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Summary 

The hardenability of steels over a wide range of steel grades has been modelled from 

chemical composition and austenitising temperature in a statistical way using feedforward 

hierarchical artificial neural networks. The effect of the architecture of the network on the 

accuracy in die prediction was studied in detail. Both the number input parameters (which 

determine the number of nodes in the input layer) and the number of nodes in the hidden 

layer were varied, and the optimum architecture was established. Furthermore the minimum 

number of sets of data required to build an accurate model was determined. Using an 

optimised network it was shown that the neural network is indeed capable of predicting the 

Jominy hardness profile over a wide range of steel compositions with a very good accuracy 

(2 HRc). Over large areas of the compositional domain the error in the major part of the 

Jominy curve is comparable to the experimental error. Also a model for a specific steel 

grade, boron containing steels, was constructed. 

The accuracy of the network models was compared to two types of other models: models 

from literature and models, based on the same database as the neural network, using the 

Partial Least Squares multilinear regression technique. Literature models were not very 

accurate for the database. The partial least squares models were reasonably accurate. The 

neural network model clearly outperforms all other models. In fact tiie quality of the neural 

network model is such that a significant further reduction in the error of prediction requires 

a reduction in the experimental error in the experimental data themselves. 
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1 Introduction 

The hardenability of a steel is one of the most important parameters controlling the final 

properties of heat treatable steels. The hardenability of a steel is nowadays almost 

universally specified produced in terms of a hardness versus distance plot resulting from a 

standard test: the Jominy End Quenched test. This test characterises the hardenability of a 

steel completely, it is robust and relatively simple. 

Since the start of this century it is known that the hardenability of a steel depends on its 

composition and the austenite grain size only. A lot of effort has indeed been spent on 

calculating the hardenability from these parameters. This resulted in a large number of 

publications describing empirical models for the calculation of the hardenability [1,2]. 

Common in all models which are based on statistical data, rather than physical models is 

that they are valid over a limited compositional range only. A major reason for this 

shortcoming is that the literature models only use simple and predefined dependencies 

between composition and hardness values at specified positions. 

Artificial neural networks modelling, a relatively new statistical technique, may have some 

significant advantages over the earlier models as it does not require a priori assumptions on 

functional dependencies. It is therefore well capable of modelling both linear and non-linear 

dependencies and handles interactions between input parameters very well. 

As any statistical technique a neural network requires a large data set to develop an accurate 

model. In a laboratory or from literature data sets of this size can rarely be obtained . 

However such data sets are generated in the course of steel production in a steel plant. The 

data set used in this work provided by Nedstaal B.V. Alblasserdam and contained over 

4000 sets of data. 

Purpose of this research was to develop a model for the prediction of the Jominy hardness 

proflle from chemical composition using artificial neural networks. In this work only 

feedforward hierarchical neural networks were used as they are most suitable for such types 

of data sets. The effect of the architecture of the network was studied in detail. Both the 

number of nodes in tiie input layer and the number of nodes in the hidden layer were varied, 

and the optimum architecture was established. Furthermore the minimum number of sets of 

data required to build an accurate model was determined. 

Using an optimised network it is shown that the neural network is indeed capable of 

predicting the Jominy hardness profile over a wide range of steel compositions with very 

good accuracy. 
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Over large areas of the compositional domain the error in the major part of the Jominy curve 

is comparable to the experimental error. The error in the transitional region is larger than the 

experimental error. 

The performance of this model is compared to general models from literature and three 

linear regression models trained using the same data set as used for the neural network 

modelling. The neural network model clearly outperforms the other models. In fact the 

quality of the neural network model is such that a significant further reduction in the error of 

prediction requires a reduction in the experimental error in die experimental data themselves. 

6 



2 The hardenability of engineering steels 

2.1 Introduction 

To characterise the hardenabihty of engineering steels the Jominy End-Quench test is widely 

used. In section 2.2 a brief description of this test is given. Several analytical models have 

been presented to describe the Jominy hardness profile as a function of the chemical 

composition and tiie austenite grain size. An overview of these models from Hterature is 

given in section 2.3. 

2.2 Description of the Jominy End-Quench test 

The Jominy End-Quench test [3] is used as a standard method to characterise the 

hardenabihty of steels. Hardenability is a measure of the depth to which a steel will harden 

when quenched from its austenizing temperature. The test consists of water quenching one 

end of a test specimen and measuring the hardening response as a function of the distance 

from the quenched end. The test configuration is shown in figure 2.1a. The cylindrical test 

specimen (25.4 mm (1.0 inch) in diameter and 76.2mm (3,0 inch) in length) is heated to a 

standard austenitising temperature which depends on the chemical composition of tiie steel 

being tested. It is held at austenizing temperatore for 30 min. After austenitising the 

specimen is removed from the oven and one end of the specimen is quenched for at least 10 

minutes by a standard stream of water, while the rest of the specimen is air cooled. As a 

result, a cooling rate gradient develops over the length of the specimen, with the highest 

cooling rate at the quenched end. The coohng rate gradient results in different 

microstructures and thus different mechanical properties over the length of the specimen. 

After quenching two flat surfaces are ground along tiie entire length of the bar to a minimum 

depth of 0.38 mm. Along these flat surfaces the hardness is determined using a hardness 

Rockwell C test at intervals of 1/16 inch beginning at the quenched end. Hardness values at 

the same distance from the quenched end from different flats are averaged, resulting in a 

hardness vs. depth profile or Jominy curve (Figure 1). 

2.3 Literature models describing the hardenability from chemical 

composition 

Since the start of tiiis century it is known that the hardenability of steels is determined by its 

chemical composition and the austenite grain size. From then on numerous attempts have 

been made to characterise the hardenabihty from its chemical composition and austenite 

grain size. The chemical composition of the liquid metal can be measured easily during 

steelmaMng. 
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Therefore an accurate model to calculate the hardenabihty in an early stage of the steel 

production could result in a tighter control of hardenabihty of the final product. 

To characterise the hardenability Grossmann [4] formulated a generally appHcable concept: 

the ideal critical diameter Df. The ideal critical diameter is defmed as the largest diameter of a 

cyHndrical specimen which transforms into at least 50 percent of martensite when quenched 

with an infinitely large cooling rate at the surface. This diameter can either be determined 

metaUographically or by determining the point of the Jominy curve where the hardness 

value drops below the value of a steel containing 50 percent martensite. 

Until recently, attempts to calculate the hardenability of a steel have been focused mainly at 

the calculation of its critical diameter. For this purpose first the ideal critical diameter Djc for 

a steel with identical carbon content to the steel of interest and no alloying elements is 

calculated from carbon content and austenite grain size only. For commonly used steel 

grades the effect of all other alloying elements is accounted for by element specific factors: 

Di=Dic - f s i - fMn - f c r - (2-1) 

where: fsi^fMn'^Cr ~ specific factors for siHcon, manganese, chromium respectively. 

Every factor is a function of the amount of the corresponding element present and is usuaUy 

given in tabulated form [4]. The Grossmann factors are listed in appendix A. 

This Grossmann model does not take interaction between elements into account. 

Particularly for steels containing boron, this restriction is insuperable. Therefore for these 

steels the following so-called boron factor, Bf^ containing the carbon content, is suggested: 

Bf = 1+1.6-(1.01- % C) (2.2) 

This boron factor is then used in the same way as the other element specific factors. Note 

that this boron factor stiU only depends on the carbon concentration, implying that the 

amount of boron is of no influence. 

A large number of researchers determined hardenability factors for many steel grades. In 

time, preference for certain factors has evolved. For heat treatable steels with average 

carbon content (0.30-0.60%) the factors of Boyd and Field [5] or Kramer, Siegel and 

Brooks [6] are commonly used; for case hardening steels with max. 0.25 % carbon the 

Renata and Doane factors [7] ; and for hypereutectiod steels and carbonated surfaces of case 

hardening steels the factors of Jatczak [8]. 
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The hardenabihty factors of these models are restricted to a limited domain, and show 

inconsistencies when compared to each other or to new data. 

These limitations are due to the mathematical restrictions of the chosen method as 

interactions between alloying elements are not taken into account and linear dependencies 

are used. To make this method applicable over a wider range of steel grades exponential 

hardenability factors were proposed by Moser and Legat [9]. 

Determining the critical diameter gives no direct information on the development of the 

hardness along the depth profile. However, methods have been developed to calculate the 

complete Jominy curve from the surface hardness value and the critical diameter. The 

surface hardness is mainly determined by the carbon content. Field[10] developed a method 

to calculate the Jominy hardness value at distances (DH) from the quenched end: 

DH = — (2.3) 
DF 

where: DH= distance hardness 

IH = initial hardness 

DF = dividing factor 

The dividing factor is a function of the critical diameter and the distance from the quenched 

end. It is usually given in tabulated form. Since then, a number of tables of DF values has 

been proposed [11, 12,13]. Due to the fixed shape of the curve when using (3), this 

method may be inaccurate for certain steel grades. Therefore, separate tables for heat 

treatable, case hardening, and boron steel grades have been proposed. 

Recently, Geary et. al. [14,15] have described a so-called Database Method. This approach 

overcomes the problem of the fixed shape of the curve calculated with (2.3). The Database 

Method uses a large database containing the composition and the measured Jominy curves 

for a large number of steels. From the total database some ten steels are chosen with 

compositions closely matching composition of the steel of which the Jominy curve must be 

determined. The Jominy hardness profiles of these selected steels are then modified using 

the compositional mismatch and factors of ASTM-255 [16], an ASTM standard for 

calculating hardenability. This standard is essentially a mixture of the Grossmann and the 

Field method. 

All methods described above have in common that the hardness at the quenched end and the 

critical diameter is calculated first, from which the Jominy profile is determined. 
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Alternatively, the hardness at a certain Jominy position can be calculated directly from the 

composition using multiple regression techniques. 

Just [17 ,18] constructed a comprehensive model for a wide range of steel grades. The 

(additive) equation in its simplest (hnear) from is: 

Ĵ  = bo + be • %C + bsi • %Si + bĵ n • %Mn+... (2.4) 

where: Jx = the hardness value (HRc) at Jominy position x 

bb = coefficients determined by regression analysis 

Using only linear functional dependencies, these formulas will not result in an accurate 

model for a wide range of steels. To improve the accuracy, other than linear dependencies 

and element interactions must be taken into account. Just formulated his so called 

comprehensive model adding V%C and x, the distance from the quenched end, as 

variables, resulting in just one equation for the hardness at positions J4 . . .J19, where the x is 

given in ){g of an inch. When interactions are expected to be present, these may be 

accounted for by adding interaction terms to equation (2.4). 

Furtiiermore multiphcative models can also be constructed using multiple linear regression. 

In this case the general equation is given by: 

Jx = bo • (%C)''c • (1 + %Sip'' • (1 + %Mn)^^... (2.5) 

For implementation in multiple linear regression techniques, this equation is often rewritten 

as: 

log Jx = log bo + be • log(%C) + bsi • log(l + %Si)... (2.6) 

However, solving (6) using multiple linear regression will not result in finding the optimum 

parameters of (5 ) [19] . These can only be found using multiple non-linear regression 

analysis. The additive models are reported to out-perform the multiplicative models 

implemented in multiple linear regression [18] . However this may be due to the use of 

multiple hnear regression on non-hnearly transformed variables. 

All multiple regression models are only valid for a limited domain. For identical steel 

classes significantiy different factors are reported [2]. Generally, any empirical model is 

expected to be accurate only for the data source it is based upon. Therefore, scepsis on the 
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existence of uniform formulae for the hardenability of steels from different manufacturers is 

justified. 

Except for the Database Method all these methods use pre-assumed dependencies for the 

effect of alloying elements on the hardenability. These dependencies are chosen 

heuristically; in most cases linear. Ideally for this type of problem a statistical modelhng 

technique must be able to construct a model for any functional dependencies without any a 

priori assumptions on the nature of these functional dependencies. 
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3 Statistical modelling 

3.1 Introduction 

In this chapter the theory of the artificial neural network used is described. 

Two general issues for all statistical models, the scaling of data and the validation of 

models, are described first in section 3.1.1 and 3.1.2. The neural network used for this 

investigation is described in section 3.2. In this work the results of artificial neural 

networks are compared with those of classical Hnear regression models. Some linear 

regression techniques are described in section 3.3. Non-linear regression techniques have 

not been used to construct models. 

3.1.1 Scaling of data 

Most statistical techniques require variables with mean zero and homogeneous variance 

[19]. When not all parameters have a homogeneous variance, a parameter with a small 

range is ignored when parameters with large ranges are present. Often data from production 

processes do not meet these requirements, so the input and output data must be transformed 

before applying a statistical technique. A mean value of zero is commonly achieved by mean 

centering: the mean value of a parameter is subtracted from aU its data. When aU input or 

output parameters are measured in the same units, this scaHng may already be sufficient for 

statistical modelhng. Parameters measured in different units need to be variance scaled: the 

mean centered data is divided by the standard deviation of that parameter. Instead of 

dividing by the standard deviation, data can also be scaled using weight factors. This last 

method is used when certain parameters are known to be of less importance and therefore 

should not influence the model too much. 

It is not necessary that input and output data are scaled in the same way, as differences in 

scaling are absorbed in the statistical model. These types of scaling assume that the errors in 

input or output parameters are uncorrelated, a condition that is usually met. 

Ideally, the data for a statistical model are spread evenly over the complete domain i.e. the 

sample density is constant. In that case, a model will have an almost uniform reliabihty in 

any part of the domain. However, in practise the sample density in the domain usually 

shows significant fluctuations. Trying to incorporate a few isolated samples can distort 

models completely. Modelhng techniques less sensitive to this effect will result in models 

with a high prediction accuracy in regions with high sample density, and poor accuracy in 

regions with low sample density. In most cases data pre-treatment (e.g. exclusion of 
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isolated samples thus decreasing the domain, or inclusion of extra samples) is necessary to 

diminish the effect of sample density fluctuations. 

3.1.2 Validation of a statistical model 

For the validation of the predictions of a statistical model an estimate of the accuracy of the 

model is required. Two methods are widely used in statistical validation. The simplest 

method is to divide the data available into a set of fitting samples and a set of validation 

samples. Once a model is constructed using the fitting samples, the validation set can be 

used to evaluate its accuracy. The fitted model is used to predict the response of the 

validation samples, which is then compared with the measured response of the validation 

samples. This method is rehable when the validation samples are representative for the 

model. 

When the number of data does not allow the isolation of a large number of data, cross-

validation can be used. A model is constructed with all samples but one, and this last 

sample is used to calculate the error in prediction. Then, a new model is constructed leaving 

out a different sample, again calculating the error in prediction. This procedure is repeated 

until every sample is left out once. The errors calculated during this procedure are a measure 

for the accuracy of the model. This method may seem to generate very high computational 

cost. In case of artificial neural networks this is true; for multiple linear regression cross-

validation can be achieved without repeated regression runs and is therefore relatively 

simple. 

3.2 Artificial neural networks 

3.2.1 Introduction 

In situations in which tiie traditional statistical techniques fail to provide an accurate model -

such as in the case of unknown functional dependencies or strong non-linearity - a new 

statistical technique, neural network modelling, may be successful. A wide variety of neural 

network types exist; for different application areas, different neural networks are used. In 

this research, a feed-forward hierarchical neural network is used. An extensive, general 

description of neural networks is given in [20][21][22]. In sections 3.2.2 the artificial 

neural network used is described; in section 3.2.3 the training procedure is explained. In 

section 3.2.4-6 requirements for applying neural networks are given. 
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3.2.2 Theory of the artificial neural network 

One type of neural network is commonly used for modelling, the feed-forward, hierarchical 

neural network. Feed-forward, because the information is processed in one direction, from 

input to output; hierarchical, because the processing elements are ordered in layers. This 

network will only be considered here. This feed forward hierarchical neural network 

specifically is described in [23] (appendix B). 

A feed-forward, hierarchical neural network is shown schematically in Figure 3.1. It 

consists of layers of nodes connected to each other with weight factors. The basic unit in a 

neural network is its processing element, caUed a node or a neuron. In hierarchical neural 

networks these nodes are ordered in layers. The network used throughout this investigation 

contains three layers: an input layer, a so-called hidden layer, and an output layer. As one 

hidden layer yielded sufficient accuracy, no networks with a larger number of hidden layers 

were used. 

The number of nodes in the input layer and the output layer are determined by the number 

of input and output parameters respectively. The input layer contains as many nodes as the 

number of input parameters considered. The input layer receives a set of values for every 

process parameter as input, and calculates an output value from its input value. The output 

value of every node in the input layer is sent to all nodes in the hidden layer. This layer has 

a number of so-called hidden nodes depending on the complexity of the problem. This 

number is determined by tiie designer of the network. Once an output value is calculated for 

every hidden node, the output of every hidden node is sent to all nodes in the output layer. 

The number of nodes in the output layer equals the number of output parameters. Every 

node in the output layer calculates an output value with the output values from the nodes in 

tiie hidden layer. The output value of a node in the output layer is tiie prediction of an output 

parameter. 

The nodes in neural networks perform tiie elementary processing operations: calculating one 

output value (a scalar) from the node's input. For any node in the networks considered 

here, all input values are cast in a so called input vector. One extra element, the offset or 

bias, with constant value 1 is added to this vector. Then the net input, a scalar, is 

determined by the inner product of the input vector and the so-called weight vector. The 

weight vector is a part of the node that determines the effect of each input value on the 

output of the node. Finally the output value of the node is calculated by passing the net 

input through a sigmoid transfer function. 

The weight factors in all nodes can be considered as the fit parameters of the neural network 

model. With all weight factors of a neural network model set to the right values, it can 

calculate corresponding output parameters from a set of input parameters. 
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To determine the correct weight factors, a so called training procedure is followed. A 

network is trained using a large number of samples (input data with coiTesponding output 

data) and a learning rule which determines how the weights are corrected. The networks 

used were trained using supervised training with the momentum version of the back-

propagation of error training rule. For a detailed description of network training 

procedures, see [22]. 

3.2.3 Training of an artificial neural network 

The training cycle is outlined in the flowchart of Figure 3.2. To start, random values are 

attributed to all weight factors. Then, the input data of one sample is processed by the 

network and its output is compared with a target output. The target output consists of the 

measured values for every input parameter. The difference between the calculated and 

measured values - the error in prediction - is a measure for the adaptation of the weights. 

This adaptation takes place in the reverse direction - back propagation of error - so first, the 

weights of the output nodes are adapted and then the weights of the nodes in the hidden 

layer. This process is repeated for all samples in the database. The samples are presented to 

the neural network in random order. Once the weights have been adapted for all samples, 

one training cycle is finished. This training cycle or iteration is repeated until the differences 

between calculated and target output values are minimised sufficiently. Once the network is 

trained, the weight factors are fixed and the neural network may be used to calculate the 

output for any arbitrary set of input data 

In the following section the data processing for the nodes in a network is described in more 

detail in mathematical terms. The processing of data in all layers is shown schematically in 

Figure 3.3. 

The net input, a scalar, is determined by the inner product of the input vector and the weight 

vector of a node: 

*max 

netj= ZwjiOj (7) 
i=l 

Where: in,ax= ̂ ® number of nodes in the preceding layer 

Oj = the i^i input value of a layer, consisting of the output elements 
O j ^ i . . . O j ^ ^ of the preceding layer 

w j i = the i * value of weight vector w belonging to the node in 

the considered layer 

15 



Then, the transfer function fj(netj) transforms the net input value into the output value Oj. 

This value is broadcast to all nodes in the succeeding layer, except for the output nodes, 

where the output values of the nodes serve as output of the neural network. (Figure 3.3) 

However, to lead to accurate results, an neural network needs to be trained first. Many 

training rules exist; the one considered in this report is the delta learning rule. 

In the delta learning rule the change in the weight of a node is proportional to the error 
signal 6pj during a training step p. In mathematical form: 

ApWji=ri5pj0pi (8) 

Where: r) = the learning rate (a constant) 

0 p i = the i * input value of the node 

A p W j j = the change of the i * component of the weight vector in the 

node during training step p. 

When the target vector tpj of an output unit during training is known, the error signal for an 

output unit is calculated using: 

5pJ = (tpi-0pj)fj'(netpj) (9) 

Where: f = the derivative of the transfer function. 

For a hidden or input unit the error signal must be determined jfrom the error signal in the 

succeeding layer k, by: 

5pj = f;(neyi5p,w,j (10) 
k=l 

In this way weights in all layers can be adjusted recursively starting from the output units 

working back to the input units. This procedure is denoted as backward propagating or 

backpropagation. As derived in [20] this method constructs a model by a least squares 

approximation. This procedure can also be interpreted geometrically. For a given problem 

each combination of weights of an neural network for a given network architecture has a 

certain error. If a multidimensional weight space is constructed with one axis for each 

weight, and one extra axis for the degree of error, then a combination of weights can be 

represented by its corresponding coordinates. The error in this network of this combination 

of weights can be represented by the 'height' on the error axis. In this way an error surface 
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is created. The global minimum of this error surface corresponds with the best possible 

combination of weights for this problem. The aim of training is to find this optimum 

combination of weights. 

The learning rule determines in which way the error surface is explored. 

The delta learning rule minimises the error in the training set by a gradient descent 

procedure in the error space as long as the learning rate is small [4]. To increase the 

convergence speed several modifications of the delta learning rule have been proposed. A 

modification of the delta rule for incremental learning almost used universally is the 

momentum term | i (0<|a.<l): 

A p W j i = r i 8 p j 0 p i + n A p . i W j i (11) 

A fraction of the previous weight change, the momentum, is added to the current weight 

change. In this way opposing weight changes are canceled out partiaUy, and parallel 

changes are reinforced. An acceleration of convergence in the error space across long 

regions of constant and low gradient is achieved, and escape from certain local minima is 

made possible. 

During training an neural network constructs an internal representation using the training 

data. If the right training data and network parameters are chosen, this internal 

representation yields a useful model. However, the choice of network parameters and 

training data is not straightforward. This choice is elucidated in the next sections. 

3.2.4 Input parameters 

One very important aspect of implementing neural networks is the selection of input 

parameters. All relevant input parameters must be represented in the input data of the neural 

network. Usually this choice is based on the physical background of a process. As the 

number of training samples needed and tiie training time increase at least exponentially with 

increasing number of input parameters, the number of actual input parameters should be 

restricted. Therefore, preferably a small subset of input parameters must be chosen. To 

diminish the number of input parameters, linearly dependent input parameters can be 

ignored, as they carry no extra information. 
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Alternatively, all input parameters can be transformed into a small number of new 

parameters using Principal Component Analysis (PCA) with minimum loss of variance. 

3.2.5 Training data 

As stated earlier, a large number of training data is needed to train a neural network. Up to 

now it is not possible to estimate the number of training data needed for a given problem in 

a statistically sound quantitative way. This number depends upon the number of input 

parameters and the complexity of the problem. When the number of orthogonally 

independent input parameters is denoted n, a rough indication is: 2" < number of training 

data needed < 3". 

3.2.6 Overtraining 

As the complexity of a problem and therefore the number of hidden nodes needed is not 

known in advance, usually more hidden nodes than strictly needed to fit the underlying 

model are used in an neural network. This network then has more degrees of freedom than 

necessary for a model. 

At large numbers of training cycles the network uses these degrees of freedom to model not 

only the functional dependencies between input and output parameters but also the noise in 

the data set. This is called overtraining. To prevent tiie network from overtraining a 

vahdation set is used. The weight factors in the network are corrected using the data in the 

training set only. The vahdation set evaluates the performance of the network after every 

training cycle. In case of overtraining the error for the training set decreases while that for 

tiie test set increases with further training (figure 3.4). At this point ttaining is stopped. 

3.3 Multiple linear regression analysis 

In this paragraph multiple linear regression methods are explained. The fundamentals of 

multiple linear regression are given in section 3.3.1. In section 3.3.2 the Principal 

Component Analysis (PCA) method is described which can be used to determine the most 

relevant parameters (or sets of parameters) in a data set. The Principal Component 

Regression (PCR) and the Partial Least Squares (PLS) method are described in section 

3.3.3 and 3.3.4. Both methods yield models linking input data to output data assuming 

linear dependencies. 
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3.3.1 Multiple linear regression 

Multiple linear regression methods are statistical techniques based on the first order relation: 

y = b iXi - l -b2X2+. . .+b^x^+e= I x j b j + e (12a) 
j=i 

where y = the dependent (output) variable 

Xj = the independent (input) variables (j = l..m) 

bj = the sensitivities 

e = the error or residual 

This relation can alternatively be written as: 

y = x'̂  b+e (12b) 

- T ^ 

where x = a row vector consisting of the input variables ( = transpose) 

b = a column vector consisting of the sensitivities 

This relation applies for situations with one dependent variable and one sample. For n 

samples (12^) becomes: 

y = X b + e (13a) 

where y = the vector containing n output values 

X = (nxm) matrix containing independent variables (j = l..m) 

e = vector of residuals 

With the number of samples n and the number of independent variables m, three cases can 

be distinguished. When the number of samples equals the number of variables (m=n), one 

unique solution can always be found resulting in a perfect match of all samples: e = o. With 

less samples than parameters (m>n) an infinite number of solutions with e = o can be 

found. With more samples than parameters, normally no exact solution is found. In this 

case an optimum solution is found by minimising the length of the residuals vector e. 

By rewriting (13) to: 

e = y - X b (13b) 
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the vector of residuals can be minimised using the least squares solution: 

b= (X^Xr^X^y (14) 

These equations are all vaUd for one dependent variable only. Every dependent variable 

generates one set of equations. In case of p dependent variables these equations can also be 

arranged in one equation: 

Y = X B + E (15) 

where Y = (nxp) matrix with dependent variables as columns 

B = (pxm) matrix with sensitivities as columns 

E = (nxp) matrix with residuals as columns 

The general case of (15) is the starting point for the next sections. 
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3.3.2 Principal Component Analysis 

Any matrix can be decomposed into a sum of r matrices of rank 1. These matrices in tum 

can be written as the outer product of two vectors: a score vector and a loading vector: 

T - - T T 

X = Ml + M 2 + . . .+M, = tl Pi +12 P2 + . . .+tr Pr (16a) 

where M^ = a (nxm) rank 1 matrix 

tjj = a score vector 
— J 

p̂  = the transpose of a loading vector 

In matrix notation (16a) becomes: 

X = TP^ (16b) 

where T = a (nxr) matrix with t i . . .tr as columns 
— T — T 

pT = a (rxm) matrix with Pj ... p^ as rows 

The Mji matrices are arranged in order of decreasing eigenvalues. A M^ matrix with a 

large eigenvalue contains a large fraction of the variance of the data: so the first few matrices 

in the decomposition contain most of the variance in the data. Usually the matrices with 

sraaU eigenvalues are ignored. 

Many ways exist to determine this decomposition. One method, the Non-linear PArtial 

Least Squares (NIPALS) [24] algorithm is discussed in more detail here, as it is necessary 

for understanding multiple regression techniques. 
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The NIPALS algorithm calculates the first principal component of a data matrix. First, as an 

initial guess for ti some data vector xj is chosen. 

Then, ti is adjusted by an iterative procedure: 

" T 
~ T tl X 

(1) calculate Pj = _ (17) 
t l - t l 

(2) normahse Pl to length 1: 

rnew 

Pold 

(18) 

(3) calculate ti = , "^^1 (19) 
Pl Pl 

This procedure is repeated until ti is constant with further iteration, i.e. ti in steps (1) and 

(3) are sufficientiy identical. With the ti and Pj calculated in the last iteration Mi is 

determined. Next tz and P2 can be calculated with this procedure by replacing X with (X-

Mi) . 

Once the decomposition of the data matrix completed, the data can be represented by the 

scores and loadings vectors, where the first few components contain most of the variance in 

the data. 

3.3.3 Principal Component Regression (PCR) 

The data matrix X can be decomposed using (16b). First, the number of principal 

components (a) is chosen, where matrices with small eigenvalues are ignored. Then the data 

matrix is represented by the matrix T using: 

T = XP (16c) 

where T = a (nxa) matrix with ti...ta as columns 

P = a (mxa) matrix with Pl...Pa as columns 

resulting in: 

Y = TB+E (20) 

This equation is used in Principal Component Regression (PCR). By using T instead of X 

the data is represented by a small number of ortiiogonaUy independent variables. 
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As the score vectors in T are orthogonal, B can easily be solved. Noise usually only affects 

the components with a small eigenvalue. As these are excluded, noise in the data is reduced. 

3.3.4 Partial Least Squares (PLS) 

Partial least squares [24,25] is a multivariate linear regression technique which uses the 

principal components of both the independent variables (15) and the dependent variables: 

Y = UQ'^ + F (21) 

Where: U = (nxa) score vector matrix 

QT= (axp) loading vector matrix 

F = (nxp) matrix with residuals 

Equations 15 and 19 are called the outer relations. With the so-called Partial Least Squares 

algorithm a relationship between U and T , the inner relation, is calculated. This inner 

relation for component h is: 

Uh* = bhth (22) 

Where: bh = the regression coefficient. 

For PLS these regression coefficients are calculated by a procedure similar to NIPALS. The 

X and Y matrices are decomposed simultaneously by the NIPALS algorithm: The scores 

vectors of both decompositions are exchanged during the decomposition resulting in a better 

inner relation. Furthermore weight vectors are used to keep the scores vectors of the X 

matiix orthogonal. This procedure is given in appendix C. Similar to PCA, usually not aU 

components are used for regression, as the smaller components merely contain noise and 

can cause coUinearity problems. To determine the number of relevant components a 

criterion is adopted. Using only the training data some low threshold value for | |F can be 

chosen. When a separate set of data is used for validation, the optimum number of 

components can be determined by minimising the sum of squares of the prediction of this 

validation set. 

While the PLS method is certainly a very powerful technique to analyse large data sets, its 

value is reduced by the necessity of a priori specifying functional dependencies. 
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4 Experimental 

4.1 Introduction 

As stated in the introduction, the main objective of this research lies in the prediction of the 

hardenability from the chemical composition using artificial neural networks. Neural 

network models, as any model based on statistical techniques, are very sensitive to the data 

upon which they are trained. Therefore extra attention must be paid to the handling of the 

data. The data handling from the original Nedstaal data to the dataset used to train the neural 

networks is given in section 4.2. 

Due to computational restrictions it is not possible to train a network with more than 11 

input parameters. So, some parameters in the original database were excluded from the 

model. The selection of input parameters for the different networks is described in section 

4.3. The procedure of data scaling and the choice of network parameters is described in 

section 4.4. In this section the evaluation of the network's prediction during training 

(needed to prevent overtraining) is also described. The method of evaluating the network 

models is given in section 4.5. 

In section 4.6 the prediction of the model versus those of analytical models (Just and 

SteCal) and those of PLS models using the same data set is presented. 

4.2 Data handling 

The original Nedstaal database consists of some 4000 data sets, each consisting of the 

measured austenitising temperature and chemical composition as input data, and the Jominy 

hardness profile of a steel as output data. An excerpt of the original database is given in 

Table 4.1. The database consisted of low alloy steels: semi mild steels (case hardening 

steels), carbon steels (heat treatment steels), tool steels (spring steels) and specialty steels 

(ball bearing steels). The domain and range of the original database is given in Table 4.2; 

the distribution of the original data in Figure 4.1a. 

The hardness values were determined using the standard Rockwell C hardness test. The 

hardness at every position is determined at both sides of the test specimen. The two 

hardness values are averaged and rounded to a whole number. The expected error in 

hardness measurement is 1 HRc. 

4.2.1 Input data 

The chemical composition of a steel is characterised by the weight percentages of 17 

elements: C, Mn, P, S, Si, Cu, Cr, Ni, Sn, Mo, Ti, As, B, V, Al, and N. The 
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concentrations of these elements were determined spectrometrically. The austenitising 

temperature was set on basis of the steel composition. 

The input data of the original database, the austenitising temperature and chemical 

composition of the steels, are by no means evenly spread over the domain, as shown in 

Figure 4.1 which gives the number density of samples per domain (die full size of each 

input parameter divided into 10 equal domains). As the size of the domain is determined by 

the highest and the lowest value of one parameter, just one sample with an anomalously 

high value already causes an enormous distortion in the distribution. By reducing the size 

of the domain the distribution can be improved. A clear example for this effect is the 

distribution of Cr (Figure 4.2). Just a few samples cause all other samples to fall in the 

categories 'low'. After excluding these samples from the database, the samples are 

distributed much more evenly. 

Excluding some 75 samples from the database reduces the domain significantly, and the 

data is spread more evenly as can be seen in Figure 4.1. The database obtained after this 

operation was used to train the first neural network. 

4.2.2 Training using individual hardness values 

The Rockwell C hardness values are given for positions Ji to J19. These positions refer to 

the distance from the quenched end as shown in Figure 2.1. The distances at which the 

hardness is measured on the test specimen differs slightly from those in the standardised 

Jominy End Quench test [16]. 

As can be seen in Table 4.1 for some samples the hardness value at every specified distance 

was not measured. This is because for some steels the core hardenability response is not of 

interest; these hardness values had not been measured. For some steels the hardness at 

some Jominy position only needs to be below a certain value; beyond this position the 

hardness values were also not measured. The hardness values at these positions are denoted 

as '.' in the original data. For this investigation the values'.' in a profile were replaced by 

the known measured hardness value of the highest J-value. This crude estimate is expected 

to introduce a significant error for the modified hardness profiles. 

Also some hardness values lower than 15 HRc were measured. Measurements of these low 

hardness values are unreliable. Data sets containing hardness values lower than 15 HRc are 

therefore excluded from the data. 

The data resulting from this operation were used to train networks predicting the hardness 

at every Jominy position, i.e. with 19 output parameters. 
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4.2.3 Training using hardness profiles 

Networks trained using the data as described in the section 4 .2 .2 model the hardness values 

for every position independently. By fitting a predefined function to the hardness proflle 

coherence between hardness values at adjacent positions can be attained. The predefined 

function chosen for this purpose is: 

Jx =ai(—+ —• arctan(a3(a2-x))) + a4 ( 4 . 1 ) 
2 % 

where: ai.,4 = fit parameters 

Jx = hardness value at position x 

X = position on the test specimen. 

Parameters ai to a4 detennine the exact shape of this sigmoidal function as shown 

schematically figure 4 .3 . 

After determining the fit parameters ai..a4 for all samples in the database, a network was 

trained using these four parameters as output data. 

4.2.4 Training and validation set size 

As a rule of thumb 7 5 % of the data available was used for the training set, and the 

remaining 2 5 % was used as a vahdation set. Samples were distributed randomly over the 

training and validation set. 

To determine the minimum number of training data needed to acquire an accurate model, the 

number of training samples was varied. When networks were trained with a small training 

set, the rule of thumb was not followed, as it would result in a very small validation set. In 

these cases the validation may be unreliable, and therefore the size of the vahdation set was 

chosen much larger. 

4.3 Choice of input parameters 

The original database contained 17 input parameters. To train a network with all 17 input 

parameters would be very time consuming, because the training time increases more than 

exponential with the number of input parameters[26]. Obviously, parameters without 

influence on tiie hardenability can be ignored as input to the neural network. Correlated 

parameters carry no extra information, so they can be ignored as well. For a first network 

the austenitising temperature and the ten elements expected to be most relevant were 
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selected. Based on the results of this network, superfluous and irrelevant input parameters 

could be identified and excluded from the database. In this way otiier elements expected to 

be of influence were included in databases used to train new neural networks. 

One input parameter known to have a significant effect on the hardenability, the austenite 

grain size, is not present in the database. However, according to Nedstaal the austenite 

grain size was always small (ASTM 9) [29], and correlated to the composition of the steel. 

4.4 Network parameters 

The austenitising temperature and alloying element concentrations all have different ranges. 

As described in section 3.2.1 tiie data needs to be scaled. Therefore tiie input data were 

scaled between -1 and 1 using: 

'̂ scaled " ^ ' (4.2) 

where: x^^^^ = the scaled value of a certain parameter for an input sample 

^meas = ^̂ e mcasured value for this parameter for this sample 

'̂ min = the lowest value in the database for this input parameter 

'̂ max = the highest value in the database for this input parameter 

The output data were scaled between 0.3 and 0.7 using: 

y scaled 
ymeas ymin 

V ymax ~ ymin y 

(0.7-0.3) + 0.3 (4.3) 

where: y^caied = the scaled value of a certain parameter for an output sample 

ymeas = t̂ e mcasured value for this parameter for this sample 

ymin = the lowest value in the database for tiiis output parameter 

ymax - the highest value in the database for this output parameter 

By scaling the output between 0.3 and 0.7 the range of the output data falls within tiie part 

of the sigmoid transfer function of the output node that approximates a straight hne. 

During training the overaU error in tiie training set and the vahdation set were evaluated 

separately after every iteration. These overall errors were calculated with: 
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j nsample-s n̂outputs 

overal error = 1 
1 
1 

1 
1 

(Ytarget Ypred) pred / 

nsamples-1 
(4.4) 

where: ytarget = the given output value for one parameter of a sample 

ypred = the calculated output value for one parameter of a sample 

nsamples= the number of samples in the training set or validation set 

noutputs = the number of output parameters 

When the overall error in the vahdation set showed a minimum, the current weights of the 

network were saved. When the number of iterations is sufficiently large, the network with 

the lowest overall error for validation is found. In this way overtraining is not avoided, but 

it does not have influence on the final network's performance, since the weights were saved 

just before the onset of overtraining. 

For every training the number of hidden nodes in the network must be chosen. A general 

rule for the optimum number of hidden nodes for a given problem does not exist. For the 

prediction of Jominy curves initially 15 hidden nodes were chosen. The effect of the 

number of hidden nodes has been investigated by training several networks on the same 

dataset with different numbers of hidden nodes and comparing the errors in prediction of 

the different networks. In this way the minimum number of hidden nodes for this problem 

was determined. 

4.5 Error analysis 

The error in training set and validation set is determined per Jominy position. For one 

position the error of prediction is calculated via: 

RSD: 

nsamples 

^ (y target~y pred -

nsamples-1 

1 
0.7-0.3 

(4.5) 

where: RSD = residual standard deviation. 

The second factor of the equation equals one over the scahng range of the output data. This 

RSD is calculated for both training set and validation set separately for all Jominy positions. 

For networks predicting the hardness values at every position separately, this formula 

calculates the RSD for hardness values; for networks predicting hardness profiles it 
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calculates the RSD in fit parameters. To ensure compatibility between the RSD calculated 

for both types of networks, the fit parameters predicted were used to calculate hardness 

values at every position, after which the RSD for the latter networks was calculated via 

(4.5). 

4.6 Other models 

Two hterature models, the SteCal [27] model and models by Just [17], were used to predict 

Jominy curves. It should be noted that both models are valid for a much smaller range of 

steels than the current data set (Table 4.3). For the Just models all steels with compositions 

within the domain of this model were selected. The Jominy hardness values calculated with 

the Just models were compared to the measured ones. As the distance scale of the Nedstaal 

data and the Just model were different, the hardness values of the Just model were modified 

using hnear regression. The error for Justs models were calculated using (4.5) with an 

adapted scaling range. 

The SteCal model was evaluated similarly, using 45 steel samples. This model is based on 

both the Grossmann and the Field method. The factors used are taken from the work of 

Crafts and Lamont [28]. The domain for this model is given in Table 4.3. Boron is 

specified to be either present or not present in a steel. For the evaluation of the SteCal 

model no boron steels were chosen. 

For this model the austenite grain size needs to be specified. For Al-killed steels (97% of 

the data) this grain size is estimated to be 9 on the ASTM standard scale [29]. Only these 

steels were used to evaluate the SteCal model. The extra error introduced by this 

assumption is evaluated by calculating the influence of a deviation in austenite grain size on 

the prediction of the SteCal model. Both of these models are based on data from many steel 

mills. For this reason these models are unlikely to predict Jominy curves for the Nedstaal 

data more accurately than the neural network, which is based entirely on this data. 

Therefore the neural network model, essentially the result of a non-linear regression 

technique, is compared with other statistical models based on the same Nedstaal data using 

a classical multiHnear regression technique. These models were all constructed using Partial 

Least Squares (PLS), a robust general purpose multilinear regression technique. First a 

model was constructed with the concentration of alloying elements as input variables. Then 

some models were generated where functional dependencies reported in literature were 

added to the data as extra input parameters. 

For PLS models the number of components taken into account needs to be specified. The 

optimum number of components was determined by minimising the error in the validation 

set. 
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5 Summary of networks trained 

The present work resulted in basically four different neural network models: 

1) A neural network model for a wide range of steel grades: Network 1. 

2) A network for a wide range of steel grades without high carbon steels and 

different input parameters: Network 2. 

3) A neural network for a specific steel grade of boron containing steels: the Boron 

Network. 

4) A neural network predicting hardness profiles: the Hardness Profiles Network. 

In Table 5.1 the architecture and training procedure of these networks are described. 

The choice of these networks is elucidated in this chapter. 

5.1 Network 1 

The choice of parameters of Network 1 has been made in a straightforward way. Some 17 

candidate input parameters were present in the original database: 16 alloying elements: C, 

Mn, P, S, Si, Cu, Cr, Ni, Mo, Al, Sn, Ti, B, V, N, As, and the austenitising temperature. 

For all steel samples the content of As, Ti, Sn, and V was negligible; therefore these were 

not used as input parameters. In order not to exceed computational limits, two extra input 

parameters B and N were excluded. These two aUoying elements were chosen arbitrarily. 

After the data handling as described in section 4.2.1, 3923 samples remained. These were 

used to train Network 1. 

To determine the optimum architecture, three networks were trained with 6, 10 and 15 

nodes in the hidden layer. Up to 15 hidden nodes the accuracy of the network increased. 

For all steel grades the effect of every input parameter on the hardenabihty was determined. 

Four parameters Cu, P, S, and the austenitising temperature appeared to have no significant 

effect on the hardenabihty. Therefore these parameters were not used for Network 2, 

leaving room for B and N. 

For high carbon steels (C > 0.65% ) the prediction of this network was accurate for one 

steel class only. The 50 steel samples with high carbon content were excluded from 

networks following. 
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5.2 Network 2 

Network 2 was trained with nine alloying elements as input parameters: C, Mn, Si, Cr, Ni, 

Mo, Al, N, and B. As for Network 1 the network with 15 nodes in the hidden layer turned 

out to result in the network with highest accuracy, this number was chosen for Network 2. 

Furthermore an accurate model of the hardenability was constructed using some 2900 data 

sets for training. With this network the minimum number of training data sets needed for an 

accurate model was determined by training identical networks with varying numbers of 

training data. 

5.3 Boron network 

For one specific steel class a separate network was trained. For this network boron steels 

were chosen, as boron has a special place among the steel alloying elements. Even at low 

concentrations (10 ppm) it has a extremely high effect on the hardenability. As was already 

recognised by Grossmann [2], the effectiveness of boron depends on the carbon content. 

To study these effects in detail, the boron network was constructed. All 1100 steels 

containing boron were selected for training from the database. 

The number of hidden nodes needed for this network was determined in a similar way as 

for Network 2. 

5.4 Hardness profile network 

For the steel grades in tiie database the Jominy curve is known to be descending 

continuously. For some steel grades Network 2 showed a small increase in hardness at the 

Jominy positions before and after the steep part of the Jominy curve. As no secondary 

hardening is expected to occur in these steel grades, this effect is undesirable, although it is 

also found in tiie data (Table 4.1 row 39). This effect considered to be due to measurement 

errors. 

By modelling the Jominy curve with (4.1), a continuous descent can be imposed on the 

Jominy curve, and the measurement error can be averaged. Therefore a network was trained 

using the parameters ai. . a4 as output parameters. 
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6 Results 

6.1 introduction 

The results obtained during this research are pesented in this chapter. First those of the 

neural network are given in the same order as outlined in chapter 5. Then the results of the 

Just model, the SteCal model and the PLS models are described. 

6.2 Network 1 

The distribution of the training data for this neural network is given in Figure 6.1. The 

range of alloying elements was already given in Table 4.2. The error in prediction for both 

training and validation set for a network with 15 hidden nodes is given in Figure 6.2. The 

influence of the number of hidden nodes was investigated and the eixor in prediction for 

three neural networks with 6, 10 and 15 hidden nodes respectively is given graphically in 

Figure 6.3 and numerically in Table 6.1. This error is determined with the validation set. 

For the neural network with 15 hidden nodes the measured hardness value vs. the 

calculated hardness value for all steels in the validation set for the Jominy positions with the 

lowest and highest RSD, Ji and are given in Figure 6.4. The composition of these 

steels is given in Table 6.2. 

Four input parameters, P, S, Cu, and the austenitising temperature showed no effect on the 

hardenability, as is visualised for Cu in an arbitrary steel grade in Figure 6.6, showing nine 

Jominy curves with varying Cu concentration. For the austenitising temperature this effect 

is due to its dependence on tiie carbon concentation, as already stated in section 2.2. The 

correlation between the austenitising temperature and the carbon concentration is shown in 

Figure 6.7. 

Finally some examples of the prediction of three high carbon steel grades is given in Figure 

6.8. 

6.3 Network 2 

The distribution of the training data is given in Figure 6.9; the domain is given in Table 6.3. 

The error in prediction of both training and validation set for this new network with 15 

hidden nodes is given in Figure 6.10. The predicted Jominy hardness profiles are compared 

to tiie measured ones in Figure 6.11 for identical steel compositions as the steel samples 

selected for Network 1. 
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The influence of the number of training data on the accuracy of the network model is given 

in Figure 6.12; The RSD at every Jominy position of a validation set with 667 samples is 

given for networks witii 200, 400, 800, 1200 and 2000 training data. Also the error of 

randomly selected validation sets of 25 % of the training data is given for the networks 

trained witii 200 and 400 data. In Table 6.2 of some outhers in the training data of Network 

2 are given. 

6.4 Boron network 

The range of the boron steels in the original database is given in Table 6.3; the distribution 

of the data is given in Figure 6.13. Again, the number of hidden nodes is investigated for 

the Boron network. For networks with 1, 3, 5, 7, 13 and 15 hidden nodes the RSD at 

every Jominy position is given in Figure 6.14. 

For two steel grades the prediction of the Jominy curve by Network 2 and the Boron 

Network is given in Figure 6.15. The effect of boron on the hardenability of these steels is 

shown in Figure 6.16, where the hardness at two Jominy positions is given as a function of 

the boron concentration. 

6.5 Hardness profile network 

In order to train the Hardness profile network die parameters a l . . a4 need to be determined 

first for all Jominy curves. These parameters were determined using a Gauss-Newton 

technique [19]. For many Jominy hardness profiles this method did not converge to the 

optimum parameters or did not converge at aU. The calculated curves were compared to the 

measured ones. Steel samples for which the curve as calculated with (4.1) matching the 

measured one (RSD < 1 HRc) were selected for this network. Some 1298 data remained. 

However, the network trained with these data resulted in an unacceptably high RSD (19% 

of the range) and showed overtraining effects after 1500 iterations. 

6.6 Just and SteCal model 

The error in prediction for the SteCal model. Just's comprehensive model and Just's model 

for hardenable steels and case hardening steels are given in Table 6.5 and Figure 6.17. 
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6.7 PLS 

The data used to develop three PLS models was identical to the data used for Network 2. 

In Table 6.6 the input and output parameters and the number of components taken into 

account are given. The error in prediction for the three PLS models and of Network 2 are 

given in Figure 6.18 and table 6.7. 
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7 Discussion 

7.1 Introduction 

In this chapter the results of the neural networks presented in chapter 6 are discussed in the 

order outUned in chapter 5. Then the resultst of the the literature models and the PLS 

models are compared with those of the neural network models. 

7.2 Neural network models 

7.2.1 Network 1 

The overall accuracy of this network with 15 hidden nodes was high (figure 6.2), with an 

average error in prediction in the same order as the experimental error (±1V2 HRc). The 

prediction of the hardness at the first two Jominy positions and at positions far away from 

the quenched end are more accurate than the predictions for positions 3 to 8. This can be 

explained as follows. At the surface of the quenched end the hardness is almost entirely 

determined by the carbon content. Far from the quenched end the coohng rate shows httle 

variation. In these two regions the hardness varies little with position. However, in the 

intermediate zone the hardness measurement is very sensitive to the exact location at which 

the hardness is measured as the hardness depends strongly on the position. At these 

positions a small error in the distance at which the hardness is measured results in a 

measured hardness value that strongly deviates from the hardness value at the point one 

thinks one is measuring. The intermediate zone gradually blends into the zone far from the 

quenched end. This is due to the different positions at which the intermediate zone is located 

for different steel grades. This effect affects all hardenability models. 

As a representative validation set is used and the error in the training set matches the error in 

the validation set, overtraining of the network has been avoided. However the error in the 

validation set is slightly lower than the error in the training set at Jominy distances further 

than 13 mm from the quenched end. This is possibly due to a relatively large number of 

samples with large errors at these Jominy distances. 

After training Network 1 the influence of the alloying elements and the austenitising 

temperature on the hardenability was evaluated. Four input parameters turned out to be 

superfluous for modelling the hardenability: P, S, Cu and the austenitising temperature. For 

all steel grades these four parameters were varied without showing significant changes in 

the Jominy hardness profile, as is iUustrated for one (arbitrary) steel grade for Cu in Figure 

6.6. For the austenitising temperature this was to be expected as it is directly correlated to 

the carbon content of the steel and offers therefore no extra information (Figure 6.7). P and 
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S are only present as contamination for the steel grades in the data and are therefore always 

kept to a sufficiently low level. For the amounts present Cu appeared of no influence on the 

hardenability. 

For steels with high carbon content (C > 0.65 %) however, the prediction of the 

hardenability seems inaccurate for many steel grades. This behaviour is probably due to the 

low number of steels with this high carbon content: only some 50 steels in a data set of 

3800 (1.25 %). These steels consisted mainly (90%) of one steel grade: 102Cr6. 

Obviously there is a large gap in the domain of the carbon content. As can be seen in Figure 

6.8a, Network 1 predicts the hardenabihty of 102Cr6 accurately. For two other steel 

grades, C80 and 70SiMoV5, the prediction shows large errors. This is due to the smaU 

number of samples of these steels in the database used for training (2 and 0 respectively). 

Therefore it is likely that aU high carbon steels but 102Cr6 were considered as noise by the 

network. 

As the carbon content can be chosen independently from other alloying elements. Network 

1 suggests to be able to make a prediction for any high carbon steel. When a steel other than 

102Cr6 is chosen, an extrapolation is made causing an unreliable prediction. Therefore high 

carbon steels were excluded from subsequent networks. 

7.2.2 Influence of the number of hidden nodes of Network 1 

The number of hidden nodes needed to develop an accurate model depends on the 

complexity of the problem. The accuracy of a model is expected to improve when the 

number of hidden nodes is increased, until an optimimi number of hidden nodes is reached. 

Using more nodes than the optimum number does not improve the accuracy in prediction of 

the network. More hidden nodes increase the training time and the risk of overtraining. For 

Network 1 this number of nodes in the hidden layer needed to model the hardness at 19 

Jominy positions was determined. As can be seen in Figure 6.3, the accuracy of the 

network improves with increasing number of nodes. A network trained with 20 nodes in 

the hidden layer showed an error in prediction closely matching a network with 15 hidden 

nodes. For this problem 15 nodes in the hidden layer is sufficient and chosen as the 

optimum number. 

Network 1 with 15 nodes in the hidden layer predicts the hardenability of steels with an 

accuracy close to the experimental error. It shows two shortcomings: the hardenability of an 

arbitrary high carbon steel cannot be predicted accurately, and two important input 

parameters, boron and nitrogen, are not incorporated in the model. 
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7,2.3 Network 2 

For Network 2 the alloying elements B and N were added as input parameters as these are 

expected to influence the hardenability significantly. This network performed even slightly 

better than Network 1 (Figure 6.10). The network's performance has improved for two 

reasons: 

1) by excluding the high carbon steels a source of noise is removed 

2) two relevant input parameters were added in Network 2 

Moreover, by removing superfluous input parameters the network has become more 

compact, thus avoiding superfluous weight factors. 

A number of outhers for Network 2 are collected in Table 6.4. Some outhers (sample 6) 

are clearly due to measurement errors. This can be seen by comparing these Jominy profiles 

with those of steels with closely matching compositions. 

Outlier samples 4, 5,7 and 8 are caused by the effect that a small error in position results in 

a high deviation of the hardness value in the intermediate zone as described in section 7.2.1. 

One category of outiiers (samples 1 and 3 ) is related to sets of input data for which the 

hardness values were not measured at all Jominy positions. These outliers are the result of 

our assumption in data handling that the hardness at these positions were equal to the 

hardness value measured at the highest Jominy position. 

Sample 9 is labelled a 38Mo3 steel, but the Cr content is far too high (1.26) for this steel 

class. This error may be due to a sample mix-up. Sample 2 is labeUed a 36CrMo4 steel, but 

its Mo content is 0, whereas it is usually some 0.25 % for this steel class. Besides, the Sn 

content on this steel in tiie adjacent data cell is 0.27, where it is expected to be 0.01, 

indicating an administrative error. 

7.2.4 Influence of the number of data 

The number of data necessary depends on complexity of the problem: the number of input 

parameters and the nature of the non-linearities and interactions present. The number of 

training data needed is usually estimated to be between 2^ and 3 ,̂ where n is the number of 

input parameters. The number of training data needed was estimated by training networks 

with different numbers of training data. As expected, the error in prediction of these 

networks in the training set decreased with decreasing number of training data. This was 

due to overtraining: a network trained with a small number of training data can fit noise in 

the data more easily. 
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For a reliable validation of a model using a vatidation set, tiiis validation set needs to be 

representative for the model in every part of the domain. For a sufficiently large validation 

set this condition is usually met. Shown in Figure 6.12a is the error in a fixed validation set 

of 969 data for these networks. From this figure it is clear that at least some 800 data are 

needed for modelhng tiie hardenability for these steels with sufficient accuracy. 

When the size of the validation set was determined by the rule of thumb mentioned in 

section 4.2.4, this condition was violated, as is shown in Figure 6.12b. As for the error in 

the training set the error in the vahdation set decreased with decreasing number of training 

data. The error in the vahdation set was unrealistically low for small numbers of samples. 

Comparison of identical models with validation sets of different sizes showed that even a 

vahdation set of 400 samples may result in some (small) deviation in tiie estimation of the 

accuracy of a model. Therefore for these models the validation set must at least contain 400 

samples. Smaller randomly chosen validation sets do not cover the input space in a 

representative manner. 

7.2.5 Boron network 

The accuracy of the Boron network is high (Figure 6.14); the error in prediction is of the 

same order as the experimental error. The network with 5 hidden nodes will be considered 

here, for reasons that will be explained in 7.2.6. The shape of the error vs. Jominy distance 

plot resembles the one of Network 2 (Figure 6.10). These plots are different in two ways: 

1) For the Boron network the RSD far from the quenched end is lower. 

2) For the Boron network the region with a high RSD (the intermediate zone) is more 

distinct. 

The first difference can be explained by the range of bo± networks. Network 2 has a lager 

range at high Jominy positions than the Boron network (45 HRc and 12 HRc respectively 

at a Jominy distance of 70 mm). 

The second difference is caused by the shape of the Jominy curve of boron steels 

specifically. As can be seen in Figure 6.15 the hardness of boron steels in the intermediate 

zone drops steeply at one Jominy position, whereas for Network 2 both steepness at and 

exact position of the intermediate zone vary greatiy. Therefore for boron steels large errors 

in the hardness measurement occur at a few Jominy positions resulting in a distinct 

intermediate zone. 

For two boron steels Jominy curves are given as predicted by Network 2 and the Boron 

network. All curves match the measured curves well; the Boron network is more accurate 
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than Network 2. This is to be expected because the hardness profiles of die boron steels in 

Network 2 must align with steel grades without boron. The difference between measured 

and predicted curves for steel (2) at positions 20 mm and higher are due to the modification 

to correct for hardness values that were not measured. 

To study the effect of boron on the hardenability, the predicted hardness values for both 

steels previously mentioned at 5 mm and 7 mm from the quenched end as a function of the 

boron concentration are given in Figure 6.16. For the overlapping concentration range the 

predictions of the Boron network and Network 2 agree. Considering that the hardness at 

these positions for steels without boron is much lower, the predictions of the Boron 

network indicate that an optimum boron concentration exists. The predictions of the Boron 

network do not disagree with the optimum boron concentration (15-20 ppm) reported in 

literature [30]. However, the optimum boron concentration is not well defined for the 

Boron network. 

7.2.6 Influence of the number of hidden nodes of the Boron network 

For modelling the hardenability of the selected boron steels, a network with just one hidden 

node already gives surprisingly good results. Some five hidden nodes seems to be the 

optimum. Employing more hidden nodes does not improve the neural network model, but 

increases the risk of overtraining. As the number of boron steel samples does not allow the 

subtraction of a sufficientiy large validation set, overtraining can not be circumvented 

directly. Therefore the number of superfluous weight factors is kept low by using a 

network with only 5 hidden nodes. In this way overtraining is avoided more easily. 

Comparing tiie architecture of network 1, where 15 nodes were needed, and tiie boron 

network clearly shows that modelling the hardenability for a wide compositional range is far 

more complex than for a small range. This is because the boron network models steels with 

similar characteristics, and the model need not ahgn with other steel grades. 

7.2.7 Hardness profile network 

A neural network with 15 nodes in the hidden layer trained witii some 800 data could 

predict the hardness value at every Jominy position accurately, a neural network with 15 

nodes in the hidden layer trained with some 1000 data could not predict the four parameters 

characterising the complete hardness profile (4.1). The problem has become more complex 

due to the transformation of 19 hardness measurements into these four parameters. This 

was to be expected as the parameters of (4.1) interact. As the network showed overtraining 
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effects, adding more hidden nodes to a network is not hkely to solve this problem. The 

hardness profile network is likely to have become stuck in a local minimum during training. 

To overcome this problem a larger number of training data and possibly a different learning 

rule is needed. 

7.3 Literature models 

7.3.1 Just's model 

The equation proposed by Just for the hardness value at the first Jominy position has almost 

the same accuracy of the prediction as the neural network model (Table 6.5 and Figure 

6.17). The hardness at the surface is known to depend mainly on the carbon content of the 

steel and is hardly influenced by other aUoying elements or the steel mill it originates from 

[7]. Thanks to these two effects the Just model performs well for the first Jominy position. 

For the comprehensive model Just reports a variance of 4% not accounted for. However, 

for all Jominy positions but the first one both the comprehensive model and the models for 

case hardenable and hardenable steels were not apphcable to Nedstaal data, when a variance 

of 4% is required, as this variance is estimated to correspond with a RSD of some 2 HRc. 

When a model is constracted with identical parameters in a similar way using PLS as is 

shown in Figure 6.18, a much higher accuracy is attained. This indicates that a statistical 

model based on chemical composition only is hmited to the steel mill for which it was 

developed. 

7.3.2 SteCal model 

The SteCal model is reasonably accurate. The error at the quenched end is not as accurate as 

the Just model, but at the intermediate part of the Jominy curve its prediction is surprisingly 

accurate. This is probably thanks to the effort that is spent for this model to predict the 

critical diameter accurately. Far from the quenched end the model has a lower accuracy due 

to the fixed shape of the curve used. 

7.4 Comparison with Partial Least Squares models 

7.4.1 Additive PLS model with linear parameters 

This model was the result of the PLS technique assuming only linear dependencies. This 

way the PLS technique is used with the same a priori knowledge as Network 2. As was 

suspected the error in prediction (Figure 6.18, Table 6.7) is substantially lower than the 

error in the empirical models; a fairly accurate model is obtained. Compared to Network 2 
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only the hardness near the surface is predicted with the same accuracy. In all other parts of 

the Jominy curve the RSD of the PLS 1 model is some 1 to 1.5 HRc higher than the error in 

Network 2. This is due to the absence of non-hnear dependencies and interaction terms. 

7.4.2 Additive PLS models with other functional dependencies 

Some functional dependencies considered relevant in the literature [17] were added to the 

PLS model. In this way the prediction of the PLS model at the first 5 Jominy positions 

improved slightly. Adding these functional dependencies hardly improves the model, while 

the computational cost and the risk of overfitting increase. The functional dependencies 

were mainly chosen on statistical basis, i.e. they evolved from trial and error processes. 

Therefore relevant functional dependencies are easily overlooked. Also interaction terms 

lack in this model. To incorporate these terms estimates on the nature of the interactions 

taking place are needed. 

These hmitations cause the additive PLS models to be inferior to the neural network model. 

7.4.3 Multiplicative PLS model 

Multiplicative models can handle some non-linearities and are therefore expected to be better 

for modelling the hardenability. Near the quenched end and far from it, the multiplicative 

model has a smaller eixor than the additive models. In the intermediate zone however, this 

error is larger. This can be explained as follows. 

In contrast to the additive models tiie multiplicative model has a non zero average error in 

prediction Table 6.7: the mean predicted value is lower than the mean measured value. This 

is caused by the way the multiplicative model is implemented in the linear regression model. 

To hnearise the model (2.6) is used. The parameters of this equation are determined using 

hnear regression. For this equation the average error in prediction is zero. The error 

structure in this model is additive. By re-transforming (2.6) into (2.5) an additive error in 

(2.6) becomes a multiplicative error in (2.5), i.e. an error that was added or subtracted in 

(2.6) becomes a factor in (2.5). As this transformation is exponential, a positive error in a 

transformed output variable resuUs in a higher error on the actual variable than a negative 

deviation of equal size. In this way an extra error is introduced in the multiplicative model. 

The size of this extra error depends strongly on the size of the error in the transformed 

model. This extra error amplifies the (higher) error in the intermediate zone more than the 

error in other parts of the Jominy curve. The only accurate way to construct multiphcative 

models is by using non-linear regression. 

Using multilinear regression techniques accurate statistical models can be constructed for 

the prediction of the Jominy curve. However, all these models are outperformed by the 
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neural network models. The RSD of the neural network is stiU 1 HRc lower than the most 

accurate multilinear regression model. 
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7 Conclusions 

Hardenability is a complex multivariant non-linear problem which has been solved 

successfully using artificial neural networks. The neural network clearly outperforms 

hterature models and linear regression models over a wide range of steel compositions. 

The modeUing error equals the experimental error in the data. No further modelhng 

advances are possible with these data. 

Further improvements of a statistical hardenability model require more accurate input data 

(hardness values and chemical composition). 

A statistical model predicting the hardenabihty from chemical composition is only accurate 

for the steel production process the model is based upon. 
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