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“Automation does not simply supplant human activity 

but rather changes it, often in ways unintended and 

unanticipated by the designers of automation” 

 (Parasuraman et al. 2000) 
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List of abbreviations 
BA  = Behavioral Adaptation 

ADAS  = Advanced Driver Assistance System 

ACC  = Adaptive Cruise Control 

SA = Situation Awareness 

DSM  = Driver State Monitoring 

LKAS = Lane Keeping Assistance System 

HMI = Human Machine Interaction 

Important definitions 
Behavioral Adaptation: “Those behaviors which may occur following the introduction of changes to the 

road-vehicle-user system and which were not intended by the initiators of the change” (OECD 1990).  

Situation Awareness: “The perception of the elements of the environment within a volume of time and 

space, the comprehension of their meaning, and the projection of their status near future” (Endsley 

1988) 
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Introduction 
Highly automated vehicles are a trending topic since Google introduced the first fully autonomous 

driving vehicle in 20091. One of the many arguments for autonomous driving is that over 90% of all 

traffic accidents are caused by human errors (Treat et al. 1979; Green and Senders 2013). The 

implementation of autonomous driving vehicles can still take decennia due to technical limitations (e.g. 

bad sensor accuracy in heavy weather conditions, need for highly detailed maps, communications 

problems with other road users, etc. (Ghose, 2015)) and legislation problems (e.g. ethical questions like: 

“who is responsible for an accident if no human is in the loop?”). Until most of these issues are resolved, 

it has to be accepted that humans are in control of the vehicle, either performing a supervisory task (e.g. 

monitoring the environment) or operational (e.g. actual controlling the vehicle). Therefore new systems 

are developed to keep the human in the loop but still obtain some of the benefits of automation.  

In literature these systems are called Advanced Driver Assistance Systems (ADASs). The benefits of these 

systems depends on the working principle, for instance, some systems reduce the braking distance 

significantly (e.g. Anti-Lock Braking System (ABS) and Autonomous Emergency Braking System (AEB)), 

assists the driver in lateral or longitudinal control (e.g. Lane Keeping Assistance (LKA), Adaptive Cruise 

Control (ACC)) or assist the driver on a strategic level (e.g. Navigation software). In order to work 

properly with these systems people need to adapt. Although adapting and compensating for changing 

circumstances is critical in driving situations, people sometimes adapt in such a way that the gained 

safety benefits, caused by the ADAS, degrades. For instance, Sagberg et al. (1996) showed that taxi 

drivers equipped with ABS, drive with a shorter headway time compared to drivers without. In other 

words, the drivers misuses the fact that ABS shorten their braking distance and use it to drive closer to 

the next vehicle. Another well-documented BA example is given by Bekiaris et al. (2001). They showed 

that people driving with an ACC system use their spare capacity caused by this system to perform other 

in-vehicle tasks, resulting in a significant lower Situation Awareness. In literature such an unintended 

negative adaption to a novel introduced ADAS is called Behavioral Adaptation (BA). In short-term and in 

long-term BA can mitigate the safety benefits of a novel ADAS or even completely negate them. 

These examples emphasize the importance of taking BA into account in the design of a novel ADAS 

system. An example of a current developed ADAS is Haptic Shared Control (HSC). This system assist the 

human driver by adjusting the stiffness of the steering wheel and/or pedals, resulting in higher 

performances (in terms of steering and braking) and lower workload (Abbink et al. 2011; Petermeijer & 

Abbink 2015). A HSC System is intuitive to use (i.e. drivers quickly adapt) and, if designed well, is not 

experienced as intrusive. Some researchers found results that indicate BA in a HSC vehicle, for example 

Petermeijer et al. (2014) showed significant worse driving performance in case of an automation failure 

or a decreased Situation Awareness (observed in a lower reaction time) (Petermeijer & Abbink 2015). 

Whereas, Mars et al. (2015) found no BA effect in the steering guidance of a HSC system. These 

examples show that the real effect of BA in a HSC vehicle is still unclear. Therefore new research has to 

be conducted that measure and model BA in novel ADASs (like HSC). Once there are models that 

understands the human driver this could help in designing countermeasures that limit BA, resulting in 

higher safety benefits. To assist ADAS developers to design ADAS that limit BA the following research 

question need to be answered:  

                                                           
1 “Google Self-Driving Car Project”. Retrieved 02-09-2015 from: http://www.google.com/selfdrivingcar/ 
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What are promising ways to predict behavioral adaptation in Advanced Driver Assistance Systems? 

This research question will be answered by means of a literature survey. This literature research gives a 

comprehensive insight in measuring and modelling techniques in assessing BA. In order to do so, this 

report is divided into two parts: 

(1) Theories about why BA occurs: Overview of well-cited motivations and triggers that could 

explain or cause BA. In addition, examples of potential changes will be given. (Chapter 2) 

(2) Overview of techniques to measure and model BA: In order to understand these models it is 

important to know what kind of techniques are applicable to measure and model BA. (Chapter 

3) 
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1 What is behavioral adaptation? 
In literature Behavioral Adaptation (BA) is used in contrary ways. In Psychology BA is defined as “the 

whole set of behavior changes that are designed to ensure a balance in relations between the (human) 

organism and his surroundings, and at the same time the mechanisms and processes that underlie this 

phenomenon” - Grand Dictionnaire de la Psychologie. In road safety literature BA is often used in a more 

negative way as is defined by the OECD (1990):  

“Those behaviors which may occur following the introduction of changes to the road-vehicle-user system 

and which were not intended by the initiators of the change” (OECD, 1990).  

In this report the definition provided by the OECD group is used since this definition is commonly used in 

driver BA studies. Although this definition is convenient and used often in literature it still leaves room 

for own interpretation. For example what is an “unintended behavioral change”? In this report an 

unintended behavioral change will be defined as a change that reduces the safety benefits of the 

Advanced Driver Assistant System (ADAS). 

1.1 Direct and indirect behavioral effects. 
Behavioral Adaptation can be discern into direct and indirect effects. The direct effects are in literature 

called the engineering effects. Engineering effects are effects intended by the designer. For instance, in 

case of the Anti-Lock Braking System (ABS) the specifications are: “A braking system in which a sensor 

recognizes that a wheel is about to lock up. The sensor sends a message to a computer, which starts 

releasing and applying the brake, stopping the lock up and allowing the driver to maintain control or 

drive around an obstacle instead of sliding towards it”  Hence, the ABS direct effects (intendent effects) 

is a shorter braking distance as well as maintaining control while braking. However, Sagberg et al. (1996) 

showed that car drivers equipped with ABS, drive with a shorter headway time compared to drivers 

without. This effect is not intended by the designer and thus an indirect behavioral effect. The definition 

Behavioral Adaption is equivalent to indirect behavioral effects, given that BA focus on the negative 

indirect behavioral effects. Of course, not all behavioral adaptations are negative. For instance, the 

Foundation for Traffic Safety (Mehler et al. 2014) showed an increased use of turn-signal among drivers 

with Lane Departure Warning Systems (LDWS), especially if they drove often on highways. Please notice 

that positive behavioral adaptations are not considered as a Behavioral Adaptation in this report since it 

is not a BA according to the definition given above. 

Figure 1: Schematic presentation of safety effects due to behavioral adaptation 
Source: Khorasani et al. (2013) 
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Besides direct and indirect behavioral changes there is a third category: “system misuse”. Although this 

category is not often used in literature, it is an important aspect of unintended behavior. Drivers are 

always extremely creative in exploring the limitations given by the ADAS designers. Often this leads to 

misuse of the system, e.g. current commercial cars are equipped with full range adaptive cruise control 

in combination with Lane Assistance Systems allowing hands-free driving. However, due to legislation, 

drivers are still obligate to maintain hands on the steering wheel. Current systems require that the 

driver keeps hands on the wheel every 10 to 20 seconds otherwise an alarm goes off. The driver can 

simply circumvent this safety measure by hanging a bottle on the steering wheel (see figure 2). This is 

also a clear example of “adapting” to an ADAS unintended by the designer of the system. However, in 

this report this category is not considered as a BA but rather as cheating the system.  

 

Figure 2: Placing a bottle on the steering wheel to circumvent the hands-free warning. 
Source: Adopted from https://www.youtube.com/watch?v=qi2oIRMwmZY  
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2 Driver Behavior Theories 
Although BA is a widely acknowledged phenomenon, the motivations and factors that trigger these kind 

of BA are not clearly established and are debated often. This chapter gives an overview of in literature 

mentioned factors likely to explain the processes underlying BA. If the reason why people adapt their 

behavior is known, ADAS designers could design novel ADASs more effectively in terms of safety (e.g. 

systems that not suffer from BA). The question that will be answered in this chapter is: What are 

theories behind a BA and what are common BA triggers argued in these theories? 

2.1 Michon’s adapted hierarchical control model 
Many of the theories discussed later use the hierarchical task distinction given by Michon (1985). 

According to Michon (1985) a driver tasks can be divided into three levels: Strategic, Maneuvering and 

Control level. “The strategic level of a tasks defines the general planning stage of a trip, including the 

determination of trip goals, route and modal choice, plus an evaluation of the costs and risks involved. 

At the Maneuvering level drivers exercise maneuver control allowing them to negotiate the directly 

prevailing circumstances.”(Michon 1985). The ground level is the control level. This level is equivalent to 

the “skill based behavior” defined by Rasmussen (1983): “It represents sensory-motor performance 

during acts or activities which, following a statement of an intention, take place without conscious 

control as smooth, automated, and highly integrated patterns of behavior”. This level is basically on 

operational level and governs how the driver operates the vehicle.  

Panou et al. (2007) stated that Michon hierarchical model needed to be adapted with an additional 

behavioral level because personal motives are crucial factors for driver behavior. Examples of personal 

motives are for example subjective risk. Subjective risk is the risk people are willing to take during 

driving (will be elaborated further later in this chapter). As the revised hierarchical structure in figure 3 

shows, that behavior is at the top of the hierarchical structure and influence all three levels. 

 

Figure 3: The hierarchical structure of the driving task (adapted from Michon, 1985) 

Source: Panou et al. (2007)  
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2.2 Adaptation Triggers 
Why would a driver adapt their behavior in general or how can we assure desired behavior? Many 

researchers have probed this, from child raising to appropriate work behavior development (World Bank 

2010). Drivers behavior can differ a lot (e.g. from a slow driving grandfather towards a young male 

driving a Volkswagen Golf), though, this does not mean that responses towards certain behavioral 

triggers will also differ that much. It is important to understand that adaptation triggers cannot change a 

person, but by shaping the environment they function within, the way people behave can be influenced. 

2.2.1 Motivational Triggers 
The underlying motivation is very important in explaining BA. Many motivational theories try to explain 

BA and which triggers are important in inducing these adaptations. Some well-cited motivational 

theories are based on the following triggers: 

- Subjective risk assessment.  

Risk can be divided into three basic terms: objective risk, subjective risk estimate and the feeling 

of risk. Objective risk has also been referred to as ‘statistical risk’ ((Grayson et al., 2003), it is the 

objective probability of being involved in an accident. The objective risk is determined post hoc 

from analysis of accident data. “Subjective risk estimate refers to the driver’s own estimate of 

the (objective) probability of collision. Such estimates of risk represent the output of a cognitive 

process, while the feeling of risk represents an emotional response to a threat, a distinction 

previously clarified” (Fuller 2005). Many BA theories are based on Subjective Risk. Either by 

stating that people tend to maintain a certain subjective risk level (Wilde 1998)) or the tendency 

to keep the subjective risk below a certain risk threshold (Näätänen & Summala 1974). 

Nevertheless, subjective risk is stated as an important motivation to adapt behavior.  

- Fuller's (2005) Task-Capability Interface (TCI).  

Fuller’s TCI describes the interaction between the determinants of task demand and driver 

capability. “The task demand is determined by factors such as the environment, other road 

users and speed, with capability being determined by training, education and experience. Task 

difficulty homeostasis is proposed as a key sub goal in driving, and the choice of speed is argued 

to be the main solution to the problem of keeping task difficulty within driver-preferred bounds” 

(de Winter & Happee 2010). 

- Trade-Off between Performance and Effort (TOPE).  

People will tend to make a trade-off between performance and effort. If people are rewarded 

with higher performance at the cost of a bit more effort, the chance of performing this is action 

is high. Same logic, if a little performance increase is gained with a huge effort, the chance of 

adapting is limited (e.g. Speed/Accuracy Trade-Off (Fitts 1954)) 

- Utility Maximization Model from (O’Neill 1977):  Panou et al. (2007) summarized the Utility 

Maximization model as follows: “The utility maximization model proposed by O'Neill (1977) 

assumes that the driver has certain stable goals and makes decisions to maximize the expected 

value of these goals. Some of these goals are achievable more effectively through risk-taking 

behavior, for example, speeding to save time or gain social status. These motivating factors are 

counteracted by the desire to avoid accidents as well as by fear of other penalties such as 

speeding tickets. Balancing goals with the desire to avoid accidents therefore derives driving 

behavior choice. O'Neill claims that the balance, which affects the decision made, is shifted 

when a safety measure is introduced. An assumption made by the theory, which has been 
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questioned (OECD 1990), is that the driver is 'rational'. In other words, the driver is an accurate 

judge of the accident probability resulting from each mode of behavior.” 

Wilde’s Risk Homeostasis and Fuller’s TCI model are both well-cited and also often criticized 

motivational theories, therefore both will be elaborated further in the remaining part of this section.  

Wilde’s Risk Homeostasis Theory (RHT) 

Wilde’s Risk homeostasis posits that: “People at any moment of time compare the amount of risk they 

perceive with their target level of risk and will adjust their behavior in an attempt to eliminate any 

discrepancies between the two” (Wilde 1998). It is argued that a change in system (e.g. by introducing 

an ADAS) influence the perceived level of risk resulting in an adjustment action (see figure 4). For 

example, by introducing light poles drivers are able to see more when driving in the night resulting in a 

lower perceived level of risk. Wilde’s Risk Homeostasis theory suggest that drivers will compensate for 

this effect by, for instance, drive faster in order to reach the target level of risk. So basically, by 

introducing light poles behavioral adaptation occurs. Although this sounds like a quite feasible 

argument, this model is often argued as “too vague” (Michon 1985). The entities are not clearly defined 

and therefore impossible to observe and impossible to measure, simply because these processes 

happen unconsciously. Similar statements were made by Elvik & Vaa (2004) and Ranney (1994) who 

both stated that it is impossible to generate testable hypothesis for this theory due to the lack of real 

quantified aspects in this model. In addition, de Winter & Happee (2010) argued that in Wilde’s Risk 

model contrary behavioral adaptations could easily be defended with subjective arguments like: “the 

familiarization period (getting used to the ADAS) was too short to observe an effect” without stating 

what the familiarization should be instead. Even though the RHT seems unable to develop testable 

hypothesizes, this doesn’t mean that perceived risk is not an important BA trigger. The urge to survive is 

in the human nature, whether this is to stay away from a lion in Africa or driving a car safely on a narrow 

road. If the result of a certain act is undesirably in terms of safety, it is highly likely to act differently next 

time. In other words, if an ADAS system is perceived as a system that increases/decreases safety, it is 

likely that BA occurs.  

  

Figure 4: Homeostatic risk mechanism 
Source: Wilde (1998) 
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Important note regarding subjective risk by Saad et al. (2004): “Most of the results obtained came from 

simulator studies or closed track experiments, where by definition, such critical events can be studied 

without real danger for the participants, However, and for the same reason, we should keep in mind 

that driver risk-taking in this context may be quite different from that observed in real driving situations. 

This is a paradox that we usually have to deal with in traffic safety research.” 

Fuller’s Task-Capability Interface (TCI) 

Another well-cited motivational model is Fuller’s Task-Capability interface (TCI) (Fuller 2005). The reason 

that TCI is often cited is, besides its plausible theory, it also gives a great overview of factors/triggers 

influencing driving behavior. TCI model describes the interaction between the determinants of task 

demand and driver capability (figure 5). If the task demands exceed the capability this leads to loss of 

control which could result in a collision or, if lucky, an escape. Similar to Wilde’s RHT, subjective risk 

influences this model, however the model lays more emphasis on task homeostasis instead of risk 

homeostasis. Task homeostasis means that people tend to keep the difficulty to perform a task 

constant. According to Fuller: “Drivers appear to be able to make judgements of task difficulty easily and 

to behave in such a way as to keep the level of task difficulty within target boundaries.” Although many 

researches have substantiate this theory, it is directly opposed to the “Trade-Off between Performance 

and Effort theory” (TOPE). The TOPE stated that people will always balance performance with effort. An 

example of the contradictory aspect between the two models: by introducing a LKAS (Lane Keeping 

Assistance System), a lane keeping task should become easier in terms of workload and higher 

performance (Petermeijer & Abbink 2015). According to the TCI theory, this decrease in task difficulty 

needs to be compensate, which could be done by for example a higher speed. Contrary, TOPE theory 

could suggest that due to the negligible increase in performance benefits no BA will occur. Moreover 

this example emphasized the subjectivity of motivational models, which make them unable to use as 

predictive tool. 

 

Figure 5: The task-capability interface model 
Source: Fuller (2005) 
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2.2.2 Attitude towards ADAS 
Peoples’ attitude can also explain the variation in responses towards ADAS. According to Saad et al. 

(2004) the attitude towards an ADAS can roughly be divided into two groups. On the one hand drivers 

can use ADAS as a reference tool meaning that if a change at maneuvering level occurs the aim of the 

driver will always try to understand the system and to avoid any unwanted effects due to their 

perceptual limitations (Shinar & Schechtman 2002)). On the other hand, drivers can use ADAS as a slave 

system which offers them a chance to extent their own driving limits or even allocate attention to a 

secondary task. Saad et al. (2004) captured these strategic distinctions with relation to the maneuvering 

level in Table 1. It shows that the goal of “reference tool” drivers is to limit the (subjective) safety risk. 

All decision are done with this goal in mind, e.g. in case of a warning they will try to understand “why” 

they occur and “how” these warnings can be used to driver safer. The ADAS can assist the driver in 

achieving their safety goals. Drivers using ADAS as a slave system will have a tendency to misuse the 

system. It is hypothesized that younger males are more often in this category. Saad et al. (2004) stated 

that drivers using the ADAS system as slave system are generally “capable” drivers or “Sensation 

Seekers”. Sensation Seeking is defined by Zuckerman (1994): “a trait defined by the seeking of varied, 

novel, complex, and intense sensations and experiences and the willingness to take physical, social, 

legal, and financial risks for the sake of such experiences. Central to this trait is “the optimistic tendency 

to approach novel stimuli and explore the environment” (Saad et al. 2004). These “capable” drivers and 

sensation seekers try to maximize the sensation of pleasure which limit the safety benefits of the ADAS. 

In Table 1 it can be seen that both levels (reference and slave) consider a positive attitude towards the 

ADAS. Whether the ADAS increases the safety benefits or allows driving to the limit. However, this table 

could be extended by drivers that consider the ADAS as punishment rather than support. Hjälmdahl & 

Várhelyi (2004) showed that in a haptic advisory system (haptic gas pedal) was less effective for drivers 

with a negative attitude towards the system. In addition he found that drivers with a negative attitude 

towards the system generally experienced more stress while driving. This indicates that it is important to 

show drivers the benefits of a novel ADAS in order to obtain a positive attitude. 

Table 1: Four different levels of behavioral change to an ADAS system 
Source: Saad et al. (2004) 
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2.2.3 Design of BA triggers 
If behavior is triggered in the wrong way it can be perceived as annoying or as punishment rather than 

support. Although BA triggers can be a useful tool to reduce BA, if a trigger is designed badly (such that 

it is perceived as annoying or punishment) unintended adaptation could occur. For instance, 

Parasuraman & Riley (1997) showed that drivers may turn off the system when they consider a certain 

warning signal to be intrusive or annoying. One of the challenging design aspects of a trigger (for 

example a warning system) is the activation threshold. If an activation threshold is set too low this will 

result in high falls alarm rate and finally in a distrust of the system (in literature called cry-wolf effect). 

An interesting AIDE project tried to develop an adaptive forward collision warning systems, with one 

type of adaptation being to observe driver reaction time, so that drivers who habitually reacted quickly 

got later and hence less irritating warnings (Carsten 2007). 

Similar to a warning system the design of a guidance system can evoke different behavioral responses. If 

the guidance force is designed in the wrong way this could, in long term, cause after-effects (Petermeijer 

et al. 2014). Another example of opposed behavioral effect due to incorrect design is if driver intention 

and systems intention deviate. Griffiths & Gillespie (2005) showed that these differences in intension 

can lead to collisions with obstacles in the middle of the road since drivers were not able to overcome 

the system in order to avoid the obstacle. 
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2.3 Potential Changes 
In literature many examples of behavioral changes are given (Table 2). In this literature report the 

distinction will be made between performance changes and driver state changes. The same distinction 

will be used in chapter 3 (overview of measuring techniques and modelling driver state changes). Many 

different Performance changes can occur. Draskoczy et al. (1998) showed that BA may appear in 

changes of speed, following distance, way and frequency of overtaking, way and frequency of lane 

changing, late braking, change of level of attention etc. (Figure 6). Performance changes can in long-

term also result in a shift in locus of control. Locus of control is the individual’s assumptions regarding 

responsibility for the outcome of events. Driver state changes are even more diverse than performance 

changes. Novel ADAS systems are designed to increase performance but the response on driver state is 

not often accounted for. For instance, a LKAS assist the driver while steering, therefore steering 

becomes easier so less steering deviation is expected. Maybe in addition increase in speed is observed 

but it is highly unlike that the complete other side of the scope occurs (decrease of speed and higher 

speed deviation). In driver state monitoring this great variation can occur. Let’s consider the same LKAS, 

it can be interpret as useful and trustworthy leading to decrease in workload and increase of situation 

awareness (SA). The opposite can also occur, if the LKAS is distrusted an increase of workload can occur 

in combination with a decrease of SA (Stanton and Young, 2002). This example shows the wide variety in 

BA responses which is one of the reasons that makes BA research so complicated. Changes in behavior 

can also occur outside the two distinction made in this report. Martens & Jenssen (2012) showed a 

generation of extra mobility (e.g. taking the car instead of the train) or road use by “less qualified” 

drivers due to introduction of an ADAS. These changes are not taken into account since they do not fall 

within our definition of BA (i.e. do not reduce safety). Some potential changes often shown in literature 

can be seen in Figure 6. Table 2 shows different direct and indirect effects for several ADASs.  

Which change will occur and in what degree depends on the working principle and design of the ADAS 

but also highly depends over time (Table 3). Let’s consider the ACC system. Bekiaris et al. (2001) made a 

comprehensive review of driver behavior issues related to time. The behavioral changes differ a lot, 

especially over time. Therefore, difference between short and long term is discussed in the next section.  

Figure 6: Potential behavioral changes found in literature. Separated in terms of 
performance and Driver State changes 
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Table 2: ADASs and their potential effects on driving performance 
Source: Östlund et al. (2005) 
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2.4 Short-term vs Long-term adaptation 
BA responses highly depend on time. The different BA responses between short-term and long-term can 

be quite contradictory. Mistrust is a common short-term effect whereas, allocating attention to 

secondary task (indication of over-trust in system) is a common long-term effect. This variety shows the 

importance of taking time into account when performing a BA research. The question that need to be 

addresses is: (1) how much time is sufficient to observe BA. (2) When can an effect be considered as 

long-term (or short-term)?  

Time is considered as the main factor to short- or long-term adaptation. The definition for short-term is 

given by “Covering or applying to a relatively short period of time” – English dictionary2. The term 

relatively is of course very subjective, normally this is not that important but in BA research it is (due to 

variety in responses). Typically, a response is called short-term if the driver has driven an ADAS shorter 

than 1 week. The term long-term is used already from 1 week (Marchal-Crespo et al. 2010). A bias is 

involved in the definition of short-term and long-term. A common used example to indicate this bias is 

given by an experiment performed by Neisser (1976). Neisser (1976) studied a student for one day each 

week over a period of six months. The objective was to simultaneously read and write down one text. 

After six months she was able to perform this task with a performance (in terms of error) were equally 

good. Saad et al. (2004) comment about this experiment: “But the period of the six months was not a 

matter of choice, it was simply a matter of coincidence. In other words, if the above mentioned effect 

would not be evident in six months but earlier (e.g. in four months) or later (e.g. in eight months), the 

process would have stopped in the fourth month in the first case or it would have continued for another 

two months in the second case. But performance improvement could not be interpreted differently but 

as a long-term-effect in either case.” Regarding this example Saad et al. (2004) stated that: “we can 

never be certain that our interpretation is not biased, since the influence of other intervening variables 

is largely unknown and possibly it will never be unveiled.” 

A BA effect may not appear immediately when the ADAS is introduced, but usually appears after a 

familiarization period (Draskoczy et al. 1998). Draskóczy et al. (1998) argued that BA studies should 

                                                           
2 www.dictionairy.com  

Table 3: Driver behavior issues when introducing ACC 
Source: Bekiaris et al. (2001) 

 

http://www.dictionairy.com/
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conduct experiments at three different time frames: (1) just before system activation, (2) immediately 

(within a month) after system activation, and (3) after 6 months of system use. Only then the real safety 

effects can be studied and insight in BA can be gained. Martens & Jenssen (2012) summarized these 

characteristics of the learning phase and the typical problems a specific time frame in response to ADAS 

in table 4. The table is supported by experiences from longer-term studies of Jenssen 2010, Carstens 

2008, and Rudin-Brown et al. 2009. The first encounter or familiarization period is usually within 1-6 

hours. Typical problems during this phase are HMI related distraction or distrust in the system. This is 

also what Bekiaris et al. (2001) found in Table 3. The second phase is the Learning phase, usually has a 

duration of 3-4 weeks but the duration of the phase can vary to some extent depending on the type of 

ADAS studied. The durations used in this table are just to give a certain indication of general durations of 

certain phases that are applicable on the studies referred to above. Intuitive and continues systems will 

have shorter learning durations than systems that only apply during a specific time frame. For instance, 

an intuitive continues haptic gas pedal (Abbink et al. 2011 and Abbink et al. 2008) will have a shorter 

familiarization period compared to an ACC system that only works in case the speed is set. Therefore 

ACC will take longer time to learn simple because the user works more often with the haptic gas pedal. 

From phase 3 the drivers’ behavior reaches a sort of stability (Martens & Jenssen 2012). The driver gains 

a certain trust in the system and a shift in locus of control often occurs. A common problem during this 

phase is overreliance and drowsiness. Phase 4 and 5 are the phases that the driver learns to deal with 

malfunctions. During this phase loss of manual control skills can occur. 

 

 
 
 
Table 4: Characteristics of five learning phases in the behavioral adaptation to ADAS 
Source: Martens & Jenssen (2012) 
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2.5 Conclusion  
This chapter gives answer to the question: What are theories behind a BA and what are common BA 

triggers argued in these theories? 

Based on the theories discussed, the conclusion can be made that:  

- Subjective Risk and Task difficulty are the most common used triggers in many BA theories 

(Wilde 1998; Näätänen & Summala 1974; Fuller 2005). Many researchers have criticized that 

these motivational theories cannot generate testable hypothesis and thus tend to be 

unfalsifiable (Ranney 1994; Elvik & Vaa 2004; de Winter & Happee 2010), however, the 

influence of these factors can still be argued.  

- Drivers’ attitude towards the ADAS highly influence what kind of BA occurs: Drivers can see the 

system as slave or reference tool. Drivers seeing the system as slave tool have the tendency to 

misuse the system, whereas reference tool drivers use the system to drive as safe as possible. 

- Behavioral changes occur in: Driver State changes and Performance changes.  

- BA can be observed in all levels of task defined by Michon (1985): At strategic level: e.g. 

navigation is taken over by the automation resulting in over-reliance (people get lost when the 

system gives errant guidance). At Maneuvering level: e.g. caused by ABS, where people drive 

with a reduced headway time (Sagberg et al. 1996) and at control level: e.g. caused by Lane 

Departed Assistance resulting in reduced control when system malfunctions (Burns 2001).   

- BA is time dependent: A BA effect may not appear immediately when the ADAS is introduced 

but appears after a familiarization period (Draskoczy et al. 1998). This has to be taken into 

account when performing a BA research. Furthermore, the type of BA can be quite contradictory 

between short-term and long-term. Common short-term effect is Mistrust, whereas a common 

long-term effect is more related to over-trust like, for instance, allocating attention to a 

secondary task. 

- Finally, the design of a BA trigger is important. A bad design can lead to increased BA or even to 

turning off the ADAS (Parasuraman & Riley 1997). Unfortunately, the distinction between a 

“good” or “bad” design is not well-described in literature and need to be investigated further. 

Table 5 summarizes the most common BA triggers used in BA theories. 

 

 

  

Conclusion chapter 2 

Most well-cited BA theories include BA triggers based on: driver’s subjective risk assessment, 

task/utility management and driver’s attitude towards the novel introduced ADAS. Although these 

theories are well-cited they are also well-criticized. Most of these theories (i.e. Wilde’s RHS and 

Fuller’s TCI theory) are argued to lack the ability to generate testable hypothesizes resulting in the 

fact that contradictory theories are both still seen in current literature. Furthermore, it can be 

concluded that BA occurs on all hierarchical levels as is defined by Michon (1985) (i.e. Operational, 

Maneuvering and Strategic level) and is highly time depended. 
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Table 5: Behavioral Adaptation Triggers 

 

   

Triggers/Key element to 

a behavioral change Definition Effect Some Examples of Trigger used in literature

Subjective Risk

“Subjective risk estimate refers to the driver’s own estimate of the 

(objective) probability of collision. Such estimates of risk represent the 

output of a cognitive process, while the feeling of risk represents an 

emotional response to a threat, a distinction previously clarified” (Fuller, 

2005) 

If a change in Subjective Risk is perceived this can lead to a behavioral 

change. Several models use subjective risk as major trigger. Either stating 

that drivers tend to maintain the level of risk constant (Wilde's risk 

homeostasis (Wilde, 1998) or tend to keep risk below a certain threshold 

(Näätänen and Summala, 1974)

Wilde's Risk Homeostasis theory (Wilde 1998), Risk 

Threshold model (Näätänen and Summala 1974)

Task difficulty 

"Drivers appear to be able to make judgements of task difficulty easily and 

to behave in such a way as to keep the level of task difficulty within target 

boundaries" (Fuller, 2005)

"Driving task difficulty is inversely related to the difference between driver 

capability and driving task demand."(Fuller, 2005). If task demand change 

people will change behavior such to keep the task difficulty equal. Fullers Task-Capability interface theory (Fuller 2005)

Trade-off between 

performance and effort People tend to trade-off between performance and effort.

People will tend to make a trade-off between performance and effort. If 

people are rewarded with higher performance at the cost of a bit more 

effort, the chance of performing this is action is high. Same logic, if a little 

performance increase is gained with a huge effort, the chance of adapting 

is limited

Speed/accurate trade off (also known as Fitts Law) (Fitts 

1954)

Attitude towards ADAS
"An individual's plans to carry out the recommended response" (World 

Bank, 2010)  

According to Saad 2004: Drivers can see the new introduced ADAS as 

"Slave" system or as "Reference tool". Drivers that use the system as 

slave system can lead to risky driving behavior or allocating attention to 

secondary task. If change in attitude towards the system occurs this will 

directly lead to different driving behavior. Slave-Reference tool theory (Saad et al. 2004)

Trust in system The individuals trust in the system

Distrusting the system can lead to high workload and even stress 

resulting in low driving performance.  High trust in the system can cause 

shift in locus of control and allocation to secondary task. Mistrust is often 

a short-term effect, whereas overtrust is often a long-term effect. (Panou 

et al. 2007) Effect of trust towards ADAS (Hjälmdahl & Várhelyi 2004)

Competence Driving skills

Competent drivers make less unpredictable maneuvers and adapt in a 

different way than incompetent drivers. E.g. competence drivers are more 

often Sensation Seekers Sensation Seeking' (Zuckerman 1994)

Fear
"Emotional arousal caused by perceiving  a significant and personally 

relevant threat" - World Bank 

"Fear can powerfully influence behavior and, if it is channeled in the 

appropriate way, can motivate people to seek information, but it can also 

cause people to deny they are at-risk" - World Bank The threat-avoidance model' (Fuller 1984)

Self-efficacy
"An individual's perception of or confidence in their ability to perform a 

recommended response" - World Bank

"Raise individuals' confidence that they can perform response and help 

ensure they can avert the threat" - World Bank

Driving as a self-paced task governed by tension/anxiety' 

(Taylor 1964)

Intentions "An individual plans to carry out the recommended response" - World Bank

 Intention is one of the most important variable in predicting behavior 

change, suggesting that behaviors are often linked with one's personal 

motivation. Ajzens Theory of Planned Behavior (Ajzen 1991)

Utility Maximization

"The utility maximization model assumes that the driver has certain stable 

goals and makes decisions to maximize the expected value of these goals" 

(Panou et al. 2007) 

"Some of these goals are achievable more effectively through risk-taking 

behavior for example, speeding to save time or gain social status. These 

motivating factors are counteracted by the desire to avoid accidents as 

well as by fear of other penalties such as speeding tickets. Balancing goals 

with the desire to avoid accidents therefore derives driving behavior 

choice" - Panou et al. O'Neill (1977), Blomquist (1986)

Subjective Norm "What an individual thinks other people think they should do" - World Bank

External influences or subjective norm is very important in developing 

behavior. People’s behavior highly depends on what the society depicts as 

"normal"
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3 Overview of Techniques to Measure and Model Driver Adaptation 

for different applications 
In order to develop a comprehensive driver adaptation model it is important to gain insight in current 

behavioral measuring techniques. This section will give an extensive overview of state of the art 

measuring techniques to assess and model BA by answering the following question:  

What methods are applicable to measure and model BA? 

As described in section 2.3, behavioral changes can be divided into Performance and Driver State 

changes. Combined they can be used to comprehensively describe driving behavior. A model that 

understands and describes the human driver, can help designing ADASs that overcome the negative 

adaptations of the human driver. Carsten (2007) stated that “if there is a model that understands the 

driver, the potential of this system would be huge: it could give feedback to novices, assist elderly 

drivers in difficult situations, inform a driver when he or she is fatigued and adapt the operation of the 

vehicle to the needs of each individual driver”. In addition de Winter & Happee (2010) stated “based on 

the real-time monitoring of driver state and performance, it could give feedback and assistance to the 

driver and adapt the operation of the vehicle according to the driver’s needs in order to improve road 

safety”. To achieve such a BA model comprehensive measurements and assessing techniques to assess 

performance and driver state are needed. Before discussing the measuring techniques, first Michons’ BA 

classification scheme will be explained to give an overview of what kind of models are available.  

3.1 Types of driver behavior models 
Many different BA models can be found in literature from simple motivational models like Wilde’s risk 

homeostasis to extremely detailed mechanistic models (e.g. Boer et al. 2005 (Figure 7)). Michon (1985) 

proposed a simple classification scheme to distinguish between different driver behavioral models (table 

6). In one dimension it distinguished between input-output based models (Behavioral models) and 

internal state based models (Psychological orientated models). In the other dimension between 

taxonomic models and functional models. “Taxonomic models is essentially an inventory of facts. The 

pertinent relations that, in such a model, hold between these facts are those of sets: super- and 

subordination, identify, sequential relations (before, while, after) and measures on sets: proportions, 

likelihood or generalized distances.” (Michon 1985). According to Michon (1985) a serious limitation of 

taxonomic model is the inability to express dynamical relations between elements. Functional models 

(i.e. motivational models and mechanistic models) have limitations too. Motivational models are often 

too vague and tend to be unfalsifiable (OECD (1990), Michon (1985), de Winter & Happee (2010)). 

Ranney (1994) argues that motivational models have not fully been specified (let alone tested), and thus 

most of them remain as constructs rather than as entities leading to the generation of rules and 

mathematical relationships. On contrary Mechanistic models are sometimes too specific, fitting random 

patterns, and tend to over parameterized resulting in lack of predictive power (de Winter & Happee 

(2010)). Despite these limitations, mechanistic models are objective and can easily be falsify and, if 

designed well, can predict. An example of a well-designed mechanistic model is given by Boer et al. 

(2005). Boer et al. (2005) developed a driver vehicle car following model with lead vehicle speed as 

input. His model consist of an extremely detailed driver and vehicle model that accurately captures the 

relationship between pedal depressions and speed fluctuations. With this model he was able to show 

different control strategies with respect to the easy measureable metric THW (Time headway). Boer et 

al. emphasized that metrics used in driver behavior studies must always be shown in context. E.g. that a 
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lower THW metric is not necessarily a sign of degraded control performance but simply the result of a 

lower effort control strategy rather than a sign of greater struggle (Boer et al. 2005). In order to develop 

a good model it is important to have well-chosen  measurements techniques and metrics which can be 

used as input for BA models. This will be discussed in the next sections. 

 

 

Figure 7: Driver vehicle car following model with lead vehicle speed as input 
Source: Boer et al. (2005) 

 

  

Table 6: Summary of driver behavior model types 
Source: Michon (1985) 
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3.2 Driver State Monitoring techniques (DSM) 
Since behavioral changes can occur in terms of Performance or Driver State, Measurement techniques 

should also be discerned into Driver State monitoring techniques and Performance Based 

measurements. In current literature many different metrics and measurement techniques are used to 

measure the same quantity. For instance, Situation Awareness can be measured by Eye movements, 

reaction time, questionnaires, speed variation etc. These metrics all state to give an objective measure 

of the subjective quantity Situation Awareness. This section will give an overview of common used DSM 

techniques and which quantity they measure. Most of the given information is based on reviews written 

by Hou et al. (2015), Johansson et al. (2004) and Saad et al. (2004).  

3.2.1 What is DSM 
“Driver state describes the general condition of a human operator interacting with a system. The 

concept includes behavioral activity, physiological patterns and psychological states, and is strongly 

context dependent” (Pleydell-Pearce et al., 1999). Simply said DSM are the Eyes, Brains and Hands of the 

system. Eyes: to watch, see and observe the driver. Brains: to interpret, classify, label and asses driver 

states. Hands: to execute action of regulation/control (e.g. transition of control from driver to 

automation if the DSM notice that the driver is in a fatigue state). This section will not take the latter 

into account but mainly focus on observing and assessing driver states. The development of DSM 

techniques are essential to provide appropriate services for various driving situations. If the system is 

able to robustly recognize dangerous driver states this could prevent many accidents. Nowadays 

drowsiness/fatigue and distraction/attention are measured in commercial cars (Volvo 2007 “Driver alert 

control” (Figure 8), Ford-Lincoln 2013 “Driver alert system”). If detected, the car can interfere to get the 

driver in a different state (e.g. by sounding an alarm, or just to inform the driver about his current state). 

According to Hou et al. (2015) a well-designed adaptive systems should be able to monitor the operator 

and use this information to enable flexible task allocation between the operator and the machine to 

reduce operator workload and fatigue.   

Another new development in driver state measurement techniques is not only to warn the driver but 

also give additional information about his state. For example, it is found extremely useful to not only 

warn a fatigued driver but also give additional information about the magnitude. Barr et al. (2009) 

argued that “drivers underestimate the likelihood of actually falling asleep, the magnitude of sleepiness 

and its effect on impairment”. Current DSM techniques are not able to quantify such a state extensively, 

however, in near future this could be of great value. Even more important is the fact that driver state 

information can help in explaining why certain BA occur. 

Figure 8: Driver alert control, Volvo 
Source: http://blog.truecar.com/2010/12/22/spotlight-on-safety-drowsy-
driving-just-as-risky-as-drunk-driving/ 
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3.2.2 DSM approaches and technologies that can be implemented into ADASs. 
Fatigue, stressed, fearful, distraction, situation awareness, increased workload are all words that 

describes a human’s overall mode or state. These state have a significant impact on human ability to 

efficiently complete task when interacting with an ADASs (Hou et al. 2015). For instance, Hou et al 

(2015) stated that fatigued operators are more likely to perform at lower performance levels then fully 

alert operators. Additionally he mentioned that overworked and stressed operators are more prone to 

errors, and operators who are content are more likely to exhibit higher productivity then those who are 

fearful or distracted. Hou et al. (2015) classifies approaches that elicit data and draw conclusions about 

driver state into one of four categories with the following definitions: 

- Behavioral-based monitoring: Monitoring and making inferences from what the driver is doing 

- Psychophysiological-based monitoring: Monitoring and making inferences from the driver’s 

state of body and mind 

- Contextual-based monitoring: Monitoring and making inferences from the driver’s surroundings 

or working environment 

- Subjective-based monitoring: Monitoring and making inferences from what the driver 

communicates about his or her own state. 

To obtain a full or accurate picture of a driver state it is important to combine multiple categories 

simultaneously. Only then it can be assured that the driver state is correct and accurate measured. This 

is illustrated in figure 9. Next each type of DSM category will be discussed shortly.  

  

Figure 9: Visual relationship of the four primary types of driver state monitoring techniques. Combination-based monitoring draws on 
multiple subtypes. 
Source: Hou et al. 2015, “Intelligent adaptive systems”, Chapter 6 
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Behavioral-based monitoring 

“Behavioral-based monitoring refers to inference of operator state by observation of operator actions in 

response to tasks, the working environment, or other stimuli (Wood 2004). Operator actions can be 

conscious, subconscious, voluntary, or involuntary; all actions have the potential to provide meaningful 

data that can assist in accurately determining operator state.” (Hou et al. 2015). Behavioral-Based 

monitoring tries to capture the behavior of the driver. As we have seen in chapter 2, many factors can 

influence the drivers behavior (e.g. attitude towards an ADAS or fear etc. (see overview BA triggers in 

table 7). One of the methods is to look at the performance of the driver (discussed later in this chapter) 

but not always a behavioral change results into a performance change. An important behavioral-based 

monitoring technique that provides clues to determine operator state is Operator-control Interaction. 

More relevant behavioral-based driver state monitoring approaches (according to Hou et al. (2015)) are 

summarized in table 7. A benefit of behavioral monitoring techniques is that they are easy to measure. 

However, these measurements cannot be relied on too much due to the high variation in driver 

responses (e.g. maybe a driver increase grip force because it hands become slippery (sweaty hands due 

to heat in car) instead of an increased stress level indicator. So to obtain a complete assessment it is 

better to combine these measurements with psychophysiological-based monitoring techniques. 

 

 

  

Table 7: Summary of Relevant Behavioral-Based Driver State Monitoring Approaches 
Source: Hou et al. (2015), Chapter 6 
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Psychophysiological-Based Monitoring (PBM) 

Psychophysiological as: “Psychophysiology examines interactions between the mind and the body by 

recording how the body is currently functioning and relating the data to previously recorded behavior. 

The field is based on the premise that changes in the human body are related to changes in behavior, 

affect, and motivational state” (Hou et al. 2015) 

Currently in literature a surge is going into PBM techniques. The techniques are becoming more and 

more reliable and less obtrusive which enables car manufactures to use psychophysiological monitoring 

techniques to obtain information about operator state. It is often argued that emotional and behavioral 

states are easier to identify than operator state related to task performance (Hou et al. 2015). In driving 

research PBM techniques are often used to define cognitive state, specifically mental workload, both 

qualitatively and quantitatively. Mental workload is conventionally determined using subjective 

questionnaires like the NASA-TLX (NASA Task Load Index), SWAT (Subjective Workload Assessment 

Techniques) or the simple OW (Overall Workload). However, PBM techniques like Cardiovascular (e.g. 

heart rate, ECG), Electroencephalogram (EEG to measure brain activity), Eye Measurements (Eye 

tracking or Pupil Dilation), Respiratory Measurements , Electro Dermal Response (EDR, skin conductivity) 

or Steering Entropy (level of disorder further discussed in section 3.3.2) can be used to assist these 

questionnaires to get a more objective indication of the subjective measurement workload. 

A comprehensive overview of relevant PBM techniques and examples of their current use is given in 

table 8. Some PBM techniques that deserve to be highlighted because they are either often used in 

literature or considered as promising PBM techniques to use in the future. 

Electroencephalogram: EEG records brain activity. It detects electrical activity in the brain using 

electrodes attached to the scalp. The number of electrodes attached can vary from 12 (clinical settings) 

to 256 (research settings).  The systems measures activation of groups of neurons (brainwaves) on a 

time scale. Karamouzis (2006) showed that these measured brainwaves can be correlated to a specific 

stimulus (e.g., a specific sensory, cognitive, or motor event) to determine event-related potential (ERP). 

ERP is basically the understanding of what electrical activation takes place to a specific stimuli. Some of 

the great benefits of EEG research is that it is noninvasive, and have a high temporal resolution. What 

makes EEG so interesting for driving studies is that the workload level, high-order cognition and image 

processing all have unique patterns that can easily be detected by EEG brain scans. Downside of EEG 

records is that the signal-to-noise ratio is really bad (Gaillard and Kramer 2000) and it can be found 

obtrusive (Figure 10) (More benefits and limitations of current PBM techniques are argued in the 

discussion) 

Figure 10: Obtrusiveness of EEG Measurement techniques (in research setting) 
Source: Retrieved 01-09-2015 from: https://www.psychologytoday.com/blog/talking-about-
trauma/201409/new-eeg-technology-makes-better-brain-reading 
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Electro dermal response (EDR): EDR is also known as galvanic skin response and measures the 

conductivity of the skin (or skin’s impedance). Several studies have shown that EDR is an indicator of 

mental effort, arousal and vigilance level (Sharpe et al. 1995; Kapoor et al. 2007). In other words, if 

people are mentally or emotionally aroused a response is triggered in the skin. The different impedance 

is mostly affected by sweat. EDR metrics used are skin conductance level and skin conductance variation 

(root mean square of the skin conductance signal). Some benefits of the EDR technique is that EDR is 

less sensitive to environmental noise compared to other PBM techniques and is unobtrusive (can be 

implemented in the steering wheel). A big downside of this techniques is that it has a poor temporal 

resolution, high latency between stimulus and response and qualitative and emotion aspects of affect 

are not reflected in EDR. The latter is the reason that EDR is never used as single measurement in driving 

related research. 

Cardiovascular Measurements: Cardiovascular is the most commonly used index to asses cognitive 

workload but they also have shown to be good indicators of cognitive effort, compensatory effort and 

positive or negative valence of emotion (e.g. attractiveness) (Hou et al. (2015)). Often used 

cardiovascular measurements are: electrocardiogram (electrical activity of the heart over time), heart 

rate and heart rate variability (HRV). These three measurements give a good indication of cognitive 

demands and attention. Cardiovascular measurements are often used in literature due to their 

unobtrusiveness, high reliability and considered as easy to use and interpret. A downside is that the 

accuracy of heart rate measurements is affected by respiration, physical work and emotional strains, 

which could make measurements inaccurate if not used in combination with other measurements (Cain 

2007). 

From the information provided in the section can be concluded that PBM techniques provide an 

objective and noninvasive way to quantify indexes like workload and SA. Hou et al. (2015) named 3 

general benefits of PBM techniques: 

- Objective outcomes, 

- Unobtrusive sensor apparatus, 

- Immediate and continuous results. 

PBM techniques still suffer from some issues that limit the use of PBM in current research. Examples of 

limitations given by Hou et al. (2015) are: 

- Inherently noisy sensor data, 

- Need for specialized equipment that are often expensive, 

- Data acquisitions issues: “Filters and artifact removal strategies for PBM technologies are 

neither standardized nor easily understood. Issues such as latency and recovery time must also 

be addressed further” (Hou et al. 2015) 

- Data processing issues: “The large amounts of data collected from PBM technologies require 

computing technology capable of real-time processing to provide meaningful results for systems 

adaptation” (Hou et al. 2015). 

A more comprehensive summary of limitations and benefits of each specific PBM techniques can be 

found in the discussion. 
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Table 8: Summary of Relevant Psychophysiological Monitoring Techniques 
Source: Hou et al. (2015), Chapter 6 
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Contextual-Based and Subjective-Based Monitoring 

Information about the environment is essential in understanding driving behavior.  A well-known 

example that shows the importance of contextual information is the “ant on the beach” example by 

Simon (1981). Simon argued that “the ant's path is irregular, complex, hard to describe. But its 

complexity is really a complexity in the surface of the beach, not a complexity in the ant" (Simon, 1981). 

The context of a situations can give additional information in explaining the operator state. For example, 

higher stress/workload is expected while driving in an urban area than while driving on a rural road. This 

additional information can help in accurately estimate a current state. The driver perceptions of the 

environment is measured using the metric Situation Awareness. The most used technique to assess SA is 

the self-reported measure SAGAT (Situation Awareness General Assessment Technique). SAGAT is done 

in simulator studies where the simulation is frozen and displays are blanked. Subjects are then queried 

to describe their perception of the situation at that moment. Eye tracking can also be used to asses SA 

by making the assumption that if one is fixating on an object this object is also comprehends. 

Subjective-base monitoring is the last approach that can help define operator state. “Subjective-based 

monitoring refers to approaches that elicit data about operator state by asking the operator. Subjective 

techniques can only be based on what the operator remembers and their interpretation of their 

experience (Cain 2007).” (Hou et al. 2015). Subjective input can help the system in deciding which state 

the driver currently is. 

None of the 4 monitoring techniques is suited to accurately measure driver’s state. Even with the 

combination-based approach it is difficult to obtain 100% correctness. A reason could be that some 

indexes, like for example workload, do not have a general used definition and thus leave room for own 

interpretation. Nevertheless, the four DSM techniques combined are essential in order to fully 

understand and model BA. 

  

Figure 11: Simon (1981) Parable about an ant on the beach. 
Source: Vicente (1999) 
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3.3 Performance-Based Monitoring Techniques 
Driver’s performance deals with the driver’s ability to control the vehicle in both lateral as longitudinal 

direction. This section will summarize common used metrics to asses driving performance. Most of the 

information is based on the comprehensive metric reviews of Östlund et al. (2005), Johansson et al. 

(2004), Saad et al. (2004). 

 Performance-Based Monitoring Techniques are in general easy to measure and compute, which make 

them highly suited in online driving behavior research. Saad et al. (2004) summarized the 46 most used 

metrics from 105 driving researches (figure 12). These metrics are of course highly context depended 

but can still be used as indication of often used performance metrics. The most important metrics will 

discussed in terms of Accident risk, Controllability and Control Effort in section 3.3.1 and 3.3.2, because 

these factors are in chapter 2 concluded as important BA triggers (e.g. Subjective Risk, Competence and 

Performance-Accuracy Trade-Off theory). 

 

3.3.1 Driving Performance Metrics related to Accident Risk 
How a performance metric actually correlates to accident risk is difficult to proof. Östlund et al. (2005) 

stated that this is due to a lack of sufficiently detailed behavioral data in existing accident databases as 

well as the lack of a basic understanding of the behavioral factors that cause accidents. Yet, the basic 

assumption is that driver performance metrics are directly related to accident risk. 

Figure 12: List of commonly used driving performance metrics 
Source: Saad et al. (2004) 
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BA is defined as unintended changes caused by the introduction of an ADAS. These unintended changes 

are defined as changes that reduces the safety benefits of the ADAS. Hence, to proof behavioral 

adaptation it is important to have metrics that are accepted in literature as indicators of accident risk. 

Examples of such indicators are: 

- Time to Lane Crossing (TLC): TLC is defined by Godthelp and Konings (1981): “TLC is defined as 

the time to reach the lane marking assuming fixed heading angle and constant speed.” 

Johansson et al. (2004) argued that in driving the TLC metric could be regarded as a reflection of 

the driving strategy, or to be more precise, the time-based lateral safety margins adopted by the 

driver. 

- Time To Collision (TTC): “TTC represents the time until collision with an object (e.g. a lead 

vehicle) given the current trajectories and velocities of the own vehicle and the object” 

(Johansson et al. 2004). TTC is often defined as the distance between two cars (from bumper to 

bumper) divided by the speed difference to the lead vehicle. Sometimes in literature Headway 

Time is used instead of TTC, which is very similar to TTC (see figure 13). Varieties of the TTC 

metrics are: Minimum TTC, Mean of TTC local minima or Time Exposed TTC (TET). TET measures 

the proportion of time of which the TTC is less than X seconds (used by Östlund et al. (2005)). 

Van der Horst and Godthelp (1989) suggested that only TTC values below 1.5 seconds should be 

regarded as critical. 

- Velocity: Speed is the most used metrics in BA research. Theories like Wilde’s risk homeostasis 

or Fullers task capability model all use speed as BA indicators. Speed is directly related to 

accident risk as is proven many studies. Small speed level changes result in significant changes in 

the number of accidents (see e.g. Salusjärvi, 1981; Finch et al. 1994; Nilsson, 2004).  In addition, 

higher speed variance is correlated with more accidents. Brehmer (2011) argued that accident 

probability is lowest for cars driving with an average speed, but increases for drivers who 

deviate more from the average speed. This suggest that lower and more even velocities mitigate 

accident risk.  Speed metrics that take this into account are: Mean velocity, Variance of Velocity 

(standard deviation of the velocity), Maximum Velocity. 

Figure 13: Time to Collision (TTC) and Headway Time (THW) 
Source: Adopted from lecture 1, Human Controller course, http://ocw.tudelft.nl/ocw/ 
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3.3.2 Driving Performance Metrics related to Controllability and Control Effort 
Although one could argue whether controllability and effort directly influence safety (and therefore 

directly related to BA), they do increases the likelihood of an accident. Controllability is defined as the 

ability to control the car. Controllability can be expressed in lateral (steering-based metrics) and 

longitudinal (velocity-based) control. Control efforts metrics can be used to indicate whether a conflict 

arises between the ADAS and the driver (which could cause BA). Driving performance metrics related to 

controllability and control effort are: 

Steering Reversal Rate (SRR): “The metric represents the number of times that the steering wheel is 

reversed by a magnitude larger than a specific angel, or gap” (Johansson et al. 2004). The threshold or 

gap is in literature often between 0.5 to 10 degrees. In some cases velocity is used as threshold rather 

than position. The metric is then called Steering wheel Action Rate (SAR) and is very similar to SRR. SRR 

and SAR are common used as a driving performance metric due to its simple computation.  SRR and SAR 

reflects drivers control effort. Many steering reversals are interpreted as high effort without significant 

performance gain. In other words, a high SRR or SAR is often considered as inefficient steering behavior. 

High frequency component (HFC) of steering wheel angle: Spectral analysis can be used to asses driving 

performance. HFC analysis which frequency bands are affected by different factors. A high HFC means 

more power on the higher frequencies, which can be interpret as more steering reversals. As discussed 

at SRR, many steering reversals (high HFC) reflects a higher control effort. In practice SRR is more often 

used than HFC since SRR is easier and faster to compute than HFC.  

Steering grip force: Steering grip force is often used as metric to asses steering control efforts. The 

assumption is made that steering grip force reflects drivers’ efforts put into steering control. Östlund et 

al. (2005) argued that “measuring steering grip pressure gives good opportunities to directly assess 

steering control efforts early in the chain of driver-vehicle reactions. Behind this statement lies the 

assumption that steering grip force reflects driver’s efforts put into steering control. Both hands on the 

steering wheel could indicate that the driver is better prepared to cope with an unexpected event. Also 

a firmer grip or more active grip on the steering wheel could be an indication of the driver surge to be in 

better control of the steering”.  

Steering Entropy: Boer 2000, described steering entropy as a promising way to assess workload and 

controllability. A high steering entropy is associated with high workload and low performance (Boer 

2005). It uses the assumption that a low workload driver does not deviate much from a predictable 

baseline trajectory. The entropy is calculated based on the error between the prediction and the current 

steering behavior. The prediction in Boer (2000) was obtained using an averaging filter. This prediction 

signal is used to calculate the 90th percentile α. This α is used to divide the signal in i bins, where the bin 

edges are chosen as ± (0, 0.5α, α, 2.5α, 5α). The measure of disorder or entropy is then calculated with 

the formula: 

Where I is the number of bins and pi stands for the proportion of the ith bin and is calculated from the 

experimental data. 
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Pedal movement/force: Similar to steering grip, pedal dynamics can be used to asses control efforts. 

Frequent pedal movement often reflects drivers’ effort needed to control the speed. Similar to SRR, 

frequent pedal movement are considered as inefficient driving. 

3.4 Behavioral Adaptation Models for different applications  
The first part of this chapter showed different measuring techniques and metrics. Apart from measuring 

BA there have also been made attempts to develop predictive BA models, but what does such a model 

really need to contain? The objective of such a model is clear, to make predictions of the negative safety 

reducing actions of the driver in order to be able to counteract this. In other words, a model that can 

predict risky behavioral adaptations or actions. Possible solutions that mitigate BA will not be treated in 

this literature report but would really interesting for future research. 

 

Model needs to be Hierarchical (i.e. applies on Operational, Tactical and Strategical level) 

Most driver behavior models found in literature are based on quantitative modelling of stabilized 

behavior (i.e. don’t take into account behavioral adaptation). One famous example of quantitative 

modelling is McRuer’s steering model (Figure 14). He modelled a driver’s steering behavior based on 

lateral position errors and heading angle errors. McRuer’s model explicitly quantify relations between 

entities which makes this model easier to validate compared to the motivational models described in 

chapter 2. In McRuer’s model the assumption is made that a driver behaves like an optimizer that 

minimizes the steering and heading error. However, this statement does not always hold since drivers 

tend to keep the car within safety boundaries rather than truly minimizing the error (e.g. drivers may 

swerve during driving without considering this driving behavior as bad performance (see also 

Performance-Accuracy trade off theory in Chapter 2)). Furthermore, McRuer’s model only applies on 

only operational level (e.g. takes only lateral control into account and does not model longitudinal 

control or higher levels such as maneuvering). Winsum (1996) suggested that driving models that apply 

on only one level may produce meaningless results when behavior on another level is excluded from 

examination. “For instance, if the effect of a road measure on speed is examined it should also examine 

the effects on operational performance at the same time. Of course practical problems may prevent this 

and this is one of the reasons why simulators may be useful.” Same conclusion was also drawn in 

chapter 2, where the author argued that BA occurs on all levels of driver task defined by Michon (1985) 

(i.e. on operational, maneuverable and strategical level). 

 

Figure 14: Compensatory model of driver steering 
Source: McRuer et al.  (1977) 
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Model needs to consist of quantitative values 

A simple qualitative model that does include these three levels of operation is given by Rudin-Brown and 

Noy (2002) in Figure 15. This model uses many important components (triggers) some of them are also 

mentioned in chapter 2 like Trust, Competence and Personality (Locus of Control). Martens & Jenssen 

(2012) argued that this model does not describe relevant feedback on the impact of the control loop, 

which may differ depending on vehicle characteristics (e.g. ADAS). “For example, when an ADAS like ACC 

is activated the driver is out of the loop in terms of acceleration and deceleration control actions. The 

driver is only in the loop if he or she monitors the process and decides to intervene (some may use the 

spare capacity ACC system assistance offers to send text messages, glance at incoming mail etc.). The 

ACC sensors take over the driver detection of headway and have a direct impact on headway distance 

with a feed forward loop to the traffic situation as the movement of the ACC equipped car can be 

observed by other road users. This feedback loop to other road users is based on characteristics of 

system function, not on driver actions.” (Martens & Jenssen 2012). Rudin-Brown’s model is useful in 

terms of describing important factors of BA and their influence on all three driving task levels but is way 

too simple to make actual predictions. An already more detailed model that predicts BA and its 

associated effect on situation awareness and workload is given by Weller and Schlag (2004) (Figure 16). 

This model uses changes in vehicle (implementing an ADAS) or environment as input and three basic 

questions to determine whether BA will occur. This model basically combines two motivational models 

namely Wilde’s risk homeostasis model (Wilde 1998) and the utility model defined by O’Neill (1977) 

(both models described in chapter 2). Although similar models are often used in literature, they are 

impossible to use as prediction tool due to their vagueness and lack of qualitative results (e.g. do not 

explicitly explained what kind of behavioral change will occur and to what degree). These models often 

fail in generating testable hypotheses (Ranney 1994). 

 

 

 

 

 

Figure 15: Qualitative model of BA 
Source:  Rudin-Brown & Noy (2002) 
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As discussed in the beginning of this chapter, Michon (1985) categorized models into different 

categories. So far, each discussed model is considered as a mechanistic models, however the working 

principle of these models is still quite diverse. Therefore, Michon (1985) made an additional distinction 

within mechanistic models: the servo-control models and the information-flow models. Servo-control 

models describe signals that are continuous in time (e.g. McRuer’s model), while information flow 

models involves discrete decisions (e.g. Weller and Schlag). Unfortunately, both types of models are 

often not considered as suited prediction tools due to either over-parameterizing (de Winter & Happee 

2010) or lack of quantification (e.g. in the Weller and Schlag BA model: How can subjective 

enhancement of safety margins be quantified?). So what are models that can predict BA or predict 

driving behavior in a hierarchical quantitative way? A method that recent years is becoming more and 

more popular as human behavior prediction tool are the stochastic models. 

 

BA Model as probabilistic tool 

Carsten (2007) argued that the only possibility to model driver behavior is using a stochastic model. He 

stated: “Rather than predicting precisely and reliably what a driver will do at any moment - an endeavor 

almost certainly doomed to failure because of the variability of human response both between and 

within individuals - a model should attempt to predict the probability of error or failure and thus current 

and future risk”. This conclusion is strengthened by Evans (1985) who compared the expected safety 

effects with actual safety changes in 26 studies and concluded that no behavioral model was available to 

predict effects of changes in the road-vehicle-driver system. Current models have still not proven to be 

able to predict these changes. The probabilistic modeling approach assumes that drivers tend to driver 

in a reproducible manner (Campbell et al. (2013)). The same assumption is used by Boer (2000) in the 

Steering Entropy metric. Many researchers agree that the probabilistic prediction approach is a 

promising driver behavior modelling technique (Angkititrakul et al. 2011; Campbell et al. 2013; Gindele 

et al. 2015; Kumagai & Akamatsu 2004; Kishimoto & Oguri 2008; Kumagai et al. 2003; Pentland & Liu 

1999; Sadigh et al. 2013). Probabilistic driver behavior models have shown to be able to correctly predict 

quantitative information about driver behavior depending on state (Sadigh et al. 2013). However, these 

models suffer from the same problem as deterministic models, they have only been validated for 

Figure 16: Process model of behavioral adaptation 
Source: Weller & Schlag (2004)  
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specific and limited aspects of the driving task (e.g. apply on one task level such as McRuer’s steering 

model). For instance, Kumagai et al. (2003) successfully predicted the stopping behavior at an 

intersection using a Bayesian network but this only works at an intersection where no maneuver can be 

performed. Recently, Gindele et al. (2015) published a novel driver decision making and planning 

prediction approach using a hierarchical Dynamic Bayesian model. This stochastic approach significant 

improves estimation and prediction accuracy of the learning approach, in addition they argued that this 

stochastic approach can cope better with noisy sensors and uphold a valid estimation, even if traffic 

participants are occluded for longer periods of time. Despite these promising results current stochastic 

models all predict stabilized behavior instead of predicting adaptation. 

 

BA Model as Risk Compensation Prediction 

As discussed in chapter 2, risk is one of the most important reasons for BA. The definitions of BA 

(“unintended behavioral change that limit the safety benefits”) is directly related to risk, since lower 

safety benefits is a higher risk. In other words, predicting BA is equivalent to predicting risk. 

Unfortunately, the models that involve subjective risk tend to be impossible to validate and thus 

impossible to use as predictive tool. However, subjective risk could be divided into entities that can be 

quantitative measured. Carsten (2007) argued five major categories of driver capability, performance 

and behavior that are related to risk: 

  

1. Attitudes/personality  

2.  Experience  

3.  Driver state (impairment level)  

4.  Task demand (workload)  

5.  Situation awareness 

 

These five categories and their relationship to one another can be seen in figure 17. Winsum (1996) 

agreed that this model captured the most important factors that are related to risk. He emphasized the 

importance of adding experience (skills) and level of performance to the equation: “The line of 

reasoning makes clear that the concept of risk becomes more meaningful if skills and level of 

performance are added to the equation. This is to say that a certain speed may not be as risky for one 

person as for the other if they differ in certain required perceptual-motor skills, from the same 

Figure 17: Relationship between categories of driver factors and risk 
Source: Carsten (2007) 
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perspective as the fact that flying an F16 fighter plane is considerably more risky for the author of this 

thesis than for an experienced pilot”. 

Although Carsten clearly explained why each factor is related to risk he didn’t clearly stated the 

correlations between factors and the way they can be measured. The same problem occurs with 

motivational models, without clearly describing correlations and quantifications this model leaves room 

for own interpretation. A great advantage of this model is that most of the categories objectively can be 

measured. Driver State, Workload and Situation Awareness can measured using the techniques 

described in the beginning of this chapter. The factors not explicitly explained can also be measured 

objectively. For example, Jamson (1999) argued that driving experience can be measured by looking at 

drivers steering behavior. He argued that novice drivers use a reactive steering behavior, whereas 

experience drivers use a more feed-forward (i.e. anticipating) strategy. Attitudes/Personality, is difficult 

to measure real-time but can be measured using questionnaires. According to Carsten the last chain 

towards risk is performance. Performance based metrics like Speed, Speed variability, Lane Keeping 

performance (TLC) and Time to collision (TTC) are related and validated by several models to accident 

risk (See also section 3.3). As already discussed above, one of Carstens model major drawback is the lack 

of quantitative relations between the different categories which makes this model currently impossible 

to use as predictive tool. 
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3.5 Conclusion 
This chapter summarizes the most common measure and modelling techniques used in BA studies. The 

question that this chapter aims to answer is:  

 

What methods are applicable to measure and model BA? 

 

In literature several measuring techniques are used to measure the same quantity. In the discussion the 

best suited metrics and measurements techniques to use in a BA research will be discussed. Behavioral 

monitoring techniques can basically be divided in Driver State Monitoring Techniques (DSM) and 

Performance Based Metrics. This distinction is needed since a behavioral change is not always 

observable in terms of performance (e.g. a stressed driver may still drive with the same performance, 

but the stress signs were observable in terms of driver state indicators like: higher heart rate, higher grip 

force, sweaty hands etc.). DSM approaches that elicit data and draw conclusions about operator state 

can be categories into four categories: behavioral-based monitoring (e.g. operator-control interaction), 

psychophysiological-based monitoring (e.g. heart monitoring, eye tracking and electro dermal response 

measurements), contextual-based monitoring (e.g. using road information) and subjective-based 

monitoring (e.g. using drivers subjective input). To obtain the best and accurate picture of the driver’s 

state all four categories should be considered simultaneously (Hou et al. 2015). Performance-Based 

Monitoring techniques (PBM) monitors driver’s ability to control the vehicle in both lateral as 

longitudinal direction. Compared to other DSM techniques, PBM techniques are in general easier and 

faster to obtain which make them better suited (and therefore often used) for online driving behavior 

research.  

The performance metrics were discussed in relation to Accident Risk, Controllability and Control effort 

since these factors are in chapter 2 concluded as important triggers to risk (e.g. Subjective Risk, 

Competence and Performance-Accuracy trade-off theory). Currently, only fatigue and drowsiness are 

actually measured and used in commercial vehicles due to the complexity and cost of many of the other 

techniques. Some often cited BA models were treated. From these models it could be argued that a 

well-designed BA model consist of the following criteria: 

- Hierarchical structure: A BA model needs to have a Hierarchical structure as defined by Michon 

(1984) (e.g. apply on operational, maneuverable and strategical level). Winsum (1996) argued 

that one-level model predictions may be meaningless when behavior on another level is 

excluded from examination. 
- Consist of Quantitative Parameters: Prediction models need to deal with quantitative values in 

order to make the results directly useful in the design of ADASs. Models that lack of quantitative 

values (e.g. motivational models) often fail in generating testable hypotheses (Ranney 1994).  

- Predict Future Risk Taking Behavior (preferably in a stochastic way): Instead of predicting 

behavior in general, a BA predictive model needs to predict future risk or the chance of changing 

behavior in a risky manner. This chapter argued that the subjective term risk can be divided into 

5 quantitative categories: Attitudes/personality, Experience, Driver State (Impairment level), 

Task demand (workload), Situation Awareness. Where these categories can be used in a BA 

model instead of only the term “risk”. Furthermore, this predicting is preferably done in a 

stochastic way. Rather than to predict what a driver will do at any moment at any time (which is 

almost doomed to fail due to the variability in human responses) a model should predict the 

probability that a certain behavioral change will occur. Probabilistic modelling use the 
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assumption that driver tend to drive in a reproducible manner (which is validated by Campbell 

et al. (2013)). 

  

Conclusion chapter 3: 

Currently no BA model was found that meet the criteria’s of being: Hierarchical, Consist of 

Quantitative Parameters and Predict Future Risk Taking Behavior. The conclusion can be drawn that 

no suitable predictive BA model is available at this moment. 
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4 Discussion 
It is essential to have well-defined metric and measurement techniques in order to be able to obtain 

quantitative parameters that can be used in models that predict BA effects to novel ADASs (for example 

a Haptic Shared Control System, as discussed in the introduction). This report described several models 

and measuring techniques that could be used to asses and predict BA. In order to distinguish between 

these models and measurement techniques table 9 to 11 summarizes the benefits and limitations of 

each model and technique.  

Table 9 shows that current BA models are limited by either working in only one hierarchical level (e.g. 

McReur’s Steering Compensatory model) to not using quantitative parameters (Rudin-Brown’s 

Qualitative BA model and Weller and Schlag’s Process model of BA). Without having quantitative 

parameters it is impossible to make quantitative predictions of BA and to generate testable hypotheses 

(Ranney 1994). For ADAS designers (i.e. car manufactures) it is not only interesting whether a BA will 

occur but in what degree as well. Moreover, as stated in chapter 3, instead of predicting what driver will 

do at any moment at any time it could be better to predict the chance of a BA in order to cope with the 

variability in driver responses to an ADAS. Stochastic models have shown to be able to predict stabilized 

behavior (Angkititrakul et al. 2011; Campbell et al. 2013; Gindele et al. 2015; Kumagai & Akamatsu 2004; 

Kishimoto & Oguri 2008; Kumagai et al. 2003; Pentland & Liu 1999; Sadigh et al. 2013). Unfortunately, 

no BA models can be found in literature that predicts BA in a stochastic way. This is recommended to try 

in future researches. Another problem that many models suffer is the use of the quantity “subjective 

risk”. Models that contain this quantity are often argued as untestable due to their lack of quantitative 

parameters (See conclusion chapter 2). A solution to this problem is given by Carsten’s risk model 

(Carsten 2007), who separated “risk” into 6 quantifiable categories: Attitudes/personality, Experience, 

Driver State (Impairment level), Task demand (workload), Situation Awareness, Performance. These 

categories could be used in a BA model instead of the term subjective risk resulting in a model that uses 

the term risk without being untestable.  

As discussed in chapter 3, techniques to measure BA can be divided into Driver-State Monitoring (DSM) 

and Performance-Based Monitoring techniques. In table 10 & 11 the benefits and limitations of the in 

this report considered measuring techniques are summarized. Based on these two tables the conclusion 

can be drawn that Performance-Based Monitoring techniques are in general easier to measure and 

compute but cannot be used as reliable measurement tools for the assessment of SA and Workload. 

DSM techniques are stated to be good Workload estimators, especially if used in conjunction with other 

DSM techniques. As conclude in chapter 3, a model that can predict and asses BA would be a model that 

predicts risk taking behavior. Risk can be divided into 6 quantitative categories. So the question raises: 

which of the in Table 10 and 11 described DSM and Performance Metrics are best suited to quantify one 

of these categories?  

Driver state (Impairment level): Impairment levels are currently measured in commercial vehicles by use 

of Eye-Tracking techniques. The number of blinks and fixations (i.e. eye gaze strategy) can be used to 

determine impairment level. Other techniques that can assess impairment level are: EEG and Heart Rate 

Monitoring techniques, however, as table 10 argues these techniques either require expensive 

equipment (EEG) or the measurement accuracy is highly affected by other physical and cognitive factors 

(Heart Rate Monitoring). Therefore, Eye-Tracking in combination with Heart Rate Monitoring is argued 

as best suited to assess impairment level. 
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Performance: Performance metrics that asses BA are the metrics that are relate to risk taking behavior. 

TLC, TTC and Speed metrics are directly related to accident risk, which make them initially all three 

useful to use in a BA model. However, Östlund et al. (2005) argued that if the lane markings do not 

represent the safe travel path as perceived by the driver, either very large TLC values will be found, or 

there will be several line crossings, resulting in unreliable TLC metrics which are very difficult to 

interpret. Despite that, TLC, TTC and speed metrics capture most common BA changes argued in chapter 

2 (e.g. closer headway time, higher speed. Late braking, frequency of overtaking, etc. (see figure 6 

section 2.3)). Therefore TTC, TLC and Speed metrics are recommended by the author as one of the most 

important metrics in BA studies/models.  

Task demand (Workload): Workload is conventionally determined using subjective questionnaires (e.g. 

NASA-TLC). Downside is that it cannot be used as online measurement technique. Alternatives, that can 

be used online, are the DSM technique EEG, Eye-Tracking or Entropy metric. EEG can identify unique 

brain scan patterns for different level of workload, however, the specialized equipment is expensive and 

subjects can become stressed due to the sensors placed on the scalp, resulting in a biased result (e.g. 

higher workload due to obtrusive sensors). A non-obtrusive technique is Eye-tracking. It is argued that 

pupil dilation is correlated to Workload in several studies (Pomplun & Sunkara 2003), however, the 

accuracy of this method is highly affected by lighting conditions and is not often used in current driving 

related studies. Another promising technique to asses Workload is the level of Entropy. Boer (2000) 

showed that the Entropy metric is very sensitive to cognitive modes. Downside of this technique is the 

need for baseline data, which cannot be used for statistical comparison. Due to the downsides of the 

alternatives the conclusion has to be made that the conventional questionnaires are best suited to asses 

Workload (if no online workload results are needed). 

Situation Awareness: As stated in chapter 3, SA can be measured by means of the SAGAT technique. 

Downside of this technique is that it can only be used in driving simulator studies and it abruptly 

interrupts the driving task. Less interrupting SA technique is Eye tracking. Eye tracking can be used 

online. It makes the assumption that if a person fixates on a certain object, this subject really 

comprehends this object as well. The correctness of this statement can be argued and need to be 

investigated further. Regarding this statement, Damböck (2013) showed that drivers with eyes on the 

road were not always able to prevent an accident (due to late responses). This suggest that fixating on 

an object does not evidently mean they also comprehends it. 

Experience: Experience can also be obtained using questionnaires (ask the driver how often they drive in 

a month etc.). An alternative is looking at drivers steering/pedal behavior. Jamson (1999) argued that 

novice drivers have a more reactive steering behavior, whereas experience drivers use a more feed-

forward (i.e. anticipating) strategy. This result suggests that steering performance metrics like SRR and 

Grip Force can be used to indicate experience but this needs to be investigated further as well.  

Finally Attitudes/Personality, is more difficult to quantitatively assess. Campbell et al. (2013) showed 

that people tend to drive in a reproducible manner, which could indicate that performance metrics TLC 

and TTC can also be used as quantified measure to value personality. However, much more research 

needs to be conducted in Attitude and Personality assessment. Especially, since chapter 2 concluded 

that the way drivers adapt their behavior highly dependents on the driver’s attitude towards the system 

(e.g. using the system as Slave, turning off the system etc.). 
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Table 9: Benefit and Limitation of some BA models 

Models Beneftis Limitation

McRuer's  Steering Compensatory model  (McRuer et a l . 1977)

\+ Highly detai led, \+ Uses  quanti tative parameters , \+ 

Can be used real -time

\- Models  s tabi l i zed behavior (instead of BA), \- Only 

works  in one dimens ion (i .e. on operational  level ), \- 

Assumes  driver as  optimize control ler, which does  not 

a lways  hold

Rudin-Brown's  Qual i tative BA Model  (Rudin-Brown & Noy 2002)

\+ Describes  effect  on a l l  three driving task 

dimens ions , \+ Describes  effect of common BA triggers  

 \- No quanti tative output/input parameters , \- Does  not 

describe relevant feedback on the impact of the control  

loop (Martens  et a l . 2012)

Wel ler and Schlag's  Process  model  of BA (Wel ler & Schlag 

2004)

\+ Uses  speci fic questions  to determine whether BA 

occurs . \+ Describes  potentia l  changes

\- Does  not use quanti tative parameters ,  \- Bas ica l ly 

combination of motivational  models , and therefore fa i l s  

in generating testable hypotheses .

Stochastic Models  (e.g. Kumagai  et a l . 2003; Sadigh et a l . 2013; 

Gindele et a l . 2015)

\+ Proven to work as  multi -dimens ional  predictive 

behavior model  \+ Stochastic models  have shown to be 

able to predict s tabi l i zed behavior

\- Currently no s tochastic BA model  ava i lable, \- Only 

appl ies  on s tabi l i zed behavior

Carsten's  Risk Model  (Carsten 2007) \+ Describes  risk in a  quanti tative categories

\- Does  not describe BA, \- Does  not speci fy relations  

between risk categories .

Motivation Models  (e.g. Wi lde's  Risk Homeostas is  theory 

(Wi lde 1998), Ful ler's  Task-Capabi l i ty model  (Ful ler 2005) etc.) 

\+ Wel l -ci ted, \+ Often used as  foundation to expla in 

BA

\- Fa i l  in generating testable hypothes is  due to lack of 

quanti tative parameters  (Ranney 1994; Elvik & Vaa 2004; 

Winter & Happee 2010)

Table 10: Benefit and Limitations of important DSM techniques;  
Note: Most information is based on the comprehensive review of Hou et al. (2015) 

 
DSM techniques (+ key 

reference) Working Principle Benefits Limitations

Electroencephalogram (EEG) 

(Niedermeyer and Lopes  da Si lva  

1999)

Electrode sensors  placed on the sca lp 

monitoring electrica l  activi ty in the 

bra in

\+ Noninvas ive, \+ Portable and field-ready EEG is  currently 

avai lable, \+ High temporal  resolution, \+ Unique patterns  

for workload level , high-order cognition, verbal  process ing, 

and image process ing observable in bra in scans

\- Requires  expens ive and sophisticated s ignal -process ing 

equipment, \- Low s ignal -to-noise ratios , \- Individual  

bra ins  may di ffer in their organization, providing dis tinct 

patterns  of EEG activi ty \- Can be cons idered as  obtrus ive

Eye Tracking (Victor et a l . 2005; 

Bednarik 2005)

Monitors  the operator's  visual  

attention and cognitive activi ty

\+ Bl inks  and eye gaze can discern task demand and 

fatigue \+ Eye-tracking measurements  are correlated with 

mental  workload, \+ Can be used as  tool  to asses  SA, \+ 

Al ready used in commercia l  vehicles

\- Lighting conditions  may affect accuracy, \- Eye-tracking 

technologies  do not take into account the fact that fixation 

patterns  wi l l  di ffer depending on the environment (Hou et 

a l ., 2015)

Electrodermal  Response (EDR) 

(Sharpe et a l ., 1995; Kapoor et a l ., 

2007)

Measures  electrica l  conductivi ty of 

the skin to determine sweat level

\+ Can indicate s tates  of emotional  arousal , \+ Less  

sens i tive to environmental  noise compared to other PBM 

techniques

\- Poor temporal  resolution, \- High latency between 

stimulus  and response as  compared with other 

psychophys iologica l  measurements , \- Qual i tative and 

emotional  aspects  of affect are not reflected in EDR s ignal .

Cardiovascular (ECG, Heart Rate, Heart 

Rate Variation) (Chen and Vertegaal  

2004)

Electrode sensors  monitoring heart 

activi ty

\+ Heart rate measurements  are unobtrus ive, rel iable, and 

easy to use and interpret, \+ Sens i tive to cognitive 

demands  and attention, \+ Relatively cheap, \+ HRV can 

provide measurements  of both cognitive effort and 

compensatory effort, depending on the appl ication (Byrne 

and Parasuraman, 1996)

\- Accuracy of heart rate measurement i s  affected by 

respiration, phys ica l  work, and emotional  s tra in, which may 

make measurement inaccurate, \- Also sens i tive to factors  

other than workload

Electromyogram (EMG) (Trejo et a l . 

2007;

Electrodes  placed in or on speci fic 

muscles  determine muscle activi ty

\+ EMG measurements  correlate with s tate variables  such 

as  drowsiness  and fatigue \+ EMG measurements  related 

to the control  of devices  can be mapped in rea l  time

\- Intramuscular EMG's  require specia l i zed technicians  and 

can cause pain and undue stress  to the operator, \- Need 

for expens ive specia l i zed tools

Near-Infrared Spectroscopy (NIRS) 

(Izzegtoglu et a l . 2007; Keebler et a l . 

2009)

Near-infrared l ight monitors  blood 

oxygenation levels  in the bra in

\+ Can measure changes  us ing only l ight that previous ly 

required expens ive apparatus , +\ High temporal  resolution 

[ms]

\- NIRS is  an emergent technology and analys is  software is  

not mature
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Table 11: Benefits and Limitations of well-cited Performance metrics 

Performance-Based Metrics Benefits Limitations

Time-to-Line Cross ing (TLC) (Godthelp and 

Konings  1981)

\+ Related to accident ri sk, \+ TLC is  related to visual  or 

cognitive dis traction, \+ Often used in driving behavior 

s tudies , \+ TLC reflects  the time-based latera l  safety 

margins  adopted by the driver (Godthelp, Mi lgram & Blaauw 

1984)

\- Lane markers  do not a lways  represent the safe travel  

path as  perceived by the driver, resulting in unrel iable TLC 

metrics  which are very di fficul t to interpret (Östlund et a l . 

2005)

Time-to-Col l i s ion (TTC)  (van der Horst and 

Godthelp 1989)

\+ Takes  speed di fference between vehicles  into account, 

which is  a  safety related factor, \+ directly related to 

accident ri sk, \+ Can be regarded as  longitudinal  time-

based safety margin \+ More sens i tive and rel iable than 

dis tance headway in HASTE project (Östlund et a l . 2005)  \+ 

Often used in Driving behavior s tudies

\- TTC measures  vary more than headway measures , 

resulting in less  s tatis tica l  power. (Östlund et a l . 2005)

Veloci ty (speed, speed variation, maximum 

speed)

\+ Speed and speed variation are directly related to 

accident ri sk (Brehmer 2011), \+   Simple to measure and to 

compute, \+ BA is  often observed in speed changes

\- Effect on mental  workload and dis traction are not eas i ly 

interpreted, \- Speed metrics  are influenced by data 

duration, therefore i t i s  advised to a lways  use same time 

window (Östlund et a l . 2005)

Steering Reversa l  Rate (SRR)  (McLean and 

Hoffman 1975; Östlund et a l . 2005)

\+ Simpler computation than HFC, but gives  a lmost same 

information, \+ Commonly used driving performance metric 

due to i t s tra ightforward interpretation and implementation 

(Östlund et a l . 2005)

\- Unclear interpretation of the effects  of cognitive load, \- 

SRR is  not sui ted for use in bui l t-up areas , due to the large 

variation induced by the road geometry, \- Sens i tivi ty 

depends  on chosen gap s ize, however not clear which gap 

s ize i s  best. (Östlund et a l . 2005)

High frequency component (HFC) of s teering 

wheel  angle (McLean and Hoffman 1975)

\+ Contains  more information than SRR, \+ Sens i tive to both 

primary and secondary task load. (McLean & Hoffman 1975 )

\- Di fficul t to compute, \- Unclear interpretation of the 

effects  of cognitive load,

Steering Grip Force (Peters  et a l . 2005)

\+ Can ass is t DSM techniques , \+ Gives  good opportunities  

to  assess  s teering control  efforts  early in the chain of driver-

vehicle reactions

\- Rel iabi l i ty of the measured s teering grip force is  not 

proven yet (Johansson et a l . 2004)

Pedal  dynamics  (Wierwi l le et a l ., 1996) \+ Related to longitudinal  control  (Johansson et a l . 2004)

\- Safety relevance  i s  unclear \- Not often used in 

behaviora l  s tudies , merely in accident s tudies

Steering Entropy (Nakayama et a l . 1999; 

Boer 2000)

\+ Related to cognitive and visual/manual  load (Boer 2000), 

\+ Correlated s trongly with subjective workload ratings  of 

drivers

\- Basel ine data cannot be used for s tatis tica l  comparison 

to experimental  data  s ince the data sets  wi l l  then be 

dependent (Johansson et a l . 2004)
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5 Conclusions 
This literature survey aims to answer the following research question: 

What are promising ways to predict behavioral adaptation in Advanced Driver Assistance Systems? 

In order to develop predictive BA models it is important to understand the motivation behind BA. The 

conclusion can be made that these BA motivations are often based on: driver’s subjective risk 

assessment (Wilde 1998; Näätänen & Summala 1974), task difficulty/utility management (Fuller 2005; 

O’Neill 1977) and driver’s attitude towards the novel introduced ADAS (Saad et al. 2004). Unfortunately, 

it can be concluded that these theories are not suited to use as base for a predictive model. They tend to 

fail in generating testable hypothesizes and sometimes give contradictory results (e.g. opposite results 

between Wilde’s Risk homeostasis theory and Trade-Off between Performance and Effort model) which 

make them unreliable and impossible to generate quantitative BA predictions. Besides motivational 

models it can be concluded that currently no suitable predictive BA models exists. Current BA models 

are too simplistic and lack quantitative parameters. The limitations of the discussed models can be used 

as important pillars for the development of a future predictive BA model. It is argued that a well-

designed predictive BA model needs to consist of:  

- Hierarchical (i.e. applies on operational, maneuvering and strategic level): a model should be 

hierarchical since BA occurs on all these three levels, hence a predictive BA model should predict 

behavior on all these levels as well.   

- Consist of Quantitative Parameters: by using quantitative parameters a BA model would be able 

to generate testable hypothesis and more important quantitative BA predictions. 

- Predict Future Risk Taking Behavior (preferable in a stochastic way): Risk is directly related to 

BA. This report argues to use Carsten’s Risk categories (e.g. Attitudes/personality, Experience, 

Driver State (Impairment level), Task demand (workload), Situation Awareness, Performance) to 

quantify Risk. After comparing the discussed metric and measurement techniques, the 

conclusion was made that for each category quantitative and objective measurement 

techniques are applicable that combined can assess risk, and thus BA. 

 

  

Currently no models are available that make proper quantitative BA predictions. The models are 

often too vague and lack of quantitative parameters resulting in unreliable and unfalsifiable results. 

Therefore, more research need to be performed into the understanding and measuring of BA. 

Techniques to measure and asses BA are improving and getting less obtrusive which makes them 

better suited for car driving research.  
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