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“Automation does not simply supplant human activity
but rather changes it, often in ways unintended and
unanticipated by the designers of automation”

(Parasuraman et al. 2000)
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List of abbreviations
BA = Behavioral Adaptation

ADAS = Advanced Driver Assistance System
ACC = Adaptive Cruise Control

SA = Situation Awareness

DSM = Driver State Monitoring

LKAS = Lane Keeping Assistance System

HMI = Human Machine Interaction

Important definitions

Behavioral Adaptation: “Those behaviors which may occur following the introduction of changes to the
road-vehicle-user system and which were not intended by the initiators of the change” (OECD 1990).

Situation Awareness: “The perception of the elements of the environment within a volume of time and
space, the comprehension of their meaning, and the projection of their status near future” (Endsley
1988)
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Introduction

Highly automated vehicles are a trending topic since Google introduced the first fully autonomous
driving vehicle in 20091. One of the many arguments for autonomous driving is that over 90% of all
traffic accidents are caused by human errors (Treat et al. 1979; Green and Senders 2013). The
implementation of autonomous driving vehicles can still take decennia due to technical limitations (e.g.
bad sensor accuracy in heavy weather conditions, need for highly detailed maps, communications
problems with other road users, etc. (Ghose, 2015)) and legislation problems (e.g. ethical questions like:
“who is responsible for an accident if no human is in the loop?”). Until most of these issues are resolved,
it has to be accepted that humans are in control of the vehicle, either performing a supervisory task (e.g.
monitoring the environment) or operational (e.g. actual controlling the vehicle). Therefore new systems
are developed to keep the human in the loop but still obtain some of the benefits of automation.

In literature these systems are called Advanced Driver Assistance Systems (ADASs). The benefits of these
systems depends on the working principle, for instance, some systems reduce the braking distance
significantly (e.g. Anti-Lock Braking System (ABS) and Autonomous Emergency Braking System (AEB)),
assists the driver in lateral or longitudinal control (e.g. Lane Keeping Assistance (LKA), Adaptive Cruise
Control (ACC)) or assist the driver on a strategic level (e.g. Navigation software). In order to work
properly with these systems people need to adapt. Although adapting and compensating for changing
circumstances is critical in driving situations, people sometimes adapt in such a way that the gained
safety benefits, caused by the ADAS, degrades. For instance, Sagberg et al. (1996) showed that taxi
drivers equipped with ABS, drive with a shorter headway time compared to drivers without. In other
words, the drivers misuses the fact that ABS shorten their braking distance and use it to drive closer to
the next vehicle. Another well-documented BA example is given by Bekiaris et al. (2001). They showed
that people driving with an ACC system use their spare capacity caused by this system to perform other
in-vehicle tasks, resulting in a significant lower Situation Awareness. In literature such an unintended
negative adaption to a novel introduced ADAS is called Behavioral Adaptation (BA). In short-term and in
long-term BA can mitigate the safety benefits of a novel ADAS or even completely negate them.

These examples emphasize the importance of taking BA into account in the design of a novel ADAS
system. An example of a current developed ADAS is Haptic Shared Control (HSC). This system assist the
human driver by adjusting the stiffness of the steering wheel and/or pedals, resulting in higher
performances (in terms of steering and braking) and lower workload (Abbink et al. 2011; Petermeijer &
Abbink 2015). A HSC System is intuitive to use (i.e. drivers quickly adapt) and, if designed well, is not
experienced as intrusive. Some researchers found results that indicate BA in a HSC vehicle, for example
Petermeijer et al. (2014) showed significant worse driving performance in case of an automation failure
or a decreased Situation Awareness (observed in a lower reaction time) (Petermeijer & Abbink 2015).
Whereas, Mars et al. (2015) found no BA effect in the steering guidance of a HSC system. These
examples show that the real effect of BA in a HSC vehicle is still unclear. Therefore new research has to
be conducted that measure and model BA in novel ADASs (like HSC). Once there are models that
understands the human driver this could help in designing countermeasures that limit BA, resulting in
higher safety benefits. To assist ADAS developers to design ADAS that limit BA the following research
guestion need to be answered:

1 “Google Self-Driving Car Project”. Retrieved 02-09-2015 from: http://www.google.com/selfdrivingcar/
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What are promising ways to predict behavioral adaptation in Advanced Driver Assistance Systems?

This research question will be answered by means of a literature survey. This literature research gives a
comprehensive insight in measuring and modelling techniques in assessing BA. In order to do so, this
report is divided into two parts:

(1) Theories about why BA occurs: Overview of well-cited motivations and triggers that could
explain or cause BA. In addition, examples of potential changes will be given. (Chapter 2)
(2) Overview of techniques to measure and model BA: In order to understand these models it is

important to know what kind of techniques are applicable to measure and model BA. (Chapter
3)
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1 What is behavioral adaptation?

In literature Behavioral Adaptation (BA) is used in contrary ways. In Psychology BA is defined as “the
whole set of behavior changes that are designed to ensure a balance in relations between the (human)
organism and his surroundings, and at the same time the mechanisms and processes that underlie this
phenomenon” - Grand Dictionnaire de la Psychologie. In road safety literature BA is often used in a more
negative way as is defined by the OECD (1990):

“Those behaviors which may occur following the introduction of changes to the road-vehicle-user system
and which were not intended by the initiators of the change” (OECD, 1990).

In this report the definition provided by the OECD group is used since this definition is commonly used in
driver BA studies. Although this definition is convenient and used often in literature it still leaves room
for own interpretation. For example what is an “unintended behavioral change”? In this report an
unintended behavioral change will be defined as a change that reduces the safety benefits of the
Advanced Driver Assistant System (ADAS).

1.1  Direct and indirect behavioral effects.

Behavioral Adaptation can be discern into direct and indirect effects. The direct effects are in literature
called the engineering effects. Engineering effects are effects intended by the designer. For instance, in
case of the Anti-Lock Braking System (ABS) the specifications are: “A braking system in which a sensor
recognizes that a wheel is about to lock up. The sensor sends a message to a computer, which starts
releasing and applying the brake, stopping the lock up and allowing the driver to maintain control or
drive around an obstacle instead of sliding towards it” Hence, the ABS direct effects (intendent effects)
is a shorter braking distance as well as maintaining control while braking. However, Sagberg et al. (1996)
showed that car drivers equipped with ABS, drive with a shorter headway time compared to drivers
without. This effect is not intended by the designer and thus an indirect behavioral effect. The definition
Behavioral Adaption is equivalent to indirect behavioral effects, given that BA focus on the negative
indirect behavioral effects. Of course, not all behavioral adaptations are negative. For instance, the
Foundation for Traffic Safety (Mehler et al. 2014) showed an increased use of turn-signal among drivers
with Lane Departure Warning Systems (LDWS), especially if they drove often on highways. Please notice
that positive behavioral adaptations are not considered as a Behavioral Adaptation in this report since it
is not a BA according to the definition given above.

Safety related factors to be
influenced = ‘“target factors”

“Engineering effect”

Effect on safety i.e. on
Measure exposure, crash risk and
consequence

Other safety related Behavioural adaptation
factors influenced

Figure 1: Schematic presentation of safety effects due to behavioral adaptation
Source: Khorasani et al. (2013)
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Besides direct and indirect behavioral changes there is a third category: “system misuse”. Although this
category is not often used in literature, it is an important aspect of unintended behavior. Drivers are
always extremely creative in exploring the limitations given by the ADAS designers. Often this leads to
misuse of the system, e.g. current commercial cars are equipped with full range adaptive cruise control
in combination with Lane Assistance Systems allowing hands-free driving. However, due to legislation,
drivers are still obligate to maintain hands on the steering wheel. Current systems require that the
driver keeps hands on the wheel every 10 to 20 seconds otherwise an alarm goes off. The driver can
simply circumvent this safety measure by hanging a bottle on the steering wheel (see figure 2). This is
also a clear example of “adapting” to an ADAS unintended by the designer of the system. However, in
this report this category is not considered as a BA but rather as cheating the system.

R .
Figure 2: Placing a bottle on the steering wheel to circumvent the hands-free warning.
Source: Adopted from https.//www.youtube.com/watch?v=qi20lRMwmZY
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2 Driver Behavior Theories

Although BA is a widely acknowledged phenomenon, the motivations and factors that trigger these kind
of BA are not clearly established and are debated often. This chapter gives an overview of in literature
mentioned factors likely to explain the processes underlying BA. If the reason why people adapt their
behavior is known, ADAS designers could design novel ADASs more effectively in terms of safety (e.g.
systems that not suffer from BA). The question that will be answered in this chapter is: What are
theories behind a BA and what are common BA triggers argued in these theories?

2.1 Michon’s adapted hierarchical control model

Many of the theories discussed later use the hierarchical task distinction given by Michon (1985).
According to Michon (1985) a driver tasks can be divided into three levels: Strategic, Maneuvering and
Control level. “The strategic level of a tasks defines the general planning stage of a trip, including the
determination of trip goals, route and modal choice, plus an evaluation of the costs and risks involved.
At the Maneuvering level drivers exercise maneuver control allowing them to negotiate the directly
prevailing circumstances.”(Michon 1985). The ground level is the control level. This level is equivalent to
the “skill based behavior” defined by Rasmussen (1983): “It represents sensory-motor performance
during acts or activities which, following a statement of an intention, take place without conscious
control as smooth, automated, and highly integrated patterns of behavior”. This level is basically on
operational level and governs how the driver operates the vehicle.

Panou et al. (2007) stated that Michon hierarchical model needed to be adapted with an additional
behavioral level because personal motives are crucial factors for driver behavior. Examples of personal
motives are for example subjective risk. Subjective risk is the risk people are willing to take during
driving (will be elaborated further later in this chapter). As the revised hierarchical structure in figure 3
shows, that behavior is at the top of the hierarchical structure and influence all three levels.

Time
constant
Behaviour level '—» Way of living Infinite
—> Strategic level —— General plans Long
Route and speed
criteria
L 4 s 4
Environmental __— G
— " ontrolled
input —3 Manoeuvring level action patters secs
Feedback criteria
Environmental -~ i i
input S— Control level :::11:13; ic action A secs

Figure 3: The hierarchical structure of the driving task (adapted from Michon, 1985)
Source: Panou et al. (2007)
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2.2

Adaptation Triggers

Why would a driver adapt their behavior in general or how can we assure desired behavior? Many
researchers have probed this, from child raising to appropriate work behavior development (World Bank
2010). Drivers behavior can differ a lot (e.g. from a slow driving grandfather towards a young male
driving a Volkswagen Golf), though, this does not mean that responses towards certain behavioral
triggers will also differ that much. It is important to understand that adaptation triggers cannot change a
person, but by shaping the environment they function within, the way people behave can be influenced.

2.2.1 Motivational Triggers

The underlying motivation is very important in explaining BA. Many motivational theories try to explain
BA and which triggers are important in inducing these adaptations. Some well-cited motivational
theories are based on the following triggers:

Subjective risk assessment.

Risk can be divided into three basic terms: objective risk, subjective risk estimate and the feeling
of risk. Objective risk has also been referred to as ‘statistical risk’ ((Grayson et al., 2003), it is the
objective probability of being involved in an accident. The objective risk is determined post hoc
from analysis of accident data. “Subjective risk estimate refers to the driver’s own estimate of
the (objective) probability of collision. Such estimates of risk represent the output of a cognitive
process, while the feeling of risk represents an emotional response to a threat, a distinction
previously clarified” (Fuller 2005). Many BA theories are based on Subjective Risk. Either by
stating that people tend to maintain a certain subjective risk level (Wilde 1998)) or the tendency
to keep the subjective risk below a certain risk threshold (Nddtanen & Summala 1974).
Nevertheless, subjective risk is stated as an important motivation to adapt behavior.

Fuller's (2005) Task-Capability Interface (TCl).

Fuller’s TCI describes the interaction between the determinants of task demand and driver
capability. “The task demand is determined by factors such as the environment, other road
users and speed, with capability being determined by training, education and experience. Task
difficulty homeostasis is proposed as a key sub goal in driving, and the choice of speed is argued
to be the main solution to the problem of keeping task difficulty within driver-preferred bounds”
(de Winter & Happee 2010).

Trade-Off between Performance and Effort (TOPE).

People will tend to make a trade-off between performance and effort. If people are rewarded
with higher performance at the cost of a bit more effort, the chance of performing this is action
is high. Same logic, if a little performance increase is gained with a huge effort, the chance of
adapting is limited (e.g. Speed/Accuracy Trade-Off (Fitts 1954))

Utility Maximization Model from (O’Neill 1977): Panou et al. (2007) summarized the Utility
Maximization model as follows: “The utility maximization model proposed by O'Neill (1977)
assumes that the driver has certain stable goals and makes decisions to maximize the expected
value of these goals. Some of these goals are achievable more effectively through risk-taking
behavior, for example, speeding to save time or gain social status. These motivating factors are
counteracted by the desire to avoid accidents as well as by fear of other penalties such as
speeding tickets. Balancing goals with the desire to avoid accidents therefore derives driving
behavior choice. O'Neill claims that the balance, which affects the decision made, is shifted
when a safety measure is introduced. An assumption made by the theory, which has been
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guestioned (OECD 1990), is that the driver is 'rational'. In other words, the driver is an accurate
judge of the accident probability resulting from each mode of behavior.”

Wilde’s Risk Homeostasis and Fuller’s TCI model are both well-cited and also often criticized
motivational theories, therefore both will be elaborated further in the remaining part of this section.

Wilde’s Risk Homeostasis Theory (RHT)

Wilde’s Risk homeostasis posits that: “People at any moment of time compare the amount of risk they
perceive with their target level of risk and will adjust their behavior in an attempt to eliminate any
discrepancies between the two” (Wilde 1998). It is argued that a change in system (e.g. by introducing
an ADAS) influence the perceived level of risk resulting in an adjustment action (see figure 4). For
example, by introducing light poles drivers are able to see more when driving in the night resulting in a
lower perceived level of risk. Wilde’s Risk Homeostasis theory suggest that drivers will compensate for
this effect by, for instance, drive faster in order to reach the target level of risk. So basically, by
introducing light poles behavioral adaptation occurs. Although this sounds like a quite feasible
argument, this model is often argued as “too vague” (Michon 1985). The entities are not clearly defined
and therefore impossible to observe and impossible to measure, simply because these processes
happen unconsciously. Similar statements were made by Elvik & Vaa (2004) and Ranney (1994) who
both stated that it is impossible to generate testable hypothesis for this theory due to the lack of real
quantified aspects in this model. In addition, de Winter & Happee (2010) argued that in Wilde's Risk
model contrary behavioral adaptations could easily be defended with subjective arguments like: “the
familiarization period (getting used to the ADAS) was too short to observe an effect” without stating
what the familiarization should be instead. Even though the RHT seems unable to develop testable
hypothesizes, this doesn’t mean that perceived risk is not an important BA trigger. The urge to survive is
in the human nature, whether this is to stay away from a lion in Africa or driving a car safely on a narrow
road. If the result of a certain act is undesirably in terms of safety, it is highly likely to act differently next
time. In other words, if an ADAS system is perceived as a system that increases/decreases safety, it is
likely that BA occurs.

1 Comparator,
. a summing point  C
Perceived costs + Desired
and benefits of || Targetlevel adjustment:
action alternatives of risk |a _ b| ~0 2
- Decision making
4 b d / skills
Perceptual | .| Perceived Adjus?{ment
skills level of risk action 3
\ Vehicle
handling skills
e
f
2l Resulting
Lagged accident loss

feedback

Figure 4: Homeostatic risk mechanism
Source: Wilde (1998)
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Important note regarding subjective risk by Saad et al. (2004): “Most of the results obtained came from
simulator studies or closed track experiments, where by definition, such critical events can be studied
without real danger for the participants, However, and for the same reason, we should keep in mind
that driver risk-taking in this context may be quite different from that observed in real driving situations.
This is a paradox that we usually have to deal with in traffic safety research.”

Fuller’s Task-Capability Interface (TCl)

Another well-cited motivational model is Fuller’s Task-Capability interface (TCI) (Fuller 2005). The reason
that TCl is often cited is, besides its plausible theory, it also gives a great overview of factors/triggers
influencing driving behavior. TCI model describes the interaction between the determinants of task
demand and driver capability (figure 5). If the task demands exceed the capability this leads to loss of
control which could result in a collision or, if lucky, an escape. Similar to Wilde’s RHT, subjective risk
influences this model, however the model lays more emphasis on task homeostasis instead of risk
homeostasis. Task homeostasis means that people tend to keep the difficulty to perform a task
constant. According to Fuller: “Drivers appear to be able to make judgements of task difficulty easily and
to behave in such a way as to keep the level of task difficulty within target boundaries.” Although many
researches have substantiate this theory, it is directly opposed to the “Trade-Off between Performance
and Effort theory” (TOPE). The TOPE stated that people will always balance performance with effort. An
example of the contradictory aspect between the two models: by introducing a LKAS (Lane Keeping
Assistance System), a lane keeping task should become easier in terms of workload and higher
performance (Petermeijer & Abbink 2015). According to the TCl theory, this decrease in task difficulty
needs to be compensate, which could be done by for example a higher speed. Contrary, TOPE theory
could suggest that due to the negligible increase in performance benefits no BA will occur. Moreover
this example emphasized the subjectivity of motivational models, which make them unable to use as
predictive tool.

e
{
1 LUCKY:
i\ ESCAPE
H 1
mammg | svnerence | eeeeeeeeeee
el experience A~
education i ? C<D
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......... " [rond
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Figure 5: The task-capability interface model
Source: Fuller (2005)
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2.2.2 Attitude towards ADAS

Peoples’ attitude can also explain the variation in responses towards ADAS. According to Saad et al.
(2004) the attitude towards an ADAS can roughly be divided into two groups. On the one hand drivers
can use ADAS as a reference tool meaning that if a change at maneuvering level occurs the aim of the
driver will always try to understand the system and to avoid any unwanted effects due to their
perceptual limitations (Shinar & Schechtman 2002)). On the other hand, drivers can use ADAS as a slave
system which offers them a chance to extent their own driving limits or even allocate attention to a
secondary task. Saad et al. (2004) captured these strategic distinctions with relation to the maneuvering
level in Table 1. It shows that the goal of “reference tool” drivers is to limit the (subjective) safety risk.
All decision are done with this goal in mind, e.g. in case of a warning they will try to understand “why”
they occur and “how” these warnings can be used to driver safer. The ADAS can assist the driver in
achieving their safety goals. Drivers using ADAS as a slave system will have a tendency to misuse the
system. It is hypothesized that younger males are more often in this category. Saad et al. (2004) stated
that drivers using the ADAS system as slave system are generally “capable” drivers or “Sensation
Seekers”. Sensation Seeking is defined by Zuckerman (1994): “a trait defined by the seeking of varied,
novel, complex, and intense sensations and experiences and the willingness to take physical, social,
legal, and financial risks for the sake of such experiences. Central to this trait is “the optimistic tendency
to approach novel stimuli and explore the environment” (Saad et al. 2004). These “capable” drivers and
sensation seekers try to maximize the sensation of pleasure which limit the safety benefits of the ADAS.

In Table 1 it can be seen that both levels (reference and slave) consider a positive attitude towards the
ADAS. Whether the ADAS increases the safety benefits or allows driving to the limit. However, this table
could be extended by drivers that consider the ADAS as punishment rather than support. Hjdlmdahl &
Varhelyi (2004) showed that in a haptic advisory system (haptic gas pedal) was less effective for drivers
with a negative attitude towards the system. In addition he found that drivers with a negative attitude
towards the system generally experienced more stress while driving. This indicates that it is important to
show drivers the benefits of a novel ADAS in order to obtain a positive attitude.

Table 1: Four different levels of behavioral change to an ADAS system
Source: Saad et al. (2004)

Changes at strategic level

Changes at
maneuvering level

ADAS as a reference tool ADAS as a “slave ™ system
High

¢ Leamning to comply with [¢  Allocating attention  to
warnings secondary tasks

Fifaitons

* Leamning to make better |¢ Driving to the limit
distance estimations

Unsafe acts under Crivical reaffic

Low
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2.2.3 Design of BA triggers

If behavior is triggered in the wrong way it can be perceived as annoying or as punishment rather than
support. Although BA triggers can be a useful tool to reduce BA, if a trigger is designed badly (such that
it is perceived as annoying or punishment) unintended adaptation could occur. For instance,
Parasuraman & Riley (1997) showed that drivers may turn off the system when they consider a certain
warning signal to be intrusive or annoying. One of the challenging design aspects of a trigger (for
example a warning system) is the activation threshold. If an activation threshold is set too low this will
result in high falls alarm rate and finally in a distrust of the system (in literature called cry-wolf effect).
An interesting AIDE project tried to develop an adaptive forward collision warning systems, with one
type of adaptation being to observe driver reaction time, so that drivers who habitually reacted quickly
got later and hence less irritating warnings (Carsten 2007).

Similar to a warning system the design of a guidance system can evoke different behavioral responses. If
the guidance force is designed in the wrong way this could, in long term, cause after-effects (Petermeijer
et al. 2014). Another example of opposed behavioral effect due to incorrect design is if driver intention
and systems intention deviate. Griffiths & Gillespie (2005) showed that these differences in intension
can lead to collisions with obstacles in the middle of the road since drivers were not able to overcome
the system in order to avoid the obstacle.
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2.3 Potential Changes

In literature many examples of behavioral changes are given (Table 2). In this literature report the
distinction will be made between performance changes and driver state changes. The same distinction
will be used in chapter 3 (overview of measuring techniques and modelling driver state changes). Many
different Performance changes can occur. Draskoczy et al. (1998) showed that BA may appear in
changes of speed, following distance, way and frequency of overtaking, way and frequency of lane
changing, late braking, change of level of attention etc. (Figure 6). Performance changes can in long-
term also result in a shift in locus of control. Locus of control is the individual’s assumptions regarding
responsibility for the outcome of events. Driver state changes are even more diverse than performance
changes. Novel ADAS systems are designed to increase performance but the response on driver state is
not often accounted for. For instance, a LKAS assist the driver while steering, therefore steering
becomes easier so less steering deviation is expected. Maybe in addition increase in speed is observed
but it is highly unlike that the complete other side of the scope occurs (decrease of speed and higher
speed deviation). In driver state monitoring this great variation can occur. Let’s consider the same LKAS,
it can be interpret as useful and trustworthy leading to decrease in workload and increase of situation
awareness (SA). The opposite can also occur, if the LKAS is distrusted an increase of workload can occur
in combination with a decrease of SA (Stanton and Young, 2002). This example shows the wide variety in
BA responses which is one of the reasons that makes BA research so complicated. Changes in behavior
can also occur outside the two distinction made in this report. Martens & Jenssen (2012) showed a
generation of extra mobility (e.g. taking the car instead of the train) or road use by “less qualified”
drivers due to introduction of an ADAS. These changes are not taken into account since they do not fall
within our definition of BA (i.e. do not reduce safety). Some potential changes often shown in literature
can be seen in Figure 6. Table 2 shows different direct and indirect effects for several ADASs.

Which change will occur and in what degree depends on the working principle and design of the ADAS
but also highly depends over time (Table 3). Let’s consider the ACC system. Bekiaris et al. (2001) made a
comprehensive review of driver behavior issues related to time. The behavioral changes differ a lot,
especially over time. Therefore, difference between short and long term is discussed in the next section.

Potential Behavioral Changes
Performance Driver State

Way and
frequency of
|ane changing

Situation
Awareness

Speed
Change

Workload

Increasing stress
Fatigue level (E.g. increase
grip force)

Headway Late

time braking

Allocating
attention to
secondary tasks

Way and ewer glance
frequency of in the
overtaking mirrors

Increased
drowsiness

Deviation
Change TTC
average

Change in level
of attention

from Lane
Center

Etc..

Figure 6: Potential behavioral changes found in literature. Separated in terms of
performance and Driver State changes
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Table 2: ADASs and their potential effects on driving performance

Source: Ostlund et al. (2005)

Function

ABS

Lane departure
warning

Speed alert

Navigation
support

Phone

Action
scheduling
(AIDE
metafunction)

Supported
control layer
Tracking

Regulating

Monitoring

Monitoring

MNon-driving
related

N/A
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Direct (intended)
effects on driving
performance
Enhanced longitudinal
{braking) control

Enhanced lateral
control

Better speed keeping

Improved route
finding

As small as possible

Improvements on all
layers

Examples of potential
indirect effects on driving
performance

Reduced
headway/increased speed

Owver-reliance == reduced
control when system
malfunctions
Over-reliance -= reduced
control when system
malfunctions

WVisual distraction -=
reduced lateral and
longitudinal control,
reduced event detection
performance
Over-reliance -= get lost
when the system gives
errant guidance

WVisual distraction -=
reduced lateral and
longitudinal tracking
control, reduced event
detection performance
Dialling -= visual
distraction == reduced
lateral and longitudinal
tracking control, reduced
event detection
performance
Conversation -= cognitive
distraction -> More focused
tracking control, reduced
event detection
performance

Indirect effects have not
been studied — difficult to
predict.
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Table 3: Driver behavior issues when introducing ACC
Source: Bekiaris et al. (2001)

Short term Long term
Mistrust: distrusting the ACC system Spare capacity: using spare capacity for other
in-vehicle tasks
Over-reliance: relying too much on the ACC system

Brake pedal forces: increasing brake pedal Fatigue: ACC could take over too many
forces driving tasks causing fatigue

Imitation: unequipped vehicles imitate Quick approach to vehicle in front: the
equipped vehicles development of new behaviour

Reliance on vehicle in front: vehicle in front Time-headway: driving with smaller
might have poor driving behaviour time-headways

Indication for overtaking: use ACC as an
indication of when to overtake
Overtaking: difficulties with overtaking and being overtaken

2.4 Short-term vs Long-term adaptation

BA responses highly depend on time. The different BA responses between short-term and long-term can
be quite contradictory. Mistrust is a common short-term effect whereas, allocating attention to
secondary task (indication of over-trust in system) is a common long-term effect. This variety shows the
importance of taking time into account when performing a BA research. The question that need to be
addresses is: (1) how much time is sufficient to observe BA. (2) When can an effect be considered as
long-term (or short-term)?

Time is considered as the main factor to short- or long-term adaptation. The definition for short-term is
given by “Covering or applying to a relatively short period of time” — English dictionary®. The term
relatively is of course very subjective, normally this is not that important but in BA research it is (due to
variety in responses). Typically, a response is called short-term if the driver has driven an ADAS shorter
than 1 week. The term long-term is used already from 1 week (Marchal-Crespo et al. 2010). A bias is
involved in the definition of short-term and long-term. A common used example to indicate this bias is
given by an experiment performed by Neisser (1976). Neisser (1976) studied a student for one day each
week over a period of six months. The objective was to simultaneously read and write down one text.
After six months she was able to perform this task with a performance (in terms of error) were equally
good. Saad et al. (2004) comment about this experiment: “But the period of the six months was not a
matter of choice, it was simply a matter of coincidence. In other words, if the above mentioned effect
would not be evident in six months but earlier (e.g. in four months) or later (e.g. in eight months), the
process would have stopped in the fourth month in the first case or it would have continued for another
two months in the second case. But performance improvement could not be interpreted differently but
as a long-term-effect in either case.” Regarding this example Saad et al. (2004) stated that: “we can
never be certain that our interpretation is not biased, since the influence of other intervening variables
is largely unknown and possibly it will never be unveiled.”

A BA effect may not appear immediately when the ADAS is introduced, but usually appears after a
familiarization period (Draskoczy et al. 1998). Draskoczy et al. (1998) argued that BA studies should

2 www.dictionairy.com
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conduct experiments at three different time frames: (1) just before system activation, (2) immediately
(within a month) after system activation, and (3) after 6 months of system use. Only then the real safety
effects can be studied and insight in BA can be gained. Martens & Jenssen (2012) summarized these
characteristics of the learning phase and the typical problems a specific time frame in response to ADAS
in table 4. The table is supported by experiences from longer-term studies of Jenssen 2010, Carstens
2008, and Rudin-Brown et al. 2009. The first encounter or familiarization period is usually within 1-6
hours. Typical problems during this phase are HMI related distraction or distrust in the system. This is
also what Bekiaris et al. (2001) found in Table 3. The second phase is the Learning phase, usually has a
duration of 3-4 weeks but the duration of the phase can vary to some extent depending on the type of
ADAS studied. The durations used in this table are just to give a certain indication of general durations of
certain phases that are applicable on the studies referred to above. Intuitive and continues systems will
have shorter learning durations than systems that only apply during a specific time frame. For instance,
an intuitive continues haptic gas pedal (Abbink et al. 2011 and Abbink et al. 2008) will have a shorter
familiarization period compared to an ACC system that only works in case the speed is set. Therefore
ACC will take longer time to learn simple because the user works more often with the haptic gas pedal.
From phase 3 the drivers’ behavior reaches a sort of stability (Martens & Jenssen 2012). The driver gains
a certain trust in the system and a shift in locus of control often occurs. A common problem during this
phase is overreliance and drowsiness. Phase 4 and 5 are the phases that the driver learns to deal with
malfunctions. During this phase loss of manual control skills can occur.

Table 4: Characteristics of five learning phases in the behavioral adaptation to ADAS
Source: Martens & Jenssen (2012)

conditions

events System limitations
and Malfunction

1. First Tabula rasa |Exploratory | First day <50 km | Limited Interface use HMI related -
encounter 1-6h distraction — distrust
2. Learning Novice Unstable 3-4 weeks Maost urban, rural road/ Controllability HMI related distraction
< 1,000 km 10-40 h | traffic conditions including System limitations
day/night driving
3. Trust Relatively Relatively | 1-6 months Most urban, rural road Trust Shift in locus of Passive monitoring
experienced | Stable types including day/night | control Overreliance
driving and many weather Drowsiness
conditions
4. Adjustment | Experienced | Stable 6-12 months All urban rural road types | Functional limitations Resentment
most summer winter Malfunction
conditions
5. Readjustment | Expert Very stable | >1-2 years All relevant road traffic Rarely occurring hazard | Mistrust Resentment

Loss of manual control
skills
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2.5 Conclusion

This chapter gives answer to the question: What are theories behind a BA and what are common BA
triggers argued in these theories?

Based on the theories discussed, the conclusion can be made that:

- Subjective Risk and Task difficulty are the most common used triggers in many BA theories
(Wilde 1998; Naatanen & Summala 1974; Fuller 2005). Many researchers have criticized that
these motivational theories cannot generate testable hypothesis and thus tend to be
unfalsifiable (Ranney 1994; Elvik & Vaa 2004; de Winter & Happee 2010), however, the
influence of these factors can still be argued.

- Drivers’ attitude towards the ADAS highly influence what kind of BA occurs: Drivers can see the
system as slave or reference tool. Drivers seeing the system as slave tool have the tendency to
misuse the system, whereas reference tool drivers use the system to drive as safe as possible.

- Behavioral changes occur in: Driver State changes and Performance changes.

- BA can be observed in all levels of task defined by Michon (1985): At strategic level: e.g.
navigation is taken over by the automation resulting in over-reliance (people get lost when the
system gives errant guidance). At Maneuvering level: e.g. caused by ABS, where people drive
with a reduced headway time (Sagberg et al. 1996) and at control level: e.g. caused by Lane
Departed Assistance resulting in reduced control when system malfunctions (Burns 2001).

- BAis time dependent: A BA effect may not appear immediately when the ADAS is introduced
but appears after a familiarization period (Draskoczy et al. 1998). This has to be taken into
account when performing a BA research. Furthermore, the type of BA can be quite contradictory
between short-term and long-term. Common short-term effect is Mistrust, whereas a common
long-term effect is more related to over-trust like, for instance, allocating attention to a
secondary task.

- Finally, the design of a BA trigger is important. A bad design can lead to increased BA or even to
turning off the ADAS (Parasuraman & Riley 1997). Unfortunately, the distinction between a
“good” or “bad” design is not well-described in literature and need to be investigated further.
Table 5 summarizes the most common BA triggers used in BA theories.

Conclusion chapter 2

Most well-cited BA theories include BA triggers based on: driver’s subjective risk assessment,
task/utility management and driver’s attitude towards the novel introduced ADAS. Although these
theories are well-cited they are also well-criticized. Most of these theories (i.e. Wilde’s RHS and
Fuller’s TClI theory) are argued to lack the ability to generate testable hypothesizes resulting in the
fact that contradictory theories are both still seen in current literature. Furthermore, it can be
concluded that BA occurs on all hierarchical levels as is defined by Michon (1985) (i.e. Operational,
Maneuvering and Strategic level) and is highly time depended.
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Table 5: Behavioral Adaptation Triggers

Triggers/Key element to

a behavioral change

Subjective Risk

Task difficulty

Trade-off between
performance and effort

Attitude towards ADAS

Trust in system

Competence

Fear

Self-efficacy

Intentions

Utility Maximization

Subjective Norm

Definition

“Subjective risk estimate refers to the driver’s own estimate of the
(objective) probability of collision. Such estimates of risk represent the
output of a cognitive process, while the feeling of risk represents an
emotional response to a threat, a distinction previously clarified” (Fuller,
2005)

"Drivers appear to be able to make judgements of task difficulty easily and

to behave in such a way as to keep the level of task difficulty within target
boundaries" (Fuller, 2005)

People tend to trade-off between performance and effort.

"An individual's plans to carry out the recommended response" (World
Bank, 2010)

The individuals trust in the system

Driving skills

"Emotional arousal caused by perceiving a significant and personally
relevant threat" - World Bank

"An individual's perception of or confidence in their ability to perform a
recommended response" - World Bank

"An individual plans to carry out the recommended response" - World Bank

"The utility maximization model assumes that the driver has certain stable
goals and makes decisions to maximize the expected value of these goals"
(Panou et al. 2007)

Effect

If a change in Subjective Risk is perceived this can lead to a behavioral
change. Several models use subjective risk as major trigger. Either stating
that drivers tend to maintain the level of risk constant (Wilde's risk
homeostasis (Wilde, 1998) or tend to keep risk below a certain threshold
(Naatanen and Summala, 1974)

"Driving task difficulty is inversely related to the difference between driver
capability and driving task demand."(Fuller, 2005). If task demand change
people will change behavior such to keep the task difficulty equal.

People will tend to make a trade-off between performance and effort. If
people are rewarded with higher performance at the cost of a bit more
effort, the chance of performing this is action is high. Same logic, if a little
performance increase is gained with a huge effort, the chance of adapting
is limited

According to Saad 2004: Drivers can see the new introduced ADAS as
"Slave" system or as "Reference tool". Drivers that use the system as
slave system can lead to risky driving behavior or allocating attention to
secondary task. If change in attitude towards the system occurs this will
directly lead to different driving behavior.

Distrusting the system can lead to high workload and even stress
resulting in low driving performance. High trust in the system can cause
shift in locus of control and allocation to secondary task. Mistrust is often
a short-term effect, whereas overtrust is often a long-term effect. (Panou
et al. 2007)

Competent drivers make less unpredictable maneuvers and adapt in a
different way than incompetent drivers. E.g. competence drivers are more
often Sensation Seekers

"Fear can powerfully influence behavior and, if it is channeled in the
appropriate way, can motivate people to seek information, but it can also
cause people to deny they are at-risk" - World Bank

"Raise individuals' confidence that they can perform response and help
ensure they can avert the threat" - World Bank

Intention is one of the most important variable in predicting behavior
change, suggesting that behaviors are often linked with one's personal
motivation.

"Some of these goals are achievable more effectively through risk-taking
behavior for example, speeding to save time or gain social status. These
motivating factors are counteracted by the desire to avoid accidents as
well as by fear of other penalties such as speeding tickets. Balancing goals
with the desire to avoid accidents therefore derives driving behavior
choice" - Panou et al.

External influences or subjective norm is very important in developing
behavior. People’s behavior highly depends on what the society depicts as

"What an individual thinks other people think they should do" - World Bank "normal"
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Some Examples of Trigger used in literature

Wilde's Risk Homeostasis theory (Wilde 1998), Risk
Threshold model (N3atdnen and Summala 1974)

Fullers Task-Capability interface theory (Fuller 2005)

Speed/accurate trade off (also known as Fitts Law) (Fitts
1954)

Slave-Reference tool theory (Saad et al. 2004)

Effect of trust towards ADAS (Hjdlmdahl & Varhelyi 2004)

Sensation Seeking' (Zuckerman 1994)

The threat-avoidance model' (Fuller 1984)

Driving as a self-paced task governed by tension/anxiety'
(Taylor 1964)

Ajzens Theory of Planned Behavior (Ajzen 1991)

O'Neill (1977), Blomquist (1986)
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3 Overview of Techniques to Measure and Model Driver Adaptation

for different applications

In order to develop a comprehensive driver adaptation model it is important to gain insight in current
behavioral measuring techniques. This section will give an extensive overview of state of the art
measuring techniques to assess and model BA by answering the following question:

What methods are applicable to measure and model BA?

As described in section 2.3, behavioral changes can be divided into Performance and Driver State
changes. Combined they can be used to comprehensively describe driving behavior. A model that
understands and describes the human driver, can help designing ADASs that overcome the negative
adaptations of the human driver. Carsten (2007) stated that “if there is a model that understands the
driver, the potential of this system would be huge: it could give feedback to novices, assist elderly
drivers in difficult situations, inform a driver when he or she is fatigued and adapt the operation of the
vehicle to the needs of each individual driver”. In addition de Winter & Happee (2010) stated “based on
the real-time monitoring of driver state and performance, it could give feedback and assistance to the
driver and adapt the operation of the vehicle according to the driver’s needs in order to improve road
safety”. To achieve such a BA model comprehensive measurements and assessing techniques to assess
performance and driver state are needed. Before discussing the measuring techniques, first Michons’ BA
classification scheme will be explained to give an overview of what kind of models are available.

3.1  Types of driver behavior models

Many different BA models can be found in literature from simple motivational models like Wilde's risk
homeostasis to extremely detailed mechanistic models (e.g. Boer et al. 2005 (Figure 7)). Michon (1985)
proposed a simple classification scheme to distinguish between different driver behavioral models (table
6). In one dimension it distinguished between input-output based models (Behavioral models) and
internal state based models (Psychological orientated models). In the other dimension between
taxonomic models and functional models. “Taxonomic models is essentially an inventory of facts. The
pertinent relations that, in such a model, hold between these facts are those of sets: super- and
subordination, identify, sequential relations (before, while, after) and measures on sets: proportions,
likelihood or generalized distances.” (Michon 1985). According to Michon (1985) a serious limitation of
taxonomic model is the inability to express dynamical relations between elements. Functional models
(i.e. motivational models and mechanistic models) have limitations too. Motivational models are often
too vague and tend to be unfalsifiable (OECD (1990), Michon (1985), de Winter & Happee (2010)).
Ranney (1994) argues that motivational models have not fully been specified (let alone tested), and thus
most of them remain as constructs rather than as entities leading to the generation of rules and
mathematical relationships. On contrary Mechanistic models are sometimes too specific, fitting random
patterns, and tend to over parameterized resulting in lack of predictive power (de Winter & Happee
(2010)). Despite these limitations, mechanistic models are objective and can easily be falsify and, if
designed well, can predict. An example of a well-designed mechanistic model is given by Boer et al.
(2005). Boer et al. (2005) developed a driver vehicle car following model with lead vehicle speed as
input. His model consist of an extremely detailed driver and vehicle model that accurately captures the
relationship between pedal depressions and speed fluctuations. With this model he was able to show
different control strategies with respect to the easy measureable metric THW (Time headway). Boer et
al. emphasized that metrics used in driver behavior studies must always be shown in context. E.g. that a
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lower THW metric is not necessarily a sign of degraded control performance but simply the result of a

lower effort control strategy rather than a sign of greater struggle (Boer et al. 2005). In order to develop
a good model it is important to have well-chosen measurements techniques and metrics which can be

used as input for BA models. This will be discussed in the next sections.

Table 6: Summary of driver behavior model types
Source: Michon (1985)

Taxonomic Functional

Mechanistic Models
Adaptive Control Models
- Servo-Control
- Information Flow Control

Input-Output

(Behavioral) Task Analyses

Internal State . Motivational Models
{Psychological) Treit Models Cognitive (Process) Models
‘Ilcild
Desired - Tntegrator
THW * Vst
1'<I.c'.nl
d ¥ +
¢ —n . tala S gy —
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Figure 7: Driver vehicle car following model with lead vehicle speed as input
Source: Boer et al. (2005)
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3.2 Driver State Monitoring techniques (DSM)

Since behavioral changes can occur in terms of Performance or Driver State, Measurement techniques
should also be discerned into Driver State monitoring techniques and Performance Based
measurements. In current literature many different metrics and measurement techniques are used to
measure the same quantity. For instance, Situation Awareness can be measured by Eye movements,
reaction time, questionnaires, speed variation etc. These metrics all state to give an objective measure
of the subjective quantity Situation Awareness. This section will give an overview of common used DSM
techniques and which quantity they measure. Most of the given information is based on reviews written
by Hou et al. (2015), Johansson et al. (2004) and Saad et al. (2004).

3.2.1 Whatis DSM

“Driver state describes the general condition of a human operator interacting with a system. The
concept includes behavioral activity, physiological patterns and psychological states, and is strongly
context dependent” (Pleydell-Pearce et al., 1999). Simply said DSM are the Eyes, Brains and Hands of the
system. Eyes: to watch, see and observe the driver. Brains: to interpret, classify, label and asses driver
states. Hands: to execute action of regulation/control (e.g. transition of control from driver to
automation if the DSM notice that the driver is in a fatigue state). This section will not take the latter
into account but mainly focus on observing and assessing driver states. The development of DSM
techniques are essential to provide appropriate services for various driving situations. If the system is
able to robustly recognize dangerous driver states this could prevent many accidents. Nowadays
drowsiness/fatigue and distraction/attention are measured in commercial cars (Volvo 2007 “Driver alert
control” (Figure 8), Ford-Lincoln 2013 “Driver alert system”). If detected, the car can interfere to get the
driver in a different state (e.g. by sounding an alarm, or just to inform the driver about his current state).
According to Hou et al. (2015) a well-designed adaptive systems should be able to monitor the operator
and use this information to enable flexible task allocation between the operator and the machine to
reduce operator workload and fatigue.

Another new development in driver state measurement techniques is not only to warn the driver but
also give additional information about his state. For example, it is found extremely useful to not only
warn a fatigued driver but also give additional information about the magnitude. Barr et al. (2009)
argued that “drivers underestimate the likelihood of actually falling asleep, the magnitude of sleepiness
and its effect on impairment”. Current DSM techniques are not able to quantify such a state extensively,
however, in near future this could be of great value. Even more important is the fact that driver state
information can help in explaining why certain BA occur.
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Figure 8: Driver alert control, Volvo
Source: http://blog.truecar.com/2010/12/22/spotlight-on-safety-drowsy-
driving-just-as-risky-as-drunk-driving/
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3.2.2 DSM approaches and technologies that can be implemented into ADASs.

Fatigue, stressed, fearful, distraction, situation awareness, increased workload are all words that
describes a human’s overall mode or state. These state have a significant impact on human ability to
efficiently complete task when interacting with an ADASs (Hou et al. 2015). For instance, Hou et al
(2015) stated that fatigued operators are more likely to perform at lower performance levels then fully
alert operators. Additionally he mentioned that overworked and stressed operators are more prone to
errors, and operators who are content are more likely to exhibit higher productivity then those who are
fearful or distracted. Hou et al. (2015) classifies approaches that elicit data and draw conclusions about
driver state into one of four categories with the following definitions:

- Behavioral-based monitoring: Monitoring and making inferences from what the driver is doing

- Psychophysiological-based monitoring: Monitoring and making inferences from the driver’s
state of body and mind

- Contextual-based monitoring: Monitoring and making inferences from the driver’s surroundings
or working environment

- Subjective-based monitoring: Monitoring and making inferences from what the driver
communicates about his or her own state.

To obtain a full or accurate picture of a driver state it is important to combine multiple categories
simultaneously. Only then it can be assured that the driver state is correct and accurate measured. This
is illustrated in figure 9. Next each type of DSM category will be discussed shortly.

Figure 9: Visual relationship of the four primary types of driver state monitoring techniques. Combination-based monitoring draws on
multiple subtypes.
Source: Hou et al. 2015, “Intelligent adaptive systems”, Chapter 6
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Behavioral-based monitoring

“Behavioral-based monitoring refers to inference of operator state by observation of operator actions in
response to tasks, the working environment, or other stimuli (Wood 2004). Operator actions can be
conscious, subconscious, voluntary, or involuntary; all actions have the potential to provide meaningful
data that can assist in accurately determining operator state.” (Hou et al. 2015). Behavioral-Based
monitoring tries to capture the behavior of the driver. As we have seen in chapter 2, many factors can
influence the drivers behavior (e.g. attitude towards an ADAS or fear etc. (see overview BA triggers in
table 7). One of the methods is to look at the performance of the driver (discussed later in this chapter)
but not always a behavioral change results into a performance change. An important behavioral-based
monitoring technique that provides clues to determine operator state is Operator-control Interaction.
More relevant behavioral-based driver state monitoring approaches (according to Hou et al. (2015)) are
summarized in table 7. A benefit of behavioral monitoring techniques is that they are easy to measure.
However, these measurements cannot be relied on too much due to the high variation in driver
responses (e.g. maybe a driver increase grip force because it hands become slippery (sweaty hands due
to heat in car) instead of an increased stress level indicator. So to obtain a complete assessment it is
better to combine these measurements with psychophysiological-based monitoring techniques.

Table 7: Summary of Relevant Behavioral-Based Driver State Monitoring Approaches
Source: Hou et al. (2015), Chapter 6

Behavioral Feedback Examples of
Approach Summary Current Uses

-

Eve tracking Maonitors the operator's visual + Fatigue monitoring systems in
attention and cognitive activity vehicle operation
Advertisement design and
evaluation

Operator—conirol Monitors how the operator is E-commerce sites that monitor

interaction monitoring interacting with the controls purchasing habits to present
available items that they may be
» Key measurements include interested in

reaction time. haptic pressure,

and mput frequency

-
-

Yoice recognition and Monitors auditory cues that Yoice recognition software
auditory analysis might provide information on

operator state

-

Key measurements include

frequency (pitch), tone, and timbre
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Psychophysiological-Based Monitoring (PBM)

Psychophysiological as: “Psychophysiology examines interactions between the mind and the body by
recording how the body is currently functioning and relating the data to previously recorded behavior.
The field is based on the premise that changes in the human body are related to changes in behavior,
affect, and motivational state” (Hou et al. 2015)

Currently in literature a surge is going into PBM techniques. The techniques are becoming more and
more reliable and less obtrusive which enables car manufactures to use psychophysiological monitoring
techniques to obtain information about operator state. It is often argued that emotional and behavioral
states are easier to identify than operator state related to task performance (Hou et al. 2015). In driving
research PBM techniques are often used to define cognitive state, specifically mental workload, both
qualitatively and quantitatively. Mental workload is conventionally determined using subjective
questionnaires like the NASA-TLX (NASA Task Load Index), SWAT (Subjective Workload Assessment
Techniques) or the simple OW (Overall Workload). However, PBM techniques like Cardiovascular (e.g.
heart rate, ECG), Electroencephalogram (EEG to measure brain activity), Eye Measurements (Eye
tracking or Pupil Dilation), Respiratory Measurements, Electro Dermal Response (EDR, skin conductivity)
or Steering Entropy (level of disorder further discussed in section 3.3.2) can be used to assist these
guestionnaires to get a more objective indication of the subjective measurement workload.

A comprehensive overview of relevant PBM techniques and examples of their current use is given in
table 8. Some PBM techniques that deserve to be highlighted because they are either often used in
literature or considered as promising PBM techniques to use in the future.

Electroencephalogram: EEG records brain activity. It detects electrical activity in the brain using
electrodes attached to the scalp. The number of electrodes attached can vary from 12 (clinical settings)
to 256 (research settings). The systems measures activation of groups of neurons (brainwaves) on a
time scale. Karamouzis (2006) showed that these measured brainwaves can be correlated to a specific
stimulus (e.g., a specific sensory, cognitive, or motor event) to determine event-related potential (ERP).
ERP is basically the understanding of what electrical activation takes place to a specific stimuli. Some of
the great benefits of EEG research is that it is noninvasive, and have a high temporal resolution. What
makes EEG so interesting for driving studies is that the workload level, high-order cognition and image
processing all have unique patterns that can easily be detected by EEG brain scans. Downside of EEG
records is that the signal-to-noise ratio is really bad (Gaillard and Kramer 2000) and it can be found
obtrusive (Figure 10) (More benefits and limitations of current PBM techniques are argued in the
discussion)

) .'.:“ = : 7
Figure 10: Obtrusiveness of EEG Measurement techniques (in research setting)
Source: Retrieved 01-09-2015 from: https://www.psychologytoday.com/blog/talking-about-
trauma/201409/new-eeg-technology-makes-better-brain-reading
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Electro dermal response (EDR): EDR is also known as galvanic skin response and measures the
conductivity of the skin (or skin’s impedance). Several studies have shown that EDR is an indicator of
mental effort, arousal and vigilance level (Sharpe et al. 1995; Kapoor et al. 2007). In other words, if
people are mentally or emotionally aroused a response is triggered in the skin. The different impedance
is mostly affected by sweat. EDR metrics used are skin conductance level and skin conductance variation
(root mean square of the skin conductance signal). Some benefits of the EDR technique is that EDR is
less sensitive to environmental noise compared to other PBM techniques and is unobtrusive (can be
implemented in the steering wheel). A big downside of this techniques is that it has a poor temporal
resolution, high latency between stimulus and response and qualitative and emotion aspects of affect
are not reflected in EDR. The latter is the reason that EDR is never used as single measurement in driving
related research.

Cardiovascular Measurements: Cardiovascular is the most commonly used index to asses cognitive
workload but they also have shown to be good indicators of cognitive effort, compensatory effort and
positive or negative valence of emotion (e.g. attractiveness) (Hou et al. (2015)). Often used
cardiovascular measurements are: electrocardiogram (electrical activity of the heart over time), heart
rate and heart rate variability (HRV). These three measurements give a good indication of cognitive
demands and attention. Cardiovascular measurements are often used in literature due to their
unobtrusiveness, high reliability and considered as easy to use and interpret. A downside is that the
accuracy of heart rate measurements is affected by respiration, physical work and emotional strains,
which could make measurements inaccurate if not used in combination with other measurements (Cain
2007).

From the information provided in the section can be concluded that PBM techniques provide an
objective and noninvasive way to quantify indexes like workload and SA. Hou et al. (2015) named 3
general benefits of PBM techniques:

- Objective outcomes,
- Unobtrusive sensor apparatus,
- Immediate and continuous results.

PBM techniques still suffer from some issues that limit the use of PBM in current research. Examples of
limitations given by Hou et al. (2015) are:

- Inherently noisy sensor data,

- Need for specialized equipment that are often expensive,

- Data acquisitions issues: “Filters and artifact removal strategies for PBM technologies are
neither standardized nor easily understood. Issues such as latency and recovery time must also
be addressed further” (Hou et al. 2015)

- Data processing issues: “The large amounts of data collected from PBM technologies require
computing technology capable of real-time processing to provide meaningful results for systems
adaptation” (Hou et al. 2015).

A more comprehensive summary of limitations and benefits of each specific PBM techniques can be
found in the discussion.
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Table 8: Summary of Relevant Psychophysiological Monitoring Techniques
Source: Hou et al. (2015), Chapter 6

Central Nervous
System

Peripheral
Mervous System

Psychophysiological
Monitoring Technology
Electroencephalogram
(EEG)

Mear-infrared
spectrascopy (MIRS)

Electradermal response
(EDR)

Cardiovascular
(electrocardiogram
(BECG). heart rate
variation (HRW), heart
rate)

Eve tracking

Respiration measurements

Skin temperature

measurements

Electromyogram (EMG)
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Contextual-Based and Subjective-Based Monitoring

Information about the environment is essential in understanding driving behavior. A well-known
example that shows the importance of contextual information is the “ant on the beach” example by
Simon (1981). Simon argued that “the ant's path is irregular, complex, hard to describe. But its
complexity is really a complexity in the surface of the beach, not a complexity in the ant" (Simon, 1981).
The context of a situations can give additional information in explaining the operator state. For example,
higher stress/workload is expected while driving in an urban area than while driving on a rural road. This
additional information can help in accurately estimate a current state. The driver perceptions of the
environment is measured using the metric Situation Awareness. The most used technique to assess SA is
the self-reported measure SAGAT (Situation Awareness General Assessment Technique). SAGAT is done
in simulator studies where the simulation is frozen and displays are blanked. Subjects are then queried
to describe their perception of the situation at that moment. Eye tracking can also be used to asses SA
by making the assumption that if one is fixating on an object this object is also comprehends.

Subjective-base monitoring is the last approach that can help define operator state. “Subjective-based
monitoring refers to approaches that elicit data about operator state by asking the operator. Subjective
techniques can only be based on what the operator remembers and their interpretation of their
experience (Cain 2007).” (Hou et al. 2015). Subjective input can help the system in deciding which state
the driver currently is.

None of the 4 monitoring techniques is suited to accurately measure driver’s state. Even with the
combination-based approach it is difficult to obtain 100% correctness. A reason could be that some
indexes, like for example workload, do not have a general used definition and thus leave room for own
interpretation. Nevertheless, the four DSM techniques combined are essential in order to fully
understand and model BA.

Figure 11: Simon (1981) Parable about an ant on the beach.
Source: Vicente (1999)
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3.3  Performance-Based Monitoring Techniques

Driver’s performance deals with the driver’s ability to control the vehicle in both lateral as longitudinal
direction. This section will summarize common used metrics to asses driving performance. Most of the
information is based on the comprehensive metric reviews of Ostlund et al. (2005), Johansson et al.
(2004), Saad et al. (2004).

Performance-Based Monitoring Techniques are in general easy to measure and compute, which make
them highly suited in online driving behavior research. Saad et al. (2004) summarized the 46 most used
metrics from 105 driving researches (figure 12). These metrics are of course highly context depended
but can still be used as indication of often used performance metrics. The most important metrics will
discussed in terms of Accident risk, Controllability and Control Effort in section 3.3.1 and 3.3.2, because
these factors are in chapter 2 concluded as important BA triggers (e.g. Subjective Risk, Competence and
Performance-Accuracy Trade-Off theory).

Lateral control Situation awareness
Number of major lane deviation Reaction time
Variance of steering wheel angle Braking reaction time
Standard deviation of steering wheel angle Reaction time and number of missing in PDT
Standard deviation of lateral position (peripheral detection task)
Steering entropy Speed of accelerator position variation
Steering reversal rate (SRR) Number of emergency braking
Vehicle angular speed Speed variation
Time to line crossing (TLC) Actions on pedal
Longitudinal control Compatibility and suitability with driving
Mean speed Number of actions on the system
Speed Variance Number of responses from the system
Visual scene management | | Dwell time (fixations + saccades) in an area
Glance duration on in-vehicle road information Number of fixations in an area
Glance duration on driving information Lane occupation time
Glance duration to any other areas Glance duration
Visual demand (glance duration distribution among areas) | | Glance frequency
Decrease of rear-mirror glances frequency | | Fixation duration
Interactions with other vehicles Task duration
Time headway Number of failures
Relative distance Auditive Reading Time
Following distance Action time
Duration of short inter-distance (<2sec) System response time
Number of lane changing Number of braking actions
Nuniber of ervors on braking
Number of actions on accelerator
Frequency of accelerator-foot-covering action

Figure 12: List of commonly used driving performance metrics
Source: Saad et al. (2004)

3.3.1 Driving Performance Metrics related to Accident Risk

How a performance metric actually correlates to accident risk is difficult to proof. Ostlund et al. (2005)
stated that this is due to a lack of sufficiently detailed behavioral data in existing accident databases as
well as the lack of a basic understanding of the behavioral factors that cause accidents. Yet, the basic
assumption is that driver performance metrics are directly related to accident risk.
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BA is defined as unintended changes caused by the introduction of an ADAS. These unintended changes
are defined as changes that reduces the safety benefits of the ADAS. Hence, to proof behavioral
adaptation it is important to have metrics that are accepted in literature as indicators of accident risk.
Examples of such indicators are:

- Time to Lane Crossing (TLC): TLC is defined by Godthelp and Konings (1981): “TLC is defined as
the time to reach the lane marking assuming fixed heading angle and constant speed.”
Johansson et al. (2004) argued that in driving the TLC metric could be regarded as a reflection of
the driving strategy, or to be more precise, the time-based lateral safety margins adopted by the
driver.

- Time To Collision (TTC): “TTC represents the time until collision with an object (e.g. a lead
vehicle) given the current trajectories and velocities of the own vehicle and the object”
(Johansson et al. 2004). TTC is often defined as the distance between two cars (from bumper to
bumper) divided by the speed difference to the lead vehicle. Sometimes in literature Headway
Time is used instead of TTC, which is very similar to TTC (see figure 13). Varieties of the TTC
metrics are: Minimum TTC, Mean of TTC local minima or Time Exposed TTC (TET). TET measures
the proportion of time of which the TTC is less than X seconds (used by Ostlund et al. (2005)).
Van der Horst and Godthelp (1989) suggested that only TTC values below 1.5 seconds should be
regarded as critical.

- Velocity: Speed is the most used metrics in BA research. Theories like Wilde’s risk homeostasis
or Fullers task capability model all use speed as BA indicators. Speed is directly related to
accident risk as is proven many studies. Small speed level changes result in significant changes in
the number of accidents (see e.g. Salusjarvi, 1981; Finch et al. 1994; Nilsson, 2004). In addition,
higher speed variance is correlated with more accidents. Brehmer (2011) argued that accident
probability is lowest for cars driving with an average speed, but increases for drivers who
deviate more from the average speed. This suggest that lower and more even velocities mitigate
accident risk. Speed metrics that take this into account are: Mean velocity, Variance of Velocity

(standard deviation of the velocity), Maximum Velocity.
Lead Car

XIeald

»
>

xcar

Rveawe:

Xeel = Xiead = Xear Separation THW = Xrel / Vcar
VreI = Vlead B Vcar States TIC = Xrel/ 'Vrel

Figure 13: Time to Collision (TTC) and Headway Time (THW)
Source: Adopted from lecture 1, Human Controller course, http://ocw.tudelft.nl/ocw/
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3.3.2 Driving Performance Metrics related to Controllability and Control Effort

Although one could argue whether controllability and effort directly influence safety (and therefore
directly related to BA), they do increases the likelihood of an accident. Controllability is defined as the
ability to control the car. Controllability can be expressed in lateral (steering-based metrics) and
longitudinal (velocity-based) control. Control efforts metrics can be used to indicate whether a conflict
arises between the ADAS and the driver (which could cause BA). Driving performance metrics related to
controllability and control effort are:

Steering Reversal Rate (SRR): “The metric represents the number of times that the steering wheel is
reversed by a magnitude larger than a specific angel, or gap” (Johansson et al. 2004). The threshold or
gap is in literature often between 0.5 to 10 degrees. In some cases velocity is used as threshold rather
than position. The metric is then called Steering wheel Action Rate (SAR) and is very similar to SRR. SRR
and SAR are common used as a driving performance metric due to its simple computation. SRR and SAR
reflects drivers control effort. Many steering reversals are interpreted as high effort without significant
performance gain. In other words, a high SRR or SAR is often considered as inefficient steering behavior.

High frequency component (HFC) of steering wheel angle: Spectral analysis can be used to asses driving
performance. HFC analysis which frequency bands are affected by different factors. A high HFC means
more power on the higher frequencies, which can be interpret as more steering reversals. As discussed
at SRR, many steering reversals (high HFC) reflects a higher control effort. In practice SRR is more often
used than HFC since SRR is easier and faster to compute than HFC.

Steering grip force: Steering grip force is often used as metric to asses steering control efforts. The
assumption is made that steering grip force reflects drivers’ efforts put into steering control. Ostlund et
al. (2005) argued that “measuring steering grip pressure gives good opportunities to directly assess
steering control efforts early in the chain of driver-vehicle reactions. Behind this statement lies the
assumption that steering grip force reflects driver’s efforts put into steering control. Both hands on the
steering wheel could indicate that the driver is better prepared to cope with an unexpected event. Also
a firmer grip or more active grip on the steering wheel could be an indication of the driver surge to be in
better control of the steering”.

Steering Entropy: Boer 2000, described steering entropy as a promising way to assess workload and
controllability. A high steering entropy is associated with high workload and low performance (Boer
2005). It uses the assumption that a low workload driver does not deviate much from a predictable
baseline trajectory. The entropy is calculated based on the error between the prediction and the current
steering behavior. The prediction in Boer (2000) was obtained using an averaging filter. This prediction
signal is used to calculate the 90" percentile a. This a is used to divide the signal in i bins, where the bin
edges are chosen as * (0, 0.5a, a, 2.5a, 5a). The measure of disorder or entropy is then calculated with
the formula:

h :ijjl()gpi

Where / is the number of bins and p; stands for the proportion of the it" bin and is calculated from the
experimental data.
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Pedal movement/force: Similar to steering grip, pedal dynamics can be used to asses control efforts.
Frequent pedal movement often reflects drivers’ effort needed to control the speed. Similar to SRR,
frequent pedal movement are considered as inefficient driving.

3.4  Behavioral Adaptation Models for different applications

The first part of this chapter showed different measuring techniques and metrics. Apart from measuring
BA there have also been made attempts to develop predictive BA models, but what does such a model
really need to contain? The objective of such a model is clear, to make predictions of the negative safety
reducing actions of the driver in order to be able to counteract this. In other words, a model that can
predict risky behavioral adaptations or actions. Possible solutions that mitigate BA will not be treated in
this literature report but would really interesting for future research.

Model needs to be Hierarchical (i.e. applies on Operational, Tactical and Strategical level)

Most driver behavior models found in literature are based on quantitative modelling of stabilized
behavior (i.e. don’t take into account behavioral adaptation). One famous example of quantitative
modelling is McRuer’s steering model (Figure 14). He modelled a driver’s steering behavior based on
lateral position errors and heading angle errors. McRuer’s model explicitly quantify relations between
entities which makes this model easier to validate compared to the motivational models described in
chapter 2. In McRuer’s model the assumption is made that a driver behaves like an optimizer that
minimizes the steering and heading error. However, this statement does not always hold since drivers
tend to keep the car within safety boundaries rather than truly minimizing the error (e.g. drivers may
swerve during driving without considering this driving behavior as bad performance (see also
Performance-Accuracy trade off theory in Chapter 2)). Furthermore, McRuer’s model only applies on
only operational level (e.g. takes only lateral control into account and does not model longitudinal
control or higher levels such as maneuvering). Winsum (1996) suggested that driving models that apply
on only one level may produce meaningless results when behavior on another level is excluded from
examination. “For instance, if the effect of a road measure on speed is examined it should also examine
the effects on operational performance at the same time. Of course practical problems may prevent this
and this is one of the reasons why simulators may be useful.” Same conclusion was also drawn in
chapter 2, where the author argued that BA occurs on all levels of driver task defined by Michon (1985)
(i.e. on operational, maneuverable and strategical level).

External
, disturbances
Driver : Lateral
=|r Precognitive r'__“] position
control
Front
. wheel =
Purswit control ateer =
N s E
Steering a .
Wheel angle " Heading
it : - angle
Position error Heading angle J'Tnng]_. LE.
Desired | 1 control F 1 control | system L y,
path

Figure 14: Compensatory model of driver steering
Source: McRuer et al. (1977)
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Model needs to consist of quantitative values

A simple qualitative model that does include these three levels of operation is given by Rudin-Brown and
Noy (2002) in Figure 15. This model uses many important components (triggers) some of them are also
mentioned in chapter 2 like Trust, Competence and Personality (Locus of Control). Martens & Jenssen
(2012) argued that this model does not describe relevant feedback on the impact of the control loop,
which may differ depending on vehicle characteristics (e.g. ADAS). “For example, when an ADAS like ACC
is activated the driver is out of the loop in terms of acceleration and deceleration control actions. The
driver is only in the loop if he or she monitors the process and decides to intervene (some may use the
spare capacity ACC system assistance offers to send text messages, glance at incoming mail etc.). The
ACC sensors take over the driver detection of headway and have a direct impact on headway distance
with a feed forward loop to the traffic situation as the movement of the ACC equipped car can be
observed by other road users. This feedback loop to other road users is based on characteristics of
system function, not on driver actions.” (Martens & Jenssen 2012). Rudin-Brown’s model is useful in
terms of describing important factors of BA and their influence on all three driving task levels but is way
too simple to make actual predictions. An already more detailed model that predicts BA and its
associated effect on situation awareness and workload is given by Weller and Schlag (2004) (Figure 16).
This model uses changes in vehicle (implementing an ADAS) or environment as input and three basic
guestions to determine whether BA will occur. This model basically combines two motivational models
namely Wilde’s risk homeostasis model (Wilde 1998) and the utility model defined by O’Neill (1977)
(both models described in chapter 2). Although similar models are often used in literature, they are
impossible to use as prediction tool due to their vagueness and lack of qualitative results (e.g. do not
explicitly explained what kind of behavioral change will occur and to what degree). These models often
fail in generating testable hypotheses (Ranney 1994).

! H
i Driving task:
Personality ; ) .
-Locus of control Mental \! Strategic Vehicle
-Sensation- Model /i — — = _————
seeking ; _ Tactical | __Road
; Operational Environment
A
Control loop
Trust i Feedback
-Reliability (= +
-Competence i - Experience (direct)
i - Information (inferred)
Driver ! Behaviour Object

Figure 15: Qualitative model of BA
Source: Rudin-Brown & Noy (2002)
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Figure 16: Process model of behavioral adaptation
Source: Weller & Schlag (2004)

As discussed in the beginning of this chapter, Michon (1985) categorized models into different
categories. So far, each discussed model is considered as a mechanistic models, however the working
principle of these models is still quite diverse. Therefore, Michon (1985) made an additional distinction
within mechanistic models: the servo-control models and the information-flow models. Servo-control
models describe signals that are continuous in time (e.g. McRuer’s model), while information flow
models involves discrete decisions (e.g. Weller and Schlag). Unfortunately, both types of models are
often not considered as suited prediction tools due to either over-parameterizing (de Winter & Happee
2010) or lack of quantification (e.g. in the Weller and Schlag BA model: How can subjective
enhancement of safety margins be quantified?). So what are models that can predict BA or predict
driving behavior in a hierarchical quantitative way? A method that recent years is becoming more and
more popular as human behavior prediction tool are the stochastic models.

BA Model as probabilistic tool

Carsten (2007) argued that the only possibility to model driver behavior is using a stochastic model. He
stated: “Rather than predicting precisely and reliably what a driver will do at any moment - an endeavor
almost certainly doomed to failure because of the variability of human response both between and
within individuals - a model should attempt to predict the probability of error or failure and thus current
and future risk”. This conclusion is strengthened by Evans (1985) who compared the expected safety
effects with actual safety changes in 26 studies and concluded that no behavioral model was available to
predict effects of changes in the road-vehicle-driver system. Current models have still not proven to be
able to predict these changes. The probabilistic modeling approach assumes that drivers tend to driver
in a reproducible manner (Campbell et al. (2013)). The same assumption is used by Boer (2000) in the
Steering Entropy metric. Many researchers agree that the probabilistic prediction approach is a
promising driver behavior modelling technique (Angkititrakul et al. 2011; Campbell et al. 2013; Gindele
et al. 2015; Kumagai & Akamatsu 2004; Kishimoto & Oguri 2008; Kumagai et al. 2003; Pentland & Liu
1999; Sadigh et al. 2013). Probabilistic driver behavior models have shown to be able to correctly predict
guantitative information about driver behavior depending on state (Sadigh et al. 2013). However, these
models suffer from the same problem as deterministic models, they have only been validated for
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specific and limited aspects of the driving task (e.g. apply on one task level such as McRuer’s steering
model). For instance, Kumagai et al. (2003) successfully predicted the stopping behavior at an
intersection using a Bayesian network but this only works at an intersection where no maneuver can be
performed. Recently, Gindele et al. (2015) published a novel driver decision making and planning
prediction approach using a hierarchical Dynamic Bayesian model. This stochastic approach significant
improves estimation and prediction accuracy of the learning approach, in addition they argued that this
stochastic approach can cope better with noisy sensors and uphold a valid estimation, even if traffic
participants are occluded for longer periods of time. Despite these promising results current stochastic
models all predict stabilized behavior instead of predicting adaptation.

BA Model as Risk Compensation Prediction

As discussed in chapter 2, risk is one of the most important reasons for BA. The definitions of BA
(“unintended behavioral change that limit the safety benefits”) is directly related to risk, since lower
safety benefits is a higher risk. In other words, predicting BA is equivalent to predicting risk.
Unfortunately, the models that involve subjective risk tend to be impossible to validate and thus
impossible to use as predictive tool. However, subjective risk could be divided into entities that can be
guantitative measured. Carsten (2007) argued five major categories of driver capability, performance
and behavior that are related to risk:

Attitudes/personality
Experience

Driver state (impairment level)
Task demand (workload)
Situation awareness

ok wnN e

These five categories and their relationship to one another can be seen in figure 17. Winsum (1996)
agreed that this model captured the most important factors that are related to risk. He emphasized the
importance of adding experience (skills) and level of performance to the equation: “The line of
reasoning makes clear that the concept of risk becomes more meaningful if skills and level of
performance are added to the equation. This is to say that a certain speed may not be as risky for one
person as for the other if they differ in certain required perceptual-motor skills, from the same

Task demand
(workload)

Driver state Parformance

dwareness,

Figure 17: Relationship between categories of driver factors and risk
Source: Carsten (2007)
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perspective as the fact that flying an F16 fighter plane is considerably more risky for the author of this
thesis than for an experienced pilot”.

Although Carsten clearly explained why each factor is related to risk he didn’t clearly stated the
correlations between factors and the way they can be measured. The same problem occurs with
motivational models, without clearly describing correlations and quantifications this model leaves room
for own interpretation. A great advantage of this model is that most of the categories objectively can be
measured. Driver State, Workload and Situation Awareness can measured using the techniques
described in the beginning of this chapter. The factors not explicitly explained can also be measured
objectively. For example, Jamson (1999) argued that driving experience can be measured by looking at
drivers steering behavior. He argued that novice drivers use a reactive steering behavior, whereas
experience drivers use a more feed-forward (i.e. anticipating) strategy. Attitudes/Personality, is difficult
to measure real-time but can be measured using questionnaires. According to Carsten the last chain
towards risk is performance. Performance based metrics like Speed, Speed variability, Lane Keeping
performance (TLC) and Time to collision (TTC) are related and validated by several models to accident
risk (See also section 3.3). As already discussed above, one of Carstens model major drawback is the lack
of quantitative relations between the different categories which makes this model currently impossible
to use as predictive tool.
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3.5 Conclusion
This chapter summarizes the most common measure and modelling techniques used in BA studies. The
guestion that this chapter aims to answer is:

What methods are applicable to measure and model BA?

In literature several measuring techniques are used to measure the same quantity. In the discussion the
best suited metrics and measurements techniques to use in a BA research will be discussed. Behavioral
monitoring techniques can basically be divided in Driver State Monitoring Techniques (DSM) and
Performance Based Metrics. This distinction is needed since a behavioral change is not always
observable in terms of performance (e.g. a stressed driver may still drive with the same performance,
but the stress signs were observable in terms of driver state indicators like: higher heart rate, higher grip
force, sweaty hands etc.). DSM approaches that elicit data and draw conclusions about operator state
can be categories into four categories: behavioral-based monitoring (e.g. operator-control interaction),
psychophysiological-based monitoring (e.g. heart monitoring, eye tracking and electro dermal response
measurements), contextual-based monitoring (e.g. using road information) and subjective-based
monitoring (e.g. using drivers subjective input). To obtain the best and accurate picture of the driver’s
state all four categories should be considered simultaneously (Hou et al. 2015). Performance-Based
Monitoring techniques (PBM) monitors driver’s ability to control the vehicle in both lateral as
longitudinal direction. Compared to other DSM techniques, PBM techniques are in general easier and
faster to obtain which make them better suited (and therefore often used) for online driving behavior
research.
The performance metrics were discussed in relation to Accident Risk, Controllability and Control effort
since these factors are in chapter 2 concluded as important triggers to risk (e.g. Subjective Risk,
Competence and Performance-Accuracy trade-off theory). Currently, only fatigue and drowsiness are
actually measured and used in commercial vehicles due to the complexity and cost of many of the other
techniques. Some often cited BA models were treated. From these models it could be argued that a
well-designed BA model consist of the following criteria:

- Hierarchical structure: A BA model needs to have a Hierarchical structure as defined by Michon

(1984) (e.g. apply on operational, maneuverable and strategical level). Winsum (1996) argued

that one-level model predictions may be meaningless when behavior on another level is

excluded from examination.

- Consist of Quantitative Parameters: Prediction models need to deal with quantitative values in

order to make the results directly useful in the design of ADASs. Models that lack of quantitative

values (e.g. motivational models) often fail in generating testable hypotheses (Ranney 1994).

- Predict Future Risk Taking Behavior (preferably in a stochastic way): Instead of predicting

behavior in general, a BA predictive model needs to predict future risk or the chance of changing

behavior in a risky manner. This chapter argued that the subjective term risk can be divided into
5 quantitative categories: Attitudes/personality, Experience, Driver State (Impairment level),
Task demand (workload), Situation Awareness. Where these categories can be used in a BA
model instead of only the term “risk”. Furthermore, this predicting is preferably done in a
stochastic way. Rather than to predict what a driver will do at any moment at any time (which is
almost doomed to fail due to the variability in human responses) a model should predict the
probability that a certain behavioral change will occur. Probabilistic modelling use the
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assumption that driver tend to drive in a reproducible manner (which is validated by Campbell

et al. (2013)).

Conclusion chapter 3:
Currently no BA model was found that meet the criteria’s of being: Hierarchical, Consist of

no suitable predictive BA model is available at this moment.

Quantitative Parameters and Predict Future Risk Taking Behavior. The conclusion can be drawn that
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4 Discussion

It is essential to have well-defined metric and measurement techniques in order to be able to obtain
guantitative parameters that can be used in models that predict BA effects to novel ADASs (for example
a Haptic Shared Control System, as discussed in the introduction). This report described several models
and measuring techniques that could be used to asses and predict BA. In order to distinguish between
these models and measurement techniques table 9 to 11 summarizes the benefits and limitations of
each model and technique.

Table 9 shows that current BA models are limited by either working in only one hierarchical level (e.g.
McReur’s Steering Compensatory model) to not using quantitative parameters (Rudin-Brown’s
Qualitative BA model and Weller and Schlag’s Process model of BA). Without having quantitative
parameters it is impossible to make quantitative predictions of BA and to generate testable hypotheses
(Ranney 1994). For ADAS designers (i.e. car manufactures) it is not only interesting whether a BA will
occur but in what degree as well. Moreover, as stated in chapter 3, instead of predicting what driver will
do at any moment at any time it could be better to predict the chance of a BA in order to cope with the
variability in driver responses to an ADAS. Stochastic models have shown to be able to predict stabilized
behavior (Angkititrakul et al. 2011; Campbell et al. 2013; Gindele et al. 2015; Kumagai & Akamatsu 2004;
Kishimoto & Oguri 2008; Kumagai et al. 2003; Pentland & Liu 1999; Sadigh et al. 2013). Unfortunately,
no BA models can be found in literature that predicts BA in a stochastic way. This is recommended to try
in future researches. Another problem that many models suffer is the use of the quantity “subjective
risk”. Models that contain this quantity are often argued as untestable due to their lack of quantitative
parameters (See conclusion chapter 2). A solution to this problem is given by Carsten’s risk model
(Carsten 2007), who separated “risk” into 6 quantifiable categories: Attitudes/personality, Experience,
Driver State (Impairment level), Task demand (workload), Situation Awareness, Performance. These
categories could be used in a BA model instead of the term subjective risk resulting in a model that uses
the term risk without being untestable.

As discussed in chapter 3, techniques to measure BA can be divided into Driver-State Monitoring (DSM)
and Performance-Based Monitoring techniques. In table 10 & 11 the benefits and limitations of the in
this report considered measuring techniques are summarized. Based on these two tables the conclusion
can be drawn that Performance-Based Monitoring techniques are in general easier to measure and
compute but cannot be used as reliable measurement tools for the assessment of SA and Workload.
DSM techniques are stated to be good Workload estimators, especially if used in conjunction with other
DSM techniques. As conclude in chapter 3, a model that can predict and asses BA would be a model that
predicts risk taking behavior. Risk can be divided into 6 quantitative categories. So the question raises:
which of the in Table 10 and 11 described DSM and Performance Metrics are best suited to quantify one
of these categories?

Driver state (Impairment level): Impairment levels are currently measured in commercial vehicles by use
of Eye-Tracking techniques. The number of blinks and fixations (i.e. eye gaze strategy) can be used to
determine impairment level. Other techniques that can assess impairment level are: EEG and Heart Rate
Monitoring techniques, however, as table 10 argues these techniques either require expensive
equipment (EEG) or the measurement accuracy is highly affected by other physical and cognitive factors
(Heart Rate Monitoring). Therefore, Eye-Tracking in combination with Heart Rate Monitoring is argued
as best suited to assess impairment level.
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Performance: Performance metrics that asses BA are the metrics that are relate to risk taking behavior.
TLC, TTC and Speed metrics are directly related to accident risk, which make them initially all three
useful to use in a BA model. However, Ostlund et al. (2005) argued that if the lane markings do not
represent the safe travel path as perceived by the driver, either very large TLC values will be found, or
there will be several line crossings, resulting in unreliable TLC metrics which are very difficult to
interpret. Despite that, TLC, TTC and speed metrics capture most common BA changes argued in chapter
2 (e.g. closer headway time, higher speed. Late braking, frequency of overtaking, etc. (see figure 6
section 2.3)). Therefore TTC, TLC and Speed metrics are recommended by the author as one of the most
important metrics in BA studies/models.

Task demand (Workload): Workload is conventionally determined using subjective questionnaires (e.g.
NASA-TLC). Downside is that it cannot be used as online measurement technique. Alternatives, that can
be used online, are the DSM technique EEG, Eye-Tracking or Entropy metric. EEG can identify unique
brain scan patterns for different level of workload, however, the specialized equipment is expensive and
subjects can become stressed due to the sensors placed on the scalp, resulting in a biased result (e.g.
higher workload due to obtrusive sensors). A non-obtrusive technique is Eye-tracking. It is argued that
pupil dilation is correlated to Workload in several studies (Pomplun & Sunkara 2003), however, the
accuracy of this method is highly affected by lighting conditions and is not often used in current driving
related studies. Another promising technique to asses Workload is the level of Entropy. Boer (2000)
showed that the Entropy metric is very sensitive to cognitive modes. Downside of this technique is the
need for baseline data, which cannot be used for statistical comparison. Due to the downsides of the
alternatives the conclusion has to be made that the conventional questionnaires are best suited to asses
Workload (if no online workload results are needed).

Situation Awareness: As stated in chapter 3, SA can be measured by means of the SAGAT technique.
Downside of this technique is that it can only be used in driving simulator studies and it abruptly
interrupts the driving task. Less interrupting SA technique is Eye tracking. Eye tracking can be used
online. It makes the assumption that if a person fixates on a certain object, this subject really
comprehends this object as well. The correctness of this statement can be argued and need to be
investigated further. Regarding this statement, Dambdck (2013) showed that drivers with eyes on the
road were not always able to prevent an accident (due to late responses). This suggest that fixating on
an object does not evidently mean they also comprehends it.

Experience: Experience can also be obtained using questionnaires (ask the driver how often they drive in
a month etc.). An alternative is looking at drivers steering/pedal behavior. Jamson (1999) argued that
novice drivers have a more reactive steering behavior, whereas experience drivers use a more feed-
forward (i.e. anticipating) strategy. This result suggests that steering performance metrics like SRR and
Grip Force can be used to indicate experience but this needs to be investigated further as well.

Finally Attitudes/Personality, is more difficult to quantitatively assess. Campbell et al. (2013) showed
that people tend to drive in a reproducible manner, which could indicate that performance metrics TLC
and TTC can also be used as quantified measure to value personality. However, much more research
needs to be conducted in Attitude and Personality assessment. Especially, since chapter 2 concluded
that the way drivers adapt their behavior highly dependents on the driver’s attitude towards the system
(e.g. using the system as Slave, turning off the system etc.).

Literature Report Timo Melman 41



02-Sep-15

Table 9: Benefit and Limitation of some BA models

Models

McRuer's Steering Compensatory model (McRuer et al. 1977)

Rudin-Brown's Qualitative BA Model (Rudin-Brown & Noy 2002)

Wellerand Schlag's Process model of BA (Weller & Schlag

2004)

Stochastic Models (e.g. Kumagai et al. 2003; Sadigh et al. 2013;

Gindele et al. 2015)

Carsten's Risk Model (Carsten 2007)

Motivation Models (e.g. Wilde's Risk Homeostasis theory
(Wilde 1998), Fuller's Task-Capability model (Fuller 2005) etc.)

Beneftis

\+ Highly detailed, \+ Uses quantitative parameters, \+

Can be used real-time

\+ Describes effect on all three driving task

dimensions, \+ Describes effect of common BA triggers

Limitation

\- Models stabilized behavior (instead of BA), \- Only

works in one dimension (i.e. on operational level), \-

Assumes driver as optimize controller, which does not
always hold

\- No quantitative output/input parameters, \- Does not
describe relevant feedback on the impact of the control
loop (Martens et al. 2012)

\- Does not use quantitative parameters, \- Basically

\+ Uses specific questions to determine whether BA
occurs. \+ Describes potential changes

\+ Proven to work as multi-dimensional predictive

BA

behavior model \+ Stochastic models have shown to be
able to predict stabilized behavior

\+ Describes risk in a quantitative categories

\+ Well-cited, \+ Often used as foundation to explain

combination of motivational models, and therefore fails
in generating testable hypotheses.

\- Currently no stochastic BA model available, \- Only
applies on stabilized behavior

\- Does not describe BA, \- Does not specify relations

between risk categories.

\- Fail in generating testable hypothesis due to lack of

quantitative parameters (Ranney 1994; Elvik & Vaa 2004;

Winter & Happee 2010)

Table 10: Benefit and Limitations of important DSM techniques;
Note: Most information is based on the comprehensive review of Hou et al. (2015)

DSM techniques (+ key
reference)

Electroencephalogram (EEG)
(Niedermeyer and Lopes da Silva
1999)

Eye Tracking (Victor et al. 2005;
Bednarik 2005)

Electrodermal Response (EDR)
(Sharpe etal., 1995; Kapooretal.,
2007)

Cardiovascular (ECG, Heart Rate, Heart
Rate Variation) (Chen and Vertegaal
2004)

Electromyogram (EMG) (Trejo et al.
2007;

Near-Infrared Spectroscopy (NIRS)
(Izzegtoglu et al. 2007; Keebleret al.
2009)

Working Principle

Electrode sensors placed on the scalp
monitoring electrical activityin the
brain

Monitors the operator's visual
attention and cognitive activity

Measures electrical conductivity of
the skin to determine sweat level

Electrode sensors monitoring heart
activity

Electrodes placed in oron specific
muscles determine muscle activity

Near-infrared light monitors blood
oxygenation levels in the brain
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Benefits

\+ Noninvasive, \+ Portable and field-ready EEG is currently
available, \+ High temporal resolution, \+ Unique patterns
for workload level, high-order cognition, verbal processing,
and image processing observable in brain scans

\+Blinks and eye gaze can discern task demand and
fatigue \+ Eye-tracking measurements are correlated with
mental workload, \+ Can be used as tool to asses SA, \+
Already used in commercial vehicles

\+ Can indicate states of emotional arousal, \+ Less
sensitive to environmental noise compared to other PBM
techniques

\+ Heart rate measurements are unobtrusive, reliable, and
easyto use and interpret, \+ Sensitive to cognitive
demands and attention, \+ Relatively cheap, \+ HRV can
provide measurements of both cognitive effortand
compensatory effort, depending on the application (Byrne
and Parasuraman, 1996)

\+ EMG measurements correlate with state variables such
as drowsiness and fatigue \+ EMG measurements related
to the control of devices can be mapped in real time

\+ Can measure changes using only light that previously
required expensive apparatus, +\ High temporal resolution
[ms]

Limitations

\- Requires expensive and sophisticated signal-processing
equipment, \- Low signal-to-noise ratios, \- Individual
brains maydifferin their organization, providing distinct
patterns of EEG activity \- Can be considered as obtrusive

\- Lighting conditions may affect accuracy, \- Eye-tracking
technologies do not take into account the fact that fixation
patterns will differ depending on the environment (Hou et
al., 2015)

\- Poor temporal resolution, \- High latency between
stimulus and response as compared with other
psychophysiological measurements, \- Qualitative and
emotional aspects of affect are not reflected in EDR signal.

\- Accuracy of heart rate measurement is affected by
respiration, physical work, and emotional strain, which may
make measurementinaccurate, \- Also sensitive to factors
other than workload

\- Intramuscular EMG's require specialized technicians and
can cause pain and undue stress to the operator, \- Need
for expensive specialized tools

\- NIRS is an emergent technology and analysis software is
not mature
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Table 11: Benefits and Limitations of well-cited Performance metrics

Performance-Based Metrics

Time-to-Line Crossing (TLC) (Godthelp and
Konings 1981)

Time-to-Collision (TTC) (van der Horstand
Godthelp 1989)

Velocity (speed, speed variation, maximum
speed)

Steering Reversal Rate (SRR) (McLean and
Hoffman 1975; Ostlund et al. 2005)

High frequency component (HFC) of steering
wheel angle (McLean and Hoffman 1975)

Steering Grip Force (Peters et al. 2005)

Pedal dynamics (Wierwille et al., 1996)

Steering Entropy (Nakayama et al. 1999;
Boer 2000)

Benefits

\+ Related to accidentrisk, \+ TLCis related to visual or
cognitive distraction, \+ Often used in driving behavior
studies, \+ TLC reflects the time-based lateral safety
margins adopted by the driver (Godthelp, Milgram & Blaauw
1984)

\+ Takes speed difference between vehicles into account,
which is a safety related factor, \+ directly related to
accidentrisk, \+ Can be regarded as longitudinal time-
based safety margin \+ More sensitive and reliable than
distance headwayin HASTE project (Ostlund et al. 2005) \+
Often used in Driving behavior studies

\+ Speed and speed variation are directly related to
accidentrisk (Brehmer 2011), \+ Simple to measure and to
compute, \+ BAis often observed in speed changes

\+ Simpler computation than HFC, but gives almost same
information, \+ Commonly used driving performance metric
due to it straightforward interpretation and implementation
(Ostlund et al. 2005)

\+ Contains more information than SRR, \+ Sensitive to both
primaryand secondary task load. (McLean & Hoffman 1975)

\+ Can assist DSM techniques, \+ Gives good opportunities

to assess steering control efforts earlyin the chain of driver-

vehicle reactions

\+ Related to longitudinal control (Johansson et al. 2004)

\+ Related to cognitive and visual/manual load (Boer 2000),
\+ Correlated strongly with subjective workload ratings of
drivers
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Limitations

\- Lane markers do not always represent the safe travel
path as perceived by the driver, resulting in unreliable TLC
metrics which are very difficult to interpret (Ostlund et al.
2005)

\- TTC measures vary more than headway measures,
resulting in less statistical power. (Ostlund et al. 2005)

\- Effect on mental workload and distraction are not easily
interpreted, \- Speed metrics are influenced by data
duration, therefore itis advised to always use same time
window (Ostlund et al. 2005)

\- Unclearinterpretation of the effects of cognitive load, \-
SRR is notsuited foruse in built-up areas, due to the large
variation induced by the road geometry, \- Sensitivity
depends on chosen gap size, however not clear which gap
size is best. (Ostlund et al. 2005)

\- Difficult to compute, \- Unclearinterpretation of the
effects of cognitive load,

\- Reliability of the measured steering grip force is not
proven yet (Johansson et al. 2004)

\- Safetyrelevance is unclear\- Not often used in
behavioral studies, merelyin accident studies

\- Baseline data cannot be used for statistical comparison
to experimental data since the data sets will then be
dependent (Johansson et al. 2004)
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5 Conclusions
This literature survey aims to answer the following research question:

What are promising ways to predict behavioral adaptation in Advanced Driver Assistance Systems?

In order to develop predictive BA models it is important to understand the motivation behind BA. The
conclusion can be made that these BA motivations are often based on: driver’s subjective risk
assessment (Wilde 1998; Naatdnen & Summala 1974), task difficulty/utility management (Fuller 2005;
O’Neill 1977) and driver’s attitude towards the novel introduced ADAS (Saad et al. 2004). Unfortunately,
it can be concluded that these theories are not suited to use as base for a predictive model. They tend to
fail in generating testable hypothesizes and sometimes give contradictory results (e.g. opposite results
between Wilde’s Risk homeostasis theory and Trade-Off between Performance and Effort model) which
make them unreliable and impossible to generate quantitative BA predictions. Besides motivational
models it can be concluded that currently no suitable predictive BA models exists. Current BA models
are too simplistic and lack quantitative parameters. The limitations of the discussed models can be used
as important pillars for the development of a future predictive BA model. It is argued that a well-
designed predictive BA model needs to consist of:

- Hierarchical (i.e. applies on operational, maneuvering and strategic level): a model should be
hierarchical since BA occurs on all these three levels, hence a predictive BA model should predict
behavior on all these levels as well.

- Consist of Quantitative Parameters: by using quantitative parameters a BA model would be able
to generate testable hypothesis and more important quantitative BA predictions.

- Predict Future Risk Taking Behavior (preferable in a stochastic way): Risk is directly related to
BA. This report argues to use Carsten’s Risk categories (e.g. Attitudes/personality, Experience,
Driver State (Impairment level), Task demand (workload), Situation Awareness, Performance) to
quantify Risk. After comparing the discussed metric and measurement techniques, the
conclusion was made that for each category quantitative and objective measurement
techniques are applicable that combined can assess risk, and thus BA.

Currently no models are available that make proper quantitative BA predictions. The models are
often too vague and lack of quantitative parameters resulting in unreliable and unfalsifiable results.
Therefore, more research need to be performed into the understanding and measuring of BA.
Techniques to measure and asses BA are improving and getting less obtrusive which makes them
better suited for car driving research.
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