
Improving Anonymity of the Lightning Network using Multiple Path Segment
Routing

Joran Heemskerk1 , Stefanie Roos1 , Satwik Prabhu Kumble1
1TU Delft

Abstract

The Lightning Network (LN) is a second-layer so-
lution built on top of the Bitcoin protocol, allowing
faster and cheaper transactions without compromis-
ing on decentralization. LN is also designed to be
more anonymous, since less information has to be
shared with the entire network. This should, in
theory, improve privacy as well. However, recent
works have shown that this is not quite true: due
to the deterministic nature of contemporary routing
protocols, an adversarial node on a payment path is
able to uniquely identify at least one sender or re-
cipient for about 70% of observed transactions.
To combat this breach of anonymity, we propose
a new routing algorithm that makes use of multi-
ple path segments. By splitting the routing prob-
lem into multiple routing sub-problems and form-
ing the final route by joining these sub-routes to-
gether, we introduce a degree of randomness which
nullifies this kind of adversarial attack. Even when
designing a counterattack, we still get a substan-
tial improvement in anonymity, roughly tripling
the number of source/destination pairs per attack.
However, the protocol is also very costly, dou-
bling the average fee and increasing the average
hop count by more than 60%. This shows that
the proposed protocol is not strictly superior to the
current implementation, meaning that other (less
drastic) protocol proposals are likely to give better
cost/anonymity trade-offs.

1 Introduction
Proof-of-work blockchains, such as Bitcoin, are becoming
increasingly popular as a novel way to exchange value over
the internet. By creating and utilizing a set of cleverly chosen
rules and incentives, participants in the Bitcoin network are
able to independently form a consensus on the state of the
network, without relying on one central source of truth [11].
In Bitcoin, the ’state of the network’ is essentially a list of
all transactions that have ever happened on Bitcoin. These
transactions are stored on the Blockchain. Every participant
on the network independently verifies these transactions, in

order to make sure no one has cheated [3].

Although this method of validating transactions gives par-
ticipants the ability to form a consensus without requiring a
trusted third party, it does come with a number of downsides.
The most notable of which is the ’scalibility problem’: the
ability to be able to handle more transactions as the usage of
Bitcoin goes up.
To remedy this issue, numerous ’second-layer’ solutions
have been proposed [6], the most promising of which being
the ’Lightning Network (LN)’ [14]. On LN, users can send
payments to each other, which are in effect ’claims’ of
collateral that are present on the Bitcoin blockchain. By
doing this, it becomes possible to take a large number of
transactions ’off-chain’, thereby providing a solution to the
’scalability problem’.

However, LN comes with its own set of problems, particu-
larly in the category of privacy.
Transactions on LN are onion-routed. In onion routing,
the source decides on the routing path beforehand, and the
message is encrypted at every hop along the transaction
path. When an intermediary node receives a (encrypted)
transaction, it only learns about the transaction itself and
to what node it should forward the transaction. As such,
only a small part of the complete payment path is revealed
to the intermediary node: the previous node (from whom
the node got the payment) and the next node (to whom it
should forward the payment). The complete payment path,
including real source and destination of the payment, is never
revealed to the intermediaries. In theory, this means that the
payment is completely anonymous.
But in practice, this does not provide nearly enough of a
guarantee to anonymity. A recent work has shown that if an
adversary is right after the sender on a payment path, or right
before the recipient, then the sender or recipient is at risk of
deanonymization [17].
Moreover, another recent study shows an even more con-
cerning finding: the Lightning Network’s routing algorithm
is vulnerable to spying adversaries. With the use of public
information, an adversarial node on a payment path is able
to uniquely identify either the sender or the receiver of a
payment in about 70% of cases, regardless of its position on
the payment path [8].

The main attack vector that such an adversary uses is the
hash time-locked constract (HTLC) protocol [4]. This proto-
col is required in order to send payments between nodes that
are not directly connected. However, by analysing the time-
lock, adversarial nodes are able to estimate their position in
relation to the recipient, which can reveal who the recipient
node is.
Once the identity of the recipient node is revealed, it then be-
comes possible for the adversary to predict who the sender is,
by analysing which nodes on the network would route their
transactions through the adversary. Since LN’s current rout-
ing protocols are largely deterministic, this type of analysis is
feasible.

In order to combat this, investigation into a new routing
protocol is in order.
This paper proposes a design for a routing protocol using
multiple path segments. In this protocol, the complete route is
formed by constructing two separate routes, which overlap at
a central node, called the ’Dovetail’ node. This routing pro-
tocol is loosely based on the ’Dovetail protocol’ [16], which
is a source-based Next Generation Internet (NGI) protocol,
designed as a more privacy-minded alternative to the Internet
Protocol (IP). However, since the requirements for Lightning
network routing differ significantly from internet routing, the
similarities remain in name only.
We also show the effects that that the proposed protocol has
on anonymity and routing efficiency by simulating a network
and sending transactions. We show that, for a simulation with
simple graph types, the average number of pairs per attack
more than triples when using our proposed routing algorithm.
However, it comes at a cost for performance, doubling the av-
erage fee and increasing the average hop count by more than
60%.

The paper will be structured as follows: in Section 2, we
give an in-depth look at how the Lightning Network operates,
and define the types of adversarial attacks that the Lightning
network is vulnerable to. We then describe our proposed rout-
ing algorithm in Section 3, designed to mitigate these weak-
nesses. This section explains the design considerations of our
proposed protocol, but also discusses the design for a coun-
terattack against our protocol. In Section 4, we describe our
simulation framework and evaluate the performance of our
routing protocol with LN’s current routing protocols and the
counterattack. In Section 5, we relate the acquired results
back to the main research question. Finally, we conclude the
paper with a discussion and proposal of further research in
Section 6.

2 Attacking the Lightning Network

In this section, we will look at the lightning’s routing process
in more detail. We also analyse how the current routing pro-
tocols are vulnerable to adversarial attacks, which we aim to
mitigate in our design.
However, before doing so, we will first look at HTLC’s, a key
concept for conducting LN transactions.

2.1 HTLC’s and timelocks
Understanding how timelocks work in LN is the key to under-
standing its privacy vulnerabilities. ’Trustlessness’, within
the context of LN, refers to two parties not having to trust
that the other party does not cheat, as cheating is disincen-
tivized by the protocol. Parties only have to verify that the
protocol rules are followed correctly. On LN, if two parties
share a payment channel, it is possible to send a transaction
in a trust-less manner over this channel. Sending a transac-
tion to a recipient that the sender is not directly connected to,
however, requires a more sophisticated protocol to guarantee
trustlessness: Hash Time Locked Contracts (HTLC’s) 1.
HTLC’s work as follows: the recipient of a transaction
chooses a secret number s. It then generates h =
SHA256(s), and gives this to the sender. In order for the
sender to now make an indirect payment to the recipient, the
sender constructs a route via one or more intermediaries. For
each intermediary, the sender then makes the following ar-
rangement with its neighbouring intermediary: if you can
give me the secret number s that results in h within a certain
time limit, then I will give you the payment. This arrange-
ment is known as the HTLC.
The intermediary then makes the same arrangement with the
next node, which is either another intermediary node or the
final recipient.
Since the final recipient knows s, it can claim the payment
by revealing s to the preceding node. Since this node now
knows s as well, it can claim the payment from its own pre-
ceding node, which can be another intermediary node or the
sender. As such, the payment essentially ripples backwards,
from the recipient to the sender.
Of course, the intermediary nodes don’t want to risk losing
their money, so they want to make sure that they can claim the
payment from the previous node once they receive s from the
next node. To guarantee this, they make sure that the value of
the preceding HTLC has a larger time limit than the ensuing
HTLC, the difference being a sort of ’padding’. This padding
is referred to as the timelock. The HTLC between two nodes
on a payment path is therefore the sum of all timelocks that
get added from the ensuing HTLC’s.
A final note about timelocks: all the timelocks used on the
network are public information. This is so that the sender
can construct the total timelock required to send the payment
beforehand.

2.2 Lightning routing protocols
There are currently three dominant routing protocols on the
Lightning Network: LND 2, Eclair 3 and C-Lightning 4. Each
of these routing protocols use Dijkstra’s algorithm 5, together
with a certain implementation-specific cost function. These
cost functions are based on a number of factors, such as fees,
the locktime, or previous experiences with this channel. For

1https://en.bitcoin.it/wiki/Hash Time Locked Contracts
2https://github.com/LightningNetwork/lnd
3https://github.com/ACINQ/eclair
4https://github.com/ElementsProject/lightning
5This is not entirely correct, as Eclair uses a modified version of

Dijkstra known as Yen’s k shortest path algorithm [18].

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://github.com/LightningNetwork/lnd
https://github.com/ACINQ/eclair
https://github.com/ElementsProject/lightning

example, for LND (the most popular routing algorithm), the
cost function is as follows:

cost = amount · timelock · riskfactor + fee+ bias

Here, amount is the amount to be sent in the transaction,
timelock indicates how much extra delay this channel
adds to the total timelock, riskfactor is a constant set to
15 ∗ 10−9, fee is the total fee for using this channel and bias
is a value based on previous experiences with this channel.
The cost functions for C-lightning and Eclair work similarly,
although the parameters are different.

When sending a transaction on the Lightning Network, the
sender ensures that every channel along the transaction path
has a high enough capacity to handle the transaction. Addi-
tionally, since the sender knows the local balance distribution
between itself and its neighbours, it makes sure that this bal-
ance is sufficient. Since the sender does not know of the state
of channel balances on all channels that are not directly linked
to itself, the payment may fail when one of these balances is
insufficient. Since all previous nodes before a failing channel
have already committed some collateral, they either have to
wait until the total timelock expires or negotiate on revoking
the HTLC6, leading to a lot of overhead before they can use
the locked collateral again for future payments.

2.3 Adversarial attacks on LN

Based on our knowledge on HTLC’s and the existing rout-
ing protocols, we are able to conceive of an anonymity-
compromising attack. This attack is identical to the attack
described in [8]. For a more in-depth description of the at-
tack, we refer to this paper.

Assumptions
We assume that the Lightning Network has a number of nodes
that can be considered ’passive attackers’. When these nodes
witness a transaction, they will try to determine the source
and the destination of the transaction.
The only information that the adversarial nodes are aware
of is public information: fees, timelocks, age of channels
and nodes, and which node uses which routing protocol. Of
course, they also know of the data that is revealed in the trans-
action itself.
The adversaries do not remember past events. All their
choices are based on current information, and they do not
keep track of past transactions in their future analysis. They
are also bounded by polynomial computation time, meaning
that they are unable to brute-force the decryption of encrypted
messages.
Lastly, the adversaries work alone. In the past they have been
able to collaborate by sharing transaction data (if they were on
the same transaction path), but an upcoming protocol change
makes it infeasible to trivially link transactions in this way
[10].

6https://lists.linuxfoundation.org/pipermail/lightning-dev/
2019-April/001986.html

Phase I
In Phase I, the adversary tries to determine the destination
of a witnessed transaction. The transaction witnessed has a
certain timelock. The value of this timelock is the total time-
lock, which is the sum of all the timelocks that come after
passing through the adversary. Since the timelocks of all the
nodes on the network are public, the adversarial node can per-
form a search, starting from the next node. From this node,
all possible paths are followed. A path can be followed if
the capacity is below the transaction amount and if the total
summed timelocks does not exceed the timelock witnessed
in the transaction. The search continues until either no more
nodes are available, or the transaction path exceeds four hops
(since path length complexity increases exponentially).
A node can be a destination candidate if the summed up time-
locks from the adversary to this node equals the witnessed to-
tal timelock. However, it is possible for the transaction to add
extra padding to the total timelock. This is called ’shadow
routing’[1]. If shadow routing is applied, the total timelock
required to reach a node may be lower than the sum of the
timelocks along the path. This implies that, when shadow
routing is applied, we drop the equality constraint and add
every node along the path as a destination candidate.

Phase II
In phase II, we take all the possible recipients from Phase I
and search for all the possible senders. This is done by going
through all the nodes on the path backwards, starting at the
preceding node. Using the constructed route P from Phase I
and the known cost functions for every node, we try to deter-
mine if a given preceding node might construct a route similar
to optimal route that we constructed ourselves in Phase I. If
the route is optimal, we consider this node to be a possible
sender, or a intermediary node. If the route we find is not
optimal, the node cannot be an intermediary node. However,
it can still be a sender node, since the sender has more local
knowledge (such as the state of the local channels). This ex-
tra knowledge may allow it to deviate from the optimal route,
since it knows that the optimal route is infeasible due to the
state of local channels.
Again, for a more complete description of this attack, we re-
fer to Section 4 of [8].

3 Routing algorithm
Now that we know the attack we have to defend against, it is
time to develop the protocol itself.
Our proposal is that of path segment routing. In path segment
routing, the initial routing request is split up into parts. In-
stead of routing towards a destination directly, two separate
routes are constructed, which overlap on one node on the net-
work. The overlapping node is referred to as the ’Dovetail’
node. The full route is constructed by joining these separate
routes together, to form a complete route from the source to
the destination. Figure 1 shows this protocol in action.

Building this routing algorithm requires investigation into
three questions: how do we route the first path segment, how
do we route the second path segment, and how do we decide
on the Dovetail node. Below, each of these questions is dis-

https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-April/001986.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-April/001986.html

Figure 1: Visualising the segmented path routing protocol. The route
from the ’Source’ node to the ’Dovetail’ node (red) is considered the
first path segment, the route from the ’Dovetail’ node to the ’Des-
tination’ node (blue) is considered the second path segment. The
dotted line is the optimal path, as chosen by contemporary routing
algorithms.

cussed separately. Afterwards, the final routing protocol is
shown.

3.1 Routing the first path segment
Routing the first path segment (Figure 1, red path) is a fairly
simple question to answer. This problem can be reduced to a
straightforward routing problem, where the Dovetail node is
now considered to be the destination node.

To answer this routing question, we can simply use one
of the existing routing algorithms. For simplicity, we use
LND’s routing algorithm [9].

In the future, the protocol can be made more sophisticated
by changing this choice for routing algorithm. One option is
that the protocol may recursively call itself to do the routing.
By doing so, we are able to construct a route that, in effect,
has multiple Dovetail nodes.
Another option is to implement one of the anonymity-
improving routing algorithms built by other team members.
These are: adding random hops [7], hop change with partial
route computation [5], sub-optimal routes [13], and finally,
length-bound random walk insertion [12].

3.2 Routing the second path segment
Routing the second path segment (Figure 1, blue path) is a
much harder question to answer compared to the first path
segment. This problem cannot be reduced to a simple routing
algorithm, since the route does not originate from the source
node. Because of this, there might be a benefit to delegating
the routing computation to other nodes. Doing so will mean
the protocol moves away from being a fully source-routed
protocol, to one that is only partially source-routed.
A big advantage of delegating routing to another node is that
this node can make use of extra local information, such as the
state of the channel balances. The node might also make use
of ’private channels’: channels that are never published via

the LN gossip protocol [1].
A disadvantage of delegating routing to another node is that
this opens up the protocol for many many new attack angles.
For example, if the routing is delegated to an adversarial node
and the adversary can see who is requesting the routing, then
this gives the adversary a lot of extra information that may be
used to compromise anonymity. Routing delegation is there-
fore not always better.
There are two candidates for routing delegation: the destina-
tion node and the Dovetail node.

Routing done by destination node
The first candidate for routing delegation is the destination
node. Apart from being able to use local information, the ad-
vantage of using the destination node in particular is that this
does not reveal any extra information to anyone. The destina-
tion node is already aware of all transaction data: the source
node (which it is communicating with), the destination (it-
self), and the transaction amount.
However, the fatal flaw with this idea is that the destination
node does not care about the efficiency of the payment. The
transaction cost is paid by the sender, therefore there is no in-
centive to make the path any more optimal than is minimally
required for the payment to succeed. This in turn means that
the destination node will never make use of local knowledge
such as private channels, since it can only harm them.

Routing done by Dovetail node
The second candidate is the Dovetail node. Choosing the
Dovetail node for route delegation gives the same benefits as
picking the destination node with regards to local informa-
tion. Unlike the destination node however, the Dovetail node
does have an incentive to route optimally. This is because the
source node might have multiple candidates, that are compet-
ing for routing the payment.
However, even this might not be enough incentive for the
Dovetail node to route optimally. This is because doing so
opens the Dovetail node up to a new type of active attacker.
This attacker might probe random nodes on the network and
ask them to be a Dovetail in routing a transaction. The at-
tacker then compares the timelock given by the Dovetail with
the public information the attacker has about the network. If
the timelock is lower than expected, then the Dovetail is likely
using local information such as private channels.

Final decision
Despite the fact that moving away from source routing can
give some interesting benefits, these benefits are by no means
decisive. Therefore, in our current proposal we opt to keep
the protocol simple by sticking to full-source routing. Giv-
ing more in-depth analysis of the benefits and costs of mov-
ing away from full-source routing is outside the scope of this
research paper. We consider this a good subject for future
research. In particular, analyzing the effects delegating route
computation to the Dovetail node is a topic that invites further
investigation.

3.3 Choosing the Dovetail node
Choosing what node should be the Dovetail node can have
radically different results for efficiency and anonymity. Be-
low is a list of points that might have an effect on the

anonymity and efficiency performance of picking the Dove-
tail node.

• When the chosen node is on the optimal path, the path
segment route is identical to the optimal route and does
not provide any anonymity benefits.

• The first (Figure 1 red) path segment results in different
timelock values for intermediary nodes, whereas the sec-
ond (Figure 1 blue) path segment does not have different
timelock values for the intermediary nodes.

• The connectivity of the chosen node may influence the
performance.

In our implementation, the only requirement we enforce
is that the candidate node should not be along the optimal
path (including the source and destination node), to make sure
that our routing algorithm gives a different path. We do not
attempt to make further guesses about which nodes are bet-
ter candidates for being the Dovetail node, opting instead for
simplicity. This means our Dovetail node is picked at ran-
dom, from the set of all nodes that are not on the optimal
path. By doing so, we limit the analysis an adversarial node
can do when determining the Dovetail node. In the Results
section, we investigate the effects on anonymity for different
Dovetail node choices.
One slight optimization we do in routing is to not pick one
candidate node, but multiple. We then check which of these
candidate nodes gives the shortest route. Doing this dras-
tically reduces that chance of picking a very bad candidate
node. It slightly violates the principle that the Dovetail node
is picked at random, since nodes closer to the source or des-
tination are more likely to be picked as a Dovetail. However,
we consider this slight bias to be negligible and do not ac-
count for it in our counterattack. Further research may be
needed to investigate the effects of this optimization tech-
nique.

3.4 Full routing algorithm
Here is the pseudo-code for the complete path segment rout-
ing algorithm:

Algorithm 1 Path segment routing

1: function DOVETAIL(src, dove, dest, amount)
2: delay ← 0 . Final timelock value is zero
3: path2, amt, delay ← Dijk(dove, dest, amt, delay)
4: if len(path2) = 0 then . No route found
5: return [],−1,−1
6: end if
7: path1, amt, delay ← Dijk(src, dove, amt, delay)
8: if len(path1) = 0 then . No route found
9: return [],−1,−1

10: end if
11: fullpath← p1 + p2[1:] . Append paths
12: return fullpath, amt, delay
13: end function

In this function, the second path segment (line 3) is calcu-
lated before the first path segment (line 7). This is because
lightning routing needs to be done backwards to deal with

network fees.
The Dijk function used to calculate these routes is the Dijkstra
algorithm used in current Lightning implementations. When
routing the first path segment (line 7), the final delay (time
lock value) and amount should be the delay that we ended up
with in the second path segment (line 3).
In our implementation, we call the above pseudo-code with
5 different candidate Dovetail nodes, and pick the shortest
route.

3.5 Adversarial counterattack
Since we have modified our routing protocol to be less de-
terministic, the adversarial attack model described in Section
2.3 should no longer be effective. We will therefore have to
devise a new type of attack, which can deal with the intro-
duced randomness.
Since the adversary can no longer assume optimality for the
complete route, the sender and recipient pairs are very dif-
ficult to find directly. However, the adversary might still be
able to determine the two end-points of a transaction, based
on its position on the payment path. Although these end-
points might not explicitly reveal the sender and recipient of
the transaction, they are still a good first step towards full
deanonymization.
There are three possibilities: the attacker is on the first path
segment, the attacker is on the second path segment, and the
attacker is the Dovetail node itself.

Attacker on first path segment
If the attacker is on the first path segment, the attacker will try
to determine the sender and the Dovetail node of the transac-
tion. Since the Dovetail node is not the final recipient of the
transaction, any node that has a delay higher than zero can
be a Dovetail candidate node. Therefore, finding the sender-
dovetail pairs requires dropping the constraint that the final
timelock should be zero, identical to that of ’shadow routing’.
It is expected that the anonymity sets are greatly improved if
the attacker is on the first path segment, similar to the im-
provement found when applying shadow routing.

Attacker on second path segment
If the attacker is on the second path segment, the attacker will
try to determine the Dovetail and recipient pair. For this, the
attack described in Section 2.3 does not need to be modified.
As such, there is no expected anonymity improvement in this
case.

Attacker is the Dovetail node
The last possibility is that the sender is the Dovetail node it-
self. In this case, it will try to find the sender and recipient
pairs. Phase I of the attack is not modified, since finding the
recipient node should work identically. Phase II of the attack
is modified, where the attacker will look for all sender nodes
that pick the attacker as the recipient. Much like when the at-
tacker is on the first path segment, this is identical to assuming
shadow routing is applied. The recipient node anonymity set
is not expected to improve much. However, because the con-
straints for routing through the attacker node are (by defini-
tion) not optimal, the number of possible sender nodes should
improve quite drastically per recipient.

Full counterattack design
In our modified counterattack, the adversary first tries to
guess on which part of the route the adversary is located.
Since the Dovetail node should be roughly in the middle of
the payment path, the adversary considers itself to be on the
first path segment if the timelock it received is significantly
higher than the average expected timelock. If it is signifi-
cantly lower, it expects to be on the second path segment, and
if it is roughly average, it guesses that it is the Dovetail node
itself.
For clear results, we assume that the attacker is always able
to correctly guess on which part of the payment path it is lo-
cated. After it has guessed the location, it will determine the
source and destination anonymity set of the payment.
Note that the source may not necessarily be the original
sender and can also be the Dovetail node. The same applies
for the destination and the recipient. We assume that finding
the correct Dovetail node is considered to be a privacy com-
promise, since the real sender or recipient may be found by
further investigating this node. However, we do not investi-
gate how this can be done. Instead, we assume that doing
so takes extra computation time for every candidate Dovetail
node. As such, finding e.g. the sender/dovetail pair is a lower-
bound for finding the real sender/recipient pair.
Given a Dovetail node and a path 1 or path 2 attack, finding
the correct sender/recipient is an interesting topic for further
research.

4 Evaluation and results
In this section, we compare the performance of our protocol
with the current dominant routing protocol: LND. We also
investigate the effects of different graph types, as well as the
impact of the choice for the Dovetail node. But first, we de-
scribe the simulation framework itself, and the performance
and anonymity metrics we use for evaluation.

4.1 Simulation framework
The simulation framework is written in Python 3. The sim-
ulation first constructs a network using the networkx pack-
age as a directed graph. The following two graphs have been
chosen for experimentation: the Barabasi-Albert graph 7 (a
graph with bias towards centralization) and the Erdos-Renyi
graph 8 (a random uniform graph). As a basis, the parameters
n = 100 nodes, m = 2 edges are chosen. However, we will
also analyse the effects when changing these parameters. The
Erdos-Renyi graph uses probability instead of m, so here we
use p = 0.02. After forming the graph, the edges (channels)
of the graph are filled with uniformally distributed random
values for Delay (between 10 and 100, steps of 10), BaseFee
(between 0.1 and 1, steps of 0.1), FeeRate (between 0.0001
and 0.001, steps of 0.0001) and Balance (between 100 and
10000). The adversarial nodes are chosen to be the top 10
most well connected nodes, since these nodes are the most

7https://networkx.org/documentation/stable/reference/
generated/networkx.generators.random graphs.barabasi albert
graph.html

8https://networkx.org/documentation/stable/auto examples/
graph/plot erdos renyi.html

dangerous as adversaries.
With the network set up, we now simulate the transactions.
Two random nodes are chosen as the sender and the recipient,
and a transaction amount is chosen with exponential distribu-
tion between 1 and 1000. The transaction is routed using the
routing algorithm from Section 3.4. If the transaction requires
a multi-hop path, we use the HTLC protocol as explained in
Section 2. One small difference between our simulation and
the real LN is that the timeout of the HTLC’s is instant, so the
simulated transactions either fail or succeed instantaneously.
When an intermediary forwards a multi-hop payment and the
intermediary is present in the list of adversaries, the interme-
diary will try to deanonymize the transaction (using either the
old or the modified attack from sections 2.3 and 3.5 respec-
tively).
More information about the simulation and how to reproduce
the results can be found on the github page9.

4.2 Evaluation metrics
We measure the performance of both the old and the new rout-
ing algorithms using two types of metrics: cost-efficiency and
anonymity. When evaluating the new routing algorithm, we
compare the results of these metrics with a similar attack on
LND’s routing algorithm, since nearly all nodes on LN use
LND[2]. For performance evaluation, we look at the follow-
ing metrics: the success rate of the payments Success, the
average fee AV Gfee and the average hop count AV Ghops.
For anonymity evaluation, we look at the percentage of
transactions attacked TXatt, the average set sizes for the
source AV Gsource and destination AV Gdestination, the av-
erage number of pairs AV Gpair, the percentage of attacks
for whom the correct pair is present in the anonymity sets
Present (should be close to 100%), and finally, the num-
ber of times a singular source Singsource or destination
Singdestination was found (filtering out false positives).
As mentioned before, the source/destination pairs may not
necessarily be the same as the sender/recipient pairs. Instead,
they provide a lower bound for finding these pairs, since find-
ing the real source/destination takes additional effort.

4.3 Results

Barabasi-Albert Erdos-Renyi
Old New Old New

Success 92.51% 83.12% 82.43% 70.14%
AV Gfee 1.08 2.33 2.62 4.63
AV Ghops 3.40 5.74 5.62 9.01

Table 1: Cost-efficiency metrics for both the Barabasi-Albert (n =
100,m = 2) graph and the Erdos-Renyi (n = 100, p = 0.02)
graph, simulating 1000 transactions.

In Table 1, we see the effects the proposed routing protocol
on cost efficiency. We can see that the average fee more than
doubles for the Barabasi-Albert graph, and increases by 76%
for the Erdos-Renyi graph.

9https://github.com/jsheemskerk/
Attacking-Lightning-s-anonymity

https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.org/documentation/stable/auto_examples/graph/plot_erdos_renyi.html
https://networkx.org/documentation/stable/auto_examples/graph/plot_erdos_renyi.html
https://github.com/jsheemskerk/Attacking-Lightning-s-anonymity
https://github.com/jsheemskerk/Attacking-Lightning-s-anonymity

Barabasi-Albert Erdos-Renyi
Old Path 1 Center Path 2 New Old Path 1 Center Path 2 New

TXatt 85.01% - - - 92.0% 77.03% - - - 82.98%
Natt 1313 1000 177 851 2028 1967 1263 200 1159 2622
Present 98.02% 99.2% 95.48% 99.18% 98.87% 73.51% 82.66% 64.5% 81.88% 80.93%
AV Gpair 24.04 73.25 368.32 24.59 78.58 23.23 135.05 46.67 25.74 79.99
AV Gsource 20.63 17.84 44.01 21.51 21.66 18.63 14.83 21.95 21.23 18.20
AV Gdestination 1.81 17.94 8.19 1.63 10.24 1.18 15.03 1.725 1.24 7.92
Singsource 13.02% 10.8% 0.0% 0.0% 5.32% 1.98% 3.17% 0.0% 0.17% 1.60%
Singdestination 63.21% 4.3% 15.25% 67.92% 31.95% 49.26% 0.95% 21.0% 57.03% 27.26%
Singeither 70.45% 14.9% 15.25% 67.92% 37.17% 50.33% 4.12% 21.0% 57.2% 28.87%

Table 2: Anonymity metrics for both the Barabasi-Albert (n = 100,m = 2) graph and the Erdos-Renyi (n = 100, p = 0.02) graph when
simulating 1000 transactions. To attain the values in the ’New’ column, we multiply each values of the path segment columns with the number
of attacks for that path segment, and divide by the total number of attacks. For instance, for the average pairs: (73.25 · 1000+368.32 · 177+
24.59 · 851)/2028 = 78.58

Moreover, the average hop count increases by 70% and
60% respectively. The increase in fee’s and hop count cause
a lower total success rate per transaction, dropping by about
10% for both graph types. It seems that the cost efficiency
is taking a hit; however, the anonymity metrics from Table
2 luckily show a strong improvement. Although the transac-
tions tend to be attacked much more frequently, the effects of
the anonymity attacks are drastically reduced. The reason for
this can be explained when looking at the attacks for different
path segments individually.
Looking at the second path segment, we see that these results
are roughly in line with that of the old deanonymization at-
tack. The destination set size is still very low, leading to a low
overall number of pairs.
For the first path segment, we see that the the number of desti-
nations is much higher. This anonymity improvement mirrors
that of shadow routing. This increase in the destination set
size leads to a sharp increase in the average number of pairs.
Interestingly, the Barabasi-Albert shows the largest number
of pairs when under a center attack. Although not shown, this
holds true even when changing the parameters n and m. This
is because both the source and destination sets are very large,
generating a large number of possible pairs. Although this
was unexpected, The reason there are so many destinations
might have to do with the fact that the constraints for possi-
ble sources per destination are loosened. Whereas the nor-
mal attack might have filtered out many destinations as can-
didates because many nodes will not route through the adver-
sarial node, in this routing protocol, this efficiency constraint
does not exist. As such, any candidate node from Phase II is
likely going to show up in the final destination set size. This
phenomenon is not nearly as influential on the Erdos-Renyi
graph.

To summarize the anonymity increase, we look at
AV Gpair and Singeither. For both types of graphs,
AV Gpair more than triples, and the number of times a singu-
lar source or destination has been found, Singeither, roughly
halves.

Next, we look at the effects of varying the parameters n
and m for the Barabasi-Albert graph in relation to the metrics
AV Ghops and AV Gpair. Varying parameter n does not give

Figure 2: Varying m for the Barabasi-Albert graph where n = 100.

any interesting insights and is not shown. Both of these met-
rics increase as the number of nodes on the graph increase.
This is simply due to there being more nodes on the graph,
so paths generally take longer and the number of candidate
nodes increase.
More interestingly is the effect of the parameter m on these
metrics, shown in Figure 2. Here we see that increasing m
leads to a decline in AV Ghops and an increase in AV GPair

for both the old and the new routing protocol. However, as
the green line shows, the number of pairs increases substan-
tially faster in the new protocol compared to the old protocol.
This gives the impression that the proposed protocol is more
effective for graphs with a higher density.

Finally, we also look at the effect of the connectivity of the
Dovetail node in relation to AV Ghops, AV Gpair and Natt.
In Figure 3, we see the effect of the Dovetail node connec-
tivity on each of these metrics. The main observation is that
Natt (c) decreases sharply as the connectivity of the Dovetail
node increases. This gives a strong impression that a more
well-connected Dovetail node is a better option than one that
is less well connected. AV Gpair (b) gives a similar impres-

(a) (b) (c)

Figure 3: Showing the relation between Dovetail node connectivity and (a) AV Ghops, (b) AV Gpair and (c) Natt, for a large Barabasi-Albert
(n = 500,m = 5) graph with 1000 transactions.

sion: the number of pairs increases as the Dovetail node con-
nectivity increases. However, this behavior seems to fluctuate
somewhat when changing the graph parameters (not shown),
so this is less reliable. But in all cases tested, a very low con-
nectivity resulted in a low value for AV Gpairs. Lastly, even
AV Ghops (a) seems to decrease slightly as the Dovetail con-
nectivity increases.
All in all, the results seem to imply that having a Dovetail
node with a high connectivity is more beneficial than having
a Dovetail node with a very low connectivity.

5 Conclusion
The Lightning Network’s current routing protocols suffer
from a lack of randomness when constructing routes. Be-
cause of this, adversaries that are on the payment path are
able to perform anonymity-compromising attacks to deter-
mine the sender and recipient. By splitting up the routing pro-
tocol into multiple path segments, we are able to nullify the
anonymity-compromising attack conducted by an adversary
on the payment path. Even when designing a counterattack
for deanonymizing a specific segment of the modified routing
protocol, we still get substantially larger anonymity sets com-
pared to contemporary routing algorithms, more than tripling
the number of pairs in total. The only exception to this is the
destination anonymity set when on the second path segment,
but this is a much smaller percentage of all transactions than
with the old routing algorithms. We have also shown how
using a more well-connected Dovetail node, or when using a
more highly connected graph, the anonymity improvements
are even stronger.
However, we also pay a price for this anonymity performance
increase. The average fee more than doubles for some graphs,
and the average hop count increases by more than 60%, which
in turn causes the transaction success rate to drop by about
10%.

6 Discussion and further work
Although the anonymity increase seems to be quite substan-
tial, it is not yet clear whether or not this anonymity increase
is worth the cost efficiency price. The proposed routing
protocol can result in paths that are drastically different from

the optimal path. This is good for privacy, but it may be too
drastic. The core of the problem is the deterministic nature
of routing protocols. Perhaps modifying the routing only
slightly (e.g. by introducing a few random hops) already
introduces enough randomness to consider anonymity to be
sufficient, without causing the massive increases in costs.

There are many avenues that are interesting for further re-
search. First of all, the current path segment routing is still
very simple, as the Dovetail node is most or less chosen
at random. Creating a heuristic for finding good candidate
Dovetail nodes can be useful here. As we have seen, more
well-connected nodes seem to be better candidates. However,
it could be that creating a bias towards well connected nodes
might also give the adversary better heuristics.
The counterattack can also be explored in much more detail.
Although we have opted to keep the adversarial attack limited
to the two endpoints of a payment path, it may be possible
to infer more information about the final sender or recipient
from these endpoints.
Our protocol is intended to protect LN users against graph-
based anonymity-compromising attacks. However, there are
other types of attacks that LN is vulnerable to, such as tim-
ing attacks [15]. It might be interesting to investigate how the
proposed protocol fares against these other types of attacks.
Another negative about our research is that all the data is sim-
ulated. The simulations may therefore show results that are
not necessarily representative of the real Lightning Network.
Extra research into simulating LN more accurately might be
considered.
Finally, another very interesting field for further research is
that of semi-source routing. This was briefly discussed in
Section 3.2: when splitting the routing problem into multiple
sub-problems, it might be possible to delegate some of the
routing work to other nodes. This may have both immense
anonymity benefits (for example, by allowing the use of re-
mote private channels), but also enables new attack angles,
such as when the delegated routing node is an adversary.

7 Research integrity and reproducibility
As mentioned before, the information shown in the Results
section of this paper are all simulated. This has both posi-

tive and negative consequences. One positive aspect of this
is that we are not dealing with the data of real users, and
therefore, are not exposed to the risks of handling sensitive
information. A negative aspect however, is of course that the
data used might not necessarily be representative of the real
Lighting Network. This should always be kept in mind when
creating models as substitute for real things, and the Light-
ning Network is no exception.
One aspect of research which we value highly is that of re-
producibility. All the information discussed in the Results
section of this paper are acquired from the code base that is
open-source and thus publicly available10. This should make
it feasible for anyone to reproduce the results as shown in
this paper, together with the parameters shown in Section 4.1.
Although the simulation relies on randomness, all the data
shown in Section 4 is created using the seed value 65, mean-
ing these results can be reproduced easily by using this seed
value. Even when the reader is unable to reproduce the data
itself, it has also been uploaded to the github repository and
can be found in the ’results’ folder. For more information, see
the README.

References
[1] BOLT #7: P2P Node and Channel Discovery. Available

at: https://github.com/lightningnetwork/lightning-rfc/
blob/master/07-routing-gossip.md.

[2] lnchannels lightning network snapshot, 2021. Available
at: https://ln.fiatjaf.com/.

[3] Andreas M Antonopoulos. Mastering Bitcoin: Pro-
gramming the open blockchain. ” O’Reilly Media, Inc.”,
2017.

[4] Bitcoin Wiki. Hashed timelock constracts, 2019. Avail-
able at https://en.bitcoin.it/wiki/Hash Time Locked
Contracts.

[5] Rick de Boer, Stefanie Roos, and Satwik Prabhu
Kumble. Improving blockchain anonymity using hop
changes with partial route computation. 2021.

[6] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie
Roos, Patrick McCorry, and Arthur Gervais. Sok:
Layer-two blockchain protocols. In International Con-
ference on Financial Cryptography and Data Security,
pages 201–226. Springer, 2020.

[7] Paolo Arash Kazemi Koohbanani, Stefanie Roos, and
Satwik Prabhu Kumble. Improving the anonymity of
layer-two blockchains adding random hops. 2021.

[8] Satwik Prabhu Kumble, Dick Epema, and Ste-
fanie Roos. How lightning’s routing diminishes its
anonymity. In Proceedings of the 16th International
Conference on Availability, Reliability and Security,
pages 1–10, 2021.

[9] Lightning Labs. Lightning network daemon, 2016.
Available at: https://github.com/LightningNetwork/lnd.

10https://github.com/jsheemskerk/
Attacking-Lightning-s-anonymity

[10] Giulio Malavolta, Pedro Moreno-Sanchez, Clara
Schneidewind, Aniket Kate, and Matteo Maffei. Anony-
mous multi-hop locks for blockchain scalability and in-
teroperability. In 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, 2019.

[11] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008. Available at https://bitcoin.org/
bitcoin.pdf.

[12] Mehmet Emre Ozkan, Satwik Prabhu Kumble, and Ste-
fanie Roos. Improving the anonymity of blockchains:
The case of payment channel networks with length-
bounded random walk insertion. 2021.

[13] Mihai Plotean, Stefanie Roos, and Satwik Prabhu Kum-
ble. Improving the anonymity of the lightning network
using sub-optimal routes. 2021.

[14] Joseph Poon and Thaddeus Dryja. The bitcoin lightning
network: Scalable off-chain instant payments, 2016.

[15] Elias Rohrer and Florian Tschorsch. Counting down
thunder: Timing attacks on privacy in payment channel
networks. In Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, pages 214–227,
2020.

[16] Jody Sankey and Matthew Wright. Dovetail: Stronger
anonymity in next-generation internet routing. In Inter-
national Symposium on Privacy Enhancing Technolo-
gies Symposium, pages 283–303. Springer, 2014.

[17] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo
Maffei. A quantitative analysis of security, anonymity
and scalability for the lightning network. In 2020 IEEE
European Symposium on Security and Privacy Work-
shops (EuroS&PW), pages 387–396. IEEE, 2020.

[18] Jin Y Yen. An algorithm for finding shortest routes from
all source nodes to a given destination in general net-
works. Quarterly of Applied Mathematics, 27(4):526–
530, 1970.

https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md
https://ln.fiatjaf.com/
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://github.com/LightningNetwork/lnd
https://github.com/jsheemskerk/Attacking-Lightning-s-anonymity
https://github.com/jsheemskerk/Attacking-Lightning-s-anonymity
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	Introduction
	Attacking the Lightning Network
	HTLC's and timelocks
	Lightning routing protocols
	Adversarial attacks on LN
	Assumptions
	Phase I
	Phase II

	Routing algorithm
	Routing the first path segment
	Routing the second path segment
	Routing done by destination node
	Routing done by Dovetail node
	Final decision

	Choosing the Dovetail node
	Full routing algorithm
	Adversarial counterattack
	Attacker on first path segment
	Attacker on second path segment
	Attacker is the Dovetail node
	Full counterattack design

	Evaluation and results
	Simulation framework
	Evaluation metrics
	Results

	Conclusion
	Discussion and further work
	Research integrity and reproducibility

