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a b s t r a c t

The ability to perform online model identification for nonlinear systems with unknown dynamics
is essential to any adaptive model-based control system. In this paper, a new differential equality
constrained recursive least squares estimator for multivariate simplex splines is presented that is
able to perform online model identification and bounded model extrapolation in the framework of a
model-based control system. A new type of linear constraints, the differential constraints, are used as
differential boundary conditions within the recursive estimator which limit polynomial divergence when
extrapolating data. The differential constraints are derived with a new, one-step matrix form of the de
Casteljau algorithm, which reduces their formulation into a single matrix multiplication. The recursive
estimator is demonstrated on a bivariate dataset, where it is shown to provide a speedup of two orders of
magnitude over an ordinary least squares batchmethod. Additionally, it is demonstrated that inclusion of
differential constraints in the least squares optimization scheme can prevent polynomial divergence close
to edges of themodel domainwhere local data coveragemay be insufficient, a situation often encountered
with global recursive data approximation.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate models of dynamic systems are essential to any
model-based automatic control system, like for example nonlinear
dynamic inversion (NDI) control (Reiner, Balas, & Garrard, 1996).
While robust control techniques can be used to compensate for
some model inaccuracies, they also reduce the reference signal
tracking performance. When a system is subject to changing
dynamics, however, robust control techniques no longer suffice. In
that case a recursive system identificationmethodmust be used to
adapt the system model based on incoming observations.

Recursive system identification and its algorithmic implemen-
tations have been well studied in the past, see e.g. Ljung (2002),
Ljung and Söderström (1983) and Söderström, Ljung, and Gus-
tavsson (1978). Current trends in recursive system identification
point towards nonlinear recursive identification methods like re-
cursive neural networks (Mirikitani & Nikolaev, 2010) and direct
weighting methods (Roll, Nazin, & Ljung, 2005). A promising new
direction in recursive identification would be a method based on
multivariate simplex splines. Multivariate simplex splines are a
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recent type of multivariate polynomial spline which are capable
of fitting scattered multidimensional datasets on non-rectangular
domains (Awanou, Lai, & Wenston, 2005; Lai & Schumaker, 2007).
Multivariate simplex splines have a number of advantages over
other methods. Firstly, the simplex splines have an arbitrarily high
approximation power on a global model scale. Secondly, simplex
spline models are parametric models, which allows for efficient
approximation of very large datasets. Thirdly, the simplex splines
are linear in the parameters, which means that linear regression
methods can be used for their estimation (de Visser, Chu, & Mul-
der, 2009). Finally, the simplex splines have a local polynomial
basis, which implies that only small subsets of parameters and
basis polynomials need to be considered during estimation and
evaluation, resulting in efficient (sparse) computational schemes.
Recently, these capabilities were demonstrated in large scale
image processing (Kalbe, Koch, & Goesele, 2009) and aerodynamic
model identification (de Visser, Mulder, & Chu, 2010) applications.

The objective of this paper is the presentation of a differentially
constrained recursive least squares (RLS) estimator for the B-
coefficients of multivariate simplex splines. This estimator can
be used for online nonlinear system identification in an adaptive
model-based automatic control system, see Fig. 1. In this paper
a new type of linear constraint is introduced in the form of the
differential constraints. The differential constraints are based on
a new, one-step matrix form of the well-known de Casteljau
algorithm. The differential constraints are used to constrain
the directional derivatives of the simplex splines at selected
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Fig. 1. Control loop for an adaptive multivariate spline model-based controller.

locations within the spline domain. The differential constraints
can be applied to impose Dirichlet, Neumann, Robin or Cauchy
boundary conditions on the simplex spline functions. This is
essential if simplex splines are used to approximate solutions to
(partial) differential equations. From an engineering perspective,
the differential constraints can be applied to facilitate bounded
model extrapolation by limiting polynomial divergence beyond
the bounds of the data domain. This is achieved through the
constraining of the directional derivatives of the simplex spline
polynomials based on expert knowledge of the modeled system.
This is very useful during real-life recursive identification with
simplex splines because new observations may be too scarce
to provide a sufficient local data coverage, requiring local data
extrapolation to maintain the global model.

The differentially constrained RLS estimator for simplex
splines was demonstrated on a nonlinear bivariate dataset which
required local data extrapolation. Cauchy boundary conditions
were imposed on the boundaries of the spline domain using
the differential constraints. It was found that the differential
constraints not only virtually eliminate polynomial divergence in
areas where the data is extrapolated, but also significantly reduce
the parameter variance of B-coefficients located near these areas.
The differential constraints effectively increase the performance
of the recursive estimator, which is an application of linear
constraints that has been recognized in the literature (Mahata &
Söderström, 2004).

2. Preliminaries on multivariate simplex splines

In this section a brief introduction on the mathematical theory
of the multivariate simplex splines is given. A more complete
introduction can be found in de Visser et al. (2009).

2.1. The simplex and barycentric coordinates

Let t be an n-simplex formed by the convex hull of its n+1 non-
degenerate vertices (v0, v1, . . . , vn) ∈ Rn as follows. The normal-
ized barycentric coordinate b(x) = (b0, b1, . . . , bn) of some point
x ∈ Rn with respect to t follows from the implicit relation:

x =

n−
i=0

bivi,

n−
i=0

bi = 1. (1)

2.2. Triangulations of simplices

The high approximation power of the multivariate simplex
spline comes from the combining of many simplices into a
structure called a triangulation. A triangulation T is a special
partitioning of a domain into a set of J non-overlapping simplices:

T :=

J
i=1

ti, ti ∩ tj ∈ {∅, t̃}, ∀ti, tj ∈ T , (2)

with the edge simplex t̃ a k-simplex with 0 ≤ k ≤ n − 1.
Creating high quality triangulations is not a trivial task,

especially in higher dimensions. High quality triangulations can be
provided by constrained Delaunay triangulation (CDT) methods,
such as the 2-dimensional CDT method presented by Shewchuk
(2001). More recently, Shewchuk presented a tentativemethod for
n-dimensional CDT (Shewchuk, 2008) which would be very useful
in n-dimensional scattered data modeling with simplex splines.

2.3. Basis functions of the simplex spline

The Bernstein basis polynomial Bd
κ(b) of degree d in terms of the

barycentric coordinate b = (b0, b1, . . . , bn) from (1) is:

Bd
κ(b) :=

d!
κ!

bκ , (3)

with κ = (κ0, κ1, . . . , κn) ∈ Nn+1 is amulti-indexwith the follow-
ing properties: κ! = κ0!κ1! · · · κn! and |κ| = κ0 + κ1 + · · · + κn.
In (3) we use the notation bκ

= bκ0
0 bκ1

1 · · · bκn
n . When it is given that

|κ| = d, the total number of valid permutations of the multi-index
κ is:

d̂ =
(d + n)!
n!d!

. (4)

De Boor proved that the Bernstein basis polynomials (3) form a
stable local basis for the space of polynomials of degree d (de Boor,
1987). Any polynomial p(b) of degree d on a simplex t can therefore
be written as a linear combination of d̂ basis polynomials in what
is known as the B-form as follows:

p(b) =

−
|κ|=d

ctκB
d
κ(b), (5)
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with ctκ the B-coefficientswhich uniquely determine p(b). The total
number of basis function terms is equal to d̂, which is the total
number of valid permutations of κ from (4).

2.4. Vector formulations of the B-form

In de Visser et al. (2009) a useful vector formulation of the
B-form on a single simplex was introduced:

p(b) = Bd(b) · ct ∈ R, (6)

withBd(b) a vector of Bernstein basis polynomialswhich are sorted
lexicographically according to Hu, Han, and Lai (2007):

Bd(b) = [Bd
κ(b)]|κ|=d ∈ R1×d̂. (7)

and with ct the vector of lexicographically sorted B-coefficients on
the simplex t:

ct = [cκ ]|κ|=d ∈ Rd̂×1. (8)

For example, for a trivariate B-form of degree d = |κ| = 1 we have
κ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. In this case the B-form from (5)
can be expressed in the vector form (6) as follows:

p(b) =

−
|κ|=1

ctκB
1
κ(b) = B1(b) · ct

= [B1
1,0,0(b) B1

0,1,0(b) B1
0,0,1(b)][c

t
1,0,0 ct0,1,0 ct0,0,1]

⊤.

3. A multi-degree matrix form of the de Casteljau algorithm

The de Casteljau algorithm was invented in 1959 by Paul de
Casteljau for the efficient computation of Bézier curves. In this
sectionwe introduce a one-step form of the de Casteljau algorithm
which does not require the recursion of the original algorithm.
The one-step form can be translated into a matrix form which
will prove to be essential in the formulation of the differential
constraints for the B-coefficients.

3.1. A multi-degree formulation of de Casteljau recursion

The de Casteljau algorithm is a well-known recursive method
for calculating the value of a polynomial in the B-form, see
e.g. Farin (2002). The de Casteljau algorithm relates the value of the
B-coefficient of iteration m to the B-coefficient of iteration m − 1
as follows:

c(m)
κ (b) :=

−
|γ |=1

bγ c
(m−1)
κ+γ (b), m ≤ d, (9)

with c(0)
κ (b) = cκ and with c(d)

0 (b) the value of the B-form
polynomial at b. A multi-degree form of the de Casteljau algorithm
will now be derived that relates c(m) with c(m−q) with q ≥ 1. First,
notice that the polynomial basis function Bd

κ(b) from (3) can be
expanded as follows:

Bd
κ(b) = b0Bd−1

κ0−1,κ1,...,κn
(b) + b1Bd−1

κ0,κ1−1,...,κn(b) + · · ·

+ bnBd−1
κ0,κ1,...,κn−1(b), |κ| = d

=

−
|γ |=1

bγ Bd−1
κ−γ (b), (10)

with γ = (γ0, γ1, . . . , γn) a multi-index dependent on κ as fol-
lows:

|γ | = d − |κ|. (11)

In general, for any degreem ≤ dwe have for a single basis function
term:

Bd
κ(b) = Pm

γ (b)Bd−m
κ0−m,κ1,...,κn

(b) + Pm
γ (b)Bd−m

κ0,κ1−m,...,κn
(b)

+ · · · + Pm
γ (b)Bd−m

κ0,κ1,...,κn−m(b)

=

−
|γ |=m

Pm
γ (b)Bd−m

κ−γ (b), (12)

with the basis function Pm
γ (b) of degreem defined as follows:

Pm
γ (b) =

m!

γ !
bmγ . (13)

It is important to note here that polynomial terms with negative
multi-indices are not defined and equal to zero. Using (12) and (13)
we can restate the B-form polynomial as follows:

p(b) =

−
|κ|=d


cκ
−

|γ |=m

Pm
γ (b)Bd−m

κ−γ (b)


. (14)

Whenwe let |κ| = d−m this expression can be reformulated such
that no negative multi-indices are produced:

p(b) =

−
|κ|=d−m

−
|γ |=m

cκ+γ Pm
γ (b)Bd−m

κ (b). (15)

We will now introduce a theorem for the multi-degree de Castel-
jau algorithm, which is necessary for the definition of the one-step
de Casteljau matrix.

Theorem 1. The multi-degree de Casteljau algorithm, which relates
the B-coefficients of iteration q with those of iteration m + q is

c(q+m)
κ (b) =

−
|γ |=m

Pm
γ (b)c(q)

κ+γ (b), q ≥ 0, (16)

with c(0)
κ (b) = cκ as in (9).

Proof. Let δi, i = 1, 2, . . . ,m be a set of q independent multi-
indices. The ordinary de Casteljau algorithm then is:

c(q+1)
κ (b) =

−
|δ1|=1

bδ1c
(q)
κ+δ1

(b), q ≥ 0. (17)

The next iteration then is

c(q+2)
κ (b) =

−
|δ2|=1

bδ2c
(q+1)
κ+δ2

(b)

=

−
|δ2|=1

bδ2

−
|δ1|=1

bδ1c
(q)
κ+δ1+δ2

(b). (18)

Repeating this process and letting γ =
∑m

i=1 δi we get for themth
iteration:

c(q+m)
κ (b) =

−
|δm|=1

bδm

−
|δm−1|=1

bδm−1 · · ·

−
|δ1|=1

bδ1c
(q)
κ+γ (b). (19)

Using the multinomial theorem the product of sums can be
rewritten as follows:

c(q+m)
κ (b) =

−
|γ |=m

d!
γ !

bmγ c
(q)
κ+γ (b) (20)

=

−
|γ |=m

Pm
γ (b)c(q)

κ+γ (b). (21)

The last equality follows from the definition of Pm
γ (b) from (13) and

proves the theorem. �
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3.2. The matrix form of the de Casteljau algorithm

We define the de Casteljau matrix function of degree m which
reduces a set of B-coefficients of degree d into a set of B-coefficients
of degree d − m as follows:

Pd,d−m(b) ∈ Rd̂∗
×d̂, (22)

with d̂∗ the total number of basis function terms for degree d − m
and dimension n:

d̂∗
=

(d − m + n)!
(d − m)!n!

. (23)

As an example of the use of (22), consider the case of the de
Casteljau matrix P3,1(b) for n = 1. In this case, the de Casteljau
matrix reduces the degree of an original set of B-coefficients from
degree 3 to degree 1 as follows:
[c1,0(b) c0,1(b)]⊤ = P3,1(b) · [c3,0 c2,1 c1,2 c0,3]⊤.

The structure of the de Casteljau matrix is defined as follows:

[Pd,d−m(b)]i(κ),i(θ) = Pm
θ−κ(b), |θ | = d, |κ| = d − m, (24)

with i(κ) and i(θ) index functions for the rows and columns of
Pd,d−m(b), respectively. The index function i(κ) for the rows of the
de Casteljau matrix is defined as follows:

i(κ) =

−
|γ |=d−m

1, γ ≤ κ, |κ| = d − m, (25)

while the index function i(θ) for the columns of the de Casteljau
matrix has the following definition:

i(θ) =

−
|γ |=d

1, γ ≤ θ, |θ | = d. (26)

Before a vector form of the B-form based on the de Casteljaumatrix
can be derived, a proof is required for the following theorem.

Theorem 2. Based on the results from Theorem 1, the following
statement must hold for the de Casteljau matrix from (24):

Pd,d−m(b) · ctj =

−
|γ |=m

Pm
γ (b)cκ+γ


|κ+γ |=d

, (27)

where the right hand term of this statement follows from (16) using
q = 0.
Proof. The proof starts by reformulating (27) in a form that
permits negative multi-indices. For this, we let θ = κ + γ which
can be substituted in the right hand side of (27) resulting in:

Pd,d−m(b) · ctj =

−
|θ |=d

Pm
θ−κ(b)cθ


|κ|=d−m

. (28)

Using the definition of the structure of Pd,d−m(b) from (24) and the
definitions of the index functions from (25) and (26), the following
must hold for every single element of the de Casteljau matrix, and
thus for every value of κ and θ :

[Pd,d−m(b)]i(κ),i(θ) · ctji(θ) = Pm
θ−κ(b) · ctji(θ) (29)

= Pm
θ−κ(b) · cθ , (30)

as long as |θ | = d and |κ| = d − m. Therefore, we get for the
multiplication of a single row of the de Casteljau matrix with the
vector of B-coefficients:

[Pd,d−m(b)]i(κ),• · ctj =

−
|θ |=d

Pm
θ−κ(b)cθ . (31)

Finally, the multiplication of all rows of the de Casteljau matrix
with the vector of B-coefficients immediately results in (28), thus
proving the theorem. �

With Theorem 2 a special vector form of the B-form using the
de Casteljaumatrix can be derived. This vector formwill be used to
define the directional derivatives of B-formpolynomials in terms of
the original vector of B-coefficients, as will be shown in Section 4.
Substitution of the B-coefficient vector from (8), the vector form of
the basis function from (7), and the de Casteljaumatrix from (24) in
(15) results in the vector form of the de Casteljau B-form of degree
d on a single simplex tj:

p(b) = Bd−m(b)Pm,d−m(b) · ctj . (32)

It is easy to check that this equation reduces to the ordinary vector
form of the B-form from (6) by lettingm = 0.

As an example of the above, wewill proceedwith the derivation
of de CasteljaumatrixP3,1(b) forn = 1, d = 3 and d−m = 1. In this
case we have κ ∈ {(1, 0), (0, 1)} and θ ∈ {(3, 0), (2, 1), (1, 2),
(0, 3)}. Using (24) the de Casteljau matrix then is:

P3,1(b) =

[
P2
2,0(b) P2

1,1(b) P2
0,2(b) 0

0 P2
2,0(b) P2

1,1(b) P2
0,2(b)

]
.

The de Casteljaumatrix for a complete triangulation is constructed
by placing per-simplex de Casteljau matrix blocks on the main
diagonal of P:

P = diag([Pd,d−m(b)]j, j = 1, 2, . . . , J). (33)

4. Differential constraints for B-coefficients

The differential constraints are the main new contribution of
this paper. Differential constraints locally constrain the directional
derivatives of the spline polynomials. The differential constraints
can be used, for example, to limit polynomial divergence in areas
of the spline domain with insufficient data coverage or to enforce
differential boundary conditions on the edges of the spline domain.
In order to define differential constraints on the B-coefficients of
a spline function, an expression is required for the directional
derivatives of the simplex splines in terms of the original vector
of B-coefficients. As we will show in this section, the derivation of
the directional derivatives in terms of the original B-coefficients is
based on the one-step matrix form of the de Casteljau algorithm
introduced in Section 3.

4.1. The directional derivative of B-form polynomials

The directional derivatives of B-form polynomials are well
known in the literature, see e.g. Lai and Schumaker (2007). Themth
order derivative of the B-form polynomial p(b) on a single simplex
in the direction u ∈ Rn is:

Dm
u p(b) =

d!
(d − m)!

−
|κ|=d−m

ct,(m)
κ (a)Bd−m

κ (b), (34)

with ct,(m)
κ (a) the mth de Casteljau iteration of the B-coefficient ctκ

on the n-simplex t . In (34), a is a directional coordinatewhich is the
barycentric representation of uwith respect to the simplex t . That
is, if u = v − w, with v and w vectors in Rn, then a is defined as
follows:

a := b(v) − b(w) ∈ Rn+1, (35)

with b(v) and b(w) the barycentric coordinates of v and w with
respect to t , respectively.

4.2. The matrix form of the directional derivative

In Section 3 a one-step matrix form of the de Casteljau
algorithm was presented. It will be proven here that this matrix
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form allows the directional derivatives of a B-form polynomial
of order m to be expressed in terms of the original B-coefficient
vector rather than in the mth de Casteljau iteration of the original
B-coefficients.

Theorem 3. The matrix form of the directional derivative of order m
of the B-formpolynomial p(b) in the direction u in terms of the original
B-coefficients is:

Dm
u p(b) =

d!
(d − m)!

Bd−m(b)Pd,d−m(a) · ct , (36)

with Pd,d−m(a) the de Casteljau matrix from (24) of degree d to d−m
expressed in terms of the directional coordinate a of u, with Bd−m(b)
the vector form of the basis polynomials, and with ct the vector of
B-coefficients for a single n-simplex t.

Proof. Starting with the mth order directional derivative of the
B-form from (34), and substituting the multi-degree de Casteljau
form from (16) with q = 0 and the directional coordinate a we
get:

Dm
u p(b) =

d!
(d − m)!

−
|κ|=d−m

−
|γ |=m

Pm
γ (a)ctκ+γ


Bd−m

κ (b). (37)

The theorem is provedbyusing Theorem2 to replace
∑

|γ |=m Pm
γ (a)

ctκ+γ with itsmatrix formand by substituting the vector formof the
polynomial basis function of degree d − m from (7). �

4.3. Differential constraints

The general matrix form of the directional derivative allows
for the definition of differential constraints using the original
set of B-coefficients, as we will show in this section. These
differential constraints can be included in a Karush–Kuhn–Tucker
(KKT) solution system (de Visser et al., 2009) for the B-coefficients
or the equivalent null-space solution system from (47). For this, the
differential constraints are formulated as follows:

D · c = d, (38)

with D a block diagonal matrix holding M differential constraints
for the optimization problem. The vector c = [ctj ]Jj=1 ∈ RJ·d̂×1 is
the global vector of B-coefficients, while d ∈ RM×1 is the vector of
differential constraint values.

The blocks of D are formed by evaluating a matrix function
Dtj

m(a, b) for any simplex tj:

D = diag(Dtj
m(a, b), 1 ≤ j ≤ J) ∈ RM×J·d̂, (39)

with each Dtj
m(a, b) a matrix function, defined using (36):

Dtj
m(a, b) :=

d!
(d − m)!

Bd−m(b)Pd,m(a). (40)

For every differential constraint, Dtj
m(a, b) is evaluated for a given

differential order m, directional coordinate a and evaluation
location b such that

Dtj
m(a, b) · ctj = Dm

u p(b)

tj

= di (41)

with di a single constraint value.

4.4. Differentially constraining polynomials on simplex edge facets

In this section we provide a proof that simplex polynomials can
be differentially constrained along and across simplex edge facets

by formulating the constraints for a specific number of points
located in the respective facet.

Theorem 4. The directional derivative of a B-form polynomial
Dm
u p(b) along and across a simplex edge facet t̃j ∈ Rn−1 is fully

constrained at a value d by constraining a total of Nδ unique points in
t̃j with Nδ defined as follows:

Nδ :=
(d − m + n − 1)!
(n − 1)!(d − m)!

. (42)

Proof. From (36) it is clear that the directional derivative Dm
u p(b)

is a polynomial of degree d − m in b. Now let q(b̃) be a polynomial
of degree d − m defined on t̃j which is of dimension n − 1.

q(b̃) =

−
|κ|=d−m

c
t̃j
κ Bd−m

κ (b̃), (43)

with b̃ barycentric coordinates on t̃j. Using (4), it is easy to check
that q(b̃) consists of a linear combination of Nδ basis polynomials
and B-coefficients. This system is fully determined when Nδ

equations are present, which proves the theorem. �

5. A recursive least squares estimator for simplex splines

In this section an equality constrained Recursive Least Squares
(RLS) estimator for the B-coefficients of multivariate simplex
splines is presented. This recursive estimator is based on a linear
regression method for simplex splines presented in de Visser et al.
(2009). The RLS estimator significantly reduces the computational
efforts for real-time model modification with simplex splines,
because no matrix inversions are required beyond the initial
covariance matrix estimation.

5.1. RLS with linear equality constraints

Let J(c) be a least squares cost function in the global vector of
B-coefficients c = [ctj ]Jj=1 ∈ RJ·d̂×1 as follows:

J(c) = (y − Xc)⊤(y − Xc), (44)

withX ∈ RN×J·d̂ thematrix of B-form regressors forN observations
as derived in de Visser et al. (2009), and with y the vector
containing all N observations. The equality constrained least
squares (ECLS) optimization problem then is:

min
c

J(c), subject to Gc = g, (45)

with G the matrix with linear constraints and with g a vector of
constraint values:

G = [H D]
⊤, g = [0 d]

⊤. (46)

In (46), H is the matrix holding the smoothness constraints as
derived in de Visser et al. (2009). In this case, D and d are
the differential constraint matrix and the vector of differential
constraint values from (38), respectively. In the literature the
ECLS problem (45) has been solved with Lagrange multipliers,
see Awanou et al. (2005) and de Visser et al. (2009). The differential
equality constrained recursive least squares estimator (DECRLS)
presented here is derived from a null-space solver for (45):

ĉ = G+g + RX⊤(y − XG+g), (47)

with R the parameter covariance matrix estimate:

R = (ZX⊤XZ)+, (48)
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Fig. 2. Triangulation T3 and identification/validation/correction datasets (left) and validation function f (Xv) together with corruption function g(Xd) and correction
function f (Xp) (right).

and with Z an orthogonal projector onto the null-space of G:

Z = I − G+G. (49)

Zhu and Li (2007) proved that any equality constrained RLS
estimator differs from an unconstrained RLS estimator only during
initialization. The DECRLS estimator ĉ(t + 1) therefore is:

L(t + 1) = R(t)x⊤(t + 1)[1 + x(t + 1)R(t)x⊤(t + 1)]−1,

R(t + 1) = R(t) − L(t + 1)x(t + 1)R(t),

ĉ(t + 1) = ĉ(t) + L(t + 1)[y(t + 1) − x(t + 1)ĉ(t)], (50)

with x the regression model for a new observation and with R the
parameter covariance matrix estimate from (48). The initial values
R(0) and ĉ(0) are found by using (48) and (47) respectively, with
the initial regressor matrix X(0).

6. Demonstration of the equality constrained recursive least
squares estimator

In this section, the equality constrained recursive least squares
estimator for the B-coefficients of the simplex spline functions is
demonstrated. This demonstration should be seen as the inner
recursive identification loop within an adaptive model-based
automatic control system, such as that shown in Fig. 1. Two
types of equality constrained RLS estimators are demonstrated; an
equality constrained RLS (ECRLS) estimator which only uses the
smoothness conditions as equality constraints, and a differential
equality constrained RLS (DECRLS) estimator which uses the
smoothness conditions as well as a set of differential equality
constraints in the form of Cauchy boundary conditions. It will be
demonstrated that adding differential constraints in the solution
system increases the quality of estimated spline models.

6.1. Demonstration setup

The ECRLS and DECRLS estimators are initialized with (47)
using their respective constraint matrices G. Three distinct sets
of data are used in the experiment. The first of these datasets is
Xd which consists of 1000 scattered data points in R2, generated
with a uniform random number generator in the interval {[0, 1],
[0.05, 1]}:

Xd = {x1, x2} ∈ {U(0, 1),U(0.05, 1)}. (51)

Note that the Xd dataset does not fully cover the triangulation
T3 thereby simulating an incomplete simplex data covering. The
second dataset is Xp which consists of 1257 data points and
simulates a real-time data stream. It is used to correct the initial

measurement corruption in the RLS process. Xp is a parametric
curve in R2 defined as follows:

Xp =


1
2


1 +

sin(t)
0.5t + 1


,
1
2


1
2

+
cos(t)

0.2t + 1


,

0 ≤ t ≤ 8π. (52)

The third dataset is the validation dataset Xv which consists of
1301 data points in R2 laid out on a uniform rectangular grid on
the interval {[0, 1], [0, 1]}:

Xv = {x1, x2} ∈ {[0, 1], [0, 1]}. (53)

The validation dataset is used to validate the spline models after
the RLS process has been completed. The measurement values for
the RLS process as well as the model validation are generated with
the bivariate function f (x1, x2):

f (x1, x2) = x22 sin(10x1 + 10) + x1 cos(5x2). (54)

The (corrupted) measurement values for the initial identification
process are generated with the bivariate function g(x1, x2):

g(x1, x2) =


1, 0.4 ≤ x1 ≤ 0.6, 0.15 ≤ x2 ≤ 0.5
f (x1, x2), otherwise, (55)

with f (x1, x2) as in (54). Summarizing, threemeasurement sets are
produced: the initial (corrupted) identification set {Xd, g(Xd)},
the correction set {Xp, f (Xp)}, and the validation set {Xv, f (Xv)},
see Fig. 2. Finally, the spline model residual is ϵ(Xv) = s(Xv) −

f (Xv).

6.2. Simplex spline model structure

The purpose of the numerical experiment is the demonstration
of the properties and capabilities of the ECRLS and DECRLS
estimators. As such, the model structure selection process for the
bivariate spline function s(x1, x2) was reduced to assuming that
s(x1, x2) is a fifth degree polynomial on a triangulation T3 with C1

continuity between the spline pieces. The triangulation T3 was a
non-rectangular triangulation consisting of 3 simplices.

Second order differential constraints were imposed in the form
of Cauchy boundary conditions on the simplex edge facets:

d2s(x1, x2)
dν2

j


t̃j

= 0, 1 ≤ j ≤ 3, (56)

with t̃j the external edge facet of the simplex tj and with νj the
outward pointing normal vector of the edge facet. It was found
in our experience that these particular constraints significantly
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Table 1
Results of the demonstration experiment.

ECRLS DECRLS Batch DECLS

RMS(ϵ) 0.0681 0.0467 0.0467
max(|ϵ|) 0.4142 0.1348 0.1348
Mean Var(ĉ) 0.3341 0.0440 0.0440
Time (s) 0.35 0.35 98.83
Relative time (-) 1 1 282.4

Fig. 3. Initial ECRLS (top) and DECRLS (bottom) spline models together with their
model residuals.

reduce polynomial divergence while having only minor influence
on the approximation power of the spline function. When
modeling a real life system, however, differential constraints
should be imposed based on expert knowledge of the derivatives
of the system.

From (42) it follows that three sets of four equations of the form
(41) are required to constrain the second order derivative of the
spline function on the external edge facets of T3:

D2
νj
s(bi)|tj = Dtj

2 (aj, bi) · ctj = 0, 1 ≤ j ≤ 3, 1 ≤ i ≤ Nδ, (57)

with aj the directional coordinates of the normal vector νj relative
to simplex tj. The points bi in (57) are the barycentric coordinates
relative to tj of six unique points on t̃j. The resulting global
differential constraint matrix is then formed from the blocks
Dtj

2 (aj, bi) according to (39) such that D ∈ R12×3·d̂.

6.3. Demonstration results: residual analysis

The numerical experiment was implemented in Matlab and
run on a single core of an Intel Q6600 processor. In Table 1
the performance data are presented for the final epoch of the
ECRLS, DECRLS, and the batch DECLS estimators. From the table
it is clear that the recursive estimators are more than 280 times
faster than the batch estimator. Table 1 also shows that adding
differential constraints to the solution system significantly reduces
the validation error RMS and the maximum error.

Fig. 4. Final ECRLS (top) and DECRLS (bottom) spline models together with their
model residuals.

Fig. 5. Comparison between ECRLS and DECRLS residual RMS values during the
recursion (left) and final B-coefficient variances (right).

In the top plot of Fig. 3 the initial spline models estimated
with the ECLS and DECLS estimators are shown together with their
respective model residuals. The spline function estimated with the
ECLS estimator clearly diverges near the x2 = 0 axis. This is caused
by the fact that the initial dataset Xd only partially covers simplex
t1, see Fig. 2. The ECLS estimator therefore extrapolates the data
near the boundary of t1. The ECRLS and DECRLS spline models
and model residuals for the final RLS epoch are shown in Fig. 4.
While the correction data has improved the ECRLS spline model,
it still shows significant divergent behavior near the vertices v0,
v1 and v2. In contrast, the DECRLS spline model shows virtually no
divergence near these vertices.

In the left hand plot of Fig. 5 the RMSof themodel residual of the
ECRLS and DECRLSmodels is shown as a function of the RLS epoch.
It is clear from this figure that the RMS of the model residual of the
DECRLS model is lower for every single RLS epoch.
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Fig. 6. Comparison between ECRLS and DECRLS B-coefficient variance surfaces.

6.4. Demonstration results: Statistical analysis

Next to an analysis of the model residual, an analysis of the
B-coefficient variances was performed. The differential con-
straints significantly reduce the overall variance in the estimated
B-coefficients, see Table 1 and the right hand plot of Fig. 5. In Fig. 6
the B-coefficient variance surfaces are plotted. This plot clearly
shows that the differential constraints reduce B-coefficient vari-
ances, especially near the edges of the triangulation.

7. Conclusions

In this paper, a new differential equality constrained recursive
least squares (DECRLS) estimator for multivariate simplex splines
is presented. The estimator provides an onlinemodel identification
and bounded extrapolation functionality for multivariate simplex
splines. The new estimator is efficient computationally, providing
a speedup of at least two orders of magnitude over a differentially
constrained batch estimator on the same dataset. This makes the
(DECRLS) for simplex splines highly desirable inside an online
nonlinear system identification loop.

The differential equality constraints are a new type of constraint
for the simplex splines and are based on a new one-step matrix
formulation of the de Casteljau algorithm, which is presented in
this paper. The differential constraints can be used to impose
Dirichlet, Neumann, Robin or Cauchy boundary conditions on
the simplex spline functions. The differential constraints are
used to reduce divergent behavior of simplex polynomials near
the boundaries of the triangulation by locally constraining the
directional derivatives of the spline polynomials.

The RLS estimator for simplex splines was demonstrated with
a numerical experiment implemented in Matlab. The differential
constraints were used to impose second order Cauchy boundary
conditions on the external edges of the spline domain. It was
shown that the differential constraints significantly improved the
quality of the simplex spline models, especially near these edges.
Additionally, it was shown that the application of differential
constraints on simplex edges greatly reduceB-coefficient variances
close to these same edges.
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