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Abstract. This paper proposes a novel approach towards better interpretability
of a trained text-based ranking model in a post-hoc manner. A popular approach
for post-hoc interpretability text ranking models are based on locally approximat-
ing the model behavior using a simple ranker. Since rankings have multiple rele-
vance factors and are aggregations of predictions, existing approaches that use a
single ranker might not be sufficient to approximate a complex model, resulting in
low fidelity. In this paper, we overcome this problem by considering multiple sim-
ple rankers to better approximate the entire ranking list from a black-box ranking
model. We pose the problem of local approximation as a GENERALIZED PREF-
ERENCE COVERAGE (GPC) problem that incorporates multiple simple rankers
towards the listwise explanation of ranking models. Our method MULTIPLEX

uses a linear programming approach to judiciously extract the explanation terms,
so that to explain the entire ranking list. We conduct extensive experiments on
a variety of ranking models and report fidelity improvements of 37%–54% over
existing competitors. We finally compare explanations in terms of multiple rele-
vance factors and topic aspects to better understand the logic of ranking decisions,
showcasing our explainers’ practical utility.

Keywords: Explanation · Neural · Ranking · Post-hoc · List-wise

1 Introduction

Recent approaches for ranking text documents have focused heavily on neural mod-
els [12,16,17]. Neural rankers learn the complex and often non-linear relationships
between the query and document that are difficult to encode using closed-form analyt-
ical ranking functions like BM25 [2]. However, the superior ranking performance of
such models comes at the expense of reduced interpretability, thus increasing the risk
of encoding spurious correlations and undesirable biases [25,32]. In parallel to devel-
oping better rankers, there has been an increased focus on interpreting neural ranking
models [7,23–25] that specifically aim at explaining the rationale behind the ranking
decisions.

This paper aims to propose post-hoc approaches to interpret neural text rankers.
Post-hoc methods explain already-trained models and do not compromise on the accu-
racy of the learned model, hence making them popular choices for interpreting machine
learning models. One prevalent strategy in post-hoc interpretability is to locally approx-
imate a trained model with a simple and interpretable proxy or a surrogate model.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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https://doi.org/10.1007/978-3-031-28244-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28244-7_41&domain=pdf
http://orcid.org/0000-0002-7268-4902
http://orcid.org/0000-0002-0163-0739
https://doi.org/10.1007/978-3-031-28244-7_41


654 L. Lyu and A. Anand

Fig. 1. Explaining the query bobcat with multiple relevance factors – (i) “charlotte-bobcat
basketball club”; (ii) “learn to hunt bobcat”; (iii) “animal bobcat” and (iv) “bobcat mechanical
retailer”. MULTIPLEX carefully chooses from multiple relevance factors to explain a ranking. See
Fig. 6 for more examples.

The degree of approximation is called fidelity and the objective is to maximize the
fidelity between the proxy model and the underlying black-box model. Post-hoc meth-
ods for rankings entail using simple rankers to locally approximate (on a per-query
basis) complex rankers such that the simple ranker has a high rank correlation (or high
fidelity) with the complex ranking. Adapting this general post-hoc framework to rank-
ing models has two specific challenges – how do we aggregate multiple decisions inher-
ent in a single ranking? And how do we explain ranking decisions with different inher-
ent relevance factors?

Rankings as Aggregations of Decisions. Text ranking models output a ranked list of
documents for a given query. Unlike other learning tasks (e.g. regression and classifi-
cation) that deal with a single decision, the ranking task can be viewed as an aggrega-
tion of multiple pointwise or pairwise decisions [1]. Any interpretability approach or
explainer should therefore explain the reasoning behind the ranking list, or multiple-
preference pair predictions. Therefore existing explanation techniques such as feature-
attribution methods [21,22,28] that explain a single decision (pointwise) cannot be
seamlessly used for rankings. Instead, a listwise explanation method that intends to
cover all individual decisions in the entire ranking list is needed for rankings.

Different Explanations for Different Relevance Factors. Secondly, it is well-known
that when ranking text, multiple relevance factors (also called ranking heuristics or
axioms) determine the relevance of a document to a query, e.g., lexical matching, seman-
tic similarity, term proximity etc. Unlike traditional models that explicitly encode each
of these relevance factors, neural rankers automatically learn them from data. The next
challenge in explaining rankings is ascertaining the relevance factor that best explains a
given decision. Informally, there might not exist a single relevance factor that explains
or satisfies all preferences di � dj in a given ranking. Therefore trying to approximate
a ranking with a single relevance factor might result in low fidelity. A notable example
is the listwise explanation approach [25] that considers covering multiple ranking deci-
sions, but uses a single explainer which captures only one relevance factor (i.e., term
matching), resulting in low-fidelity explanations due to the mismatch of exact terms.

In this paper, we define an explanation to be a combination of the underlying rel-
evance factors along with the actual machine intent. In this paper, we firstly consider
multiple simple rankers or explainers(formally defined in Sect. 3.1), which rely on dif-
ferent well-known and human-understandable (to system designers, or IR practitioners)
relevance heuristics. Secondly, we explain the machine intent in terms of expansion
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terms (in addition to the query terms) such that the simple ranker explains a com-
plex black-box model by inducing a similar ranking list. Thus a combination of simple
rankers that represents a relevance factor, along with its expanded query terms (also
called explanation terms) is the listwise explanation of the reasoning behind the rank-
ing.

Approach wise, we carefully select a small set of explanation terms sourced from the
documents of the ranked list to maximize the explanation’s approximation ability (i.e.
fidelity). Specifically, we define the GENERALIZED PREFERENCE COVERAGE (GPC)
framework, on which we optimize the preference coverage using approximated inte-
ger linear programming. Our method MULTIPLEX is shown to be able to improve the
fidelity, and more interestingly combine terms from multiple explainers, implicitly cov-
ering multiple topics for an ambiguous query. Figure 1 shows an example of explanation
terms extracted by each single explainer and MULTIPLEX can cover terms of multiple
aspects. Note the aspects of terms are specified by manual observation.

We conduct extensive experiments using datasets from the TREC test collections
– TREC-DL and Clueweb09 with three neural rankers to evaluate MULTIPLEX. We
report fidelity improvements of 37%–54% over existing competitors. We also present
anecdotal examples that showcase the practical utility of MULTIPLEX in understanding
neural rankers. The datasets and source code are publicly available1.

2 Related Work

Feature Attribution for Ranking Models. The earliest works of interpreting ranking
models were simple extensions to existing pointwise explanation techniques – explain
a single instance given a trained ML model for general machine learning tasks in vision
and language. [24,29] adapted the popular surrogate-based LIME [20] to generate terms
as the explanation for a trained black-box ranker. On the other hand, [7] applied a game-
theory feature attribution method [15] to interpret the relevance score of a document
given a query. Alternatively, other prevalent gradient-based feature attribution meth-
ods [21,22,28] can be adapted in the same way to attribute the relevance prediction to
the textual input elements. All these methods provide pointwise explanations (why is
doci relevant?) or pairwise explanations (why is doci ranked higher than docj?). We
instead focus on listwise explanations or explaining the entire ranked list.

Listwise Explanations for Ranking Models. There is limited work on listwise expla-
nations, i.e., explaining the entire ranking list. LiEGe [33] tackles the task as text genera-
tion. Specifically, LiEGe employs a Transformer-style model to generate terms for each
document in a ranked list, and the explanation contains all generated terms. However,
this method presupposes documents with labeled explanation terms, which is unrealis-
tic in most application scenarios. Additionally, the explanation generator is not human-
understandable, hindering understanding of the explanation generation process. In con-
trast, GreedyLM [25] uses a simple ranker to replicate the ranking list of a complex
black-box model by expanding the query terms. The simple ranker and expanded query

1 https://github.com/GarfieldLyu/RankingExplanation.

https://github.com/GarfieldLyu/RankingExplanation
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terms constitute the explanation for the complex model. We follow the same philoso-
phy that the explanation terms along with the explanation generation process should
be human interpretable. However, a limitation of [25] is that it assumes that a single
relevance factor (modeled by a simple surrogate ranker) is adequate to explain an entire
ranking. We challenge this assumption in this paper and use multiple simple explainers
instead.

Axioms as Explanations. Another line of work uses IR axioms (or ranking heuristics)
to ground the decisions of complex models. Axioms are well-understood, interpretable,
and deterministic sets of rules that lay down the fundamental relevance factors of docu-
ments given a query. Recent works [4,19] diagnosed a group of ad-hoc neural rankers
with a set of axioms and found out that neural models only to a limited extent adhere to
the IR axioms. Similarly, [30] also found it hard to characterize BERT models in terms
of IR axioms. The hypothesis is axiomatic approaches are limited to using just the query
terms, resulting in low fidelity. In this work, we consider a much larger vocabulary of
explanation terms to optimize the fidelity of our explanations.

In parallel, there are other works dealing with explaining learning-to-rank
(LTR) [23,26], probing contextual ranking models [27,31], and intrinsic methods for
extractive explanations [10,14,34]. We point the readers to a recent survey [3] in
explainable information retrieval for a more detailed overview. In this work, we operate
on text rankers and generate term-based explanations in a post-hoc manner.

3 Background and Preliminaries

We start with the notion of a ranker Φ that takes as input a keyword query Q to output
an ordering π over a set of documents π = (d1 � d2 � . . . � dn) based on the
relevance of the documents to the query, i.e., Φ(Q) → π. We aim to interpret Φ in a
model-agnostic manner, using simple proxy rankers (called explainers Ψ). Note that
the output of a ranker can be viewed as a set of preferences over the documents, or
w.l.o.g π = {(di � dj)}. Therefore explaining a ranking π is akin to explaining all or
most of the preference pair decisions in π. An example of a single decision is whether
the preference pair (di � dj) is true/false.

3.1 Explainers for Ranking

The explainer Ψ mimicking a black-box ranking model is essentially a simple ranker
operating based on human-understandable closed form formulae (i.e. ranking heuris-
tics). A popular example of such interpretable rankers is BM25 [2] model, which ranks
documents for a given query by measuring the term-matching frequency of query terms
in each document. Apart from term matching, there are also other factors or heuristics
that might affect the relevance judgment such as the term position. Specifically, in news
articles, the title and the introductory paragraphs are regarded to be more important. A
ranking model should then weigh the term matching that occurred in the earlier para-
graphs more than the rest. Additionally, semantic similarity is known to be crucial to
address the exact mismatch problem. This is particularly true in neural models with
embedding vectors as input. However, the semantic meaning of a term is less inter-
pretable as it can vary if the context changes due to different training procedures or
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datasets. In this regard, we draw the line of choosing the commonly-used context-free
embeddings (i.e. GloVe [18]) as human-understandable input representation, instead of
other contextualized embeddings (i.e., generated by BERT language model).

This set of simple ranking heuristics can be large given different granularities [4,
19]. In this work we start from three explainers to encode the above three ranking
heuristics. Note that our framework allows a flexible amount of explainers, and thus
more heuristics can be added if necessary. In summary, the explainers rank a document
(d) based on its relevance to a query (q) by:

Term Matching or Ψlm: Ψlm(q, d) = 1
|d|

∑
t∈q tf(t, d), where tf(t, d) denotes the

term frequency of t in d.

Position Aware or Ψpa: a position-aware term-matching model [8], Ψpa(q, d) =
∑

t∈d
1

|d|
∑

p∈d tf(t, p)
1
p , where p denotes the pth paragraph in d.

Semantic Similarity or Ψemb: Ψemb(q, d) = 1
|q|×|d|

∑
t∈q,w∈d cosine(t, w), where t

and w are represented by the pre-trained GloVe embedding vectors [18].

3.2 Explanations to a Ranking Model

Fig. 2. Explaining black-box model with simple rankers and query terms.

The output of an interpretability procedure is an explanation, which should be simple,
human-understandable, and faithful to the behavior ofΦ. For the ranking task, the expla-
nation can be decomposed into two parts: (1) a simple ranker whose decision-making
process is fully transparent; (2) the machine intent of Φ in terms of an expanded query.
The quality or fidelity(in XAI parlance) of the explanation can be evaluated by com-
paring the ranked lists induced by Φ and Ψ by standard rank-correlation metrics, e.g.,
Kendall’s tau or just counting concordant preference pairs.
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Take Fig. 2 as an example of interpreting the ranking induced by a black-box model.
The simple Term Matching explainer with the input terms (“keyboard” and “review”)
can be regarded as an explanation, with a fidelity of 1/3, as only one out of three
preference pairs agrees with the original ranking. It is common that the query term
is under-specified, and thus the simple ranker fails to extract the exact query intent. One
solution is to use query expansions (e.g., RM3 [11]) to improve ranking performance.
For instance, when adding “music” to the query, the explainer is aware of the musical
preference of the black-box ranker and improves the explanation fidelity to 2/3. The
questions we ask are: (1) which terms can be added to the query to maximize fidelity?,
and if more than one explainer is applied, (2) how can we combine multiple simple
explainers to cover as many pairs as possible?

Fidelity Variants. Note that rankings can be misleading because they do not show the
magnitude of the relevance difference. Sometimes the relevance scores of a preference
pair can be very close, and explaining such pair is challenging even to humans. There-
fore, to avoid uncertainty due to small score differences, we obtain a set of important
preference pairs after excluding the similar pairs whose prediction difference is below
some threshold. As Fig. 2 shows, suppose the black-box ranker predicts similar scores
for d2 and d3, then d2 � d3 is not considered for evaluation. As a result, the Term
Matching explainer, along with the input terms (“keyboard”, “review” and “music”),
can faithfully cover all pairs and get 100% fidelity. Given different choices of selecting
to-be-explained preference pairs, we introduce different variants of fidelity, which will
be further discussed in Sect. 5.3.

3.3 Problem Statement

We solve the explaining task as directly optimizing the fidelity, under the constraints of
pre-defined explainers and the associated terms. Formally, given a query Q, a complex
ranking model Φ and a set of simple ranking models {Ψ}, we aim to select a small set
of terms E ∈ V (where V is the vocabulary), to explain most of the preference pairs
{di � dj} from the original ranking π.

4 Generalized Preference Coverage

As mentioned earlier, choosing explanation terms to maximize fidelity can be formu-
lated as a coverage problem of the preference pairs. We briefly describe the preference
coverage (PC) framework as introduced in [25], using a single explainer as a precursor
to introducing the generalized PC problem.

4.1 The Preference Coverage Framework

Similar to [25], the PC framework operates on a preference matrix constructed with a
single Ψ. First, a set of n potentially important candidate terms X (X ⊆ V, |X | = n)
are extracted from the list of documents using simple statistics (e.g., tf-idf ). Then, m
preference pairs are sampled from π to create the preference matrix M ∈ R

n×m. Each
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Fig. 3. Approach overview of MULTIPLEX using multiple explainers.

cell in M represents the utility or degree of Ψ in explaining the preference dπ(i) �
dπ(j) with t as input, by computing a preference score f t

ij = Ψ(t, dπ(i))−Ψ(t, dπ(j)).
A positive f score means with t, the Ψ can explain or cover this pair, otherwise cannot.
Each t can now be viewed as anm-dimensional vector f , where each element represents
how well it explains a specific pair. The PC framework using a single Ψ aims to choose
a subset of rows E ⊆ X (equivalent to selecting terms) from M so as to maximize the
number of non-zero values in the aggregated vector. Since choosing or not choosing the
row/term is a boolean decision, we can formulate the PC objective as an Integer Linear
Program (ILP):

maximize
m∑

i=1

(
sign(x�M)

)
i
, s.t. x = [x1, · · · , xn] ; xi ∈ {0, 1} (PC)

x is a selection vector with boolean values where xi = 1 indicates selecting
term Xi, and xi = 0 otherwise. The sign is an element-wise operation. Namely,
E = {i|xi == 1}. This equation however is NP-hard and not solvable by the preva-
lent convex programming solvers (e.g., supported by CVXPY [6]) due to the non-
differentiable sign function. Next, we present an improved formulation of the PC
problem followed by a generalization to accommodate multiple explainers called the
GENERALIZED PREFERENCE COVERAGE problem.

4.2 Optimizing PC for Multiple Explainers

Compared to PC, our proposal should be (i) practically solvable, (ii) ensuring sparse
output x so that the explanation is human-understandable, and (iii) flexible to combine
multiple explainers or M.

Correspondingly, the first change we introduce is using tanh to approximate the
non-convex sign operator. Secondly, we add a �1-regularization ‖x‖ to enforce sparsity
constraints on the number of terms to be selected. A straightforward way to combine
all explainers is to sum up their scores, i.e., Ψmulti(t, d) =

∑
Ψ(t, d). However, differ-

ent explainers can have different output ranges and exhibit high variance. For instance,
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the term-matching score usually lies in [0, 1], whereas the position-aware score typi-
cally operates in a much larger range. Normalization these scores in the optimization
procedure is central to flexibly adding multiple explainers. We therefore formulate the
GENERALIZED PREFERENCE COVERAGE problem that intends to optimize multiple
matrices simultaneously as:

minimize

(

−
m∑

i=1

(tanh(v))i + ‖x‖
)

(GPC)

s.t. v =
p∑

j=1

tanh(x�Mj), 0 ≤ xi ≤ 1, a ≤
m∑

i=1

xi ≤ b

Like in PC, GPC also maximizes the number of positive elements in the aggregated
vector v, computed by summing up multiple vectors transposed from multiple M. Mj

denotes the matrix constructed by the jth explainer from the total p explainers. Note
that tanh is also element-wise. The sparsity constraint is ensured by a and b, namely
the lower/upper bound of the term-selection budget. The current formulation can now
be solved by the latest proposed solver GENO [13] that handles constraints with the
augmented lagrangian algorithm.

Picking the ith term will choose all ith row vectors simultaneously. Before summing
them up, each vector element is already transformed to the same range by tanh activa-
tion. This accounts for the variable range problem. Figure 3 briefly shows the coverage
computing when selecting “pueblo” and “outhouse” during optimization.

5 Experimental Setup

5.1 Datasets and Ranking Models

We choose two datasets: (1) Clueweb09 collection (category B), for all ranking mod-
els, we use 120/40/40 splits for train/dev/test, and the explanation experiments are con-
ducted on the test queries. (2) 40 randomly selected queries from Trec-DL 2019 pas-
sage ranking test set, and the ranking models are trained on the MS MARCO passage
ranking dataset. We focus on the following three neural ranking models:

DRMM [9] computes the term-document similarity histograms beforehand and then
jointly learns a matching and a term gate layer from the query and matching histograms.
We take the implementation from MatchZoo2.

BERT [5] takes the query and document separated by [SEP] as input and computes
the pooled ([CLS]) representation, on which a feed-forward layer predicts the final rele-
vance score. Both DRMM and BERTmodels are trained to optimize the margin between
the scores of a relevant/non-relevant input pair.

DPR [12] encodes the query and document by two separate BERT models. The rele-
vance is simply measured by the cosine similarity of the two pooled representations.
We use the pretrained checkpoints directly without fine-tuning.

2 https://github.com/NTMC-Community/MatchZoo.

https://github.com/NTMC-Community/MatchZoo
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5.2 Baseline and Competitors

We compare our approach named MULTIPLEX with the following methods:

QUERY-TERMS serves as the baseline by feeding only the query terms to our explainers.
By comparing this baseline, we argue that only the original query is insufficient to
discover the underlying ranking logic.

DEEPLIFT [21] is a popular white-box feature attribution method. To adapt it to ranking,
we first compute the importance of a word in a document using Captum3, then we take
the average across all documents and extract important terms as a listwise explanation
for a query. Note that we omit this baseline for DRMM since its input is a histogram,
thus the importance cannot be attributed to the word level.

GREEDY-LM [25] uses a term-matching explainer to approximate neural rankers. It
optimizes the preference coverage greedily. Our approach shares a similar pipeline of
generating candidate terms and preference matrices. By comparing this baseline, we
show the improvements of combining multiple explainers and approximated linear pro-
gramming optimization.

5.3 Metrics

Since multiple explainers are applied, a preference pair from the original ranking is
counted as explained as long as a single explainer can explain it. This evaluation does
not apply to GREEDY-LM as it generates explanation terms based on a single explainer.
For both GREEDY-LM and MULTIPLEX, we fix 200 candidate terms and 500 sampled
pairs for preference matrix construction. We also fix a maximum of 10 explanation
terms for all methods except QUERY-TERMS. For both datasets, we consider a ranking
depth (k) of 100.

Similar to [19], we measure fidelity by computing the fraction of the maintained
preference pairs by the explainers given the explanation terms. In other words, the
fidelity measures the coverage over the feasible preference pairs. As mentioned in
Sect. 3, depending on the choice of feasible preference pairs, we consider the follow-
ing three variants of fidelity:

Fidelity-global (Fglobal) includes all
(
k
2

)
pairs induced by a k-length ranking list.

Fidelity-sampled (Fsampled) considers the sampled pairs from the matrix construction.

Fidelity-diff (Fdiff) discards all pairs whose relevance score difference < g. The mag-
nitude of g is chosen based on the relevance score distribution of a particular model.
For BERT we set g = 2 as the prediction margin appears to be larger than the rest two
models, for which g = 0.05.

6 Evaluation Results

To show the effectiveness of our approach, we first present the quality of our approach
in terms of fidelity on all datasets and models compared to other competitors in Table 1.

3 https://github.com/pytorch/captum.

https://github.com/pytorch/captum
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Table 1. Fidelity (F ) results. The best results are in bold.

Model Clueweb09 Trec-DL

Method Fglobal Fdiff Fsampled Fglobal Fdiff Fsampled

BERT QUERY-TERMS 0.81 0.88 0.76 0.81 0.82 0.63

DEEPLIFT [21] 0.77 0.81 0.67 0.70 0.75 0.62

GREEDY-LM [25] 0.63 0.77 0.69 0.59 0.69 0.84

MULTIPLEX 0.88 0.97 0.93 0.86 0.93 0.97

DPR QUERY-TERMS 0.81 0.86 0.71 0.82 0.84 0.64

DEEPLIFT [21] 0.68 0.71 0.57 0.60 0.63 0.58

GREEDY-LM [25] 0.61 0.68 0.88 0.63 0.70 0.75

MULTIPLEX 0.87 0.93 0.87 0.87 0.92 0.96

DRMM QUERY-TERMS 0.82 0.85 0.72 0.80 0.81 0.59

DEEPLIFT [21] – – – – – –

GREEDY-LM [25] 0.57 0.60 0.72 0.53 0.54 0.34

MULTIPLEX 0.88 0.92 0.84 0.85 0.88 0.95

Then we show the improvements of adding multiple explainers by an ablation study
presented in Fig. 4. Finally, we discuss how our explanations can be used to explain a
specific preference pair, as well as other potential use cases.

6.1 Effectiveness of Explanations

In terms of fidelity (cf. Table 1), our method consistently outperforms other competitors.
Besides, for all methods the global fidelity (Fglobal) scores are always lower than Fdiff

where close, hence potentially noisy pairs are all excluded. This shows that all methods
and prominently MULTIPLEX can better explain document pairs with larger differences
in relevance scores.

Ranking Heuristics vs. Query Expansion. Though both factors constitute the expla-
nation of ranking, which one is more crucial? Take QUERY-TERMS and GREEDY-LM
as a comparison, note that QUERY-TERMS includes the given query terms but three
ranking heuristics, while GREEDY-LM on the contrary only relies on one term-matching
but richer query information. Their fidelity results show QUERY-TERMS outperforms
GREEDY-LM by a large margin, strongly suggesting that ranking heuristics particularly
semantic similarity, are more effective in explaining neural models.

The Importance of Explanation Aggregation.Applying simple aggregation strategies
(i.e. average) on the prevalent pointwise feature attribution methods is shown to be less
effective by the results of DEEPLIFT. Compared to QUERY-TERMS, the extra expanded
query terms extracted by DEEPLIFT seem unhelpful in enhancing fidelity but introduc-
ing noise. On the other hand, methods directly optimizing fidelity (i.e. GREEDY-LM and
MULTIPLEX) explicitly include the aggregation in the optimization loop. The Fsampled

results of DEEPLIFT and GREEDY-LM further confirm the importance of aggregation.
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Fig. 4. Fidelity-diff results of each single and combined explainer using our method.

Fig. 5.Query: keyboard review. Document pair: clueweb09-en0008-49-09140 (musical keyboard)
vs. clueweb09-en0010-56-37788 (technical keyboard). BERT prefers the former whereas DPR
prefers the latter, resulting in opposite explanations.

The Benefits of Our Optimization Solution. We also experimented with every single
Ψ to extract explanation terms with our approximated ILP objective shown in Fig. 4.
Comparing the fidelity results of term-matching (orange bar) with the Fdiff of GREEDY-
LM (using the same explainer) in Table 1, we show the superiority of our optimizing
strategy over the greedy-algorithm.

The Benefits of Combining Explainers.As Fig. 4 indicates, semantic explainer overall
generates the most faithful explanations than the rest. However, combining all explain-
ers can further improve the preference coverage and in turn increase the fidelity results.
When one explainer fails to explain a pair, it is still possible to be covered by other
explainers. Moreover, we also notice that combining multiple explainers in optimiza-
tion can generate explanation terms exhibiting multiple topic aspects, especially for
short and ambiguous queries. More examples are presented in Fig. 1 and Fig. 6.

6.2 Utility of Explanations

Explaining Document Preference. We now show how to explain a single preference
pair using MULTIPLEX, i.e., why does a model prefer di over dj? We start by construct-
ing preference scores for each candidate term as described in Sect. 4.1. Next, we select
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Fig. 6. Anecdotal examples show that each explainer selects terms from a different aspect. The
color highlights denote the explanation terms in Multiple are combined from different explain-
ers. For ambiguous query “adobe Indian houses”, Term Matching and Position Aware focus on
popular but ‘shallow’ terms indicating “adobe company“. For certain query “hp mini 2140”, the
semantic similarity suffers from OOV. Position Aware can capture the non-frequent yet important
terms based on their position, e.g., the official site for the query “ESPN sports”.

the important terms with significant scores. Figure 5 illustrates the explanation terms of
two opposing decisions by BERT and DPR respectively, for keyboard review.

Discovering Model Preference and Spurious Correlations. We believe that explana-
tion terms encode relevance factors that rank relevant documents over others. Based
on this assumption, we create a perturbed document by adding explanation terms to a
potentially non-relevant document (e.g. at the lowest rank). We then feed this modified
document to the black-box model and measure the rank improvement. Unsurprisingly,
the terms extracted by MULTIPLEX result in the maximum rank increase (cf. Fig. 7),
meaning our method can better identify the black-box model’s preference. Moreover,
we manually selected some ambiguous queries, and our initial observation of their
explanation terms suggests the ranking model shows some topic preference when rank-
ing the documents, while the explanation terms representing the preferred topics are
also shown dominant quantitively. Thus, it helps understand the model’s topic prefer-
ence more easily by analyzing the explanations instead of going through hundreds of
documents.

Another possible usage is model debugging, or finding spurious correlations in mod-
els or datasets, by analyzing explanation terms. One simple example is “Wikipedia”
which appears as an explanation term for many different queries. This is not surprising
as the Wikipedia entity pages are usually labeled as relevant. We leave a more system-
atic exploration of making use of ranking explanations to future work.
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Fig. 7. Average rank improvements. Left: on all test queries; Right: on hand-picked ambiguous
queries. Note that for each query the document size ≤ 100.

7 Conclusion and Outlook

This paper proposes a post-hoc model-agnostic framework to explain text ranking mod-
els using multiple explainers. Our method MULTIPLEX systematically combines mul-
tiple explainers to capture different relevance factors encoded in the ranking decisions.
The extensive experiments show that our method can generate high-fidelity explana-
tions for over-parameterized models like BERT, delivering up to 54% fidelity improve-
ments. Our method explains a ranking by a set of terms attributed to a union of multiple
explainers. It is interesting to examine which explainer (or ranking heuristic) contributes
to which extent using which particular terms for future work. We also plan to extend
our framework to account for n-grams and to make our explanation generation proce-
dure efficient enough to be used during query processing. Moreover, it is well known
that validating explanations is challenging, especially in the absence of ground-truth
data. We measure fidelity in this work, however, the fidelity might not reflect the real
underline logic of a complex model. Therefore, incorporating human perspectives into
the evaluation and meanwhile, balancing the cost of annotating numerous decisions in
a ranking are also worth exploring in future work.
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