.

In Listing 3.3 we include some examples of general rules that apply to all the ap-
plications. Notice that these general rules use make variables which are defined by each
application.

Listing 3.3: Examples of general rules defined for all applications in the kernel library

1 get_gpp_power:

2 process_folders.sh (KERNEL_FILE) (APP_FILE) (CFLAGS_FILE)

3 process_gpp_statistics:

4 process_statistics.sh (KERNEL_FILE) (APP_FILE)

5 ....

6

7 app2vhd:

8 app2vhd.sh (APP_FILE)

9 kernel2ngc:

10 kernel2ngc.sh (KERNEL_FILE)

11 create_kernel_tb :

12 create_kernel_tb_ngc.sh (KERNEL_FILE)

13 get_fpga_power:

14 get_power_kernel_fpga.sh (KERNEL_FILE)



56 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

15 process_xpwr_logs:

16 process_kernel_xpwr_out .sh (KERNEL_FILE)

17 ....

In Listing 3.4 we present the template of a Makefile which has to be included in the
PowerModel folder of each application, we use as example a kernel called bytesum.

Listing 3.4: Template of a Makefile for an application in the kernel library

1 include (PM_BIN )/ power_model.make

2

3 BYTESUM_FILE=bytesum.kernel

4 POLYNOMIALBIN_FILE=polynomialbin.kernel

5 FUNCTIONS_APP_FILE=functions.data

6 FUNCTIONS_CFLAGS_FILE=cflags.data

7 FUNCTIONS_METRICS_FILE=functions_metrics.data

8

9 bytesum_get_gpp_power: eval_bytesum get_gpp_power

10 bytesum_process_gpp_statistics : eval_bytesum process_gpp_statistics

11 bytesum_kernel2ngc: eval_bytesum kernel2ngc

12 bytesum_create_kernel_tb : eval_bytesum create_kernel_tb

13 bytesum_get_fpga_power: eval_bytesum get_fpga_power

14 bytesum_process_xpwr_logs: eval_bytesum process_xpwr_logs

15

16 eval_bytesum:

17 (eval KERNEL_FILE= (BYTESUM_FILE ))

18 (eval APP_FILE= (FUNCTIONS_APP_FILE ))

19 (eval CFLAGS_FILE= (FUNCTIONS_CFLAGS_FILE ))

20 (eval METRICS_FILE= (FUNCTIONS_METRICS_FILE ))

3.2.2.2 Experiment the VIRTEX5.Xpwr.FPGA.B.2

The required one-time modifications to create this experiment are presented in this
section. This experiment was designed in the context of the DWB, and as such we use
the MOLEN architecture and implement each kernel as a CCU. We also use the BlueBee
toolchain [6] which simplifies the development in heterogeneous architectures using the
Molen machine organization. For a Virtex 5 FPGA the BlueBee toolchain uses the Xilinx
tools during the design flow.

The actions performed in this experiment are listed below:

1. C-to-VHDL tranlation. For each kernel in an application we tranlate the C
function to VHDL. For this purpose we use the DWARV tool [42]. The output of
this stage is a VHDL translation of the kernel.

2. Design a synthesis testbench. Since we only want to measure the power con-
sumption of the kernel function, we use the CCU wrapper entity defined in the
implementation of Molen for Virtex 5. The CCU wrapper is a generic entity that
only contains the input and output ports of a CCU, and instantiates a CCU as a
black-box. The CCU wrapper can be instantiated and synthesized without defining
the CCU black-box, and later in the power measurement stage we can substitute
the black box for the desired CCU and perform the measurements. The output of
this stage is a netlist (ngc file) with an instance of the CCU wrapper.



3.2. EXPERIMENTAL SETUP 57

3. Design a simulation testbench. We design a testbench that provides all the
required signals to the CCU wrapper, including the clock signal, and the input
dataset of each kernel.

4. Synthesis & Translation. For each kernel in the kernel library, we use the
BlueBee toochain to synthesize the CCU and obtain a netlist. Then, we merge
the obtained CCU netlist with the synthesis testbench using the ngcbuild tool of
Xilinx. The output of this step is a netlist that contains a CCU wrapper as the
top module, and the required CCU.

5. Mapping. The netlist obtained from step 4 is mapped in a Virtex 5 FPGA, this
step using the map tool of Xilinx.

6. Place & Route. The design mapped in step 5 is placed and routed in this step
using the par tool of Xilinx.

7. Power measurement. Using the simulation testbench and a post place & route
simulation model of the CCU wrapper, we simulate the design with Modelsim to
obtain a Value Change Dump (VCD) that contains information of the switching
activity of the signals in the design. The VCD file is used along with the placed &
routed CCU wrapper to obtain the power consumed, using the xpwr tool of Xilinx.
For each input dataset provided by ARGS tool we get a power sample which is
stored in a file.

8. Power data consolidation. We consolidate in a single file the power samples
obtained in the previous step, the metrics of the kernel (obtained with the qpm-
metricator tool), and the data metrics of each input dataset used during the mea-
surements.

3.2.2.3 Experiment StrongARM.SimPanalyzer.GPP.B.1

In this experiment we use the sim-panalyzer [26], a SimpleScalar ARM power simulator.
This simulator allows the configuration of a set of architectural parameters, such as, levels
of cache, size of cache, and clock frequency. This configuration is given to the simulator
in a configuration file, which also includes the effective capacitance of some functional
units defined in the processor. In this experiment we use a configuration file provided by
the sim-panalyzer project that describe the characteristics of a StrongARM processor.
All the parameters of the configuration file are presented in Section 6.2, however, the
most relevants ones are presented in the Table 3.4.

Parameter Value

Clock frequency 200 Mhz

Source voltage 1.8 v

Instruction execution In-order

Cache levels (for instrucions and data) 2

Table 3.4: Architectural parameters used in sim-panalyzer

In order to execute an application in the sim-panalyzer we compiled a cross-compiler
for the ARM processor.



58 CHAPTER 3. EXPERIMENTAL METHODOLOGY AND SETUP

Finally, the actions programmed in the scripts for the ARM processor are listed
below:

1. Create header file. In order to pass to the kernel the input datasets generated
with ARGS tool, we use a script that generates a header file. This header file
contains an input dataset and is included in the source code of the application to
be executed in the sim-panalyzer. This script can handle functions with different
size and type of parameters using the prototype defined in the kernel file.

2. Source code modification. The application to be executed in the sim-panalyzer
contains only a main function that includes the header file of step 1, and the kernel
under test. For this purpose, the script searches for the main function in the
application source code to disable it. It then creates new version that contains
only the kernel under test.

3. Cross-compilation. Using the ARM linux cross-compiler, we compile the modi-
fied application that only executes the kernel under test.

4. Power measurement. In this step, the sim-panalyzer is executed using the
cross-compiled application and the configuration file defined for the StrongARM.
For each input dataset obtained with the ARGS tool we create a header file, modify
the source code, cross-compile the application, and then execute it in the simulator.
This provides a power sample per each input dataset, all the power samples are
stored in a file.

5. Power data consolidation. We consolidate in a single file the power samples
obtained in the previous step, the metrics of the kernel (obtained with the qpm-
metricator tool), and the data metrics of each input dataset used during the mea-
surements.



Results and Analysis. 4
In this chapter we present the results of the experiments performed in the context of
this thesis. For each experiment we use a set of kernels contained in the kernel library,
the description and details of the kernel library are presented in the Table 6.2 in the
Appendix 6.4.

The experiments performed in this thesis can be categorized as follows:

A. Physical Measurements. In this category, we measure the power consumed by
a kernel using physical measurements on the UUT. One experiment was designed
in this category, and is described as follows:

1. Experiment PowerPC.Virtex5.GPP.A.1. In this experiment we physi-
cally measure the power consumed in a PowerPC processor, that is embedded
in a Virtex 5 chip. The results of this experiment are presented in Section
4.1.1

B. Simulation framework. In this category, we use a simulation framework to
measure the power consumed by a kernel during its execution in the UUT. In this
category we designed two experiments that are summarized as follows:

1 Experiment StrongARM.SimPanalyzer.GPP.B.1. This experiment
uses the Sim-Panalyzer simulator with a StrongARM configuration as UUT.
The Sim-Panalyzer estimates the power consumption of kernels running in the
StrongARM processor. The StrongARM is configured with a clock of 200MHz
and a voltage source of 1.8v. The complete configuration file is presented in
Section 6.1. The results and an analysis of this experiment are presented in
Section 4.1.2.

2 Experiment VIRTEX5.Xpwr.FPGA.B.2. This experiment uses the
xpwr tool of Xilinx to measure, the power consumption of a kernel running in
a Virtex 5 XC5VFX130TFF1738-2 (with the MOLEN machine organization).
The results and analysis of this experiment are presented in Section 4.1.3.

In order to assist in the identification of the experiments and to provide a proper
structure in this report, we define the following naming convention for the exper-
iments: ModellingHW .MeasurementHW .UUTtype.Category.Experiment#. Where,
the ModellingHW is the hardware which is being modelled, the MeasurementHW is
the chip being measured or the simulation framework being used, the UUTtype defines
in general for which UUT this experiment is made, the Category is the category of the
test, and the Experiment# is the number of experiment in that specific category.

The results presented in Section 4.1.2 and Section 4.1.3 were used to create a set
of models. Therefore, in the Sections 4.1.2.1 and 4.1.3.1, we present the models derived
from the modelling step in each experiment.

59



60 CHAPTER 4. RESULTS AND ANALYSIS.

4.1 Experimental results

In this section, we present a summary of the results obtained in the following experiments:

• Experiment PowerPC.Virtex5.GPP.A.1.

• Experiment StrongARM.SimPanalyzer.GPP.B.1.

• Experiment VIRTEX5.Xpwr.FPGA.B.2.

These experiments were designed to provide an answer to the research questions
presented in Chapter 2. A summary of the questions is presented as follows, for reference:

• Would an automatic high level modelling methodology help to investigate the dif-
ferent parameters that affect power consumption?

• Are the low level details of a HW processing unit necessary during the modelling
process? Does considering the HW processing unit as a black-box provide more
flexibility and scalability to the methodology?

• Does using a HLL (C code) as input for a prediction model reduce the prediction
time of the model? Do the predictions obtained with this model provide qualitative
and quantitative data useful for the partitioning process in the DWB design flow?

4.1.1 Experiment PowerPC.Virtex5.GPP.A.1

The main characteristics of this experiment are summarized in the Table 4.1.

Parameter Value

UUT PowerPC440 GPP (embedded in a Virtex 5 chip)

Input of the model Instructions of the ISA

Measurement method Physical measurements:
SysMon on-chip module

Clock Frequency 475 MHz [41]

Power supply voltage 1v

Table 4.1: Main characteristics of experiment PowerPC.Virtex5.GPP.A.1

In this experiment, one experiment is performed three times and a different identi-
fier is given to each execution of the experiment, and an extra experiment is done for
validation. The identifiers of the experiments are described below:

1. Experiment PowerPC.Virtex5.GPP.A.1.1. Experiment performed with Sys-
Mon, an on-chip module in the Virtex5 chip. Execution 1.

2. Experiment PowerPC.Virtex5.GPP.A.1.2. Experiment performed with Sys-
Mon, an on-chip module in the Virtex5 chip. Execution 2.

3. Experiment PowerPC.Virtex5.GPP.A.1.3. Experiment performed with Sys-
Mon, an on-chip module in the Virtex5 chip. Execution 3.



4.1. EXPERIMENTAL RESULTS 61

4. Experiment PowerPC.Virtex5.GPP.A.1.4. Experiment performed
with an oscilloscope to validate the results of experiments: Pow-
erPC.Virtex5.GPP.A.(1)(2)(3).

In Figure 4.1 we show the results of the first three sub-experiments:
PowerPC.Virtex5.GPP.A.1.1, PowerPC.Virtex5.GPP.A.1.2, and Pow-
erPC.Virtex5.GPP.A.1.3. For each sub-experiment, we measure the power consumption
of different instructions of the ISA, such as, ’nop’, ’add’, ’addc’, ’addme’, and ’andc’.
Each instruction was executed on average 20 × 109 times in each experiment, and one
ELF file was used in the three experiments for each instruction.

Figure 4.1: Power measurement results of the PowerPC ISA in a Virtex 5

After the execution of different instructions of the ISA, we obtained a set of pre-
liminary results, and the main problem we observed was the non-repeatability between
experiments of the power results. As an example of the non-repeatability of the power
measurements, the instructions ’nop’, ’addcr’, and ’addcor’ show a considerable differ-
ence between the sub-experiments results in Figure 4.1.

In order to explain the non-repeatability of the results observed in Figure 4.1,
we perform a data analysis of the power samples obtained from experiments Pow-
erPC.Virtex5.GPP.A.1.1 and PowerPC.Virtex5.GPP.A.1.2.

Power distribution. During the execution of each AUT in an experiment, we col-
lected a set of power measurements values from the JTAG. The distribution of the power
data of two experiments, PowerPC.Virtex5.GPP.A.1.1 and PowerPC.Virtex5.GPP.A.1.2,



62 CHAPTER 4. RESULTS AND ANALYSIS.

is shown in Figure 4.2. We present the results of these two experiments for the nop,
addcr, addo, and addi instructions. These instructions were selected because the nop
and addcr instructions have a significant difference between experiments one and two.
On the other hand, the instructions addo and addi have a small difference.

Figure 4.2: Histogram of power data per instruction

Figures 4.2 (a) and (b) show the power distribution for the nop instruction, in
the experiments PowerPC.Virtex5.GPP.A.1.1 and PowerPC.Virtex5.GPP.A.1.2. Figures
4.2(c) and (d) show the power distribution of measuring the addcr instruction, in the
experiments PowerPC.Virtex5.GPP.A.1.1 and PowerPC.Virtex5.GPP.A.1.2. Notice that
in both intructions one experiment (PowerPC.Virtex5.GPP.A.1.1 for the nop instruction)
has more samples of power that fall into the group of ∼1300 mW. As a result, its mean
value is bigger compared with the other experiment (PowerPC.Virtex5.GPP.A.1.2 for
the nop instruction). The rest of the samples measured fall into a group of ∼800 mW.
Figures 4.2 (e) and (f), show the distribution of results for the instruction addo collected
in experiment PowerPC.Virtex5.GPP.A.1.1 and PowerPC.Virtex5.GPP.A.12. Figure 4.2
(g) and (h), shows the same for instruction addi. In these graphs observe that both
experiments have similar distribution of power samples. However, all the values also fall
into two groups, one of ∼800 mW and the other of ∼1300 mW.

The distribution of these power samples show a clustering behavior, that can be
observed in Figure 4.2. The power samples are clustered in two groups, one ∼1300 mW
and another ∼800 mW. This clustering behavior can be explained as follows:



4.1. EXPERIMENTAL RESULTS 63

By definition, the power is the measure of how much work can be done in certain
ammount of time. Using this definition for electrical power, we can compare the the
voltage as the work per unit charge, and the current as the rate at which current is
moved through a conductor in one second. As a result, we can use Equation 4.1 to
define the power consumption in terms of voltage and current.

P = V × I (4.1)

Then, in our chip we know that the voltage does not change during an AUT, be-
cause we do not have enabled any voltage scaling feature. As a result, we can observe
that the current has a linear relationship with the power consumption and the voltage
does not influence the power consumption because its value is constant. This can be
confirmed with the histograms shown in Figure 4.3, that show the distribution of volt-
age, current, and power obtained for the addcr instruction in two different experiments,
PowerPC.Virtex5.GPP.A.1.1 and PowerPC.Virtex5.GPP.A.1.2.

Voltage and current distribution. In Figure 4.3, we present the power, voltage
and current distribution for the addcr instruction. These results were obtained from the
experiments PowerPC.Virtex5.GPP.A.1.1 and PowerPC.Virtex5.GPP.A.1.2. In Figure
4.3 (a) and (d), we can observe that the voltage is almost constant at ∼ 995 mV, with
slight variations caused by the power source noise and the instrumentation. The current
is presented in Figure 4.3 (b) and (e). Observe that the current values are clustered in
two groups as well, ∼800 and ∼1300. Finally, in Figure 4.3 (c) and (f), notice that the
power follows the same distribution as the current.

Figure 4.3: Histograms of Voltage, Current and Power measured for the addcr instruction

Now that we have confirmed that the current distribution defines the distribution of
power consumption, we for an hypothesis on why we have only two groups in the current
results:



64 CHAPTER 4. RESULTS AND ANALYSIS.

As explained in section 3.2.1.1 the resolution of the current sensor is 1LSBI =
443.892[mA]. Then 2LSBI = 887.784 and 3LSBI = 1331.676[mA] which are the groups
identified in the histograms shown in Figure 4.3 (b) and (e). From the experimental
results, we observe that the voltage drop in the Kelvin resistor is 2LSBV = 1.954[mV ]
and 3LSBV = 2.931[mV ].

Validation of results with an Oscilloscope. As a result of the previous analysis
and results, we assume that the sensor used to indirectly measure current does not have
the required resolution to measure the voltage drop caused by an AUT.

In order to confirm the previous assumption, we performed physical measurements
using an oscilloscope with a higher resolution than SysMon. This validation experiment is
identified as PowerPC.Virtex5.GPP.A.1.4 throughout this thesis. With the oscilloscope,
we measured the voltage dropped in the Kelvin resistor (the same one used by SysMon)
to know the current in the power supply. 1.

The characteristics of the experiment PowerPC.Virtex5.GPP.A.1.4 are presented in
Section 3.2.1. During this experiment, we observe the following:

1. The voltage drop in the Kelvin resistor is not a constant value, but a voltage signal
with peaks and valleys. The voltage signal has two periodic peaks. Both peaks
appear interleaved with a frequency of ∼590 KHz. The frequency of the bigger
periodic peak (A) is ∼295 KHz which is the same as the small peak (B). Table 4.2
shows the detailed results of the measurements, but only the values of the bigger
peak are presented.

2. The amplitude of one peak, in the voltage signal, is bigger than the other, and last
for a longer period. The bigger peak (A) has a maximum amplitude of 65 mV for
a duration of approximately 54-64 ns. The amplitude values in the valleys of the
voltage signal are ∼1 mV. These results were obtained using different bit files with
different AUTs.

In the Table 4.2 we present the results of the experiment Pow-
erPC.Virtex5.GPP.A.1.4, that uses the oscilloscope to measure different AUT.

4.1.1.1 Conclusions

Based on the results obtained with the oscilloscope, and after a comparison with the
results obtained with SysMon, we derive the following conclusions:

• The results measured with SysMon are an average of the voltage dropped in the
kelvin resistor. As a result, if one voltage peak is detected, its contribution to the
average voltage depends on the number of samples SysMon is able to obtain from
the peak. In our experiments, the period while a voltage peak is different to zero
is too small compared with the sampling frequency of SysMon, therefore even if a
peak is detected only one sample will be obtained by SysMon and the remaining
samples would be close to zero, therefore the effect of the peaks is small.

1The oscilloscope does not provide the functionality to transfer the measurement results to a PC,

therefore we don not present graphs.



4.1. EXPERIMENTAL RESULTS 65

AUT MaxPeak [mV] Period of peak [ns] Frequency(KHz)

Nothing running board 40 61 295

nop 62 60 295

addi 61 59 295

add 61 57 295

adde 61.6 56 295

and 61.6 57 295

lbz 61.6 59 295

machhw 61.6 59 295

CCU-addition 60.8 59 295

CCU-add-serial 64.8 57 295

Table 4.2: Results of physical measurements performed on a Virtex 5 using an oscillo-
scope

• Even if the voltage peaks are detected by SysMon, they might be overwritten
by new measurements before we fetch them and store them, because the ADCs
in SysMon can provide up to 200 Ksamples per second, and with our current
experimental framework we can obtain around 540 samples per second. In the
end, this also affects the non-repeatability observed in the preliminary results of
SysMon.

• The number of samples obtained is principally limited by the performance of the
Xilinx TCL interface used in the SysMon I/F module (presented in Figure 3.6).

The previous conclusions apply for measurements using SysMon in a Virtex 5 chip.

4.1.2 Experiment StrongARM.SimPanalyzer.GPP.B.1

This experiment uses a simulation framework to obtain the power consumed by a kernel,
in this experiment we use the Sim-Panalyzer simulator. The experiment was designed
to provide a higher flexibility of the architectural parameters of the processor which
affect power consumption. We also design this experiment to validate our modelling
methodology, since the experiment that uses physical measurements requires high-end
measurement tools and a higher implementation time, compared to the simulation frame-
work.

The main characteristics of this experiment are summarized in Table 4.3.

Parameter Value

UUT StrongARM GPP

Input of the model Functions in C code

Measurement method Simulation framework:
Sim-Panalyzer 2.0.3

Clock Frequency 200 MHz

Power supply voltage 1.8

Table 4.3: Main characteristics of experiment StrongARM.SimPanalyzer.GPP.B.1



66 CHAPTER 4. RESULTS AND ANALYSIS.

This experiment uses the Sim-Panalyzer, configured as a StrongARM processor, to
obtain the power consumption of a kernel. The steps involved in this experiment were
presented in detail in Chapter 3, and are presented here for reference:

• Isolate the kernel. This step is done once per each kernel.

• Measure the power consumption. This step is done using the data obtained
from the ARGS tool. For each input dataset a measurement is done.

• Obtain the SCMs. This step is done once per each kernel.

• Consolidate the power data. After the measurements and all the metrics are
obtained, we consolidate all the data in one single file.

After the previous steps are performed, we obtain a series of results that can be
classified as follows:

• Predictors or independent variables. These are the values that are used to
characterize the power consumption of a kernel. In our modelling process, these
parameters are divided in two types: static and dynamic. Using this division, we
present the parameters of each type, for this experiment:

1. Static. The SCMs are the static parameters.

2. Dynamic. The dynamic parameters are the args.data metric (obtained from
ARGS tool), and the following parameters obtained from Sim-Panalyzer: the
number of instructions commited (sim num insn), the number of loads and
stores (sim num refs), the number of cycles (sim cycle), and the cycles per
instruction (sim cpi).

• Outcome variables or dependent variables. These parameters are the object
of our modelling process. We want to predict the energy and the power consump-
tion of a kernel. As a result, in this experiment the following parameters, obtained
from the Sim-Panalyzer, are used as dependent variables:

1. uarch.pdissipation. This parameter is calculated in Sim-Panalyzer by
adding the power consumed during each cycle, while an application is exe-
cuted. It is important to notice that, this is not the energy of the application,
it is instead, the accumulated power consumption of an application. In or-
der to obtain the energy we use Equation 6.6, presented in Appendix 6.3,
and multiply the uarch.pdissipation parameter with the clock period in this
experiment (5 ns).

2. uarch.avgdissipation. This parameter is the average power dissipation,
consumed by an application, per cycle.

The results outlined above constitute the Power Data, shown in the modelling
methodology of Figure 3.1.

As a summary of the outcome variables, we present in Figure 4.4 the energy consumed
by each of the kernels in the kernel library. Only the identifier of each kernel is presented



4.1. EXPERIMENTAL RESULTS 67

in Figures 4.4 and 4.5, therefore in the Table 4.4 we present the identifiers associated
with the name of the kernel.

It can be observed that the values of energy of the kernels differ from each other, with
values in the range of 2.45348106× 10−6 up to 124.8455× 10−6. This variation depends
mainly on the number of cycles the function takes to execute. A further analysis is
presented later in this section, that provides a better explanation of the parameters that
explain the energy consumed by a kernel.

In the Figure 4.5, we present the summary of the power consumption per kernel. It
can be observed that in this case the power consumption is similar among the kernels,
because the power consumed per kernel is an average of the power consumed per cycle.
The values of power consumption are in the range of 380.481 mW up to 459.5 mW.

Since our model will be created using regression analysis in the power data, we per-
formed first a preliminary analysis of the correlation between the dependent variables,
and the independent variables selected for this experiment.

Firstly, we plotted the relation between energy and each one of the predictors, using
a scatter plot. In the Figures 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6 of Appendix 6.5, we present
the scatter plots of the predictors with values different to zero. As a summary, in the
Figure 4.6 we present the predictors with a strongest linear relation ship with the energy.

As part of the preliminary analysis, we plotted the relationship between power con-
sumption and the predictors. As a summary, in the Figure 4.7, we present the predictors
that have the strongest linear relation with the power consumed in this experiment. In
Figures 6.7, 6.8, 6.9, 6.10, 6.11, and 6.12 in Appendix 6.6, we present the relation
between power and all the non-zero predictors.

We can observe in Figure 4.6 that, the dynamic metrics have the strongest linear rela-
tion with the energy, among all the predictors. This can be explained with Equation 6.6,

ID Kernel Name ID Kernel Name

0 g721 body 21 MD5Transform

1 mdct butterfly 8 22 sha transform

2 mdct butterfly 16 23 apply butterflies

3 CrossProduct3 24 serpent encrypt

4 CrossProduct7 25 serpent decrypt

5 bytesum 26 cast256 encrypt

6 polynomialbin 27 cast256 decrypt

7 intersect triangle 28 gost encrypt

8 intmatmult3x3 29 twofish encrypt

9 intmatmult4x4 30 gost decrypt

10 mseq 31 twofish decrypt

11 Hamming1 unrolled 32 cast128 encrypt

12 Hamming2 unrolled 33 loki97 encrypt

13 hw ripemd128 transform 34 loki97 decrypt

14 hw ripemd160 transform 35 mrog hw

15 hw ripemd256 transform 36 complex div

16 havalTransform3 37 complex mult

17 MD4Transform 38 bitreversal2 unrolled

18 hw ripemd320 transform 39 des f

19 cast128 decrypt 40 max

20 base

Table 4.4: Kernel IDs of the kernels used in experiment Stron-
gARM.SimPanalyzer.GPP.B.1



68 CHAPTER 4. RESULTS AND ANALYSIS.

that relates energy with power consumption.

Eapp =





num.cycles
∑

Pcycle



× T (4.2)

However, this formula provides the energy consumed in one cycle, if we want to get
the energy consumed by an application we need to sum the power consumed per cycle,
and then, the accumulated power multiply it by the period of the processor’s clock. The
Equation 4.2 presents the formula used to calculate the energy in this experiment. As
a result, the number of cycles and any metric related to the number of cycles, such as
the number of instructions, or the number of loads and stores, will show a strong linear
relation with the energy consumed in one application.

In Figure 4.7, we observe that also the dynamic parameters used as predictors have
a strong linear relation with the power consumption of a kernel. However, opposite
to the energy, the power consumption has an inverse linear relation with the dynamic
parameters. This inverse linear relationship can be observed in almost all the other

Kernel ID

E
ne

rg
y[

J]

0.
00

00
0

0.
00

00
2

0.
00

00
4

0.
00

00
6

0.
00

00
8

0.
00

01
0

0.
00

01
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38

Energy per kernel in StrongARM processor, using Sim−Panalyzer

Figure 4.4: Experiment StrongARM.SimPanalyzer.GPP.B.1: Energy summary



4.1. EXPERIMENTAL RESULTS 69

predictors related to the number of cycles an kernel is executed, and could be explained
by the law of large numbers. The law of large numbers defines that the average result of
an experiment, will be closer to the expected value when more trials of the experiment are
performed. In this experiment, the Sim-Panalyzer is measuring the power consumed per
cycle, therefore in the experiments each trial will be the measurement of power in each
cycle. For kernels with a high number of cycles, the average will tend to the expected
value, and this would suggest that the power of the processor is higher at the startup
stage and then would tend to a lower value. However, this assumption has to be verified
with further experiments.

For both outcome variables, the energy and the power consumption, the dynamic
parameters have the strongest linear relationship. However, they cannot be used in a
model that uses as input HLL, because these parameters are known after executing the
kernel in the Sim-Panalyzer simulator. Therefore, we have created two models, one
model that uses only static parameters (SCMs), and another model that uses static and
dynamic parameters. The results of the modelling stage are presented in the following

Kernel ID

P
ow

er
[W

]

0.
0

0.
1

0.
2

0.
3

0.
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38

Power consumption per kernel in StrongARM processor, using Sim−Panalyzer

Figure 4.5: Experiment StrongARM.SimPanalyzer.GPP.B.1: Power summary



70 CHAPTER 4. RESULTS AND ANALYSIS.

section.

4.1.2.1 Modelling results

In this section, we present the results of the modelling stage made with the Quipu
approach [22].

For this experiment we have created four models, organized as follows:

0 1000 2000 3000 40000.
00

00
0

0.
00

00
6

0.
00

01
2

loads

en
er

gy
[J

]

0 200 400 600 800 10000.
00

00
0

0.
00

00
6

0.
00

01
2

stores

en
er

gy
[J

]

0 1000 2000 3000 4000 50000.
00

00
0

0.
00

00
6

0.
00

01
2

operands

en
er

gy
[J

]

0 1000 3000 50000.
00

00
0

0.
00

00
6

0.
00

01
2

operators

en
er

gy
[J

]

0 20000 40000 600000.
00

00
0

0.
00

00
6

0.
00

01
2

bits.int.alus

en
er

gy
[J

]

0 500 1000 1500 20000.
00

00
0

0.
00

00
6

0.
00

01
2

int.alus

en
er

gy
[J

]

0 500 1000 20000.
00

00
0

0.
00

00
6

0.
00

01
2

constants

en
er

gy
[J

]

0 1000 3000 50000.
00

00
0

0.
00

00
6

0.
00

01
2

args.data

en
er

gy
[J

]

0.0 0.5 1.0 1.5 2.00.
00

00
0

0.
00

00
6

0.
00

01
2

sim.cpi

en
er

gy
[J

]

0 20000 40000 60000 800000.
00

00
0

0.
00

00
6

0.
00

01
2

sim.cycle

en
er

gy
[J

]

0 2000 4000 60000.
00

00
0

0.
00

00
6

0.
00

01
2

sim.num.insn

en
er

gy
[J

]

0 500 1500 25000.
00

00
0

0.
00

00
6

0.
00

01
2

sim.num.refs

en
er

gy
[J

]

Figure 4.6: Relation between energy and its strongest predictors



4.1. EXPERIMENTAL RESULTS 71

• Models created with static predictors. One model was created for energy
consumption, and another model for power consumption. Both models use the
static predictors (SCMs) and require only the HLL (C-code) description of the
kernel to predict the outcome variables.

• Models created with static and dynamic predictors. One model was created
for energy consumption, and another model for power consumption. These models

0 1000 2000 3000 4000

0.
38

0.
40

0.
42

0.
44

0.
46

loads

po
w

er
[W

]

0 200 400 600 800 1000

0.
38

0.
40

0.
42

0.
44

0.
46

stores

po
w

er
[W

]

0 1000 2000 3000 4000 5000

0.
38

0.
40

0.
42

0.
44

0.
46

operands

po
w

er
[W

]

0 1000 3000 5000

0.
38

0.
40

0.
42

0.
44

0.
46

operators

po
w

er
[W

]

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
38

0.
40

0.
42

0.
44

0.
46

AICC

po
w

er
[W

]

0 50000 100000 150000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.loads

po
w

er
[W

]

0 5000 15000 25000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.stores

po
w

er
[W

]

0 1000 3000 5000

0.
38

0.
40

0.
42

0.
44

0.
46

args.data

po
w

er
[W

]

0.0 0.5 1.0 1.5 2.0

0.
38

0.
40

0.
42

0.
44

0.
46

sim.cpi

po
w

er
[W

]

0 20000 40000 60000 80000

0.
38

0.
40

0.
42

0.
44

0.
46

sim.cycle

po
w

er
[W

]

0 2000 4000 6000

0.
38

0.
40

0.
42

0.
44

0.
46

sim.num.insn

po
w

er
[W

]

0 500 1500 2500

0.
38

0.
40

0.
42

0.
44

0.
46

sim.num.refs

po
w

er
[W

]

Figure 4.7: Relation between power and its strongest predictors



72 CHAPTER 4. RESULTS AND ANALYSIS.

use the static predictors (SCMs) along with the dynamic predictors to predict the
outcome variables. The accuracy of these models is better than the models that use
only SCMs, however they require the execution of the kernel in the Sim-Panalyzer
simulator, which increases the prediction time.

energy

measured

pr
ed

ic
te

d

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

10

121335

0.00002 0.00004 0.00006 0.00008 0.00010 0.00012

Figure 4.8: Energy model for the StrongARM GPP, with SCMs as predictors

Models using only static parameters(SCMs)

The Figure 4.8 presents the model that predicts the energy consumption of a
kernel, using only SCMs as predictors. This figure shows the comparison between the
measured values against the predicted values, the red line in the figure is the regression
line of the model, and the blue line is the trend line of the actual data. The percentual
relative rooted mean square error (RMSE) of the model is 29.69605%, and the absolute
error of the model is 8.691191e-06 Joules. This model uses as input the HLL (C-code)
description of a kernel, and the qpm-metricator tool [22], to perform the predictions of
energy consumption of a kernel.

The Figure 4.9 presents the model that predicts the power consumption of a
kernel, using only SCMs as predictors. This figure shows the comparison of measured
values of power against predicted value. The red line in the figure is the regression line of
the model, and the blue line is the trend line of the actual data. The percentual RMSE
of the model is 1.943507%, and the absolute RMSE of the model is 8.526016 mW. This
model only requires the SCMs and the qpm-metricator tool [22], to predict the power
consumed by a kernel.



4.1. EXPERIMENTAL RESULTS 73

Models using static & dynamic parameters(SCMs)

The Figure 4.10 presents the model that predicts the energy consumption of a
kernel, using static and dynamic predictors. The red line in the figure is the
regression line of the model, and the blue line is the trend line of the actual data. The
percentual relative rooted mean square error (RMSE) of the model is 3.949472%, and
the absolute error of the model is 1.155898e-06 Joules. This model uses as input the HLL
(C-code) description of a kernel, the qpm-metricator tool [22] to obtain the metrics, the
ARGS tool to isolate the kernel, and the execution of the kernel in the Sim-Panalyzer to
obtain the energy consumption of a kernel. Even though, the accuracy of this model is
good, it cannot be used for prediction in this experiment, because you actually need to
execute the kernel in the Sim-Panalyzer. This model would be useful in an experiment
where running the kernel in the UUT is less complex than measuring the power(to obtain
energy), such as the experiments with physical measurements.

The Figure 4.11 presents the model that predicts the power consumption of a ker-
nel, using static & dynamic predictors. The red line in the figure is the regression
line of the model, and the blue line is the trend line of the actual data. The percentual
RMSE of the model is 0.754%, and the absolute RMSE of the model is 3.307784 mW.
This model has the same disadvantage of the energy model, because it requires the actual
execution of the kernel in the Sim-Panalyzer to obtain the dynamic metrics.

Models using static parameters, and only some selected dynamic metrics

uarch.power

measured

pr
ed

ic
te

d

0.38

0.40

0.42

0.44

0.46

0.40 0.42 0.44

Figure 4.9: Power model for the StrongARM GPP, with SCMs as predictors



74 CHAPTER 4. RESULTS AND ANALYSIS.

as predictors.

The models that use static metrics and all the dynamic metrics selected for this
experiment have the disadvantage that cannot be used for prediction, because they
require the actual execution of the kernel in the Sim-Panalyzer. However, if we use only
static metrics and some specific dynamic metrics that do not require the exection of the
kernel in the Sim-Panalyzer we can use the generated models for prediction.

As a proof of concept, we present in Figure 4.12 the energy model obtained using
the SCMs as predictors but only selecting the number of instructions committed as
dynamic predictor. We select the energy model, because it has a higher percentual RMSE
compared with the power model, among all the models created in this experiment. The
RMSE of this model is reduced, with a percentual RMSE of 21.87% and an absolute
RMSE of 6.39942×10−6 J, for the energy model. The RMSE of this model is 7.8%
smaller than the models that use only static parameters. In order to use this model for
predictions, we assume that is easier to obtain the number of instructions committed by
the StrongARM processor. As an example, we can use the SimpleScalar simulator, that
does not report the power consumed by an application, but still can provide the number
of instructions committed in the processor.

Other dynamic parameter that can be used to reduce the RMSE of the model that
uses only static metrics, is the args.data metric. This parameter has the advantage that
it is not required at all to execute the kernel in the UUT. We only need to execute the

energy

measured

pr
ed

ic
te

d

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00002 0.00004 0.00006 0.00008 0.00010 0.00012

Figure 4.10: Energy model for the StrongARM GPP, with static & dynamic predictors



4.1. EXPERIMENTAL RESULTS 75

application in a x86 processor, using the ARGS tool, to obtain the args.data metric.
The model of energy is presented in Figure 4.13. This model has an absolute RMSE
of 8.166×10−6 J, and a percentual RMSE of 27.90%. Even though, only a reduction
of 1.7% is obtained, this model can be used for predictions in the partitioning process
because only requires SCMs and the execution of the application using the ARGS tool,
in a x86 processor.

Model Static Static & dynamic Static & num inst committed Static & args.data

RMSEp(%) Absolute RMSE RMSEp(%) Absolute RMSE RMSEp(%) Absolute RMSE RMSEp(%) Absolute RMSE

Energy 29.60695 8.691191×10−6 J 3.949472 1.15589810−6 J 21.87 6.39942×10−6J 27.90 8.166×10−6J

Power 1.943507 8.526016 mW 0.754 3.307784 mW 1.90 8.367244 mW 1.57 6.884843mW

Table 4.5: Comparison of the RMSE in the models created in experiment Stron-
gARM.SimPanalyzer.GPP.B.1

In Table 4.5, we present a summary of the models created in this experiment. We
can observe that the energy models present a higher percentual RMSE compared to the
power models. The reason for this behavior can be explained as follows:

The kernels used during the modelling step have a range of energy values from
2.453481×10−6 J up to 124.8455×10−6 J, with a mean value of 2.926716×10−5. Us-
ing the model with only static predictors as example, we can observe that the absolute
RMSE for the model is 8.691191×10−6 J, as a result, the absolute RMSE represents

uarch.power

measured

pr
ed

ic
te

d

0.38

0.40

0.42

0.44

0.40 0.42 0.44

Figure 4.11: Power model for the StrongARM GPP, with static & dynamic predictors



76 CHAPTER 4. RESULTS AND ANALYSIS.

around the 29% of the mean value. However for the power consumption, the kernels
have a range of values from 380.481 mW up to 459.5 mW, with a mean value of 438.6924
mW. And the model with only static predictors have an absolute RMSE of 8.526016 mW
that is approximately 2% of the mean value. However, we can observe that the minimum
value of the power consumption is not zero, it is ∼380 mW, therefore the RMSE seems
to be smaller in the power consumption model.

The previous analysis of power consumption suggest that a certain power consump-
tion it is be used in the StronARM processor always, no matter which application is
running. The power consumption we are referring to, is not only static power consump-
tion but also dynamic power consumption (such as the power consumed by the clocking
system). As a result, for a model that predicts power consumption it would be useful to
isolate the threshold value of the power consumption consumed by the processor under
any circumstance, and subtract it from the total power consumption of an application.
This pre-processing step would be useful to provide a more realistic percentual error.
Because of time constraints in this work, we did not calculate the threshold value of the
power application. However, in this work we present also the absolute RMSE to provide
a more realistic error of our power models.

In Table 4.5, can be observed that adding dynamic metrics to the modelling process
reduces the RMSE of power and energy models. However, if we add specific dynamic

energy

measured

pr
ed

ic
te

d

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

1213

0.00002 0.00004 0.00006 0.00008 0.00010 0.00012

Figure 4.12: Energy model for the StrongARM GPP, with static predictors & the number
of instructions commited as predictor.



4.1. EXPERIMENTAL RESULTS 77

metrics that do not require the execution of the kernel in the UUT, we can use the models,
with a reduced RMSE, for prediction. We used the number of committed instructions,
and the args.data metric as dynamic predictors. Each parameter was added separately
in the modelling process, and based on the results we can observe that the number
of instructions committed has a stronger relation with the energy compared with the
args.data metric. The opposite is observed for the power consumption, the args.data
metric has the strongest linear relationship among these two metrics. With the advantage
that the args.data metric can be obtained by running the application of the kernel in a
x86 processor, using the ARGS tool.

energy

measured

pr
ed

ic
te

d

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

1213

0.00002 0.00004 0.00006 0.00008 0.00010 0.00012

Figure 4.13: Energy model for the StrongARM GPP, with static predictors & the
args.data metric as predictor.



78 CHAPTER 4. RESULTS AND ANALYSIS.

4.1.3 Experiment VIRTEX5.Xpwr.FPGA.B.2

In this experiment we use the Virtex 5 FPGA as UUT, a different UUT compared
with experiment StrongARM.SimPanalyzer.GPP.B.1. At the beggining of this section,
we present a summary of the power data collected in this experiment. Then, after we
performed the modelling step (using the Quipu approach) we obtain a set of models, of
energy and power consumption, that validate the flexibility of the modelling methodology
presented in this thesis.

The main characteristics of this experiment are summarized in the Table 4.6.

Parameter Value

UUT Virtex 5 FPGA
XC5VFX130TFF1738-2

Input of the model Functions in C code

Measurement method Simulation framework:
xpwr tool of Xilinx

Clock frequency 100 MHz

Power supply voltage 1v

Table 4.6: Main characteristics of the experiment VIRTEX5.Xpwr.FPGA.B.2

The power data obtained in this experiment can be classified as follows:

• Predictors or independent variables. We use this values to characterize the
power and energy consumed by a kernel. The predictors used in this experiment
were divided in static and dynamic, as follows:

1. Static. The SCMs are the static predictors.

2. Dynamic. The args.data metric was used as a dynamic predictor.

• Outcome variables or dependent variables. The following parameters are
used as outcome variables:

1. Total power. It is obtained with the xpwr tool of Xilinx.

2. Static power. It is obtained with the xpwr tool of Xilinx.

3. Dynamic power. It is obtained with the xpwr tool of Xilinx.

4. Energy. It is calculated by multiplying the total power, the number of cycles,
and the period of the clock used in this experiment.

As a summary of the power data, we present the Table 4.7 with the information of
the total power, static power, dynamic power and energy consumed per kernel. We also
present in the table, the figure number of each parameter.

In the Table 4.8, we present the kernel identifier associated with each kernel used in
this experiment.

We can observe in the summary of the power data, that the static power consumption
accounts for 92.5% of the power consumed by a kernel. This in general is one of the



4.1. EXPERIMENTAL RESULTS 79

Min Max Mean Percentual mean Figure

Total power [mW] 2285.46 2838.15 2467.141 100 4.14

Static power [mW] 12.21 541.87 186.3447 7.5 4.16

Dynamic power [mW] 2273.25 2296.27 2280.797 92.5 4.15

Energy [mJ] 0.415 41.503 11.086 100 4.17

Table 4.7: Summary of the power data in experiment VIRTEX5.Xpwr.FPGA.B.2

ID Kernel Name ID Kernel Name

1 mdct butterfly 8 23 apply butterflies

2 mdct butterfly 16 26 cast256 encrypt

3 CrossProduct3 27 cast256 decrypt

4 CrossProduct7 28 gost encrypt

5 bytesum 29 twofish encrypt

6 polynomialbin 30 gost decrypt

7 intersect triangle 31 twofish decrypt

8 intmatmult3x3 32 cast128 encrypt

9 intmatmult4x4 35 mrog hw

10 mseq 36 complex div

11 Hamming1 unrolled 37 complex mult

12 Hamming2 unrolled 38 bitreversal2 unrolled

19 cast128 decrypt 39 des f

22 sha transform 40 max

Table 4.8: Kernel IDs of the kernels used in experiment VIRTEX5.Xpwr.FPGA.B.2

drawbacks of the FPGA based design, and can be explained by the way a design is
implemented in an FPGA:

The FPGAs use look up tables (LUTs) to implement any logic in the reconfigurable
fabrics. Each LUT stores all the possible input combinations in a design that can produce
a result, moreover, if the functionality to be implemented requires more inputs than the
available inputs in the LUT (6 for the Virtex 5 FPGA), an arrangement of LUTs is
created to perform the required functionality. However, during the operation of the
design not all the input combinations are valid. As a result, there is a lot of transistors
that are not being used and consume static power. Only the transistors that switch
during the operation of the design will account for the dynamic power consumption,
that in this experiment is 7.5% of the total power consumption.

The energy consumed per kernel, summarized in the Figure 4.17, depends mainly on
the number of cycles required by each kernel to perform its functionality.

Since the models in this experiment are generated using regression analysis, we
present a preliminary analysis of the relation between the outcome variables and the
predictors in the Table 4.9 using the linear correlation coefficient R. This coefficient
express the strenght and direction of a linear relation between two variables, an outcome
variable and a predictor. The values of the coefficient R are in the range of -1 to 1. The



80 CHAPTER 4. RESULTS AND ANALYSIS.

value of the R coefficient express a strong positive linear relationship if it is closer to 1,
and a strong negative relationship if it is closer to -1.

We can observe in the Table 4.9 that the following SCMs have a strong positive linear
relationship with the power and energy consumed in the FPGA:

1. Number of load and stores in memory, and the related SCMs.

2. Number of constants, and the related SCMs.

3. Number of operands, and the related SCMs.

4. Number of operators, and the related SCMs.

5. Number of integer operations, and the related SCMs.

6. Number of statements, and the related SCMs.

An hypothesis for this strong relation, is that some of the outlined SCMs are related
with the hardware resources that will be used for the kernel design in the FPGA. As
an example, we have the number of operators and operands in a kernel, or the number
of integer operations which will be translated into hardware resources during the C-to-
VHDL translation. The SCMs related to loads and stores in memory, can be explained
by the fact that the more read and write operations, in memory, the higher the energy

Kernel ID

P
ow

er
[m

W
]

0
50

0
10

00
15

00
20

00
25

00

1 2 3 4 5 6 7 8 9 10 11 12 19 22 23 26 27 28 29 30 31 32 35 36 37 38 39 40

Total power consumption in the Virtex 5 FPGA, using xpwr Xilinx tool

Figure 4.14: Experiment VIRTEX5.Xpwr.FPGA.B.2: Total power summary



4.1. EXPERIMENTAL RESULTS 81

will be. Also the power will be affected, because more switching activity is expected
in the routing elements that transport the data from/to memory, and in the transistors
that implement the memory, if more R/W operations are performed.

4.1.3.1 Modelling results

In this experiment we have created 8 models that predict the energy, the total power, the
static power, and the dynamic power consumed by a kernel implemented in the Virtex
5 FPGA.

The models are organized as follows:

• Using only static predictors. This models use a set of SCMs to predict the
following outcome variables of a kernel:

1. Energy

2. Total power

3. Static power

4. Dynamic power

• Using static & dynamic predictors. This models use a set of SCMs and the
args.data metric to predict the following outcome variables of a design:

Kernel ID

P
ow

er
[m

W
]

0
10

0
20

0
30

0
40

0
50

0

1 2 3 4 5 6 7 8 9 10 11 12 19 22 23 26 27 28 29 30 31 32 35 36 37 38 39 40

Dynamic power consumption in the Virtex 5 FPGA, using xpwr Xilinx tool

Figure 4.15: Experiment VIRTEX5.Xpwr.FPGA.B.2: Dynamic power summary



82 CHAPTER 4. RESULTS AND ANALYSIS.

1. Energy

2. Total power

3. Static power

4. Dynamic power

In Table 4.10, we present a summary of the RMSE of the models created with the
Quipu modelling approach. Figures 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.20, and 6.19 in
Appendix 6.7, present the models created in this experiment.

Kernel ID

P
ow

er
[m

W
]

0
50

0
10

00
15

00
20

00

1 2 3 4 5 6 7 8 9 10 11 12 19 22 23 26 27 28 29 30 31 32 35 36 37 38 39 40

Static power consumption in the Virtex 5 FPGA, using xpwr Xilinx tool

Figure 4.16: Experiment VIRTEX5.Xpwr.FPGA.B.2: Static power summary



4.1. EXPERIMENTAL RESULTS 83

Kernel ID

E
ne

rg
y[

J]

0.
00

0.
01

0.
02

0.
03

0.
04

1 2 3 4 5 6 7 8 9 10 11 12 19 22 23 26 27 28 29 30 31 32 35 36 37 38 39 40

Energy consumption in Virtex 5 FPGA, using xpwr Xilinx tool

Figure 4.17: Experiment VIRTEX5.Xpwr.FPGA.B.2: Energy summary



84 CHAPTER 4. RESULTS AND ANALYSIS.

energy ccu.total.pdissipation ccu.static.dissipation ccu.dyn.dissipation

heap.loads 0.89989485 0.931649977 0.931627275 0.93217827

loads 0.88335151 0.929058046 0.929038384 0.929546919

operands 0.87259857 0.932552451 0.932535114 0.932981802

bits.loads 0.8637448 0.929043472 0.929022766 0.929559195

bits.constants 0.85919732 0.938778354 0.938763244 0.939147614

constants 0.85913443 0.938709416 0.938694287 0.93907906

bb.max.heap.loads 0.85802025 0.890072765 0.890046511 0.890703286

bits.int.alus 0.85672267 0.939572551 0.939556729 0.939923022

int.alus 0.85672267 0.939572551 0.939556729 0.939923022

executed.operators 0.85604941 0.945221111 0.945208018 0.945519238

operators 0.85604941 0.945221111 0.945208018 0.945519238

bits.heap.loads 0.83637441 0.922196557 0.92216944 0.922829769

bb.max.loads 0.83054811 0.882829047 0.882804615 0.883443207

int.constantshifts 0.80190314 0.753718915 0.753713011 0.75397901

bb.max.operators 0.79930949 0.891164958 0.891148455 0.891558041

bits.stores 0.77928359 0.814324892 0.814300495 0.81486564

stores 0.77554197 0.809015315 0.808989909 0.809573296

bb.avg.heap.loads 0.76834286 0.777315285 0.7773057 0.777680971

bb.max.statements 0.75886868 0.828184559 0.828146638 0.829031196

bb.avg.loads 0.71680182 0.752075166 0.752067348 0.752418055

executed.statements 0.71175022 0.729818652 0.729798767 0.730248494

statements 0.71175022 0.729818652 0.729798767 0.730248494

bb.avg.statements 0.70434341 0.774030036 0.774008934 0.774635524

bits.bitwise 0.69076686 0.72190295 0.721893374 0.722319237

bitwise 0.69076686 0.72190295 0.721893374 0.722319237

bb.avg.operators 0.67007311 0.75064251 0.750644255 0.750717145

uOperands 0.60218101 0.685698304 0.685689812 0.685732682

bits.heap.stores 0.55108243 0.57572993 0.575713768 0.576113645

heap.stores 0.54912461 0.579600509 0.579584686 0.579970684

args.data 0.53141272 0.671079164 0.671069571 0.671118453

int.barrelshifts 0.52738113 0.621368937 0.621331955 0.622039084

type.conversions 0.51099624 0.653419621 0.653422567 0.653179582

oviedo 0.4990405 0.636551055 0.636564159 0.636214366

bits.type.conversions 0.49092611 0.599742425 0.599754134 0.599313504

bits.int.constmults 0.46402466 0.684160686 0.684145369 0.68434332

int.constmults 0.46402466 0.684160686 0.684145369 0.68434332

uOperators 0.42316937 0.561539984 0.561544694 0.561286023

scope.number 0.23337379 0.186511571 0.186523505 0.186208056

locals 0.22352299 0.204887777 0.204903749 0.204476191

pointers 0.22261314 0.273312631 0.273345095 0.272378969

bits.int.comps 0.20087736 0.161258349 0.16126926 0.160913425

int.comps 0.20087736 0.161258349 0.16126926 0.160913425

basicblocks 0.1707508 0.119877736 0.119886504 0.119654282

parameters 0.15933707 0.191402402 0.19142759 0.190630754

cyclomatic 0.14468324 0.085806282 0.085813374 0.085683276

bits.parameters 0.13715151 0.175305129 0.175334366 0.174459615

bits.locals 0.09168063 0.123880668 0.123907021 0.123209412

scope.ratio -0.02181817 -0.039110065 -0.039095985 -0.039281809

bits.int.tests -0.11536864 -0.160028383 -0.16003587 -0.159622483

int.tests -0.11536864 -0.160028383 -0.16003587 -0.159622483

bits.fp.divs -0.12003402 0.031702118 0.031722311 0.031230274

fp.divs -0.12003402 0.031702118 0.031722311 0.031230274

bits.fp.mults -0.16804461 0.016168004 0.016197098 0.015609934

fp.mults -0.16804461 0.016168004 0.016197098 0.015609934

bits.fp.alus -0.17620488 -0.007646043 -0.007614817 -0.008141846

fp.alus -0.17620488 -0.007646043 -0.007614817 -0.008141846

bits.int.mults -0.1773283 -0.14542688 -0.145412051 -0.145893794

int.mults -0.1773283 -0.14542688 -0.145412051 -0.145893794

AICC -0.49050842 -0.475722426 -0.475727236 -0.475482304

elshof.data.flow -0.51409645 -0.462686561 -0.462681508 -0.462718771

returns.value -0.55625729 -0.670256778 -0.670284566 -0.669657585

Table 4.9: Correlation coefficients of predictors in the experiment VIR-
TEX5.Xpwr.FPGA.B.2



4.1. EXPERIMENTAL RESULTS 85

Static Static & dynamic

Model RMSEp(%) Absolute RMSE RMSEp(%) Absolute RMSE

Energy 14.34034 1.5898610−6 J 44.61419 4.9462110−6 J

Total power 2.4 60.13573 mW 1.318313 32.52463 mW

Static power 1.092485 2.491736 mW 1.091853 2.490294 mW

Dynamic power 30.93404 57.64394 mW 18.3595 34.21195 mW

Table 4.10: Summary of the models created in the experiment VIR-
TEX5.Xpwr.FPGA.B.2



86 CHAPTER 4. RESULTS AND ANALYSIS.

4.2 Validation

The models presented in this thesis were automatically validated using the Quipu ap-
proach. Quipu uses for validation of the models, a method called K-fold cross-validation.
In the K-fold cross-validation the data set is divided in two subsets, the training set and
the validation set. The training subset is used to bootstrap the model using regression
analysis. The validation set is not included in the regression analysis, and instead is used
to validate the model. During the cross-validation process, the training and validation
subsets are changed, and the error reported at the end of the process is the average error
among all the different predictions performed with the different subsets.

Depending on the dataset Quipu performs the cross-validation with different values of
k to obtain the lowest RMSE. For the models generated in this thesis, the value selected
by Quipu is k=5.



Conclusions and future

research. 5
In this thesis, we proposed a high level modelling methodology to create power and energy
prediction models using the Quipu approach.

5.1 Summary

In Chapter 2, we presented the contextual framework of this work. We introduced
the background and related research, in the context of power and energy prediction
for the partitioning process of the DWB design flow. In Chapter 3, we proposed a
modelling methodology that generates prediction models to provide quantitative data
to guide the partitioning process. The prediction models require high level metrics, the
SCMs proposed in [22], to predict the power and energy consumed by a function in
different processing elements of heterogeneous architectures. The main characteristic of
the modelling methodology is the separation of the modelling process in two steps:

1. The isolation of the dynamic behavior of an application.

2. The measurement of the power consumed by the application.

The separation of the modelling process provides the flexibility to investigate different
architectural parameters that characterize the power and energy consumed in different
processing elements. This separation also provides the scalability that allows the gener-
ation of models for different processing elements of heterogeneous architectures. Using
this methodology, we generated a power dataset that is analyzed using different regres-
sion techniques, performed by the Quipu modelling approach, to generate prediction
models of power and energy consumption. In Chapter 4, we presented the results for
the validation of the proposed modelling methodology. For this purpose, we generated
of a set of models for a StrongARM GPP and a Virtex 5 FPGA. The characteristics of
these models, in terms of the RMSE, are different for energy and power. We present in
Table 5.1, the RMSE of the models, which require only the SCMs of a C function to
predict the outcome variable of the model. In Table 5.2, we present the RMSE of the
models using SCMs and some dynamic metrics as predictors.

Model Static Static & dynamic

RMSEp(%) Absolute RMSE RMSEp(%) Absolute RMSE

Energy 29.60695 8.69119110−6 J 3.949472 1.15589810−6 J

Power 1.943507 8.526016 mW 0.754 3.307784 mW

Table 5.1: Summary of the RMSE of the models using SCMs as predictors

87



88 CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH.

Static & num inst committed Static & args.data

Model RMSEp(%) Absolute RMSE RMSEp(%) Absolute RMSE

Energy 21.87 6.39942×10−6J 27.90 8.166×10−6J

Power 1.90 8.367244 mW 1.57 6.884843mW

Table 5.2: Summary of the RMSE of the models using SCMs & some dynamic metrics
as predictors

Based on the research work conducted in this thesis, we have derived the conclusions
presented in Section 5.2. In Section 5.3, we highlight some future work directions.

5.2 Conclusions

The conclusions of this research work are summarized as follows:

• The proposed modelling methodology provides a structured and automatic ap-
proach that can generate prediction models of energy and power consumption for
different processing elements of a heterogeneous architecture. Considering the pro-
cessing element as a black-box in this methodology provides the scalability that
allow an easy change of processing elements.

• The SCMs, used for characterization of power and energy, provide an adequate
accuracy to predict energy and power consumption. As an example, with a RMSE
of 29.6%, using only 28 kernels in the modelling process of the StrongARM pro-
cessor, we were able to create an energy model that provides quantitative data to
guide the partioning process of the HW/SW co-design. If the number of kernels is
increased, this methodology would exhibit a better accuracy. As an example, one
of our experiments using 41 kernels, we generate an energy model for the Virtex 5
FPGA with a RMSE of 14.3%.

• Even though the physical measurements on a chip would provide more accurate
values for power consumption, which results in better models of power and energy,
using a simulation framework provides a higher flexibility. This flexibility enable
us to explore different architectural parameters of a processing element, which can
help in characterizing the power and energy consumed by a function. We believe
that our modelling approach takes more relevance with the high number of different
processing elements available in the market nowadays, because the exploration of
main architectural parameters by using physical measurements on a chip would
make the modelling process completely a complex task.

• The power and energy consumed by a function in different processing elements,
is highly dependent on the characteristics of the underlying hardware where the
function is running. Therefore, the separation of the dynamic behavior of an
application and its power consumption, during the modelling process of power
and energy, is a relevant step to cope with the rapid development of processing
elements. This separation can provide an easy way to abstract away the effects of
the architectural parameters of a processing element and reduce the time used to
create the prediction models.



5.3. FUTURE RESEARCH 89

• Considering the increasing efforts of hardware manufacturers to reduce the static
power consumption of processing elements, the significance of the proposed
methodology is exposed in providing an structured and automatic approach to
predict dynamic power consumption.

5.3 Future research

In order to improve the work presented in this thesis, we suggest the following:

• Including more kernels in the modelling process is required to improve the accuracy
and the applicability of the proposed approach.

• The automatic modelling approach, proposed in this thesis, allows the exploration
of different architectural parameters that can characterize the power and energy
consumption of a kernel. As an inmediate proposal, we suggest to include different
architectural parameters in the modelling process to improve the applicability of
this modelling approach to different architectures.

• In the scope of this thesis, we created power and energy prediction models for
kernels without loops, however with the ability to extract real data passed to a
fuction, through the arguments, we can relate this information with the SCMs that
can describe the function in terms of loops. Therefore, we suggest the inclusion
of kernels with loops as a first step to improve the applicability of this modelling
approach.

• With the proposed modelling methodology it is possible to model different pro-
cessing elements, in consequence we suggest the modelling of processing elements,
such as, a DSP or a GPU. This would increase the applicability of the proposed
modelling approach.



90 CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH.



Glossary

ρµ-code Reconfigurable micro-code, 23

ADC Analog to Digital Converter, 47
ALU Arithmetic Logic Unit, 12
ANN Artificial Neural Networks, 27
API Application Programming Interface, 25
ASIC Application Specific Integrated Circuit, 7
AUT Action Under Test, 46

CAD Computer Aided Design, 8
CCU Custom Computing Unit, 50
CCU Custom Configured Unit of MOLEN machine

organization, 24
CFG Control Flow Graph, 20
CLB Configuration Logic Block, 10

DBA Dynamic Binary Analysis, 25
DSE Design Space Exploration, 16
DSP Digital Signal Processor, 7
DWB Delft Workbench, 7

EA Effective Address, 38
EBP Extended Base Pointer, 38
ELF Executable and Linkable Format, file, 49
ESP Extended Stack Pointer, 37

FIFO First In First Out, 49
FIR Finite Impulse Response, 10
FLPA Functional Level Power Analysis, 12
FPGA Field Programmable Gate Array, 7

GLM Generalized Linear Model, 28
GPP General Purpose Processor, 7
GUI Graphical User Interface, 49

HDL Hardware Description Language, 10

ILPA Instruction Level Power Analysis, 12
IP-Cores Intellectual Property Cores, 12
ISA Instruction Set Architecture, 14

91



92 Glossary

JIT Just In Time, 40
JTAG Joint Test Action Group, interface, 48

LIFO Last In First Out, 38
LRM Linear Regression Model, 28
LSB least significant bit, 48
LUT Look Up Table, 78
LUT Look-Up Table, 8

Macro-model Model with a coarse (low) level of detail [15].,
10

MAF Memory Access Filter: is a module in ARGS,
41

MAT Memory Access Tracing, 25, 42

NOP No Operation assembly instruction, 18

PLB Processor Local Bus, 50
PLSR Partial Least Squares Regression, 28
PMDS Permanent Memory Data Storage: a module

in Pin, 43
PMT Power Measurement Tool, 49

QUAD Quantitative Usage Analysis of Data, 25

RMDS Runtime Memory Data Storage: is a module
in ARGS, 41

RMS Root Mean Square, 13
RMSE Rooted Mean Square Error, 72, 73
RMSEp Relative Mean Square Error of prediction,

used in K-fold cross-validation, 29
RP Reconfigurable Processor, 23
RTL Register Transfer Level, 7

SCM Software Complexity Metrics, 27, 34, 44
SDL System design level, 1
SMS Stepwise Model Selection, 28
SysMon System Monitor, an on-chip HW module in

the Virtex 5 chip, 47

TTM Time to market, 1

UUT Unit Under Test, 45



Glossary 93

VM Virtual Machine, 25

XREG Exchange registers of MOLEN machine orga-
nization, 23



94 Glossary



Bibliography

[1] Syed Saif Abrar, Cycle-accurate energy model and source-independent characteri-
zation methodology for embedded processors, Proceedings of the 17th International
Conference on VLSI Design (Washington, DC, USA), VLSID ’04, IEEE Computer
Society, 2004, pp. 749–.

[2] O. Acevedo-Patinando, M. Jimeandnez, and A.J. Cruz-Ayoroa, Static simulation:
A method for power and energy estimation in embedded microprocessors, Circuits
and Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium on,
2010, pp. 41 –44.

[3] Y. Ben-Asher and N. Rotem, Synthesis for variable pipelined function units, System-
on-Chip, 2008. SOC 2008. International Symposium on, nov. 2008, pp. 1 –4.

[4] Yosi Ben-Asher and Nadav Rotem, Automatic memory partitioning: increasing
memory parallelism via data structure partitioning, Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-
tem synthesis (New York, NY, USA), CODES/ISSS ’10, ACM, 2010, pp. 155–162.

[5] Koen Bertels, Stamatis Vassiliadis, Elena Moscu Panainte, Yana Yankova, Carlo
Galuzzi, Ricardo Chaves, and Georgi Kuzmanov, Developing applications for poly-
morphic processors: The delft workbench.

[6] Bluebee, Bluebee white paper, http://www.bluebee-tech.com/downloads/

BlueBee_Whitepaper.pdf, 2011, Website.

[7] Box, G. E. P. and Cox, D. R., An analysis of transformations, Journal of the Royal
Statistical Society. Series B (Methodological) 26 (1964), no. 2, 211–252.

[8] S. Chandrasekaran and A. Amira, Power reduction for fpga implementations : De-
sign optimisation and high level modelling, Field Programmable Logic and Applica-
tions, 2006. FPL ’06. International Conference on, August 2006, pp. 1 –2.

[9] , A new behavioural power modelling approach for fpga based custom cores,
Proceedings of the Second NASA/ESA Conference on Adaptive Hardware and Sys-
tems (Washington, DC, USA), IEEE Computer Society, 2007, pp. 350–357.

[10] Naehyuck Chang, Kwanho Kim, and Hyung Gyu Lee, Cycle-accurate energy mea-
surement and characterization with a case study of the arm7tdmi, IEEE Trans. Very
Large Scale Integr. Syst. 10 (2002), 146–154.

[11] Vijay Degalahal and Tim Tuan, Methodology for high level estimation of fpga power
consumption, Proceedings of the 2005 Asia and South Pacific Design Automation
Conference (New York, NY, USA), ASP-DAC ’05, ACM, 2005, pp. 657–660.

95



96 BIBLIOGRAPHY

[12] David Elleouet, Yannig Savary, and Nathalie Julien, An fpga power aware design
flow, Integrated Circuit and System Design. Power and Timing Modeling, Opti-
mization and Simulation (Johan Vounckx, Nadine Azemard, and Philippe Maurine,
eds.), Lecture Notes in Computer Science, vol. 4148, Springer Berlin / Heidelberg,
2006, pp. 415–424.

[13] Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, and Gunar Schirner, Embedded
system design: Modeling, synthesis and verification, 1st ed., Springer Publishing
Company, Incorporated, 2009.

[14] D. Grune, H. Bal, C. Jacobs, and K. Langendoen, Modern Compiler Design, Wiley,
August 2000.

[15] Ali K. Gunal, Edward J. Williams, and Shigeru Sadakane, Modeling of chain con-
veyors and their equipment interfaces, Proceedings of the 28th conference on Win-
ter simulation (Washington, DC, USA), WSC ’96, IEEE Computer Society, 1996,
pp. 1107–1114.

[16] P. Jamieson, W. Luk, S.J.E. Wilton, and G.A. Constantinides, An energy and power
consumption analysis of fpga routing architectures, Field-Programmable Technology,
2009. FPT 2009. International Conference on, dec. 2009, pp. 324 –327.

[17] Tianyi Jiang, Xiaoyong Tang, and Prith Banerjee, Macro-models for high level area
and power estimation on fpgas, Proceedings of the 14th ACM Great Lakes sympo-
sium on VLSI (New York, NY, USA), GLSVLSI ’04, ACM, 2004, pp. 162–165.

[18] Hyung Gyu Lee, Kyungsoo Lee, Yongseok Choi, and Naehyuck Chang, Cycle-
accurate energy measurement and characterization of fpgas, Analog Integr. Circuits
Signal Process. 42 (2005), 239–251.

[19] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood, Pin: building
customized program analysis tools with dynamic instrumentation, SIGPLAN Not.
40 (2005), 190–200.

[20] P. Marwedel, Embedded system design, Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[21] T.J. McCabe, A complexity measure, Software Engineering, IEEE Transactions on
SE-2 (1976), no. 4, 308 – 320.

[22] R. J. Meeuws, C. Galuzzi, and K.L.M. Bertels, High level quantitative hardware
prediction modeling using statistical methods, Proceedings of the International Con-
ference on Embedded Computer Systems: Architectures, Models, and Simulations,
July 2011, pp. 140–149.

[23] R. J. Meeuws, K Sigdel, Y. D. Yankova, and K.L.M. Bertels, High level quantitative
interconnect estimation for early design space exploration, ICFPT ’08: Proceedings
of the 2008 International Conference on Field-Programmable Technology, December
2008, p. 4.



BIBLIOGRAPHY 97

[24] R. J. Meeuws, Y. D. Yankova, K.L.M. Bertels, G. N. Gaydadjiev, and S. Vassil-
iadis, A quantitative prediction model for hardware/software partitioning, Proceed-
ings of 17th International Conference on Field Programmable Logic and Applica-
tions (FPL07), August 2007, pp. 735–739.

[25] H. Mehta, R. M. Owens, and M. J. Irwin, Instruction level power profiling, Proceed-
ings of the Acoustics, Speech, and Signal Processing, 1996. on Conference Proceed-
ings., 1996 IEEE International Conference - Volume 06 (Washington, DC, USA),
ICASSP ’96, IEEE Computer Society, 1996, pp. 3326–3329.

[26] University of Michigan and University of Colorado, ”sym-panalyzer2.0 reference
manual”, ”http://www.eecs.umich.edu/~panalyzer/pdfs/Sim-Panalyzer2.0_
ReferenceManual.pdf”, 2011.

[27] Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping Li,
Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K. Dhall, A
probabilistic power prediction tool for the xilinx 4000-series fpga, Proceedings of the
15 IPDPS 2000 Workshops on Parallel and Distributed Processing (London, UK),
IPDPS ’00, Springer-Verlag, 2000, pp. 776–783.

[28] S. Arash Ostadzadeh, Roel Meeuws, Carlo Galuzzi, and Koen Bertels, Quad - a
memory access pattern analyser, ARC, 2010, pp. 269–281.

[29] Enrique I. Oviedo, Software engineering metrics i, McGraw-Hill, Inc., New York,
NY, USA, 1993, pp. 52–65.

[30] Sandro Penolazzi, Luca Bolognino, and Ahmed Hemani, Energy and performance
model of a sparc leon3 processor, Proceedings of the 2009 12th Euromicro Conference
on Digital System Design, Architectures, Methods and Tools (Washington, DC,
USA), DSD ’09, IEEE Computer Society, 2009, pp. 651–656.

[31] Kara K. W. Poon, Steven J. E. Wilton, and Andy Yan, A detailed power model for
field-programmable gate arrays, ACM Trans. Des. Autom. Electron. Syst. 10 (2005),
279–302.

[32] Jan M. Rabaey, Digital integrated circuits: a design perspective, Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1996.

[33] Akshaye Sama, J. F. M. Theeuwen, and M. Balakrishnan, Speeding up power esti-
mation of embedded software, Proceedings of the 2000 international symposium on
Low power electronics and design (New York, NY, USA), ISLPED ’00, ACM, 2000,
pp. 191–196.

[34] L. Shang and N.K.Jha, High-level power modeling of cplds and fpgas, Proceedings of
the International Conference on Computer Design: VLSI in Computers & Processors
(Washington, DC, USA), IEEE Computer Society, 2001, pp. 46–.

[35] Stefan Steinke, Markus Knauer, Lars Wehmeyer, and Peter Marwedel, An accurate
and fine grain instruction-level energy model supporting software optimizations, in



98 BIBLIOGRAPHY

Proc. Int. Wkshp Power and Timing Modeling, Optimization and Simulation (PAT-
MOS, 2001.

[36] Richard W. Stevens and Stephen A. Rago, Advanced programming in the unix(r)
environment (2nd edition), Addison-Wesley Professional, 2005.

[37] T. K. Tan, A. K. Raghunathan, G. Lakishminarayana, and N. K. Jha, High-level
software energy macro-modeling, Proceedings of the 38th annual Design Automation
Conference (New York, NY, USA), DAC ’01, ACM, 2001, pp. 605–610.

[38] Vivek Tiwari, Sharad Malik, and Andrew Wolfe, Power analysis of embedded soft-
ware: a first step towards software power minimization, Proceedings of the 1994
IEEE/ACM international conference on Computer-aided design (Los Alamitos, CA,
USA), ICCAD ’94, IEEE Computer Society Press, 1994, pp. 384–390.

[39] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M. Bertels, G.K. Kuzmanov, and
E. Moscu Panainte, The molen polymorphic processor, IEEE Transactions on Com-
puters (2004), 1363– 1375.

[40] Tajana Šimunić, Luca Benini, and Giovanni De Micheli, Cycle-accurate simula-
tion of energy consumption in embedded systems, Proceedings of the 36th annual
ACM/IEEE Design Automation Conference (New York, NY, USA), DAC ’99, ACM,
1999, pp. 867–872.

[41] Inc Xilinx, Virtex-5 fpga data sheet: Dc and switching characteristics, ds202
(v5.3), http://www.xilinx.com/support/documentation/data_sheets/ds202.

pdf, May 5, 2010, Website.

[42] Y. D. Yankova, G. Kuzmanov, K.L.M. Bertels, G. N. Gaydadjiev, Y. Lu, and S. Vas-
siliadis, Dwarv: Delftworkbench automated reconfigurable vhdl generator, In Pro-
ceedings of the 17th International Conference on Field Programmable Logic and
Applications (FPL07), August 2007, pp. 697–701.

[43] P. Zipf, H. Hinkelmann, Lei Deng, M. Glesner, H. Blume, and T.G. Noll, A power es-
timation model for an fpga-based softcore processor, Field Programmable Logic and
Applications, 2007. FPL 2007. International Conference on, August 2007, pp. 171
–176.



Appendix 6
6.1 Software Complexity Metrics List

The following table shows the complete list and a description of the SCMs used in this
work to characterize power consumption. The SCMs were presented in [24].
Id Metric Description

1 AICC Average Information Content Classification

2 avg.nesting Average nesting

3 basicblocks Total number of basic blocks

4 bb.avg.heap.loads Average heap loads per basic block

5 bb.avg.loads Average memory loads per basic block

6 bb.avg.operators Average operators per basic block

7 bb.avg.statements Average statements per basic block

8 bb.max.heap.loads Maximum heap loads per basic block

9 bb.max.loads Maximum memory loads per basic block

10 bb.max.operators Maximum operators per basic block

11 bb.max.statements Maximum statements per basic block

12 bitextracts Total number of bit extract operations

13 bitinserts Total number of bit inserts operations

14 bits.bitwise Cumulative number of bits used in bitwise operations

15 bits.constants Cumulative number of bits of contants in the code

16 bits.fp.alus Cumulative number of bits used in floating point ALU operations

17 bits.fp.divs Cumulative number of bits used used in floating point divisions

18 bits.fp.mods Cumulative number of bits used in floating point modules

19 bits.fp.mults Cumulative number of bits used in floating points operations

20 bits.heap.loads Cumulative number of bits used in loads to heap

21 bits.heap.stores Cumulative number of bits used in stores to heap

22 bits.int.alus Cumulative number of bits used in integer ALU operations

23 bits.int.comps Cumulative number of bits used in integer comparisons

24 bits.int.constdivs Cumulative number of bits used in integer divisions of constants

25 bits.int.constmods Cumulative number of bits used in integer module of constants

26 bits.int.constmults Cumulative number of bits used in integer multiplication of constants

27 bits.int.divs Cumulative number of bitsused in integer divisions

28 bits.int.mods Cumulative number of bits used in integer modules

continued on next page ...

99



100 CHAPTER 6. APPENDIX

Id Metric Description

29 bits.int.mults Cumulative number of bits used in integer multiplications

30 bits.int.tests Cumulative number of bits used in integer tests

31 bits.loads Cumulative number of bits used in memory loads

32 bits.locals Cumulative number of bits used in local variables

33 bits.negate Cumulative number of bits used in negations operation

34 bits.parameters Cumulative number of bits used in the arguments of the function

35 bits.stores Cumulative number of bits used in memory stores

36 bits.type.conversions Cumulative number of bits used in type conversions

37 bits.used.globals Cumulative number of bits used in operations with globals variables

38 bitwise Total number of bitwise operations

39 constants Total number of constants

40 cum.nesting Cumulative number of nesting deepness

41 cyclomatic Cyclomatic metric [21]

42 elshof.data.flow Data flow complexity metric

43 executed.operators Total number of executed operators

44 executed.statements Total number of statements executed

45 fp.alus Total number of floating point ALU ops

46 fp.divs Total number of floating point divisions

47 fp.mods Total number of floating point modules

48 fp.mults Total number of floating point multiplications

49 function.calls Total number of function calls

50 heap.loads Total number of loads to heap

51 heap.stores Total number of stores to heap

52 int.alus Total number of integer ALU ops

53 int.barrelshifts Total number of integer barrel shifts

54 int.comps Total number of integer comparisons

55 int.constantshifts Total number of integer constants shifting

56 int.constdivs Total number of integer division of constants

57 int.constmods Total number of integer modules of constants

58 int.constmults Total number of integer multiplication of constants

59 int.divs Total number of integer divisions

60 int.mods Total number of integer modules

61 int.mults Total number of integer multiplications

62 int.tests Total number of integer tests

63 loads Total number memory loads

71 oviedo Oviedo metric [29]

72 parameters Number of parameters (arguments) of the function

73 pointers Number of pointers

continued on next page ...



6.2. CONFIGURATION PARAMETERS OF SIM-PANALYZER 101

Id Metric Description

74 returns.value Binary metric that shows if the function returns a value

75 scope.number Number of scopes

76 scope.ratio Ratio in the scopes

77 statements Number of statements

78 stores Number of memory stores

79 type.conversions Number of type conversions

80 uOperands Number of micro-operands

81 uOperators Number of micro-operators

82 used.globals Number of global variables used

Table 6.1: Quipu Software Complexity Metrics

6.2 Configuration parameters of Sim-Panalyzer

In the Listing 6.1, we present the default configuration parameters of a StrongARM
processor. This configuration data is given in the source code of sim-panalyzer 2.0.3,
available in [26].

Listing 6.1: Default configuration parameters of a StrongARM processor provided by
sim-panalyzer

1 #

2 # SA -1 core sim -outorder configuration

3 #

4

5 -seed 1

6 -fetch:ifqsize 8

7 -fetch:mplat 9999

8 -fetch:speed 1

9 -bpred nottaken

10 -decode:width 2

11 -issue:width 2

12 -commit:width 2

13 -issue:inorder true

14 -issue:wrongpath true

15 -ruu:size 4

16 -lsq:size 4

17 -lsq:perfect false

18 -cache:dl1 dl1 :16:32:32:f

19 -cache:dl1lat 1

20 -cache:dl2 none

21 -cache:il1 il1 :16:32:32:f

22 -cache:il1lat 1

23 -cache:il2 none

24 -cache:flush false

25 -cache:icompress false

26 -mem:lat 64 1

27 -mem:width 4

28 -mem:pipelined false



102 CHAPTER 6. APPENDIX

29 -tlb:itlb itlb :32:4096:32:f

30 -tlb:dtlb dtlb :32:4096:32:f

31 -tlb:lat 30

32 -res:ialu 2

33 -res:imult 1

34 -res:memport 1

35 -res:fpalu 1

36 -res:fpmult 1

37 -bugcompat false

38 -panalyzer:aio aio:a:200:o:3.3:5:10:1

39 -panalyzer:btb btb:a:200:1:1:1

40 -panalyzer:clock clock:a:200:n:250:3

41 -panalyzer:dio dio:a:200:b:3.3:5:10:1

42 -panalyzer:dl1 dl1:a:200:1:1:1

43 -panalyzer:dtlb dtlb:a:200:1:1:1

44 -panalyzer:fprf fprf:a:200:1

45 -panalyzer:il1 il1:a:200:1:1:1

46 -panalyzer:irf irf:a:200:1

47 -panalyzer:itlb itlb:a:200:1:1:1

48 -panalyzer:dl2 dl2:a:200:1:1:1

49 -panalyzer:ras ras:a:200:1

50 -panalyzer:logic logic:a:200:1.8: Static :30000:4:1:4

6.3 Energy and Power relationship

In the book Digital Integrated Circuits a Design Perspective [32], Rabaey defines the
concepts of power and energy consumption for CMOS devices. These concepts are closely
related and can be related mathematically using the theory of the dynamic behavior in
the CMOS inverter.

The dynamic energy dissipation of a CMOS inverter is physically related to the
charge and discharge of the voltage in the load capacitor. This charge and discharge
process occurs twice during a switching cycle, consisting of Low-to-High and High-to-
Low transitions. The energy consumed during this process can be calculated using the
Equation 6.1, where energy(E) is equal to the load capacitance (CL) times the supply
voltage to the square (V 2

DD).

E = CL × V 2
DD (6.1)

The energy consumed by a CMOS inverter is associated with a chargedischarge cycle
only, and this cycle is not necessarily equal to the frequency of the clock.

Now that we define the energy, we can relate energy with power consumption using
the Equation 6.2 that describes the dynamic power consumption of the CMOS inverter.

Pdyn = E × switching activity = CL × V 2
DD × switching activity (6.2)

The term switching activity, presented in the previous equation, refers to the transi-
tions from Low-to-High and High-to-Low that occurs in one second in the CMOS inverter.
For complex systems, such as a GPP or an FPGA, the switching activity is difficult to
calculate because depends on the implementation of the system, the inputs provided to



6.4. THE KERNEL LIBRARY 103

the system, and in general, the dynamic behavior of the system. However, it is possible
to relate the switching activity with the clock frequency of a system. It is important to
notice that the clock frequency is not necessarily equal to the switching activity, because
it is possible that during a clock cycle of a design some CMOS inverters do switch and
others not. Therefore, we can use a transition probability of the signals, in a design,
to express how probable is that a signal switches from High-to-Low and Low-to-High
during a clock cycle of the system. Using the transition probability P0−1 we can express
the dynamic power using the Equation 6.3

Pdyn = CL × V 2
DD × P0−1 × f (6.3)

The variable f represents the clock frequency. Based on this formula, we can define
the concept of effective capacitance, that is calculated multiplying the load capacitance
times the transition probability (P0−1). The effective capacitance is defined as the aver-
age capacitance switched every clock cycle, and can be expressed with Equation 6.4.

Ceff = CL × P0−1 (6.4)

Using the definition of effective capacitance, we can define the dynamic power as
presented in Equation 6.5.

Pdyn = Ceff × V 2
DD × f (6.5)

Finally, we can use Equation 6.5 to relate energy and dynamic power consumption,
as presented in Equation 6.6.

E = Ceff × V 2
DD =

Pdyn

f
= Pdyn × T (6.6)

Where T , is the clock period.

6.4 The kernel library

The following table, presents a summary of the applications and kernels contained in the
kernel library.

Kernel Name Kernel description Application description Application domain

g721 body CCITT G.721 32Kbps ADPCM ANSI-C language reference implementations Multimedia

coder of the CCITT by Sun Microsystems

mdct butterfly 8 Normalized modified discrete Vorbis a general purpose audio and music Multimedia

cosine transform - 8 point butterfly encoding format contemporary to MPEG-

mdct butterfly 16 Normalized modified discrete 4’s AAC and TwinV. libvorbis-1.2.0 Multimedia

cosine transform - 16 point butterfly

CrossProduct3 Cross product implementation CrossProduct library with cross product Mathematics

of an integer vector of 3 elements implementations using floating point

continued on next page ...



104 CHAPTER 6. APPENDIX

Kernel Name Kernel description Application description Application domain

CrossProduct7 Cross product implementation and integer numbers Mathematics

of a an integer vector of 7 elements

bytesum Addition of high byte and Mathematics

low byte of a long number Functions library with implementations

polynomialbin Subtitution of independant variable of different mathematical operations. V.1. Mathematics

in a polynomial equation

intersect triangle Intersect triangle algorithm Testbench for intersect triangle algorithm Mathematics

intmatmult3x3 Matrix multiplication of 3x3 matrix Testbench application for matrix Mathematics

intmatmult4x4 Matrix multiplication of 4x4 matrix operations Mathematics

mseq m-sequence sequences generator Spreading sequences generators Error Correction

(small set and large set) for CDMA mobile communications Code (ECC)

apply butterflies Stream decoder for rate 1/3 K=7 KA9Q Viterbi decoder V3.0.1 ECC

Hamming1 unrolled Unrolled function to get the hamming Testbench of the the Hamming distance, a

distance of two unsigned short numbers. metric determined by the sum of the absolute ECC

Version 1 bitwise difference of two operands.

Hamming2 unrolled Unrolled function to get the hamming Testbench of the the Hamming distance, a

distance of two unsigned short numbers. metric determined by the sum of the absolute ECC

Version 2 bitwise difference of two operands.

gost encrypt The GOST 28147-89 cipher - encoder

gost decrypt The GOST 28147-89 cipher - decoder

twofish encrypt Implementation of Twofish algorithm

by Bruce Schneier, et.al. - encoder

Written by Dr B R Gladman

twofish decrypt Implementation of Twofish algorithm

by Bruce Schneier, et.al.- decoder Libmcrypt is a

Written by Dr B R Gladman thread-safe library

serpent encrypt Implementation of the Serpent providing a uniform Cryptography

algorithm by R.Anderson, interface to

E.Biham and L.Knudsen- encoder access several block

Written by Dr B R Gladman and stream encryption

serpent decrypt Implementation of the Serpent algorithms.

algorithm by R.Anderson, (libmcrypt-2.5.7)

E.Biham and L.Knudsen- decoder

Written by Dr B R Gladman

cast256 encrypt Implementation of the CAST-256

algorithm by Carlisle Adams -

encoder written by Dr B R Gladman

cast256 decrypt Implementation of the CAST-256

continued on next page ...



6.4. THE KERNEL LIBRARY 105

Kernel Name Kernel description Application description Application domain

algorithm by Carlisle Adams

decoder written by Dr B R Gladman

loki97 encrypt Implementation of the LOKI97

algorithm by Brown and Pieprzyk

encoder written by Dr B R Gladman

loki97 decrypt Implementation of the LOKI97

algorithm by Brown and Pieprzyk

decoder written by Dr B R Gladman

cast128 encrypt Implementation of the CAST-128

algorithm by Niels Muller - encoder

Written by Steve Reid

cast128 decrypt Implementation of the CAST-128

algorithm by Niels Muller - decoder

Written by Steve Reid

des f Implementation of the Feistel

function of the

Data Encryption Standard (DES)

MD5Transform This function alters an existing MD5

hash to reflect the addition The mhash library provides

of 16 longwords of new data.

sha transform Perform the SHA transformation. an easy way to access

MD4Transform The core of the MD4 algorithm. strong hashes such as

hw ripemd128 transform RIPEMD-128 is a plug-in substitute MD5, SHA1

for RIPEMD with a 128-bit result and other algorithms.

hw ripemd160 transform RIPEMD-160 is a 160-bit (mhash-0.9.6) Cryptography

cryptographic hash function

designed by H.Dobbertin,

A.Bosselaers, and B.Preneel.

hw ripemd256 transform RIPEMD-256 is an

extension of RIPEMD-128

hw ripemd320 transform RIPEMD-320 is an

extension of RIPEMD-160

havalTransform3 HAVAL - the one-way hashing

algorithm with 3 passes

bitreversal2 unrolled Code to perform in-situ Testbench of bitreversal function DSP

index bit-reversalfor danlan based on Sculptor-3.3 library

(module ifft.c) - unrolled version

complex div Division of complex numbers Functions library with Mathematics

continued on next page ...



106 CHAPTER 6. APPENDIX

Kernel Name Kernel description Application description Application domain

complex mult Multiplication of complex numbers implementationsof different Mathematics

mathematical operations. V.2.

max Returns the maximum NW Implements the Bio- informatics

of 4 integer numbers Needleman-Wunsch

algorithm for global

nucleotide sequence alignment,

written by R.Muertter 9/5/2006

Table 6.2: Summary of kernel library



6.5. EXPERIMENT STRONGARM.SIMPANALYZER.GPP.B.1 - ENERGY RELA-
TIONSHIP 107

6.5 Experiment StrongARM.SimPanalyzer.GPP.B.1 - en-
ergy relationship

The Figures 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6 show the relation ship between the energy
and the parameters used for modelling.

0.0 0.2 0.4 0.6 0.8 1.0 1.20.
00

00
0

0.
00

00
6

0.
00

01
2

AICC

en
er

gy
[J

]

0 200 400 600 800 10000.
00

00
0

0.
00

00
6

0.
00

01
2

bits.int.tests

en
er

gy
[J

]
0 500 1000 1500 20000.

00
00

0
0.

00
00

6
0.

00
01

2

bb.avg.loads

en
er

gy
[J

]
0 1000 3000 50000.

00
00

0
0.

00
00

6
0.

00
01

2

args.data

en
er

gy
[J

]

0 50000 100000 1500000.
00

00
0

0.
00

00
6

0.
00

01
2

bits.loads

en
er

gy
[J

]

0 200 400 600 8000.
00

00
0

0.
00

00
6

0.
00

01
2

bb.avg.heap.loads

en
er

gy
[J

]

100 200 300 400 5000.
00

00
0

0.
00

00
6

0.
00

01
2

bits.parameters

en
er

gy
[J

]

0 500 1000 1500 20000.
00

00
0

0.
00

00
6

0.
00

01
2

bits.locals

en
er

gy
[J

]

0 10 20 30 40 50 600.
00

00
0

0.
00

00
6

0.
00

01
2

int.mults

en
er

gy
[J

]

0 100 200 300 400 500 6000.
00

00
0

0.
00

00
6

0.
00

01
2

basicblocks

en
er

gy
[J

]

0 200 600 10000.
00

00
0

0.
00

00
6

0.
00

01
2

bits.negate

en
er

gy
[J

]

0 5 10 15 20 25 300.
00

00
0

0.
00

00
6

0.
00

01
2

int.tests

en
er

gy
[J

]

Figure 6.1: Relation between energy and modelling parameters, graph1



108
C
H
A
P
T
E
R

6.
A
P
P
E
N
D
IX

0
5000

15000
25000

0.00000 0.00006 0.00012

bits.stores

energy[J]

0
1000

2000
3000

4000

0.00000 0.00006 0.00012

loads

energy[J]

0
500

1000
1500

2000

0.00000 0.00006 0.00012

bb.avg.operators

energy[J]

0
10000

30000
50000

0.00000 0.00006 0.00012

bits.type

energy[J]

0
10

20
30

40
50

60

0.00000 0.00006 0.00012

locals

energy[J]

0
100

200
300

400
500

0.00000 0.00006 0.00012

bb.avg.statem
ents

energy[J]

0
20

40
60

80
100

0.00000 0.00006 0.00012

logical

energy[J]

0
500

1000
1500

2000

0.00000 0.00006 0.00012

bb.m
ax.heap.loads

energy[J]

0
500

1000
1500

2000

0.00000 0.00006 0.00012

bitw
ise

energy[J]

0
1000

2000
3000

4000

0.00000 0.00006 0.00012

bb.m
ax.loads

energy[J]

0
500

1000
2000

0.00000 0.00006 0.00012

constants

energy[J]

0
10

20
30

40

0.00000 0.00006 0.00012

negate

energy[J]

F
igu

re
6.2:

R
elation

b
etw

een
en
ergy

an
d
m
o
d
ellin

g
p
aram

eters,
grap

h
2



6.5.
E
X
P
E
R
IM

E
N
T

S
T
R
O
N
G
A
R
M
.S
IM

P
A
N
A
L
Y
Z
E
R
.G

P
P
.B
.1

-
E
N
E
R
G
Y

R
E
L
A
-

T
IO

N
S
H
IP

109

0
1000

2000
3000

4000

0.00000 0.00006 0.00012

bb.m
ax.operators

energy[J]

0
200

400
600

800
1000

0.00000 0.00006 0.00012

bb.m
ax.statem

ents
energy[J]

0
50

100
150

200
250

0.00000 0.00006 0.00012

cyclom
atic

energy[J]

0
1000

2000
3000

4000
5000

0.00000 0.00006 0.00012

operands

energy[J]

0.00
0.05

0.10
0.15

0.20

0.00000 0.00006 0.00012

elshof.data.flow

energy[J]

0
1000

3000
5000

0.00000 0.00006 0.00012

operators
energy[J]

0
10000

30000
50000

0.00000 0.00006 0.00012

oviedo

energy[J]

0
20000

40000
60000

0.00000 0.00006 0.00012

bits.bitw
ise

energy[J]

0
1000

3000
5000

0.00000 0.00006 0.00012

executed.operators

energy[J]

5
10

15

0.00000 0.00006 0.00012

param
eters

energy[J]

0
20000

40000
60000

80000

0.00000 0.00006 0.00012

bits.constants

energy[J]

0
200

400
600

800
1000

0.00000 0.00006 0.00012

executed.statem
ents

energy[J]

F
igu

re
6.3:

R
elation

b
etw

een
en
ergy

an
d
m
o
d
ellin

g
p
aram

eters,
grap

h
3



110
C
H
A
P
T
E
R

6.
A
P
P
E
N
D
IX

0
5

10
15

0.00000 0.00006 0.00012

pointers

energy[J]

0.0
0.2

0.4
0.6

0.8
1.0

0.00000 0.00006 0.00012

returns.value

energy[J]

0
20000

40000
60000

80000

0.00000 0.00006 0.00012

scope.num
ber

energy[J]

0.0
0.2

0.4
0.6

0.8
1.0

0.00000 0.00006 0.00012

scope.ration

energy[J]

0
20000

40000
60000

0.00000 0.00006 0.00012

bits.heap.loads

energy[J]

0
1000

2000
3000

4000

0.00000 0.00006 0.00012

bits.heap.stores

energy[J]

0
500

1000
1500

2000

0.00000 0.00006 0.00012

heap.loads

energy[J]

0
20000

40000
60000

0.00000 0.00006 0.00012

bits.int.alus

energy[J]

0
20

40
60

80
100

140

0.00000 0.00006 0.00012

heap.stores

energy[J]

0
2000

4000
6000

8000

0.00000 0.00006 0.00012

bits.int.com
ps

energy[J]

0
500

1000
1500

2000

0.00000 0.00006 0.00012

int.alus

energy[J]

0
200

400
600

800
1000

0.00000 0.00006 0.00012

statem
ents

energy[J]

F
igu

re
6.4:

R
elation

b
etw

een
en
ergy

an
d
m
o
d
ellin

g
p
aram

eters,
grap

h
4



6.5.
E
X
P
E
R
IM

E
N
T

S
T
R
O
N
G
A
R
M
.S
IM

P
A
N
A
L
Y
Z
E
R
.G

P
P
.B
.1

-
E
N
E
R
G
Y

R
E
L
A
-

T
IO

N
S
H
IP

111

0
20

40
60

80

0.00000 0.00006 0.00012

int.barrelshifts

energy[J]

0
200

400
600

800
1000

0.00000 0.00006 0.00012

stores
energy[J]

0
50

100
150

200
250

0.00000 0.00006 0.00012

int.com
ps

energy[J]

0
500

1000
1500

0.00000 0.00006 0.00012

type.conversions

energy[J]

0
2000

6000
10000

0.00000 0.00006 0.00012

bits.int.constm
ults

energy[J]

0
100

300
500

0.00000 0.00006 0.00012

int.constantshifts
energy[J]

0
50

100
150

0.00000 0.00006 0.00012

uO
perands

energy[J]

6
8

10
12

14

0.00000 0.00006 0.00012

uO
perators

energy[J]

0
500

1000
1500

2000

0.00000 0.00006 0.00012

bits.int.m
ults

energy[J]

0
100

200
300

0.00000 0.00006 0.00012

int.constm
ults

energy[J]

0.0
0.5

1.0
1.5

2.0

0.00000 0.00006 0.00012

sim
.cpi

energy[J]

0
20000

40000
60000

80000

0.00000 0.00006 0.00012

sim
.cycle

energy[J]

F
igu

re
6.5:

R
elation

b
etw

een
en
ergy

an
d
m
o
d
ellin

g
p
aram

eters,
grap

h
5



112 CHAPTER 6. APPENDIX

0 1000 3000 5000 7000

0.
00

00
0

0.
00

00
4

0.
00

00
8

0.
00

01
2

sim.num.insn

en
er

gy
[J

]

0 500 1000 1500 2000 2500 3000

0.
00

00
0

0.
00

00
4

0.
00

00
8

0.
00

01
2

sim.num.refs

en
er

gy
[J

]

Figure 6.6: Relation between energy and modelling parameters, graph6



6.6. EXPERIMENT STRONGARM.SIMPANALYZER.GPP.B.1 - POWER RELA-
TIONSHIP 113

6.6 Experiment StrongARM.SimPanalyzer.GPP.B.1 -
Power relationship

The Figures 6.7, 6.8, 6.9, 6.10, 6.11, and 6.12 show the relation ship between the power
consumption in a kernel, and the predictors used in the modelling process.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
38

0.
40

0.
42

0.
44

0.
46

AICC

po
w

er
[W

]

0 200 400 600 800 1000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.int.tests

po
w

er
[W

]
0 500 1000 1500 2000

0.
38

0.
40

0.
42

0.
44

0.
46

bb.avg.loads

po
w

er
[W

]
0 1000 3000 5000

0.
38

0.
40

0.
42

0.
44

0.
46

args.data

po
w

er
[W

]

0 50000 100000 150000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.loads

po
w

er
[W

]

0 200 400 600 800

0.
38

0.
40

0.
42

0.
44

0.
46

bb.avg.heap.loads

po
w

er
[W

]

100 200 300 400 500

0.
38

0.
40

0.
42

0.
44

0.
46

bits.parameters

po
w

er
[W

]

0 500 1000 1500 2000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.locals

po
w

er
[W

]

0 10 20 30 40 50 60

0.
38

0.
40

0.
42

0.
44

0.
46

int.mults

po
w

er
[W

]

0 100 200 300 400 500 600

0.
38

0.
40

0.
42

0.
44

0.
46

basicblocks

po
w

er
[W

]

0 200 600 1000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.negate

po
w

er
[W

]

0 5 10 15 20 25 30

0.
38

0.
40

0.
42

0.
44

0.
46

int.tests

po
w

er
[W

]

Figure 6.7: Relation between power and the modelling predictors, graph1



114 CHAPTER 6. APPENDIX

0 5000 15000 25000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.stores

po
w

er
[W

]

0 1000 2000 3000 4000

0.
38

0.
40

0.
42

0.
44

0.
46

loads

po
w

er
[W

]

0 500 1000 1500 2000

0.
38

0.
40

0.
42

0.
44

0.
46

bb.avg.operators

po
w

er
[W

]

0 10000 30000 50000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.type

po
w

er
[W

]

0 10 20 30 40 50 60

0.
38

0.
40

0.
42

0.
44

0.
46

locals

po
w

er
[W

]

0 100 200 300 400 500

0.
38

0.
40

0.
42

0.
44

0.
46

bb.avg.statements

po
w

er
[W

]

0 20 40 60 80 100

0.
38

0.
40

0.
42

0.
44

0.
46

logical

po
w

er
[W

]

0 500 1000 1500 2000

0.
38

0.
40

0.
42

0.
44

0.
46

bb.max.heap.loads

po
w

er
[W

]

0 500 1000 1500 2000

0.
38

0.
40

0.
42

0.
44

0.
46

bitwise

po
w

er
[W

]

0 1000 2000 3000 4000

0.
38

0.
40

0.
42

0.
44

0.
46

bb.max.loads

po
w

er
[W

]

0 500 1000 2000

0.
38

0.
40

0.
42

0.
44

0.
46

constants

po
w

er
[W

]

0 10 20 30 40

0.
38

0.
40

0.
42

0.
44

0.
46

negate

po
w

er
[W

]

Figure 6.8: Relation between the power and the modelling predictors, graph2



6.6. EXPERIMENT STRONGARM.SIMPANALYZER.GPP.B.1 - POWER RELA-
TIONSHIP 115

0 1000 2000 3000 4000

0.
38

0.
40

0.
42

0.
44

0.
46

bb.max.operators

po
w

er
[W

]

0 200 400 600 800 1000

0.
38

0.
40

0.
42

0.
44

0.
46

bb.max.statements
po

w
er

[W
]

0 50 100 150 200 250

0.
38

0.
40

0.
42

0.
44

0.
46

cyclomatic

po
w

er
[W

]

0 1000 2000 3000 4000 5000

0.
38

0.
40

0.
42

0.
44

0.
46

operands

po
w

er
[W

]

0.00 0.05 0.10 0.15 0.20

0.
38

0.
40

0.
42

0.
44

0.
46

elshof.data.flow

po
w

er
[W

]

0 1000 3000 5000

0.
38

0.
40

0.
42

0.
44

0.
46

operators
po

w
er

[W
]

0 10000 30000 50000

0.
38

0.
40

0.
42

0.
44

0.
46

oviedo

po
w

er
[W

]

0 20000 40000 60000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.bitwise

po
w

er
[W

]

0 1000 3000 5000

0.
38

0.
40

0.
42

0.
44

0.
46

executed.operators

po
w

er
[W

]

5 10 15

0.
38

0.
40

0.
42

0.
44

0.
46

parameters

po
w

er
[W

]

0 20000 40000 60000 80000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.constants

po
w

er
[W

]

0 200 400 600 800 1000

0.
38

0.
40

0.
42

0.
44

0.
46

executed.statements

po
w

er
[W

]

Figure 6.9: Relation between power and the modelling predictors, graph3



116 CHAPTER 6. APPENDIX

0 5 10 15

0.
38

0.
40

0.
42

0.
44

0.
46

pointers

po
w

er
[W

]

0.0 0.2 0.4 0.6 0.8 1.0

0.
38

0.
40

0.
42

0.
44

0.
46

returns.value

po
w

er
[W

]

0 20000 40000 60000 80000

0.
38

0.
40

0.
42

0.
44

0.
46

scope.number

po
w

er
[W

]

0.0 0.2 0.4 0.6 0.8 1.0

0.
38

0.
40

0.
42

0.
44

0.
46

scope.ration

po
w

er
[W

]

0 20000 40000 60000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.heap.loads

po
w

er
[W

]

0 1000 2000 3000 4000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.heap.stores

po
w

er
[W

]

0 500 1000 1500 2000

0.
38

0.
40

0.
42

0.
44

0.
46

heap.loads

po
w

er
[W

]

0 20000 40000 60000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.int.alus

po
w

er
[W

]

0 20 40 60 80 100 140

0.
38

0.
40

0.
42

0.
44

0.
46

heap.stores

po
w

er
[W

]

0 2000 4000 6000 8000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.int.comps

po
w

er
[W

]

0 500 1000 1500 2000

0.
38

0.
40

0.
42

0.
44

0.
46

int.alus

po
w

er
[W

]

0 200 400 600 800 1000

0.
38

0.
40

0.
42

0.
44

0.
46

statements

po
w

er
[W

]

Figure 6.10: Relation between power and the modelling predictors, graph4



6.6. EXPERIMENT STRONGARM.SIMPANALYZER.GPP.B.1 - POWER RELA-
TIONSHIP 117

0 20 40 60 80

0.
38

0.
40

0.
42

0.
44

0.
46

int.barrelshifts

po
w

er
[W

]

0 200 400 600 800 1000

0.
38

0.
40

0.
42

0.
44

0.
46

stores
po

w
er

[W
]

0 50 100 150 200 250

0.
38

0.
40

0.
42

0.
44

0.
46

int.comps

po
w

er
[W

]

0 500 1000 1500

0.
38

0.
40

0.
42

0.
44

0.
46

type.conversions

po
w

er
[W

]

0 2000 6000 10000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.int.constmults

po
w

er
[W

]

0 100 300 500

0.
38

0.
40

0.
42

0.
44

0.
46

int.constantshifts
po

w
er

[W
]

0 50 100 150

0.
38

0.
40

0.
42

0.
44

0.
46

uOperands

po
w

er
[W

]

6 8 10 12 14

0.
38

0.
40

0.
42

0.
44

0.
46

uOperators

po
w

er
[W

]

0 500 1000 1500 2000

0.
38

0.
40

0.
42

0.
44

0.
46

bits.int.mults

po
w

er
[W

]

0 100 200 300

0.
38

0.
40

0.
42

0.
44

0.
46

int.constmults

po
w

er
[W

]

0.0 0.5 1.0 1.5 2.0

0.
38

0.
40

0.
42

0.
44

0.
46

sim.cpi

po
w

er
[W

]

0 20000 40000 60000 80000

0.
38

0.
40

0.
42

0.
44

0.
46

sim.cycle

po
w

er
[W

]

Figure 6.11: Relation between power and the modelling predictors, graph5



118 CHAPTER 6. APPENDIX

0 1000 3000 5000 7000

0.
38

0.
40

0.
42

0.
44

0.
46

sim.num.insn

po
w

er
[W

]

0 500 1000 1500 2000 2500 3000

0.
38

0.
40

0.
42

0.
44

0.
46

sim.num.refs

po
w

er
[W

]

Figure 6.12: Relation between power and the modelling predictors, graph6



6.7. MODELS GENERATED IN THE EXPERIMENT VIRTEX5.XPWR.FPGA.B.2
119

6.7 Models generated in the experiment VIR-
TEX5.Xpwr.FPGA.B.2

In Figures 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.20, and 6.19, we present the models created
in the experiment VIRTEX5.Xpwr.FPGA.B.2.

energy

measured

pr
ed

ic
te

d

0e+00

1e−05

2e−05

3e−05

4e−05

25

1e−05 2e−05 3e−05 4e−05

Figure 6.13: Energy model for the Virtex 5 FPGA, with static predictors

ccu.total.pdissipation

measured

pr
ed

ic
te

d

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.3 2.4 2.5 2.6 2.7 2.8

Figure 6.14: Total power consumption model for the Virtex 5 FPGA, with static predic-
tors



120 CHAPTER 6. APPENDIX

ccu.static.dissipation

measured

pr
ed

ic
te

d

2.275

2.280

2.285

2.290

2.295

2.300

2.275 2.280 2.285 2.290 2.295

Figure 6.15: Static power consumption model for the Virtex 5 FPGA, with static pre-
dictors

ccu.dyn.dissipation

measured

pr
ed

ic
te

d

0.1

0.2

0.3

0.4

0.5

0.6

5

11

0.1 0.2 0.3 0.4 0.5

Figure 6.16: Dynamic power consumption model for the Virtex 5 FPGA, with static
predictors



6.7. MODELS GENERATED IN THE EXPERIMENT VIRTEX5.XPWR.FPGA.B.2
121

energy

measured

pr
ed

ic
te

d

0e+00

1e−05

2e−05

3e−05

4e−05

12

23

1e−05 2e−05 3e−05 4e−05

Figure 6.17: Energy model for the Virtex 5 FPGA, with static & dynamic predictors

ccu.total.pdissipation

measured

pr
ed

ic
te

d

2.3

2.4

2.5

2.6

2.7

2.8

2.3 2.4 2.5 2.6 2.7 2.8

Figure 6.18: Total power consumption model for the Virtex 5 FPGA, with static &
dynamic predictors



122 CHAPTER 6. APPENDIX

ccu.dyn.dissipation

measured

pr
ed

ic
te

d

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

Figure 6.19: Dynamic power consumption model for the Virtex 5 FPGA, with static &
dynamic predictors

ccu.static.dissipation

measured

pr
ed

ic
te

d

2.275

2.280

2.285

2.290

2.295

2.300

2.275 2.280 2.285 2.290 2.295

Figure 6.20: Static power consumption model for the Virtex 5 FPGA, with static &
dynamic predictors


