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.

"When once you have tasted flight, you will forever walk the earth with your eyes turned skyward, for there
you have been, and there you will always long to return."

- Leonardo da Vinci
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A Systematic Approach to Deal with Highly Imbalanced Data when
Predicting Flight Cancellations and Delays

Rik Hendrickx
Faculty of Aerospace Engineering, Delft University of Technology, HS 2926, Delft, The Netherlands

Abstract
As on-time performance is one of the main contributors to success in the world of commercial aviation, predictions on flight
delays and cancellations can significantly improve operational efficiency and thus quality of service. Since flight delays
and cancellations are occasional and infrequent events, operational on-time performance data is inherently imbalanced.
This is especially the case for cancellations, as on average 1.6% of flights are cancelled, while about 33% of the flights is
delayed. For this research, flight operational data is combined with weather data to predict flight delays and cancellations on
prediction horizons of hours to months before the flight, by means of Neural Network and Random Forest machine learning
algorithms. Since these algorithms naturally tend towards the usage of balanced data, the need exists to find a systematic
approach to deal with the imbalance issues, in order to make accurate predictions. Hence, an imbalanced data approach
is proposed, which analyses model performance with indicators such as precision and F1-score on varying data imbalance
ratios. The imbalance ratios are obtained through the use of sampling techniques such as Synthetic Minority Oversampling
and Random Undersampling. It is concluded that the highest precision is found without any sampling while for the highest
F1-score sampling is essential. Additionally, the research confirms that severely imbalanced data, like the cancellation data,
yields the worst performance when compared to medium imbalanced data, like the delay data.

Keywords: Imbalanced data, Sampling techniques, Flight cancellations, Flight delays, Binary classification

1. Introduction
Flight on-time performance is an important measure
for service quality. In 2018, more than 11 million
flights were operated in Europe alone and, compared
to 2017, the annual traffic has increased by 3.8% (Eu-
rocontrol, 2018b). Due to the continuous increment
in air-traffic and demand, airspace and airports are
getting more and more crowded. They are operat-
ing at maximum capacity without being able to cor-
respondingly increase it, leading to challenging flow
situations. A capacity gap of 1.5 million flights or 8%
of the demand has even been forecast by 2040 (Euro-
control, 2018a). When also considering factors such
as bad weather, eventually, flight delays and cancella-
tions become inevitable. In 2018, the average delay per
flight was estimated to be 14.7 minutes. This implies
an increase of 17% compared to 2017, which saw an
average delay of 12.3 minutes per flight (Eurocontrol,
2018c). The duration of these interruptions seems to
keep growing, which leads to detrimental effects on
the airline’s quality record and hence they become a
very costly obstacle (Alderighi and Gaggero, 2018).
Therefore, it could be of great value for airlines, air-
ports and travellers if there existed a way to accurately
predict flight delays and cancellations.

Fortunately, airport coordinators have access to multi-
ple strategic flight data sources, which could provide
insightswith respect to flight delays and cancellations,
if assessed in a mathematical, predictive fashion. Un-
fortunately, there is no single, optimal way for car-
rying out prediction problems. However, in the last
decade, there is one technique that has gained a lot of
momentum within data science and especially within
prediction research (Sternberg et al., 2017). It goes by

the name ofmachine learning and it provides a power-
ful way to make predictions based on what it learned
from (past) data. If these self learning algorithms suc-
ceed in predicting on-time performance, crucial bot-
tlenecks could be revealed, even on differentmoments
in time. Days, weeks and even months ahead of the
operation, predictions could be made, allowing air-
port coordinators, passengers and airlines to reap the
benefits of these insights.

As flight delays and especially cancellations are in-
frequent events, the data available to carry out these
predictionswill have an imbalanced class distribution.
This implies that more flights are likely to be on time,
compared to the amount of flights that are cancelled
or delayed. This data imbalance can tremendously in-
terfere with the correct classification of these flights,
since practically all classification algorithms assume
balanced class distributions and are intended to op-
timise for classification accuracy (Zhao et al., 2018).
Multiple techniques exist to cope with the imbalance
problem and one of them is the utilisation of sampling
techniques. By respectively under- or oversampling
the majority or minority classes, the classification per-
formance could be optimised. Hence, the imbalance
problem introduces the need for the first goal of this
research, namely an appropriate systematic approach
to deal with this kind of situation, in order to reach
the second goal, the successful classification of flight
delays and cancellations.

In response to the need for a solution to the imbal-
ance problem, this paper presents a systematic ap-
proach to analyse and deal with the effects of highly
imbalanced datasets. This is done by means of sam-
pling techniques and machine learning algorithms,



while assessing the binary classification performance
of flight delays and cancellations at an airport for in-
dividual flights. The analysis is performed on differ-
ent prediction horizons, namely 1 hour (only for de-
lays), 1 day, 1 week and 6 months prior to the flight,
allowing airport coordinators to assess eventual bot-
tlenecks at various operational levels and timings. In
addition to flight operational data, weather data is in-
cluded to broaden the spectrum of influential factors
with respect to on-time performance. AmsterdamAir-
port Schiphol (AAS) provides a set of flight opera-
tional data, whereas weather data is obtained through
the Koninklijk Nederlands Meteorologisch Instituut
(KNMI, Royal Dutch Meteorological Institute) and
METAR weather reports (KNMI, 2020; IowaStateU-
niversity, 2020). By combining these specific datasets
and sources, a realistic scenario of a large, busy Euro-
pean hub-airport is reflected. To the best of our knowl-
edge, this paper is the first to propose a systematic ap-
proach to deal with the inherent imbalance of airport
operational on-time performance datasets.
This paper contributes new insights to the current
body of knowledge concerning highly imbalanced
datasets and air transport on-time performance. More
in particular, up until now, flight cancellations have
been given a lot less attention then flight delays in re-
search. Hence, the inclusion of both on-time perfor-
mance issues, together with the systematic approach
to deal with their inherent data imbalance, can defi-
nitely help uncover new insights that could eventually
benefit the industry. Additionally, AAS could bene-
fit from this research as it might allow them to assess
flight schedules at different times before the operation
and act early in order to avoid or reduce the amount
of flight delays and cancellations.
The remainder of this paper is structured as follows.
Section 2. discusses the binary classification model,
covering the features, algorithms and performance in-
dicators. Subsequently, section 3. presents the system-
atic approach to deal with the inherent data imbal-
ance and addresses the classification results. Section
4. elaborates on the results in a discussion, whereas
section 5. concludes the research and summarises the
most important observations.

1.1. Related work
Multiple researches have been carried out on differ-
ent topics regarding imbalanced data. Firstly, Zhao
et al. (2018) establish an approach to handle imbal-
anced healthcare data by incorporating multiple dif-
ferent rebalancing or sampling techniques. The pro-
posed framework successfully improves the detection
of rare healthcare events due to look-alike sound-alike
mix-ups. A 45% increase in relevant performance is
observed when combining a logistic regression ma-
chine learning algorithm with a sampling technique
called Synthetic Minority Oversampling Technique
(SMOTE), (Chawla et al., 2002). Another article that
studies the effects of data imbalance is Hassanzadeh

et al. (2014). In the article, four different rebalanc-
ing strategies are presented, combined with a binary
classification framework for scientific artefacts in the
evidence based medicine domain. A 15% increase in
relevant performance is observed, with the appropri-
ate rebalancing of the data.
Flight delays have been the centre of attention for
many researches carried out in the past, whereas
flight cancellations have not, unfortunately. Cao and
Kanafani (1997) and Jarrah et al. (1993) are two ex-
amples utilising on-time performance data in order to
propose an accurate decision-support tool, integrating
flight delays and cancellations. They apply network
models with minimum cost and maximum profit ob-
jectives, respectively. The tool should return an opti-
mal set of flights either to delay or cancel. Further-
more, Seelhorst (2014) investigates flight cancellation
behaviour by using an econometric discrete choice
model. The purpose of the research is to find factors
that influence flight cancellations and to predict can-
cellation probabilities. All of this is done on a time-
line of 160 days ahead of the operation. Finally, the
results of the research are incorporated in a queueing
model, which visualises the effects flight cancellations
have on flight delays. Alderighi and Gaggero (2018)
research the effect of an airline beingpart of a global al-
liance on cancellations. The conclusion of the research
is that airlines belonging to an alliance are more likely
to have flight cancellations compared to non-alliance
airlines.
The field of on-time performance has also been exten-
sively combined with machine learning techniques.
When assessing the classification task, multiple litera-
ture sources can be found. Firstly, Choi et al. (2016)
assess the prediction of airline delay, on prediction
horizons of 5 days, 1 day and 0 days. The authors
utilise multiple classification algorithms, namely De-
cision Trees, Random Forest, AdaBoost and the k-
Nearest-Neigbors classifier. They also investigate the
contribution of adding weather data to the flight op-
erational data, which is found to increase the predic-
tion performance formost of the algorithms. The Ran-
dom Forest classifier is found to have the best classifi-
cation performance. Secondly, Horiguchi et al. (2017)
predict flight delays with prediction horizons of 5
months, 1 week and 1 day before the operation. Mul-
tiple algorithms are tested for optimal performance,
which are Random Forest, XGBoost and Deep Neural
Network. The authors train and test their algorithms
on airline data, originating from a low cost carrier and
decide not to include weather data. They conclude
that the models can effectively predict flight delay on
the prediction horizon of one day before the opera-
tion, in specific airports andweeks. Thirdly, Lambelho
et al. (2020) predict not only flight delays, but also
flight cancellations and is therefore a rather unique pa-
per. Also, the authors use the prediction outcomes to
rank strategic flight schedules for London Heathrow
Airport. Furthermore, Kim et al. (2016) focus on
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deep learning algorithms to predict flight delays, sev-
eral hours before the operation. Weather data is also
included in this research and the authors limit their
data to USA airports. It is found that the Recurrent
Neural Networks architecture results in a reliable de-
lay prediction of a single day. Chen and Li (2019)
propose an air traffic delay prediction model combin-
ing multi-label Random Forests and an approximated
delay propagation model. The authors conclude that
their approach appears to be practical and accurate for
flight delay prediction. Additionally, they find that de-
parture delay and late arriving aircraft delay are the
most important data features for the prediction. Fi-
nally, Alonso and Loureiro (2015) perform multiclass
predictions for flight departure delay at Porto Airport,
several hours before the flight. Interestingly, the pre-
diction result is one of multiple classes, bound by de-
lay times. Examples of these classes are [0,15], ]15,30]
and ]30,60] (all minutes delay). Neural Networks and
Decision Trees are used in the prediction, with the
Neural Networks resulting in simpler implementation
and better test results.
Not only classification tasks, but also regression tasks
(estimating delay time instead of predicting whether
a flight is delayed or not) are widely covered in lit-
erature. Manna et al. (2017) investigate the predic-
tion of flight delays with a prediction horizon of sev-
eralmonths before the operation forUSA airports. Us-
ing Gradient Boosted Decision Trees, the authors find
that the model is a good predictor of flight delay pat-
terns with good accuracy and limited errors. Next,
Kalliguddi and Leboulluec (2017) estimate flight de-
lay, with Random Forests outperforming any other of
the algorithms under consideration. The prediction
horizon here is several hours ahead of the operation.
The authors also conclude that late aircraft delay, car-
rier delay, weather delay and national airspace delay
have the most effect on on-time performance.

1.2. Data description
In order to successfully predict flight delays and can-
cellations, a multitude of datasets is used as a solid
training base for the machine learning algorithms.
First and foremost, flight operational data forms the
foundation for the final dataset. The data is provided
by AAS. For the flight cancellations, the data ranges
from 2015 up to and including 2018. This dataset con-
tains 1,956,418 flights and is centered around origin-

destination (O-D) pairs, in which either the origin
or the destination is always AAS. Furthermore, it en-
compasses informative data elements (from now on
referred to as features) such as date, time, origin or
destination airport, airline, flight number, etc. For a
complete list of features of the flight schedule datasets
and the weather datasets, please consult Table 1. Of
all flights in the set, 30,695 or 1.6% of them is can-
celled. This is expected as flight cancellations are in-
frequent events. However, it implies that the dataset
is extremely imbalanced. A cancelled flight is defined
as a flight that was scheduled to fly, however eventu-
ally did not. The flights are operated by 256 different
airline companies, flying to and from 649 unique ori-
gin/destination airports. About 54% of all flights are
within the Schengen zone.
The flight operational dataset for flight delays is
slightly different as it spans all flights in 2019, count-
ing as many as 479,400 flights. In contrast to the
data for the cancellation prediction, this dataset is cen-
tered around turnarounds and follows a single air-
craft arriving and departing again. This allows for a
more elaborate analysis, as arrivals and departures,
which might influence each other in terms of delay,
are coupled. Some examples of data features from
this dataset are airline, in-block time, off-block time,
scheduled turnaround time, origin or destination air-
port, departure delay, etc. This dataset is also im-
balanced, however, less severely imbalanced than the
cancellation set. 82,350 flights depart with a delay,
which is 34% of all departures, and 57,253 of the ar-
rival flights arrive with a delay, which represents 24%
of all arrivals. The definition of a delayed flight, is
when the actual departure or arrival time is later than
or equal to 16 minutes, as this is the threshold utilised
by AAS. The histograms in Figure 1 show the delay
distribution of the flights, with the number of flights
on the y-axis and the departure/arrival delay in min-
utes on the x-axis. Furthermore, there are 49 different
aircraft types and 99 different airlines present in the
dataset, flying from 336 unique origin airports and to
323 unique destination airports.
The second main data type is weather data. Two
different weather datasets are incorporated in the
research, namely the weather at AAS, provided by
KNMI (KNMI, 2020) and the weather at the origin
or destination airport (other than AAS), provided
in METAR reports (IowaStateUniversity, 2020). The

Table 1: Data features in the original delay, cancellation and weather datasets combined. Detailed feature expla-
nation is performed in section 2.1.2. (n=numerical feature, c=categorical feature, p=periodical feature).

dataset Features
Weather Wind speed & directionn, Gust speedn, Temperaturen, Dew point Temperaturen, Sunshine timen,

Global radiationn, Precipitation timen, Precipitation amountn, Pressuren, Horizontal visibilityn,
Cloud coveragen, Relative humidityn, Mistn, Rainn, Snown, Stormn, Icen

Flight schedule Flight numberc, Airlinec, Handlerc, Aircraft typec, Aircraft registrationc, Flight naturec, Service typec,
Codesharec, Data and Timep, Turnaround timec, Aircraft categoryc, Widebody or Narrowbodyc, Re-
mote or Connected gatec, Airportc, Schengenc, Continentc, Countryc, Number of daily visitsn
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Figure 1: Histogram showing the departure and arrival delay distribution in the delay dataset. Vertical red
marker shows the delay threshold of 16 minutes.

KNMI set contains hourly weather data from 2015 up
to and including 2019, whereas the METAR weather
includes half-hourly weather data, likewise from 2015
up to and including 2019. Both datasets include fea-
tures such as temperature, wind speed, visibility, pres-
sure, etc. The KNMI dataset is the smallest, with ap-
proximately 42 thousand samples, while the METAR
dataset includes more than 45 million data samples.
This is due to the fact that the set encompasses 5
years of weather for all origin and destination airports
served from AAS.

2. Binary classification model for flight
delay and cancellation prediction

In this section, the binary classification model is cov-
ered entirely, encompassing the feature encoding, fea-
ture selection, binary classification algorithms and
model performance indicators. Aflowdiagram for the
model can be seen in Figure 2.

2.1. Features
2.1.1. Feature encoding
The first step in preparing the data to be fed into
the machine learning algorithms, is making sure it
is well-structured and numerical. It may not contain

any missing values. Therefore, after having interpo-
lated and removed some missing features, it is time to
look at the categorical data features. Machine learning
algorithms can only process numerical information.
Therefore, it is essential to perform encoding on the
categorical data, i.e. turning words and letters, such
as the airline name, into numbers. Three different en-
coding techniques are used in the research. A simple
form of binary encoding, target encoding and periodic
encoding. Examples of the encoding techniques can
be found in Table 2.
Firstly, the categorical features containing a lot of cat-
egories (e.g. the feature Airport contains approxi-
mately 650 different categories), are target encoded.
The correlation with the target variable (cancelled or
delayed) is determined per flight. This is then trans-
lated into the probability that the variable is cancelled
or delayed, which represents that specific variable in
the dataset (Lambelho et al., 2020). Secondly, periodic
data features such as hour, day of week andmonth are
encoded using trigonometric functions, to account for
their periodicity (Horiguchi et al., 2017). In the ex-
ample in Table 2, the featureMonth is encoded, which
ensures that month 12 (December) and month 1 (Jan-
uary) are sequentialmonths. This is done by introduc-

Figure 2: A flow diagram of the model.
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Table 2: Example of the encoding techniques.

Original features Encoded features
City (A) Month (B) Cancelled (C) Target encoding (A) Periodic encoding (B) Binary encoding (C)
London 1 Yes 1 sin( 2π1

12
), cos( 2π1

12
) 1

Brussels 3 Yes 0.5 sin( 2π3
12

), cos( 2π3
12

) 1
Paris 5 No 0.33 sin( 2π5

12
), cos( 2π5

12
) 0

London 7 Yes 1 sin( 2π7
12

), cos( 2π7
12

) 1
Paris 8 Yes 0.33 sin( 2π8

12
), cos( 2π8

12
) 1

Paris 10 No 0.33 sin( 2π10
12

), cos( 2π10
12

) 0
Brussels 12 No 0.5 sin( 2π12

12
), cos( 2π12

12
) 0

ing a sine and cosine component for month m, which
are defined as sin(2πm

12 ) and cos(2πm
12 ). Lastly, the bi-

nary encoding technique is applied to features con-
taining binary information, such as arrival or departure,
snow or no snow and Schengen or Non-Schengen. This is
simply changed into 1 and 0.
After the encoding, in order to eliminate any un-
wanted feature domination or ranking, feature scaling
to a 0-1 scale is performed (Horiguchi et al., 2017; Choi
et al., 2016).
2.1.2. Feature selection
When the flight operational and weather datasets are
merged, one final, large dataset is obtained. This re-
sults in a high number of features in both the can-
cellation and delay case. It has been proven that in-
corporating a large number (or all) of the features
is not always beneficial for prediction performance
(Flach, 2012). Having too many features could result
in higher computational loads and longer run times,
but also in decreased performance, as not all features
have a high target correlation. This is also known
as ‘the curse of dimensionality’ (Pechenizkiy, 2005).
Therefore, it is important to select a set of the most rel-
evant features.
In this paper, the main feature selection technique is
based on Pearson’s correlation coefficient. This co-
efficient measures the linear association strength be-
tween two features. A correlation coefficient of +/-
1 resembles a perfect positive/negative correlation.
The higher the correlation of a feature with the tar-
get, the better performance this feature has in clas-
sification. However, when comparing features with
other features for inter-correlation (so notwith the tar-
get variable), a high correlation coefficient could lead
to multicollinearity for some machine learning classi-
fiers. Hence, one of the two features must be aban-
doned, preferably the one with the lowest correlation
with the target. This method is an example of a fil-
ter method, with a subset of relevant features going
into the model after selection/filtering. The minimum
threshold for selecting a feature is set at +-0.1 and the
maximum threshold for multicollinearity is set at +-
0.8 for cancellations and +-0.7 for delays.
The selected sets of features can be seen in Tables 3, 4
and 5, for cancellations, departure delay and arrival

delay respectively. From left to right, the first col-
umn shows the feature name, the second columngives
a short explanation of the feature and the remaining
columns show whether the feature is incorporated in
the dataset, for each prediction horizon. An S in-
dicates the inclusion of a scheduled feature (known
months in advance), an A indicates the inclusion of an
actual feature (only possible 1 hour in advance as the
actual information of that day is used) and a W indi-
cates a weather feature. The different types of weather
forecast features are explained in the next paragraph.
Please note that there is a multitude of features that
is created and added to the initial datasets, but they
are filtered out by the feature selection. These are fea-
tures such as distance between airports, monthly route
frequency, monthly route market share, aircraft seats,
last flight of the day indicator, airline alliances, seasons
and days of the week.

Since weather forecasts are less accurate or unavail-
able for earlier prediction horizons of 1 week and
6 months, the weather features consist of averaged
weather measurements for these horizons. For the
prediction horizon of 1 day before the flight, the
hourly weather measurements are used from the
KNMI set, as they are. This implies that it is assumed
that the weather is predicted without error one day
ahead. For the prediction horizon of 1 week, a daily
average is taken of all weather features. Analogously,
for the 6 months prediction horizon, a monthly aver-
age is taken. For the METAR weather, a different av-
eraging technique is applied, since this concerns the
weather at the origin and destination airport. In the
data there is no information on the departure time at
the origin (in case of arrival at Schiphol) or on the ar-
rival time at the destination (in case of departure at
Schiphol). As it is difficult to estimate flight times due
to different flying speeds combined with shifting time
zones, it is chosen to take 6-hourly average weather
information at the origin or destination airport (not
Schiphol) for the horizons of 1 hour and 1 day. This as-
sumption encompasses the flight times and time zones
and still gives a 6-hourly averaged indication of the
weather at the airport. For the horizons of 1 week and
6 months, again a daily and monthly average is taken.
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Table 3: Selected features for cancellations. (S=Scheduled, A=Actual, W=Weather).

Feature Explanation 1 day / 1 week / 6 months
Airport Origin or destination airport of the flight S
Flight Number Unique flight number of the flight S
Country Origin or destination country of the flight S
Airline Airline company operating the flight S
Servicetype Category of the commercial flight; passenger or freight S
AC Registration Registration number of the aircraft operating the flight S
Handler Apron handler, handling baggage, fuel,. . . S
Wind Speed Windspeed at origin/destination airport W
Pressure Air pressure at origin/destination airport W
Visibility Horizontal visibility at the origin/destination airport W
Snow Indicator is snow presence at the origin/destination airport W

Table 4: Selected features for departure delay. (S=Scheduled, A=Actual, W=Weather).

Feature Explanation 1 hour 1 day / 1 week / 6 months
Flight number Unique flight number of the flight S S
AC registration Registration number of the aircraft S S
AC type Type of the aircraft operating the flight S S
Handler Apron handler, handling baggage, fuel,. . . S S
Airline Airline company operating the flight S S
Destination airport Destination airport of the flight S S
Daily visits Number of times this route is operated per day. S S
Month Month in which the flight is operated S S
Time Time at which the flight is operated S S
Total arr (past hr) Total number of arrivals in the past hour A S
Total dep (past hr) Total number of departures in the past hour A S
Wind gust speed (origin) Maximum wind speed at the origin. W W
Temperature (origin) Temperature at the origin. W W
Temperature (destination) Temperature at the destination W W
Total arr delay (past hr) Total minutes of arrival delay in the past hour A
Total dep delay (past hr) Total minutes of departure delay in past hour A
Arrival Delay If the flight had a delay when it arrived A

Table 5: Selected features for arrival delay. (S=Scheduled, A=Actual, W=Weather).

Features Explanation 1 hour 1 day / 1 week / 6 months
Flight number Unique flight number of the flight S S
AC registration Registration number of the aircraft S S
AC type Type of the aircraft operating the flight S S
Handler Apron handler, handling baggage, fuel,. . . S S
Origin airport Origin airport of the flight S S
Month Month in which the flight is operated S S
Time Time at which the flight is operated S S
Wind gust speed (destination) Maximum wind speed at the destination W W
Total arr delay (past hr) Total minutes of arrival delay in past hour A
Total dep delay (past hr) Total minutes of departure delay in past hour A
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2.2. Binary classification algorithms
Supervised learning algorithms are needed to per-
form the binary classification task for flight delays
and cancellations. Numerous algorithms exist that are
able to perform this task, however, given that this re-
search is bounded in resources, it is important to only
select a few and compare their performance. There-
fore, two popular types of algorithms are chosen in
order to compare their performance. These are Ran-
dom Forests (RF) and Neural Network (NN). How-
ever, before the algorithms are covered, it needs to be
highlighted how they work based on the data that is
fed into them.
Machine learning algorithms need training data, in or-
der to learn, and test data, in order to evaluate how
good they were trained. Typically, this train-test split
is taken at 70%-30% or 80%-20% respectively. Addi-
tionally, a method called K-Fold Cross Validation (K-F
CV) makes this aspect more robust. This technique
is a process of training the same data set K times, each
timewith different (100− 100

K )% batch of the data used
for training and 100

K % batch of the data used for vali-
dation. A 5-F CV is used in the models, defining the
train-test split as 80%-20%, before the data is fed into
the algorithms.
In terms of the algorithms themselves, firstly there
is the RF. It is composed of multiple Decision Trees,
hence it is called an ensemble method. A large group
of independent trees is assembled, after which their
verdicts are averaged, reducing the variance. All trees
in the group are noisy but unbiased. Each tree carries
out a class vote, after which the RF classifies using the
majority vote (Choi et al., 2016).
Secondly, a NN consists of multiple layers of neurons,
stacked together in order to produce a final output.
The first and last layer are called the input and output
layer and all layers in between are called hidden layers.
The neurons are functions of the outputs of all neu-
rons in the previous layer and have activation func-
tions that are fired (activated) when a certain thresh-
old is reached. Popular activation functions are ReLU,
Tanh and Sigmoid. The aim of the NN is to learn and
set the network parameters, which are the biases and
weights of every neuron in each layer, in order for the
outcome to be equal to the groundtruth (Kuhn and Ja-
madagni, 2017). The term Deep Learning comes from
Deep NN’s, which essentially is a NN with multiple
hidden layers, creating more ‘depth’.

2.3. Performance indicators
To successfully perform this research, it is essential to
evaluate how good or bad the models are perform-
ing. This can be done using several performance indica-
tors. These indicators provide evidence of the capabil-
ities of themodel in terms of correctly predicting flight
(arrival/departure) delays and cancellations. They
are an essential part of the analysis, as multiple mod-
els and scenarios are being evaluated and the optimal

combination should be selected after detailed compar-
isons.

At the basis of most performance indicators lies the
confusion matrix (CM). Essentially, the CM gives the
number of class-dependent errors. An example of a
CM for cancellation classification can be seen in Table
6.

Table 6: Example of a confusion matrix.

Actually
cancelled

Actually
flying

Predicted cancelled TP FP
Predicted flying FN TN

The confusion matrix essentially projects the predic-
tions (left-most column) on the actuals (top row). The
following metrics are defined: true positives (TP),
false positives (FP), false negatives (FN) and true neg-
atives (TN) (Lambelho et al., 2020). The TP are the
flights that are predicted as cancelled and actually are
cancelled. Right next to the TP, there are the FP, de-
picting the flights that are predicted as cancelled by
the model, but are actually flying. Below there are the
FN, the flights that are predicted as flying but actually
end up being cancelled. Finally, in the bottom-right
there are the TN, or flights that are predicted to fly
and actually fly. Several important performance met-
rics can be derived from the confusion matrix, namely
accuracy, precision, recall, F1-score and the Area Un-
der the Curve.

• Accuracy is ‘how many of the flights were cor-
rectly predicted’. Translating this to the CM:

TP+TN
TP+FP+FN+TN .

• Precision means ‘how many of the flights that
were predicted as cancelled (delayed), are actu-
ally cancelled (delayed)’. Mathematically, this is
TP

TP+FP .

• Recall tells you ‘how many of the actually can-
celled (delayed) flights, were predicted correctly’.
In CM terms, this is TP

TP+FN .

• F1-score gives the harmonic mean between the
precision and recall, whichmeans that it punishes
the lowest values between the two.

• The Receiver Operating Characteristic curve
(ROC) and more specifically the Area Under the
Curve (AUC) plots the relation between the True
Positive Rate (TPR), and the False Positive Rate
(FPR), as a function of classification threshold.
In terms of the CM, this translates to TPR =

TP
TP+FN and FPR = FP

FP+TN .
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3. Dealing with imbalance: a systematic
approach

As has been mentioned during the data description,
the cancellation dataset is highly imbalanced and the
delay dataset is medium imbalanced. Since it has been
proven more efficient for prediction performance of
machine learning algorithms to have a balanced train-
ing and testing dataset, rather than an imbalanced one
(Chawla et al., 2002; Gao et al., 2015), the need arises
for a systematic approach to deal with the imbalance
problem. This section presents this approach, called
the imbalance analysis, in several steps. The entire
systematic approach can be summarised in the flow
diagram, visible in Figure 3. The step numbers corre-
spond to the steps explained in the paragraphs below.

Step 1: Identify relevant performance metrics

The first step of the imbalance analysis, is identifying
which performance metrics are worth observing. The
three most important indicators, especially for imbal-
anced data, are precision, recall and F1-score, since
they show the actual relations between the predicted
situation and the actual situation. This is where accu-
racy fails to deliver the necessary insights. However,
since there is always a tradeoff between recall and pre-
cision (Zhao et al., 2018), it is of importance to investi-
gate which metric would be of interest for this specific
case study. In the end, three different scenarios can be
drawnup. Onewhere it is chosen to go for highest pre-
cision at the cost of a low recall, one where the highest
recall is most beneficial at the cost of a low precision,
or the onewhere the highest F1-score (harmonicmean
between precision and recall) is favoured.

Figure 3: A flow diagram of the systematic approach to deal with imbalanced data.

Figure 4: A visual explanation of high precision and low recall (left) and high recall and low precision (right).
This is a fictional flight schedule board, with the actual flight status mentioned on the board, whereas the

predicted cancelled flights are in red, underlined italics.
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The first two scenarios can be visualised in Figure
4. In the figure two flight schedule boards can be
seen, with information for passengers, such as termi-
nal, flight number, destination, time and flight status.
The boards can be assumed to be real time informa-
tion, and five of the flights appear to have been can-
celled. The flights in underlined, red italics are the
ones the model predicted to be cancelled. So, the dif-
ference between the actually cancelled flights (with
status ‘cancelled’) and the predicted ones is clearly
visible. The left figure visualises a high precision and
low recall. In other words, the cancelled flights pre-
dicted by the model have a high likelihood of actually
being cancelled, at cost of only capturing just a few (2
out of 5). The right figure visualises a high recall and
low precision. This means that the model manages
to capture most of the cancelled flights, at the cost of
wrongly capturing a lot of non-cancelled flights. The
third scenario, going for the highest F1-score, would
be the optimal combination of the two aforementioned
scenarios.
It is decided that the most useful and optimal way
of implementation of the model for AAS is to go for
the highest precision. With an eye on operations and
professional airline relationships, it is better to have a
short prediction list with high certainty cancellations,
than to have an elaborate, long list with low certainty
and therefore lots of wrong predictions. Additionally,
it is decided to include the highest F1-score in fur-
ther analysis as well. Broadening the spectrum of ma-
chine learning prediction, other performance indica-
tors, like recall, might be of a higher importance for
applications in industries or sectors other than avia-
tion. As the F1-score represents the harmonic mean
of both precision and recall, it gives a better overall
overview of the model performance. One could say
that from a purely mathematical point of view, the F1-
score is the most important metric for averagedmodel
performance (especially here, for imbalanced data).
Therefore, in order to make this research applicable to
other fields of study, it is chosen to also present the op-
timal F1-score performance. Additionally, it presents
the opportunity to develop an approach to deal with
the imbalanced data not only utilising precision, but
also other performance indicators.

Step 2: Sample and plot performance evolution
The second step in the approach is to investigate
the evolution of the relevant performance indicators,
by varying the so called ‘imbalance ratio’. It is de-
fined as the ratio of delayed/cancelled flight to non-
delayed/non-cancelled flights. The data is sampled at
different degrees, starting at ‘no sampling’ (base im-
balance ratio) and going to 100% sampling, with steps
of 5% per iteration. So, for example, the data is sam-
pled, in case of cancellations, at 2%, 5%, 10%, 15%, ...,
95% and 100%. After each iteration, the data is fed
into the binary classification algorithm and the per-
formance is obtained. The start here is at the base
imbalance ratio of 2% since that is the lowest ratio

possible (without sampling). Here, ‘imbalance ratio
of 15%’ means that the amount of cancelled flights
is 15% of the amount of non-cancelled flights. Con-
sequently, 100% imbalance ratio refers to perfect re-
sampling, where the number of delayed/cancelled
and non-delayed/non-cancelled flights are equal. The
ideal way to visualise the metric evolution is by plot-
ting the performance metric in a graph as a function
of the imbalance ratio.
In order to perform the sampling of the data, Chawla
et al. (2002) have proposed an interesting technique.
It goes by the name of Synthetic Minority Oversam-
pling Technique (SMOTE) and is centered on over-
sampling the minority class, by creating synthetic
samples. SMOTE generalises the decision region of
this minority class, by multiplying the difference be-
tween a data sample and one of its nearest neighbours
with a random number between 0 and 1 and then
by adding the result to the sample under considera-
tion. In essence, synthetic samples are created on the
lines between the minority samples and their nearest
neighbours. The authors also combine their sampling
technique with Random Undersampling (RUS). RUS
works by randomly removing majority samples from
the dataset, in order to bring theminority andmajority
shares closer together. This technique is also included
in this research bymeans of combination and compar-
ison. Apart from only applying RUS and SMOTE sep-
arately on the data, different combinations of SMOTE
and RUS are tested, at multiple imbalance ratios.
All three scenarios (cancellations, departure delay
and arrival delay) are run with the RF and NN clas-
sifiers, for a series of imbalance ratios. The 1 day
prediction horizon is used for the flight cancellations,
whereas the 1 hour prediction horizon is used for the
flight delays. The models are run with the default
hyper-parameter settings andhyper-parameter tuning
is performed at a later stage. The performance met-
ric graphs for the cancellations can be seen in Figure
5. It respectively displays the precision, recall and F1-
score in function of the imbalance ratio for the two al-
gorithms (RF and NN) and two sampling techniques
(S for SMOTE and R for RUS). Hence, NN-S means
a Neural Network sampled with SMOTE. The min-
imum on the x-axis is 1.6% (rounded to 2% in the
graphs), as this is the base ratio of cancelled flights
to non-cancelled flights for unsampled data. Scenar-
ios with sampling techniques which combine SMOTE
and RUS at different imbalance ratios are also investi-
gated. However, the results are entirely in line with
the results shown in the graphs and changes in the
graphs seem to correspond only to the changes in im-
balance ratio rather than to the different combination
styles of SMOTE and RUS. Therefore, they are not in-
cluded in these performance graphs.
As precision and F1-score are the identified relevant
metrics, these graphs are central in the analysis. In
Figure 5 it can be observed that the precision score has
a maximum for all algorithms at the base imbalance
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Figure 5: Precision (a), recall (b) and F1-score (c) in
function of imbalance ratio, for cancellation

prediction. (RF = Random Forest, NN = Neural
Network, R = RUS, S = SMOTE)

ratio without sampling (1.6%), after which it rapidly
decreases for the next few imbalance ratios, just for it
to start decreasingmore graduallywith increasing im-
balance ratio. The inverse can be seen for the recall,
which starts at a minimum and gradually increases
with increasing imbalance ratio. Again, the imbalance
ratio is defined as the ratio of cancelled flights to non-
cancelled flights, which can be increased by means
of sampling techniques, which could be SMOTE (cre-
ating minority samples) or RUS (removing majority
samples). Finally, as the F1-score is dependent both on
precision and recall, its course is in line with how high
the harmonic mean of the two aforementioned indica-
tors is. Therefore, the peak is observed at the point
where the difference between precision and recall is
the smallest. One combination of algorithm and sam-
pling technique, however, seems to react rather insen-
sitive to the imbalance ratios for both recall and preci-
sion, namely the RF with SMOTE.
For the departure delays, the points on the perfor-
mance metric plots range between the point without
sampling, which is 55% (i.e. the ratio of delayed
flights over the non-delayed flights) and 100% RUS
and SMOTE. Also here, precision, recall and F1-score
are the centre of the imbalance analysis. Their graphs
can be seen in Figure 6. The general graph trends seem
to be the same as for the cancellations. Precision de-
creases with increasing imbalance ratio and recall in-
creases with increasing imbalance ratio, for both algo-
rithms and sampling techniques. The F1-score seems
to also gradually increase with the imbalance ratio.
Finally, for the arrival delays, the precision, recall and
F1-score graphs can be seen in Figure 7. Theminimum
on the x-axis, also known as the no sampling point or
base imbalance ratio, lies at 33%. Again, there is a clear
decreasing trend for precision and an increasing trend
for recall, with the F1-score graph corresponding to
their harmonic mean.

Step 3: Select optimal imbalance ratio
When the performance metric evolution on the vari-
ous imbalance ratios is obtained, it is time to select the
optimal imbalance ratio from the performance plots.
This is done by looking for the scenario in which the
relevant performance metric has reached amaximum.
For the cancellations, the maximum precision point
for the NN classifier can be found in Figure 5a at the
1.6% ratio, i.e. the point with no sampling. For RF, the
exact same observation can be made, i.e. highest pre-
cision at the base imbalance ratio, without sampling.
The optimal F1-score for NN, lies on the 10% point in
Figure 5c, this time sampled with SMOTE. The opti-
mal F1-score for RF, lies on the 10% RUS point. Do
bear in mind that these results are for the 1 day pre-
diction horizon and the other horizons are added in
a later stage. It can already be observed that for both
the precision and F1-score, the NN classifier performs
better than the RF.
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Figure 6: Precision (a), recall (b) and F1-score (c) in
function of imbalance ratio, for departure delay
prediction. (RF = Random Forest, NN = Neural

Network, R = RUS, S = SMOTE)
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Figure 7: Precision (a), recall (b) and F1-score (c) in
function of imbalance ratio, for arrival delay

prediction. (RF = Random Forest, NN = Neural
Network, R = RUS, S = SMOTE)
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Just like it was the case for cancellations, it is better to
have a shorter list with higher certainty departure de-
lays, compared to the opposite, from an airport opera-
tional point of view. Therefore, the pointswith highest
precision and highest F1-score are chosen once more,
this time for departure delays. For both classifiers,
the maximum precision is observed in Figure 6a at the
55% point, or the no sampling point. For the F1-score,
theNNscores best at 100%SMOTE and theRF at 100%
RUS, as can be seen in Figure 6c.
For the arrival delays, the highest precision is again
found for no sampling (33% imbalance) for both clas-
sifiers, as can be seen in Figure 7a. The highest F1-
score, is found at 100% RUS for NN and 90% RUS for
RF in Figure 7c. A summary of all optimal selected
imbalance ratios for each scenario and each algorithm
can be seen in Table 7.

Step 4: Perform hyper-parameter tuning
Following the selection of the optimal imbalance ra-
tios, hyper-parameter tuning can now be performed
for all classifiers, each time on their respective se-
lected imbalance ratios. The binary classification ma-
chine learning algorithms contain hyper-parameters,
which are comparable with internal tuning buttons.
When tuning these parameters, the performance of
the algorithm can be optimised for a specific scenario.
Therefore, this technique is applied in this research as
well. The hyper-parameters under consideration for
the RF classifier are the number of trees, selection cri-
terion, maximum tree depth and maximum features
per tree. For the NN classifier, they are the hidden
layer size, the batch size, activation function, solver
and the learning rate.
The hyper-parameter tuning is performedutilising the
RandomizedSearchCV function from Scikit Learn. This
function generates random parameter combinations
and uses cross-validation to find the optimal set. The
final sets of parameters can be seen in Table 8 for the
Neural Network classifier and in Table 9 for the Ran-
dom Forest classifier. It is possible that, after the tun-
ing, the result is not as good as the default model pa-
rameter settings. When this is the case, the default
hyper-parameters are chosen as the definitive ones.

Step 5: Obtain optimal performance
The final step in this systematic approach is running
the RF andNN classifiers again, on the selected imbal-
ance ratios, with their tuned hyper-parameters. Then,
the final and optimal results can be generated. For
flight cancellations, the results are generated for each
of the three prediction horizons, namely 1 day, 1 week
and 6 months before the flight and for flight delays,
the 1 hour prediction horizon is added. All the results
are the mean of a 5-Fold CV.
The final results for the cancellation prediction are
visible in Table 10. It can be observed that the pre-
cision performance of RF is better than NN for the

no sampling (high precision) scenario. The oppo-
site is observed for the F1-score with the 10% sam-
pling (high F1-score) scenario. Additionally, the re-
sults show that the performance is quite steady when
it comes to increasing the prediction horizon, except
for the F1-score at the 10% sampling, which seems to
decrease with increasing prediction horizon. In gen-
eral, some small fluctuations are observed, however,
no large differences are present. These final results
also show and confirm very distinctly the effect of
choosing two imbalance ratios or sampling points (no
sampling vs SMOTE/RUS) and therefore also confirm
the need for a systematic imbalance approach to the
classification problem. Large differences can be ob-
served when comparing the precision, recall and and
F1-scores of the two sampling points.
RF yields the highest precision at the 6months predic-
tion horizon with no sampling. The precision score is
0.892, i.e., of all predicted cancelled flights, 89% is ac-
tually cancelled. This, however, corresponds to a very
low recall of 0.034, which indicates that about 3% of
all actually cancelled flights are effectively predicted
as cancelled. This low recall is in fact the case for all
of the ‘high precision’ points. The accuracy score lies
very high, at 0.986, however, this is to be expected for
non-sampled data with an extreme imbalance. Lastly,
AUC seems to show a decent score of 0.811. For the
highest F1-score, NN seems to score the best on the
1 day prediction horizon with approximately 0.249.
This is cause by a precision of 0.263 and a recall of
0.237. In the same analogy as before, it is observed
that about 26% of all predicted cancellations are ac-
tually cancelled, combined with the fact that approxi-
mately 24% of all actual cancellations are predicted as
cancelled. Again, the accuracy score here is very high,
at 0.978, since 10% sampling still yields a highly imbal-
anced dataset. Also here, AUC is decent with 0.854.
The final results for the departure delay prediction are
shown in Table 11. For the no sampling scenario, the
RF classifier slightly outperforms theNN classifier, es-
pecially for precision. For F1-score in the sampled case
NN is better on the 1 hour, 1 week and 6 months tim-
ings, however the differences are very small and for 1
day RF is best. Also, note that for this scenario there
is no single F1-score below 0.5. When looking at the
overall performance over all the prediction horizons,
it is clear that the 1 hour timing is the best one. This
is as expected, since this prediction horizon contains
information from the same day, such as arrival delay.
The overall highest precision can be found at the 1
hour prediction horizon with no sampling, with RF
just slightly beating NN with a precision of 0.783,
which goes togetherwith a recall of 0.511. This implies
that about 51% of all actually delayed flights are pre-
dicted as delayed and 78% of all predicted delays are
actually delayed. Accuracy and AUC values are 0.779
and 0.827 respectively, which are both decent scores,
however, less informative of the actual performance
due to the imbalance in the data. The highest F1-score
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Table 7: The optimal imbalance ratios selected from the best performing points on the performance plots, with
the Neural Network (NN) and Random Forest (RF) classifiers.

Cancellations Departure Delay Arrival Delay
NN RF NN RF NN RF

Highest precision no sampling no sampling no sampling no sampling no sampling no sampling
Highest F1-score 10% SMOTE 10% RUS 100% SMOTE 100% RUS 100% RUS 90% RUS

Table 8: Final Neural Network (NN) hyper-parameters.

Sampling Hidden layer size Batch size Activation Solver Learning rate

Cancellations no sampling 100 (1 layer) 1000 ReLu sgd constant
10% SMOTE 100 (1 layer) 1000 ReLu adam constant

Departure
Delay

no sampling 100 (1 layer) auto ReLu adam constant
100% SMOTE 100 (1 layer) auto ReLu adam constant

Arrival
Delay

no sampling 100 (1 layer) 1000 logistic sgd adaptive
100% RUS 100 (1 layer) auto ReLu adam constant

Table 9: Final Random Forest (RF) hyper-parameters.

Sampling Number of trees Criterion Max depth Max features

Cancellations no sampling 100 Entropy 10 0.2
10% RUS 300 Entropy 6 1.0

Departure
Delay

no sampling 500 Gini 8 0.1
100% RUS 500 Entropy 6 1.0

Arrival
Delay

no sampling 100 Gini 6 0.1
90% RUS 300 Entropy 6 0.7

is observed at the 1 hour prediction horizon for NN
with 100% SMOTE. Its value is 0.671, combined with
a precision and recall of 0.646 and 0.698 respectively.
In other words, about 65% of all predicted delays are
actually delayed and approximately 70% of all actu-
ally delayed flights are correctly predicted as delayed.
Also in this case, accuracy and AUC show decent val-
ues of 0.757 and 0.822 respectively.
The final results for the arrival delay prediction are
shown in Table 12. For the no sampling scenario, RF
seems to be better for precision than NN on the tim-
ings of 1 hour, 1 day and 1 week. NN seems to have a

better precision score at the 6 months prediction hori-
zon, compared toRF. For F1-scores in the sampled case
(100% & 90% RUS), the NN outperforms the RF clas-
sifier on each prediction horizon.
Of all prediction horizons, again, the 1 hour timing is
the best one, as expected. The highest precision score
is observed at RF with no sampling, namely 0.783, to-
gether with a recall of 0.052. In other words, of all pre-
dicted arrival delays, 78% are actually delayed, while
only 5% of all the actual delays are captured by the
model. The highest F1-score is forNNwith 100%RUS,
namely 0.531. Taking the precision and recall into ac-

Table 10: The final performance indicator results for cancellation prediction, for each prediction horizon.

1 day 1 week 6 months
Indicator NN RF NN RF NN RF

no sampling Accuracy 0.986 0.986 0.986 0.986 0.986 0.986
Precision 0.809 0.853 0.765 0.861 0.876 0.892
Recall 0.041 0.035 0.043 0.035 0.036 0.034
F1-score 0.079 0.068 0.082 0.068 0.070 0.066
AUC 0.772 0.850 0.788 0.853 0.746 0.811

10% SMOTE (NN) / Accuracy 0.978 0.981 0.976 0.976 0.979 0.984
10% RUS (RF) Precision 0.263 0.284 0.232 0.210 0.251 0.349

Recall 0.237 0.198 0.264 0.204 0.199 0.060
F1-score 0.249 0.233 0.247 0.207 0.222 0.103
AUC 0.854 0.839 0.861 0.836 0.811 0.797
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Table 11: The final performance indicator results for departure delay prediction, for each prediction horizon.

1 hour 1 day 1 week 6 months
Indicator NN RF NN RF NN RF NN RF

no sampling Accuracy 0.780 0.779 0.682 0.681 0.667 0.672 0.657 0.671
Precision 0.766 0.783 0.614 0.660 0.585 0.667 0.612 0.649
Recall 0.539 0.511 0.303 0.203 0.520 0.260 0.460 0.274
F1-score 0.633 0.619 0.406 0.311 0.551 0.374 0.526 0.385
AUC 0.826 0.827 0.691 0.691 0.705 0.706 0.692 0.690

100% SMOTE (NN) / Accuracy 0.757 0.741 0.666 0.645 0.639 0.649 0.639 0.641
100% RUS (RF) Precision 0.646 0.623 0.524 0.493 0.552 0.529 0.553 0.515

Recall 0.698 0.648 0.491 0.601 0.588 0.614 0.604 0.606
F1-score 0.671 0.648 0.507 0.542 0.570 0.568 0.577 0.557
AUC 0.822 0.798 0.679 0.685 0.698 0.700 0.696 0.685

Table 12: The final performance indicator results for arrival delay prediction, for each prediction horizon.

1 hour 1 day 1 week 6 months
Indicator NN RF NN RF NN RF NN RF

no sampling Accuracy 0.774 0.770 0.768 0.765 0.751 0.747 0.749 0.745
Precision 0.720 0.783 0.692 0.713 0.723 0.724 0.726 0.685
Recall 0.093 0.052 0.054 0.028 0.076 0.050 0.057 0.037
F1-score 0.165 0.097 0.101 0.054 0.138 0.094 0.106 0.070
AUC 0.720 0.743 0.680 0.693 0.702 0.718 0.686 0.686

100% RUS (NN) / Accuracy 0.737 0.730 0.710 0.640 0.650 0.695 0.629 0.678
90% RUS (RF) Precision 0.457 0.444 0.406 0.362 0.409 0.443 0.393 0.412

Recall 0.632 0.620 0.528 0.624 0.685 0.582 0.641 0.522
F1-score 0.531 0.518 0.459 0.458 0.512 0.503 0.487 0.461
AUC 0.767 0.757 0.712 0.700 0.727 0.732 0.710 0.698

count, it can be said that 46% of all predicted arrival
delays are actually delayed and 63% of all actual de-
lays have been captured.

4. Discussion
4.1. Key findings
First of all, the general performance of the departure
and arrival delay models is better than the perfor-
mance of the cancellation prediction model. Precision
and recall do not lie as far apart as they do there and
the overall F1-scores are a lot better. For departure de-
lay, there is not even a single time the F1-score lies be-
neath 0.5 in the sampled case with SMOTE and RUS.
It is likely that the reasons for these observations lie in
the original imbalance ratio of the datasets. Recall that
the base imbalance ratio of cancellations is about 2%
and of the departure and arrival delays respectively
55% and 33%. The effect of the severely imbalanced
cancellation data reflects in the results, just like the
medium imbalance influences the results of the de-
lays. Also note that the imbalance ratio of the depar-
ture delays is higher compared to the arrival delays,
which explains why the departure delay performance
is slightly better than the arrival delay. This logic also
explains why the accuracy and AUC are a little lower

for the delays, compared to the cancellations. Imagine
that the classifier classifies all flights as not delayed
or not cancelled. For the cancellations, the accuracy
would automatically be 98%, as only 2% is cancelled.
As the base imbalance ratio of the delays lies higher,
this accuracy will naturally be a bit lower. This is also
the reason why accuracy is not the best performance
metric when analysing highly imbalanced data.

A second point of discussion, is the improvement of
certain performance metrics when performing the im-
balance analysis of the machine learning algorithms
at different imbalance ratios. It is observed that preci-
sion and recall respectively decrease and increasewith
increasing imbalance ratio. Precision is the main met-
ric of interest for this case study, but since there is a
decrease in score with increasing imbalance ratio, it
can be said that balancing with sampling techniques
does not positively influence the precision. However,
when looking at the other relevant metric, F1-score,
a clear improvement can be observed when increas-
ing the imbalance ratio. For cancellation predictions,
the F1-score increases with 158%, from 0.092 at the no
sampling point to 0.237 for 10% SMOTE, with the NN
classifier. For departure delays, the F1-score of theNN
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classifier increases with 5%, from 0.641 to 0.671. Fi-
nally, for the arrival delay the F1-score increases with
32%, from 0.399 to 0.572, also with the NN classifier.
Observe here that each time themost increase towards
the highest F1-score is seen with the NN classifier. In
combination with the fact that in the final results NN
almost always outperforms RF in terms of F1-score, it
can be concluded that for F1-score NN is the optimal
machine learning algorithm to use.
Subsequently, the inclusion of the 1 hour prediction
horizon for the delay predictions and its implications
on the model performance require some discussion.
This topic is especially interesting when comparing
the arrival delay with the departure delay perfor-
mance. This short prediction horizon enables infor-
mation of that same day (actual features) to be in-
cluded. The departure delay in particular, has an ad-
vantage over arrival delay, which was already visible
in Tables 4 and 5. There, it can be seen that in the
departure delay case some features, like the actual ar-
rival delay are present, which is not applicable for the
prediction of the arrival delay. When observing the
recall of the no sampling scenario for the arrival de-
lay model, it can be noted that it is quite low, just like
it is for the cancellation predictions. Apart from the
fact that more imbalance is present, compared to the
departure delay, this can be explained by the fact that
there is no such feature as the ‘arrival delay’ feature
that comeswith the departure delay for the 1 hour pre-
diction horizon. This feature holds a high predictive
power and, when left out, it results in lower perfor-
mance. Now, one can think ofwhat prediction horizon
could be the most useful for airport operations. Since
most scheduling tasks are done a day to a week in ad-
vance, these two timings havemost importance. When
predicting at these time horizons, there is still time to
take significant actions to mitigate the effect of the de-
lay or cancellation. Still, a 1 hour and 6months predic-
tion horizon prove valuable, since they could provide
insights at, firstly, very short moments in the future
if quick actions are an option and, secondly, at a slot
allocation level.
Two main reasons are given for the difference in
performance between the departures and arrivals,
namely the imbalance and the inclusion of some fea-
tures on the 1 hour prediction horizon. Both can
simultaneously contribute to the performance differ-
ence, however they can also seen separately, when
just comparing the 1 day, 1 week and 6 months time
horizon, since the specific set of actual features is not
present there. In that situation, the imbalance differ-
ence is mostly responsible for the performance differ-
ence.
Finally, a systematic approach to deal with these
highly imbalanced datasets is established. In this par-
ticular case study, in order to obtain highest precision,
it is best not to sample the data. For highest recall,
sampling at high imbalance ratios is optimal. For F1-
score, it is necessary to analyse the metric evolution

with increasing imbalance ratios to find the optimal
point, since it depends on both precision and recall.

4.2. Future directions and recommendations
As this research is limited within the time-frame of a
thesis project, there is still room for improvement and
a lot can be done in the field of study. One partic-
ular element is the weather data incorporated in the
research. A first suggestion would be to use an ac-
tual weather forecast, in order to predict the weather
on different time horizons. In this paper, the actual
weather is assumed to be an accurate forecast for 1
hour and 1 day prediction horizons and it is aver-
aged to introduce forecast uncertainty for 1 week and
6 months. An actual weather forecast could be ben-
eficial for the model as the assumptions made might
influence how well this research reflects real-life sce-
narios.
Additionally, a pre-processing step is made in order
to prepare the data to be fed into the machine learn-
ing algorithms, or classifiers. As stated earlier, feature
scaling is performed on all features. This step is es-
sential for some classifiers, but not for all. However,
in order to keep the research within certain workable
limits, it was decided to perform the scaling step on
all data, for all classifiers. The fact that some classi-
fiers do need this measure, does not necessarily mean
that it negatively affects the performance when utilis-
ing itwith classifiers that do not need it. Therefore, it is
suggested that taking a more detailed look into which
algorithms really need this pre-processing step, can be
a move in the right direction for future analysis.
Finally, another suggestion, as only two sampling
techniques were included in the research, would be to
perform the imbalance analysis with other sampling
techniques, such as Random Oversampling, which
could lead to new insights. The same applies to the
machine learning algorithms, as different algorithms
and sampling techniques could react very differently.
Examples of different algorithms are k-Nearest Neigh-
bours or boosting algorithms.

5. Conclusion
In this research, a systematic approach to deal with
highly imbalanced data for machine learning algo-
rithms is developed, in order to successfully perform
the binary classification of flight delays and cancella-
tions. The machine learning algorithms are trained
and tested with flight operational data from Amster-
dam Airport Schiphol and weather data from KNMI
andMETAR. The predictions are evaluated on predic-
tion horizons of 1 hour, 1 day, 1week and 6months be-
fore the flight. The imbalance of the data is mitigated
by investigating the effects of the sampling techniques
Random Undersampling (RUS) and Synthetic Minor-
ity Oversampling Technique (SMOTE) on the classi-
fier performance.
The imbalance analysis and its results show that opti-
mal performance scores can be obtained by investigat-
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ing indicator evolution with varying data imbalance
ratios. When the optimal imbalance ratios are found,
the model can be tuned in order to even further en-
hance the indicator score. The most essential perfor-
mance indicators for this case study are precision and
F1-score. Optimal precision is shown to be found at
base imbalance ratios (data without sampling), for all
algorithm and sampling technique combinations. In
order to find the highest F1-score, sampling is shown
to be essential.

For flight cancellations, the highest precision is ob-
served at the 6 months prediction horizon, with the
Random Forest classifier without sampling (base im-
balance ratio). The highest F1-score is found with the
Neural Network classifier at 10% SMOTE, on the 1 day
horizon. In the case of the flight departure delays,
the highest precision is detected at the 1 hour predic-
tion horizon, with the Random Forest classifier with-
out sampling (base imbalance ratio). The highest F1-
score is observed with the Neural Network classifier
at 100% SMOTE, on the 1 hour horizon. Finally, for
the flight arrival delays, the highest precision is en-
countered with the Random Forest classifier without
sampling (base imbalance ratio), on the 1 hour predic-
tion horizon. The optimal F1-score is observed with
Neural Network at 1 hour before the flight, sampled
at 100% RUS.

The proposed imbalance approach and prediction
models could be a base framework for multiple on-
time performance predictions for major European
hub-airports. As the F1-score was also included in the
analysis, the spectrum of applications can be broad-
ened to other fields of study, where perhaps perfor-
mance metrics other than precision could be of in-
terest. The research could be elaborated by adding
more machine learning algorithms, such as k-Nearest
Neighbours or boosting algorithms, and taking into
account other types of sampling techniques, such as
Random Oversampling.
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Abstract

This report represents the literature review for the Air Transport Operations Master Thesis, AE4020. The re-
view is centered around flight cancellation prediction using machine learning algorithms. Cancellations may
have negative impacts on airport operations, so predicting them would be beneficial for airports, hence the
relevance of this research. The purpose of this report is to ensemble the knowledge already gained in topical
literature and to compare and discuss the different methods and techniques used. Finally, a scope, research
question and objective can be formulated and the thesis work can actually begin.

The first interesting piece of information gathered is the methodological flow in the literature. They all
seem to have roughly the same structure and approach. This approach serves as a backbone structure and
layout for the literature study as well. The papers are mostly structured as follows; analysis of data from
trustworthy sources, pre-processing, sampling and feature selection. This first part can be taken together
as ‘data management’. Then there is the assemblance of final training data, with incorporation of eventual
specific new features. This is translated to ‘cancellation behaviour’. Finally, there is the big chunk of ‘machine
learning’, that deals with training, performance evaluation, testing and the different algorithms.

The first part, data management, is very important in the research, since machine learning algorithms
need clearly structured data. Two main types are addressed, namely flight schedule and weather data. For
the flight schedule data, sources mostly are airports, airlines or governmental instances. For the weather,
this can be national weather services or online service providers. The next steps in the data management are
cleaning and normalisation. Missing data can either be interpolated or removed and data can be normalised
to e.g. a 0-1 scale, in order to eliminate misleading feature importance due to larger numerical values. Nat-
urally, the datasets do often contain categorical data, which needs to be encoded to form numerical data.
Different techniques are used in literature, namely One-Hot encoding, Binary Encoding, Target encoding
and Ordinal encoding. Also, trigonometric functions are used to encode periodic data. Furthermore, since
flight delay or cancellation data is often imbalanced, sampling needs to be performed to balance out the data
for the machine learning algorithms. The following techniques are often used in literature; synthetic minor-
ity oversampling, random majority undersampling and minority oversampling with replacement. Finally, the
two most popular feature selection techniques are recursive feature elimination and the Pearson correlation
coefficient.

Secondly, several features will need to be created to form specific flight cancellation behavioural features.
Different aspects or determinants are seemingly important in strategic cancellations within airlines. If an
airline is in an alliance, flights are more likely to be cancelled. Also, flights are less likely to be cancelled
on competitive routes. When operating from a hub, cancellation rates are also often lower. Subsequently,
passenger inconvenience is an important factor, as airlines often try to minimise it by not cancelling flights
on infrequently flown routes, heavily loaded flights or final flights of the day. Lastly, flights are less likely to be
cancelled on routes with a high average revenue.

The third big ‘chunk’ is machine learning. In this case, supervised learning algorithms are of importance
for this research. A distinction can be made between classification and regression algorithms, the former
predicting a certain class of a limited set, the latter predicting a continuous value. The algorithms first need
historical data for training, after which they can be tested on unseen data. These train-test splits often vary in
literature between 70/30 and 90/10. Also, K-fold Cross Validation is a popular way to go, in which iteratively
another set of the K% set of the data is used for testing. It is also noted that sometimes authors train and test
with different prediction timings. Then, after training and testing, performance must be evaluated. Popular
metrics for evaluation in classification are the confusion matrix, with corresponding accuracy, precision and
recall, and the Area Under the ROC curve. For regression, error metrics like mean absolute error or root
mean squared error are appropriate. Finally, some frequently used algorithms in literature are Decision Trees,
Random Forests, Neural Networks, k-Nearest-Neighbours, Logistic Regression and Boosting algorithms.

Finally, after having gained all the knowledge from the state-of-the-art, the knowledge gap becomes clear,
namely that, to the best of knowledge, flight cancellations predictions with machine learning, historical flight
and weather data and comparing different prediction timings is an uncharted field. Flight delay prediction
was the main topic of research on all-but-one of the sources. It becomes evident that the industry needs more
thorough research on flight cancellation predictions. Therefore, the scope of the research is the prediction
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of individual flight cancellations in a European airport with machine learning algorithms, using flight and
weather data and a prediction horizon of hours to days before the flight. The research question that is meant
to be answered by this research is:

Which machine learning algorithm, trained with historical flight schedule and weather data, produces
accurate flight cancellation predictions, on prediction horizons of several hours to days before the flight?.

The research objective is closely following the research question and is:

To develop a machine learning algorithm that can predict flight cancellations using several prediction
horizons from hours to days before the flight.

The proposed methodology for the thesis is as follows. Flight schedule data originates from Amsterdam Air-
port Schiphol and weather data from KNMI. A small part of the historical data will serve as unseen or forecast
data, averaging the weather to account for forecast uncertainty. Target encoding, 0-1 scale normalisation,
SMOTE and RMU and Pearson’s correlation coefficient will be used for data pre-processing. Also, the can-
cellation behaviour features will be incorporated in the data. The pre-processing order will be first sampling,
then feature selection, after which the un-sampled data will be used for training. 10-Fold Cross Validation will
serve as training method and evaluation. Logistic Regression, Random Forests and k-Nearest-Neighbours will
serve as the training algorithms. Different prediction timings are included in the model, ranging between 1
hour, 1 day and 10 days before the flight. The confusion matrix and Area Under the ROC Curve will used as
performance evaluators. The thesis itself is predicted to last approximately 6 months and will probably finish
somewhere in the end of August 2020 with the thesis defence.



1
Introduction

The aviation industry is immensely competitive and, nowadays, on-time performance is a very, if not the
most important measure for an airline’s service quality. Regularly, new airlines are created and existing air-
lines keep developing and expanding. In 2018, more than 11 million flights were operated in Europe alone
and, compared to 2017, the annual traffic has increased by 3.8% (Eurocontrol, 2018a). Due to the continuous
increment in air-traffic and demand, airspace and airports are getting more and more crowded, operating at
maximum capacity without being able to correspondingly increase it, leading to challenging flow situations
and even a forecast capacity gap of 1.5 million flights or 8% of the demand by 2040 (Eurocontrol, 2018b). Con-
sider factors such as bad weather and, eventually, flight delays and cancellations become inevitable. These
interruptions can have detrimental effects on the airline’s quality record and can become a very costly obsta-
cle (Alderighi and Gaggero, 2018). Therefore, it could be of great value for airlines, airports and travellers if
there existed a way to accurately predict flight delays and cancellations.

How does one exactly predict these flight statuses? Unfortunately, there is no single optimal way for car-
rying out all prediction problems. However, in the last decade, there is one technique that has gained a lot of
momentum within data science and especially within prediction research (Sternberg et al., 2017). It is called
machine learning and it provides a powerful way to make predictions based on what it learned from (past)
data. Numerous algorithms exist, however, the no free lunch theorem states that there is no single one that
outperforms others when testing over all possible problems (Flach, 2012). Hence, it is purposeful to evaluate
the performance of different algorithms and see which yields the highest prediction performance.

This paper will represent the literature review for a research addressing the prediction of flight cancella-
tions using machine learning algorithms. Up until now, flight cancellations have been given a lot less atten-
tion then flight delays in research. Hence, the investigation of this topic can help uncover new insights that
could eventually benefit the industry. The purpose of this review is to ensemble all the knowledge gained
during a period of thorough reading of scientific papers, books and articles on the state-of-the-art related
to the subject of the research as stated above. The different methods and techniques used in literature will
be compared, contrasted and discussed. The aim is to provide the necessary expertise and methodological
insights in order to successfully start the thesis, after having created a structured research framework with a
clear objective, research questions and well-defined scope.

The review will kick-off with a short chapter, chapter 2, which is dedicated towards the general method-
ological flow of work, found in most of the topical literature. Afterwards, there is a chapter involving data
management, chapter 3. Data pre-processing, analysis and manipulation will be a large part of the research,
as machine learning algorithms in particular need clearly structured data to be able to perform efficiently.
Next in line is chapter 4, covering all details related to flight cancellation behaviour. Literature that defines
the determinants of and reasons for cancellations will be looked into and it will be made clear that new data
features, focused around cancellations, will have to be created. Subsequently, chapter 5 will deal with the
machine learning algorithms themselves and with the performance evaluators used to analyse and compare
their behaviour. Finally, a clear research approach will be formulated in chapter 6. Here, the knowledge gap
will be established, together with the scope, research questions, objectives and the research planning.
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2
Methodology

This relatively short chapter serves as a kind of summary of the methodologies commonly used in literature
treating flight delay or cancellation predicting using machine learning. A large body of knowledge already
exists and has been carefully moulded into numerous articles and papers. They are all unique, however, they
share a largely overlapping flow of work, or general steps. After reading about 20 papers that researched the
topic stated above, the flow diagram in Figure 2.1 was established.

The diagram represents the different steps in the methodology of tackling the general prediction problem
and it also provides a general basis for the layout of this literature review. Chapter 3 on Data Management
will cover the blocks of Data (source), pre-processing, sampling and feature elimination. Then, somewhat
connecting to these data steps and the assembly of the final data block, there is chapter 4 on cancellation
behavior, where a closer look will be taken at features that are highly important for cancellations, but not yet
present in the data. Hence, feature creation is central there. Afterwards, there is chapter 5 about Machine
Learning, covering literature that is related to the blocks of the train-test split, the algorithms and perfor-
mance evaluators. This layout will also likely be the basis for the flow and subsections of the final thesis paper
that will be written after this literature review, especially since this diagram was derived from summarising
and generalising the layout and sections of multiple topical papers.

As an example, (Choi et al., 2016) researches the prediction of weather-induced airline delays. It starts
with data collection, followed by data pre-processing. Then the classification algorithms are explained, after
which the results of the experiments and performance of the models are evaluated. This makes up the body
of the paper, which was preceded by an introduction with relevant literature and a methodology and followed
by a conclusion.

Furthermore, (Kuhn and Jamadagni, 2017) starts with its dataset and features, after which machine learn-
ing models are applied. Subsequently, there are the results and discussion. Also here there is an introduction
and related work before the main body and a conclusion after.

The aforementioned papers are only two examples of the large body of topical literature that has been
covered for this literature review. The general methodological flow established in this chapter, pointed out
in the diagram, has been derived from all of these. However, referencing to each and one of them in this
chapter alone would make for an extensive list of repetitive explanations references, whereas there is a clear
bibliography section at the end of this review. So, for more examples of this methodologies, please consult
some of the other references.
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28 2. Methodology

Figure 2.1: General methodological flow and layout in topical literature about flight delay and cancellation prediction, linked to the
structure of this literature review.



3
Data Management

A large part of the research consists of data analysis and pre-processing. Therefore, this chapter is dedicated
to review the data, methods and techniques that are currently used in research closely related to the research
topic. The chapter will start off with some notions about the data sources and data features, after which
data pre-processing will be discussed. This incorporates data cleaning and encoding. Next up, methods to
deal with imbalanced data are addressed and finally a review on feature selection methods will wrap up this
chapter.

3.1. Sources & Features
One of the first questions that one should ask in research that involves large databases, is where and how to
get the required data. The two types of data needed for the thesis are, as stated below, flight data and weather
data. This section will present the main findings concerning the data sources and it will also mention and
discuss the types of features used.

3.1.1. Flight Data
The flight schedule data is the most evident data type that is used in this kind of research. Predictions are
most likely to be performed on flight schedules, as these types of data are mostly fixed several months in
advance, due to slot allocations (Lambelho et al., 2020). Also, this type of data has often been collected for a
long time, providing a solid historical base-set, which is essential to obtain a model with a good prediction
performance. This type of data mostly comes from and is centered around airports or airlines themselves, or
originates from government instances. A summary of references that used flight schedule data can be found
in Table 3.1.

In the United States of America (USA), there is the Bureau of Transportation Statistics (BTS), which is a
highly popular source for air traffic performance data. It has been used in a lot of flight delay prediction
papers, such as (Chen and Li, 2019), (Kim et al., 2016), (Choi et al., 2016) and (Kuhn and Jamadagni, 2017).
Furthermore, (Sternberg et al., 2017) states that databases from the Federal Aviation Administration (FAA) are
also generally used for the USA, like (Chen and Li, 2019) who combined the BTS source with FAA’s Aircraft
System Performanc Metrics (ASPM) source, and that the Eurocontrol database is a common source for Eu-
rope. In (Horiguchi et al., 2017), delay and fuel consumption prediction is performed for low-cost airlines and
a combination of flight and passenger data is obtained from a low-cost airline named Peach Aviation. Data
provided by Egyptair is used in for flight delay research in (Al-Tabbakh et al., 2018). These two papers provide
interesting cases in which machine learning algorithms are fed with data provided by airlines. In terms of data
being provided by airports, there is (Lambelho et al., 2020) that uses data from London Heathrow Airport, and
(Alonso and Loureiro, 2015), using flight schedule data from Porto Airport.

It should be noted that airport data can provide a more general view over the flight schedule, whereas
airline data offers a database with a more company-based point of view, which is less generalisable towards
other airlines. However, they do offer passenger and reservation information, which could reveal otherwise
unknown patterns leading to cancellations.

Regarding the data features used, there is a lot of recurrence in the feature choice. Information about the
date and time (Year, Month, Day, Season, Hour, Quarter), flight, aircraft and airline information and airport
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information are almost always present. Other time related features such as taxi-in time or wheels-on time are
sometimes present. Also, for relatively short prediction horizons, departure or arrival delay is also popular.
Flight distance (the length of the flight route) and Schengen/International can also be useful information.
Seats or load factor (how many seats are taken on the aircraft) seems useful when specific airline information
is available.

Table 3.1: Summary of data sources and features for flight schedule data used in topical literature, with their target variable and
prediction horizon.

Reference Source Example Features Target Prediction Horizon

(Chen and Li,
2019)

BTS & ASPM Day of Month and Week, De-
parture/Arrival Time, Depar-
ture Delay Group, Arrival De-
lay Group, Scheduled Depar-
tures/Arrivals

Flight Delay
(Classification)

Several Hours

(Kim et al.,
2016)

BTS Day of Week, Season, Month,
Data, Origin/Destination Air-
port, Departure/Arrival Time,
Origin/Destination Airport
Delay

Flight Delay
(Classification)

Several Hours

(Choi et al.,
2016)

BTS Quarter of Year, Month,
Day of Week/Month, De-
parture/Arrival Time, Delay
Indicator,

Airline Delay
(Classification)

5 Days, 1 Day, 0 Days

(Kuhn and
Jamadagni,
2017)

BTS Date, Day of Week, Flight No.,
Tail no, Origin/Destination
Airport, Departure/Arrival
Time, Delay, Flight Time,
Delay, Cancellations, Taxi-in,
Wheels-on

Flight Arrival
Delay (Classifi-
cation)

Several Hours

(Horiguchi
et al., 2017)

Peach Aviation Year, Month, Day of
Week/Month/Year, De-
parture/Arrival Time,
Origin/Destination Air-
port, Airframe ID, Domes-
tic/International Flight, No of
Pax, Pax Gender, Pax Age

Flight Delay
(Classification)

5 Months, 1 Week, 1 Day

(Al-Tabbakh
et al., 2018)

Egypt Air Date, Flight No., Ori-
gin/Destination City, De-
parture/Arrival Time, Aircraft
Type, Aircraft Registration

Flight Delay
(Classification)

Several Hours

(Lambelho
et al., 2020)

London Heathrow Airline, Terminal, Aircraft, Dis-
tance, Airport, Country, Seats,
Year, Month, Hour, Day of
Week/Month/Year, Arrival De-
lay

Flight Delay
and Can-
cellations
(Classification)

6 Months

(Alonso and
Loureiro, 2015)

Porto Airport Arrival Delay, Ori-
gin/Destination, Day of Week,
Hour, Date, Month, Meteo-
rological Conditions, Airline,
Aircraft Type, Parking Stand,
Ground Operation Time

Flight Delay
(Classification)

Several Hours

3.1.2. Weather Data
As is apparent from research done in (Rupp and Holmes, 2006), (Seelhorst, 2014) and (Alderighi and Gaggero,
2018), weather is one of the most decisive factors influencing flight cancellations. Combining planned flight
schedules with weather forecasts on different time horizons, could yield more accurate predictions. Just like
it was done for the flight data, a summary with sources and features is present in Table 3.2.

A model was built in (Klein et al., 2010), for predicting airport delay using multiple weather forecast prod-
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ucts. For this they used the toolset and metric of the Weather Impacted Traffic Index (WITI), which quantifies
the impact of traffic demand and weather on the national airspace system. The WITI model uses multiple
weather sources, namely National Convective Weather Diagnostic (NCWD) for determining en-route weather
and Meteorological Aerodrome Reports (METAR), for weather at the airports. The twin model of WITI is the
forecast WITI, or WITI-FA, which uses Localized Aviation MOS Product (LAMP), Collaborative Convective
Forecast Product (CCFP) and Corridor Integrated Weather System (CIWS). Furthermore, the National Oceanic
and Atmosmeric Administration (NOAA)’s weather database is used in the research of (Choi et al., 2016), aim-
ing to predict flight delays combined with weather influence as well. NOAA was used for training machine
learning algorithms, whereas the weather forecast data for testing was obtained from World Weather Online
API. Moreover, the research topic in (Nigam and Govinda, 2017) was flight delay prediction with weather data,
however no single data source or reference for the weather data was mentioned in the paper.

As is evident from the sources stated above, most of them are USA-based, evidently for USA-based re-
search. Exceptions are METAR, which contains data from stations all over the world and the World Weather
Online API source. Most sources are generally trustworthy, originating from governmental databases or spe-
cific service providers. Additionally, as was the case for (Klein et al., 2010) and (Choi et al., 2016), multiple
sources of datasets are often combined to develop the models (Sternberg et al., 2017).

In general, it is also visible from the papers that the prediction performance with weather is significantly
better than performance without weather. Also, it is evident from (Choi et al., 2016) that the prediction pre-
diction performance of delay prediction using weather forecast (which includes uncertainty) is a lot lower on
days before the operation, compared to 0h before the operation (actual weather). Additionally, in Chapter
4, there is Figure 4.1, which indicates that there are a lot more cancellations during bad weather, so weather
should definitely be an asset for the dataset.

Regarding the most present features, the following points can be identified. Wind is alsways present, be
it as wind speed (m/s), direction (deg) or gust speed (m/s). As wind is a major influence on airport opera-
tions, this makes sense. Visibility (m) is also always present, since this determines things like decision height
and runway visual range. Precipitation and snow (mm) seem to be of interest as well. Then there are the
weather codes, which are often, depending on the source, rankings or numbers assigned to specific weather
conditions such as thunderstorms, blizzards, mist, snowstorms,...

Table 3.2: Summary of data sources and features for weather data used in topical literature, with their target variable and prediction
horizon.

Reference Source Example Features Target Prediction Horizon

(Klein et al., 2010) METAR,
NCWD, LAMP,
CCFP, CIWS

En-route Convective Weather,
Local Convective Weather,
Wind, Snow, Ceiling, Queue-
ing Delay and Ripple Effects

Airport Delay
(Regression)

4 Hours

(Choi et al., 2016) NOAA, World
Weather On-
line

Wind Direction, Wind Speed,
Visibility, Precipitation, Snow
Depth, Snow Accumulation,
Weather Codes (Intensity, Pre-
cipitation, Obscuration)

Airline Delay
(Classification)

5 Days, 1 Day, 0 Days

(Nigam and Govinda,
2017)

No Sources Visibility, Temperature,
Weather Type, Humidity,
Wind Speed, Wind Direction,
Pressure, Altimeter, Pressure
Change, Pressure Tendency

Flight Delay
(Classification)

Several Hours

(Kim et al., 2016) NOAA Wind Direction, Wind Speed,
Cloud Height, Visibility, Pre-
cipitation, Snow Accumula-
tion, Intensity, Descriptor, Ob-
servation Code

Flight Delay
(Classification)

Several Hours

(Chen and Li, 2019) NOAA Visibility, Temperature, Hu-
midity, Wind (Gust) Speed,
Pressure, Weather Type (driz-
zle, mist, thunderstorm, snow-
storm)

Flight Delay
(Classification)

Several Hours
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3.2. Pre-processing
Machine learning algorithms require specifically pre-processed and structured data, in order to function effi-
ciently. This section summarises findings of the three main steps to successfully pre-process data for machine
learning, namely interpolation, generalisation, discretisation, removal and normalisation. A summary of data
cleaning techniques used in topical literature can be found in Table 3.3.

Table 3.3: Summary of data cleaning techniques used in topical literature, with corresponding target and prediction horizon.

Reference Cleaning Method Target Prediction Horizon

(Manna et al.,
2017)

Removal (Outliers)
Normalisation (0-1 Scale)

Flight Delay (Regres-
sion)

Several Months

(Choi et al.,
2016)

Interpolation (Weather Data)
Generalisation (Cancelled, Diverted to Delay)
Normalisation (no scale)

Airline Delay (Classifi-
cation)

5 Days, 1 Day, 0 Days

(Horiguchi
et al., 2017)

Discretisation (Pax into age intervals)
Normalisation (0-1 Scale)

Flight Delay (Classifi-
cation)

5 Months, 1 Week, 1 Day

(Belcastro
et al., 2016)

Generalisation (to Delay)
Removal (Cancelled and Diverted)

Flight Delay (Classifi-
cation)

Several Hours

a) Interpolation
With data cleaning, multiple data operations are actually encompassed. In (Choi et al., 2016), weather data is
used in combination with flight data for flight delay prediction. However, the weather data contains missing
values. This is where the data cleaning will come in handy, since the authors solve this problem by linear inter-
polation using two neighbouring values. This means that a new value will be calculated and assumed, based
on neighbouring values. When data is missing, interpolation can be a useful operation to avoid removing
data that might contain important information. In a study on the effect of fitting distribution for interpola-
tion methods performed by (Noor et al., 2014), three interpolation techniques are discussed, namely linear,
quadratic and cubic. It is demonstrated that every interpolation technique provides a highly suitable fit for
the data. This again proves that interpolation is a useful data cleaning technique.

b) Generalisation
Furthermore, in the flight dataset of (Choi et al., 2016), cancelled and diverted flights are assumed delayed.
Hence, the data is generalised towards delays. Data on diverted and cancelled flights were also filtered out
from a flight dataset in (Belcastro et al., 2016). From the weather dataset, all non-airport related weather
observation locations were removed. Again, this method of filtering irrelevant data contributes to the gener-
alisation of the dataset towards the target, which is in this case again delays.

c) Discretisation
Data cleaning methods are employed in (Horiguchi et al., 2017) as well. They deal with flight data and pas-
senger reservation data. Data discretisation is performed, since passengers are grouped within age intervals.
The transformed data feature will than be the number of people within a certain interval. This discretisation
allows usage of limited computational packages or allow an improved prediction performance of machine
learning models (Sternberg et al., 2017).

d) Removal
The flight dataset in (Manna et al., 2017) contained a large number of outliers. They worked with flight de-
lay data and delay times ranged approximately between -90 minutes and 1850 minutes. Therefore, the in-
terquartile range (IQR) was used to sanitise or clean the data. IQR represents the difference between the
75th (Q3) and the 25th (Q1) percentile. The delay times were minimised to range between Q1−1.5 · IQR and
Q3+ 1.5 · IQR. Outlier removal seems interesting, since these outliers represent irrelevant data and might
introduce over-fitting or decrease model performance (Sternberg et al., 2017).
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e) Normalisation
It can also be noted that data normalisation is a key operation in data pre-processing. In (Choi et al., 2016),
normalisation is performed to scale the feature range, however, the authors do not mention their methods
neither the normalisation range. In (Horiguchi et al., 2017) the authors apply min-max normalisation to scale
the features to be in a range from 0 to 1. The same 0 to 1 scale normalisation is also applied in (Manna et al.,
2017). In the data operation of normalisation, a common scale is applied to the numerical feature data, while
respecting the differences and variations within the ranges of the values. It eliminates misleading feature im-
portance due to larger numerical values, whereas larger values do not necessarily match with higher predictor
value.

3.3. Encoding
datasets often contain numerical data, but also categorical data. Since machine learning algorithms only
accept numerical values, it is of important to transform all categorical data to numerical using encoding
techniques (Potdar et al., 2017). A summary of some encoding techniques used in topical literature is present
in Table 3.4.

Table 3.4: Summary of encoding techniques used in topical literature, with corresponding target and prediction horizon.

Reference Encoding Method Target Prediction Horizon

(Chen and Li, 2019) One-Hot Encoding Flight Delay (Classification) Several Hours

(Lambelho et al., 2020)
Target Encoding
Periodic Encoding

Flight Delay and Cancella-
tions (Classification)

6 Months

(Horiguchi et al., 2017)
One-Hot Encoding
Periodic Encoding

Flight Delay (Classification) 5 Months, 1 Week, 1 Day

(Chakrabarty, 2019)
Ordinal Encoding
One-Hot Encoding

Flight Arrival Delay (Classi-
fication)

Several Months

a) One-Hot Encoding
In (Potdar et al., 2017), it is stated that the most popular encoding technique used is One-Hot encoding, also
known as One-of-K encoding. (Chen and Li, 2019) and (Horiguchi et al., 2017) use this technique to transform
their categorical features to numerical ones. In this technique, a variable with n observations and m values
is transformed to m binary variables with n observations each (Potdar et al., 2017). However, as it is stated in
(Lambelho et al., 2020), high cardinality (numbers of elements in a set) of the data may make this technique
less suitable for encoding, just like binary encoding, which uses binary bit strings. An example of One-Hot
Encoding can be found in Figure 3.1.

Figure 3.1: Example of One-Hot Encoding.

b) Target Encoding
Target encoding is a more suitable technique for data with high cardinality, as suggested by (Lambelho et al.,
2020). In his research, flight schedule data was used with the objective to predict flight delays and cancella-
tions. Using a delay classifier as an example, target encoding encodes a categorical feature, such as an airline,
based on the probability that a flight of that airline will be delayed. Furthermore, the feature airport was en-
coded using its geographical coordinates and target encoding. An example of Target Encoding can be seen in
Figure 3.2
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Figure 3.2: Example of Target Encoding.

c) Periodic Encoding
A different encoding technique is used for periodic features. Trigonometric functions are used in (Horiguchi
et al., 2017) and (Lambelho et al., 2020) to transform periodic data, such as departure day of year and sched-
uled departure and arrival time into a numerical feature vector. For example, this allows the model to treat
New Year’s Eve and New Year’s Day as consecutive dates. For departure day of year d this is done by inte-
grating si n(2πd/365) and cos(2πd/365) in a feature vector. An example of this Periodic Encoding can be seen in
Figure 3.3.

Figure 3.3: Example of Periodic Encoding.

d) Ordinal Encoding
Another encoding technique is ordinal encoding, also known as label encoding, where an integer is assigned
to each category. (Chakrabarty, 2019) utilises label encoding to encode all flight data features. The downside
here is that an order or ranking becomes inevitable, which might not be actually existing (Potdar et al., 2017).
Please find an example of Ordinal Encoding in Figure 3.4.

Figure 3.4: Example of Ordinal Encoding.

3.4. Dealing with Imbalanced datasets
As only about 1-3% of all flights are cancelled on average (Rupp and Holmes, 2006), the data will be highly
imbalanced. Using this imbalanced data for machine learning applications may result in extended training
time and a degraded prediction performance, as is stated in (Gao et al., 2015), who performed a study on the
combination of feature selection and data sampling for imbalanced data, and in (Mollineda et al., 2007), who
reviewed the most important researches on the topic of dealing with class imbalances. A summary of some
papers that incorporated data sampling to deal with imbalances is presented in Table 3.5.



3.5. Feature Selection 35

Table 3.5: A summary of data sampling methods in topical literature, to account for imbalanced data.

Reference Sampling Target Prediction Horizon

(Chen and Li, 2019) SMOTE Flight Delay (Classification) Several Hours
(Choi et al., 2016) SMOTE & RMU Airline Delay (Classifica-

tion)
5 Days, 1 Day, 0 Days

(Chakrabarty, 2019) R-SMOTE Flight Arrival Delay (Classi-
fication)

Several Months

(Belcastro et al., 2016) RMU Flight Delay (Classification) Several Hours

a) SMOTE
To avoid imbalanced data leading to a biased flight delay prediction model, (Chen and Li, 2019) applies the
synthetic minority oversampling technique (SMOTE). This technique is centered around oversampling the
minority class, by creating synthetic samples. SMOTE generalises the decision region of this minority class, by
multiplying the difference between a data sample and its nearest neighbour with a random number between
0 and 1 and then by adding the result to the sample under consideration. This technique was researched and
developed in a research performed by (Chawla et al., 2002). In essence, synthetic samples are created on the
lines between the minority samples and their nearest neighbours. Additionally, the airline delay prediction
model from (Choi et al., 2016) performs better with SMOTE in terms of minority class recognition, compared
to without SMOTE. (Chakrabarty, 2019) has used a somewhat modified version of the SMOTE algorithm,
namely Randomised-SMOTE (R-SMOTE). Instead of looking for the nearest neighbours, it randomly selects
minority class samples and then performs the SMOTE algorithm between them.

b) RMU
The SMOTE technique is also used in (Choi et al., 2016) for predicting airline delay, in combination with
random majority undersampling (RMU). In RMU, the majority is under-sampled, removing data samples
on a random basis. In the SMOTE research paper by (Chawla et al., 2002), it is suggested that SMOTE in
combination with RMU “performs better than plain undersampling”. On the contrary, (Belcastro et al., 2016)
uses just RMU in his flight delay prediction algorithm to account for data imbalance and manages to achieve
quite good results.

c) MOR
Minority oversampling with replacement (MOR) is a technique that essentially creates duplicates of the mi-
nority class samples by copying them and supplying them to the dataset. It was concluded that the technique
did not significantly improve the recognition of the minority class. In terms of decision regions in feature
space, it is stated by the SMOTE developers in (Chawla et al., 2002), that MOR does not cause the decision
boundary to expand towards the majority class region. In essence, this could lead to overfitting, since the
same samples are only duplicated and the objective of generalisation (being able to successfully predict on
unseen data) is not satisfied.

d) When to Sample
Finally, in the research by (Gao et al., 2015) on the combination of feature selection (which will be discussed
in section 3.5) and data sampling for imbalanced data, it is suggested that the following order of data manip-
ulations is a highly suitable approach; Feature selection should only be performed once the data sampling
is complete. Then, after the most important features are extracted, they are translated to and extracted from
the unsampled dataset. In other words, the data sampling is only performed in order to provide an equally
balanced dataset for feature selection.

3.5. Feature Selection
Often, datasets are quite large and a high number of attributes or data features is present. Unfortunately,
not all features are relevant for the intended classification task and the high number might drastically raise
computational complexity of machine learning algorithms. This is also known as the curse of dimensionality
(Pechenizkiy, 2005). There might be irrelevant features, not affecting the target in any way, and there might be
redundant features, not adding any additional information to the target. Therefore, machine learning might
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not efficiently work, before the most relevant features are selected and the irrelevant and redundant features
are removed (Dash and Liu, 1997). This section addresses feature selection for intended use in machine
learning, by describing several selection techniques. Additionally, a summary of feature selection techniques
and papers is given in Table 3.6.

Table 3.6: Summary of feature selection techniques used in topical literature, with their target and prediction horizon.

Reference Selection Target Prediction Horizon

(Kuhn and Jamadagni, 2017) RFE Flight Arrival Delay
(Classification)

Several Hours

(Manna et al., 2017) Correlation Flight Delay (Regres-
sion)

Several Months

(Chen and Li, 2019) RFE Flight Delay (Classi-
fication)

Several Hours

(Lambelho et al., 2020) RFE Flight Delay and
Cancellations (Clas-
sification

6 Months

(Alonso and Loureiro, 2015) Literature & Expert
Knowlegde

Flight Delay (Regres-
sion)

Several Hours

(Kalliguddi and Leboulluec, 2017) Correlation Flight Delay (Regres-
sion)

Several Hours

a) Pearson’s Correlation Coefficient
Now, a couple of feature selection techniques will be covered, starting with (Manna et al., 2017). This pa-
per analyses the correlation between the features themselves and between the features and the target, using
Pearson’s correlation coefficient. This coefficient measures the linear association strength between between
two features. A correlation coefficient of +/-1 resembles a perfect positive/negative correlation. The higher
the correlation of a feature with the target (applied to the thesis topic, the target is the cancelled or not fea-
ture), the better performance this feature will have in classification. However, when comparing features with
other features (so not with the target feature), a coefficient higher than 0.5 points at multicollinearity. Hence,
one of the two features must be abandoned, preferably the one with the lowest correlation with the target.
This method is an example of a filter method, with a subset of relevant features going into the model after
selection/filtering. The Pearson correlation was also used in (Gao et al., 2015), a paper in which the order
operation of data sampling and feature elimination was researched. (Kalliguddi and Leboulluec, 2017) uses
the Pearson Correlation coefficient to perform preliminary data analysis and analyse the correlation between
the variables.

b) Recursive Feature Elimination
A different feature selection technique is also applied regularly, namely recursive feature elimination (RFE). In
this technique a learning algorithm is used, generating a feature importance and ranks the features according
to this importance. Afterwards, the least important feature will be eliminated. Elimination performance will
then be evaluated with cross-validation, until the feature set yielding the highest performance is found. In
(Granitto et al., 2006) Random Forests (RF) and Support Vector Machines are used to rank features. This
paper is not present in Table 3.6 since it researched agroindustrial products for biochemical characteristics.
In (Kuhn and Jamadagni, 2017) a Decision Tree was used and (Chen and Li, 2019) utilises RF again. These are
all examples of the wrapper method, which, in contrast to the filter method, uses all features in a machine
learning algorithm and eliminates them afterwards, based on the performance of the model. This makes the
wrapper method computationally a lot more expensive than the filter method, especially for data with high
dimensionality.

c) Literature and Expert Knowledge
Others often base their feature selections on literature, engineering sense or expert knowledge, such as (Alonso
and Loureiro, 2015).
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Flight Cancellation Determinants

It is important to look at cancellations from a more strategic, aerospace engineering point of view. When
doing so, some concepts influencing cancellation can pop up, that might be of interest for the prediction.
Even more interesting is that, even though they possess high-prediction value, they might not directly be
present in the raw datasets that are used for model training. (Rupp and Holmes, 2006), (Seelhorst, 2014) and
(Alderighi and Gaggero, 2018) are examples of literature that specifically research determinants of cancella-
tion and cancellation behaviour. Please note that these determinants were (to the best of knowledge) not
used before as features in machine learning models for cancellation prediction, especially since research pa-
pers on cancellation prediction are very scarce. They were identified during investigations into cancellation
behaviour. Therefore, obtained data might need some alteration or extra manipulation in order to add and
represent some of these interesting cancellation determinants.

a) Airline in Alliance
The first new determinant that is treated, is whether an airline is part of an alliance or not. This largely ad-
dressed in the research by (Alderighi and Gaggero, 2018). They found out that airlines belonging to global
alliances, are more likely to have flight cancellations compared to non-alliance airlines. Additionally, it was
found that the average delay duration for these airlines is higher. Figure 4.1 shows graphs from the research,
indicating that for both bad and good weather, the cancellation rate for alliance airlines is higher. These
graphs also highlight the fact that bad weather is certainly influential on flight cancellations, i.e. more cancel-
lations can be observed during bad weather. Examples from global alliances from the research are Oneworld,
Skyteam and Star Alliance.

b) Competitiveness
From (Rupp and Holmes, 2006), it is shown that routes having a high competitiveness show lower cancella-
tion rates. On the other hand, routes with low competitiveness, also called monopoly routes, show higher
cancellation rates. The authors explain the increase on cancellations on monopoly routes with the fact that
these routes are mostly on smaller airports lacking mechanics. Hence, this is “an airport effect rather than
monopoly effect” (Rupp and Holmes, 2006). This can also be translated towards market-share, i.e. airline
carriers that have a higher route-level market share, cancel their flights more often.

c) Hub Operations
Carriers are said to cancel flights from and to their hub less frequently, which is particularly distinct for large
hub operations (Rupp and Holmes, 2006). This is because they can therefore better maintain their flight
network. This statement is also confirmed in the research by (Seelhorst, 2014), who states that “these flights
are important to airlines due to the large number of connecting passengers at hub airports, so this result is not
surprising”. The author also points out that a flight originating at the hub is even less likely to be cancelled
than a flight going to a hub, since that leaves passengers stranded at the hub rather than at their origin or
destination.
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Figure 4.1: Sample period of flight cancellations (left) and route-month percentage of flight cancellations and airline alliances (right).
(Alderighi and Gaggero, 2018)

d) Passenger Inconvenience
Airlines tend to strategically avoid passenger inconvenience when deciding on flight cancellations. Three
types of determinants will be discussed below, namely the route frequency, load factor and whether a flight is
one of the final flights of the day.

• Routes flown infrequently are cancelled less, since airlines try to minimise passenger inconvenience
(Rupp and Holmes, 2006). This implies that on high frequency routes, flights are cancelled more often.
This is a logical consequence since airlines have less options to reschedule the passengers if e.g. a route
is only flown once or twice a week. This is also confirmed by (Pai, 2010), who found higher cancellation
rates on on high frequency routes.

• In his research, (Rupp and Holmes, 2006) also found out that flight being served by fuller planes are
cancelled less often. However, their models show that fuller planes do require longer boarding times
and therefore experience flight delays more frequently. So in conclusion, fuller planes are not likely to
experience cancellations, but more likely to be delayed.

• (Rupp and Holmes, 2006) finds a significant reduction in cancellations for the final flight(s) of the day.
Carriers seem to have less options to reschedule when the at a later time of the day, which is mostly
around the final flights. If a flight gets cancelled at night, there is the risk that the passengers will have
to be reimbursed for a hotel stay overnight or that they will go to a competing airline. Also, from a flight
network perspective, not cancelling the last flight of the day sets the carrier up for regular operations
on the following morning, which would certainly be beneficial.
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e) Revenue Maximisation
The revenue maximisation objective plays an important role for flight cancellations, since (Rupp and Holmes,
2006) found support to back up the fact that there is a significant reduction in flight cancellations on certain
routes with a high average revenue. Hence, carriers often strategically take cancellations into account when
trying to maximise their revenue. This effect is most common on small and mid-sized airports. Furthermore,
(Seelhorst, 2014) adds that airlines tend to avoid cancelling high fares, since they are associated with high-
value customers, representing a large source of income for the carrier. This can be linked to the passenger
inconvenience as well, since the airline favours the high-value customers over low-value customers.





5
Machine Learning

Proper knowledge on the fundamentals of machine learning is an unquestionable necessity when consider-
ing a thesis topic involving these types of models. This chapter will therefor report on the basics of machine
learning, different algorithms used in relevant literature and how performance of such algorithms is evalu-
ated.

5.1. Machine Learning Fundamentals
This section will cover the fundamentals of machine learning, by firstly discussing the definition, aim and
the meaning of ‘the machine learning pipeline’. Afterwards, the two main learning types will be addressed,
followed by the description of some popular machine learning tasks.

5.1.1. Definition
The ‘machine learning pipeline’ is accurately described as follows: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P , if its performance at tasks
in T , as measured by P , improves with experience E .” (Tom M. Mitchell, 1997). Essentially, this definition
states that machine learning models need (the relevant) experience (or data) in order to learn and apply it (or
generalise it). An important notion is that learning is not the task. However, the ability to be able to perform
the task is obtained by learning. Four different examples of tasks are classification, regression, anomaly de-
tection and machine translation (Migut, 2019). This concept is visualised in the diagram in Figure 5.1. The
experience is the training data, the task is pointed out on the diagram and the performance is measured with
the output. The performance measure P of the algorithms, enables the performance to be evaluated quanti-
tatively. The different techniques for assessing this, are addressed in section 5.3. Lastly, the domain objects
on the diagram, with corresponding features, represent the unseen data on which the model is tested. (Choi
et al., 2016) has visualised his machine learning model in his paper as can be seen in Figure 5.2. It has a lot of
resemblance with the pipeline presented in Figure 5.1.

5.1.2. Learning Types & Tasks
In machine learning, there are two main types of learning, namely supervised learning and unsupervised
learning. The former requires training data that is labelled, whereas the latter uses unlabelled data (Flach,
2012). For example, if flight cancellations need to be predicted, supervised learning requires a dataset con-
taining flight data, labelled as ‘cancelled’ or ‘not cancelled’. Unsupervised learning, uses a dataset with flight
data that has no indication on the cancellation status. Given the nature of the thesis topic, the rest of this
literature review will be focused on supervised learning.

a) Classification
In machine learning, classification is most common in terms of tasks. The algorithm will try to assign a data
sample to a certain class, part of a small set of class labels. In other words, it aims to specify to “which of k
categories some input belongs to” (Migut, 2019). Hence, these types of algorithms are often called classifiers.
Generally, the set of class labels encompasses a finite set of classes, the simplest case containing only two
of them. This scenario is known as binary classification. There are only two classes, mostly depicted as a

41



42 5. Machine Learning

Figure 5.1: Visualisation of the machine learning pipeline. (Flach, 2012)

Figure 5.2: An example of a machine learning model from (Choi et al., 2016), with resemblance with the machine learning pipeline.

positive (+) and a negative (-) class. This task often returns in literature, especially in on-time performance
predictions. It is predicted whether a flight is delayed (+) or not (-) and cancelled (+) or not (-) (Lambelho
et al., 2020), (Choi et al., 2016). It is important to note that it might be counter intuitive to call a cancellation
‘positive’ and flying ‘negative’, however, this is decided based on the prediction goals of the model. In these
examples, the main goal of the model is to correctly identify cancellation or a delay, therefore these are the
positives.

b) Regression
The second common task is regression. (Kalliguddi and Leboulluec, 2017), (Horiguchi et al., 2017), (Manna
et al., 2017) and (Gopalakrishnan and Balakrishnan, 2017) are all examples of papers using machine learning
regression tasks to predict the exact amount of flight delay. Here, the target variable has a real value. This im-
plies that a switch has been made from a relatively low resolution in classification, towards an infinite resolu-
tion. In other terms, instead of e.g. looking whether a flight is cancelled or not, one looks at how many flights
are cancelled (for example, on a day). This implies a real value in return. To match this infinite resolution, the
regression tasks asks a high precision of its function estimator, making it prone to overfitting. Moreover, it is
possible that fluctuations in the data are present, which are impossible for the model to capture. Therefore it
is assumed that a regressor only captures the approximate function trend. (Flach, 2012)
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5.2. Train-Test Split
As stated before, machine learning models rely on past data to ‘learn’ and generalise towards unseen data. In
practice, this process is often approximated by dividing a large historical dataset into a training and test set.
This section aims to summarise the different train-test splits made and methods used in literature. Important
to note is that machine learning takes on the independent and identically distributed data assumption. This
implies that it is assumed that the data samples in the test and training sets are independent AND that both
datasets are identically distributed (Migut, 2019).

a) Single Split
The term ‘single split’ refers to datasets that were split up in training and test sets only once, according to a
fixed ratio. Example ratios are 70/30, 80/20 and 90/10 in percentages. In (Horiguchi et al., 2017), 47,000 flights
out of 54,000 were used for training a fuel consumption and flight delay prediction model and naturally 7,000
flights are reserved for testing. This equals a 87/13 ratio for train-test split. A significantly higher number of
training and test instances is present in (Manna et al., 2017), where the flight delay prediction model is trained
on 2,175,534 flights and tested on 543,883 flights. This corresponds to a 80/20 split. Furthermore, (Kuhn and
Jamadagni, 2017) utilises a 70/30 training-test split, again for flight data, with the aim to construct a flight
delay classification prediction model. (Nigam and Govinda, 2017) performs binary flight delay classification
predictions and utilises exactly the same ratio of 70/30.

b) K-Fold Cross Validation
Some papers choose to go for the K-Fold Cross Validation (CV) method. This technique is a process of training
the same data set K times, each time with different 100−100/K % batch of the data used for training and 100/K %
batch of the data used for validation. For example, 10-Fold CV uses a different 90% batch for training and a
10% batch for validation. This produces a more reliable outcome compared to a single split (Flach, 2012).

In (Gao et al., 2015) 5-Fold Cross Validation was utilised. This means that 5 times a different 20% batch of
data is used for testing. Interestingly, (Kuhn and Jamadagni, 2017) first utilises a 70/30 training-test split, as
stated above. However, afterwards he applies 10-Fold CV on the training set. This way, the 30% testing data
is kept for final validation, whereas the CV is used only on the training set. This is in contrast to (Gao et al.,
2015), who did not first split the data, but directly performed the CV on the entire data set. Another interesting
variation on the CV and train-test split technique, is found in (Choi et al., 2016). The entire historical dataset is
subject to a 10-Fold CV technique, just like (Gao et al., 2015). However, then new data is added to the problem,
consisting of planned flight schedules and weather forecasts. This forecast test set only contained 56 flights,
whereas the historical training set contained data for flight over approximately 10 years. Remarkable here is
that actual real-life data could be used for testing the model, outside of the historical dataset, validated with
10-Fold CV.

5.3. Prediction Performance
As there exist numerous machine learning algorithms and multiple experimental set-ups or scenarios are of-
ten present, it is essential to have a way to evaluate the prediction performance of the different models and
scenarios. In this section the performance of the models is central and multiple ways to assess the perfor-
mance will be addressed. These are the confusion matrix and receiver operating characteristic (ROC) curve
for classification and multiple error metrics for regression.

5.3.1. Determinants of Performance
The performance of a machine learning algorithm is determined by the algorithm’s ability to make little train-
ing errors and to keep a small gap between the test and training errors. This can be translated into two main
challenges, namely underfitting and overfitting. Underfitting is the result of a training error being to big,
whereas overfitting indicates a too large gap between training and test error (Migut, 2019). Both symptoms of
decreased performance.

(Kim et al., 2016) uses the ‘dropout technique’ to prevent the flight delay prediction model from overfit-
ting (also called regularisation). Here, random units from Neural Networks are dropped out during training,
which is said to improve accuracy of the model. In (Choi et al., 2016), weather-induced flight delays are pre-
dicted and the author concluded that after testing, the model performance had degraded due to overfitting to
the training data. Furthermore, (Kuhn and Jamadagni, 2017) applies L2-regularisation to prevent their flight
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arrival delay prediction model from overfitting. A certain optimal point in capacity should be found, cor-
responding to an optimal generalisation gap. This can be linked to the least general generalisation theorem
(Flach, 2012). This means that the aim is to generalise, with the contradictory use of the least general method.
In other words, a function with the appropriate generalisation capacity must be selected (not to high, to avoid
overfitting), however the least general (least simple) one must be selected (to avoid underfitting).

5.3.2. Confusion Matrix
Essentially, the confusion matrix gives the number of class-dependent errors. It provides a detailed view on
these errors and it can be utilised to estimate the overall cost that a specific classifier might incur Migut (2019).
An example of a confusion matrix can be seen in Table 5.1.

Table 5.1: An example of a confusion matrix.

n=100 Actually Cancelled Actually Flying
Predicted Cancelled 4 (TP) 2 (FP) 6
Predicted Flying 1 (FN) 93 (TN) 94

5 95

The confusion matrix essentially projects the predictions (left-most column) on the actuals (top row). In
this case, n = 100 samples have been predicted. The row labelled as ‘predicted cancelled’ shows all flights
that were predicted as cancelled, intuitively. The same intuition counts for the row ‘predicted flying’. Both
are divided into ‘actually cancelled’ flights and ‘actually flying’ flights. The top-left value (4), equals to the
flights that were predicted as cancelled and actually were cancelled, also known as the true positives (TP).
Right next to the TP, there are the false positives (FP). This value (2) depicts the flights that were predicted
as cancelled by the model, but were actually flying. Below there is the bottom left value (1), corresponding
to the false negatives (FN). In this case, meaning flights that were predicted as flying but actually ended up
being cancelled. The FP and FN are exactly what is to be avoided when trying to correctly classify flight
cancellations. Finally, the bottom-right value (93) are the true negatives (TN), or flights that were predicted
to fly and actually also flew. Several performance metrics can be derived from the confusion matrix, namely
accuracy, precision and recall.

a) Accuracy
Accuracy is the first metric that will be dealt with. It eventually boils down to ‘how many of the flights were
correctly predicted’. Translating this to a confusion matrix, it can be derived from the simple sum of the
True Positives (TP) and the True Negatives (TN), divided by the number of samples n. Mathematically, this is
expressed in Equation 5.1. One could think that this high accuracy of 97% would indicate that the model has
a good performance. Naturally, it is essential to look at the precision and recall as well, since a high accuracy
alone does not give the full picture.

T P +T N

n
= 4+93

100
= 0.97 (5.1)

b) Precision
Precision means ‘how many of the flights that were predicted as cancelled, are actually cancelled’. This can
easily be found by dividing the TP by the total of predicted cancellations. Mathematically, this is expressed
in Equation 5.2. When considering the actual purpose of the model, precision is a lot more valuable than
accuracy. It shows how good the model actually is in what it is intended to to, e.g. predict cancellations
accurately. The 67% precision already indicates that the model is not as good as the accuracy would make
one think.

T P

T P +F P
= 4

4+2
= 0.67 (5.2)

c) Recall
Furthermore, a bit in line with precision, there is recall. It tells you ‘how many of the actually cancelled
flights, were predicted correctly’. So, instead of looking at the total of the predicted cancellations, you look at
the total of actual cancellations. In confusion matrix terms, this means dividing the TP with the sum of the TP
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and False Negatives (FN). Mathematically, this is expressed in Equation 5.3. Again, this metric carries more
value than the accuracy and is comparable to the precision in terms of reasoning why. The 80% recall is still
not as good as the accuracy would suggest, but is already better than the precision.

T P

T P +F N
= 4

5
= 0.80 (5.3)

Now, consider the following literature that utilised these metrics for model evaluation, which is summarised
in Table 5.2.

Table 5.2: Accuracy, precision and recall results from topical papers, with their target and prediction horizon.

Reference Accuracy Precision Recall Target Prediction Horizon

(Choi et al., 2016)
5 Days: 0.2679
1 Day: 0.3036
0 Days: 0.8036

N/A N/A Airline Delay 5 Days, 1 Day, 0 Days

(Kuhn and Jamadagni,
2017)

N/A
DT: 0.93
LR: 0.92
NN: 0.91

DT: 0.88
LR: 0.89
NN: 0.90

Flight Arrival Delay Several Hours

(Lambelho et al., 2020)
DD: 0.794
AD: 0.791
C: 0.987

DD: 0.516
AD: 0.567
C: 0.608

DD: 0.516
AD: 0.553
C: 0.592

Flight Delay and Can-
cellations

6 Months

(Chakrabarty, 2019) 0.86 0.88 0.86 Flight Arrival Delay Several Months

First of all, there are the results of (Choi et al., 2016). The author uses Random Forests to predict flight
delays, using flight and weather data. Interestingly, he has applied different time horizons to the predictions
and compares the model performance on the different prediction timings by comparing their confusion ma-
trices, and more in particular, the accuracies. Solely based on the accuracy, the 0 day forecast horizon has the
best performance, outperforming the other two timings by far. The author states that this is probably due to
uncertainties in the weather forecast, in combination with imperfections in his model. However, when calcu-
lating the precision (assuming delay as positive and on-time as negative), it is clear that the model performs
way worse than the accuracy is indicating. E.g., for the 0 days result, which is said to be the best prediction
timing. The precision here is 33% and the recall is a staggering 10%. The author simply does not consider
evaluating these performance metrics, leading to a somewhat distorted conclusion. Hence, this evaluation
points out the importance of precision and recall for these types of evaluation. Please mind that the precision
and recall can be calculated for both the on-time as positive and delay as negative and the other way around.
The way this is done, is determined by the aim of the model and by looking at the most important prediction
goal. Here, this is the correct prediction of flight delays.

A second example is taken from (Kuhn and Jamadagni, 2017), who compares the performance of three
different learning algorithms. These are Decision Tree (DT), Logistic Regression (LR) and Neural Networks
(NN). As can be seen, the author does take into account the precision and recall within his analysis and he
does not even look at accuracy. The results indicate a fairly good prediction performance for all algorithms.

Furthermore, (Lambelho et al., 2020) utilises all performance indicators. In his research, he compared
three different algorithms, however, for simplicity here only the results of LightGBM are shown. The author
predicts three different elements, namely Departure Delay (DD), Arrival Delay (AD) and Cancellations (C).
Again, here it is clear how accuracy could be deceiving and precision and recall point out that the prediction
performance is very mediocre.

Lastly, (Chakrabarty, 2019) is used as an example. The machine learning algorithm used was a gradient
boosting classifier and the results are shown in the table. All performance indicators show that the algorithm
has a good prediction power, especially since the precision and recall are quite high.

5.3.3. Area Under the ROC Curve
A second recurrent measure of performance is the Area Under the ROC Curve (AUC). The ROC curve plots the
relation between the True Positive Rate (TPR), which is actually the same as the recall, and the False Positive
Rate (FPR), which is the probability of a false alarm, as a function of classification threshold. Mathematically,
this translates to T PR = T P

T P+F N and F PR = F P
F P+T N . The classification threshold is of importance for e.g. flight

delay prediction, since it gives the algorithm the indication after which time a flight is classified as delayed
and not delayed. A summary of classification thresholds used in topical literature can be seen in Table 5.3.
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Table 5.3: Summary of classification thresholds used in topical literature, with corresponding target and prediction horizon.

Reference Classification Threshold Target Prediction Horizon

(Belcastro et al.,
2016)

15min, 60min Flight Delay Several Hours

(Choi et al., 2016) 15min Airline Delay 5 Days, 1 Day, 0 Days
(Horiguchi et al.,
2017)

15min Flight Delay 5 Months, 1 Week, 1 Day

(Alonso and
Loureiro, 2015)

]0,15min],
]15min,30min],
]30min,60min]

Flight Departure
Delay (Multiclass)

Several Hours

(Rebollo and Balakr-
ishnan, 2014)

45min, 60min, 90min Air Traffic Delay 2 Hours

Multiple ROC curves can be put into the same graph, enabling the comparison of multiple classifiers (Migut,
2019). An example of an ROC curve is present in Figure 5.3. The most optimal point in this curve would be the
top-left point, at (0,1). This corresponds to a TPR of 100 and FPR of 0, implying that all of the actual positive
samples have been classified (predicted) correctly.

Figure 5.3: An example of a Receiver Operating Characteristic Curve (Migut, 2019).

The AUC is always a number between 0 and 1 and is another way of measuring the performance of the models.
The higher the AUC, the better the predictive capabilities (Flach, 2012). A perfect classifier should therefore
give an AUC of 1.0, whereas a random classifier gives an AUC of 0.5. This random classifier is also often shown
in the ROC diagram as a diagonal line from (0,0) to (1,1). Table 5.4 gives a summary of some AUC results of
topical papers. The best result is highlighted in bold per paper, except for (Kuhn and Jamadagni, 2017) since
he obtained the same AUC for all algorithms.

The results of (Choi et al., 2016) indicate that Random Forests has the best predictive power of the four
classifiers used in the paper. Please note that these AUC results were obtained after 10-Fold Cross Validation
and used current weather (0 Days prediction horizon).

The flight delay prediction model of (Horiguchi et al., 2017) was evaluated using AUC. He compares three
different machine learning algorithms in his results and depicts different prediction timings as well, namely
one day before, one week before and five months before the flight. From the results, the author could con-
clude that the only relatively good predictions are achieved with information available one day before the
flight. Also remarkable is that for Neural Networks, five months before the flight the AUC is even equal to that
of a random classifier.

(Kuhn and Jamadagni, 2017) had a particular result, since all algorithms scored the same in the AUC eval-
uation. Therefore, the author had to rely on other performance indicators such as precision and recall for
more insights into the performance.

In (Lambelho et al., 2020) three different algorithms are used for the prediction of three different targets,
namely departure and arrival delay, and cancellations. For each of the cases, the LightGBM algorithm seemed
to have the highest AUC performance.
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Table 5.4: AUC results from topical papers, with their target and prediction horizon. The best result is highlighted in bold.

Reference AUC Target Prediction Horizon

(Choi et al.,
2016)

Random Forests: 0.68
AdaBoost: 0.66
k-Neighbours: 0.66
Decision Tree: 0.64

Airline Delay 0 Days

(Horiguchi
et al., 2017)

Neural Networks (1 Day): 0.647
XGBoost (1 Day) : 0.634
Random Forests (1 Day): 0.604
Neural Networks (1 Week): 0.584
XGBoost (1 Week): 0.573
Random Forests (1 Week): 0.560
Neural Networks (5 Months): 0.5
XBGoost (5 Months): 0.542
Random Forests (5 Months): 0.534

Flight Delay 5 Months, 1 Week, 1 Day

(Kuhn and
Jamadagni,
2017)

Decision Tree: 0.96
Logistic Regression: 0.96
Neural Network: 0.96

Flight Arrival De-
lay

Several Hours

(Lambelho
et al., 2020)

Departure Delay LightGBM: 0.786
Departure Delay Neural Network: 0.754
Departure Delay Random Forest: 0.744
Arrival Delay LightGBM: 0.803
Arrival Delay Neural Network: 0.774
Arrival Delay Random Forest: 0.758
Cancellation LightGBM: 0.929
Cancellation Neural Network: 0.840
Cancellation Random Forest: 0.862

Flight Delay and
Cancellation

6 Months

In (Choi et al., 2016), ROC curves were constructed to evaluate the performance of flight delay predictions
with and without the inclusion of weather data. The curves can be seen in Figure 5.4. From the results it could
be derived that weather clearly had a beneficial influence on the prediction performance, as in three out of
four cases the blue line lies closer to the optimal point compared to the red dotted line. The author states
that the fact that there is hardly any gap between the two lines in the kNN (k-Nearest-Neighbours) graph, is
due to the curse of dimensionality. The high number of features is not helpful for kNN, as it is said to become
meaningless to measure distance between this high number of sample points. This proves that ROC and
AUC are valuable metrics when it comes to performance evaluation of machine learning problems and the
comparison of different models and scenarios.

5.3.4. Regression Error Metrics
For regression, different evaluation measures should be applied, since in this case the outcome is not a class
but a real value. In (Manna et al., 2017), the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)
and the Coefficient of Determination (R2) were used to evaluate the prediction of the average departure and
arrival delays. The author states that “the MAE helps to determine how close the predicted outcomes are to
the consequent outcomes”. Equation 5.4 shows the formula for MAE and Equation 5.5 shows the equation
for the RMSE. Here, n is the number of samples, yi is the actual outcome and ŷi is the predicted outcome.
The RMSE “helps to expand and liquidate the large errors”. The formula for R2 is shown in Equation 5.6 and
is denoted by R2. Here, ȳi represents the mean of yi . R2 is a classic regression analysis tool and shows how
close the data is to the fitted regression line.

M AE = 1

n

n∑
i=1

|yi − ŷi | (5.4)

RMSE =
√

1

n

n∑
i=1

(yi − ŷi )2 (5.5)
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R2 = 1−
∑

i (yi − ŷi )∑
i (yi − ȳi )

(5.6)

In (Horiguchi et al., 2017), fuel consumption prediction is performed using machine learning algorithms. The
error metric used for evaluation is the Relative RMSE (RRMSE). It essentially is the RMSE, but normalised by
the mean of the values observed. The mathematical notation for the RRMSE (%) can be found in Equation
5.7.

RRMSE = RMSE

ȳ
×100 (5.7)

Figure 5.4: ROC curves from (Choi et al., 2016), comparing performance with and without weather data.

5.4. Algorithms
The main purpose of this section is to identify the different types of algorithms used in literature, relating to
prediction of flight delays or cancellations. The most common and popular algorithms are summarised in
Table 5.5, with the corresponding sources, target and prediction horizons. This section also contains a very
concise description of the algorithms used, in the subsections underneath.

The algorithm must not be too complex but also not too simple, hence, model comparison is essential
(Migut, 2019). This is confirmed in (Kim et al., 2016), where specifically the generalisation performance of
the model is evaluated. Revisiting the theorem stated in the introduction to this review, the no free lunch
theorem, which stated that essentially there is no single machine learning algorithm that is universally better
than any other one, it can be concluded that it is key to test multiple models and compare their performance.
This is proven to be often the case, as in Table 5.5 often multiple algorithms are chosen and compared. For
every paper, the model that got the highest prediction performance is highlighted in bold. For (Kuhn and
Jamadagni, 2017), all algorithms had about the same prediction performance, hence no one is highlighted.
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Also, since in (Chakrabarty, 2019), (Chen and Li, 2019), (Kim et al., 2016) and (Rebollo and Balakrishnan, 2014)
only one model was considered, no highlight is present there either.

Table 5.5: Algorithms used in topical literature, with the target variable and prediction horizon. The algorithm with the highest
performance in its respective paper is highlighted in bold.

Reference Algorithm(s) Target Prediction Horizon

(Choi et al., 2016) Decision Tree, Random
Forests, k-Nearest-
Neighbours, AdaBoost

Airline Delay (Clas-
sification)

5 Days, 1 Day, 0 Days

(Kuhn and Ja-
madagni, 2017)

Decision Tree, Neural Net-
works, Logistic Regression

Flight Arrival Delay
(Classification)

Several Hours

(Kalliguddi and
Leboulluec, 2017)

Decision Tree, Random
Forests, Multiple Linear
Regression

Flight Delay (Regres-
sion)

Several Hours

(Chakrabarty, 2019) Gradient Boosted Decision
Tree

Flight Arrival Delay
(Classification)

Several Months

(Horiguchi et al.,
2017)

Random Forests, Neural
Networks, XGBoost

Flight Delay (Classi-
fication)

5 Months, 1 Week, 1 Day

(Gopalakrishnan
and Balakrishnan,
2017)

Decision Tree, Neural Net-
works

Air Traffic Delay (Re-
gression)

Several Hours

(Lambelho et al.,
2020)

Random Forests, Neural
Networks, LightGBM

Flight Delay and
Cancellation (Clas-
sification)

6 Months

(Rebollo and Balakr-
ishnan, 2014)

Random Forests Air Traffic Delay
(Classification)

2 Hours

(Chen and Li, 2019) Random Forests Flight (Classifica-
tion)

Several Hours

(Kim et al., 2016) Neural Networks Flight Delay (Classi-
fication)

Several Hours

(Alonso and
Loureiro, 2015)

Neural Networks, Decision
Tree

Flight Delay (Classi-
fication)

Several Hours

5.4.1. Decision Tree
A Decision Tree (DT) is a non-linear classifier that has no predefined structure. The model is built from root to
leaf nodes. It sequentially splits the input data into unique regions, with true or false questions at each node.
The structure of the tree grows according to the structure and complexity of the data. Essentially, at each
node of the DT, a decision is made, splitting up the training data in multiple, smaller subsets (Migut, 2019).
At each node, during tree construction, the goal of the true false question is to produce the purest possible
labels, or in other words, remove prediction uncertainty. The real challenge is to determine which attribute
to ask what question about in a certain node and when. Metrics like Gini-impurity and entropy provide a way
to quantify the impurity or uncertainty at a given node (Kuhn and Jamadagni, 2017).

5.4.2. Random Forest
Random Forests (RF) are composed of multiple Decision Trees, hence it is called an ensemble method. A
large group of uncorrelated trees is assembled, after which they are averaged, reducing the variance. All trees
in the group are noisy but unbiased. Each tree carries out a class vote, after which the RF will classify using
the majority vote (Choi et al., 2016).

5.4.3. Neural Networks
A Neural Network (NN) consists of multiple layers of neurons, stacked together in order to produce a final
output. The first and last layer are called the input and output layer and all layers in between are called
hidden layers. All neurons in the layers have activation functions, that are fired (activated) when a certain
threshold is reached. Popular activation functions are ReLU, Tanh and Sigmoid. The aim of the NN is to learn
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and set the network parameters, which are composed of the bias and weights of every layer, in order for the
outcome to be equal to the groundtruth (Kuhn and Jamadagni, 2017). The term Deep Learning comes from
Deep NN’s, which essentially is a NN with multiple hidden layers, creating more ‘depth’. Figure 5.5 shows an
example of a simple NN. It has one hidden layer with four neurons and uses three features as input layer. The
output is a simple binary classification of whether the flight is delayed or not.

Figure 5.5: An example of a simple Neural Network from (Kuhn and Jamadagni, 2017).

5.4.4. k-Nearest-Neighbours
In order to classify a certain test sample, the non-linear kNN algorithm will define a space centered around
that specific sample point, containing precisely the k nearest training points. Subsequently, kNN will check
the class labels of these training points. Finally, the class label obtaining the largest vote will be assigned to
the test sample. kNN is proven to be most efficient in highly irregular decision boundaries (Choi et al., 2016).

5.4.5. Logistic Regression
Logistic Regression (LR) is a classification algorithm that is similar to linear regression. However, instead of
fitting a line to data, LR fits an S-shaped curve, or ‘logistic function’ (also known as Sigmoid function) to the
data. This particular function is g (z) = 1

1+e−z . According to the work done in (Kuhn and Jamadagni, 2017),

translating the equation to the one used for LR, one gets the following hypothesis equation h(x) = 1
1+e−wT x

.

Here, wT x = w0+∑n
j=1 w j x j . The w parameter that describes the training data can be found using maximum

likelihood estimation and gradient ascent (Ng, 2011).

5.4.6. Boosting Algorithms
Gradient Boosted Decision Tree, AdaBoost, XGBoost and LightGBM are essentially all boosting algorithms.
Boosting is, just like Random Forests, an ensemble method. Multiple prediction values are produced on an
iterative basis, after which the weighted average of all the values determines the final prediction value. At
each step, a new classifier is called upon, boosting the ensemble performance. Important to note, is that
boosting takes weak learners, learns from the errors and tries to correct them in successive stages (Manna
et al., 2017).



6
Research Approach

This chapter will address the subject of the research approach. After having read a large body of topical lit-
erature, a considerable amount of knowledge on the topic of the thesis has been gained. The next important
step is to identify what parts of the knowledge are relevant for the thesis. Also, which gaps in the current
body of knowledge are present and what combination of techniques or methods should be combined to fill
up a certain part of the knowledge gap. Hence, firstly this knowledge gap will shortly be addressed. After-
wards, the scope of the thesis will be discussed, setting the boundaries and choosing appropriate topics to
be researched. Subsequently, the research question and objective will be defined and explained. Then, the
research framework will be established, in which the data description and methodology will be treated. In
this research framework, the parts of the research that will be varied in order to introduce some different re-
search scenarios to compare will also be decided upon. Finally, the research planning will close this chapter,
addressing the different phases and milestones of research. A detailed Gantt Chart will also be a part of this
final section.

6.1. Knowledge Gap
From the literature reviewed in this report, some gaps in the body of knowledge can readily be distinguished.
Firstly, it is clear that most of the papers deal with flight delay prediction. There is one exception that incor-
porated cancellations as a small part (e.g. (Lambelho et al., 2020)), however there is no single research paper
that solely considers the prediction of flight cancellations using machine learning algorithms. This makes
this research quite interesting given its uniqueness in the topic of cancellations. The elements of combining
flight schedule data with weather data and different prediction adds to the knowledge gap of cancellation
predictions.

6.2. Scope
A lot of knowledge has been gained during this literature review and now some choices need to be made in
order to give the thesis form. This section will define the boundaries of the research and the appropriate
topics that will be included in the work. The scope will be largely based on the knowledge gap, defined in the
section above.

The actual scope, i.e. the set-up for the thesis that will be considered, is the following. The research will
address the prediction of flight cancellations of individual flights. This will be done using machine learning
algorithms and centered around a European Airport. The data that will be used to train and test the model,
will consist of flight schedule data, combined with weather data, since it is evident from the literature that this
data type is of great importance for cancellation (and delay) prediction. Also, prediction horizons of hours to
days before the flight will be utilised. Now, the final research questions and objectives can be formulated.

6.3. Research Question and Objective
This section will cast the research scope into some research questions, which are eventually needed to be
answered by the thesis work. Also, a reserach objective will be defined.
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6.3.1. Research Question
The main research question identified for this research is stated below:

Which machine learning algorithm, trained with historical flight schedule and weather data, produces
accurate flight cancellation predictions, on prediction horizons of several hours to days before the flight?

This question clearly frames the central challenges associated with the research. It defines the knowledge
required in order to be successful in the research, as well as the data that needs to be gathered. Specifically,
this is knowledge related to binary classification machine learning algorithms, data analysis and accuracy
evaluation procedures. The data required is operational flight schedule data, which will be obtained from
Amsterdam Airport Schiphol and weather data, obtained from KNMI. Additionally, several sub-questions can
be formulated to elaborate the on the fundamentals of the main research question.

• Which data features are selected in order to achieve the best performance?

This sub-question addresses an important challenge early-on in the data analysis. As the data has a
high number of features and is highly dimensional, the computational load and internal complexity of
the algorithms in the model can become very high and non-reliable results may be produced. There-
fore, it is of great value to search for, select and extract the most relevant data features, based on their
correlation with the target (cancellation) and their internal correlation.

• What are the values of the performance indicators after training?

When the model has been trained on the historical data, it is important to assess the predictive qual-
ity or performance of the trained model. This question ensures that the performance evaluators are
checked.

• What are the values of the model’s performance indicators after testing on prediction horizons of
hours to days before the flight?

As the previous sub-question addressed the model performance after training, this question fires up
the need for investigating the performance of actual prediction. A real-life, unseen dataset containing
planned flight schedules and weather forecasts in the future will be used to execute this part of the
research.

• Which classifier performs best in training and prediction?

The no free lunch theorem, states that in machine learning there is no single algorithm that outperforms
others when testing over all possible problems Flach (2012). This implies that the way each algorithm
performance is highly dependable on the type, size and structure of the data it is subject to. Hence, it
is purposeful to evaluate the performance of this model using multiple algorithms and compare them
both after training and after prediction on the different time horizons.

6.3.2. Research Objective
Now that the research questions have been formulated, it is time to state the main objective of the research.
This will put the work in perspective within the larger picture of industry relevance and contribution to the
current body of knowledge. It will encompass the essentials that are aimed to be reached by the end of the
research. This objective is:

To develop a machine learning algorithm that can predict flight cancellations using several prediction
horizons from hours to days before the flight.

Breaking down this objective results in multiple sub-objectives to be reached. The first one is to pre-process
and prepare data for it to be used in the machine learning algorithms, by cleaning, sampling, normalising,
encoding and by incorporating cancellation related features. The second sub-objective is to extract the most
important features from the data by performing an analysis on their Pearson’s Correlation Coefficient. The
third and final sub-objective is to determine the best algorithm for each scenario by evaluating each model’s
confusion matrix and ROC curve on unseen data.

6.4. Research Framework
Now that the scope and research questions are identified, the proposed data and methodology for the thesis
can be formulated.
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Figure 6.1: Thesis machine learning model flow chart.

a) Data Description
First of all, the data sources. The flight schedule data will be obtained from Amsterdam Airport Schiphol op-
erations and the weather data will be obtained from Koninklijk Nederlands Meteorologisch Instituut (KNMI).
The data will data back 5 years. A part of the historical data will be set aside to function as ‘forecast data’. This
will likely be a small set of one month.

b) Methodology
The entire model flow chart and methodology is visualised in a model flow chart, see Figure 6.1. For data
pre-processing, the following techniques will be utilised. The target encoding technique seems the most
suitable, given the high cardinality of the data. Furthermore, normalisation to a 0-1 scale will be performed.
Sampling will be done using the popular SMOTE and random undersampling technique. Finally, features will
be analysed and selected using Pearson’s Correlation Coefficient. As suggested in literature, the order will be
first sampling and then feature selection, after which the training will be done with the unsampled dataset
(in which only the selected features are present).

10-Fold Cross validation will be utilised during training and three different supervised learning, binary
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classification algorithms will be used and compared. Firstly, a linear algorithm will be used, namely Logistic
Regression. Subsequently, a somewhat non-linear algorithm is chosen, namely Random Forests. The third
algorithm that will be used is the non-linear k-Nearest-Neighbours. The algorithm block in the diagram is
highlighted in bold since this is a varying block, in which the scope is not necessarily limited to one algorithm,
but multiple are chosen. As, during the research, it appears that another algorithms is highly interesting, it
might be opted to add or replace one. The forecast weather block is also highlighted in bold, since this is, just
like the algorithm block, a variation block. The prediction horizon for the weather will vary between hours
to days before the operation. The research will start with 1 hour before, one day before and 10 days before,
however, if it seems other timings are of more interest, they might still be added or altered. Since there is
only historical weather data available, the forecast data will be approximated by taking several averages of
the data. This way, some kind of uncertainty is introduced, just like forecast data would have uncertainty.
Finally, the model will be evaluated using the popular evaluation techniques based on the confusion matrix
(accuracy, recall and precision) and the ROC and AUC.

In conclusion, nine different scenarios are there to be tested at the start of the research, with optional ex-
pansion or alteration. These are combinations of the three classification algorithms with the three prediction
timings.

6.5. Research Planning
The research planning for this thesis is based on the Air Transport Operations Master Thesis Procedures. The
planning with all relevant phases is depicted in Figure 6.2. The first phase is the literature study, in which
relevant literature is identified, research questions are defined, research methodologies are established and
project planning is performed. The total duration of this first phase is approximately 8 weeks. It is divided into
three smaller phases, the first one of which takes about 4 weeks and is centered around reading papers and
books. The second one takes approximately 2 weeks and focuses on comparing and contrasting the different
papers. The third one is also 2 weeks and consists of the writing of the literature review. The literature review
is concluded the handover of the report and a thesis kick-off meeting.

The second large phase is called the initial phase and is set to take approximately 3,5 months (or about 14
weeks). In this phase the actual work will be performed. It will consist of the initiation of the research, data
analysis, model development, etc. This phase is concluded with a midterm presentation and review, in which
a basic, working model should be presented.

The third phase is called the final phase and will take approximately 2,5 months (or 10 weeks). It is divided
into two smaller phases, the first one of about 6 weeks, in which the model is further developed, tested and
validates, more scenarios are experimented upon, etc. The second one is about 4 weeks and is there solely
to write the thesis report and paper. This phase is concluded with a green light meeting. After this meeting
there is at least one month before the final defence of the thesis, after which the degree will be handed out.
The more detailed variant of the research planning can be found in the Gantt Chart in Appendix A.

Figure 6.2: Research planning flow diagram.
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Conclusion

The aim of this literature review was to get familiar with the state-of-the-art related to the prediction of flight
cancellations using machine learning algorithms. All the knowledge gained during thorough reading of sci-
entific papers, books and articles was summarised, contrasted and compared. It can be concluded that there
is a large body of knowledge about the prediction of flight statuses with machine learning, more specifically
flight delays. However, it is also clear that there is very little work done on the level of flight cancellations
themselves. Additionally, a general methodological flow or work trend was identified to be common in most
topical literature. Three main blocks, namely data management, cancellation or delay behaviour and ma-
chine learning, are common thread to build a successful models. This flow was also used as a backbone to
construct this literature review.

In data management, it seems important to balance out imbalanced data. Since flight cancellation data
will highly likely be out of balance, it will be necessary to sample the data to balance it. Also, feature selection
seems to have a beneficial effect on the prediction performance of the models, since not all features will add
prediction value to the model. Furthermore, since machine learning algorithms cannot handle categorical
data, encoding is essential. Machine learning essentially splits the final data into a training and test set,
learns the training set with selected classifiers and then tests the performance in the test set. After assessing
the literature and defining the knowledge gap, the following research question has been defined:

Which machine learning algorithm, trained with historical flight schedule and weather data, produces
accurate flight cancellation predictions, on prediction horizons of several hours to days before the flight?

This questions helps identify the scope of the research, which is the prediction of individual flight cancella-
tions in a European airport with machine learning algorithms, using flight and weather data and a prediction
horizon of hours to days before the flight.

The general methodology of the work that will try to answer the research question, was decided to take
the following form, based on methodologies taken in literature. Historical flight schedule and weather data
will be pre-processed and sampled with SMOTE, after which features will be extracted. Also, some specific
cancellation determinants have been identified and they will be integrated into the feature set. The final data
will be fed into Logistic Regression, Random Forests and k-Nearest-Neighbours classifiers. 10-Fold Cross
Validation will be performed during training and the model will then be tested on an unseen set of planned
flight schedule and weather forecast data. Confusion Matrices and AUC will be used in order to evaluate the
performance of the model.

This research is definitely of interest for the aviation industry and airport industry, since such models
enable the airport to identify unforeseen flight cancellations in advance and thereby allow them to alleviate
their negative impact on airport operations. This thesis could initiate more research that could eventually
lead to the operational benefits as stated above.
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8
Imbalance

In this chapter some elaborations related to the imbalanced nature of the data for the model will be com-
mented on. In particular, the algorithm for the SMOTE technique will be explained more in detail.

As the datasets are highly imbalanced, it is of high interest to investigate how to mitigate this imbalance
and if this mitigation has any positive effect on the model performance. In the literature study it was found
that SMOTE is highly suitable for dealing with imbalanced datasets. Since this technique is used in the thesis
research, its working principles and theoretical background will be explained here, by means of the pseu-
docode, retrieved from the original SMOTE paper Chawla et al. (2002). The pseudocode with the explanation
can be seen in Figure 8.1.

Figure 8.1: Pseudocode of the SMOTE algorithm, explained (Chawla et al., 2002).

The top part of the code is only applicable when SMOTE is applied to <100%. In that case, only a random
percentage of the minority class samples will be SMOTEd. The second part of the pseudocode covers nomen-
clature for the rest of the algorithm. The real interesting part starts after the nomenclature. In lines 13-16 the
algorithm will check and store the k nearest neighbours, specified earlier in the nomenclature. These neigh-
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bours will play an important role in the next part of the algorithm, which starts at line 17. There, the algorithm
will randomly choose one of these k neighbours and compute the difference between each of the features of
the original sample and its randomly picked neighbour. This difference is multiplied with a random number
between 0 and 1 and subsequently added to the original sample. This now forms a new, synthetically created
sample and this process is iterated until the amount that has been specified, is reached.

The idea behind the second sampling technique used in the research, Random Undersampling (RUS),
is that it randomly will remove samples from the majority class. Since this is much more straightforward
compared to SMOTE, it does not require any more attention.



9
Features

This chapter will elaborate on the extra features added to the base dataset, data that has been researched but
eventually not added and the details of the feature selection method.

9.1. Additional Features
Alliances
Two features were added to the cancellations dataset, namely an alliance indicator (indicating whether an
airline was part of an alliance, yes or no) and the alliance name itself. In order to know whether airlines were
part of an alliance, a data was used from an online source Pointshogger (2019). The alliance information on
that website was updated on May 2019 at the moment of consultation. Subsequently, a list of airlines with
their respective alliances was exported from that source, after which they could be easily added to the base
dataset. The reasons for adding these extra features were findings in a research by Alderighi and Gaggero
(2018), who researched to effects of alliance memberships on flight cancellations.

Frequency and Market Share
In a research by Rupp and Holmes (2006), it was uncovered that competitiveness on routes might have an
influence on flight cancellations. Therefore, this competitiveness was translated into market share and fre-
quency features and added to the base dataset. Both features monthly averages and are defined in equations
9.1 and 9.2. Here, F is frequency, MS is market share, OD is Origin-Destination pair, m is month, y is year
and A is airline.

F (ODm,y ) =∑
ODm,y (9.1)

MS(AOD,m,y ) =
∑

AOD,m,y

ODm,y
(9.2)

Distance
In the research by Lambelho et al. (2020), a feature called ’Distance’ was included. As this seemed a rather
useful data feature, it was decided to included it in this research as well. It is defined as the great circle distance
between the origin and destination airport. It was approximated using the haversine formula, assuming the
Earth is a perfect sphere. The derivation goes as follows. The starting point for the derivation is the central
angle of two points on a sphere, θ, which is defined as:

θ = d

r
(9.3)

Here, d is the great circle distance between two airports, which is what needs to be found in the end, and r is
the Earth’s radius. This can be rewritten in to get d as

d = θ · r (9.4)
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Now, the haversine of the central angle θ is defined as:

hav(θ) = hav(φ2 −φ1)+ cos(φ1)cos(φ2)hav(λ2 −λ1) (9.5)

Here, φ1 and φ2 are the lateral coordinates of airport 1 and airport 2 and λ1 and λ2 are the longitudinal
coordinates, all in radians. The haversine of an angle α can also be defined as:

hav(α) = si n2
(α

2

)
= 1− cos(α)

2
(9.6)

Now, combining equations 9.4, 9.5 and 9.6 yields:

d = 2r ·ar csi n(

√
si n2

(
φ2 −φ1

2

)
+ cos(φ1)cos(φ2)si n2

(
λ2 −λ1

2

)
(9.7)

The lateral and longitudinal coordinates of the airports were obtained through OurAirports (2020).

Final Flight of the Day
In addition to competitiveness, Rupp and Holmes (2006) also investigated the influence of a final flight of the
day on the flight cancellations. Therefore, it was decided to incorporate this as a binary feature in the dataset.
A final flight of the day was therefore defined as a flight that arrived or departed between 22:00 and 24:00 and
labelled with 1 if it arrived or departed within that timeframe and 0 if it did not.

Seats
As the feature ’Seats’ was included in the final set of Lambelho et al. (2020), to whose research this thesis quite
significantly leans towards, it was included into the base data as well. Approximate seat number per aircraft
type were obtained from Seatguru (2020) and linked to their respective aircraft type in the base dataset.

Eurocontrol Features
A database was provided by AAS containing information on restrictions and regulations within the European
airspace due to certain events. These events could occur in a (zone of) aerodrome(s) or a (zone of) airspace(s).
The data included different features such as event type (weather, air traffic control capacity, airport capac-
ity,...), time info (start, end, duration, notice before the start), air traffic flow management delay info and
location info. This info was particularly interesting for the flight cancellation predictions, as cancellations are
often influenced by unforeseen events. When analysing the database, it is essential to look at the elements
that could be useful for this research. These are in particular events at AAS, events with at least 24hours notice
(for a 1 day prediction horizon) and the event type. After analysis, it was clear that there was no single event
in AAS that had more than 3 hours of notice (on average between 0 and 200min notice), which means that
there was no sufficient information available to make the 1 day prediction horizon. Therefore, it was decided
not to include this database in any further steps of this research.

9.2. Feature Selection
As the combined datasets with flight operational data and weather data contains a high number of total fea-
tures, it would be of interest to check the most important features for the machine learning algorithms, as
some features might be irrelevant or redundant for the classification task. Additionally, the high number of
features might raise computational complexity. Here, the feature selection method will be explained in a little
more detail.

First, the data will be assembled and pre-processed, which is essential before the feature selection is per-
formed. Afterwards, the dataset is split up and the target variable (cancelled/delayed) is isolated. Then, a
correlation matrix is set up, using Pearson’s Correlation Coefficient (ρ). Figure 9.1 visualises the definition of
the correlation coefficient. This correlation matrix shows the correlation (between -1 and 1) between each
feature and the target, but also the inter-correlation between all features themselves. The correlation is found
using the Python Pandas function DataFrame.corr(). Mind that ρ is different from R2, which is defined as the
quality of a fit (how good y is explained by x). By definition, R2 = ρ ·ρ. Hence, ρ can be negative, R2 cannot.

From now on, absolute correlation will be utilised, which is the absolute version of the regular correlation
(which can be both negative and positive). When the correlation matrices are obtained for all 3 cases (can-
cellations, arrival delay and departure delay), it is observed that the average absolute correlations are quite
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Figure 9.1: Visualisation of the Pearson Correlation Coefficient (Kiatdd, 2012).

low (mostly below 0.3). Subsequently, it is necessary to select a threshold for selecting the feature for the fi-
nal dataset. After careful examination of the correlation matrices, the threshold of 0.1 is chosen as selection
threshold. In other words, all features with an absolute target correlation above 0.1 are selected, the others
are not. This specific threshold was chosen by trial and error, while evaluating how many features would be
selected at a certain threshold and how they were spread around this threshold. The same analysis goes for
the inter-correlation. When two features are selected that have an inter-correlation (a high correlation be-
tween these two features), only one can be selected for the final dataset, in order to avoid multicollinearity.
For the cancellations, this threshold is set at 0.8, whereas for the delays it is set a bit lower, at 0.7.

The selected features with their corresponding correlation with the target feature can be seen in Tables
9.1, 9.2 and 9.3 for cancellations, departure delay and arrival delay respectively. Please note that there is one
feature, namely ’Month’ for arrival delay, that has an absolute correlation below 0.1. Since both ’Time’ and
’Month’ were selected for the departures and ’Time’ was already selected for the arrivals, it seemed necessary
to also include ’Month’, for the sake of consistency and completeness in that dataset.
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Table 9.1: Selected features for cancellations with explanation and correlation with the target ’cancelled’.

Feature Explanation Correlation with Target
Airport Origin or destination airport of the flight 0.2
Flight Number Unique flight number of the flight 0.35
Country Origin or destination country of the flight 0.19
Airline Airline company operating the flight 0.27
Servicetype Category of the commercial flight 0.26
AC Registration Registration number of the aircraft operating the flight 0.34
Handler Apron handler, handling baggage, fuel,. . . 0.2
Wind Speed Windspeed at origin/destination 0.11
Pressure Air pressure at origin/destination, reduced to mean sea level -0.11
Visibility Horizontal visibility at origin/destination -0.1
Snow Indicator is snow presence at origin/destination 0.13

Table 9.2: Selected features for departure delay with explanation and correlation with the target ’delayed’.

Feature Explanation Correlation with Target
Flight number Unique flight number of the flight 0.33
AC registration Registration number of the aircraft 0.27
AC type Type of the aircraft operating the flight 0.16
Handler Apron handler, handling baggage, fuel,. . . 0.12
Airline Airline company operating the flight 0.17
Destination airport Destination airport of the flight 0.2
Daily visits Number of times this route is operated per day -0.11
Month Month in which the flight is operated -0.1
Time Time at which the flight is operated -0.13
Total arr (past hr) Total number of flights that have arrived in the past hour 0.12
Total dep (past hr) Total number of flights that have departed in the past hour 0.14
Wind gust speed (origin) Maximum wind speed at the origin 0.13
Temperature (origin) Temperature at the origin 0.1
Temperature (destination) Temperature at the destination 0.12
Total arr delay (past hr) Total minutes of arrival delay in the past hour 0.21
Total dep delay (past hr) Total minutes of departure delay in the past hour 0.31
Arrival Delay If the flight had a delay when it arrived 0.37

Table 9.3: Selected features for arrival delay with explanation and correlation with the target ’delayed’.

Features Explanation Correlation with Target
Flight number Unique flight number of the flight 0.34
AC registration Registration number of the aircraft 0.28
AC type Type of the aircraft operating the flight 0.17
Handler Apron handler, handling baggage, fuel,. . . 0.13
Origin airport Origin airport of the flight 0.22
Month Month in which the flight is operated -0.053
Time Time at which the flight is operated -0.15
Wind gust speed (destination) Maximum wind speed at the destination 0.15
Total arr delay (past hr) Total minutes of arrival delay in the past hour 0.29
Total dep delay (past hr) Total minutes of departure delay in the past hour 0.24
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