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Abstract
Indoor localization is an actively researched field
due to there not being a universal solution found
yet. Applications of such systems include but are
not limited to indoor wayfinding and automated
tour guides. In previous years multiple solutions
were proposed. This work looks into the perfor-
mance of an indoor location sensing system in the
presence of background music and tries to improve
the accuracy in such a scenario. To achieve that
a denoising autoencoder is proposed as a prepro-
cessing step aiming to remove the noise from the
fingerprints used for localization. In the end, it is
shown that the use of such a technique introduces
a tradeoff between an accuracy drop in quiet envi-
ronments but an accuracy increase in environments
with music.

1 Introduction
Localization is a service used in many applications, ranging
from location-targeted content to indoor navigation. The ap-
plications that make use of localization now mostly use it for
positioning outdoors or in a setting where high accuracy is not
needed. These types of applications already have a universal
solution that provides satisfactory accuracy with the use of
GPS or Cellular information.

However high-accuracy indoor location sensing does not
have such a solution developed yet. The topic of indoor lo-
cation sensing is relevant for the automatization of a wide
range of tasks therefore developing such a solution is benefi-
cial. This work focuses on recent developments with regard
to acoustic indoor location sensing.

This introduction section will describe the motivation for
the research. Motivation is included in subsection 1.1 fol-
lowed by the statement of the research goal in subsection 1.2.
Then subsection 1.3 will describe the structure of this report.

1.1 Motivation
Using GPS for indoor localization comes with multiple
challenges[2]. In summary, GPS signals are suppressed by
walls which drastically decreases the accuracy of GPS posi-
tioning making it unreliable for indoor room recognition.

However indoor location sensing is important in the autom-
atization of many different tasks. Therefore finding a solution
that would serve as a replacement for GPS positioning would
unlock potential new automatizations or increase the reliabil-
ity of systems that do use GPS.

Examples of possible use cases for indoor location sens-
ing are indoor way-finding, hospital patient localization, au-
tomated tour guides, and smart building automatization[9]. It
would also be possible in some cases to replace SLAM1-like
algorithms by such a system for robotic solutions.

1.2 Problem statement
This work focuses on an acoustic localization system similar
to the one described in [9]. The focus is put on the impact

1SLAM - Simultaneous localization and mapping

of interferences on the accuracy of such a system and tries to
overcome some of the limitations that the interferences cre-
ate.

The main research question for this work is: Can the ro-
bustness of the system against music containing environment
be improved? To answer this research question smaller sub-
questions can be defined as follows:

1. How is the system affected by the presence of music in
the environment?

2. Can deep learning methods be used to improve robust-
ness against music in the environment?

1.3 Structure
To answer the stated research question and report the findings
in an accessible way this work uses the following structure.
First the upcoming section 2 explains background informa-
tion on indoor acoustic sensing and presents related work in
the field. Next section 3 shows some intuition behind why
the proposed location sensing model work. Following sec-
tion 4 explains the method of answering the stated research
question followed by a section 5 on how was the system used
for experiments implemented. Setup of the performed exper-
iments as well as their results can be found in section 6. Next
section 7 will talk about responsible research. And finally the
last two sections section 8 and section 9 will contain a discus-
sion on the research findings as well as conclusion and future
work.

2 Background & Related work
This section contains an overview of background information
needed to understand the work in subsection 2.1. Following
the background subsection 2.2 presents the related work in the
field of acoustic localization sensing including an overview of
already studied impacts of various interferences on different
types of systems

2.1 Background
As stated before indoor location sensing has multiple poten-
tial use-cases. Since the problem has multiple applications if
solved, it has been well-studied over the past years. Multiple
approaches were proposed for indoor localization which use a
wide range of different sensors to perform the task. The data
used for localization by different systems include WIFI data,
cellular data, acoustic data, camera data, geomagnetism data,
and atmospheric pressure data. It is also worth mentioning
that some systems combine multiple types of data to increase
localization accuracy. The solutions can also be divided into
infrastructure-dependant and infrastructure-free. As the name
suggests infrastructure-dependant systems require the use of
additional infrastructure inside the building to perform local-
ization. An example of an infrastructure-dependant system
would be any system that makes use of WIFI data like for
example, the one described in [3].

Multiple infrastructure-free systems were also already pro-
posed however this work focuses on only audio-sensing sys-
tems. These systems rely only on the built-in smartphone
audio system to perform the localization. Such systems were
also proposed with multiple different approaches that can be



divided into categories based on some properties of the sys-
tems:

First of all, we can classify the systems based on the type
of audio sensing used by each one of them. Then we can
distinguish two different approaches:

• Passive sensing - these types of systems only make use
of audio recordings to perform the localization. How-
ever, these systems perform worse in the presence of
background noises and raise privacy concerns as they
have to take longer audio recordings to perform the
localization[9].

• Active sensing - compared to passive systems these sys-
tems not only record the environment but they send sig-
nals to the environment and record the room’s response
to these signals and based on that perform the local-
ization. The signals are either in the audible range or
inaudible. These systems reduce the needed recording
times to avoid privacy concerns as well as provide more
robustness against background noises[9].

Secondly, we can categorize the systems based on the un-
derlying algorithms that perform localization. In that case,
we can distinguish the following categories of algorithms:

• Analytical-based approach - this approach can be used
both in active and passive scenarios and it uses different
sound features to perform localization with mathemati-
cal methods. For example in a passive sensing scenario
angle of arrival can be used for localization as in the
case of [8]. Compared to active sensing scenarios where
time-of-flight can be used for localization as described
in [5].

• Fingerprint-based approach - this approach creates a fin-
gerprint of a location based on sound features. This
again can be used in active and passive scenarios where
active would create the fingerprint based on the environ-
ment’s response to the emitted signal, and passive would
create the fingerprint just by looking at sounds present in
the environment. The localization is then changed into
a classification problem that tries to classify newly col-
lected fingerprints based on earlier training. For the clas-
sification multiple models were used ranging from shal-
low models like knn[10] to deep learning models like
cnn[9].

2.2 Related work
Since the focus of this research is on acoustic sensing this sec-
tion presents some already developed acoustic systems. The
section presents the system and talks about its known limita-
tions with regard to different types of interferences.

Examples of passive sensing systems include:
• BatPhone[10] - BatPhone uses an acoustic background

spectrum to perform room recognition. The acoustic
background spectrum is an ambient sound fingerprint
that allows the system to distinguish rooms. The fin-
gerprint is made by recording a 10-second audio sam-
ple in the frequency interval of 0 − 7kHz. To perform
room recognition BatPhone uses the k nearest neighbor
algorithm with the acoustic background spectrum as an

input. As a result, it was shown that BatPhone achieves
69% accuracy. However, it was also shown that the pas-
sive fingerprinting model is very susceptible to noise. In-
terferences like chatter or conversations, while the audio
sample is taken, reduce the accuracy significantly.

• SorroundSense[1] - SorroundSense is actually a hybrid
system that uses passive acoustic sensing as one of
the features based on which logical localization is per-
formed. Besides the use of acoustic data, the system
also uses optical and motion data to perform the local-
ization. For the acoustic fingerprint of this system, two
approaches were considered namely using the frequency
domain as the fingerprint of the room, which proved in-
effective, and using the amplitude of the signal in the
time domain, which was chosen for the final system de-
sign. However, this type of fingerprint is not effective
as the final accuracy of the system bearly outperformed
random guessing[9].

Examples of active sensing systems include:

• RoomRecognize[9] - This system works by emitting an
inaudible chirp into the environment and recording the
room’s response to the chirp. Based on the taken audio
sample a spectrogram is created. This spectrogram is
used as the fingerprint of the room. The room recogni-
tion is done with the use of a convolutional neural net-
work. As a result, it was shown that the system can rec-
ognize 22 rooms with an accuracy of 99.7%. The paper
also includes a study on the impact of different types
of interferences on the system. Interferences considered
in the work are sounds, phone position and orientation,
surrounding moving people, and layout changes.

• RoomSense[7] - Compared to RoomRecognize this sys-
tem uses a different approach for creating the chirp to be
emitted by the system and a different classification algo-
rithm. For chirp creation, RoomSense uses the Max-
imum Length Sequence technique which results in a
longer audio signal of 0.68s compared to 0.002s used
by RoomRecognize, the signal is also audible and de-
scribed as noisy[7]. For classification, RoomSense uses
Support Vector Machine with a Gaussian kernel. In
the end, the work claims an accuracy 98% accuracy for
room recognition between 20 rooms which is a simi-
lar result to the one achieved by RoomRecognize. This
work also pointed out the impact of noise within the en-
vironment on the accuracy with an accuracy drop from
98.2% to 66.6% resulting from increasing noise within
the recorded signal.

3 Measurement study
This short section presents the intuition behind the workings
of the active acoustic sensing location system. First, the sec-
tion proves the presence of an echoic response to the emitted
chirp within the environment, after which examples of spec-
trograms from different locations are shown to see that the
echoic response is a feature that can uniquely identify rooms.
Lastly, some experiments were also run to see how music im-
pacts the system.



3.1 Echoic response analysis
As stated earlier the system performs the localization based
on the fingerprint of the response of the room to the emitted
chirp. We can see that this fingerprint is in fact the analysis of
echos within the environment. We can see that such echoes
are present within the environment by performing a cross-
correlation of the recorded sample with a 20kHz sine wave
representing the chirp.

(a) Cross-correlation example
1

(b) Cross-correlation example
2

Figure 1: Cross-correlation between recorded samples and 20 kHz
sine wave

Figure 1 shows the plotted cross-correlation from two dif-
ferent rooms. The figures prove that there are in fact echoes
within the environment. Furthermore, we can also see that the
two different rooms produced different echo responses giving
the base for the classification based on the echoic response.

3.2 Between rooms spectrogram analysis

(a) Spectrogram from room 1 (b) Spectrogram from room 1

(c) Spectrogram from room 2 (d) Spectrogram from room 2

Figure 2: Pairs of spectrograms from different rooms

To see that rooms can be distinguished by their respective
spectrograms multiple spectrograms from multiple different
locations were created. From these spectrograms it can be
seen that spectrograms are consistent within the same spot
and different across different spots therefore they will allow
for room recognition. Pairs of spectrograms from two rooms
are presented in Figure 2. From the figure, it can again be seen
that spectrograms are consistent within a room but different
between rooms.

3.3 Impact of music on the system
One of the main objectives of this work is to improve the
system’s robustness against the presence of music in the en-
vironment. First, an analysis of how the system is impacted
is performed. The hypothesis that was considered is the im-
pact of audio wave interference on the collected audio sample
based on which the localization is performed.

It is known that having more than one audio source within
the environment will result in interaction between the wave-
forms produced by these sources. The interference can be ei-
ther constructive or destructive depending on the phase shift
and relative frequency of the two signals.

It should be noted that this interference is dependent on
the frequency of the two signals. The next step to showing
the impact of audio interference on the echoic response of the
room is done by the following experiment. In the experiment,
200 samples are collected from the exact same spot within
the room with the exact same phone orientation. Of the 200
samples 100 are gathered in the presence of music and 100
without music. Spectrograms are constructed from the sam-
ples. To show that music has an impact on the spectrograms
average value of each spectrogram is tracked. Analysis of
the averages shows that in the presence of music the average
value of the spectrogram is more varied as the standard devi-
ation increases.

(a) Mean spectrogram without
music

(b) Mean spectrogram with
music

Figure 3: Mean spectrograms of the experiment

To present the findings average spectrograms are created.
These spectrograms are created by averaging the value of
each data point on the spectrogram across the 100 samples.
These spectrograms can be seen in Figure 3. From the result,
it can be seen that the spectrograms differ in the presence of
music.

4 Methodology
This section explains the methodology connected to the re-
search. It explains both the method of answering the stated
research question which is described in subsection 4.1 as well
as the general design for the localization system implemented
which can be seen in subsection 4.2.

4.1 Research methodology
To answer a research question one needs to establish a method
that will lead to finding the answer. The method should also
be documented well enough to make the conducted research
reproducible for others. This section will explain how the re-
search was conducted to find the answer to the stated research
question.

The aim of this research is to study the impact of different
types of interferences on the accuracy of active acoustic sens-
ing systems. In principle, the method can be in the form of
the following list of tasks.

• Create proof-of-concept application for location sens-
ing.

• Gather dataset for the classifier training.

• Establishing baseline accuracy for the proof-of-concept
application.

• Design experiments for different types of interferences.



• Gather datasets for experiments.

• Analyze experiment data.

Breaking down each of the listed components separately
results in a full description of the methodology used for this
research. First, the proof-of-concept application which was
developed as a mobile app for Android smartphones with the
classifier design closely following the one described in [9].
The dataset used for the classifier was gathered from four dif-
ferent rooms in a residential building. For the dataset, 500
samples from each room were collected.

Establishing the baseline accuracy of the app is an impor-
tant step as there might be deviations from the established
99% accuracy. The application was implemented from noth-
ing only by following the mentioned research therefore it
might not achieve the same accuracy and use of different
hardware and dataset may also change the accuracy. There-
fore for later evaluation of experiment data a new baseline
accuracy needs to be established.

To answer the research question a series of experiments
will be performed to study whether the robustness against
music of the system can be improved. To perform the ex-
periments a dataset from the same rooms will be gathered in
the presence of background music and with no background
music.

The final step is to analyze the experiment results. This
analysis and interpretation of results is what in the end an-
swers the stated research question. When analyzing the re-
sults it is important to take into account and study the ran-
domness of the experiment. This will be done by running ex-
periments multiple times and looking at the average accuracy
and standard deviation of the accuracy between experiment
runs.

4.2 System design
To design the system first the input data needs to be estab-
lished. Based on section 3 it can be concluded that spec-
trograms of the room’s echoic response can be used to clas-
sify rooms. However, there are important details regarding
the preprocessing and other parameters that have to be es-
tablished to create the input spectrograms. This subsection
discusses how exactly the spectrogram is created.

Chirp frequency
The system performs the classification based on a fingerprint
of the response of the room to the emitted chirp. It is worth
mentioning at this point that the frequency of the chirp is of
high importance. We would like the chirp to be outside of the
audible range, so above 20kHz, because of two reasons.

First of all the chirp being inaudible gives a better expe-
rience to the user by reducing how much the user can hear
while using the system. A completely silent system however
is not achievable due to imperfections in the smartphone au-
dio systems. Therefore although the chirp itself is inaudible
the user will be able to hear some noise during recognition.

Secondly, the advantage of having the chirp at such high
frequency reduces the exposure to sound pollution in the en-
vironment. It was shown that the frequency of the recorded

sample matters for the robustness of the system for ex-
ample in the case of BatPhone reducing the sample fre-
quency band from the original [0kHz, 7kHz] to [0kHz,
0.3kHz] improved the accuracy in the presence of background
conversations[10]. The system improved the performance by
reducing the hearing range to low frequencies which, simi-
lar to high frequencies, are also less polluted by the environ-
ment’s background noise. Different systems did use different
chirp frequencies for example [4] uses a range of 8 chirps in
frequencies from 0.5kHz to 4kHz and the RoomRecognize
uses chirps of 20kHz[9].

On the other hand, one needs to be aware of the limita-
tions of smartphone acoustic systems. Different smartphones
may have different capabilities for producing and recording
high-frequency audio data. In general, we can see a trend of
smartphones being less capable of producing such data above
20kHz. Therefore the system uses a chirp on the border of the
audible range to reduce the impact of smartphone hardware.
Smartphones high-frequency capabilities can be tested using
Near Ultrasound Tests2

Fingerprint creation

(a) Spectrogram with chirp (b) Offset spectrogram

Figure 4: Spectrograms of one room with different offsets

To create a fingerprint of the echoic response the data is
first transformed into a spectrogram in a narrow band range
of [19.5kHz, 20.5kHz]. A spectrogram is a graph represent-
ing the strength of different frequencies of signal over time.
For example Figure 4a Shows a spectrogram of a recording
of the chirp emitted by the phone. We can clearly see the
emitted chirp at around 0.02 seconds from the recording start.
However, to use the spectrogram for classification we actually
limit the sample interval to not include the original chirp as it
would skew the data too much. So for the actual spectrogram,
the window is shortened and offset to not include the original
chirp as can be seen in Figure 4b.

Figure 5: Example final spectrogram

The last step in the data preparation process is to rescale
the spectrogram. The final spectrogram is a grayscale image
of size 5x32 as seen in Figure 5

2Near Ultrasound Tests - https://source.android.com/docs/compatibility
/cts/near-ultrasound

https://source.android.com/docs/compatibility/cts/near-ultrasound
https://source.android.com/docs/compatibility/cts/near-ultrasound


Music removal
An important part of the system is removing noise from
the spectrograms that occurs due to background music being
present in the environment. This part is the actual extension
of the system described in [9]. This addition is meant to im-
prove the robustness of the system against background music
which directly calls back to the main research question of this
work.

The music removal from audio samples can be generally
classified as a denoising task. To perform denoising one
might use a denoising autoencoder (DAE) or a convolutional
denoising autoencoder (CDAE). In principle, music removal
with the use of CDAE was already done in [11] with satis-
fying results. However, in [11] the CDAE was used on the
audio data while in this work the CDAE is used on the spec-
trogram. Therefore the network architecture will differ for
the autoencoder used for noise removal from the spectrogram.

Autoencoder design
Since the autoencoder will be run on spectrograms rather

than raw audio data the network design differs from the one
described in [11].

Encoder network layers:
1. Convolutional layer - 16 5 x 5 filters
2. Max pooling layer - 2 x 2 filter
3. Convolutional layer - 16 5 x 5 filters
4. Max pooling layer - 2 x 2 filter

Decoder network layers:
1. Transposed convolution layer - 16 5 x 5 filters
2. Transposed convolution layer - 16 5 x 5 filters
3. Convolutional layer - 1 5 x 5 filter
Additionally, every layer has zero padding added so that

the output shape is the same as the input shape. The output
layer uses sigmoid activation and all other layers use Tanh,
all layers use stride equal to 1.

For training the autoencoder two equal size datasets of
spectrograms have to be taken from environments with and
without music. For the purpose of the proof-of-concept
application the dataset gathered looked as follows. Data
was gathered from 4 rooms and in each room 200 samples
were taken from the same locations where the localization is
performed from. The setup was performed twice with and
without the presence of music. Spectrograms were matched
on the room they were taken from so that samples with
and without noise from a given room are fed for training
as example input and output. This results in 800 pairs of
input-output for training from which 1/5 pairs are taken for
the validation dataset.

Resulting model
The resulting model takes as input a sample and denoises

it with regard to interferences occurring due to wave interfer-
ence with music. Figure 6 shows example input and example

(a) Example input

(b) Example outputs

Figure 6: Example input and output for the autoencoder

output generated by the autoencoder. Although the spectro-
grams differ the output is still unique per room. This change
in spectrograms requires training the main room classifier on
the outputs of the autoencoder. Note that training on autoen-
coder outputs and original spectrograms on the same dataset
resulted in very similar validation accuracies of the two mod-
els.

5 Implementation
This section is a concrete explanation of the implementa-
tion of the proof-of-concept application used for the ex-
periments. The application code base can also be found
at https://github.com/filip-bilinski/IndoorNavigationRP. Note
that this repository is a fork as the frontend of the application
was developed in collaboration with other students following
the project on Indoor Location Sensing Using Smartphone
Acoustic System.

5.1 General architecture
The application is split between the front-end and the back-
end. The front-end is a client application implemented in Java
for Android smartphones. The back-end provides a REST
API for the client that was written in Python using Flask3 and
is connected to a self-hosted MongoDB4 database for dataset
saving.

The front-end and back-end perform different tasks to
make the whole system functional. The front-end is mainly
responsible for gathering the dataset, sampling for classifica-
tion, and displaying the classification results. In general, the
back-end is responsible for the classification as this is where
the model is deployed. The back-end also provides endpoints
for creating new models, training models, saving models, and
loading saved models into the program.

5.2 Front-end
The main functionality of the front-end is to emit the chirp
and record the response. This functionality is needed both
for dataset creation as well as performing localization. This
was implemented using the standard Android API for emit-
ting and recording audio. To emit the chirp a sine wave of
20kHz frequency and 2ms length is generated and written to
a buffer that then replays that data with phone’s loudspeaker.

3Flask - https://flask.palletsprojects.com/en/2.3.x/
4MongoDB - https://www.mongodb.com/

https://github.com/filip-bilinski/IndoorNavigationRP
https://flask.palletsprojects.com/en/2.3.x/
https://www.mongodb.com/


At the same time, a recording is taken. Since the audio play
and audio recording happen on different threads of the appli-
cation a synchronization with a barrier was added to decrease
the offset between the start of the recording and the playing
of the chirp as much as possible.

(a) Main scene (b) Add label scene (c) Prediction scene

Figure 7: Differnt screens of the application UI

Besides the chirp emission and audio recording the front-
end can also communicate its data to the back-end to perform
localization or add new room labels to the dataset. This can
be done by the user with the designed UI. Main UI scenes can
be seen in Figure 7.

Figure 7a shows the design of the main scene. This is
where the user can choose between adding a new room to the
dataset or running the localization. The user can also see a list
of all rooms organized per building. If the user chooses to add
to the data set they will see the scene as the one in Figure 7b
where they may add labels of the building and room and then
by pressing start collect samples from the room. If the user
wants to run the localization instead they will see a popup as
the one in Figure 7c where the label resulting from running
the classifier on a newly collected sample will be shown.

5.3 Back-end
The back-end of the application is responsible for two main
tasks. First of all it is responsible for the creation of the fin-
gerprint spectrograms for the classifier as well as saving them
to the database. The other task is to manage the classifier
itself which includes creating new models, training models,
making predictions from the model.

The creation of the spectrograms is a non-trivial task. Even
though the clientside attempts to synchronize the recording
start with chirp emission with the barrier the synchronization
is far from optimal. And as we have seen before a spec-
trogram that includes the original chirp does not show any
visible echos due to them being of much lower magnitude
than the chirp. Therefore the server needs to find the origi-
nal chirps within the recorded data to then construct a proper
timeframe between two chirps.

To find the chirps a cross-correlation of the recorded au-
dio with 20kHz sine wave is calculated. The software can

(a) Cross-corellation plot (b) Offset spectrogram

Figure 8: Cross correlation over time and corresponding spectro-
gram

then find the chirp position as well as length by finding an
area of high cross-correlation. This can be seen in Figure 8
where both spectrogram and cross-correlation plot was cre-
ated for the same recording period. From those two figures,
we can see that the chirp corresponds to the area of high cross-
correlation on the plot. The recording frame is then taken by
finding two consecutive chirps and taking the time frame in
between as the echo period from which the fingerprint is cre-
ated.

The model underlying the classifier is a convolutional neu-
ral network exactly the same as the one described in [9]. In
short summary, the model uses two convolutional layers with
16 and 32 4x4 filters each of which is followed by a pooling
layer with a 2x2 filter. The model is finished by adding two
dense layers one with 1024 ReLUs and the output layers with
K ReLUs with K representing the number of different rooms
the model can recognize.

As mentioned the server is capable of initializing new mod-
els as the one described, training them, saving them to a file
and performing predictions.

6 Experimental Setup and Results
This section presents the experimental setup of the run ex-
periment and the achieved results of the experiment. subsec-
tion 6.1 explains the setup while subsection 6.2 presents the
results.

6.1 Experimental setup
The experiment’s aim is to answer whether the addition of the
CDAE for music interference removal from the spectrograms
improves the robustness of the system. To achieve this the
following experiment design is proposed. From each room,
100 samples are taken with and without music in the back-
ground. Next two system setups are created. First, where the
model was trained without the use of autoencoder, and clas-
sification is done without its use either. Second, where the
model was trained on autoencoder outputs and classification
is performed on autoencoder outputs.

To evaluate the robustness we evaluate the accuracy of both
models on three datasets:

1. Dataset without background music.

2. Dataset with background music.

3. Mixed dataset.



No Autoencoder With Autoencoder
Average Standard deviation Average Standard Deviation

No Music 0.91 0.07 0.81 0.05
With Music 0.70 0.10 0.76 0.09
Mixed 0.81 0.06 0.79 0.04

Table 1: Accuracies from the experiment

Analysis of the accuracies together with confusion matrices
on each of the datasets for different setups will be used to
conclude whether the autoencoder improves the robustness
of the system against background music.

6.2 Results

(a) No music, No autoencoder (b) Music, No autoencoder

(c) No music, Autoencoder (d) Music, Autoencoder

Figure 9: Result confusion matrices of the experiment

Figure 9 presents the resulting confusion matrices of the
introduced experiment. Furthermore, the accuracies of the
experiment are presented in Table 1. From the resulting ac-
curacies, we can see that the best performance for no music
and mixed dataseta is achieved without the use of an autoen-
coder but in the dataset with music introducing the autoen-
coder achieves higher accuracies.

7 Responsible Research
This section will talk about ethical issues connected to this
project as well as discuss the reproducibility of the research.
First subsection 7.1 discusses the ethical issue of recording
audio data for the system and then subsection 7.2 talks about
the reproducibility of this research.

7.1 Ethical concearns
As with any research, this work raises some ethical concerns.
In particular, the ethical issue with this research is the record-
ing of audio data.

Audio recordings may carry speech recordings within
themselves. Speech is considered personally identifiable in-
formation and therefore recordings of speech are privacy-
violating. Some legislations even forbid recordings of speech

of third parites[6] which would make gathering a dataset in
public spaces illegal. However, there are some considerations
to be taken when evaluating whether the recordings taken
within the proof-of-concept applications invade people’s pri-
vacy.

First of all the saved recordings are around 80ms long. This
in itself provides more privacy as such short recording times
decrease the chance of speech being present in the recording
as well as such short part of speech does not carry a lot of
information. While this is true in the database for training
a batch of 500 samples is saved from one recording. While
there is no information about the order of the samples in the
database and there is a 20ms gap between any two samples
in theory a longer recording with gaps could be reconstructed
by brute force.

That’s why the saved spectrograms only correspond to the
frequencies around the emitted chirp frequency. Limiting the
frequencies gets rid of any trace of speech in the saved spec-
trograms. Therefore we can conclude that all the data saved
by the application and used for training is privacy-preserving.

For this proof-of-concept app saved data being privacy re-
specting is sufficient. However in general it is not perfect as
the privacy-sensitive data is sent from the client to the server.
To improve systems privacy the data should be filtered on the
front-end and only then sent to the server. Limiting the fre-
quencies before sending would require the system to create
spectrograms on the client side which is at the moment done
on the server side. This could be changed or alternatively, a
speech filtering similar to the one described in [6] could be
applied before the data is sent. This should be taken into ac-
count when developing a full solution for location recognition
with active acoustic sensing however is out of scope for this
project.

7.2 Reproducability
This report was designed with reproducibility in mind. There
are areas in which the description could be improved for
easier reproducibility however given the time period of the
project not everything can be fully developed.

The only part of this research that will not be shared is the
gathered dataset. Sharing of this dataset however should not
be mandatory for the reproducibility of this research. Since
the full application codebase is available at github one can
create a very similar dataset for their purposes.

Experiments done should also be able to be reproduced.
The description of each experiment is included in section 6
and the scripts for result analysis are available on github.

8 Discussion
The main objective of this research was to investigate the im-
pact of background music on the accuracy of active acous-
tic localization systems and answer whether it is possible to
increase the robustness of such systems against background
music. The experiments performed to conclude on these top-
ics can be summarized as follows.

Regarding the impact of background music, it can be seen
that the system is negatively impacted by the presence of mu-
sic in the environment. In particular, the results from Table 1

https://github.com/filip-bilinski/IndoorNavigationRP
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show around 10% accuracy drop between datasets with and
without music. This coincides with the intuition given in sec-
tion 3 where it was shown that on average the spectrograms
from the exact same location differ in the presence of music
and with the study done in [9].

Coming to the second part of the research is to improve
the robustness of the algorithm against background music
autoencoder was considered for denoising the spectrograms.
From the results it can be seen that in fact, introduction of the
autoencoder comes with a trade-off. On average the system
performs better on the dataset with music when autoencoder
is used, however, it also performs worse on the dataset with-
out music. In the mixed dataset, both setups perform simi-
larly to the point where it is not possible to unambiguously
determine which one performs better due to randomness in
the experiment. Therefore, in general, it can be concluded the
robustness in this particular setup stayed relatively the same.

It has to be taken into account that the performed experi-
ment had randomness involved. The randomness comes from
the random train, validation dataset split, and random initial-
ization of the model weights. As a result, each re-train of
the models will achieve slightly different results in the exper-
iment. The standard deviations of the presented results are
also presented in Table 1. The averages and standard devia-
tions are calculated from 6 runs of the experiment.

9 Conclusions and Future Work
Summarizing, this work aimed to answer the following re-
search question: Can the robustness of the system against
the music-containing environment be improved? To answer
this question first the impact of the music on the classifier
was studied and the reasoning behind the impact was given.
To improve the robustness against music a denoising autoen-
coder was used as an attempt to remove noise in the spectro-
grams coming from interference with music.

In the end, the robustness of the system was not improved.
However, the use of autoencoder increased the accuracy in
music containing the environment even though the average
accuracy of the classifier was lower than that of the system
without the autoencoder. While the system without the au-
toencoder experiences around 10% accuracy drop in the pres-
ence of music with the autoencoder the accuracy drop was
reduced by a factor of two.

The reduced accuracy drop with the use of autoencoder
shows that with more research autoencoder could actually
be used to improve the overall accuracy of the system. To
achieve that the following areas could be further explored:

• Developing a more generic autoencoder - The autoen-
coder used for the purpose of this research was trained
on data points from the same spots as the localization
is performed. Therefore it isn’t a generic denoising au-
toencoder as it would not be able to remove noise from
a spectrogram taken from a random location. During
the research, an attempt to train on random data points
was performed however with the current network design
such an autoencoder performed worse. Developing such
an autoencoder could increase the overall accuracy.

• Devloping a smart switching system - Since the accuracy
of the system in the presence of music was higher with
the use of autoencoder but lower in a quiet environment
one could develop a smart system that would switch be-
tween the two classifiers based on the current state of
the environment. To develop such a system an analysis
of audio could be done before creating the fingerprints to
determine which classifier should be used. This would
certainly improve the robustness of the system

• Using autoencoder on different types of data - For the
purpose of this work, the autoencoder was used on the
specific 32x5 spectrograms that are used by the system.
One could consider using the autoencoder on higher res-
olution spectrograms or even different types of data like
for example the original audio signal.

• Use of signal processing methods - Another area that
could be explored to improve the current version of the
system is signal processing. Applying signal processing
techniques together with the autoencoder or instead of
the autoencoder would give a comparison of it’s perfor-
mance and could also increase the accuracy.
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