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A B S T R A C T

A stochastic multi-objective cure optimisation methodology is developed in this work and applied to the case of
thick epoxy/carbon fibre laminates. The methodology takes into account the uncertainty in process parameters
and boundary conditions and minimises the mean values and standard deviations of cure time and temperature
overshoot. Kriging is utilised to construct a surrogate model of the cure substituting Finite Element (FE) si-
mulation for computational efficiency reasons. The surrogate model is coupled with Monte Carlo and integrated
into a stochastic multi-objective optimisation framework based on Genetic Algorithms. The results show a sig-
nificant reduction of about 40% in temperature overshoot and cure time compared to standard cure profiles. This
reduction is accompanied by a reduction in variability by about 20% for both objectives. This highlights the
opportunity of replacing conventional cure schedules with optimised profiles achieving significant improvement
in both process efficiency and robustness.

1. Introduction

The optimisation of the manufacturing of continuous fibre ther-
mosetting matrix composites is critical for minimising cost and the
likelihood of occurrence of process failures defects. During the process
of cure, the thermosetting resin transforms from an oligomeric liquid to
a glassy solid through an exothermic crosslinking reaction. In the case
of thick components the heat generated due to the reaction can lead to
severe temperature overshoots. These can affect considerably the
quality of the manufactured component. The risks associated with
temperature overshoots in thick components are dealt with by adopting
conservative cure cycles. This in turn results in long processing times
and high manufacturing costs.

The selection of optimal cure profiles that can minimise cure time
and the occurrence of temperature overshoots or other process-induced
defects has been addressed in the literature using single-objective and
multi-objective optimisation. Cure time can be reduced by up to 30%
for thick parts [1–3] and 50% for ultra-thick parts [4–6], whereas tar-
geting the minimisation of residual stresses in a single-objective profile
optimisation context can lead to their reduction by about 30% [7–12].
The optimal solutions obtained in single optimisation setups merging
objectives in a weighted sum [13,14] are dependent on the weights
which imply a relative prioritisation between the different objectives.

Multi-objective optimisation can overcome this limitation by treating
the two objectives independently. An approach of this type based on
Genetic Algorithms (GAs) has been used to address cure time and
temperature overshoot minimisation in thick parts [15]. The results
have shown the existence of a trade-off between the two objectives with
an L shaped Pareto front incorporating solutions that can achieve im-
provements of about 50% with respect to both cure time and overshoot
compared to standard cure profiles. However, the benefits offered by
the exploration of the design space by numerical optimisation can be
accompanied by relative instability of some of the solutions with re-
spect to perturbations of nominal process parameters leading to po-
tential risks.

The process of cure involves several sources of variability including
environmental/boundary conditions uncertainty and material proper-
ties variations [16]. Stochastic simulation has shown that amongst
these, tool temperature has the greatest impact on cure time variability
[17]. Uncertainty in preform architecture, such as fibre misalignment,
can cause variability in residual stresses and also in final distortion of
the cured part [18]. Variability in cure kinetics parameters, such as
initial degree of cure, activation energy and reaction order, can induce
significant variations in temperature overshoot reaching coefficients of
variation of approximately 30% [19]. Uncertainty in surface heat
transfer and tool temperature can cause significant variability in cure
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time reaching a coefficient of variation of 20% [20]. In the case of
optimisation, the level of uncertainty in boundary conditions affects
significantly the optimal solution [21]. Consideration of the effects of
variability and the potential lack of stability of optimised solutions
suggest that the combination of multi-objective optimisation with sto-
chastic simulation is relevant for cure process design aiming to address
simultaneously efficiency and robustness.

The present paper describes the development of a methodology for
the incorporation of variability in multi-objective optimisation of
composites cure. The variability in boundary conditions during curing
is characterised and represented using appropriate stochastic objects.
An existing multi-objective optimisation methodology of the cure based
on GAs [15] is integrated with Monte Carlo to incorporate variability of
cure time and temperature overshoot in the set of objectives considered.
A surrogate model of the cure is developed using the Kriging method
substituting the FE model in the Monte Carlo simulation to reduce the
computation effort required for the combination of optimisation and
stochastic simulation. The methodology is applied to the cure of a thick
flat carbon fibre/epoxy laminate.

2. Methodology

2.1. Cure simulation

A heat transfer cure simulation model was implemented in the
Finite Element (FE) solver MSC. Marc to represent the cure of a Hexcel
G1157 pseudo unidirectional carbon fibre/Hexcel RTM6 epoxy resin
flat panel. The model comprises 26 3-D 8 noded iso-parametric com-
posite brick elements (MSC. Marc element type 175 [22]) representing
a 15.6mm thick laminate. Although the dimensionality of the solution
is 3-D, the heat transfer problem is one-dimensional requiring the use of
only one element across the in-plane dimensions. Each element re-
presents two layers of fabric with a thickness of 0.3mm each.

Fig. 1 illustrates a schematic representation of the model. The
boundary conditions were implemented using user subroutines
FORCDT and UFILM for time dependent prescribed temperature and
forced air convection respectively [23]. User subroutines UCURE,
USPCHT, and ANKOND were used for cure kinetics, specific heat ca-
pacity and thermal conductivity material sub-models [23].

The cure kinetics model for the resin system of this study is a
combination of an nth order term and an autocatalytic term [24]:

= − + −dα
dt

k (1 α) k (1 α) α1
n

2
n m1 2

(1)

where α is the instantaneous degree of cure, m, n , n1 2 the reaction
orders and k1 and k2 the reaction rate constants defined as follows:

= + =1
k

1
k

1
k

, i 1, 2
i i,C d (2)

Here ki,C are Arrhenius functions of temperature for the chemical re-
action and kd is a diffusion rate constant, which expresses the decel-
eration of the reaction as the instantaneous glass transition of the curing
material approaches the cure temperature. These are expressed as

follows:

= =−k A e , i 1, 2i,C d
( E /RT)i (3)

= − −k A e ed i
( E /RT) ( b/f)d (4)

where Ai, Ad are pre-exponential factors, b is a fitting parameter, Ei and
Ed the activation energy for the chemical reactions and diffusion re-
spectively, T is the absolute temperature, R the universal gas constant
and f the equilibrium free volume, which is expressed as follows:

= − +f w(T T ) gg (5)

Here w and g are constants and Tg is the instantaneous glass transition
temperature following the Di Benedetto equation [25]:

= +
−

− −
∞T T

(T T )λα
1 (1 λ)αg g0

g g0

(6)

where ∞Tg and Tg0 are the glass transition temperature of the fully cured
and uncured material and λ is a parameter controlling the convexity of
the dependence. Model constants are reported in Table 1 [19].

The specific heat capacity of the composite is computed making use
of the rule of mixtures as follows:

= + −c w c (1 w )cp f pf f pr (7)

where wf is the fibre weight fraction, cpf the fibre specific heat capacity
and cpr the specific heat capacity of the resin. The specific heat capacityFig. 1. Schematic representation of the cure model.

Table 1
Parameters values for the cure kinetics [19], glass transition temperature,
specific heat capacity [15], thermal conductivity [1] and density material
models [27,28].

Parameter Value

Pre-exponential factor of the nth order term A1 −19,000 (s )1

Pre-exponential factor of the autocatalytic term A2 −22,080 (s )1

Pre-exponential factor of diffusion Ad −6.7610 (s )18 1

Activation energy of the nth order term E1 −72,900 (Jmol )1

Activation energy of the autocatalytic term E2 −57,820 (Jmol )1

Activation energy of diffusion Ed −138,000 (Jmol )1

Autocatalytic reaction order m 1.29
Reaction order of the nth order term n1 1.97
Reaction order of the autocatalytic term n2 1.53
Exponent of diffusion term b 0.452
Equilibrium free volume model slope w 0.00048 (1/K)
Equilibrium free volume model intercept g 0.025
Glass transition temperature of uncured material Tg0 − °11 ( C)
Glass transition temperature of fully cured material ∞Tg °206 ( C)
Glass transition temperature convexity constant λ °− −0.435 (Jg C )1 2

Fibre specific heat capacity model slope Afcp °− −0.0023 (Jg C )1 2

Fibre specific heat capacity model intercept Bfcp °− −0.765 (Jg C )1 2

Resin specific heat capacity model slope Arcp °− −0.0025 (Jg C )1 2

Resin specific heat capacity model intercept Brcp °− −1.8 (Jg C )1 2

Resin specific heat capacity model step Δrcp − °− −0.25 (Jg C )1 2

Resin specific heat capacity model step breadth
parameter

Crcp ° −1.1 ( C )1

Resin specific heat capacity model step shift
parameter

σ °16.5 ( C)

Fibre transverse thermal conductivity Btf °− −0.84 (Wm C )1 2

Resin thermal conductivity model quadratic
coupling

aKr °− −0.0008 (Wm C )1 2

Resin thermal conductivity model coupling
constant

bKr, − °− −0.0011 (Wm C )1 2

Resin thermal conductivity model linear
temperature constant

cKr , − °− −0.0002 (Wm C )1 2

Resin thermal conductivity model quadratic
conversion constant

dKr , − °− −0.0937 (Wm C )1 2

Resin thermal conductivity model linear conversion
constant

eKr , °− −0.22 (Wm C )1 2

Resin thermal conductivity model intercept fKr °− −0.12 (Wm C )1 2

Resin density ρr −1.11 (gml )1

Fibre density ρf −1.76 (gml )1
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of the resin and the fibre are computed using the models [15]:

= +c A T Bpf fc fcp p (8)

= + +
+ − −c A T B

Δ

1 epr rc rcp
rc

C (T T σ)p
p

rcp g (9)

where Afcp, Bfcp control the linear dependence of fibre specific heat
capacity on temperature, Arcp, Brcp describe the linear dependence of the
specific heat capacity of the uncured epoxy on temperature and Δrcp,
Crcp, and σ are the strength, width and temperature shift of the specific
heat capacity step occurring at resin vitrification. The values of the
parameters involved in Eqs. (8)-(9) are reported in Table 1 [15].

The thermal conductivity of the composite in the through thickness
direction is computed using a geometry-based model [26] as follows:
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where Ktf is the thermal conductivity of the fibre in the transverse di-
rection. The thermal conductivity of the carbon fibre in the transverse
direction can be expressed as follows:

=K Btf tf (11)

where Btf is a constant. The thermal conductivity for the epoxy resin
system RTM6 is a function of degree of cure and temperature and is
expressed as [1]:

= + + + + +K a Tα b Tα c T d α e α fr Kr
2

Kr Kr Kr
2

Kr Kr (12)

Here aKr, bKr, cKr, dKr, eKr, fKr are coefficients of the polynomial func-
tion. The parameters of the thermal conductivity model are reported in
Table 1 [1].

The density of the composite can be calculated using the density of
the constituents:

=
+ −

ρ
ρ ρ

w ρ (1 w )ρ
c f

f r f f (13)

where ρr and ρf are the densities of resin and fibres respectively and are
reported in Table 1 [27,28].

2.2. Surrogate model

Cure simulation using FE analysis is computationally expensive.
When stochastic simulation using Monte Carlo and multi-objective
optimisation based on GAs are combined, the number of function
evaluations of the FE model becomes too large to handle with con-
ventional computing resources. A surrogate model was developed using
the Kriging method to overcome this issue by substituting the FE so-
lution. Kriging allows the unbiased estimation of untried parameter
values to be made with minimum variance and more accurately in
comparison with low order polynomial regression [29]. Fig. 2 illus-
trates the procedure of surrogate model development adopted in this
work. Kriging requires a set of sampling points at which the model
response is known. Latin Hypercube Sampling [30] was utilised for
generating a large sample of M points in this work, whilst the FE model
of the cure was used to compute the response at these points. Taking
into account the dimensionality and the nonlinear character of the
problem and following preliminary testing of the behaviour of the
surrogate model, a sample of 30,000 points was selected.

The input variables of the surrogate model include the optimisation
parameters and the variables that have significant variability and are
considered stochastic. These are parameters of the two-dwell cure
profile illustrated in Fig. 3, such as the temperature of first (T)1 and
second dwell (T )2 , the duration of the first dwell (dt )1 and the heat ramp

rate (r) and stochastic process variables such as the surface heat transfer
coefficient (h), the activation energy (E2) and reaction order (m) of the
autocatalytic component of the cure kinetics model and the initial de-
gree of cure (α0). The surrogate modelling methodology treats these in
the same way, with some of them such as dwell temperature having a
dual role both as optimisation parameters and stochastic variables.
Table 2 summarises the role and ranges of parameters and variables
considered in the surrogate model. The cure kinetics parameter ranges
reported in Table 2 were set taking into account their average and
standard deviation as quantified in a previous study [19]. The outputs
of the surrogate model, which correspond to the two variables con-
sidered in the optimisation, are the cure time (t )cure and the maximum
temperature overshoot (ΔT )max . Cure time is defined as the time at
which the minimum degree of cure of the part is greater than 88%,
which is the degree of cure that RTM6 reaches during an isothermal
Differential Scanning Calorimetry test at 180 °C [31]. When the degree
of cure reaches this threshold the simulation ends. Consequently, the
second dwell time is not a design parameter in the optimisation. The
temperature overshoot is defined as the maximum difference between
the tool control temperature and the temperature in the composite
during the process.

The Kriging metamodel expresses the model response �∈xY( )
(cure time or maximum temperature overshoot) for the input vector

�= ∈x x[T , T , dt , r, h, E , m, α ],1 2 1 2 0
8as follows:

Fig. 2. Surrogate model construction methodology.

Fig. 3. Two-dwell cure profile.
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= + ∗x f x β r x γY( ) ( ) ( )T T (14)

where the term f x β( )T corresponds to a 2nd order regression model
expressing the output variable (t or ΔTcure max) as a linear combination of
p basis functions � �↦xf ( ):i

p expressed as:

= + ⋯+f x β x x( ) β f ( ) β f ( )T
1 1 p p (15)

Here β �∈ p is the vector of regression parameters computed using
generalised least squares and p is:

Table 2
Range and role of surrogate model input parameters.

Parameter Range Optimisation variable Stochastic variable

First dwell temperature °T ( C)1 −135 175 Yes Yes
Second dwell temperature °T ( C)2 −175 215 Yes Yes
Duration of first dwell dt (min)1 −33 300 Yes No
Heating rate °r ( C/min) −1 4 Yes No
Surface heat transfer coefficient °h (W/m / C)2 −13.8 21.8 No Yes
Autocatalytic activation energy E (KJ/mol)2 −56 59.6 No Yes
Autocatalytic reaction order m −1 1.6 No Yes
Initial degree of cure α (%)0 −1.5 5.1 No Yes

Fig. 4. (a) Infusion set up with the sensors (b) Schematic representation of experimental set-up.

Fig. 5. Stochastic multi-objective optimisation methodology.

Table 3
GA parameters used for stochastic optimisation.

GA input Value

Max Number of generations 12
Individuals per population 70
Individuals per reproduction 50
Elite individuals 6
Size of Pareto set 40
Mutation probability 0.005
Cross-over probability 0.5
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= + +p (n 1)(n 2)
2 (16)

with n the dimensionality of the model, which is 8 in the case con-
sidered here.

The term r x( ) corresponds to a vector of cross-correlations between
input point x and each of M sampling points (sx �∈ 8):

= ⋯r x θ x s θ x s( ) [R( , , ), ,R( , , )]x
1

x
M T (17)

Here θ x sR( , , )x
k denotes the correlation between input point x and

sampling point sx
k and depends on the parameter vector �∈θ 8 and the

distance between them. A Gaussian function was chosen for the cor-
relation structure as follows:

= = − = ⋯−θ x sR( , , ) e , d x s , k 1, ,8θ d
k k kk k

2 (18)

The parameter vector θ allows the correlation function to represent
anisotropy in the correlation across different directions of the model.
The optimal correlation parameter vector θ can be estimated by solving
the following optimisation problem [32]:

R= ( )θ argmin σ| | 21
M (19)

where �| | is the determinant of the correlation matrix �� ∈ ×M M of all
sampling points involved in the model and σ2 is the predictor Gaussian
process variance, expressed as follows [33]:
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The optimisation problem in Eq. (19) is combined with the estimation
of the regression coefficients (β) in Eq. (15) and of the process variance
(σ2) based on maximising the likelihood of responses …s , , sy

1
y
M at sam-

pling points …s s, ,x
1

x
M respectively.

Vector γ �∈ M is computed as follows:
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The estimation problem corresponding to Eqs. (14)-(21) was im-
plemented and solved using the MATLAB® toolbox for Kriging model-
ling [34]. The resulting predictor (Eq. (14)) was implemented in Visual
Studio C++.

2.3. Stochastic simulation

2.3.1. Quantification of boundary conditions variability
Boundary conditions variability has been quantified in a series of 10

experiments carried out utilising the setup depicted in Fig. 4. The setup
includes a Caltherm E9321V2 oven with an Eurotherm 2408P4 PID
controller, a 10mm aluminium tool plate, nylon N64PS-x VAC In-
novation peel ply fabric, nylon xR1.2 VAC Innovation vacuum bag,
three K-type thermocouples and two RdF micro-foil heat flux sensors
[35]. A 5mm composite flat panel was used to create thermal condi-
tions similar to those during the cure of a composite part. The matrix
system of the panel was Hexcel RTM6 and the reinforcement Hexcel
G1157 pseudo unidirectional carbon fabric with an areal density of
277 g/m2. The composite part was placed on the tooling plate, covered
with the peel ply and the vacuum bag and sealed before the experi-
mental runs.

Fig. 6. Experimental results of (a) heat transfer coefficient (b) surface temperature.

Table 4
Stochastic properties of cure kinetics parameters [19] and boundary conditions.

α0 m E2 (J/mol) °h (W/m / C)2 °T ( C)s

Average 0.033 1.29 57, 820 17.8 151.8
Standard deviation 0.006 0.094 600 1.3 1.6

Table 5
Input parameters values used for the construction of the response surfaces of the two validation test cases.

°T ( C)1 °T ( C)2 dt (min)1 °r ( C/min) °h (W/m / C)2 E (J/mol)2 m α0

1st Case −135 175 −175 215 84 2 17.8 57820 1.29 0.033
2nd Case −135 175 195 84 −1 4 17.8 57820 1.29 0.033
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Two K-type thermocouples were mounted on the bag to monitor the
surface temperature, whilst the third one was placed outside the
thermal boundary layer and close to the surface to measure air tem-
perature. Two heat flux sensors were placed on the vacuum bag to
measure the convection heat flux and its variability. The micro-foil flux
sensor outputs a voltage signal which is proportional to the heat flux
with the proportionality coefficient determined individually per sensor
by the supplier [35]. The heat transfer coefficient is calculated using the
temperatures of the surface (Ts) and air in the oven (Tair) and the
measured heat flux (Q

.
) as follows:

=
−

h Q
T T

.

s air (22)

The temperature was set up at 160 °C during all runs. A National In-
struments LabVIEW in-house code was used for data acquisition and the
data were acquired with a frequency of 0.8 Hz for 20min and 30min
after the oven temperature controller reached a plateau at 160 °C for
the heat transfer coefficient and surface temperature measurements

respectively.

2.3.2. Monte Carlo simulation
The stochastic simulation is based on Monte Carlo (MC). The im-

plementation carried out in Visual Studio C++ involves the generation
of NMC realisations of random input stochastic variables using the
Mersenne Twister random number generator [36]. The MC sampling
points are generated using an orthogonal set of normally distributed
uncorrelated random variables. The transformation from the stochastic
variables of the problem to the set of uncorrelated random variables is
carried out using Cholesky decomposition. In the particular setup ad-
dressed in this work there two pairs of correlated variables. These are
the autocatalytic reaction order (m) and the initial degree of cure (α0)
with a correlation coefficient of 0.55 and the autocatalytic activation
energy (E2) and reaction order (m) with a correlation coefficient of
−0.84 [19]. In each realisation, the surrogate model is executed cal-
culating the process outcomes (cure time and temperature overshoot)
and subsequently computing their first and second statistical moments

Fig. 7. FE and surrogate model response surfaces: (a) Case 1 (Table 5) cure time as a function of the first and second dwell temperature; (b) PDF of absolute
differences between surrogate and FE model for Case 1 (c) Case 2 (Table 5) temperature overshoot as a function of first dwell temperature and ramp; (d) PDF of
absolute differences between surrogate and FE model for Case 2.
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using the overall set of realisations. A total of 500 realisations is re-
quired to ensure convergence in average and standard deviation. The
outputs of the stochastic simulation are the average and standard de-
viation of cure time and of temperature overshoot.

2.4. Stochastic multi-objective optimisation

The aim of stochastic multi-objective optimisation is to minimise
cure time, temperature overshoot and their variability. These are cap-
tured by a set of four minimisation objectives, i.e. the means and
standard deviations of the two metrics. The ranges of potential values
for each design variable are summarised in Table 2. The stochastic si-
mulation was integrated with a GA for multi-objective optimisation
[15] by developing an appropriate interface. The stochastic optimisa-
tion framework illustrated in Fig. 5 was implemented in Visual Studio
C++. The parameters of the GA are reported in Table 3. The output of
the GA is the Pareto set of optimal design parameters and the corre-
sponding objective values.

3. Results and discussion

3.1. Stochastic objects

Fig. 6a and 6b illustrate the results of heat transfer coefficient and
surface temperature evolution variability experiments. Both parameters
present two types of variations: (i) variations over time (short term
variability), and (ii) level variability across the different experiments.
The air streams inside the oven produced by its fan cause forced con-
vection and short term variability in heat transfer coefficient and sur-
face temperature. The forced convection results in higher values of heat
transfer coefficient in comparison with natural convection which is in
the range of 10–15W/m2/°C [20]. The level variability across different
experimental runs of both heat transfer coefficient and surface tem-
perature can be attributed to the varying laboratory conditions. The
surface temperature includes also a periodic term representing a de-
pendence on time, which can be attributed to temperature control in
the oven. The corresponding periodic fluctuation is in the range of 2 °C
around the set temperature.

Stochastic objects for the heat transfer coefficient and surface
temperature are utilised to incorporate the corresponding variability
into the stochastic simulation scheme. Short term variability of heat
transfer coefficient and tool temperature has negligible influence on the
process outcomes and only the variability of the level needs to be taken
into account [20]. Therefore the surface heat transfer coefficient and
the surface temperature are modelled using random series of observa-
tions as follows:

= +T μ σ ys s s T (23)

= +h μ σ yh h h (24)

where yT and yh denote independent identically distributed standard
normal variables, μs and μh the mean values and σs, σh the standard
deviations of heat transfer coefficient and surface temperature respec-
tively. The average values and the corresponding standard deviations
are reported in Table 4.

3.2. Surrogate model validation

Response surfaces, representing the relationship between process
outputs and inputs, for two different cases detailed in Table 5 were
constructed to assess the accuracy of the surrogate model. The response
surface of tcure over the space of T1 and T2 is illustrated in Fig. 7a for
constant values for the rest of the input parameters (dt , r, h, m, E , α )1 2 0

as reported in Table 5 (Case 1). It can be observed that, for the parti-
cular values of parameters considered, increasing T1 reduces cure time
significantly, whilst the effect of T2 is weaker. The reduction of cure
time is non-linear with increasing temperature as a consequence of the
non-linear nature of cure. The negligible influence of the second dwell
temperature on cure time in the region of high first dwell temperatures
is attributed to the fact that the cure process is already completed be-
fore the second dwell. The contribution of T2 is of importance when the
first dwell temperature is below 165 °C, in which case the cure time is
decreasing with increasing T2. The comparison of the two surfaces il-
lustrated in Fig. 7a shows that the surrogate model is an accurate re-
presentation of the FE cure simulation. The mean absolute difference
between the two is 0.9min, which represents a very small percentage of
cure time (0.5% to 2%). Fig. 7b illustrates the probability density
function (PDF) of absolute difference between the FE and surrogate
models. The region with the highest probability is between 0 and
0.7 min, with probability becoming very small over 1.2 min.

Fig. 7c illustrates the dependence of ΔTmax on T1 and r for constant
values for the rest of the parameters (T , dt , h, m, E , α )2 1 2 0 as reported in
Table 5 (Case 2). The agreement between the surrogate model and the
simulation is very good. The temperature overshoot increases with in-
creasing T1. In the region of low heating ramp and high first dwell

Fig. 8. Cumulative density function (CDF) of a standard cure profile of tem-
perature overshoot.

Fig. 9. Population evolution of stochastic multi-objective optimisation.
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temperature, the temperature overshoot decreases with increasing first
dwell temperature as a result of the occurrence of maximum reaction
during the ramp. The PDF of absolute error (Fig. 7d) indicates that the
region of high probability is between 0 and 0.8 °C. The mean absolute
error is 0.9 °C, whilst the probability of error greater than 1.6 °C is
negligible.

The surrogate model accuracy was also tested in the case of MC
simulation. A standard two dwell cure profile with first dwell tem-
perature of 160 °C for 75min and second dwell temperature of 180 °C
[28] was simulated using 500 realisations. Fig. 8 illustrates the cumu-
lative density function (CDF) of temperature overshoot as computed by
the FE and surrogate models. The average temperature overshoot is
37 °C, whilst the standard deviation is 4.5 °C implying a coefficient of
variation equal to 12%. It can be observed that the two CDFs are in very
close agreement. The computational time of stochastic simulation is
reduced significantly with the use of the surrogate model. The sto-
chastic simulation using FE takes 420min on a Quad Core CPU
(3.6 GHz) PC, whilst the surrogate model based solution needs 3min.
This represents a reduction by more than 99%.

3.3. Stochastic multi-objective optimisation

The evolution of the GA population during stochastic multi-objec-
tive optimisation run is illustrated in Fig. 9 in terms of mean cure time
and temperature overshoot. As the stochastic optimisation progresses,
the population sample is improved compared to populations of previous
generations. The GA converges – i.e. the Pareto set is stabilised – be-
tween 7 and 12 generations. Fig. 10 shows the average cure time-
average temperature overshoot cross section of the stochastic Pareto
front, with the variability with respect to both variables in box plots.
The deterministic Pareto front is also illustrated with a solid line. The
Pareto fronts of both the stochastic and deterministic optimisation are
in the form of an L-shape curve comprising two regions: (i) a horizontal
region in which cure time can be reduced significantly without con-
siderable changes in temperature overshoot; and (ii) a vertical region in
which high temperature overshoots occur with small changes in cure
time. The majority of the stochastic Pareto points are shifted up com-
pared to the deterministic Pareto front. The stochastic Pareto set in-
cludes points in which the mean values are dominated by other optimal
points, but they dominate them in terms of variability resulting in a 4-D
front. In contrast, in the deterministic case the domination ranking
occurs only in terms of nominal values and consequently the Pareto
front is 2-D.

Deterministic optimisation finds the solutions minimising the ob-
jectives without considering the variation of the solution potentially
yielding optimal points with high sensitivity to variability. This can be
problematic, especially in cases where the deterministic optimisation
exploits high sensitivity areas of the landscape. For example, optimal
points in the vertical region of the deterministic Pareto set can be highly
sensitive to variations resulting in temperature overshoots significantly
different than predicted by the simulation. This possibility necessitates
the use of more conservative cure profiles. In order to demonstrate this
weakness of deterministic optimisation and the way the stochastic op-
timisation can overcome it, two points of the vertical region of de-
terministic and stochastic Pareto front with similar cure time and
temperature overshoot were selected and analysed. The details of these

Fig. 10. Pareto front of stochastic and deterministic multi-objective optimisation (a) cure time box plots; (b) temperature overshoot box plots.

Table 6
Sensitivity analysis of deterministic and stochastic optimal points.

Stochastic optimal
point

Deterministic optimal
point

1st dwell temperature (°C) 144 152
2nd dwell temperature (°C) 214 214
Dwell duration (min) 35 33
Heating ramp (°C/min) 3.7 3.8
Average cure time (min) 58 55
Average temperature overshoot

(°C)
21 27

Cure time standard deviation
(min)

1.3 1.9

Temperature overshoot standard
deviation (°C)

3.6 6.6
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design points and the results of the stochastic simulation for these
points are reported in Table 6. The average cure time and temperature
overshoot of deterministic and stochastic point are similar, whilst the
cure time coefficient of variation is about 2.5% in both cases. The
standard deviation of temperature overshoot of the point of determi-
nistic optimisation is 6.6 °C, which is approximately twice that of the
stochastic point. Furthermore, the nominal overshoot determined by
deterministic simulation is lower by 7 °C compared to the average
computed by stochastic simulation. Consequently, deterministic

simulation provides a biased estimate of average overshoot under-
estimating risks. This explains the upward shifting of the stochastic
Pareto front with respect to the deterministic points observed in Fig. 10.
The temperature overshoot in the deterministic case is between 9 and
43 °C, whilst the stochastic one is in the range between 15 and 30 °C.
The sensitivity of the deterministic point can be attributed to the higher
first dwell temperature of its cure profile. These differences highlight
the high sensitivity of deterministic optimal points and the robustness
offered by stochastic optimal points.

Table 7
Comparison of optimal and standard cure profiles and their response under aggressive and conservative uncertainty scenarios.

Short dwell optimal profile Intermediate dwell optimal profile Standard one dwell profile Standard two dwell profile

Cure profile °T ( C)1 147 139 180 160
°T ( C)2 189 209 – 180

dt (min)1 38 56 120 75
°r ( C/min) 3 2 1 1.5

Mean realisation °T ( C)1 147 139 180 160
°T ( C)2 189 209 – 180

°h (W/m / C)2 17.8 17.8 17.8 17.8

E (J/mol)2 57,820 57,820 57,820 57,820
m 1.29 1.29 1.29 1.29
α0 0.033 0.033 0.033 0.033
Cure time (min) 65 90.6 66 115
Overshoot (°C) 22 12 37.3 37

Aggressive realisation °T ( C)1 150 142 183 163
°T ( C)2 192 212 – 183

°h (W/m / C)2 15.1 15.1 15.1 15.1

E (J/mol)2 56,162 56,162 56,162 56,162
m 1.48 1.48 1.48 1.48
α0 0.049 0.049 0.049 0.049
Cure time (min) 59 90.7 60 112
Overshoot (°C) 36 25 45 52

Conservative realisation °T ( C)1 144 136 177 157
°T ( C)2 186 206 – 177

°h (W/m / C)2 20.5 20.5 20.5 20.5

E (J/mol)2 59,477 59,477 59,477 59,477
m 1.1 1.1 1.1 1.1
α0 0.017 0.017 0.017 0.017
Cure time (min) 73 97 76 118
Overshoot (°C) 32 18 34 22

Standard deviation Cure time (min) 2 1 2.6 1
Overshoot (°C) 3.3 3.1 3.8 4.4

Fig. 11. One dwell standard profile: (a) temperature evolution; (b) degree of cure evolution.
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The stochastic Pareto front contains some points with cure time
values twice as high as that of deterministic solutions. These points are
located at the end of the horizontal region of the stochastic Pareto front
and present low variations with standard deviations of 0.4 min and
2.5 °C for cure time and temperature overshoot respectively. These in-
dividuals are generated using conservative cure profiles with low first
dwell temperature and long first dwell time. In these cases, overshoots
are negligible and the cure process long. The vertical region of the
stochastic Pareto front includes two points with temperature overshoot
higher than 50 °C, a low cure time below 50min and significant var-
iations especially in the case of temperature overshoot with standard
deviation between 4 and 4.5 °C. The cure time presents low variability
with coefficient of variation of about 1.5%. The coefficient of variation
of overshoot is 20%.

MC simulation of the two standard cure profiles of the resin system
has been carried out. The first profile comprises two dwells at 160 °C
and 180 °C [28] and the second one dwell at 180 °C [37]. A detailed
analysis of the cure process has been carried out in order to uncover the
qualitative characteristics of two optimal points with short and

intermediate dwell profile and compare them with the standard cure
profiles. Table 7 reports the inputs of this analysis. Figs. 11-14 illustrate
the evolution of temperature and degree of cure at the tooling side and
in the middle of the laminate for the three realisations. In the mean
realisation stochastic variables (T1, T ,2 h, m, E2, α0) are equal to the
mean values reported in Table 4. Aggressive and conservative realisa-
tions correspond to the cases where each stochastic variable was shifted
by two standard deviations in the positive and negative direction ac-
cording to the influence of each on cure time and overshoot. The ag-
gressive realisation represents an extreme scenario in which all sto-
chastic variables have values resulting in acceleration of the process,
whilst the conservative realisation corresponds to values leading to a
slower cure. The results obtained with the optimal points illustrate the
significant improvements in terms of minimising both the mean value
and the standard deviation of cure time and temperature overshoot in
comparison with standard cure profiles and are reported in Table 7. In
the intermediate dwell optimal profile, the average and the standard
deviation of cure time were reduced by about 20% and 30% respec-
tively compared to the standard two dwell profile. In addition, the

Fig. 12. Two dwell standard profile: (a) temperature evolution; (b) degree of cure evolution.

Fig. 13. Intermediate dwell optimal profile: (a) temperature evolution; (b) degree of cure evolution.
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optimal point presents a decrease of 60% in average temperature
overshoot in comparison with both the one and two dwells standard
profile. A higher first dwell temperature (Fig. 11a) results in an early
reaction rate peak in the case of the one dwell standard profile. Con-
sequently, the maximum temperature overshoot occurs during the first
dwell. The selection of a one dwell profile with high dwell temperature
results in low cure time and causes significant temperature overshoots
that can reach up to about 50 °C in the aggressive realisation (Fig. 11a
and 12a). The temperature evolution of the different realisations, as
illustrated in Fig. 13a, highlights the stability of the intermediate op-
timal profile. The first dwell temperature is lower than that of the
standard profiles reducing significantly exothermic effects and resulting
in relative uniformity of temperature across the thickness. Also, the
cure occurs almost at the same time in the three realisations, as shown
in Fig. 13b, whereas for the standard profiles there are significant
variations in cure duration between realisations (Fig. 11b and 12b). The
short dwell optimal profile results in slightly faster cure time (Fig. 14b)
than the standard one-dwell profile and approximately 40% reduction
of cure time in comparison with the standard two dwell profile. The
evolution of degree of cure through the thickness is more uniform for all
realisations in the case of optimal profiles in comparison to standard
profiles. This can be attributed to the fact that the cure reaction in the
optimal solutions occurs more gradually than in the standard profiles,
in which the high first dwell temperature accelerates aggressively the
exothermic reaction. The average temperature overshoot of the short
dwell optimal profile is lower by about 40%, whilst the standard de-
viation by about 20% and 10% compared to the standard one and two
dwell profiles respectively.

Stochastic multi-objective optimisation yields a multi-dimensional
Pareto front with optimal profiles that can be chosen based on the re-
lative weightings of the different objectives relevant to specific appli-
cations. These are usually implied in the manufacturer’s choices; e.g. in
thick high cost components a low overshoot long cure process might be
prioritised, whilst in inexpensive non-critical components a short and
relatively unstable process might be preferred. In this sense, in an ap-
plication in which duration is not prioritised cure cycles such as the
intermediate dwell optimal case can be implemented with process
duration of about 1.5 h and temperature overshoots in the range of
10–20 °C. In cases of high throughput lower specification composite
parts, the short optimal profile can be chosen resulting in faster cure
cycles of about 1 h, associated with temperature overshoots in the
20–35 °C range.

4. Conclusions

The stochastic multi-objective optimisation methodology developed
in this study accounts for different sources of uncertainty by im-
plementing a Monte Carlo simulation integrated into a GA to minimise
temperature overshoot, cure time and their variability. Current de-
terministic optimisation methodologies generate optimal solutions that
are sensitive to variations of the input parameters. The findings high-
light the efficiency of stochastic optimisation in minimising cure time
and temperature overshoot uncertainty in comparison with the stan-
dard cure profiles. The utilisation of surrogate modelling in a stochastic
multi-objective optimisation problem makes the solution feasible in
terms of computational time. The use of stochastic multi-objective op-
timisation can lead to considerably lower process durations reducing
significantly manufacturing costs, whilst it can contribute to the de-
velopment of more robust manufacturing processes in terms of outcome
variability. The findings of the current study show that optimal cure
profiles can be used to deliver faster processing and lower cost com-
bined with improved quality while increasing robustness of the process
outcome with respect to process uncertainty and materials variations.
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