

Delft University of Technology

Graph-time signal processing
Filtering and sampling strategies
Isufi, Elvin

DOI
10.4233/uuid:e52cc182-457c-4687-baee-d0f72af36950
Publication date
2019
Document Version
Final published version
Citation (APA)
Isufi, E. (2019). Graph-time signal processing: Filtering and sampling strategies. [Dissertation (TU Delft),
Delft University of Technology]. https://doi.org/10.4233/uuid:e52cc182-457c-4687-baee-d0f72af36950

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:e52cc182-457c-4687-baee-d0f72af36950
https://doi.org/10.4233/uuid:e52cc182-457c-4687-baee-d0f72af36950

GRAPH-TIME SIGNAL PROCESSING

FILTERING AND SAMPLING STRATEGIES

GRAPH-TIME SIGNAL PROCESSING

FILTERING AND SAMPLING STRATEGIES

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 28 januari 2019 om 12:30 uur

door

Elvin ISUFI

Master of Science in Electrical and Telecommunications Engineering,
University of Perugia, Perugia, Italy,

geboren te Vlore, Albania.

Dit proefschrift is goedgekeurd door de

promotor: Prof. dr. ir. G. Leus

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. G. Leus, Technische Universiteit Delft, promotor

Onafhankelijke leden:
Prof. dr. P. Borgnat École Normale Supérieure de Lyon, France
Dr. ir. R. C. Hendriks, Technische Universiteit Delft
Prof. dr. A. Ribeiro University of Pennsylvania, USA
Prof. dr. ir. A. J. van der Veen Technische Universiteit Delft
Prof. dr. ir. P. F. A. Van Mieghem Technische Universiteit Delft

Overige leden:
Prof. dr. P. Banelli University of Perugia, Italy

Keywords: Graph signal processing, graph filters, graph-time signal processing,
graph-time filters, Laplacian, network theory, FIR, ARMA, observabil-
ity, linear system on graphs, Kalman filter, sampling theory, graph sam-
pling, sparse sensing.

Copyright © 2018 by E. Isufi

ISBN 978-94-028-1353-1

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Man deals with knowledge and science throughout his life.
In childhood he learns them, applies them in youth,

and teaches them in old age.

Sami Frashëri

To my parents – my life teachers.

CONTENTS

I Prologue 1

1 Introduction 3

1.1 Data Living on Top of Networks . 3

1.2 Filtering Graph Signals . 5

1.3 Filtering Graph Signals in Dynamic Environments 6

1.4 Observing Time-Varying Graph Processes. 8

1.5 Tracking Time-Varying Graph Processes 9

1.6 Thesis Outline and Contributions . 9

1.6.1 Thesis Outline . 9

1.6.2 List of Publications and Other Contributions 11

Further Reading . 14

2 Graph Signal Processing 17

2.1 Introduction . 17

2.2 Graphs as a Tool to Capture Interconnections. 18

2.2.1 Comparisons: Physical graphs versus data graphs 20

2.2.2 The graph signal . 20

2.2.3 The graph shift operator . 20

2.3 Spectral Analysis of Graph Signals. 21

2.3.1 Signal variation over the graph . 22

2.3.2 The graph Fourier transform . 23

2.3.3 Connection: Classical Fourier transform and graph Fourier trans-
form . 26

2.3.4 Graph signal bandwidth . 26

2.3.5 Graph filtering . 28

2.3.6 Tikhonov regularization on graphs 29

2.4 Stationary Graph Signals . 31

2.4.1 Wide sense stationarity on graphs 31

2.4.2 Wiener regularization on graphs 31

2.4.3 Connection: Karhunen-Loéve transform and stationary graph sig-
nals . 32

2.5 Concluding Remarks . 32

Further Reading . 33

vii

viii CONTENTS

II Graph Filtering 37

3 Finite Impulse Response Graph Filtering 39
3.1 Introduction . 40

3.1.1 Contributions . 40
3.1.2 Applications . 41

3.2 Filtering in the Vertex Domain . 42
3.2.1 Node-invariant FIR filtering . 42
3.2.2 Node-variant FIR filtering . 44
3.2.3 Distributed costs . 45

3.3 Filter Design . 46
3.3.1 Frequency aware versus universal design 46
3.3.2 Linear least squares-based design 48
3.3.3 Chebyshev polynomial-based design 49
3.3.4 Design in the vertex domain . 50
3.3.5 Discussions . 50

3.4 Distributed Edge-Variant FIR Graph Filters 51
3.4.1 Edge-variant FIR Filtering . 51
3.4.2 Constrained edge-variant FIR Filtering. 53
3.4.3 Numerical results . 54

3.5 Concluding Remarks . 57
Further Reading . 58

4 Infinite Impulse Response Graph Filtering 61
4.1 Introduction . 62

4.1.1 Contributions . 62
4.2 ARMA Graph Filters . 63

4.2.1 ARMA1 graph filter . 63
4.2.2 ARMAK graph filter . 65
4.2.3 Filter design . 67
4.2.4 Exact graph filter designs . 68
4.2.5 Numerical results . 71

4.3 Feedback-looped ARMA Graph Filters 72
4.3.1 Recursion analysis . 73
4.3.2 Filter design . 75
4.3.3 Numerical results . 76

4.4 Concluding Remarks . 77
Appendices . 78

4.A Proof of the ARMA1 frequency response Theorem 78
4.B Proof of the periodic ARMAK frequency response Theorem 78
4.C Proof of the feedback-based ARMAP,Q frequency response Proposi-

tion . 79
4.D Proof of the ARMAP,Q convergence time Proposition. 79

Further Reading . 81

CONTENTS ix

III Graph-Time Filtering 83

5 Graph-Time Signal Processing 85
5.1 Introduction . 85

5.2 Time-varying signals on graphs . 86

5.2.1 The joint graph. 87

5.2.2 The joint graph-time shift operator 87

5.3 Graph-Time Frequency Analysis . 88

5.3.1 Graph and time Fourier transform 88

5.3.2 Graph-time filtering . 88

5.4 Concluding remarks . 89

Further Reading . 89

6 Deterministic Analysis of Graph-Time Filtering 91
6.1 Introduction . 92

6.1.1 Contributions . 92

6.1.2 Applications . 93

6.2 ARMA Graph Filters and Their Inherent Temporal Processing. 94

6.2.1 Joint graph and temporal processing. 94

6.2.2 Time-varying graphs and signals 96

6.2.3 Numerical results . 99

6.2.4 Variaitons on the graph signal . 99

6.2.5 Variations on the graph topology. 101

6.3 Distributed Two-Dimensional Graph-Time Filters 104

6.3.1 FIR graph-temporal filters . 105

6.3.2 ARMA graph-temporal filters . 108

6.3.3 Numerical results . 111

6.4 Concluding Remarks . 114

Appendices . 114

6.A Proof of the joint ARMAK graph and temporal frequency response
Theorem . 114

6.B Proof of ARMA output distance in time-varying scenarios Theorem . 116

6.C Proof of the two-dimensional ARMA frequency response Proposi-
tion . 116

Further Reading . 117

7 Statistical Analysis of Graph-Time Filtering 119
7.1 Introduction . 120

7.1.1 Contributions . 120

7.1.2 Applications . 121

7.2 Stochastic Modeling . 121

7.2.1 Graph model . 122

7.2.2 Signal model . 122

x CONTENTS

7.3 Graph Filters in the Mean . 123

7.3.1 Random graph processes . 123

7.3.2 Random graph processes with time-varying statistics 124

7.3.3 Variance analysis. 126

7.3.4 Numerical results . 128

7.4 Graph Signal Denoising in the Mean . 131

7.4.1 Tikhonov graph signal denoising in the mean 131

7.4.2 Numerical results . 133

7.5 Stochastically Sparsified Graph Filtering 134

7.5.1 Sparsified FIR graph filters . 136

7.5.2 Sparsified ARMA graph filters . 136

7.5.3 Numerical results . 137

7.6 Concluding Remarks . 139

Appendices . 140

7.A Proof of the FIRK expected output Proposition. 140

7.B Proof of the parallel ARMAK expected output Theorem 140

7.C Proof of the FIRK expected output with non-statioionary input Propo-
sition. 141

7.D Proof of the ARMAK expected output with non-statioionary input
Theorem . 142

7.E Proof of the FIRK variance bound Proposition 142

7.F Proof of the ARMAK variance bound Theorem 143

7.G Proof of the recursive ARMAK variance computation 146

Further Reading . 146

IV Graph-Time Sampling 149

8 Observing and Tracking Graph Processes 151
8.1 Introduction . 151

8.1.1 Contributions . 152

8.1.2 Applications . 153

8.2 State-Space Models on Graphs . 154

8.2.1 Systems on graphs . 154

8.2.2 Bandlimited systems on graphs 155

8.3 Observing Graph Processes . 156

8.3.1 Observability with deterministic sampling 157

8.3.2 Observability with random sampling 159

8.3.3 Numerical results . 161

8.4 Tracking graph processes . 167

8.4.1 Kalman filtering for time-varying models 167

8.4.2 Steady-state Kalman filtering on graphs 169

8.4.3 Numerical results . 171

CONTENTS xi

8.5 Concluding Remarks . 174
Appendices . 175

8.A Proof of the neccessary number of nodes required for deterministic
observability . 175

8.B Proof of the conditions for observability Theorem 175
8.C Proof of the neccessary number of nodes required for stochastic

observability . 176
8.D Proof of the random sampling Corollary 176
8.E Proof of the MSE performance for the deterministic observability

Theorem . 176
Further Reading . 177

V Epilogue 181

9 Concluding Remarks and Future Research Questions 183
9.1 Concluding Remarks . 183

9.1.1 Answer to the posed research questions 184
9.2 Future Research Questions . 186

9.2.1 Graph filtering . 186
9.2.2 Deterministic graph-time filtering 187
9.2.3 Statistical graph-time filtering . 188
9.2.4 Observing and tracking graph processes 189
9.2.5 General graph signal processing 189

Further Reading . 190

List of Abbreviations 191

Notation 193

Summary 195

Samenvatting 197

Acknowledgements 199

Biography 201

I
PROLOGUE

1

1
INTRODUCTION

When writing something, read and adjust it many times,
so that each cluster of letters sounds like a piece of music.

Faik Konica

Big data comes with big challenges. To deal with its large volume and efficiently use re-
sources such as time, computational power, and storage, it demands novel tools for ba-
sic operations such as acquisition, processing, and analysis. Among several approaches
adopted in the signal processing community, including compressive sensing and sam-
pling, tensor decomposition and distributed signal processing, this thesis deals with
graph signal processing (GSP) which distinguishes itself by exploiting the underlying
structure inherent to the data. This structure may be implicit, like data correlations and
dependencies, or explicit, like traffic data relative to road networks.

This thesis provides fundamental contributions to the field of GSP and addresses the
aforementioned tasks of data acquisition, analysis, and processing. The proposed find-
ings expand our knowledge on the importance of the underlying data structure and show
that a substantial performance gain can be achieved when that structure is exploited.
This chapter starts with the concept of data living on top of networks along with moti-
vating the importance of the underlying connections. It will then go on to the scope of
this thesis and provide an outline of the presented work. At the end, the thesis’ main
contributions are detailed.

1.1. DATA LIVING ON TOP OF NETWORKS

Today, we live in a highly interconnected yet sensitive world. A classic example is the
airport network, where a single flight delay or flight cancellation directly incurs several
consequences (e.g., a cascade flight delay and/or a cascade flight cancellation), often
problematic on a wider scale1. The same sort of influence can be observed in price fluc-

1According to [2], in the United States the airlines’ costs due to flight delays amount to $22 billion per year.

3

1

4 1. INTRODUCTION

tuations in financial networks, political orientation in blog networks, gossip propagation
in social networks and traffic congestion in road networks. Even at a more microscopic
scale, correlated interconnections and dependencies are present in neuron-to-neuron
or gene-to-gene interactions [3]. These interconnections provide a meaningful structure
to the data, which is not entirely exploited by standard signal processing tools. There-
fore, for the tasks of delay prediction in airline networks or gossip propagation in social
networks, for instance, novel processing tools that incorporate the underlying intercon-
nections in the solution are required.

To date, a number of studies established the efficacy of graphs as a useful mathe-
matical tool to concisely capture and represent the underlying (often hidden) structure
between data, see [4–6], and references therein. While the graph structure is an inter-
esting object of study by itself, this work focuses on the data that reside on top of the
graph. In the airport network example, the graph captures the airline infrastructure with
the airports being the vertices of the graph and the edges indicating the presence of a di-
rect flight between two different airports. The object of study, i.e., the data on top of the
graph, could, for instance, be the average delay per flight in each airport. Then, we might
be interested in analyzing the delay spread over this network, or the consequences of a
fallen edge (e.g., a flight cancellation). This information allows then the implementation
of local proactive policies for air traffic control, and thus potentially reduces the overall
delay in the network.

A useful example that illustrates the concept of data on top of networks is depicted in
Figure 1.1. Here, the graph represents a sensor network with sensors being represented
by the graph vertices and the neighborhood information by the graph edges (i.e., the line
connecting two of such nodes). The data on top of this network commonly referred to
as the signal on top of the graph, or the graph signal consists of the noisy temperature
measurements in a particular region. A common task of interest is to locally denoise the
signal by allowing sensors to exchange information only with their direct neighbors.

The research field that approaches big data by incorporating their underlying struc-
ture represented by a graph is known as graph signal processing [9, 10]. The workhorse
of GSP is the notion of signal variation over the graph, which allows us now to extend
fundamental signal processing techniques to the graph setting. The most notable are
the frequency analysis of graph signals, graph filtering, and graph signal sampling.

This thesis adds to the field of GSP and concerns the question how the underlying
structure, inherent to the data, can be exploited to develop novel tools for processing
signals that reside on top of networks. Inspired by the tight connection between the
graph structure and the graph signal, we propose a series of basic building blocks to
answer this fundamental research question. The proposed approaches are accompanied
by solid theoretical performance guarantees, and we illustrate that exploring the graph
topology-graph signal connection yields a performance gain over alternative solutions
that ignore this coupling.

The upcoming sections briefly introduce the thesis framework and provide a glimpse
of the arguments treated in the following chapters.

1.2. FILTERING GRAPH SIGNALS

1

5

3

Figure 1.1: Illustration of the Molene temperature sensor network [7]. The graph is built with the approach of
[8]. The vertices (black and white) represent the sensors, while the edges represent their neighborhood

connections. A GSP task consists of cleaning noisy measurements at the black nodes by local
communications, i.e., with connecting nodes.

1.2. FILTERING GRAPH SIGNALS

Filtering is one of the basic operations in signal processing. It concerns the preser-
vation of only useful spectral information about the signal. In sensor networks, dis-
tributed consensus [11, 12], i.e., finding the network average by local communications
with neighbors, may be interpreted as a distributed low-pass spatial filtering of graph
signals [13, 14] over the network. However, the reader should note there is a distinction
between the notion of a graph in distributed signal processing and GSP. In GSP, when we
talk about a graph topology, we mean the signal graph, i.e., the graph that explains the
structure. For instance, in the airport network, the signal graph consists of the airline in-
frastructure which influences the delay on top of this network. The actual graph used for
distributed data exchange named the communication graph (e.g., between computers
in the different airports) could be similar or not, but we will not cover this aspect in this
thesis. We assume that the graph explaining the signal is also used for communications.
Hence, in the sequel, the term graph will always refer to the signal graph which equals
the communication graph.

With this analogy between consensus and filtering of graph signals, we pose our first
research question:

(Q1) How can a sensor network perform more involved distributed filtering tasks than
simple averaging by taking into account the underlying data structure?

Starting from the next chapter, we will give a more formal and detailed answer to this

1

6 1. INTRODUCTION

question, but for now, let us give an intuitive answer with the following example.

Example 1.1. (Graph signal denoising) Consider a sensor network observing a single tem-
poral snapshot of some temperature measurements. We would like the network to estimate
the original signal from these measurements by local communications with direct neigh-
bors. Such a scenario is depicted in Figure 1.2, where the top left image depicts the ground
truth signal, the top right image the noisy sensor measurements, and the bottom image
the cleaned signal. As it can be observed from Figure 1.2 (a), the ground truth signal has
similar values among vertices that share an edge. This means that between neighboring
sensors we expect the measured signals (e.g., Figure 1.2 (b)) to have dissimilar values only
if these sensors are highly corrupted by noise. An efficient noise reduction algorithm will
then carefully filter the useless part of the signal by simply taking into account the infor-
mation provided by its direct neighbors.

The above denoising example, which makes use of prior information about the orig-
inal signal (e.g., adjacent vertices share similar values) is well known in the literature
(prior to the formalization of GSP) and is commonly referred to as Tikhonov regulariza-
tion on graphs [16–18]. In Section 2.3.6, we formalize this problem and show how it can
be cast in a GSP perspective.

In general, to the distributed filtering operation in (Q1), we will commonly refer to
as distributed graph filtering. A significant aspect of distributed graph filters is the num-
ber of communication rounds that adjacent nodes need to perform for solving a given
task. In analogy with classical signal processing, we distinguish two types of graph fil-
ters: i) finite impulse response (FIR) graph filters, i.e., a network operation that leads to
the designed output in finite time and i i) infinite impulse response (IIR) graph filters,
i.e., a network operation that leads to the designed output in infinite time. With these
definitions in place, we can pose two relative subquestions of (Q1):

(Q1.1) How can distributed graph signal processing tasks be performed with FIR graph
filters?

(Q1.2) How can distributed graph signal processing tasks be performed with IIR graph
filters?

Chapters 3 and 4 in Part II will respectively formalize the concepts of FIR and IIR
graph filters to provide a thorough answer to the above questions.

1.3. FILTERING GRAPH SIGNALS IN DYNAMIC ENVIRONMENTS

Along with the benefits of local communications that distributed graph filters bring, a
crucial challenge is the filters’ behavior in dynamic environments, when variations in
the graph topology and graph signal occur. Whilst some research has been carried out
for distributed consensus [19–21], there is still little understanding on how these dynam-
ics affect the more involved graph filtering operations. The latter leads to our second
research question:

1.3. FILTERING GRAPH SIGNALS IN DYNAMIC ENVIRONMENTS

1

7

(Q2) What are the implications of dynamic changes, in the graph topology and graph
signal, on the graph filter output?

The answer to this question will be our central topic in Part III. Specifically, in Chap-
ter 6 we address deterministic changes (e.g., moving sensors) and answer the subques-
tion:

(Q2.1) How do graph filters behave when the input signal and the graph topology change
deterministically over time?

On the other hand, to address random fluctuations in the graph topology (e.g., link
failures) and graph signal (e.g., noise corrupted signals), in Chapter 7 we shift our focus
to changes of stochastic nature and answer the subquestion:

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3 (a) Original signal.

-3

-2

-1

0

1

2

3

3 (b) Noisy measurements.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3 (c) Cleaned signal.

Figure 1.2: Illustration of a sensor network that contains different versions of the graph signal. The vertex
color indicates the graph signal value. We observe a large noise removal (the color of the nodes within a

cluster is more similar in c) than in b)) at the expense of some energy spreading between adjacent nodes. The
figures are generated with the GSP toolbox [15].

1

8 1. INTRODUCTION

(Q2.2) What are the statistical properties of the filter output when the graph topology and
the graph signal are random processes?

1.4. OBSERVING TIME-VARYING GRAPH PROCESSES

The interpolation of missing data on a network from partial measurements is another
interesting and useful task that alleviates some of the costs of structured big data. Let us
illustrate this with the following example.

Example 1.2. (Graph signal interpolation.) Given the Molene temperature sensor net-
work in Figure 1.1, we consider that due to energy constraints, only a subset of sensors
is capable to collect measurements (e.g., the black nodes). Then, the task to address con-
sists of interpolating (reconstructing) the missing values (e.g., at the white nodes) from the
available ones. One straightforward distributed approach may consist of setting the value
of the white sensors to the average of their neighbors. This goes in line with the prior as-
sumption that adjacent sensors share similar values. More sophisticated approaches will
exploit Tikhonov regularization or other prior information to accurately determine the
missing values.

A more complex scenario occurs when the graph signal evolves with a predefined
model over time. Concisely, we will refer to this as a graph process. We then aim at esti-
mating the initial graph signal realization on all nodes from only a few sampled vertices.
Let us illustrate this scenario with the following social network example.

Example 1.3. (Observability of graph processes.) Let us consider a social network with
users being the vertices of the graph and edges representing user connections, e.g., friend-
ships or followers. The graph signal is considered to be an opinion on a particular topic
like politics, sports, or art. Due to fellow influence, it is reasonable to assume that user
opinions will change over time (e.g., from total disinterest in the topic to partial involve-
ment). Subsequently, the observability of the opinion signal relates to finding the initial
opinion of all users from a survey performed on a few candidate users at different time
instances.

With this in place, we are now able to pose our third research question:

(Q3) Under which conditions of the graph topology and the graph process can we estimate
the initial network state from a subset of vertices?

The above question adds to one of the most interesting and elaborated problems in lin-
ear system theory: the observability of a linear system. Nevertheless, we are now inter-
ested in finding the conditions that both the graph topology and the graph process must
satisfy to ensure observability. Moreover, we would like to relate these conditions to the
constraint of collecting limited measurements. In Section 8.3, we formalize this problem
in a GSP perspective and provide an elegant answer to the above question.

1.5. TRACKING TIME-VARYING GRAPH PROCESSES

1

9

1.5. TRACKING TIME-VARYING GRAPH PROCESSES

While observability concerns discovering the initial state of the graph process, in dynam-
ics over networks we are also interested in tracking the temporal evolution of the graph
process. With respect to the social network example, this task consists of tracking the
user opinions over time. Tracking on, and with sensor networks, has already been in-
vestigated in [24–26] and references therein. However, to the best of our knowledge, the
underlying network structure is only exploited as a tool to accomplish the tracking goal.
Here, we pursue a different path, where the graph structure is considered as an intrin-
sic part of the problem and tightly relates the tracking performance with both the graph
topology and the graph process. In addition, we will exploit process priors with respect
to the graph topology to introduce the concept of Kalman filtering (KF) over graphs for
tracking from a subset of vertices. It is then crucial to ask:

(Q4) Which are the conditions that the graph topology and the graph process must satisfy
such that Kalman filtering can be employed to track network dynamics from a subset
of nodes?

A detailed answer to this question is provided in Section 8.4, where the involvement of
the KF leads to the optimal tracking performance. Additionally, as considered for the
adaptive algorithms and the observability study, we would also like to carefully pick the
right vertices such that a target mean-square error (MSE) tracking performance is guar-
anteed.

1.6. THESIS OUTLINE AND CONTRIBUTIONS

This thesis is organized into five main parts covering ten chapters. In the next section,
we elaborate on each chapter and show the relative contributions, while a complete list
of related references and other contributions is shown in Section 1.6.2.

For the sake of obtaining a self-explanatory document, the treated arguments are
elaborated in sufficient detail to be followed by an audience with a general signal pro-
cessing and linear algebra background. The introduced topics are structured to improve
readability, rather than respecting their publication time. Interested readers who require
more details are redirected to the related works. The abbreviations and notations used
throughout the thesis are provided on pages 191 and 193, respectively.

1.6.1. THESIS OUTLINE

¦ Prologue—Part I. The remainder of this part consists of Chapter 2, which covers the
necessary background concepts that will be exploited throughout the thesis.

Graph signal processing—Chapter 2. This chapter consists of some background
information about the research field of GSP, which forms the backbone of this thesis.
We first formulate the graph structure in linear algebra terms, by developing the notion

1

10 1. INTRODUCTION

of the graph shift operator as a matrix that captures the graph connectivity. We subse-
quently focus our attention to the GSP direction, where the notion of signal variation
over a graph is introduced and formalized. The latter arguments lead to the definition of
the graph Fourier transform (GFT), which analogously to the classical temporal Fourier
transform introduces the concept of frequency in the graph setting. This specific defini-
tion of the GFT allows us to characterize the bandwidth of a graph signal and introduce
the concept of graph filtering. The chapter is concluded with the concept of wide sense
stationarity on graphs.

¦ Graph Filtering—Part II. This part concerns the first topic we listed in Part I, i.e., the
graph filters, and answers the research question (Q1) over Chapters 3 and 4. Specifically,
Chapter 3 is dedicated to FIR graph filters, i.e., (Q1.1) and includes also our contribution
about distributed edge-variant FIR graph filters. Chapter 4 introduces the autoregressive
moving average (ARMA) recursions as algorithms to implement distributed IIR graph
filters and answers research question (Q1.2).

Finite impulse response graph filtering—Chapter 3. With the formalization of the
graph frequency content of a graph signal in Chapter 2, in this chapter, we take a step
further by analyzing the simplest type of graph filters, i.e., the FIR graph filters. As their
name suggests, these are filters that act on the graph spectrum and are characterized
by a finite impulse response in the vertex domain. Being an operation that acts over a
network, we dedicate particular attention to FIR graph filters that can be implemented
distributively. Further, we show how such filters can be designed. This chapter also
contains our first contribution [cf. Section 3.4], where we propose a novel distributed
algorithm to implement FIR graph filters. The proposed approach yields notable im-
provements with respect to prior art solutions and candidates itself as a strong building
block in the field of GSP.

Infinite impulse response graph filtering—Chapter 4. This chapter extends the dis-
tributed graph filtering concept, from the FIR graph filters introduced in Chapter 3, to
the class of IIR graph filters. As their name suggests, these filters are characterized by
an infinite impulse response in the vertex domain. After introducing the IIR graph filters
and their implementation structures, we show how these filters can be implemented dis-
tributively with ARMA recursions on graphs. A detailed mathematical analysis illustrates
the capability of ARMA graph filters to provide exact solutions to some graph signal pro-
cessing tasks such as graph signal denoising, and diffusion.

¦ Graph-Time Filtering—Part III. The task addressed in this part is studying the behav-
ior of the formerly distributed graph filters in dynamic environments. This part is com-
posed of Chapters 5, 6 and 7 and contains our pioneering work on the temporal exten-
sion of graph filters. In Chapter 5 we reformulate the problem of graph-time process-
ing and graph-time filtering. The answer to the research question (Q2) is spanned over
Chapters 6 and 7. The former chapter concerns the subquestion relative to determinis-
tic topology changes (Q2.1), whilst the latter addresses stochastic topology changes, i.e.,
(Q2.2).

Graph-time signal processing—Chapter 5. This chapter lays the basic groundwork
for the extension of GSP to graph-time signal processing (GTSP). It paves the way for
the upcoming two chapters by formalizing the concepts of the graph-time shift operator,

1.6. THESIS OUTLINE AND CONTRIBUTIONS

1

11

graph-time Fourier transform, and graph-time filtering.
Deterministic analysis of graph-time filtering—Chapter 6. This chapter analyzes

the distributed graph filters of Chapters 3 and 4 when the graph signal and(or) the graph
topology change(s) deterministically over time. Here we also introduce the FIR and
ARMA graph-time filters, i.e., filters that process jointly the graph and temporal spec-
trum of time-varying graph signals. We show that the introduced filters enjoy an efficient
distributed implementation, pledging themselves as potential tools for a more incisive
analysis of time-varying graph signals.

Statistical analysis of graph-time filtering—Chapter 7. This chapter expands the
analysis of graph filters to a time-varying stochastic environment. Specifically, we con-
sider the behavior of the filter output when the graph signal and(or) the graph topology
change(s) randomly over time. We perform a statistical analysis of the filtering output
and characterize the influence of the graph topology and(or) the graph signal statistics
on the filter behavior. We conclude the chapter by suggesting a novel approach that ex-
ploits stochasticity to alleviate the costs of the graph filters introduced in Chapters 3-4.

¦ Graph-Time Sampling—Part IV. This part consists of solely Chapter 8 and builds on
the extension of GSP to time-varying graph signals by introducing sampling strategies
for time-varying graph processes. More specifically, it answers the last two research
questions (Q3) and (Q4) by providing sampling conditions for the tasks of observing and
tracking a time-varying graph process.

Observing and tracking graph processes—Chapter 8. This chapter develops graph
sampling strategies for observing and tracking time-varying graph processes from a sub-
set of nodes. Our inspiration comes from the from the applications of graph signal dif-
fusion and wave propagation on graphs. We first show how the aforementioned tasks
can be formulated as state-space models on graphs. Then, we introduce the concept of
graph process observability from a few collected measurements. Further, we introduce
Kalman filtering on graphs, as an optimal algorithm to track changes in the graph sig-
nal, again from only a few available nodes. We provide theoretical conditions that the
selected subset of nodes should satisfy to guarantee observability and tracking. In addi-
tion, we perform a detailed MSE analysis on the observability/tracking performance to
highlight the role played by the different actors like the graph topology, the graph process
nature with respect to the underlying graph and the sampled set.

¦ Epilogue—Part V. This part wraps up the thesis with the concluding Chapter 9.
Conclusions and future research directions—Chapter 9. This chapter summarises

the thesis contributions and draws the respective conclusions. In addition, future re-
search directions for each of the treated arguments are also proposed in this chapter.

1.6.2. LIST OF PUBLICATIONS AND OTHER CONTRIBUTIONS

To summarize the introductory chapter, the work developed during the Ph.D. period re-
sulted in the following peer-reviewed journal and conference papers.

1

12 1. INTRODUCTION

Thesis related contributions
Journal papers

J1 E.Isufi, P. Banelli, P. Di Lorenzo and G. Leus, "Observing and Tracking Bandlimited
Graph Processes", submitted to IEEE Transactions on Signal Processing, Sep. 2018.

J2 E. Isufi, A. Loukas, A. Simonetto and G. Leus,"Filtering Random Graph Processes
Over Random Time-Varying Graphs ", IEEE Transactions on Signal Processing,vol.65
(16), pages 4406-4421, 2017.

J3 E. Isufi, A. Loukas, A. Simonetto and G. Leus, "Autoregressive Moving Average
Graph Filtering", IEEE Transactions on Signal Processing, vol.67 (2), pages 274-288,
2017.

Conference papers

C1 E.Isufi, P. Banelli, P. Di Lorenzo and G. Leus, "Observing Bandlimited Graph Pro-
cesses from Subsampled Measurements", Asilomar Conference on Signals, Sys-
tems and Computations, Pacific Grove, USA, Oct. 2018.

C2 M. Coutino, E. Isufi and G. Leus, "Distributed Edge-Variant Graph Filters", IEEE
International Workshop on Computational Advances in Multi-Sensor Adaptive Pro-
cessing (CAMSAP), Curacao, Dutch Antilles, Dec. 2017. (best student paper award,
3rd ranked)

C3 E. Isufi, A. Loukas and G. Leus, "Autoregressive Moving Average Graph Filters - A
Stable Distributed Implementation", IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), New Orleans, USA, Mar. 2017.

C4 E. Isufi and G. Leus, "Distributed Sparsified Graph Filters for Denoising and Diffu-
sion Tasks", IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), New Orleans, USA, Mar. 2017.

C5 E. Isufi, P. Banelli and G. Leus, "2-Dimensional Finite Impulse Response Graph-
Temporal Filters", IEEE Global Conference on Signal and Information Processing
(GlobalSIP), Washington DC, USA, Dec. 2016.

C6 E. Isufi, A. Loukas, A. Simonetto and G. Leus, "Separable Autoregressive Moving
Average Graph-Temporal Filters", EURASIP European Signal Processing Confer-
ence (EUSIPCO), Budapest, Hungary, Aug. 2016.

C7 E. Isufi, A. Simonetto, A. Loukas and G. Leus, "Stochastic Graph Filtering on Time-
Varying Graphs", IEEE International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), Cancun, Mexico, Dec. 2015.

1.6. THESIS OUTLINE AND CONTRIBUTIONS

1

13

Other contributions
Journal papers

J4 E. Isufi, A. Loukas, N. Perraudin and G. Leus, "Forecasting Time Series with VARMA
Recursions on Graphs", submitted to IEEE Transactions on Signal Processing, Oct.
2018.

J5 M. Coutino, E. Isufi and G. Leus, "Advances in Distributed Graph Filtering", sub-
mitted to IEEE Transactions on Signal Processing, Jul. 2018.

J6 J. Liu, E. Isufi and G. Leus, "Filter Design for Autoregressive Moving Average Graph
Filters", to appear in the IEEE Transactions on Signal and Information Processing
over Networks, 2018.

J7 E. Isufi, A. S. U. Mahabir and G. Leus, "Blind Graph Topology Change Detection",
IEEE Signal Processing Letters, vol.25 (5), pages 655-659, 2018.

J8 P. Di Lorenzo, P. Banelli, E.Isufi, S. Barbarossa, and G. Leus, "Adaptive Graph Signal
Processing: Algorithms and Optimal Sampling Strategies," IEEE Transactions on
Signal Processing, vol.66 (13), pages 3584-3598, 2018.

J9 E. Isufi, H. Dol and G. Leus, "Advanced Flooding-Based Routing Protocols for Un-
derwater Sensor Networks", EURASIP Journal on Advances in Signal Processing,
2016.1 (2016) : 52.

Conference papers

C8 M. Coutino, E. Isufi, T. Maehara and G. Leus, "State-Space Based Network Topol-
ogy Identification", submitted to the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Brighton, United Kingdom, May 2019.

C9 M. Coutino, E. Isufi, T. Maehara and G. Leus, "On the Limits of Finite Time Dis-
tributed Consensus through Graph Filters", IEEE Asilomar Conference on Signals,
Systems and Computations, Pacific Grove, USA, Oct. 2018. (invited paper)

C10 E.Isufi, P. Di Lorenzo, P. Banelli and G. Leus, "Distributed Wiener-Based Recon-
struction of Graph Signals", IEEE Statistical Signal Processing Workshop (SSP),
Freiburg, Germany, Jun. 2018.

C11 F. Gamma, E. Isufi, G. Leus and A. Ribeiro, "Control of Graph Signals Over Random
Time-Varying Graphs", IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Calgary, Canada, Apr. 2017.

C12 A. Loukas, E. Isufi and N. Perraudin, "Predicting the evolution of stationary graph
signals", IEEE Asilomar Conference on Signals, Systems and Computations, Pacific
Grove, USA, Oct.-Nov. 2017. (invited paper)

C13 P. Di Lorenzo, E. Isufi, P. Banelli, S. Barbarossa and G. Leus, "Distributed Recursive
Least Squares Strategies for Adaptive Reconstruction of Graph Signals", EURASIP
European Signal Processing Conference (EUSIPCO), Kos, Greece, Aug.-Sept. 2017.

1

14 FURTHER READING

C14 J. Liu, E. Isufi and G. Leus, "Autoregressive Moving Average Graph Filter Design",
5th IEEE Global Conference on Signal and Information Processing (GlobalSIP),
Montreal, Canada, Nov. 2017.

C15 J. Liu, E. Isufi and G. Leus, "Autoregressive Moving Average Graph Filter Design",
6th Joint WIC/IEEE Symposium on Information Theory and Signal Processing in
the Benelux, Louvain-la-Neuve, Belgium, May 2016.

C16 E. Isufi, H. Dol and G. Leus, "Network Coding for Flooding-Based Routing in Un-
derwater Sensor Networks", ACM International Conference on Underwater Net-
works and Systems (WUWNET’14), Rome, Italy, Nov. 2014.

FURTHER READING

[1] G. B. Giannakis, R. Cendrillon, V. Cevher, A. Swami, and Z. Tian, Introduction to
the issue on signal processing for big data, IEEE Journal of Selected Topics in Signal
Processing 9, 583 (2015).

[2] J. Rapajic, Beyond airline disruptions (Ashgate Publishing, Ltd., 2009).

[3] M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. Di Bernardo, How to infer
gene networks from expression profiles, Molecular systems biology 3, 78 (2007).

[4] M. Newman, Networks: An Introduction (Oxford university press, 2010).

[5] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning about a highly
connected world (Cambridge University Press, 2010).

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey on sensor
networks, IEEE Communications magazine 40, 102 (2002).

[7] Molene weather dataset, https://donneespubliques.meteofrance.fr/
donnees_libres/Hackathon/RADOMEH.tar.gz (2017).

[8] S. P. Chepuri, S. Liu, G. Leus, and A. O. Hero, Learning sparse graphs under smooth-
ness prior, in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE Interna-
tional Conference on (IEEE, 2017) pp. 6508–6512.

[9] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerg-
ing field of signal processing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains, IEEE Signal Processing Magazine 30, 83
(2013).

[10] A. Sandryhaila and J. M. Moura, Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irregular structure, IEEE Sig-
nal Processing Magazine 31, 80 (2014).

[11] W. Yu, G. Chen, Z. Wang, and W. Yang, Distributed consensus filtering in sensor net-
works, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
39, 1568 (2009).

https://donneespubliques.meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz
https://donneespubliques.meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz
https://donneespubliques.meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz

FURTHER READING

1

15

[12] W. Ren and R. W. Beard, Distributed consensus in multi-vehicle cooperative control
(Springer, 2008).

[13] A. Sandryhaila, S. Kar, and J. M. Moura, Finite-time distributed consensus through
graph filters, in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Inter-
national Conference on (IEEE, 2014) pp. 1080–1084.

[14] S. Segarra, A. Marques, and A. Ribeiro, Optimal graph-filter design and applica-
tions to distributed linear network operators, IEEE Transactions on Signal Process-
ing (2017).

[15] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst, and
D. K. Hammond, Gspbox: A toolbox for signal processing on graphs, arXiv preprint
arXiv:1408.5781 (2014).

[16] C. Groetsch, The theory of Tikhonov regularization for Fredholm equations, Boston
Pitman Publication (1984).

[17] G. H. Golub, P. C. Hansen, and D. P. O’Leary, Tikhonov regularization and total least
squares, SIAM Journal on Matrix Analysis and Applications 21, 185 (1999).

[18] A. J. Smola and R. Kondor, Kernels and regularization on graphs, in COLT, Vol. 2777
(2003) pp. 144–158.

[19] F. Xiao and L. Wang, Asynchronous consensus in continuous-time multi-agent sys-
tems with switching topology and time-varying delays, IEEE Transactions on Auto-
matic Control 53, 1804 (2008).

[20] T. Li and J.-F. Zhang, Consensus conditions of multi-agent systems with time-varying
topologies and stochastic communication noises, IEEE Transactions on Automatic
Control 55, 2043 (2010).

[21] W. Ren, Multi-vehicle consensus with a time-varying reference state, Systems & Con-
trol Letters 56, 474 (2007).

[22] S. Joshi and S. Boyd, Sensor selection via convex optimization, IEEE Transactions on
Signal Processing 57, 451 (2009).

[23] S. P. Chepuri and G. Leus, Sparse sensing for statistical inference, Foundations and
Trends® in Signal Processing 9, 233 (2016).

[24] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, Distributed target classification and
tracking in sensor networks, Proceedings of the IEEE 91, 1163 (2003).

[25] H.-T. Kung and D. Vlah, Efficient location tracking using sensor networks, in Wireless
Communications and Networking, 2003. WCNC 2003. 2003 IEEE, Vol. 3 (IEEE, 2003)
pp. 1954–1961.

[26] T. He, P. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou, R. Stoleru, Q. Cao, J. A. Stankovic, and
T. Abdelzaher, Achieving real-time target tracking usingwireless sensor networks, in
Real-Time and Embedded Technology and Applications Symposium, 2006 (IEEE,
2006) pp. 37–48.

2
GRAPH SIGNAL PROCESSING

We ourselves feel that what we are doing is just a drop in the ocean.
But the ocean would be less because of that missing drop.

Anjezë Gonxhe Bojaxhiu, a.k.a. Mother Teresa

The goal of this chapter is twofold. The first is to provide the reader the necessary back-
ground information about GSP that will be called throughout the thesis. The second is to
introduce the notation and terminology that bridge the high-level discussion of Chap-
ter 1 to the more detailed mathematical formulation of the succeeding chapters.

Our analysis mainly follows the graph Laplacian-based approach summarized in [1].
For a more in-depth analysis, we also suggest [2], as well as the works by Sandryhaila and
Moura [3–5] which treat the arguments from the graph adjacency matrix viewpoint.

This chapter is organized as follows. Section 2.1 briefly recalls the background works
in GSP and clarifies the philosophy adopted in this thesis. Section 2.2 then introduces
the graph as a mathematical tool to express the interconnections/interdependencies be-
tween data in linear algebra terms. The spectral analysis of graph signals is shown in
Section 2.3, where the GFT is formalized in Section 2.3.2 and the graph filters in Sec-
tion 2.3.5. Section 2.4 introduces the concept of stationarity for graph signals and Sec-
tion 2.5 concludes the chapter.

2.1. INTRODUCTION

Being able to formulate a mathematical theory that captures the data interrelations al-
lows us to develop signal processing techniques for analyzing and processing signals
that reside on top of networks. In this chapter, we show that graph theory proves to be
a useful tool in this regard, and it pledges itself as a standing platform for validating the
variation of graph signals [2, 6–8]. This variation on graphs can then be explored to for-
mulate a spectral analysis theory for graph signals, and to advance the concept of the

17

2

18 2. GRAPH SIGNAL PROCESSING

(a) Directed graph.

v1

v5 v3
v4

v2

(b) Undirected graph.

Figure 2.1: Illustration of two different graphs with the respective signal on top. The height of the bar
represents the signal value.

graph Fourier transform (GFT). The latter, similar to the frequency analysis of temporal
and spatial (image) signals, will now add a harmonic flavour to signals on graphs.

There are two distinct, yet complementary, philosophies that approach GSP from
different angles: the graph adjacency matrix-based approach, and the graph Laplacian
matrix-based approach. As its name suggests, the former approach builds on the graph
adjacency matrix and extends algebraic signal processing [9, 10] from time and space to
irregular non-Euclidean domains, see [4, 5]. In this philosophy, the notion of total signal
variation is exploited to formalize the signal variation over graphs. The graph Lapla-
cian matrix-based approach leverages the graph spectral theory [6] to extend the Fourier
analysis to non-Euclidean spaces, see [1, 2, 7]. In this context, the graph Laplacian matrix
theory1 and the concept of signal smoothness over graphs are exploited to introduce the
harmonic analysis for graph signals. While these approaches differ in derivation and in-
terpretation, they both aim at the same thing: The expansion of the graph signal in terms
of the oscillating modes of the graph. As we shall see next, these "oscillating modes" of
the graph turn out to be the eigenvectors of the considered matrix.

In this thesis, we will develop our theory following the graph Laplacian matrix-based
approach. However, as we point out next, the proposed methods can be extended with
a few appropriate changes to fit the graph adjacency matrix philosophy as well.

2.2. GRAPHS AS A TOOL TO CAPTURE INTERCONNECTIONS

A graph is denoted as G = (V ,E), where V = {v1, . . . , vN } is the set of N vertices (or nodes)
and E ⊆ V ×V is the edge set containing all tuples ei , j = (vi , v j) for which nodes vi and
v j are connected. We consider there are M such edges, i.e., |E | = M . A graph is said
to be directed if its edges present a direction orientation, meanwhile, G is said to be
undirected if there is no edge orientation for all tuples (vi , v j) ∈ E . Figure 2.1 illustrates
this distinction. Throughout this thesis, we consider graphs that satisfy the following:

Assumption 2.1. (Considered class of graphs.) We consider graphs that are connected,
without self-loops (i.e., there are no edges of the form (vi , vi)), and undirected.

1In literature this approach is also encountered as "the graph Laplacian operator theory".

2.2. GRAPHS AS A TOOL TO CAPTURE INTERCONNECTIONS

2

19

The biggest loss of generality of the above assumption is with respect to directed
graphs. In fact, if G is composed of R components G1, . . . ,GR , we can treat each compo-
nent as a smaller graph and analyze it separately. The restriction to undirected graphs,
which will be more clear in Section 2.3, is imposed by the adopted approach of graph
Laplacian matrix theory2. However, in practice, it is often sufficient to consider undi-
rected graphs, which have been proven useful on a wide range of applications, see [1, 13]
and references therein.

Given that G is undirected, the weighted graph adjacency matrix W is an N ×N sym-
metric matrix with Wi , j =W j ,i > 0 being the weight of the edge ei , j = (vi , v j) ∈ E . Wi , j = 0
indicates that nodes vi , v j are not connected. The node degrees are contained in the di-
agonal matrix D with as its i th diagonal element

Di ,i =
N∑

j=1
Wi , j (2.1)

representing the sum of all edge weights connected to vi . The combinatorial graph
Laplacian (for short Laplacian) matrix3 is defined as [6]

L = D−W, (2.2)

whereas the normalized Laplacian matrix is defined as

Ln = D−1/2LD−1/2. (2.3)

With this in place, we distinguish two different streams on how to build a graph:
Physical graphs. In this category we group all graphs that have a physical mean-

ing, e.g., i) road networks with cross-roads being the nodes and streets representing the
graph edges; i i) sensor networks, where the nodes represent the sensors, while the graph
edges match the data exchange links between sensors; i i i) airport networks, where the
nodes in V represent the different airport terminals and E contains the tuples (vi , v j)
if there is a flight connection between airports vi and v j ; vi) smart grid networks with
nodes denoting the load stations and edges the power lines. A standard choice for the
weighted adjacency matrix then is a Gaussian kernel [6, 14], i.e,

Wi , j =
exp

(
− [dist(vi ,v j)]2

2θ2

)
if dist(vi , v j) ≤ γ

0 otherwise,
(2.4)

for some parameters θ and γ. In (2.4), dist(vi , v j) may be the physical distance between
the vertices vi and v j , or the Euclidean distance between two feature vectors describing
vi and v j .

Learned data graphs. With learned data graphs, we indicate those approaches that
learn the graph topology from a stream of data x1, . . . ,xt . The illustration in Figure 1.1
from [15] is one such example. The key idea is to connect data elements that share

2For the sake of completeness, we hereto report the recent works [11, 12] that advocate the use of the graph
Laplacian matrix theory for directed graphs as well.

3In literature L is often referred to as the Laplacian operator [6].

2

20 2. GRAPH SIGNAL PROCESSING

similar properties, such as correlations. This includes also approaches that build the
graph adjacency matrix, or the graph Laplacian to explain a data distribution P (µ,Σ)
[16]. Graph learning is recently enjoying an increasing popularity; we refer to [17–22] for
some typical references.

2.2.1. COMPARISONS: PHYSICAL GRAPHS VERSUS DATA GRAPHS

The above observations yield a graph structure that models in mathematical terms the
interdependencies hidden in the data. Having a good and representative structure will
be the key to the upcoming spectral analysis of graph signals in Section 2.3. The com-
parisons between the physical graphs and data graphs are as follows:

• The physical graph model tends to explain the node dependencies by providing
a structure to their natural applications and thus is easier to interpret. This is to
some extent an intuitive and natural way to proceed and has yielded several accu-
rate models of real phenomena, see [14, 23–25]. However, its natural simplification
may be a limitation when the data at hand has hidden dependencies.

• The data graph model employs mathematical tools and data priors to give a mean-
ing to the underlying hidden structure of the data. It is a more versatile and adap-
tive model and thus it may provide more explanatory power. On the downside,
in comparison to the physical graph model, the data graph model may not have
explicit meaningful interpretations and the lack of "sufficient" training data may
influence the results.

2.2.2. THE GRAPH SIGNAL

A signal on top of the graph or a graph signal is defined as a mapping from the vertex set
to the set of complex numbers, i.e., xi : vi → R. The examples in Figure 2.1 show two of
such graph signals. For convenience, we collect all nodes’ signals in the vector x ∈ RN ,
where the i th component of x represents the signal value at node vi .

2.2.3. THE GRAPH SHIFT OPERATOR

Throughout this thesis, we will commonly refer to the three graph representation ma-
trices, i.e., the adjacency matrix W, the graph Laplacian L, and the normalized graph
Laplacian Ln, as the graph shift operator matrix S. By construction, S is symmetric and
real-valued. Additionally, for S we assume the following:

Assumption 2.2. (Graphs of bounded norm.) We consider graphs G which have a graph
shift operator matrix S with bounded spectral norm ‖S‖ ≤ %, for some constant %≥ 0.

The above assumption focuses our attention to graphs of finite dimensions and with
finite weights; both valid considerations in practice and broadly used in literature.

One of the central operations in GSP is the shifting of a graph signal x over the graph,
i.e.,

x(1) = Sx, (2.5)

where x(1) stands for one-shift of x by S. Similarly, x(0) = IN x can be considered as the
zero-shifting of x over the graph, i.e., the graph signal itself. An important aspect of the

2.3. SPECTRAL ANALYSIS OF GRAPH SIGNALS

2

21

shifting operation (2.5) is that it can also be computed locally paving the way to compute
x(1) distributively. That is, each node needs information only from its direct neighbors,
without requiring global information about the whole vector x. With reference to Fig-
ure. 2.1 (b), the one-shift of x over that graph is

x(1)
1

x(1)
2

x(1)
3

x(1)
4

x(1)
5

=

S1,1 S1,2 0 0 S1,5

S2,1 S2,2 S2,3 S2,4 0
0 S3,2 S3,3 S3,4 0
0 S4,2 S4,3 S4,4 S5,4

S5,1 0 0 S5,4 S5,5

x1

x2

x3

x4

x5

 ,

where it can be noticed that any node vi can compute its shifted signal x(1)
i =∑

j∈(Ni∪i) Si , j x j

by simply obtaining information from its direct neighbors Ni and potentially the node
vi itself (e.g., if S is the graph Laplacian or the normalized graph Laplacian). For instance,
x(1)

5 = S5,1x1 +S5,4x4 +S5,5x5 requires information from from nodes v1, v4, and v5.
For the different choices of S, the shifting operation (2.5) takes the form:

• for S = W, we have x(1)
i =∑

j∈Ni
Wi , j x j ;

• for S = L, we have x(1)
i =∑

j∈Ni
Wi , j (xi −x j);

• for S = Ln, we have x(1)
i = 1p

Di ,i

∑
j∈Ni

Wi , j

(
xip
Di ,i

− x jp
D j , j

)
.

Similarly, higher order shifts can be computed recursively as x(k) = Sk x = SSk−1x = Sx(k−1),
i.e., nodes can perform locally the k-shift x(k) by exchanging with their neighbors infor-
mation about the previous shifted version of x, x(k−1). This aspect will play a central role
in the distributed implementation of graph filters in Part II.

2.3. SPECTRAL ANALYSIS OF GRAPH SIGNALS

With the graph playing the role of the signal support, we can now formalize the notion of
signal variation over this support, and therefore to provide a spectral analysis for graph
signals. To start, let us consider the following example:

Example 2.1. (Signal variation on the graph edges.) Consider the scenario in Figure 2.2
depicting three different graph signals residing on the same topology G . The vertical bars
indicate the signal value where positive values are illustrated with a bar oriented upwards
and a negative value with a bar oriented downwards.

We are interested in finding which of the three graph signals varies the most and which
of the three graph signals varies the least on the graph. Visually, we can see that the signals
in (b) and (c) vary more on G than the constant signal in (a).

One way to quantify the signal variation over G is to count the number of times that
the graph signal changes sign between nodes that share an edge. Then, for (a) we have no
sign change, for (b) two sign changes, and for (c) five sign changes. Thus, we may "more
formally" conclude that the signal in (a) is the least varying over G and the signal in (c) is
the most varying over G .

2

22 2. GRAPH SIGNAL PROCESSING

(a) Constant signal. (b) Slow-varying signal. (c) High-varying signal.

Figure 2.2: Illustration of three different graph signals over the same undirected graph. From left to right the
signal variation over the graph increases.

This intuitive characterization of signal variation over a graph will serve as a trigger to
mathematically formulate the harmonic analysis for graph signals leading to the concept
of the GFT. Finally, observe that the topology plays a central role when counting the sign
change. In fact, if an edge between two different nodes of opposite sign is removed this
sign change is not counted. In Section 2.3.2 we will come back to this important factor
in the definition of the GFT.

2.3.1. SIGNAL VARIATION OVER THE GRAPH

For a signal x over a graph G = (V ,E), the variation of x with respect to the edge ei , j =
(vi , v j) valued at vertex vi is given by the edge derivative

∂x

∂ei , j

∣∣∣∣
vi

=
√

Wi , j (xi −x j), (2.6)

that is, the difference of the signal at the end nodes of ei , j = (vi , v j) weighted by the
square root of the edge weight. Subsequently, the graph gradient of x at vertex vi is the
vector

∇vi x =
{

∂x

∂ei , j

∣∣∣∣
vi

}
ei , j ∈E s.t. ei , j =(vi ,v j) for some v j ∈ V

(2.7)

containing all partial derivatives of x at node vi . Then, the l2-norm of (2.7)

‖∇vi x‖2 =
(∑

v j ∈Ni

Wi , j (xi −x j)2

) 1
2

(2.8)

provides a measure of signal variability of x around vertex vi with respect to its neighbors
Ni . Precisely, the graph signal is said to be smooth in the vi ’s neighborhood Ni if ‖∇vi x‖2

is small, or equivalently if xi is similar to x j for v j ∈N j . Consequently, ‖∇v j x‖2 > ‖∇vi x‖2

indicates that the signal variation at node v j is higher than the signal variation at node
vi . The constant signal in Figure 2.4 (a) is an exceptional example since it has ‖∇vi x‖2 = 0
for all vi ∈ V .

2.3. SPECTRAL ANALYSIS OF GRAPH SIGNALS

2

23

The notion of signal variation can be extrapolated from a particular node to the
whole graph by means of the p−Dirichlet form of x

Sp (x) = 1

p

∑
vi∈V

‖∇vi x‖p
2 = 1

p

∑
vi∈V

(∑
v j ∈Ni

Wi , j (xi −x j)2

) p
2

, (2.9)

which consists of a weighted sum of the signal variations in all nodes. Particular forms
of Sp (x) are i) S1(x) referred to as the signal total variation, and i i)

S2(x) = 1

2

∑
vi∈V

∑
v j ∈Ni

Wi , j (xi −x j)2 = ∑
(vi ,v j)∈E

Wi , j (xi −x j)2 = xTLx (2.10)

also known as the graph Laplacian quadratic form [6]. In relation with Example 2.1, S2(x)
is zero for the signal in Figure 2.4 (a) (the signal has no variation) and S2(x) of the signal
in Figure 2.4 (b) is smaller than S2(x) of the signal in Figure 2.4 (c).

2.3.2. THE GRAPH FOURIER TRANSFORM

The GFT relies on the spectral decomposition of the graph Laplacian. Specifically, since
L is real and symmetric [cf. Assumption 2.1], it enjoys the eigendecomposition

L = UΛUH, (2.11)

where U = (u0, . . . ,uN−1) is an N × N orthonormal matrix containing eigenvectors of L
andΛ= diag(λ0, . . . ,λN−1) is an N ×N diagonal matrix with the i th diagonal element the
i th eigenvalue of L. We consider the eigenvalues of L to be ordered as 0 =λ0 <λ1 ≤λ2 ≤
. . . ≤λN−1 :=λmax, where zero appears as an eigenvalue with the same multiplicity as the
number of connected components of the graph [6] [one, cf. Assumption 2.1]. Therefore,
λi > 0 for all i = 1, . . . , N −1.

From [26] and as shown in [1], the eigenvalues and eigenvectors of L can also be
defined iteratively by solving the Rayleigh quotient

λ0 = min
x∈RN

xTLx

s.t. ‖x‖2 = 1
(2.12)

and
λl = min

x∈RN
xTLx

s.t. ‖x‖2 = 1,

x ⊥ span{u0, . . . ,ul−1}, l = 1, . . . , N −1,

(2.13)

where the tuple (λl ,ul) consists of the minimum and the minimizer of the l th problem,
respectively.

From (2.10), (2.12) and (2.13), we note that the graph Laplacian eigenvectors are the
minimizer of the Laplacian quadratic form. Hence, the eigenvectors associated with a
smaller eigenvalue yield a smaller cost and are smoother (i.e., vary less) over G than the
eigenvectors associated with a higher eigenvalue. This suggests that the graph Laplacian
eigenvalues and eigenvectors carry some notion of frequency in the graph setting. To
illustrate this concept visually, we consider a modified example from [1].

2

24 2. GRAPH SIGNAL PROCESSING

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

) (a) u1

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

) (b) u5

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

) (c) u10

Figure 2.3: Variation of the graph Laplacian eigenvectors for the Minnesota roadmap graph. The graph
Laplacian quadratic form is (a) S2(u2) = 8.4e−4, (b) S2(u5) = 0.0031 and (c) S2(u10) = 0.01.

Example 2.2. (Variation of the Minnesota roadmap eigenvectors.) Suppose G is the
Minnesota roadmap with graph Laplacian L. We evaluate the variability on G of three
different graph signals, namely the third, the sixth and the eleventh eigenvector of L i.e.,
x = {u2,u5,u10}.

Figure 8.6 shows in colormap these signals on top of the Minnesota graph. The re-
spective Laplacian quadratic forms have values S2(u2) = 8.4e−4, S2(u5) = 0.0031, and
S2(u10) = 0.01. These results enforce the derivations of (2.10), (2.12) and (2.13) and show
that eigenvectors associated with higher eigenvalues are characterized by higher varia-
tions over G and viceversa.

From the above discussion, we may conclude that the graph Laplacian eigenvectors
form an orthonormal basis with each eigenvector carrying some notion of frequency
in the graph setting. The following definition formalizes then the expansion of a graph
signal on this frequency basis.

2.3. SPECTRAL ANALYSIS OF GRAPH SIGNALS

2

25

Definition 2.1. (Graph Fourier transform.) The graph Fourier transform x̂ of a graph
signal x living on the graph G with graph Laplacian matrix L is defined as

x̂ = UHx, (2.14)

where U is the eigenvector matrix of L.

That is, the GFT is the expansion of x in terms of the eigenvectors of the graph Lapla-
cian. Vector x̂, containing the GFT coefficients, represents the weight that each eigenvec-
tor has in this expansion. The graph Laplacian eigenvalues will then serve as the support
for each GFT coefficient and will be referred to as the graph frequencies [1].

Interpretation from a system perspective. The graph Laplacian eigenvectors act as
the oscillating modes of the graph. In fact, if we abstract the notion of the graph and
consider L to be the matrix transfer function of a linear system y = Lx, the eigenvectors
of L are the system oscillating modes [27].Then, if x equals one of the eigenvectors of L,
say ui , it will make the system oscillate at this particular mode. In this respect, the GFT
expresses the input signal x as a linear combination of the system modes. Following this
analogy, for a linear system L we can imaginatively call this expansion as the "system
Fourier transform".

The role of the graph. The underlying graph structure plays an important role in the
GFT of a signal x. To see this, consider two different graphs G1 = (V ,E1) and G = (V ,E2)
with respective Laplacians L1 = U1Λ1UH

1 and L2 = U2Λ2UH
2 and the same graph signal x.

The GFT of x w.r.t. G1 and G2 equals (using (2.14)) x̂1 = UH
1 x and x̂2 = UH

2 x, respectively.
Therefore, the GFT coefficients that yield from these expansions are different. From a
linear algebra perspective, this means that x is expanded on two different bases, and,
thus, the basis coefficient expansions are different. From a practical viewpoint, every
edge change (e.g., addition, or removal) in G yields a different GFT interpretation of the
same signal x.

Likewise (2.14), the inverse GFT (IGFT) is defined as

Definition 2.2. (Inverse graph Fourier transform.) The inverse graph Fourier transform
x of x̂ is

x = Ux̂, (2.15)

where U is the eigenvector matrix of the graph Laplacian L.

That is, it expresses the signal x in the vertex domain from its graph spectral decom-
position. Note that operations (2.14)-(2.15) preserve the Parseval property since U is an
orthonormal matrix.

As a final observation, we highlight that the Laplacian eigenvectors are only one of
the possible bases to perform the graph spectral decomposition. In fact, any graph shift
operator matrix S, whose eigenvectors carry a notion of frequency in the graph setting
can be a potential choice. For more details about the graph harmonic expansion when
S = W or S = Ln we refer to [5] and [1], respectively. For the considered shift operator
candidates there are a few properties to consider:

• For S = W, the slow varying eigenvectors are associated to eigenvalues of large
magnitude, and viceversa [5].

2

26 2. GRAPH SIGNAL PROCESSING

• For S = L, the slow varying eigenvectors are associated to eigenvalues of low mag-
nitude, and viceversa [1]. The eigenvector u0 associated to λ0 = 0 is constant,
u0 = 1/

p
N 1N .

• For S = Ln, the slow varying eigenvectors are associated to eigenvalues of low mag-
nitude, and viceversa [1]. In this instance, u0 is not anymore constant and the
maximum eigenvalue satisfies λmax ≤ 2. Equality holds for the class of bipartite
graphs [6].

2.3.3. CONNECTION: CLASSICAL FOURIER TRANSFORM AND GRAPH FOURIER

TRANSFORM

A number of pioneering studies on spectral analysis of graph signals [1, 2, 4, 7, 10] ad-
vocate the specialization of the GFT to the classical Fourier transform when the signal
of interest is the time-varying temporal signal x(t) ∈ R. Although with some differences
between them, all these works show that their interpretation of GFT specializes to the
classical Fourier transform for temporal signals. Let us here briefly show this for the
graph Laplacian.

The classical Fourier transform

x̂(f) =
∫
R

x(t)e−2π f t d t (2.16)

expands the temporal signal x(t) ∈R onto the basis of complex exponentials. These com-
plex exponentials correspond to the eigenfunctions of the one-dimensional Laplace op-
erator [1, 2, 7]

−∆(e2π f t) =− ∂2

∂t 2 e2π f t = (2π f)2e2π f t , (2.17)

where the eigenvalues (2π f)2 carry the notion of frequency. In fact, the eigenvectors
(complex exponentials) associated to f close to zero oscillate slowly in time, whereas
the eigenvectors (complex exponentials) associated to f À 0 oscillate more rapidly.

Similarly, the GFT (2.14) expands the graph signal x onto the basis spanned by the
eigenvectors of the N -dimensional Laplace operator L. In this case, the notion of fre-
quency is carried by the eigenvalues Λ of L, thus the name graph frequency. In fact, as
shown in Sections 2.3.1-2.3.2 the graph Laplacian eigenvectors u j associated with low
graph frequencies λ j vary slowly on G , i.e., the eigenvector’s value on two connected
vertices is likely to be similar. Analogously, the graph Laplacian eigenvectors u j associ-
ated with a larger graph frequency λ j vary faster on G and two connected vertices are
more likely to have dissimilar values.

2.3.4. GRAPH SIGNAL BANDWIDTH

With the formalization of the signal variation over graphs (Section 2.3.1) and with the
definition of the GFT (Section 2.3.2), we are now able to provide a more formal answer to
questions such as: What is a graph signal with low/high graph spectral content? or What
is the bandwidth of a graph signal?

A graph signal x is said to have low graph frequency content if its energy is mostly
concentrated in the graph frequencies related to the slow-varying eigenvectors. One

2.3. SPECTRAL ANALYSIS OF GRAPH SIGNALS

2

27

-2

-1

0

1

2

3

4

5

6

7

8

(a) Low frequency content graph signal in the ver-
tex domain.

-25

-20

-15

-10

-5

0

5

10

15

20

(b) High frequency content graph signal in the ver-
tex domain.

0 1 2 3 4 5 6 7
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Eigenvalues [λn]

x̂
(λ

n
)

(c) Low frequency content graph signal in the
spectral domain.

0 1 2 3 4 5 6 7
-15

-10

-5

0

5

10

15

20

Eigenvalues [λn]

x̂
(λ

n
)

(d) High frequency content graph signal in the
spectral domain.

Figure 2.4: Two different graph signals in both the vertex and graph spectral domains.

such graph signal along with its graph spectral content is shown in Figure 2.4 (a) and
(c), respectively.

Similarly, a graph signal x is said to have high graph frequency content if it has sub-
stantial energy in the graph frequencies related to the eigenvectors that vary fast on G .
These graph signals are characterized by having dissimilar values in adjacent vertices.
Figure 2.4 (b) illustrates one example with respective GFT shown in Figure 2.4 (d).

A graph signal x is said to be bandlimited on G with bandwidth |F | ≤ N if and only
if its graph spectral content x̂ is different from zero only on a limited set F of graph
frequencies (not necessarily adjacent). More formally, the set F consists of

F = {
λi |x̂i 6= 0, for i ∈ {0, . . . , N −1}

}
. (2.18)

The graph signal in Figure 2.4 (a) can be said to be bandlimited as its graph spectral
content (Figure 2.4 (c)) is close to zero for λi > 3.

Observe that similarly to the role played by the graph structure in the GFT definition
[cf. Section 2.3.2], the same graph signal x may be bandlimited on a particular graph G1

2

28 2. GRAPH SIGNAL PROCESSING

and not-bandlimited on another graph G2. The same consideration holds also for the
low/high graph frequency content of x.

Interpretation as sparse representation. For x being F -bandlimited on G , its GFT x̂
contains respectively N−|F | elements that are zero. Let us denote as x̃F = [x̃1, . . . , x̃|F |]T
the |F | × 1 vector containing only the non-zero elements of x̂. Then, by means of the
IGFT, we write

x = UF x̃F , (2.19)

where UF is the N ×|F | column-trimmed eigenvector matrix relative to x̂i 6= 0. That is,
it is composed of the columns of U associated with the non-zero GFT coefficients of x.
Expression (2.19) has an analogy with the sparse representation literature [28]. In fact,
x̃F can be interpreted as an F -sparse representation of x in the space spanned by some
of the graph Laplacian eigenvectors. The atoms of this sparse decomposition are now
given by the columns of UF . This property is widely used in GSP, especially for graph
signal sampling purposes [29–31]. In Part IV, we will as well leverage this property for
the adaptive algorithms and sampling.

2.3.5. GRAPH FILTERING

The introduction of harmonic analysis to graph signals creates the opportunity to pro-
cess the latter in the graph spectral domain as well. In this regard, we define, next, the
graph filter as the basic block to alter the spectrum of graph signals.

Definition 2.3. (Graph filters.) A graph filter h(λn) is defined as a function over the graph
frequencies {λn}N−1

n=0 to the set of real numbers, i.e., h : {λn}N−1
n=0 → R, altering the graph

frequency content x̂ of x as a point-wise multiplication in the graph Fourier domain. That
is, the graph filter output at the graph frequency λn is ŷ(λn) = h(λn)x̂(λn).

This definition of graph filters preserves the convolution property from discrete sig-
nal processing, i.e., a filtering operation corresponds to a point-wise multiplication in
the Fourier domain. By stacking in the vector ŷ = [ŷ(λ0), . . . , ŷ(λN−1)]T the filter output
for all graph frequencies, we obtain

ŷ = h(Λ)x̂, (2.20)

where h(Λ) = diag(h(λ0), . . . ,h(λN−1)) is referred to as the graph filter frequency response.
Then, by applying (2.14) to (2.20) we have

UHy = h(Λ)UHx, (2.21)

which by means of the IGFT (2.15) becomes

y = Uh(Λ)UHx = Hx. (2.22)

Equation (2.22) reformulates the graph filtering operation (2.20) in the vertex domain.
We see that the filter output is now expressed as a linear combination of the input signal,
with a graph filter impulse response4 H = Uh(Λ)UH. Differently, we can often write (2.22)

4The term filter impulse response is in fact lend from the analogy with the temporal filtering operation, i.e., the
inverse Fourier transform of the filter frequency response.

2.3. SPECTRAL ANALYSIS OF GRAPH SIGNALS

2

29

as y = h(S)x, which expresses the graph filtering operation as a function of the graph
shift operator. Operation (2.22) has a computational cost of the order of a matrix-vector
multiplication, i.e., O(N 2). In Part II, we will show how to compute the filtering output
in (2.22) with a cost that is lower than O(N 2).

Let us finally illustrate the graph filtering application with a continuation of the de-
noising Example 1.1.

Example 2.3. (Graph signal denoising in the GFT domain.) Suppose the graph G consists
of the community graph with a piece-wise constant graph signal xd. We are interested to
recover xd by filtering noisy measurements x = xd +w in the GFT domain.

This procedure is illustrated in Figure 2.5. We observe that the desired signal xd is
characterized by a low-pass spectrum, while the noisy signal x contains a substantial high
graph frequency content. From the rightmost figures, we observe that the filtered signal is
less noisy. The latter can be either observed in the vertex domain where the signal is more
smooth within a community, or in the GFT domain where y does not contain high graph
frequency content.

2.3.6. TIKHONOV REGULARIZATION ON GRAPHS

Tikhonov regularization [32–35] is probably one of the most studied and used regulariza-
tion techniques used for signal denoising. In the sequel, we briefly review this problem
and show how it can be cast as a graph filtering operation.

From a GSP perspective, Tikhonov regularization considers recovering the desired
signal xd from a single snapshot of a noisy observation x = xd+w given the prior assump-
tion that xd is smooth w.r.t. the underlying graph G . From Section 2.3.1, we observe that
requiring xd to be smooth over G is equivalent to xT

d Sxd being small for S = L or S = Ln.
Then, the estimate x?d of xd is cast as the solution of the optimization problem

x?d = argmin
x∈RN

‖x−xd‖2
2 +wxT

d Sxd (2.23)

for some fixed w ≥ 0. The left term in the optimization function asks for a signal that is
close to xd, while the second term uses the quadratic form of S to enforce the smoothness
prior. There are two extreme cases

• when w = 0, the objective does not consider any smoothness prior and the solu-
tion is x?d = x;

• when w →+∞, the objective emphasises on the smoothness prior and the optimal
solution goes to x?d = 0N .

Any value of w in between allows for a trade-off between these two cases whose global
solution is

x?d = (IN +wS)−1x. (2.24)

By leveraging (2.22), the optimal solution x?d can be seen as a graph filtering of x with the
graph filter H = (IN +wS)−1. By transforming H in the GFT domain, the filter frequency

2

30 2. GRAPH SIGNAL PROCESSING

x
=

x
d
+

w
y

=
H

x

x̂
d

=
U

H
x

d
x̂

=
U

H
x

λ
λ

λ

x̂
=
x̂

d +
ŵ

y
=

U
ŷ

ŷ
=

h
(
Λ

)
x̂

F
igu

re
2.5:Illu

stratio
n

o
fgrap

h
sign

ald
en

o
isin

g
exam

p
le

w
ith

grap
h

fi
lters.(To

p
)Sign

als
in

th
e

vertex
d

o
m

ain
.(B

o
tto

m
)Sign

als
in

th
e

G
F

T
d

o
m

ain
.O

b
serve

h
ow

th
e

n
o

isy
sign

alp
resen

ts
h

igh
freq

u
en

cy
co

n
ten

t(b
o

tto
m

cen
ter),w

h
ich

is
rem

oved
w

ith
th

e
grap

h
fi

lter
(b

o
tto

m
righ

t).

2.4. STATIONARY GRAPH SIGNALS

2

31

response is5 h(Λ) = (IN +wΛ)−1. In Chapter 4, we will see that graph filters that present
a similar graph frequency response correspond to the class of IIR graph filters.

2.4. STATIONARY GRAPH SIGNALS

Stationarity is another useful property that has recently been extended to graph signals
[36–38]. In what follows, we briefly provide the definition of graph wide sense station-
arity (GWSS) with the aim to introduce the Wiener regularization on graphs. The latter
turns out to be a graph filtering operation as well.

2.4.1. WIDE SENSE STATIONARITY ON GRAPHS

For a graph signal x abiding to some distribution P (0N ,Σx), GWSS is defined as follows6:

Definition 2.4. (GWSS.) A random graph signal x is said to be graph wide sense stationary,
if and only if its covariance matrix Σx is diagonalizable by the GFT basis U, i.e., Σx =
Udiag(px)UH. The N×1 vector px is referred to as the graph power spectral density (GPSD).

The above definition extends the classical notion of stationarity to graph signals,
where now it is assumed that the signal statistics are preserved along the graph dimen-
sion7. In fact, it requires the translation invariance of the second order moment w.r.t. the
graph shift operator.

Similarly to temporal wide sense stationarity, a useful property of GWSS is that Σx

can be driven by a graph filter with frequency response h(Λ) = diag(px)
1
2 . The latter

suggests that a GWSS graph signal can be generated by filtering a random signal w ∼
P (0N ,IN) with a graph filter of the form H = Udiag(px)

1
2 UH.

2.4.2. WIENER REGULARIZATION ON GRAPHS

Wiener regularization considers recovering a signal of interest xd from a noisy realiza-
tion x = xd + w when xd ∼ Px (0N ,Σxd) and w ∼ Pw (0N ,Σw). From the GSP perspec-
tive, we may say that the desired signal xd is stochastic over the graph, in contrast to the
Tikhonov-based denoising [cf. Section 2.3.6]. The linear Wiener solution to this denois-
ing problem is obtained by minimizing the mean squared error (MSE)

H? = argmin
H∈RN×N

E
[‖Hx−xd‖2

2

]
s.t. x = xd +w,

(2.25)

and then set the recovered signal as x?d = H?x. Problem (2.12) is convex and admits a
closed form solution which leads to the optimal recovered signal

x?d =Σxd

(
Σxd +Σw

)−1 x (2.26)

5From Sylvester’s matrix theorem matrices A and A−1 have the same eigenvectors and the eigenvalues of A−1

are the inverse of the eigenvalues of A.
6Although [36–38] introduce stationarity to graph signals from different starting points, they all meet with the

result of Definition 2.4.
7For E(x) 6= 0N the GWSS has the additional requirements that x should have a constant mean.

2

32 2. GRAPH SIGNAL PROCESSING

given Σxd +Σw is non-singular.
In those cases whereΣxd andΣw share the eigenvectors with the graph shift operator

(i.e., xd and w are GWSS), the above linear system takes the form of a graph filter. Specif-
ically, for pxd (λn) being the nth eigenvalue of Σxd and pw (λn) being the nth eigenvalue
of Σw , from (2.26) the graph filter frequency response at the nth graph frequency is

h(λn) = pxd (λn)

pxd (λn)+pw (λn)
, (2.27)

where once again we exploited the relation between the eigenvectors and eigenvalues of
a matrix A and its inverse.

Historical note. Surprisingly, the idea of Wiener regularization on graphs was ini-
tially mentioned before the formalization of GWSS. In fact, [39] interpreted semi-supervised
learning on graphs as a Wiener graph filter. Subsequently, in our work [40] we interpret
the solution of problem (2.26) as an ARMA graph filter with a Wiener frequency response
(2.27). Finally, [37] introduces the Wiener regularization as a potential tool to advocate
the benefits of stationary graph signal processing.

2.4.3. CONNECTION: KARHUNEN-LOÉVE TRANSFORM AND STATIONARY GRAPH

SIGNALS

The Karhunen-Loéve transform (KLT) [41] is a classical tool used in image processing
mainly for compression purposes. Since both the KLT and the GFT for stationary graph
signals exploit the eigendecomposition of the data covariance matrix, there is a connec-
tion between the two that we highlight in the following.

Consider a random vector x following some distribution Px (0N ,Σx) with Σx =
Udiag(px)UH. Up to an ordering of the elements, the KLT of x is

x̂KL = UHx, (2.28)

i.e., it consists of a projection of x onto the eigenspace spanned by the eigenvectors of
the covariance matrix. The convention wants [x̂KL]1 to be the projection of x onto the
eigenvector associated with the largest eigenvalue and [x̂KL]N to be the relative projec-
tion onto the eigenvector associated with the smallest eigenvalue.

In the instance that x resides on a graph G with S = UΛUH, from Definition 2.4 we
observe that x belongs to the family of stationary graph signals. Moreover, its GFT x̂ =
UHx is identical (up to a permutation) to the KLT transform of (2.28). Therefore, we
conclude that the GFT of stationary graph signals is an alternative formulation of the
KLT transform of these data. The advantage though is that no data and only the graph is
required to compute the GFT.

2.5. CONCLUDING REMARKS

In this chapter, we introduced the basic principles of GSP, which builds the foundation
for the remaining part of the thesis. After setting down the basic nomenclature about the
graph structure and the graph signal, we showed three graph representation matrices,

FURTHER READING

2

33

namely, the graph adjacency, the graph Laplacian, and the normalized graph Laplacian
matrix. These matrices serve as candidates for the so-called graph shift operator matrix;
a matrix that captures the network connectivity in linear algebra terms. Additionally, we
showed that the graph shifting of a graph signal consists of local operations. This will be
our basic tool to perform distributed operations over the graph in Chapters 3-4.

We then characterized the variability of the signal over the graph by means of the p-
Dirichlet form. This allowed us to introduce the concept of the graph Fourier transform,
where the signal is expressed as a linear combination of the oscillating modes of the
graph. These modes turned out to be the eigenvectors of the graph shift operator matrix,
and they extend the signal harmonic analysis from the temporal domain to the graph
dimension.

Subsequently, we introduced the concept of graph filtering to alter the graph fre-
quency content of graph signals. We showed that linear graph filters can be implemented
directly in the vertex domain as a matrix-vector multiplication. Additionally, we showed
that Tikhonov regularization on graphs consists of a graph filtering operation.

Finally, the notion of weak stationarity on graphs is introduced. The latter allowed us
to formulate the graph Wiener regularization problem as a graph filtering operation. We
also showed that the GFT of stationary graph signals coincides with the KLT transform.

FURTHER READING

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerg-
ing field of signal processing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains, IEEE Signal Processing Magazine 30, 83
(2013).

[2] D. I. Shuman, B. Ricaud, and P. Vandergheynst, Vertex-frequency analysis on graphs,
Applied and Computational Harmonic Analysis 40, 260 (2016).

[3] A. Sandryhaila and J. M. Moura, Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irregular structure, IEEE Sig-
nal Processing Magazine 31, 80 (2014).

[4] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs, IEEE transac-
tions on signal processing 61, 1644 (2013).

[5] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs: Frequency
analysis. IEEE Trans. Signal Processing 62, 3042 (2014).

[6] F. R. Chung, Spectral graph theory, 92 (American Mathematical Soc., 1997).

[7] D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs via spec-
tral graph theory, Applied and Computational Harmonic Analysis 30, 129 (2011).

[8] C. Godsil and G. F. Royle, Algebraic graph theory, Vol. 207 (Springer Science & Busi-
ness Media, 2013).

2

34 FURTHER READING

[9] M. Puschel and J. M. Moura, Algebraic signal processing theory: 1-d space, IEEE
Transactions on Signal Processing 56, 3586 (2008).

[10] M. Puschel and J. M. Moura, Algebraic signal processing theory: Foundation and 1-d
time, IEEE Transactions on Signal Processing 56, 3572 (2008).

[11] R. Singh, A. Chakraborty, and B. Manoj, Graph Fourier transform based on directed
Laplacian, in Signal Processing and Communications (SPCOM), 2016 International
Conference on (IEEE, 2016) pp. 1–5.

[12] H. Sevi, G. Rilling, and P. Borgnat, Multiresolution analysis of functions on directed
networks, in Wavelets and Sparsity XVII, Vol. 10394 (International Society for Optics
and Photonics, 2017) p. 103941Q.

[13] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst, Graph signal
processing, arXiv preprint arXiv:1712.00468 (2017).

[14] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical processes on complex net-
works (Cambridge university press, 2008).

[15] S. P. Chepuri, S. Liu, G. Leus, and A. O. Hero, Learning sparse graphs under smooth-
ness prior, in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE Interna-
tional Conference on (IEEE, 2017) pp. 6508–6512.

[16] C. Zhang, D. Florêncio, and P. A. Chou, Graph signal processing–a probabilis-
tic framework, Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-TR-2015-31
(2015).

[17] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, Network topology inference
from spectral templates, IEEE Transactions on Signal and Information Processing
over Networks (2017).

[18] V. Kalofolias, How to learn a graph from smooth signals, in Artificial Intelligence and
Statistics (2016) pp. 920–929.

[19] J. Mei and J. M. Moura, Signal processing on graphs: Causal modeling of unstruc-
tured data, IEEE Transactions on Signal Processing 65, 2077 (2017).

[20] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, Learning laplacian matrix
in smooth graph signal representations, IEEE Transactions on Signal Processing 64,
6160 (2016).

[21] N. Thanou, Graph Signal Processing: Sparse Representation and Applications, Ph.D.
thesis, Ecole Polytechnique Fédérale de Lausanne (2016).

[22] G. B. Giannakis, Y. Shen, and G. V. Karanikolas, Topology identification and learning
over graphs: Accounting for nonlinearities and dynamics, Proceedings of the IEEE
106, 787 (2018).

FURTHER READING

2

35

[23] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, The web as
a graph: measurements, models, and methods, Computing and combinatorics , 1
(1999).

[24] M. Newman, Networks: An Introduction (Oxford university press, 2010).

[25] X. Zhu, Z. Ghahramani, and J. D. Lafferty, Semi-supervised learning using gaussian
fields and harmonic functions, in Proceedings of the 20th International conference
on Machine learning (ICML-03) (2003) pp. 912–919.

[26] R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge university press, 2012).

[27] T. Kailath, Linear systems, Vol. 156 (Prentice-Hall Englewood Cliffs, NJ, 1980).

[28] M. Elad, Sparse and Redundant Representations: From Theory to Applications in
Signal and Image Processing (Springer, 2010).

[29] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, Discrete signal processing on
graphs: Sampling theory, IEEE Transactions on Signal Processing 63, 6510 (2015).

[30] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, Signals on graphs: Uncertainty prin-
ciple and sampling, IEEE Transactions on Signal Processing 64, 4845 (2016).

[31] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, Sampling of graph signals
with successive local aggregations, IEEE Transactions on Signal Processing 64, 1832
(2016).

[32] C. Groetsch, The theory of Tikhonov regularization for Fredholm equations, Boston
Pitman Publication (1984).

[33] G. H. Golub, P. C. Hansen, and D. P. O’Leary, Tikhonov regularization and total least
squares, SIAM Journal on Matrix Analysis and Applications 21, 185 (1999).

[34] A. J. Smola and R. Kondor, Kernels and regularization on graphs, in COLT, Vol. 2777
(2003) pp. 144–158.

[35] A. Elmoataz, O. Lezoray, and S. Bougleux, Nonlocal discrete regularization on
weighted graphs: a framework for image and manifold processing, IEEE transac-
tions on Image Processing 17, 1047 (2008).

[36] B. Girault, Stationary graph signals using an isometric graph translation, in Signal
Processing Conference (EUSIPCO), 2015 23rd European (IEEE, 2015) pp. 1516–1520.

[37] N. Perraudin and P. Vandergheynst, Stationary signal processing on graphs, IEEE
Transactions on Signal Processing 65, 3462 (2017).

[38] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, Stationary graph processes and
spectral estimation, IEEE Transactions on Signal Processing (2017).

2

36 FURTHER READING

[39] B. Girault, P. Gonçalves, E. Fleury, and A. S. Mor, Semi-supervised learning for graph
to signal mapping: A graph signal wiener filter interpretation, in Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International Conference on (IEEE, 2014)
pp. 1115–1119.

[40] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive moving average graph
filtering, IEEE Transactions on Signal Processing 65, 274 (2017).

[41] R. Dony et al., Karhunen-loeve transform, The transform and data compression
handbook 1, 1 (2001).

II
GRAPH FILTERING

37

3
FINITE IMPULSE RESPONSE GRAPH

FILTERING

If it’s the right chair, it doesn’t take too long to get comfortable in it.

Robert De Niro

This chapter introduces a particular type of graph filter recursion, named finite impulse
response (FIR) graph filter. This recursion allows us to implement the graph filtering
operation described in Section 2.3.5 distributively over the graph. Moreover, by mak-
ing use of the locality of the graph shift operator [cf. Section 2.2.3], we will show that
the FIR filters enjoy an efficient implementation in the vertex domain which has a com-
plexity smaller than O(N 2), i.e., matrix-vector multiplication. Similarly to its temporal
homonym, the FIR graph filter will alter the graph signal spectra with an impulse re-
sponse that is finite, now, in the vertex domain.

Prior works, relevant to this chapter are [2, 3] and [4]. Shuman and co-authors ad-
vocate in [2] the use of Chebyshev polynomials to perform distributed signal processing
tasks. Sandryhaila and Moura in [3] formalized the concept of FIR filtering on graphs
and propose a least-squares (LS) filter design approach. We will refer to these FIR graph
filters as distributed node-invariant FIR graph filters. Segarra and co-authors developed
in [4] the concept of distributed node-variant FIR filter, which implements distributively
a broader class of signal processing operations. In the co-authored work [1], we take
one more step further and introduce the distributed edge-variant FIR graph filters, which
contains the former FIR approaches as special cases.

The next section highlights our contributions in this direction and lists several ap-
plications where the FIRs are adopted. The FIR filtering recursions in the vertex domain
are described in Section 3.2. The filter design strategies for the node-invariant and node-
variant FIR graph filters are shown in Section 3.3. The proposed distributed edge-variant
FIR graph filter is then introduced in Section 3.4. Finally, Section 3.5 provides a chapter
summary and draws conclusions.

Parts of this chapter have been published in the IEEE CAMSAP Workshop (2017) [1].

39

3

40 3. FINITE IMPULSE RESPONSE GRAPH FILTERING

3.1. INTRODUCTION

In Section 2.3.5 of Chapter 2, we defined the graph filters as the tool to shape the graph
spectral content of a signal on the graph. The described procedure consisted of first
applying the GFT to the signal of interest, then applying a desired function to the sig-
nal spectral content [cf. (2.20)], and finally obtaining the signal in the vertex domain
through the IGFT. In this chapter, we will answer our research question (Q1.1) and de-
velop tools to process the graph signal directly in the vertex domain by a finite number
of operations, avoiding the implementation of GFT-IGFT. This way of proceeding brings
two main advantages. First, it reduces the computational costs from O(N 3) due to the
eigendecomposition of the shift operator to O(MK), where recall that M is the number
of edges in the graph and K in the number of operations performed in the vertex do-
main, referred to as the filter order. Second, through the locality of the shift operator [cf.
Section 2.2.3], it will allow us to implement these recursions distributively in the vertex
domain. On the downside, the price to pay for this reduced cost is that the obtained op-
eration will be an approximation of the desired operation and the accuracy will depend
on the type of recursion and the filter order K .

We start our analysis by first revisiting the state-of-the-art distributed FIR recursion
on graphs along with their design strategies and then we introduce the first thesis contri-
bution, i.e., the distributed edge-variant FIR graph filter. In the sequel, we conclude this
section with a detailed list of contributions and potential applications of the FIR graph
filters.

3.1.1. CONTRIBUTIONS

Within the context of FIR graph filtering, this chapter introduces the following contribu-
tions:

Contribution 3.1. We propose a novel algorithm to implement FIR graph filters distribu-
tively. We introduce an important change to the traditional way of implementing FIR
recursions on graphs, which yield an increment of the degrees of freedom (DoFs). The
latter allows us to significantly reduce the filter implementation costs while keeping a
similar distributed implementation as prior FIR graph filters.

Contribution 3.2. We propose an optimization scheme for designing the filter frequency
response of the introduced FIR graph filter. The proposed filter design approach tack-
les the challenges introduced by the increment of the DoFs and uses standard convex
optimization techniques to find the filter coefficients.

There are yet two important practical aspects with regards to the introduced ap-
proach:

• In the filter design phase, the computational cost in solving the optimization prob-
lem may often be high. Though being a computational issue, the filter design can
be performed offline, and we can allow ourselves to use an extensive computa-
tional power to solve it.

3.1. INTRODUCTION

3

41

• The reduction of the implementation costs for the introduced filter leads to sig-
nificant computational and communication gain in distributed networks. Specifi-
cally, it requires less data exchange between adjacent nodes to meet a target filter-
ing performance.

3.1.2. APPLICATIONS

With a bulk of literature on GSP and graph filters, we here illustrate some of the key
applications where the latter distinguish themselves better.

• Graph signal denoising. As illustrated with both Tikhonov and Wiener-based de-
noising [cf. Sections 2.3.6 and 2.4.2, respectively], one of the central applications
of graph filters is to remove spurious noise perturbations from the signal of inter-
est. The FIR graph filters can subsequently be used to distributively clean noisy
sensor measurements, or to suppress outliers.

• Graph signal interpolation. In sensor networks, because of energy constraints or
local failures, several sensors may not be able to observe the graph signal. In this
case, by means of graph filtering, we are interested to distributively learn these
missing values by only local exchanges between sensors. This, for instance, can be
the case that the signal of interest presents some properties w.r.t. the underlying
graph and the graph filter can solve a Tikhonov-, or Wiener-based interpolation
problem.

• Spectral clustering. One of the main strategies in partitioning a graph G of N nodes
in k inter-connected clusters (a group of nodes that share similar properties, such
as political orientation) has as the first step the computation of the first k eigenvec-
tors of the Laplacian matrix [5]. As the number of nodes N grow large, we run in a
computational bottleneck since the eigendecomposition cost of the graph Lapla-
cian is of order O(N 3). To this end, graph filters can play a role to isolate the first k
eigenvectors of the graph Laplacian with a lower cost, by simply filtering random
signals [6]. Subsequently, low order graph filters with high approximation accu-
racy are required to further reduce the costs in very large graphs.

• Network coding. With the massive explosion of sensor deployment in the internet-
of-things, network coding sets itself as an effective mechanism to improve the task
of routing. With network coding, relay sensors do not simply receive-and-forward
a packet, say x , but rather they mix the received packet content with their own
packet, say y , and transmit the mixed packet, say z = x + y . The destination node
can then retrieve the original message, by simply collecting a sufficient number of
packets from different relay sensors. This strategy has shown to be of great advan-
tage in both wireless sensor networks [7], and underwater sensor networks [8]. In
terms of GSP, [4] has shown that analog network coding can be performed distribu-
tively with FIR recursion on graphs since the latter allows nodes to mix their own
signal with that of their neighbors upon transmission. Then, to improve the over-
all energy efficiency of the network a low-order FIR filter is required for achieving
the imposed performance with fewer communication costs.

3

42 3. FINITE IMPULSE RESPONSE GRAPH FILTERING

• Analyzing brain signals. In neuroscience, the partition of the brain in several re-
gions, where interconnections between them can be expressed with a graph has
shown promising results in analyzing the neurological and individual behavior of
patients [9]. GSP posed itself recently as a novel approach to analyze functional
brain networks [10, 11]. In the latter works, a graph spectral analysis of brain sig-
nals has shown that users with different level of adaptability throughout learning
exhibit different graph spectral content. Then, a graph filter can isolate different
parts of the brain signal spectrum, which can then be used to discriminate be-
tween users of different learning levels.

Overall, we remark that these are only a few of graph filter applications. As the field of
GSP is growing fast, we believe that graph filters will find even more applications in the
tomorrow tasks over networks, such as non-Euclidean deep learning [12], recommenda-
tion systems [13], and data classification and compression [3], to name a few. Further-
more, in a more technical aspect, graph filters serve also as a basic building block for
graph filter banks [14], and graph wavelets [15].

3.2. FILTERING IN THE VERTEX DOMAIN

The FIR filter output yi at vertex vi consists of a linear combination of the input signal
x j of the K -hops away neighbors N(i ,K) of vi , i.e.,

yi =φi ,i xi +
∑

j∈N(i ,K)

φi , j x j , (3.1)

for some complex scalarsφi , j referred to as filter coefficients. That is, (3.1) says that a K th
order FIR graph filter (FIRK) is a localized linear operation and considers information
from nodes that are at most K edges away from vi . Next, we analyze two recursions that
allow the implementation of (3.1) with only local communications.

3.2.1. NODE-INVARIANT FIR FILTERING

One way to relate the frequency domain filtering (2.20), with localized operations in the
vertex domain is to express h(Λ) as polynomials of the form

h(Λ) =
K∑

k=0
φkΛ

k , (3.2)

i.e., the filter frequency response at the i th graph frequency h(λi) = ∑K
k=0φkλ

k
i is a K th

order polynomial at that particular frequency. The φk s are again complex scalar coeffi-
cients. By substituting (3.2) into (2.20) the filter output in the spectral domain is

ŷ =
K∑

k=0
φkΛ

k x̂, (3.3)

3.2. FILTERING IN THE VERTEX DOMAIN

3

43

Algorithm 3.1. Distributed computation of the node-invariant FIR output

1: Initialize the filter coefficients φ0, . . . ,φK and set x(0) = x
2: procedure COMPUTE LOCALLY THE FILTER OUTPUT

3: for k = 1, . . . , K do
4: Collect x(k−1)

m from all neighbors m ∈Nn

5: Compute x(k)
n = ∑

m∈Nn

Wn,m

(
x(k−1)

n −x(k−1)
m

)
6: Send x(k)

n to all neighbors Nn

7: Set yn =
K∑

k=0
φk x(k)

n

which by means of the IGFT becomes

y = U

(
K∑

k=0
φkΛ

k

)
UHx =

(
K∑

k=0
φk UΛk UH

)
x

(a)=
(

K∑
k=0

φk (UΛUH)k

)
x =

K∑
k=0

φk Sk x.

(3.4)

Equality (a) in (3.4) holds since (UΛUH)k = UΛk UH due to the normality of matrix U.
Finally, from (2.22) and (3.4), the filter input-output are related by the filter impulse re-
sponse

H =
K∑

k=0
φk Sk , (3.5)

i.e., it is a polynomial of order K in the graph shift operator S.
To see that (3.4) consists of local operations in the vertex domain and that it can be

implemented distributively, let us expand (3.4) as

y =φ0IN x+φ1Sx+ . . .+φK SK x, (3.6)

where, by recalling the shifted versions of the input signal x(k) = Sk x (cf. Section 2.2.3),
we write

y =φ0x(0) +φ1x(1) + . . .+φK x(K). (3.7)

Recursion (3.7) expresses the filter output y as a linear combination of the first K shifted
versions of the input signal over the graph. Then, as reported in Section 2.2.3, each node
can compute its output yi by locally exchanging previous shifted versions of the input
signal with its direct neighbors, i.e., x(1) = Sx, x(2) = Sx(1) and so forth. The latter sug-
gests that the FIR filtering operation is a localized linear transform in the vertex domain,
and it can be performed distributively over the network. Algorithm 3.1 resembles this
procedure for S = L.

Since all vertices apply the same coefficient φ j to the j th shifted version of x in (3.4)-
(3.7), to this implementation it is referred to as the node-invariant FIR graph filter.

3

44 3. FINITE IMPULSE RESPONSE GRAPH FILTERING

Algorithm 3.2. Distributed computation of the node-variant FIR output

1: Initialize the filter coefficientsφ(0), . . . ,φ(K) and set x(0) = x
2: procedure COMPUTE LOCALLY THE FILTER OUTPUT

3: for k = 1, . . . , K do
4: Collect x(k−1)

m from all neighbors m ∈Nn

5: Compute x(k)
n = ∑

m∈Nn

Wn,m

(
x(k−1)

n −x(k−1)
m

)
6: Send x(k)

n to all neighbors Nn

7: Set yn =
K∑

k=0
φ(k)

n x(k)
n

3.2.2. NODE-VARIANT FIR FILTERING

In [4], the authors extend the node-invariant FIR filter (3.5) to a node-variant version by
allowing nodes to apply different coefficients while shifting the signal. Specifically, they
define a node-variant FIR filter of order K as

Hnv =
K∑

k=0
diag(φ(k))Sk , (3.8)

whereφ(k) = (φ(k)
1 , . . . ,φ(k)

N)T is the N×1 vector of filter coefficients that each node applies
to all its neighbors at shift k. Observe that the node invariant FIR (3.5) is a particular case
of (3.8) and can be obtained by settingφ(k) =φk 1N .

The main advantage of the node-variant graph filter (3.8) is that it does not affect
the distributed local implementation of the filter with a larger number of DoFs (i.e., fil-
ter coefficients) that can be exploited in the design phase to approximate a larger set of
operations on graphs. For consistency, Algorithm 3.2 illustrates how the output

y =
K∑

k=0
diag(φ(k))Sk x, (3.9)

of a node-variant FIR is computed distributively for S = L.

There is yet a crucial difference between the node-variant graph filter (3.8) and the
node-invariant graph filter (3.5). Specifically, since diag(φ(k)) and S(k) do not share the
eigenvectors, it is not possible to have a spectral interpretation of (3.8) in terms of (3.2).
This, to some extent, limits our understanding on how (3.8) will shape the graph spectral
content of the input and, therefore, allows for filter design only in the vertex domain (See
later on Section 3.3.4.). However, some insight on the frequency representation of this
filer is provided by [4], which we report here for completeness.

By rewriting (3.8) as

Hnv =
K∑

k=0
diag(φ(k))UΛk UH, (3.10)

3.2. FILTERING IN THE VERTEX DOMAIN

3

45

the effect of the filter on the vi th node is given by the i th row of Hnv, i.e.,

hT
i = eT

i Hnv =
K∑

k=0
eT

i diag(φ(k))UΛk UH

=
K∑

k=0
[diag(φ(k))]i ,i eT

i UΛk UH,

(3.11)

where [diag(φ(k))]i ,i is the i th diagonal element of diag(φ(k)), i.e., the filter tap that vertex
vi applies to the kth shift. Then, being uT

i = eT
i U the i th row of U, the node-variant

output at the vi th node is

yi = hT
i x = uT

i

(
K∑

k=0
[diag(φ(k))]i ,iΛ

k

)
x̂. (3.12)

Finally, the above equation leads to the following observations:

• Φ̂i = ∑K
k=0[diag(φ(k))]i ,iΛ

k is the graph frequency response of a node-invariant

FIR graph filter of order K having as filter taps the i th node coefficients [diag(φ(k))]i ,i .

• The vi th node output yi can be viewed as the inner product between the GFT of
the input signal, x̂, and the impact that the graph spectrum has on vi , ui (i.e., how
strongly vi senses all graph frequencies), all modulated by the vi th node FIR graph
filter Φ̂i .

By redirecting the reader to the original work [4] for further detail, we conclude this sec-
tion with the following remark.

Remark 3.1. An alternative implementation of the node-variant FIRK (3.8) is the recur-
sion

H′
nv =

K∑
k=0

Sk diag(φ(k)), (3.13)

where now the filter first modulates the input signal with the coefficients diag(φ(k)) and
then applies the graph shift. Implementation (3.8) considers the opposite, i.e., first to shift
the input signal and then to modulate it by the nodes coefficients. Observe that (3.13)
again specializes in the node-invariant filter (3.5) forφ(k) =φk 1N , and preserves a similar
localized distributed implementation as the other two candidates [4].

3.2.3. DISTRIBUTED COSTS

To analyze the distributed costs of the previously introduced FIR recursions, let us first
remark that except the filter taps, which are set locally by nodes, both the node-invariant
and the node-variant FIRs have the same distributed strategy. Consequently, the follow-
ing analysis applies to both recursions.

In performing the filter distributedly on the network G , we assume that each node
vi ∈ V is imbued with memory, computation, and communication capabilities and is in
charge of calculating the local filter output [Hx]i . To do so, the node has to its disposal

3

46 3. FINITE IMPULSE RESPONSE GRAPH FILTERING

direct access to xi , as well as indirect access to the memory of its neighbors. For sim-
plicity of presentation, we pose an additional restriction to the computation model: we
will assume that nodes operate in synchronous rounds, each one consisting of a mes-
sage exchange phase and a local computation phase. In other words, in each round, vi

may compute any (polynomial-time computable) function which has as input, variables
from its local memory as well as those from the memory of its neighbors in G . Since the
examined algorithms are, in effect, dynamical systems, in the following we will adopt the
term iteration as being synonymous with rounds. Furthermore, we assume that each it-
eration lasts exactly one time instant.

For the distributed computation of a K th order FIR output, recall that SK x = S
(
SK−1x

)
,i.e., each node vi can compute the K -th term from the values of the (K −1)th term in its
neighborhood, in an iterative manner. The algorithm performing the FIRK graph filter
terminates after K iterations, and if a more efficient recursive implementation is used [2],
in total, each node vi exchanges K deg(vi) values with its neighbors, meaning that over-
all, the network exchanges N K deg(vi) variables, amounting to a communication cost
of O(MK). This computational complexity is in general much smaller than O(N 2) (i.e.,
matrix-vector multiplications) since practical graphs are relatively sparse, i.e., they con-
tain few edges, and the filter order K is often chosen much smaller than N .

Finally, the above analysis sheds light on the impact that the filter order K has on the
filter distributed implementation. On one hand, a high order K is preferred to improve
the filter approximation accuracy. On the other hand, this increment of the approxima-
tion accuracy is traded with more exchanges between nodes, thus higher costs.

3.3. FILTER DESIGN

We now focus on the task of finding the filter taps that approximate a given frequency
response h∗(Λ), or a filtering operation matrix H∗. As the node-invariant implementa-
tion is the most widely used, most of this section is dedicated to this recursion, while in
Section 3.3.4 we touch the design strategy for the node-variant FIR filter, as well.

3.3.1. FREQUENCY AWARE VERSUS UNIVERSAL DESIGN

There are two different strategies of finding the graph filter coefficients: (i) the frequency
aware design, where the specific values of the graph frequencies are known; and (i i) the
universal design, where only the interval range where the graph frequencies are con-
tained is known.

Frequency aware design. This scenario considers that the eigendecomposition S =
UΛUH is computationally feasible and the goal is to find the filter coefficients φk in (3.5)
that approximate a desired frequency response h∗(Λ). By exploiting the structure of the
FIRK graph filter (3.5), the solution for the filter coefficients consists of solving the linear

3.3. FILTER DESIGN

3

47

system

φ0 +φ1λ0 + . . .+φKλ
K
0 = h∗(λ0),

φ0 +φ1λ1 + . . .+φKλ
K
1 = h∗(λ1),

...

φ0 +φ1λL−1 + . . .+φKλ
K
L−1 = h∗(λL−1),

(3.14)

where we consider S to have L ≤ N distinct eigenvalues. The above linear system of L
equations and K +1 unknowns can then be written in the matrix form as

1 λ0 · · · λK
0

1 λ1 · · · λK
1

...
...

. . .
...

1 λL−1 · · · λK
L−1

φ0

φ1
...
φK

=

h∗(λ0)
h∗(λ1)

...
h∗(λL−1)

 , (3.15)

which has a full-rank L×(K+1) Vandermonde system matrix [16]. Note that (3.15) has: (i)
a unique solution if L = K +1, i.e., the filter taps are in number the same as the distinct
graph frequencies; (i i) infinite many solutions if L ≤ K ; and (i i i) no-solution for L ≥
K +1.

As stated earlier, a major challenge of this design strategy is the eigendecomposition
cost of S, which practically would make appropriate if we want to perform an optimal fil-
tering task distributively. In a centralized implementation, on the other hand, the eigen-
decomposition of S allows us to directly process the GFT of the signal, rendering this
approach suboptimal.

Universal design. The universal filter design is blind about the specific eigenvalues
S and assumes knowledge about the interval [λmin,λmax] where the graph frequencies
lie. Computationally, both λmin and λmax can be estimated with a much lower cost, or
when S = Ln is chosen we have λ ∈ [0,2]. The desired frequency response h∗(λ) is then
a continuous function in the graph frequency λ and this design strategy aims at finding
the filter taps that approximate h∗(λ) over the whole interval [λmin,λmax]. Figure 3.1
illustrates one example and highlight the differences with the frequency aware design.

Besides avoiding the eigendecomposition of S, the universal design is beneficial in
those cases where the underlying structure is unknown to the designer, or in cases the
topology changes in time1. The corresponding filter coefficients are thus independent of
the graph and universally applicable. Therefore, we can design a single set of coefficients
that instantiate the same graph frequency response h∗(λ) over the different bases.

To further illustrate the universality property, consider the application of a universal
graph filter to two different graphs G1 and G2 of N1 and N2 nodes with graph frequency
sets {λ1,n}N1−1

n=0 , {λ2,n}N2−1
n=0 , and eigenvectors U1 = {u1,n}N1−1

n=0 , U2 = {u2,n}N2−1
n=0 . The filter

will attain the same response h∗(λ) over both graphs, but, in each case, supported over a
different set of graph frequencies: For G1, filtering results in y1 = U1

∑N1−1
n=0 h∗(λ1,n)UH

1 x,

whereas for G2 the filtering result is y2 = U2
∑N2−1

n=0 h∗(λ2,n)UH
2 x. Thus, the universality of

1An example of topological changes may be moving sensors in a sensor network.

3

48 3. FINITE IMPULSE RESPONSE GRAPH FILTERING

Figure 3.1: Illustration of the desired frequency response (black solid line) and its approximations with a
frequency aware and universal design.

this approach lies in the correctness to implement h∗(λ) on all graphs, yet with different
outputs in different topologies.

In the upcoming three sections, we focus more on technical detail about these design
strategies and propose ways to find the FIR filter coefficients.

3.3.2. LINEAR LEAST SQUARES-BASED DESIGN

As mentioned in (3.15), for filter orders K +1 ≤ L the linear system does not have a solu-
tion. However, in practice, we are interested to have K ¿ L to keep limited the computa-
tional and communication cost. The filter coefficients φ = (φ0, . . . ,φK)T are then found
with a least squares approach, i.e.,

φ=Ψ†
K diag(h∗(Λ)), (3.16)

whereΨK denotes the Vandermonde matrix in (3.15) and h∗(Λ) = diag(h∗(λ0),h∗(λ1), . . . ,h∗(λL−1)).
The founded filter coefficientsφ provide a frequency response that approximates h∗(Λ)
with a polynomial function, yet the optimal approximation in a squared-error sense.

For the universal design, the least-squares approach finds the filter coefficients φ as
the solution of

φ= argmin
φ0,...,φK

∫
λ

∣∣∣∣∣ K∑
k=0

φkλ
k −h∗(λ)

∣∣∣∣∣
2

dλ, (3.17)

which by (fine) gridding the frequency range [λmin,λmax] in L′ (not necessarily smaller
than N) points becomes

φ= argmin
φ0,...,φK

L′−1∑
l=0

∣∣∣∣∣ K∑
k=0

φkλ
k
l −h∗(λl)

∣∣∣∣∣
2

, (3.18)

and can reformulated and solved similar to (3.16).

3.3. FILTER DESIGN

3

49

3.3.3. CHEBYSHEV POLYNOMIAL-BASED DESIGN

Another approach initially introduced by [15] for approximation purposes, and then
elaborated by [2] in the context of graph filtering is to make use of Chebyshev polynomi-
als for approximating the desired frequency response h∗(λ).

Recall that for a scalar x ∈ [−1,1], the kth Chebyshev polynomial of the first king (for
short Chebyshev polynomial) Tk (x) is

Tk (x) =

1, if k = 0

x if k = 1

2xTk−1(x)−Tk−2(x) if k ≥ 2

. (3.19)

These polynomials form an orthogonal basis for any function h(x) on [−1,1] that is square
integrable w.r..t. the measure d x/

p
1−x2. So, h(x) can be represented as

h(x) = 1

2
b0 +

∞∑
k=1

bk Tk (x), (3.20)

where {bk }∞k=0 are the coefficients in the expansion of h(x) in the Chebyshev polynomial
basis [17].

To adopt the Chebyshev polynomials in approximating h∗(λ) in the interval [0,λmax],
consider first the variable transformation λ= λmax

2 (x +1) to express h∗(λ) as

h∗(λ) = 1

2
c0 +

∞∑
k=1

ck T k (λ), for all λ ∈ [0,λmax], (3.21)

with

T k (λ) := Tk (
λ−γ
γ

),

γ := λmax

2
,

ck := 2

π

∫ π

0
cos(kθ)h

(
γ (cos(θ)+1)

)
dθ.

(3.22)

Then, for k ≥ 2, the shifted Chebyshev polynomials can be computed recursively as

T k (λ) = 2

γ
(λ−γ)T k−1(λ)−T k−2(λ). (3.23)

With this in place, we can find the first K Chebyshev coefficients in (3.21) as the ones
that approximate the continuous frequency response h∗(λ) on the interval [0,λmax].
Subsequently, the output of a K th order Chebyshev polynomial FIR graph filter can be
either computed iteratively as

T k (S)x = 2

γ
(S−γIN)(T k−1(S)x)−T k−2(S)x, (3.24)

or as

T K (S)x =
K∑

k=0
φk Sk x. (3.25)

3

50 3. FINITE IMPULSE RESPONSE GRAPH FILTERING

Observe that both (3.24)-(3.25) are localized distributed implementations, and (3.25) is
simply obtained by expanding (3.24) to all its terms for some specific relation between
the coefficients φk and ck .

3.3.4. DESIGN IN THE VERTEX DOMAIN

So far we have been focused on designing the filter coefficientsφ in the graph frequency
domain to approximate a given frequency response h∗(λ). In this section, we consider
the case of finding these coefficients in the vertex domain to approximate an operator
matrix H∗. An example of the latter consists of approximating a non-local operator H∗
as a polynomial in S to allow for distributed computation. Moreover, this design strategy
allows us to design the filter coefficients also for the node-variant FIR filter.

For the node-invariant FIR, the coefficients are found as the solution of

φ= argmin
φ0,...,φK

∥∥∥∥∥ K∑
k=0

φk Sk −H∗
∥∥∥∥∥

2

2

, (3.26)

and similarly for the node-variant FIR we have

(φ(0),φ(1), . . . ,φ(K)) = argmin
φ(0),φ(1),...,φ(K)

∥∥∥∥∥ K∑
k=0

diag(φ(k))Sk −H∗
∥∥∥∥∥

2

2

. (3.27)

Observe that both (3.26) and (3.27) are least squares convex problems, and can be solved
efficiently with off-the-shelf algorithms [18]. Finally, as we now deal with matrix approx-
imations, an alternative to the 2-norm in (3.26)-(3.27) is the Frobenius norm ‖ ·‖F.

3.3.5. DISCUSSIONS

With regards to the FIR graph filter design, we state the following:

• The benefit of the frequency aware design is that the obtained filter coefficients
are the ones that minimize the approximation error on the specific set of graph
frequencies that we are interested in. However, the eigendecomposition cost of
O(N 3) may result prohibitive in large graphs. Such an approach is mostly recom-
mended for tasks that require the knowledge of the specific eigenvalues, such as
the finite-time consensus [19].

• The universal design trades the eigendecomposition cost with approximation ac-
curacy. Indeed, since the filter taps approximate h∗(λ) on the continuous range
[0,λmax], the filter frequency response may result in a worse approximation accu-
racy on the specific graph frequencies {λn}N

n=0.

• Differently, from the frequency aware design (3.15), the order of an FIR designed
universally is not necessarily limited to N . In fact, by increasing K we can approxi-
mate any square integrable frequency response arbitrarily well. On the other hand,
a higher K implies more communications in a distributed setting.

3.4. DISTRIBUTED EDGE-VARIANT FIR GRAPH FILTERS

3

51

• FIR graph filters of orders K close to N may run into numerical issues when the
eigenvalues of the shift operator are numerically close to each other. These issues
are amplified in graphs with more than a couple hundreds of nodes.

• In the least-square universal design, it should be paid attention to the number
of gridding points L′. From what said above, a very fine grid may run in overfit-
ting issues. On the other hand, a sparse grid will encounter opposite challenges,
i.e., the filter coefficients do not approximate good enough the frequency response
in graph frequencies that are intermediate to two gridding points.

• Finally, observe that though we design the filter taps to approximate a function on
the eigenvalues, i.e., h∗(λ), the filter frequency response amplifies/suppresses the
eigenvector contributions related to different eigenvalues. Specifically, for a graph
with λi = λ j , a filter with frequency response h(λi) = h(λ j) will act in the same
way on two different eigenvectors (graph modes) ui and u j .

3.4. DISTRIBUTED EDGE-VARIANT FIR GRAPH FILTERS

So far, we have considered two implementations of FIR graph filters: i) the node-invariant
FIRs [cf. Section 3.2.1] where all nodes weight equally the same all their neighbor’s sig-
nals; and i i) the node-variant FIRs [cf. Section 3.2.2] where different nodes weight differ-
ently all their neighbor’s signals. In this section, we introduce a generalization of the NV
FIRs, named the edge-variant (EV) FIR graph filter, where different nodes weight differ-
ently each of their neighbor’s signals. As we shall see next, this improvement of the DoFs
will lead to a reduction of the filter order, and hence of the distributed implementation
costs.

3.4.1. EDGE-VARIANT FIR FILTERING

We define an EV FIR graph filter in the vertex domain as

Hev , Φ0 +Φ1 ¯S+ (Φ2 ¯S)(Φ1 ¯S)+ . . .

+(ΦK ¯S)(ΦK−1 ¯S) · · · (Φ1 ¯S)

=
K∑

k=1

k∏
j=1

(Φ j ¯S)+Φ0, (3.28)

whereΦ j ∈RN×N are edge-weighting matrices that apply different weights to the entries
of S. That is, the EV filter (3.28) concedes the opportunity to each node to weight differ-
ently and independently the contribution of its neighbors in different shifts. Moreover,
there is no symmetric structure imposed on the matrices Φ j and Φ0 is considered to
be a diagonal for (3.28) to enjoy a distributed implementation. Finally, observe that re-
cursion (3.28) presents the same distributed implementation of the node-invariant and
node-variant FIRs. Algorithm 3.3 illustrates the EV distributed implementation for S = L.

Given then the desired output

y∗ = H∗x, (3.29)

3

52 3. FINITE IMPULSE RESPONSE GRAPH FILTERING

Algorithm 3.3. Distributed computation of the edge-variant FIR output

1: Initialize the filter coefficientsΦ0, . . . ,ΦK and set x(0) = x
2: procedure COMPUTE LOCALLY THE FILTER OUTPUT

3: for k = 1, . . . , K do
4: Collect x(k−1)

m from all neighbors m ∈Nn

5: Compute x(k)
n = ∑

m∈Nn

[Φk]n,mWn,m

(
x(k−1)

n −x(k−1)
m

)
6: Send x(k)

n to all neighbors Nn

7: Set yn = [Φ0]n,n x(0)
n +

K∑
k=1

x(k)
n

the EV graph filter Hev (3.28) is designed in the vertex domain as

minimize
Φ j

∥∥∥H∗−
K∑

k=1

k∏
j=1

(Φ j ¯S)+Φ0

∥∥∥
F

. (3.30)

Unfortunately, (3.30) is a high-dimensional nonconvex problem that might lead to sub-
optimal results due to its multiple local minima. To address this issue, in the sequel, we
propose a two-step approach for designing the weighting matrices {Φ j }K

j=0.

First, let us consider the following decomposition for approximating a given filter H∗
by a finite matrix series:

H∗ ≈
K∑

k=1
Φ̃k ¯Sk + Φ̃0, (3.31)

where matrices Φ̃k share the support with Sk and Φ̃0 is diagonal. This decomposition
perfectly describes the filter H∗ for sufficiently large K and/or well-connected graphs,
as all entries of SK are nonzero. The decomposition (3.31) allows us to approximate any
filter as a set of matrices, {Mk }K

k=0, that can be decomposed through an element-wise

operation, i.e., Mk = Φ̃k ¯Sk . Then, by employing the definition of the Frobenius norm,
we find the weighting matrices {Φ̃}K

k=0 from (3.31) as the solution of

minimize
{φ̃k }

∥∥∥h̃−
K∑

k=0
diag(sk)φ̃k

∥∥∥
2

, (3.32)

where h∗ := vec(H∗), φ̃k := vec(Φ̃k) and sk := vec(Sk). As problem (3.32) is clearly a
convex, methods for its efficient solution are readily available [18]. After the weighting
matrices {Φ̃k } are obtained, as the second step, we require to obtain the weighting ma-
trices of the edge-variant filter in (3.28). To do so we propose to fit the matrices {Φk }K

k=0
by sequentially solving the problem:

minimize
Φk

∥∥∥∥Φ̃k ¯Sk − (Φk ¯S)
k−1∏
j=1

(Φ j ¯S)

∥∥∥∥
F

, (3.33)

where it is assumed that the matrices {Φ j } j<k have been already obtained withΦ0 = Φ̃0

andΦ1 = Φ̃1.

3.4. DISTRIBUTED EDGE-VARIANT FIR GRAPH FILTERS

3

53

Algorithm 3.4. Distributed computation of the constrained edge-variant FIR output

1: Initialize the filter coefficientsΦ0, . . . ,ΦK , set x(0) = x and y(0) =Φ0x
2: procedure COMPUTE LOCALLY THE FILTER OUTPUT

3: for k = 1, . . . , K do
4: Collect x(k−1)

m from all neighbors m ∈Nn

5: Compute x(k)
n = ∑

m∈Nn

Wn,m

(
x(k−1)

n −x(k−1)
m

)
6: Store locally y (k)

n = ∑
m∈Nn

[Φk]n,mWn,m

(
x(k−1)

n −x(k−1)
m

)
7: Send x(k)

n to all neighbors Nn

8: Set yn =
K∑

k=0
y (k)

n

Even though the proposed EV graph filter (3.28) is the most general version of a lin-
ear graph filter, the two-step design of the weighting matrices might result in an involved
and numerically unstable task. Considering these facts, in the next section, we develop
a constrained version of the EV FIR that provides a simpler design for the weighting ma-
trices and still preserves the efficient implementation with complexity O(MK).

3.4.2. CONSTRAINED EDGE-VARIANT FIR FILTERING

Instead of considering the filter structure in (3.28), consider the following description for
a ready-to-distribute constrained edge-variant (C-EV) FIR

Hc-ev ,
K∑

k=1
(Φk ¯S)Sk−1 +Φ0. (3.34)

Similarly to (3.28), the matrix Φk ∈ RN×N is an edge-weighting matrix whose support is
equal to the one of the shift operator matrix, S andΦ0 is still diagonal.

From (3.34) it can be seen that the C-EV FIR is distributed in nature since at each step
the previous intermediate result, x(k) = Sk−1x(k−1), is locally weighted and combined at
each node, i.e., y(k) = (Φk ¯S)x(k), similarly to the node-invariant and NV graph filters.
Algorithm 3.4 further illustrates the distributed implementation of the C-EV FIR graph
filter for S = L.

Following the same strategy as in the previous section, we can design the weight-
ing matrices {Φk }K

k=0 through a least squares approach when the criterion (3.30) is em-
ployed. That is, the optimal weighting matrices are the solution to the optimization
problem

minimize
{φk }

∥∥∥h∗−
K∑

k=1
(Sk−1 ⊗ IN)diag(s)φk +φ0

∥∥∥
2

, (3.35)

where s = diag(S) and φk = vec(Φk). The vector h∗ = vec(H∗) is the vectorized desired
filter response matrix. As the support of the weighting matrices is known, i.e., the loca-
tions of the nonzero entries are given by the nonzero entries of the shift operator, the

3

54 3. FINITE IMPULSE RESPONSE GRAPH FILTERING

filter (in its vectorized form) can be expressed as

hc-ev =
K∑

k=1
S̄kφ̄k + φ̃0, (3.36)

where hc-ev = vec(Hc-ev), φ̄k is the vector with the nonzero entries of φk , and S̄k is the
matrix (Sk−1 ⊗ IN)diag(s) with the columns related to the zero entries of φk removed.
That is, as the support for each Φk is known and only its nonzero entries must be esti-
mated.

Therefore, the optimal weights for the edges are given by the solution to the linear
system

h = [
IN S̄1 . . . S̄K

]

φ̄0
φ̄1

...
φ̄K

= S̄0:K φ̄0:K ,

(3.37)

where S̄0:K ∈RN 2×nnz(S)·K+N and φ̄0:K ∈Rnnz(S)·K+N . Here, nnz(·) is the number of nonzero
entries of a matrix. The linear system (3.37) has a unique solution as long the condition
rank(S̄0:K) = nnz(S) ·K + N holds, otherwise regularization should be used in order to
achieve a unique solution for (3.37). We conclude this section with the following remark:

Remark 3.2. It is worth noticing that the NV graph filter [cf. Section 3.2.2]:

Hnv =
K∑

k=1
diag(φk)Sk +diag(φ0), (3.38)

is a particular case of the C-EV graph filter, in which each row of the matrices {Φk }K
k=1 have

all their non-zero elements equal, i.e.,

Hnv =
K∑

k=1

(
(φk 1T

N)¯S
)
Sk−1 +diag(φ0). (3.39)

3.4.3. NUMERICAL RESULTS

In this section, we test the proposed C-EV graph filter for approximating a user-provided
frequency response. For these tests, we consider a random community graph generated
with the GSP toolbox [20], with N = 256 nodes and shift operator S = Ln, i.e., the nor-
malized Laplacian. Further, the maximum order of the FIR graph filters that is used as
the baseline is Kmax = 25. For analysis, we consider two frequency responses commonly
used in the graph community: (i) an exponential kernel, i.e.,

h(λ) := e−γ(λ−µ)2
,

and (i i) an ideal low pass filter, i.e.,

h(λ) =
{

1 0 ≤λ≤λc

0 otherwise,

3.4. DISTRIBUTED EDGE-VARIANT FIR GRAPH FILTERS

3

55

0 5 10 15 20

10
-15

10
-9

10
-4

10
0

0 5 10 15 20 25

0.2

0.3

0.4

0.5

0.6

N
M

SE
N

M
SE

K

K

C-EV Filter

NV Filter
Node-invariant

Figure 3.2: Error comparison between the proposed EV graph filter, the NV graph filter and the node-invariant
FIR for different orders. (Top) Performance in the ideal low pass scenario. (Bottom) Performance in the

exponential kernel.

with γ and µ being the spectrum decaying factor and the central parameter for the ex-
ponential kernel, respectively, and λc the cut-off frequency in the ideal low pass fil-
ter2. The matrix filter responses used to solve (3.37) are the desired filter response, i.e.,
~(H∗) =~(Uh(Λ)UH).

Figure 3.2 shows a comparison in terms of the normalized mean squared error (NMSE)
between the approximated and the desired frequency responses for both scenarios. In
the low pass scenario, we remark that the C-EV graph filter achieves the error floor for
K = 8, while the NV graph filter for K = 14 and the node-invariant FIR for K = 25. In the
exponential kernel scenario, we observe that the gap for a fixed NMSE between the con-
strained EV and NV graph filters is only two orders while the node-invariant FIR requires
much higher orders to meet the imposed NMSE target.

In Figure 3.3 we depict the approximation accuracy of the C-EV graph filter (K = 8)
with that of the node-invariant FIRs of different orders for the low pass filter case. We
note that the approximation quality for the C-EV graph filter is similar to that of the

2The exponential kernel frequency response is preferred as it resembles the Tikhonov denoising problem on
graphs (see also Section 2.3.6 in Chapter 2). The low-pass step function, on the other hand, is used in com-
pressive clustering [6] and in graph filter banks [14].

3

56 3. FINITE IMPULSE RESPONSE GRAPH FILTERING

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

Desired Response
C-EV, FIR8
Node-inv. FIR15
Node-inv. FIR20
Node-inv. FIR25

Eigenvalues[λ]

h
(λ

)

Figure 3.3: Comparison of the frequency response for a FIR filter of increasing order with the response of the
C-EV filter of order K = 8 when approximating a perfect low pass filter.

node-invariant FIR with K = 25.3 This order reduction implies that fewer communi-
cation rounds in the graph are required to implement such low pass filter. Similarly, the
comparison between the response of the different filters approximating an exponential
kernel filter is shown in Figure 3.4. In this case, the exponential kernel, with parameters
{µ = 0.75,γ = 3}, is well-approximated by the C-EV graph filter for K = 3. This approx-
imation produces a similar result with a node-invariant FIR of order K = 5, providing
fewer communication rounds. Notice that the C-EV filter of order K = 2 outperforms all
node-invariant FIRs with K ≤ 4.

It is worth noticing that the improved accuracy of the C-EV graph filter is due to its
larger DoFs, i.e., DoFsc-ev = nnz(§) ·K +N > N · (K +1) = DoFsnv leading to a saving in
terms of communications and computational complexity compared to a distributed im-
plementation of FIR graph filters. However, due to this design freedom, we would like
to remark that the filter design for the C-EV graph filters might suffer from numerical
issues for large filter orders due to the conditioning of the matrix §̄0:K , i.e., the number of
parameters to be estimated (nnz(S)·K +N) become larger than the effective rank of §̄0:K .
Similar problems might arise for NV graph filters of high orders, although the number of
parameters to estimate are smaller compared to the C-EV graph filter.

3We also remark that the approximation accuracy of the node-invariant FIR does not improve for K > 25.

3.5. CONCLUDING REMARKS

3

57

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

Desired Response

Eigenvalues[λ]

h
(λ

)

C-EV, FIR2
C-EV, FIR3
Node-inv. FIR4
Node-inv. FIR5

Figure 3.4: Comparison of the frequency response for a FIR filter of increasing order with the response of the
C-EV filter of order K = 8 when approximating an exponential kernel with parameters µ= 0.75 and γ= 3.

3.5. CONCLUDING REMARKS

This chapter introduced the first type of graph filters, the finite impulse response graph
filter. FIR graph filters, the direct homonym of their temporal counterpart are charac-
terized by a finite impulse response now in the vertex domain. We first introduced two
state-of-the-art architectures to implement distributed FIR graph filtering, namely the
node-invariant and node-variant FIR graph filters. These architectures enjoy an efficient
distributed implementation in the vertex domain, allowing for a number of local com-
munications that are related to the number of graph edges and the filter order.

We then introduced the filter design task such that a given frequency response is ap-
proximated. We illustrated two approaches to do so. The first approach designs the filter
coefficients by exploiting the eigendecomposition of the graph shift operator matrix, al-
lowing the filter coefficients to accurately match the desired response on the specific
graph frequencies. The second approach avoids the eigendecomposition costs and de-
signs the filter coefficients in a continuous range of graph frequencies, where the eigen-
values of the graph shift operator are supposed to lie. As a consequence, by aiming to
minimize the approximation error over all the frequency interval, the approximation ac-
curacy w.r.t. the first approach is potentially lower.

Finally, we introduced a novel architecture to implement FIR graph filters, namely
edge-variant graph filter. These EV graph filters generalize the former two architectures
and reduce the communication and computational complexity of the distributed imple-

3

58 FURTHER READING

mentation. Similarly, we proposed design strategies for the EV filters and show that a
better approximation accuracy is achieved when approximating an exponential kernel-
like and a low-pass step function graph frequency response.

FURTHER READING

[1] M. Coutino, E. Isufi, and G. Leus, Distributed Edge-Variant Graph Filters, in Interna-
tional Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP) (IEEE, 2017).

[2] D. I. Shuman, P. Vandergheynst, and P. Frossard, Distributed signal processing via
chebyshev polynomial approximation, arXiv preprint arXiv:1111.5239 (2011).

[3] A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs, IEEE transac-
tions on signal processing 61, 1644 (2013).

[4] S. Segarra, A. Marques, and A. Ribeiro, Optimal graph-filter design and applica-
tions to distributed linear network operators, IEEE Transactions on Signal Process-
ing (2017).

[5] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data
representation, Neural computation 15, 1373 (2003).

[6] N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst, Compressive spectral clus-
tering, in International Conference on Machine Learning (2016) pp. 1002–1011.

[7] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, Network information flow, IEEE Trans-
actions on information theory 46, 1204 (2000).

[8] E. Isufi, H. Dol, and G. Leus, Advanced flooding-based routing protocols for under-
water sensor networks, EURASIP Journal on Advances in Signal Processing 2016, 52
(2016).

[9] S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, A resilient, low-
frequency, small-world human brain functional network with highly connected as-
sociation cortical hubs, Journal of Neuroscience 26, 63 (2006).

[10] W. Huang, L. Goldsberry, N. F. Wymbs, S. T. Grafton, D. S. Bassett, and A. Ribeiro,
Graph frequency analysis of brain signals, IEEE Journal of Selected Topics in Signal
Processing 10, 1189 (2016).

[11] J. D. Medaglia, W. Huang, E. A. Karuza, A. Kelkar, S. L. Thompson-Schill, A. Ribeiro,
and D. S. Bassett, Functional alignment with anatomical networks is associated with
cognitive flexibility, Nature Human Behaviour 2, 156 (2018).

[12] M. Defferrard, X. Bresson, and P. Vandergheynst, Convolutional neural networks
on graphs with fast localized spectral filtering, in Advances in Neural Information
Processing Systems (2016) pp. 3844–3852.

FURTHER READING

3

59

[13] J. Ma, W. Huang, S. Segarra, and A. Ribeiro, Diffusion filtering of graph signals
and its use in recommendation systems, in Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on (IEEE, 2016) pp. 4563–4567.

[14] S. K. Narang and A. Ortega, Perfect reconstruction two-channel wavelet filter banks
for graph structured data, IEEE Transactions on Signal Processing 60, 2786 (2012).

[15] D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs via spec-
tral graph theory, Applied and Computational Harmonic Analysis 30, 129 (2011).

[16] F. R. Gantmakher, The theory of matrices, Vol. 131 (American Mathematical Soc.,
1998).

[17] J. C. Mason and D. C. Handscomb, Chebyshev polynomials (CRC Press, 2002).

[18] S. Boyd and L. Vandenberghe, Convex optimization (Cambridge university press,
2004).

[19] A. Sandryhaila, S. Kar, and J. M. Moura, Finite-time distributed consensus through
graph filters, in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Inter-
national Conference on (IEEE, 2014) pp. 1080–1084.

[20] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst, and
D. K. Hammond, Gspbox: A toolbox for signal processing on graphs, arXiv preprint
arXiv:1408.5781 (2014).

4
INFINITE IMPULSE RESPONSE

GRAPH FILTERING

Time flies over us, but leaves its shadow behind.

Nathaniel Hawthorne

In this chapter, we discuss the class of distributed graph filters that attain a rational graph
frequency response. These filters recast in the family of infinite impulse response (IIR)
graph filters. Being characterized by a rational frequency response, IIR graph filters have
the potential to achieve higher approximation accuracies regarding their FIR counter-
parts. They will provide exact closed-form solutions for tasks such as Tikhonov- (2.24)
and Wiener- (2.26) based denoising and graph signal interpolation under smoothness
assumption. On the downside, these filters will achieve their graph frequency response
after infinite iterations in the vertex domain, yet characterized by a linear convergence
rate.

IIR filtering over networks has been approached in recent years from different per-
spectives. The authors in [3, 4] introduced an infinite recursion, named the potential
kernel, to perform inverse filtering for identifying information peaks within a sensor
network. In [5], inverse problems over a graph were solved with the steepest descent
approach. In [6] and later extended to the co-authored works [1, 2] we formalized the
inverse filtering on graphs with autoregressive moving average (ARMA) graph filters. In
this chapter, we show how this formalization highlights the role played by the graph shift
operator and the desired filter response in the design phase, and how it links to the FIR
graph filters.

We begin the chapter with introducing IIR filtering in the graph Fourier domain in
Section 4.1. The ARMA recursions to implement these filters in the vertex domain are
described in Sections 4.2 and 4.3. These sections contain also the filters’ design strategies

Parts of this chapter have been published in the IEEE Transactions on Signal Processing [1] (2017) and in the
IEEE ICASSP [2] (2017).

61

4

62 4. INFINITE IMPULSE RESPONSE GRAPH FILTERING

and the numerical evaluation. In Section 4.4 we conclude the chapter with a summary
of the main results.

4.1. INTRODUCTION

The primary aim of this chapter is to introduce recursions that implement a graph filter
with a frequency response

h(λ) = hn(λ)

hd (λ)
=

∑Q
q=0 bqλ

q

1+∑P
p=1 apλp

, (4.1)

where h(λ) consists of the ratio of two polynomial hn(λ) = ∑Q
q=0 bqλ

q and hd(λ) = 1+∑P
p=1 apλ

p . The positive scalars P and Q denote the orders of the denominator and nu-
merators, while ap and bq are complex coefficients. This improvement of degrees of
freedom allows us to compute a larger family of responses with respect to the FIR coun-
terpart [cf. (3.2)]. We refer to form (4.1) as an ARMAP,Q graph filter, while for P = Q = K
we use the shorthand notation ARMAK .

These ARMA graph filters will be our tool to provide an answer to the research ques-
tion (Q1.2). As in the FIR case, we are interested in recursions that perform (4.1) distribu-
tively. However, the ARMA filters introduce a crucial challenge in the design phase; the
filter stability. In fact, the denominator coefficients ap must satisfy 1+∑P

p=1 apλ
p 6= 0 to

have a stable filter. As we will show from the next section, the IIR structures that imple-
ment (4.1) in the vertex domain will require infinite iterations between nodes to attain
the frequency response. Therefore, the coefficients ap and bq should be designed to
ensure a fast and convergent1 recursion.

In the sequel, we provide the chapter contributions, while the potential applications
of the ARMA graph filters are the same as those of the FIR [cf. Section 3.1.2].

4.1.1. CONTRIBUTIONS

In the context of IIR graph filters, this chapter provides the following contributions.

Contribution 4.1. We formalize the concept of inverse filtering on graphs through ARMA
recursions. These filters pledge themselves as direct contenders of the FIR graph filters
for processing graph signals, now, with a rational frequency response.

Contribution 4.2. We propose three types of ARMA recursions, namely the parallel, the
periodic and the feedback-looped implementation, to attain a rational graph frequency
response. All methods can be implemented distributedly, attain fast convergence, and
have communication and memory requirements linear in the number of graph edges
and the approximation order.
1We remark that the concepts of stability and convergence are different in this thesis. With stable filters, we

require the denominator of (4.1) to be non zero. Meanwhile, for a recursion to be convergent we intend an
algorithm capable to achieve at steady-state the designed frequency response (4.1) and not diverging to a
different value. The latter is similar to the convergence analysis performed for gradient descent algorithms
[7, 8]. In this context, an IIR graph filter can be stable but not convergent.

4.2. ARMA GRAPH FILTERS

4

63

Contribution 4.3. We propose a filter design strategy to account for distributable graph
filtering. We use a variant of the Shanks’ method, to approximate any desired graph fre-
quency response. We provide exact design strategies for inverse problems graphs, such
as the Tikhonov- and Wiener-based graph signal denoising and graph signal interpola-
tion under smoothness assumptions.

4.2. ARMA GRAPH FILTERS

In complete analogy with the temporal IIR filters, an ARMA graph filter requires the
nodes to exchange information of both the filter’s input and output signals. The ARMAP,Q

output yi at vertex vi can be written as

yi =
∑

j∈N (i ,P)
ai , j y j +

∑
j∈N (i ,Q)

bi , j x j +bi ,i xi , (4.2)

where ai , j and bi , j are complex coefficients. To compute yi , vertex vi requires indirect
access to its P-hops neighbors’ output signal y j for j ∈N (i ,P) and to its Q-hops neigh-
bors’ input signal x j for j ∈N (i ,Q), and direct access to its input signal xi . In Chapter 3,
we saw that FIR graph filters allowed us to have indirect access to the input signal of
the neighbors. Therefore, the practical challenge of (4.2) is in accessing the neighboring
output signal.

To render (4.2) practical, nodes can compute their outputs iteratively over time as

[yt]i =
∑

j∈N (i ,P)
ai , j [yt−1] j +

∑
j∈N (i ,Q)

bi , j x j +bi ,i xi , (4.3)

where [yt]i is the i th element of the filter output at iteration t , yt . Differently from (4.2),
with the iterative implementation (4.3) node vi computes its output at iteration t , [yt]i ,
as a linear combination of its P-hop neighbors’ previous output yt−1 and that of the Q-
hop neighbors’ input signal x. In this way, the network can perform the ARMA filtering
for t →∞, yielding the notion of IIR graph filtering in the vertex domain.

In the sequel, we analyze different recursions that follow (4.3) to implement ARMA
graph filters with graph frequency response (4.1).

4.2.1. ARMA1 GRAPH FILTER

Before describing the full-fledged ARMA graph filters, it helps first to consider a first or-
der graph filter. These ARMA1 recursions, as we show next, are the basic building block
for creating filters with a rational frequency response of any order. We get an ARMA1

graph filter as an extension of the potential kernel [3]. Consider the following first order
recursion

yt =ψSyt−1 +ϕx (4.4a)

zt = yt + cx (4.4b)

where y0 is arbitrary and ψ, ϕ and c are complex coefficients. In (4.4), yt is an iterative
auxiliary variable that takes into account the filter state, while zt is the filter output. For
this recursion, we prove our first result.

4

64 4. INFINITE IMPULSE RESPONSE GRAPH FILTERING

Algorithm 4.1. Distributed computation of the ARMA1 output

1: Initialize the filter coefficients ψ,ϕ,c and y0 arbitrary
2: procedure COMPUTE LOCALLY THE FILTER OUTPUT

3: for t = 1, . . .T do
4: Collect [yt−1]m from all neighbors m ∈Nn

5: Compute [yt]n =ψ ∑
m∈Nn

Wn,m

(
[yt−1]n − [yt−1]m

)
+ϕxn

6: Send [yt]n to all neighbors Nn

7: Set [zt]n = [yt]n + cxn

Theorem 4.1. The frequency response of the ARMA1 implementation (4.4) is

h(λ) = c + r

λ−p
, subject to |p| > % (4.5)

with residual r =−ϕ/ψ, pole p = 1/ψ, and % being the spectral radius bound of S. Recur-
sion (4.4) converges to it linearly, irrespective of the initial condition y0 and shift operator
S.

(The proof can be found in Appendix 4.A.)
The convergence constraint in (4.5) can also be understood from a dynamical sys-

tem perspective. Comparing recursion (4.4) to a discrete-time state-space equation, it
becomes apparent that, when the convergence constraint |ψ%| < 1 holds, recursion (4.4)
achieves the frequency response (4.5).

It is useful to observe that, since |p| > %, an increment of the convergence region
can be attained if we work with shift operators that center the eigenvalues of the Lapla-
cian/adjacency matrix and decrease the spectral radius bound %. For instance, the fol-
lowing shift operators can be considered: S = L−λmax(L)/2IN with λmin(S) =−max(L)/2
and λmax(S) = max(L)/2, or S = Ln − IN with λmin(S) =−1 and λmax(S) = 1. Due to these
benefits, it is recommended to use translated versions of the Laplacians in the filter de-
sign phase.2.

Recursion (4.4) leads to a simple distributed implementation of a graph filter with
first order rational frequency response: at each iteration t , each node vi updates its value
[yt]i based on its local signal xi and a weighted combination of the values of [yt−1] j of
its neighbors v j . Since each node must exchange its value with each of its neighbors,
the message complexity at each iteration is of order O(M), which is similar to the effi-
cient implementation of the FIR graph filters. Algorithm 4.1 illustrates this distributed
implementation for S = L.

Connection: FIR and ARMA1 graph filters. There is an equivalence between the
ARMA1 graph filter and the FIR graph filters. Indeed, if we expand (4.4a) to all its terms
and consider t →∞ and y0 = 0N we get:

z = lim
t→∞zt =ϕ

∞∑
τ=0

(ψS)τx+ cx, (4.6)

2Note that from the Sylvester matrix theorem, the translated version of the Laplacians share the same eigen-
vectors as the original ones.

4.2. ARMA GRAPH FILTERS

4

65

Figure 4.1: Illustration of the parallel ARMAK graph filter. The filter state at time t , yt , consists of the sum of K
the filter states from each ARMA1 branch.

which from Section 3.2.1 is the output of a node-invariant FIR filter of order K =∞ with
coefficients [ϕ+ c,ϕψ,ϕψ2, . . . ,ϕψ∞]. Similar results hold also for t = T <∞.

This equivalence between filters suggests that the same output of an ARMA1 can be
obtained with an equivalent FIR filter. That is, the ARMA1 graph filter can be used to de-
sign FIR coefficients in approximating rational frequency responses. Later on, in Chap-
ters 6-7, we will see that this ARMA recursion results in a more robust implementation
when the graph topology or the graph signal change in time.

4.2.2. ARMAK GRAPH FILTER

Next, we use the ARMA1 block (4.4) to derive distributed graph filters with a more com-
plex frequency response. We present two constructions: The first uses a parallel bank of
K ARMA1 filters, attaining linear convergence with a per iteration communication and
memory cost of O(K M). The second uses periodic coefficients to reduce the commu-
nication costs to O(M) while preserving the linear convergence as the parallel ARMAK

filters.
Parallel ARMAK filters. A larger variety of filter responses can be obtained by adding

the states of a parallel ARMA1 filter bank. With reference to Fig. 4.1, let us denote with the
superscript (k) the terms corresponding to the kth ARMA1 filter for k = 1, . . . ,K . Then,
the output zt of the ARMAK filter at time instant t is

y(k)
t =ψ(k)Sy(k)

t−1 +ϕ(k)x, (4.7a)

zt =
K∑

k=1
y(k)

t + cx (4.7b)

where y(k)
0 is arbitrary. The following theorem characterizes the frequency response of

the ARMAK recursion (4.7).

Theorem 4.2. The frequency response of the parallel ARMAK is

h(λ) = c +
K∑

k=1

rk

λ−pk
subject to |pk | > %, (4.8)

4

66 4. INFINITE IMPULSE RESPONSE GRAPH FILTERING

Algorithm 4.2. Distributed computation of the parallel ARMAK output

1: Initialize the filter coefficientsψ(1), . . . ,ψ(K),ϕ(1), . . . ,ϕ(K), c, and y(1)
0 , . . . ,y(K)

0 arbitrary
2: procedure COMPUTE LOCALLY THE FILTER OUTPUT

3: for t = 1, . . .T do
4: Collect [y(k)

t−1]m from all neighbors m ∈Nn , for k = 1, . . . ,K

5: Compute [y(k)
t]n =ψ(k) ∑

m∈Nn

Wn,m

(
[y(k)

t−1]n − [y(k)
t−1]m

)
+ϕ(k)xn , for k = 1, . . . ,K

6: Send [y(k)
t]n , for k = 1, . . . ,K to all neighbors Nn

7: Set [zt]n =∑K
k=1[y(k)

t]n + cxn

with residues rk = ϕ(k)/ψ(k), poles pk = 1/ψ(k), and % being the spectral radius of S. Re-
cursion (4.7) converges to it linearly, irrespective of the initial conditions y(k)

0 and graph
shift operator S.

(The proof follows from Theorem 4.1.)
The frequency response of a parallel ARMAK is, therefore, a rational function with

numerator and denominator polynomials of order K (presented here in a partial fraction
form). In addition, since we are running K ARMA1 filters in parallel, the communication
and memory complexities are K times that of the ARMA1 graph filter. Algorithm 4.2
illustrates the distributed implementation of the ARMAK filter for S = L. Note also that
the equivalence between ARMA1 and FIR filters extends to the parallel ARMAK filter.

Periodic ARMAK filters. We can decrease the memory requirements of the parallel
implementation by letting the filter coefficients to vary periodically in time. The periodic
filter take the form

yt = (θt IN +ψt S)yt−1 +ϕt x (4.9a)

zt = yt + cx (4.9b)

where y0 is arbitrary, the output zt+1 is valid every K iterations, and the coefficients θt ,
ψt , ϕt are periodic with period K : θt = θt−i K , ψt =ψt−i K , ϕt = ϕt−i K , with i an integer
in [0, t/K]. The frequency behavior of the periodic ARMAK filter is characterized by the
following theorem.

Theorem 4.3. The graph frequency response of a periodic ARMAK graph filter is

h(λ) = c +
∑K−1

k=0

(∏K−1
τ=k+1(θτ+ψτλ)

)
ϕk

1−∏K−1
k=0 (θk +ψkλ)

, (4.10)

subject to the convergence constraints∣∣∣∣∣K−1∏
k=0

(θk +ψk%)

∣∣∣∣∣< 1 (4.11)

with % being the spectral radius bound of S. Recursion (4.9) converges to it linearly, irre-
spective of the initial condition y0 and graph shift operator S.

4.2. ARMA GRAPH FILTERS

4

67

Algorithm 4.3. Distributed computation of the periodic ARMAK output

1: Initialize the filter coefficients θ0, . . . ,θK−1, ψ0, . . . ,ψK−1, ϕ0, . . . ,ϕK−1, c, and y0 arbi-
trary

2: procedure COMPUTE LOCALLY THE FILTER OUTPUT

3: for t = 1, . . .T do
4: Set θt = θt−i K , ψt =ψt−i K , ϕt =ϕt−i K with integer i ∈ [0, t/K]
5: Collect [yt−1]m from all neighbors m ∈Nn

6: Compute [yt]n = θt [yt−1]n +ψt
∑

m∈Nn

Wn,m

(
[yt−1]n − [yt−1]m

)
+ϕt xn

7: Send [yt]n to all neighbors Nn

8: Set [zt]n = [yt]n + cxn

(The proof can be found in Appendix 4.B.)
With some algebraic manipulation, it can be shown that the frequency response of

periodic ARMAK is also a rational function of order K . We can also observe that the con-
vergence criterion (4.11) is more involved than that of the parallel implementation. As
now we are dealing with K ARMA1 graph filters interleaved in time, to guarantee their
joint convergence one does not necessarily have to examine them independently (re-
quiring for instance that, for each k, |θk +ψk%| < 1). Instead, it is sufficient that the
product |∏K−1

k=0 (θk +ψk%)| is smaller than one. To illustrate this, notice that if θk = 0, the
periodic ARMAK can be stable even if some of the ARMA1 graph filters it is composed of
are unstable.

In the distributed computation of the periodic ARMAK , in each iteration each node
vi stores and exchanges deg(vi) values with its neighbors. This yields a memory com-
plexity of O(M), rather than the O(K M) of the parallel one (after each iteration, the val-
ues are overwritten). Since the output of the periodic ARMAK is only valid after K itera-
tions, the communication complexity is again O(K M). The low memory requirements of
the periodic ARMAK render it suitable for resource-constrained devices. The distributed
computation of the periodic ARMAK graph filters for S = L is illustrated in Algorithm 4.3.

4.2.3. FILTER DESIGN

In this section we show how to design the ARMA filter coefficients that approximate any
response, using a variant of the Shanks’ method [9]. This approach gives us convergent
recursions, ensuring the same selectivity as the universal node-invariant FIR graph fil-
ters.

Given a desired frequency response h(λ) : [λmin,λmax] → R and a filter order K , our
aim is to find the complex polynomials hn(λ) and hd (λ) of order K that minimize

∫
λ

∣∣∣∣hn(λ)

hd (λ)
−h∗(λ)

∣∣∣∣2

dλ=
∫
λ

∣∣∣∣∣∣
∑Q

q=0 bqλ
q

1+∑P
p=1 apλp

−h∗(λ)

∣∣∣∣∣∣
2

d(λ) (4.12)

while ensuring that the chosen coefficients result in a convergent system (see constraints
in Theorems 4.2 and 4.3). From hn(λ)/hd (λ) one computes the filter coefficients (ψ(k),ϕ(k),
or θk ,ψk) by algebraic manipulation.

4

68 4. INFINITE IMPULSE RESPONSE GRAPH FILTERING

Design method. Following the Shanks’ method, we approximate the filter coeffi-
cients as follows:

Denominator. Determine ak for k = 1, . . . ,K by finding a K ′ > K order polynomial
approximation h′(λ) = ∑K ′

k=0φkλ
k for h∗(λ) using polynomial regression, and solving

the coefficient-wise system of equations hd (λ)h′(λ) = hn(λ).
Numerator. Determine bk for k = 1, . . . ,K by solving the least squares problem

minimize
b0,...,bK

∫
λ

∣∣∣∣hn(λ)

hd (λ)
−h∗(λ)

∣∣∣∣2

dλ (4.13)

over a uniform gridding of the interval [λmin(S),λmax(s)].
Once the numerator bk and denominator ak coefficients are found:
(i) Parallel design. Perform the partial fraction expansion to find the residuals rk

and poles pk . Then, the filter coefficients ψ(k) and ϕ(k) can be found by exploiting their
relation with rk and pk in Theorem 4.2.

(i i) Periodic design. Identify ψk by computing the roots of the (source) denominator
polynomial 1−∏K−1

k=0 (θk +ψkλ) in (4.10) and equation them to the roots of the (target)

denominator 1+∑K
k=1 akλ

k . It is suggested to set θ1 = 0 and θk = 1 for k > 0, which has
the effect of putting the two polynomials in similar form. Once the coefficients ψk (and
θk) have been set, we getϕk by evaluating the numerator target and source polynomials.

The method is also suitable for numerator and denominator polynomials of different
orders. We advocate however to use equal orders because it yields the highest approxi-
mation accuracy for a given communication/memory complexity.

The most crucial step is the approximation of the denominator coefficients. By fit-
ting hd (λ) to h′(λ) instead of h∗(λ), we are able to compute coefficients ak indepen-
dently of bk . Increasing K ′ À K often leads to a (slight) increase in accuracy but at the
price of slower convergence and higher sensitivity to numerical errors. Especially for
sharp functions, such as the ones of ideal low-pass filtering, a high order polynomial ap-
proximation results in very large coefficients, which affect the numerical convergence of
the filters and push the poles closer to the unit circle. In the reminder of this thesis, we
consider K ′ = K +1.

Stability-convergence concerns. The proposed design method does not come with
theoretical convergence and stability guarantees. The latter is is inherited from the adop-
tion of the Shank’s method, which in the temporal domain has yielded stable IIR filters.
The convergence guarantee, on the other hand, results in a challenging task for the pro-
posed ARMAK since it is related to the partial form decomposition coefficients (e.g. ψ(K)

andϕ(k) for the parallel ARMAK), while the design method is performed on the full ratio-
nal function coefficients (e.g., ak and bk in (4.12)). However, this impossibility to act on
the coefficients limits our handle to improve the filter convergence speed. In the sequel,
we propose exact ARMA designs for some of the most common graph signal processing
applications. In Section 4.3 we introduce the feedback-looped ARMA recursion which is
designed with theoretical convergence guarantees and controlled convergence speed.

4.2.4. EXACT GRAPH FILTER DESIGNS

We proceed to present exact (and in certain cases explicit) graph filter constructions for
particular graph signal denoising and interpolation problems. The proposed filters are

4.2. ARMA GRAPH FILTERS

4

69

universal, that is, they are designed without knowledge of the graph structure. Indeed,
the filter coefficients are found independently from the eigenvalues of the graph shift
operator. This makes the ARMA filters suitable for any graph, and ideal for cases when
the graph structure is unknown or when the O(N 3) complexity of the eigenvalue decom-
position becomes prohibitive.

Tikhonov-based denoising. Let us recall the Tikhonov regularization problem in
Section 2.3.6. A generalization of (2.24) consists of

x?0 = argmin
x∈CN

‖x−x0‖2
2 +wxT

0 SK x0, (4.14)

with optimal solution
x?0 = (IN +wSK)−1x. (4.15)

In the above equation, the graph filter H = (IN +wSK)−1 that provides the optimal de-
noised solution is an ARMAK with frequency response

h(λ) = 1

1+wλK
= 1∏K

k=1(λ−pk)
(4.16)

with pk =−e γk / k
p

w and γk = (2k +1)π/K . From the convergence condition of the par-
allel ARMAK (4.8), convergent filters require |pk | > %, which for the particular expression
of pk becomes k

p
w%< 1.

By implementing (4.15) with an ARMAK operating on the translated Laplacians, a
notable improvement on the filter convergence is gained. For S = L−λmax(L)/2IN (4.16)
is written as

h(λ(S)) = 1

1+w
(
λ(L)+ λmax(L)

2

)K
= 1∏K

k=1(λ(L)−pk)
, (4.17)

where λ(A) and λmax(A) stand for the eigenvalues and the maximum eigenvalue of A,
pk =−λmax(L)/2+e γk / k

p
w for γk = (2k+1)π/K . Again, from the stability of the ARMAK

|pk | > %, or equivalently |pk |2 > %2, we get convergent filters as long as(
−λmax(L)

2
+ cos(γk)

K
p

w

)2

+ sin2(γk)
K
p

w2 > %2, (4.18)

or equivalently (
λmax(L)

4
−%2

)
K
p

w
2 − l cos(γk) K

p
w +1 > 0, (4.19)

are satisfied. For the shifted normalized Laplacian, %= 1 and λmax(Ln) = 2, (4.19) simpli-
fies to

2cos(γk) K
p

w < 1, (4.20)

which is always met for the standard choices of K = 1 (quadratic regularization) and
K = 2 (total variation)3 [cf. (2.9)-(2.10)].

3Even though w is a free parameter, for K = 1, 2 the value cos(γk) in (4.20) will be either 0 or -1, due to the
expression of γk .

4

70 4. INFINITE IMPULSE RESPONSE GRAPH FILTERING

For both (4.16) and (4.17), the denominator coefficients ψ(k) of the corresponding
parallel ARMAK filter can be found as ψ(k) = 1/pk . Meanwhile, the numerator coeffi-
cients ϕ(k) are found in two steps: (i) express (4.16), (4.17) in the partial form as in (4.8)
to find the residuals rk and (i i) take ϕ(k) =−rkψ

(k).
Wiener-based denoising. Let us now consider the Wiener-based regularization prob-

lem in Section 2.4.2. Recall from (2.27) the optimal Wiener denoising problem corre-
sponds to an ARMAK graph filter of the form

h(λn) = pxd (λn)

pxd (λn)+pw (λn)
. (4.21)

Notice that this filter is still universal, as the ARMAK coefficients depend on the rational
functions pxd (λ) and p2

w (λ), but not on the specific eigenvalues of the graph graph shift
operator.

Let us illustrate the above with the following example. Suppose that xd is normally
distributed with covariance equal to the pseudoinverse of the Laplacian L†. This is a
popular and well-understood model for smooth signals on graphs with strong connec-
tions to Gaussian Markov random fields [10]. In addition, let the noise power be pw = w .
Substituting this into (2.27), we find

x?d =
N∑

n=1

1

1+wλn
(xTun)un , (4.22)

which is identical to the Tikhonov-based denoising for K = 1. In fact, it corresponds to
an ARMA1 with ϕ= 2/(2+wl) and ψ=−2w/(2+wλmax(L)), which as previously shown
has a convergent implementation. Note that even though the convergence is ensured
for the considered case, it does not necessarily hold for every covariance matrix. Indeed,
the convergence of the filter must be examined in a problem-specific manner.

Graph signal interpolation. Suppose that only r out of the N values of a signal xd

are known, and let x be the N × 1 vector which contains the known values and zeros
otherwise. Under the assumption of xd being smooth w.r.t. S = Ld or S = Ln, we can
estimate the unknowns by the regularized problem

x?d = argmin
xd∈RN

‖C (xd −x)‖2
2 +w x>d SK xd , (4.23)

where C is the diagonal matrix with Ci ,i = 1 if [xd]i is known and Ci ,i = 0 otherwise. Such
formulations have been used widely, both in the context of graph signal processing [11,
12] and earlier by the semi-supervised learning community [13, 14]. Similar to (4.15),
this optimization problem is convex and its global minimum is found as

x?d = (
C+wSK)−1

x. (4.24)

Most commonly, K = 1, (4.24) becomes

x?d =
(
IN −S′

)−1
x, (4.25)

which is an ARMA1 filter designed for the shift operator matrix S′ = C−IN +wS. For larger
values of K , the interpolation cannot be computed distributedly using the developed
ARMA filters. This is because the corresponding basis matrix S′ = C+ wSK cannot be
appropriately factorized into a series of local matrices.

4.2. ARMA GRAPH FILTERS

4

71

0 0.2 0.4 0.6 0.8 1

0

0.5

1

λ

fr
e

q
.

re
s
p

o
n

s
e

ARMA

FIR

0 0.2 0.4 0.6 0.8 1

0

0.5

1

λ

fr
e

q
.

re
s
p

o
n

s
e

K = 10
K = 5

K = 20

K = 20

K = 10

K = 5

Figure 4.2: The frequency response of ARMAK filters designed by Shanks’ method and the FIR responses of
corresponding order. Here, h∗(λ) is a step function (top) and a window function (bottom).

4.2.5. NUMERICAL RESULTS

In this section we test the approximation accuracy of the ARMAK graph filters and com-
pare the performance with their direct contenders, i.e., the node-invariant FIR (for short
FIR) graph filters4.

Approximation. Figure 4.2 illustrates in solid lines the frequency responses of three
ARMAK filters (K = 5,10,20), designed to approximate a low-pass step function (top)
and a band-pass window function (bottom). In analogy with the connection between
ARMA and FIR, we observe that both types of filters achieve a similar approximation
accuracy. Table 8.1 in Appendix ?? summarizes some filter coefficients of the parallel
implementation used to obtain these results.

Tikhonov denoising. Next, we evaluate the filtering performance solving distribu-
tively the Tikhonov denoising problem (4.15). We considered a graph G composed of
N = 100 nodes placed randomly in a square area. Two nodes are connected if they are
closer than 15% of the maximum distance in the area. The average node degree is 11.8.
The desired signal xd has a graph spectrum x̂n = e−5λn and the noise is considered i.i.d.
Gaussian zero-mean with unitary variance. The results are compared in terms of root
normalized mean squared error (rNMSE) defined as ‖zt −x?d ‖2/‖x?d ‖2

Figure 4.4 shows the filtering error over time in terms of root normalized mean squared
error (rNMSE), between the output of the ARMAK recursion and the solution of the op-
timization problem (4.15). We remark the fast convergence of the ARMA filters that hit
the computer’s numerical precision within 10-20 iterations.

4A fair comparison of the ARMA graph filters with the NV-FIR and EV-FIR would consist of developing the NV-
and the EV-ARMA graph filters. As we address this topic for future research in Section 9.2.1, we do not present
here this comparison.

4

72 4. INFINITE IMPULSE RESPONSE GRAPH FILTERING

100 101 102

10 15

10 10

10 5

100

t

||z
t

 x
||

/ |
|x

||

K=1, w=0.5
K=1, w=1
K=1, w=2
K=2, w=0.5
K=2, w=1
K=2, w=2

rN
M
SE

Figure 4.3: Convergence of a denoising parallel ARMAK filter for K = 1,2 and w = 0.5,1,2. The residual error is
a consequence of the computer’s bounded numerical precision.

10
0

10
1

10
2

10
-15

10
-10

10
-5

10
0

t

rN
M

SE

ARMA1
FIR1
FIR5
FIR25

Figure 4.4: Normalized error relative to the Tikhonov denoising problem with different graph filters. For the
FIRs, t indicates the iteration of the filter.

Figure 4.4 compares the ARMA1 performance with FIRs of different orders. As ex-
pected, we can see that in the static case the ARMA graph after K iterations has the same
performance as the FIRK filter and they both match the solution of the optimization
problem. In this instance, the FIR coefficients are obtained with a least squares-based
design [cf. Section 3.3.2]5. Later in Chapter 6, we will come back to this scenario and
analyze the performance in time-varying topologies.

4.3. FEEDBACK-LOOPED ARMA GRAPH FILTERS

While the previous ARMAK implementations build up on the potential kernel, in this
section we extend (4.3) to an ARMAP,Q recursion on graphs. Specifically, as we trans-
formed (3.1) into an FIRK , we observe that the terms

∑
j∈N (i ,Q) bi , j x j + bi ,i xi in (4.2)

correspond to an FIRQ filter operating on x, while the term
∑

j∈N (i ,P) ai , j [yt−1] j is an-
other FIR filter or order P operating on yt−1. Therefore, an ARMAP,Q graph filter can be

5In a subsequent work [15], the authors show this is not always the case, and there are scenarios where the
Chebyshev polynomial-based design might perform better. In the follow-up joint work [16, 17], we demon-
strate that ARMA filters can in fact compare well also with the Chebyshev polynomial-based design, but in a
centralized implementation.

4.3. FEEDBACK-LOOPED ARMA GRAPH FILTERS

4

73

implemented distributively through the feedback recursion

yt =−
P∑

p=1
ap Sp yt−1 +

Q∑
q=0

bq Sq x, (4.26)

where the first term on the right hand-side of (4.26) consists of the feedback loop of the
previous output6 yt−1. The complex scalars ap and bq denote the filter coefficients. Note
that the FIRP filter acting on yt−1 starts from p = 1. To ease the notation, let us indicate
as P = −∑P

p=1 ap Sp and Q = ∑Q
q=0 bq Sq . With this in place, the following proposition

shows that recursion (4.26) implements a graph filter with a frequency response of the
form (4.1).

Proposition 4.1. The graph frequency response of the ARMAP,Q recursion (4.26) is

h(λ) =
∑Q

q=0 bqλ
q

1+∑P
p=1 apλp

subject to
P∑

p=1
|ap |%p < 1. (4.27)

Recursion (4.26) converges to it linearly independently from the initial condition y0 and
the choice of the shift operator S.

(The proof can be found in Appendix 4.C.)
The graph frequency response (4.27) confirms our intuition about (4.3) and shows

that recursion (4.26) is a way to implement graph filters with rational frequency responses.
Differently from the parallel (4.7) and periodic (4.9) implementations, filters with differ-
ent orders can now be designed by changing the values of P and Q in (4.26).

4.3.1. RECURSION ANALYSIS

From Proposition 4.1, the ARMAP,Q recursion (4.26) will attain the frequency response
(4.27) for t → ∞. However, in practice, we are interested to arrest the filter after few
iterations. Then, there are two important aspects to address for its distributed imple-
mentation: (i) the convergence time, and (i i) the communication and computational
costs. While the above were challenging tasks for the parallel and periodic ARMAK , in
the sequel, we show this is not the case for the feedback-looped ARMA (4.26). In fact, the
feedback-looped ARMA allows a trading of the convergence speed with the approxima-
tion accuracy, yet guaranteeing a convergent implementation.

Convergence analysis. The following proposition characterizes the linear conver-
gence time of the algorithm and shows our handle to tune it such that a desired error
from the steady-state is achieved.

Proposition 4.2. For a stable ARMAP,Q filter of the form (4.26), a sufficient iterations t to
be ε-close to the frequency response (4.27) is

t ≥ l n(ε/α) (ln (‖P‖))−1 , (4.28)

for a desired small error ε and α= ‖y0‖2 + (1−‖P‖)−1 ‖Q‖‖x‖2.

4

74 4. INFINITE IMPULSE RESPONSE GRAPH FILTERING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

10
3

‖P ‖

‖Q‖ = 0.1
‖Q‖ = 100
‖Q‖ = 100
‖Q‖ = 1000

ǫ = 10−3

t

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

‖P ‖

‖Q‖ = 0.1
‖Q‖ = 100
‖Q‖ = 100
‖Q‖ = 1000

ǫ = 10−2

t

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

‖P ‖

‖Q‖ = 0.1
‖Q‖ = 100
‖Q‖ = 100
‖Q‖ = 1000

ǫ = 10−1

t

25

Figure 4.5: Convergence time of the feedback-looped ARMA implementation to be ε-close to its steady state
as a function of the denominator coefficients. The results are analyzed for different numerator coefficients

and different approximation errors ε.

(The proof can be found in Appendix 4.D.)

Result (4.28) provides the minimum number of iterations t that algorithm (4.26) must
run to be ε-close from the steady state. As we can see from (4.28), a handle to reduce t
is the spectral norm of P. From (ln (‖P‖))−1 (where ‖P‖ ≤ 1 to ensure convergence) t
reduces for a P with a smaller spectral norm. However, this is in contrast to the effect of
‖P‖ in l n(ε/α), where a smaller ‖P‖ yields a larger ln(ε/α) and thus potentially a higher
t . The latter is observed to have a lower influence on t . Further, since the ln(‖P‖) < 0,

6In relation with the earlier ARMA implementations((4.4), (4.7), and (4.9)) the filter output is the filter state,
i.e., zt = yt .

4.3. FEEDBACK-LOOPED ARMA GRAPH FILTERS

4

75

t reduces by choosing the coefficients ϕq to reduce the spectral norm of Q (this is true
when ln(ε/α) < 0, otherwise t = 0). Therefore, ‖P[‖] has contradictory effects on t , while
t increases with ‖Q‖.

To quantify what said above, consider a scenario with ε = [10−3,10−2,10−1], ‖y0‖2 =
0N and ‖x‖2 = 1. Figure 4.5 shows the convergence time (rounded to the next integer)
of the ARMAP,Q when (4.28) is met with equality, as a function of ‖P‖ ∈ [0,1[and for
different values of ‖Q‖. First, notice that the impact of ‖P‖ on (l n (‖P‖))−1 prevails on
that of ln(ε/α). Indeed, t increases monotonically with ‖P‖. Second, a bigger value
‖Q‖ yields a larger convergence time. From these results, we suggest avoiding values
of ‖P‖ ≈ 1 to obtain reasonable convergence times. This, on the other hand, reduces
the convergence region and, thus, we have fewer DoFs to design the coefficients. As
we will see later, this might affect the approximation accuracy. Similar considerations
hold also for ‖Q‖, but since it has less effect on the convergence time we can allow a
higher ‖Q‖ to improve the approximation accuracy. In summary, the filter coefficients
are designed as a trade-off between approximation accuracy and convergence time, with
the denominator coefficients being the most sensitive.

4.3.2. FILTER DESIGN

The coefficient design of the ARMAP,Q recursion (4.26) has the main advantage that the
convergence constraint in (4.27) is related to the coefficients of the full rational frequency
response (4.1) rather than to its partial fraction decomposition.

Thus, given the filter orders (P,Q) and a desired frequency response h∗(λ) : [λmin,λmax] →
R, we would like to find the coefficients ap and bq that make the frequency response
(4.27) as close as possible to h∗(λ), yet ensuring a convergent implementation. Differ-
ently, we would like to minimize the error

e ′(λ) = h∗(λ)−
∑Q

q=0 bqλ
q

1+∑P
p=1 apλp

. (4.29)

Finding the filter coefficients by minimizing, in a least squares sense, (4.29) leads to a set
of nonlinear equations in the filter coefficients. Similar to the Padé approximation in the
time domain [18], we can multiply both sides of (4.29) by the denominator expression of
the frequency response to obtain the new (not equivalent) error

e(λ) = h∗(λ)+h∗(λ)
P∑

p=1
apλ

p −
Q∑

q=0
bqλ

q , (4.30)

which is now linear in ap and bq . Then, by staking the errors for different λn (e.g., from
the eigendecomposition of S or by gridding the interval [λmin,λmax] into N points) in
e = [e(λ1), . . .e(λN)]T and defining a = [a1, . . . , aP]T, b = [b1, . . . ,bQ]T as the vectors con-
taining the filter coefficients, we rewrite (4.30) as

e = h∗+diag(h∗)ΨP a−ΨQ+1b, (4.31)

where h∗ = [h∗(λ1), . . .h∗(λN)]T is the N ×1 vector containing the desired frequency re-
sponse, ΨP is a Vandermonde-like N ×P matrix with (r, p)-th entry [ΨP]r,p = λ

p
r and

4

76 4. INFINITE IMPULSE RESPONSE GRAPH FILTERING

ΨQ+1 is the N × (Q +1) matrix still with a Vandermonde-like structure, but with (r, q)-th

entry [ΨQ+1]r,q = λ
q−1
r . With the new notation in place, the convergence condition of

the filter ‖P‖ < 1 can be expressed as ‖ΨP a‖∞ < 1, where the latter inequality can be
derived from the expression of P and by considering that S = UΛUH, or from gridding.
Then, convergent filter coefficients that minimize e are obtained by solving the convex
constrained least squares problem

minimize
a,b

‖h∗+diag(h∗)ΨP a−ΨQ+1b‖2

subject to ‖ΨP a‖∞ ≤ δP , δP < 1,
(4.32)

where δP is our handle to trade convergence speed with approximation accuracy. We
have observed that a good choice for δP is in the range [0.6,0.8]. Such consideration
comes from the fact that a higher value ofδP lead to slower convergence (see also Fig. 4.5)
and thus larger computational costs. On the other hand, values of δP < 0.6 are generally
not recommended since the approximation accuracy is severely compromised.

While solving (4.32) will produce the stable filter coefficients that minimize e(λn), we
are interested in minimizing e ′(λn). As we previously said, this problem is non convex
due to the denominator expresion in a. However, once the optimal solution a? of (4.32)
is obtained, we can plug it back into (4.29) and minimize the latter solely w.r.t. b. This
step remainds once again the Shanks’ method in Section 4.2.3, but now with theoretical
guarantees that (4.26) converges to the designed graph frequency response.

4.3.3. NUMERICAL RESULTS

Let us now illustrate and compare the performance of the parallel ARMAK (4.7) with the
feedback-looped ARMAP,Q (4.26). In addition, we analyze the FastIDIIR algorithm of [5],
which uses the gradient descent to implement an inverse filtering distributively7.

We consider a random geometric graph of N = 100 nodes randomly distributed in a
squared area with two nodes being neighbors if they are closer than 15% of the maximum
distance. The shift operator is S = Ln − λmax(Ln)

2 I, with λmax(Ln) the maximum eigenvalue
of Ln for the particular graph. All the filters are designed to approximate an ideal low
pass filter in the frequency domain of S. The filter cut-off frequency is λc = λN /2(S), i.e.,
the half of the band. The input signal x has a white unitary spectrum w.r.t. the underlying
graph and the filters are initialized as y0 = x. Our results are averaged over 10 iterations.

We compare the convergence time of the three distributed algorithms that are char-
acterized by a rational frequency response for K = 10, 20. Note that the per iteration
complexity of the ARMAP,Q is at most equal to that of the other two approaches (equality
when P +Q = K). For the ARMAK and for the FastIDIIR the Shanks’ method in Sec-
tion 4.2.3 is used to design the filter coefficients, while for the ARMAP,Q we followed
the approach in Section 4.3.2. In the latter case, for each graph, the values of P and Q
(P +Q ≤ K to have at most same cost) with the smallest approximation error are selected
with δP = 0.65.

7In the original paper [2], we compared the performance also with the Chebyshev polynomial-based design
FIR. This is not presented here as we were not able to reproduce the same results. We attribute this mismatch
is to numerical issues due to the high randomness of the scenario and the few averaging.

4.4. CONCLUDING REMARKS

4

77

0 10 20 30 40 50 60 70 80 90 100
10

-1

10
0

10
1

10
2

t

re
sp

on
se

er
ro

r

ARMAP,Q ARMAK FastIDIIR

K = 10
K = 20

δ

Figure 4.6: Normalized response error as a function of time for the three distributed algorithms to implement
a rational frequency response. The results are shown for orders K = 10, 20. The ARMAP,Q is designed such

that P +Q ≤ K to ensure the same distributed cost.

Figure 4.6 depicts the response error in terms of NMSE between the filter frequency
responses and the desired one as a function of time. We can see that ARMAP,Q con-
verges faster than the other algorithms yet ensuring the same approximation accuracy.
We believe the large values in the transition phase of ARMAK and FastIDIIR are due to
the design strategy that does not aim to minimize the approximation error and focuses
only in the minimization after K iterations.

4.4. CONCLUDING REMARKS

In this chapter, we introduced the ARMA graph filters on graphs with the aim to imple-
ment rational, rather than polynomial, graph frequency responses. These filters can be
implemented distributively in the vertex domain in an IIR fashion. We proposed three
different constructions and for each of them we introduced a Shanks’s-based design
method to approximate a given frequency response.The ARMA graph filters gave exact
closed-form solutions for the tasks of Tikhonov-, Wiener-based denoising, and signal
interpolation under smoothness assumption.

Their IIR implementation allows the ARMA filters to achieve the designed frequency
response theoretically after infinite iterations. We showed for all architectures that they
are characterized by a linear convergence, and they can be arrested within few iterations
with an error less than 1% from the theoretical steady state.

Our theoretical and numerical evaluations showed that the ARMA architectures yield
a similar performance compared to FIR graph filters. Later in Chapters 6-7 we analyze
both the FIR and ARMA in time-varying scenarios (e.g., time-varying graphs and graph
signals) and show that the graph filters deal differently with the time-varying phenom-
ena.

4

78 4. INFINITE IMPULSE RESPONSE GRAPH FILTERING

APPENDICES

4.A. PROOF OF THE ARMA1 FREQUENCY RESPONSE THEOREM

By expanding (4.4a) to all its terms we obtain

yt = (ψS)t y0 +ϕ
t−1∑
τ=0

(ψS)τx. (4.33)

Then for |ψ%| < 1 and t →∞, (4.33) approaches the steady state

y = lim
t→∞yt =ϕ

∞∑
τ=0

(ψS)τx =ϕ(IN −ψS)−1x, (4.34)

irrespectively of y0. From Sylvester’s matrix theorem, matrix (IN −ψS) has the same
eigenvectors as S and its eigenvalues are equal to 1−ψλn . It is also well known that
invertible matrices have the same eigenvectors as their inverse and eigenvalues, that are
the inverse of the eigenvalues of their inverse. Thus,

z = lim
t→∞zt = y+ cx =

N∑
n=1

(
c + ϕ

1−ψλn

)
x̂n un , (4.35)

and the frequency response (4.5) follows by simple algebra. We arrived at (4.35) by con-
sidering a specific realization of S, thus the set of eigenvalues λn ∈ [λmin,λmax] is dis-
crete. However, the same result is achieved for every other graph realization matrix S
with a potentially different set of eigenvalues, still in λn ∈ [λmin,λmax]. Therefore, we can
write (4.5) for all λ ∈ [λmin,λmax].

4.B. PROOF OF THE PERIODIC ARMAK FREQUENCY RESPONSE THEOREM

Define matricesΓt = θt IN+ψt S andΦ(t , t ′) =ΓtΓt−1 . . .Γt ′ if t ≥ t ′, whereasΦΓ(t , t ′) = IN

otherwise. The output at the end of each period can be rewritten as a time-invariant
system

y(i+1)K =
,A︷ ︸︸ ︷

ΦΓ(K −1,0)yi K +

,B︷ ︸︸ ︷
K−1∑
k=0

ΦΓ(K −1,k +1)ϕk x (4.36a)

z(i+1)K = y(i+1)K + cx. (4.36b)

Both A and B have the same eigenvectors U as S. Notice that (4.36) resembles (4.4) and
we can proceed in an identical manner. As such, when the maximum eigenvalue of A is
bounded by |λmax(A)| < 1, the steady state of (4.36) is

z = (IN −A)−1Bx+ cx =
N∑

n=1

(
c + λn(B)

1−λn(A)

)
x̂n un . (4.37)

4.4. CONCLUDING REMARKS

4

79

To derive the exact response, we exploit the backward product in the definition ofΦΓ(t1, t2)
and obtain

λn(ΦΓ(t1, t2)) =
t2∏

τ=t1

λn(Γt) =
t2∏

τ=t1

(θτ+ψτλn), (4.38)

which, by the definition of A and B, yields the desired frequency response. The lin-
ear convergence rate and convergence condition follow from the linear convergence of
(4.36) to z with rate |λmax(A)|.

4.C. PROOF OF THE FEEDBACK-BASED ARMAP,Q FREQUENCY RESPONSE PROPO-
SITION

We write recursion (4.26) as

yt = Pt y0 +
t−1∑
τ=0

PτQx. (4.39)

When ‖P‖ < 1 and for t →∞ we approach the steady state

y = lim
t→∞yt =

∞∑
τ=0

PτQx = (I−P)−1 Qx. (4.40)

Substituting back the expressions for P and Q in (4.40) and applying the GFT, we obtain
the relationship between the nth frequency component of the output ŷn and input x̂n :

ŷn =
(

1+
P∑

p=1
apλ

p
n

)−1 (
Q∑

q=0
bqλ

q
n

)
x̂n . (4.41)

The frequency response ŷn in (4.27) can simply be obtained by a pointwise division be-
tween ŷn and x̂n . The sufficient condition for convergence can be obtained by substitut-
ing the expression of P in ‖P‖ < 1 and then applying the triangle and Cauchy-Schwarz
inequality while remembering that ‖S‖ = %.

4.D. PROOF OF THE ARMAP,Q CONVERGENCE TIME PROPOSITION

Given the ARMAP,Q output at time t in (4.26), the error norm w.r.t. the steady state y =
limt→∞ yt is

‖yt −y‖ ≤ ‖P‖t‖y0‖+
∞∑
τ=t

‖P‖τ‖Q‖‖x‖, (4.42)

where in (4.42) we have applied the triangle and Cauchy-Schwarz inequality of the norms.
Then, by considering that ARMAP,Q is stable, i.e., ‖P‖ < 1, we can express the geometric
series in closed form

‖yt −y‖ ≤ ‖P‖t‖y0‖+ (1−‖P‖)−1 ‖P‖t‖Q‖‖x‖
≤ ‖P‖t (‖y0‖+ (1−‖P‖)−1 ‖Q‖‖x‖) .

(4.43)

Then, for ‖yt −y‖ ≤ ε we have

t (ln (‖P‖)) ≤ ln

(
ε

‖y0‖+ (1−‖P‖)−1 ‖Q‖‖x‖
)

, (4.44)

which can be reformulated into (4.28) by dividing both sides of (4.44) by ln (‖P‖) < 0.

4

80 4. INFINITE IMPULSE RESPONSE GRAPH FILTERING

4.E
.ParallelA

R
M

A
K

co
effi

cien
ts

Tab
le

4.1:R
esid

u
es

rk
an

d
p

o
les

p
k

o
fp

arallelA
R

M
A

K
fi

lter,fo
r

K
=

3,5
an

d
7.

ord
er

r
0 ,p

0
r

1 ,p
1

r
2 ,p

2
r

3 ,p
3

r
4 ,p

4
r

5 ,p
5

r
6 ,p

6

K
=3

10.954
+

0i,
-6.666

+
0i

1.275
+

1.005i,
0.202

+
1.398i

1.275
-

1.005i,
0.202

-
1.398i

-
-

-
-

K
=5

-7.025
+

0i,
-3.674

+
0i

-1.884
-

1.298i,
-0.420

+
1.269i

-1.884
+

1.298i,
-0.420

-
1.269i

1.433
-

1.568i,
0.703

+
1.129i

1.433
+

1.568i,
0.703

+
1.129i

-
-

K
=7

-46.398
+

0i,
–3.842

+
0i

-20.207
-

8.343i,
0.102

+
1.427i

-20.207
+

8.343i,
0.102

+
1.427i

-5.205
+

4.946i,
-0.785

+
1.128i

-5.205
-

4.946i,
-0.785

+
1.128i

3.124
-

10.622i,
0.902

+
1.011i

3.124
+

10.622i,
0.902

-
1.011i

FURTHER READING

4

81

FURTHER READING

[1] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive moving average graph
filtering, IEEE Transactions on Signal Processing 65, 274 (2017).

[2] E. Isufi, A. Loukas, and G. Leus, Autoregressive moving average graph filters a stable
distributed implementation, in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), EPFL-CONF-223825 (2017).

[3] A. Loukas, M. Zuniga, M. Woehrle, M. Cattani, and K. Langendoen, Think globally,
act locally: On the reshaping of information landscapes, in Proceedings of the 12th
international conference on Information processing in sensor networks (ACM, 2013)
pp. 265–276.

[4] A. Loukas, M. Zuniga, I. Protonotarios, and J. Gao, How to identify global trends
from local decisions? event region detection on mobile networks, in INFOCOM, 2014
Proceedings IEEE (IEEE, 2014) pp. 1177–1185.

[5] X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, Infinite impulse response graph filters
in wireless sensor networks, IEEE Signal Processing Letters 22, 1113 (2015).

[6] A. Loukas, A. Simonetto, and G. Leus, Distributed autoregressive moving average
graph filters, IEEE Signal Processing Letters 22, 1931 (2015).

[7] D. P. Bertsekas, A. Nedi, A. E. Ozdaglar, et al., Convex analysis and optimization,
(2003).

[8] S. Boyd and L. Vandenberghe, Convex optimization (Cambridge university press,
2004).

[9] J. L. Shanks, Recursion filters for digital processing, Geophysics 32, 33 (1967).

[10] C. Zhang, D. Florêncio, and P. A. Chou, Graph signal processing–A probabilis-
tic framework, Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-TR-2015-31
(2015).

[11] S. K. Narang, A. Gadde, and A. Ortega, Signal processing techniques for interpolation
in graph structured data, in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on (IEEE, 2013) pp. 5445–5449.

[12] Y. Mao, G. Cheung, and Y. Ji, Image interpolation for dibr viewsynthesis using graph
fourier transform, in 3DTV-Conference: The True Vision-Capture, Transmission and
Display of 3D Video (3DTV-CON), 2014 (IEEE, 2014) pp. 1–4.

[13] M. Belkin and P. Niyogi, Semi-supervised learning on riemannian manifolds, Ma-
chine learning 56, 209 (2004).

[14] T. Zhang, A. Popescul, and B. Dom, Linear prediction models with graph regular-
ization for web-page categorization, in Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining (ACM, 2006) pp. 821–
826.

4

82 FURTHER READING

[15] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard, Distributed signal pro-
cessing via chebyshev polynomial approximation, arXiv preprint arXiv:1111.5239v3
(2017).

[16] J. Liu and E. Isufi and G. Leus, Autoregressive moving average graph filter design,
in 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP)
(2017) pp. 593–597.

[17] J. Liu, E. Isufi, and G. Leus, Filter design for autoregressive moving average graph
filters, arXiv preprint arXiv:1711.09086 (2017).

[18] M. H. Hayes, Statistical digital signal processing and modeling (John Wiley & Sons,
2009).

III
GRAPH-TIME FILTERING

83

5
GRAPH-TIME SIGNAL PROCESSING

The best prophet of the future is the past.

Lord Byron

In the last three chapters, we considered the graph signal to be invariant over time. In
fact, the developed definitions in Chapter 2 and filters in Chapters 3-4 consider a single
temporal snapshot as graph signal. This chapter takes one step further by considering
the graph signal to be time-varying. By introducing the time into the analysis, we will
merge discrete signal processing (DSP) and GSP concepts, which, if properly exploited,
yield substantial benefits compared to the case where the temporal, or the graph dimen-
sion are processed separately. Although it would be possible to move directly to Chap-
ter 6, the reader should look through this chapter to become familiar with the introduced
concepts, which will help to better focalize the arguments treated in Chapters 6-7.

This chapter is organized as follows. Section 5.1 motivates the joint graph-time pro-
cessing of time-varying graph signals and briefly surveys the state-of-the-art works that
exploit this coupling. Section 5.2 formalizes the notion of time-varying graph signals and
introduces the concepts of product graph and joint graph-time shift operator. The joint
graph and time Fourier transform (GTFT) is described in Section 5.3. In this section, the
graph-time filters are introduced as well. Finally, Section 5.4 concludes the chapter with
a summary of the treated arguments.

5.1. INTRODUCTION

To date, few recent works such as [1–8] have mentioned the potential extension of GSP to
a graph-time signal processing framework and formalize the concepts we saw in Part II.
This analysis finds practical application in temperature observations over sensor net-
works, or traffic diffusion in road networks, to name a couple where the graph signal is
time-varying in nature, e.g., temperature measurements in a given temporal window, or
the number of cars in the crossroads throughout the day. It is then reasonable to process

85

5

86 5. GRAPH-TIME SIGNAL PROCESSING

Figure 5.1: Illustration of a time-varying signal on the vertices of a graph.

these signals in a joint graph-time fashion, by considering their joint variation on both
the graph and the temporal dimension.

The first notions of extending GSP to time is proposed in [1], where the so-called
product graphs are used to link the nodes though time. Later, [2] and [3] introduce the
concept of graph-time filtering, which is further extended in [5, 6]. The work in [4] lever-
ages the graph wavelet theory to enable visual analysis of time-varying graph signals.
The authors in [7] focus on learning a graph topology that captures the signal evolution
through a restricted vector autoregressive process. Finally, the recent work [8] provides
a good overview of the several concepts used in processing time-varying graph signals.

This chapter recalls the joint spectral analysis and filtering of time-varying graph sig-
nals. By introducing the concept of the joint graph-time shift operator– an operator that
captures the node interactions among graph and time–the definition of the GTFT boils
down to that of projecting the time-varying graph signal onto the eigenspace of this new,
yet more complex, shift operator.

5.2. TIME-VARYING SIGNALS ON GRAPHS

We indicate as xt a time-varying graph signal over the graph G = (V ,E) of N nodes. The
N ×T matrix XT = [x1, . . . ,xT]T ∈ RN×T collects T successive temporal measurements of
xt . Figure 5.1 depicts one example of a time-varying graph signals on a graph. Through
the DFT we can perform a temporal spectral analysis of XT by decomposing each row
of XT independently in the temporal oscillating modes (i.e., the complex exponentials).
More specifically, we have

[X̂T]DFT = XT F∗, (5.1)

where [X̂T]DFT denotes the DFT of the row of XT and F is the normalized DFT matrix
defined as

[F]t ,k = e ωi t

p
T

, with ωi = 2π(i −1)

T
, (5.2)

with t , i = 1, . . . ,T . Similarly, through the GFT we can perform a graph spectral analysis
of XT by decomposing each column of XT independently (each column of XT represents
a graph signal snapshot) in the graph oscillating modes (i.e., the eigenvectors of the shift
operator). That is,

[X̂T]GFT = UHXT , (5.3)

5.2. TIME-VARYING SIGNALS ON GRAPHS

5

87

Figure 5.2: Figure illustrating an example of a joint graph as the exentsion of the orignial graph G to G3.

where [X̂T]GFT is the N ×T matrix collecting the GFTs of all realizetions of xt in XT .
Transforms (5.1) and (5.3) represent two different ways of processing xt in each do-

main, separately. They will be our starting point to formalize the GTFT for XT . In this
regard, next, we introduce an equivalent representation of xt on G , and the joint graph-
time shift operator.

5.2.1. THE JOINT GRAPH

An alternative way of representing XT on G , is that of considering a time-invariant graph
signal xT = vec(XT) that lives on a joint extended graph GT including T copies of G . With
the illustration in Figure 5.2 for T = 3, the extended graph GT has a vertex set VT =∪T

t=1Vt

with N T nodes, and where each node has as graph signal the time-invariant entries of
xT . The edge set of GT consists of the MT edges it inherents from the unconnected
copies of G , besides the N T extra edges connecting the consecutive realizations of xt on
a particular node. That is, a directed edge connecting the node vi ,t (node vi in the t th
realization) with the node vi ,t+1 (node vi in the t +1th realization).

This extended graph GT can be obtained as GT =G
c×G ′, with

c× denoting the Carte-
sian product and G ′ the directed chain graph1 [9].

5.2.2. THE JOINT GRAPH-TIME SHIFT OPERATOR

From the Cartesian product relation of GT with G , we can compute the shift operator ST

of GT as
ST = S′⊗ IN + IT ⊗S (5.4)

where S′ is the shift operator matrix of G ′, and ⊗ denotes the Kronecker product. Though
GT and G ′ are directed graphs, ST can always be diagonalized as [8]

ST = (FΩFH)⊗ IN + IT ⊗ (UΛUH)

= (F⊗U)(Ω⊕Λ)(F⊗U)H = UTΛT UH
T ,

(5.5)

where Ω is the diagonal matrix containing the complex exponential of the angular fre-
quencies, i.e., [Ω]i ,i = e− ωi with ωi defined in (5.2).

1A directed chain graph of N nodes has each node being connected by a direct graph to only another node,
i.e., v1 → v2 → . . . → vN .

5

88 5. GRAPH-TIME SIGNAL PROCESSING

5.3. GRAPH-TIME FREQUENCY ANALYSIS

5.3.1. GRAPH AND TIME FOURIER TRANSFORM

Similarly as the GFT, the GTFT of xT is defined as

[x̂T]GTFT = UH
T xT , (5.6)

which from the properties of the vec operator and from the structure of UT becomes

[X̂T]GTFT = UHXT F∗. (5.7)

Put simply, the GTFT (5.7) consists of applying the DFT and the GFT to the matrix XT .
Since UT is a unitary matrix by construction, the inverse GTFT is xt = UT [x̂T]GTFT,

or in the matrix form XT = U[X̂T]GTFTFT. Moreover, the Parseval result on the energy
preservation holds. Finally, we remark that the GTFT is a composed linear operation,
and thus the [X̂T]GTFT can be obtained as

[X̂T]GTFT = UH[X̂T]DFT = [X̂T]GFTF∗, (5.8)

i.e., first apply the DFT and then the GFT to XT , or vice-versa.

5.3.2. GRAPH-TIME FILTERING

Following the definition of the graph filtering operation in Section 2.3.5, we now formal-
ize the notion of joint graph-time filtering for a time varying graph signal.

Definition 5.1 (Joint graph-time filters). A joint graph-time filter h(λn ,ωi) is defined as
a function over the graph frequencies {λn}N−1

n=0 and angular frequencies {ωi }T
i=1 to the set of

real numbers, i.e., h : ({λn}N−1
n=0 ×{ωi }T

i=1) →R, altering the joint graph-temporal frequency
content [x̂T]GTFT of xT as a point-wise multiplication in the joint Fourier domain. The
graph filter output at the frequency tuple (λn ,ωi) is [ŷT]GTFT(λn ,ωi) = h(λn ,ωi)[x̂T]GTFT(λn ,ωi).

In vector form, the filter output writes as

[ŷT]GTFT = h(Λ,Ω)[x̂T]GTFT, (5.9)

where h(Λ,Ω) is an N ×T matrix containing the joint graph-time frequency response. By
means of the inverse GTFT, we have

yT = UT [ŷT]GTFT = UT h(Λ,Ω)UH
T xT , (5.10)

where now the graph-time filtering matrix H = UT h(Λ,Ω)UH
T is of dimensions N T ×N T

and is referred to as the joint graph-time impulse response. To implement distributively
the filtering operation (5.10), in Chapter 6 we introduce the joint graph-time FIR and
ARMA filters.

5.4. CONCLUDING REMARKS

5

89

5.4. CONCLUDING REMARKS

This chapter introduced the framework of processing time-varying graph signals by ex-
ploiting the latter variation on both the graph and temporal dimension. By introducing
the notion of the joint graph, i.e., a larger graph that is expanded in both the number
of nodes and edges to capture the temporal dimension of the signal, we introduced an
equivalent graph shift operator that captures the signal relations in a graph-time fashion.
Similarly to the GFT, the eigendecomposition of this graph-time shift operator carries a
notion of frequency and characterizes the signal joint variation over the graph and time.
Finally, the concept of graph-time filtering as a function acting jointly on the graph and
temporal frequencies is introduced.

FURTHER READING

[1] A. Sandryhaila and J. M. Moura, Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irregular structure, IEEE Sig-
nal Processing Magazine 31, 80 (2014).

[2] A. Loukas, A. Simonetto, and G. Leus, Distributed autoregressive moving average
graph filters, IEEE Signal Processing Letters 22, 1931 (2015).

[3] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive moving average graph
filtering, IEEE Transactions on Signal Processing 65, 274 (2017).

[4] P. Valdivia, F. Dias, F. Petronetto, C. T. Silva, and L. G. Nonato, Wavelet-based visu-
alization of time-varying data on graphs, in Visual Analytics Science and Technology
(VAST), 2015 IEEE Conference on (IEEE, 2015) pp. 1–8.

[5] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Separable autoregressive moving av-
erage graph-temporal filters, in Signal Processing Conference (EUSIPCO), 2016 24th
European (IEEE, 2016) pp. 200–204.

[6] E. Isufi, G. Leus, and P. Banelli, 2-dimensional finite impulse response graph-
temporal filters, in Signal and Information Processing (GlobalSIP), 2016 IEEE Global
Conference on (IEEE, 2016) pp. 405–409.

[7] J. Mei and J. M. Moura, Signal processing on graphs: Causal modeling of unstructured
data, IEEE Transactions on Signal Processing 65, 2077 (2017).

[8] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, A time-vertex signal processing
framework, arXiv preprint arXiv:1705.02307 (2017).

[9] W. Imrich, S. Klavžar, and D. F. Rall, Topics in graph theory: Graphs and their Carte-
sian product (AK Peters/CRC Press, 2008).

6
DETERMINISTIC ANALYSIS OF

GRAPH-TIME FILTERING

The two most powerful warriors are patience and time.

Leo Tolstoy

In Chapters 3 and 4 we analyzed graph filters in static scenarios, i.e., when both the graph
topology and the graph signal do not change in time. We now depart from this philos-
ophy to investigate the graph filters’ behavior in dynamic environments, i.e., when the
graph topology and (or) the graph signal change(s) deterministically in time. This anal-
ysis is crucial since it characterizes the filters’ robustness in scenarios involving moving
sensors and time-varying graph signals, such as temperature measurements. A salient
contribution of the distributed graph filters is their natural extension to joint graph-time
filters when the input signal has a time-varying nature. So, the filters developed in Chap-
ters 3 and 4 will now be capable to carry out distributively the graph-time filtering oper-
ation described in Chapter 5.

To the best of our knowledge, prior contributions that analyze the filters’ robust-
ness in deterministic dynamic environments are limited to [4] and [5]. The former work
concerns the convergence of the potential kernel in dynamic environments. The latter
work proposes joint graph-time ARMA filtering and tests it. In the co-authored work [1],
we start from these two works to extend the potential kernel analysis to more involved
ARMA filters. We give a more in-depth analysis of the filter behavior and characterize
with closed-form expression the filter behavior in dynamic scenarios. In the follow-up
works [2, 3], we introduce the distributed FIR and ARMA graph-time filters, respectively.

The next section of this chapter motivates the deterministic analysis of graph-time
filtering, along with our contributions and potential applications. Section 6.2 analyzes
the behavior of the parallel ARMAK graph filter operating on a time-varying graph with

Parts of this chapter have been published in the IEEE Transactions on Signal Processing [1] (2017), in the
EURASIP EUSIPCO [2] (20016), and in the IEEE GlobalSIP [3] (2016).

91

6

92 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

a time-(in)variant graph signal as input. The two-dimensional distributed graph-time
filters are developed in Section 6.3. Section 6.4 recaps the chapter main concepts.

6.1. INTRODUCTION

Distributed graph filters, in both their FIR and ARMA implementations, showed promis-
ing results in performing distributively GSP tasks such as clustering, denoising, and in-
terpolation. However, the analysis conducted in Chapters 3 and 4 is performed for static
inputs over static graphs. One can then raise the question: "Do the shown graph filter
properties hold when the graph and/or the graph signal are a function of time?". The an-
swer to this question along with the answers to the related research questions (Q2.1) will
be the central arguments of this chapter.

Temporal variations in the graph signal are encountered in a wide range of applica-
tions, starting from sequential sensor measurements to brain signal monitoring. In this
instance, we are interested in denoising and/or interpolating the signal from the tem-
poral stream of data. To address this aspect, we show that the introduced ARMA graph
filters naturally inherit the property to perform a distributed graph-time filtering when
the graph signal is time-varying. We first discuss the filter behavior to characterize its
robustness to graph signal variations. Then, to achieve a distributed joint graph-time
filtering, we introduce two architectures that produce two-dimensional FIR and ARMA
graph-temporal filters. These filters have the ability to extract relevant information of
the time-varying graph signal, such as an interferer in sensor networks.

Along with the variations in the graph signal, we consider the graph topology to
change under a specific model over time, e.g., sensor movements. We show that the
introduced ARMA graph filters are able to handle these variations, and we give a closed-
form expression of the filter output when both the graph topology and graph signal
change over time.

6.1.1. CONTRIBUTIONS

This chapter brings the following contributions to the GSP research field.

Contribution 6.1. Through the analysis of the ARMA graph filter for time-varying input
signals, we introduce the notion of joint graph-time filtering. The proposed recursions
naturally extend to two-dimensional filters operating simultaneously in the graph fre-
quency domain and in the temporal frequency domain. We show that the ARMA filter
output remains close to the correct time-varying solution (under sufficient conditions
on the input), which characterizes the robustness to dynamics of our algorithms.

Contribution 6.2. We give theoretical guarantees about the ARMA graph filter behavior
when both the graph topology and the graph signal are time-varying. Specifically, we
provide sufficient conditions for filter stability and show that a decomposition basis ex-
ists (uniquely determined by the sequence of graph realizations), over which the filters
achieve the same frequency response as in the static case. We find that a graph naturally
dampens temporal frequencies in a manner depending on its spectrum. Exploiting this

6.1. INTRODUCTION

6

93

finding, we extend the ARMA designs presented in Chapter 4 to allow also a measure of
control over the temporal frequency response of the filters.

Contribution 6.3. We propose distributed two-dimensional graph-temporal filters to pro-
cess the joint spectrum of the time-varying graph signal. These filters are generalizations
of the introduced FIR and ARMA graph filters to account for the input signal dynam-
ics. For both filters, we analyze the architectures, the design strategies, and distributed
costs. Our results show that these two-dimensional filters can process more than one
graph signal in parallel by making them orthogonal in the temporal domain.

6.1.2. APPLICATIONS

The main aim of the time-varying analysis for graph filters is to offer guarantees on the
consequences that variations in the graph topology and graph signal have on the filter
output. This is the case of the tasks listed in Section 3.1.2. As likewise mentioned in [4]
an application is to localize information potentials within a dynamic network, such as
safe areas in large events, e.g.,

• Crowd management. In large concerts, or public manifestations high crowd den-
sity can be a threaten in case of an emergency rush. Here, to keep density on
safe levels attendees can be provided with a wearable sensor being the vertices of
a graph, and through local communications with neighboring (moving) sensors,
each node can check the density in its surrounding (e.g., the graph signal can be
the number of neighbors). Since, low-pass graph filtering can localize informa-
tion potentials (e.g., high crowd density) [4], distributed implementations of these
filters will allow self-monitoring of density peaks and inform attendees to move to-
wards to safer areas. Differently from the potential kernel, an ARMAK can achieve
sharper filters, so, it can improve the localization accuracy of the information po-
tentials. In addition, as the environment is dynamic we aim at providing filtering
solutions robust to topology and crowd density variations.

Nevertheless, due to their ability to perform joint graph-time processing, these filters
can be useful for the following applications.

• Modeling time-varying graph signals. We aim at modeling time-varying signals on
graphs with a two-dimensional graph filter (FIR or ARMA). Thus, by designing few
filter coefficients that fit the training signal the best, we can achieve graph signal
compression and prediction.

• Interference cancellation on graphs. In distributed graph signal denoising over sen-
sor networks the signal of interest may be affected by an interferer working at a dif-
ferent temporal frequency, e.g., self-inference from sensor malfunction, or from an
external sensor network working in parallel. In this instance, by exploiting the two-
dimensional graph-temporal filters, the interference can be suppressed by nulling
its contribution in the temporal domain. Since the filter will now work with time-
varying signals, it has the potential to clean more spurious noise in a graph-time
fashion which is not possible if the joint processing is ignored.

6

94 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

• Time-varying signal interpolation. To improve the energy efficiency in sensor net-
works, we aim at setting different sensors in steady-state in different time-instants.
Then, by means of two-dimensional distributed graph filters, the goal is to inter-
polate the missing values by receiving local information from neighbors.

Finally, in a more technical aspect graph-time filters are a useful tool to model and
generate joint graph-time stationary signals, i.e., graph signals that are WSS over both
the graph and the temporal domain [6, 7].

6.2. ARMA GRAPH FILTERS AND THEIR INHERENT TEMPORAL

PROCESSING

In this section, we extend the parallel ARMAK graph filters presented in Chapter 4 to
capture the temporal dynamics. We focus on this implementation since it provides the
most meaningful results among the three.

6.2.1. JOINT GRAPH AND TEMPORAL PROCESSING

The ARMA1 recursion with a time-varying input xt has the form

yt+1 =ψSyt +ϕxt , (6.1)

where the subscript t indicates the input time dependency. The dimension of the above
recursion can be reduced by restricting the input graph signal to lie in the subspace of
an eigenvector u with associated eigenvalue λ, i.e., xt = xt u, where now xt is a scalar and
similarly, y0 = y0u.1 By orthogonality of the basis, the filter only alters the magnitude xt

relative to the eigenvector u and not the direction of xt . So, (6.1) is equivalent to

yt+1 =ψλyt +ϕxt (6.2)

where xt , yt ∈ R are the magnitudes of xt ,yt ∈ CN lying on the eigenspace of u, and we
can write yt = yt u. By applying the z-transform on both sides, we get the joint graph and
temporal frequency response

h(z,λ) = ϕz−1

1−ψλz−1 . (6.3)

The temporal-impulse response for each graph frequency λ is

ht+1(λ) = (
ϕ(ψλ)t)u, (6.4)

with filter region of convergence (ROC) {|z| > |ψλ|, for all λ} and that the filter is causal.
The joint transfer function characterizes the behavior of ARMA1 graph filters for an

arbitrary yet time-invariant graph: when z → 1, we return to the constant x result and
convergence condition of Theorem 4.1, while for all other z we obtain the standard fre-
quency response and the graph frequency one. As one can see, recursion (6.1) is an

1This is a standard way to derive the frequency response of the system.

6.2. ARMA GRAPH FILTERS AND THEIR INHERENT TEMPORAL PROCESSING

6

95

2
1.5

1

λ
0.5

0
0

1/4

1/2

3/4

101

100

10-1

10-2

1

|H
(f

,λ
)|

f

Figure 6.1: The joint graph and temporal frequency response of a parallel graph filter designed to
approximate an ideal low pass (step) response with cut-off frequency λc = 0.5 and K = 3 w.r.t. the normalized

graph Laplacian. The temporal frequencies f are normalized (×π rad/sample).

ARMA1 filter in the graph domain as well as in the time domain. Observe also that the
poles of h(z,λ) obey the fixed relationship z =λψ. This yields an interesting insight: the
temporal frequency response of the filter differs along each graph frequency λ, meaning
that temporal dynamics affecting signals lying in low graph frequency eigenspaces are
dampened to a smaller extent.

As Theorems 6.1 below show, these results are readily generalized to higher order
filters.

Theorem 6.1. The joint graph and temporal frequency transfer function of a parallel
ARMAK is

h(z,λ) =
K∑

k=1

ϕ(k)z−1

1−ψ(k)λz−1
, (6.5)

subject to the conditions of Theorem 4.2 .

(The proof can be found in Appendix 6.A.)
As in the first order case, Theorem 6.1 describes the behavior of the parallel and pe-

riodic implementations. The filer is now an ARMAK filter in the graph and temporal
domain. In particular, the parallel filter has up to K distinct poles abiding to

z =ψ(k)λ. (6.6)

To give further insight, Figure. 6.1 plots the joint graph and temporal frequency re-
sponse of the parallel graph filter of third order, designed (only in the graph domain) to
approximate an ideal low pass response with cut-off frequency λc = 0.5. In the figure,

6

96 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

the horizontal axis measures the graph frequency with smaller λ corresponding to lower
variation terms. The temporal axis measures the normalized temporal frequency f such
that, for f = 0, one obtains the standard graph frequency response.

We conclude the following observation.

Remark 6.1. The ARMAK graph filter ensures almost the same frequency response as for
the static case (f = 0) for low temporal variations f ≤ 1/8. This suggests that these fil-
ters are more appropriate for slow temporal variations. While for graph signals lying in
eigenspaces with λ close to λ = 1 all temporal frequencies are damped. This is a phe-
nomenon that transcends the filter implementation and the particular filter coefficients.
It is attributed to the shifting of the Laplacian S = Ln − IN in the design phase and to the
multiplicative relation of the response poles.

6.2.2. TIME-VARYING GRAPHS AND SIGNALS

Time variations on the graph topology bring new challenges to the graph filtering prob-
lem. First, they make approaches that rely on knowledge of the graph spectrum ineffec-
tive. Approaches which ensure stability by designing the poles to lie outside the set of
the Laplacian eigenvalues of a graph, may lead to unstable filters in a different graph
where some eigenvalues may over-shoot one of the poles. Due to their different design
philosophy, the presented ARMA graph filters handle naturally the aforementioned is-
sues. We can, for instance, think that the different graph realizations among time enjoy
an upper bound on the largest eigenvalue λmax. In case this is not possible, or difficult to
determine, we can always work with the normalized Laplacian and thus take λmax = 2.
In this way, by designing the filter coefficients to guarantee convergence w.r.t. λmax, we
impose convergence for all different graph realizations. Furthermore, by designing once
the filter coefficients for a continuous range of frequencies, the ARMA recursions also
preserve the desired frequency response for different graph realizations.

The second major challenge is characterizing the graph filter behavior. Time-varying
affine systems are notoriously difficult to analyze when they own no special structure [8].
We devise a new methody for time-varying graph filter analysis. We show that a de-
composition basis always exists, over which ARMA1 graph filters (and as a result parallel
ARMAK filters) have the same frequency response as in the static case. This decomposi-
tion basis depends only on the sequence of graph realizations.

For a time-varying graph topology, yet with a fixed number of nodes N , and a time-
varying graph signal, the ARMA1 recursion (4.4) can be written as

yt+1 =ψSt yt +ϕxt (6.7)

where the time-varying graph is shown by indexing St with the subscript t . Expanding
the recursion we find that, for any sequence of graph realizations {G0,G1, . . . ,Gt } with
corresponding graph shift operators {S0,S1, . . . ,St }, the output signal is

yt+1 =ψt+1ΦS(t ,0)y0 +ϕ
t∑

τ=0
ψτΦS(t , t −τ+1)xt−τ, (6.8)

whereΦS(t , t ′) = St St−1 . . .St ′ for t ≥ t ′, andΦS(t , t ′) = IN otherwise.

6.2. ARMA GRAPH FILTERS AND THEIR INHERENT TEMPORAL PROCESSING

6

97

Since the output yt depends on the entire sequence of graph realizations, the spec-
trum of any individual graph shift operator is insufficient to derive the graph frequency
of the filter. To extend the spectral analysis to the time-varying setting, we define a joint
graph shift operator matrix Stv that encompasses all the individual shift operators. The
intuition behind our approach is to think of a time-varying graph as one large graph Gtv

that contains all nodes of the graphs G0,G1, . . . ,Gt , as well as directional edges connect-
ing the nodes at different time steps. We then interpret the spectrum of the shift operator
matrix Stv as the basis for our time-varying graph Fourier transform. This idea general-
izes the joint graph construction introduced in Chapter 5, used to define a Fourier trans-
form for graph signals which change with time. We will construct Gtv by replicating each
node vi ∈ V once for each time step t . Denote the t th replication of the i th node as
vt ,i . For each t and i , Gtv will contain directed edges between vt−1, j and vt ,i with v j

being a neighbor of vi in Gt−1. Therefore, here the edges between nodes vi and v j are a
function of time. By its construction, Gtv captures not only the topology of the different
graphs, but also the temporal relation between them: since the exchange of information
between two neighbors incurs a delay of one unit of time, at each time step t , a node has
access to the values of its neighbors at t −1.

To proceed, define Sc to be the (t +1)× (t +1) cyclic shift matrix with ones below the
diagonal and construct Stv as the N (t +1)×N (t +1) permuted block-diagonal matrix

Stv = blkdiag[S0,S1, . . . ,St](Sc ⊗ IN), (6.9)

For consistency with the established theory on GFT, when t = 0 and the graph is time-
invariant, we define Sc = 1. Let eτ be the (t +1)dimensional canonical unit vector with
[eτ]i = 1 if i = τ and [eτ]i = 0, otherwise. By defining x0:t = [xT

0 ,xT
1 , . . . ,xT

t]T as the vector
of dimension N (t +1) which encompasses all input graph signals, we can write

ΦS(t , t −τ+1)xt−τ = (eT
t+1 ⊗ IN)Sτtv x0:t . (6.10)

In those cases when the non-symmetric matrix Stv enjoys an eigendecomposition, we
have Stv = UΛU−1 with kth eigenpair (λk , uk). In particular, λk is the kth diagonal el-
ement of Λ and uk is the kth column of U. The total number of eigenpairs of Stv is
K = N × (t +1). To ease the notation, we will denote as u−1

k the respective kth column of
U−1.

Substituting (6.10) into the second term of (6.8) and rearranging the sums, we get

ϕ
t∑

τ=0
ψτΦS(t , t −τ+1)xt−τ =ϕ(e>t+1 ⊗ IN)

t∑
τ=0

(ψStv)τ x0:t

=ϕ(e>t+1 ⊗ IN)
t∑

τ=0

K∑
k=1

(ψλk)τ xH
0:t u−1

k uk

= (e>t+1 ⊗ IN)
K∑

k=1
ϕ

1− (ψλk)t+1

1−ψλk
xH

0:t u−1
k uk . (6.11)

6

98 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

Similarly,

ψt+1ΦS(t ,0)y0 = (e>t+1 ⊗ IN)
(
ψStv

)t+1 (et+1 ⊗y0)

= (e>t+1 ⊗ IN)
K∑

k=1
(ψλk)t+1(et+1 ⊗y0)Hu−1

k uk . (6.12)

Without loss of generality, when t is sufficiently large we can ignore terms of the form
(ψλk)t+1 as long as |ψλk | < 1, which also shows that the impact of the filter initialization
y0 on the filter output vanishes with time. This condition is met when ‖ψStv‖ < 1, which
as a direct consequence of Gershgorin’s circle theorem, this stability condition is met
if, for every τ, the sum of the elements of each row of Sτ, in absolute value, is smaller
than |1/ψ| (which also implies that the eigenvalues of Sτ are bounded by |1/ψ|). For
the S being the normalized (translated) Laplacian this means |ψ< 2| (|ψ< 1|), matching
the convergence conditions of the static case. Under this sufficient condition, the filter
output approaches

yt+1 ≈ (e>t+1 ⊗ IN)
K∑

k=1

(
ϕ

1−ψλk

)
xH

0:t u−1
k uk . (6.13)

Notice that the ARMA1 keeps the same graph frequency response as in the time-
invariant case (4.5), now expressed in the basis of Stv. It is not difficult to show that
the ARMA1 graph filter converges asymptotically. Let us denote the distance between
the filter output at two different time instants t1 > t2 as

εt1,t2 =
‖zt1 −zt2‖

xmax
. (6.14)

where xmax = maxt=1,...,t1‖xt‖2 is an upper bound on the energy of the input. We can now
claim

Theorem 6.2. Given the ARMA1 recursion (6.8) and given that the graph shift operators
are uniformly bounded for every t ‖St‖ ≤ %, the distance εt1,t2 between the filter output at
time instants t1 and t2 is upper-bounded as

εt1,t2 ≤ ‖y0‖ |ψ%|
t1 +|ψ%|t2

xmax
+|ϕ| |ψ%|

t2 −|ψ%|t1

1−|ψ%| . (6.15)

(The proof can be found in Appendix 6.B.)
Consider t1 big enough such that the term |ψ%|t1 ≈ 0. Then, from (6.15) we can find

the value of t2 such that the error between the two is smaller than a desired positive
constant ε, i.e.,

t2 ≥ log(α/ε) ⇒ εt1,t2 ≤ ε, (6.16)

with α= ‖y0‖/xmax +‖ϕ‖/(1−‖ψ%‖).
These results can be further extended to the general ARMAK graph filter. For the par-

allel implementation, we can proceed in the same way as for the ARMA1 by considering
that the output signal is the sum of K ARMA1 graph filters.

6.2. ARMA GRAPH FILTERS AND THEIR INHERENT TEMPORAL PROCESSING

6

99

The main result of Theorem 6.2 stands in the fact that the ARMA output will not di-
verge as long as the graph shift operators of each realization Gt has uniformly bounded
spectral norm and from (6.16) the distance decreases exponentially. Further, for t big
enough and if Stv enjoys an eigendecompositon the result in (6.13) gives us insights
where the ARMA output converges. Numerical results suggest that the obtained output
is close to the designed frequency response of the ARMA filter.

6.2.3. NUMERICAL RESULTS

To illustrate our results we simulate two different case-studies: one with a fixed graph
and a time-varying graph signal, and one where both the graph and the graph signal
are time-varying. In the latter case, the ARMA performance is compared to the state-of-
the-art FIR filters designed in a universal manner [9]. With the first case-study, we aim
to show how the proposed filters operate on graph signals that have spectral content in
both graph and temporal frequency domains. Meanwhile, with the second the goal is
to illustrate the ARMA performance when the underlying graph topology is not static
anymore but varies with time. For all our simulations, the ARMA filters, if not differently
mentioned, are initialized to zero (i.e., y0 = 0N and y(k)

0 = 0N for all k) and the filter design
is performed in a universal setting.

6.2.4. VARIAITONS ON THE GRAPH SIGNAL

In this section, we present simulation results for time-varying signals. We consider a 0.5-
bandlimited graph signal x∗t oscillating with a fixed temporal frequency π/10, meaning
that

uH
n x∗t =

{
e πt/10 if λn < 0.5
0 otherwise,

(6.17)

whereλn is the nth eigenvalue of the normalized graph Laplacian and t it the time index.
The signal is corrupted with a second interfering signal it , oscillating with a temporal
frequency 9π/10 with graph spectrum defined in the following in two different ways.. In
addition, the signal at each node is corrupted with i.i.d. Gaussian noise wt , with zero
mean and variance σ2 = 0.1. We then attempt to recover x∗t by filtering it with a parallel
ARMA5 graph filter canceling the interference it and attenuating the out of band noise.
The ARMA filter is designed only in the graph frequency domain based on the GFT of x∗t ,
i.e., to approximate an ideal low-pass filter in the graph domain with cut-off frequency
λc = 0.5. Regarding the temporal part, we exploit the property of the filter to preserve
the same graph frequency response as the static case for low temporal oscillations, while
attenuating the contribution of high temporal frequencies. Our simulations were con-
ducted using a random geometric graph G composed of N = 100 nodes placed randomly
in a square area, with any two nodes being connected if they are closer than 15% of the
maximum distance in the area.

Depending whether or not the interference is correlated with the signal, we distin-
guish between two scenarios:

i) Correlated signal interference. In this scenario, the interference is self-induced,
meaning that at an instant t , it and x∗t share the same graph spectrum, but oscillating

6

100 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.5

0

0.5

1

1.5

Without noise
Overall signal

Output signal

λ

λ

G
ra

ph
sp

ec
tr

al
co

nt
en

t

Figure 6.2: Graph spectral content of the input signal as well as of the overall signal affected by interference
and noise a) (top), and of the filter output signal b) (bottom). The output signal graph spectrum is shown for

t = 100.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-60

-50

-40

-30

-20

-10

0

Input Signal
Output Signal

ω/π

N
or

m
al

iz
ed

te
m

po
ra

l
sp

ec
tr

al
co

nt
en

t
(d

B
)

Figure 6.3: Average time spectral content over all nodes of the input and output signal. The values are
normalized with respect to the maximum.

at a higher temporal frequency (due for instance to electronics problems). To give intu-
ition, in Figure. 6.2.a), we show the graph spectral content of x∗0 and x∗0 + i0 +w0. We can
see that once corrupted by noise and interference, the graph signal presents significant
spectral content across the graph spectrum, thus losing its bandlimited nature. Mean-
while, Figure. 6.2 b) depicts the real part of the graph spectral content of the filter output
after 100 iterations (i.e., well after the initial state is forgotten). Even though the figure
cannot capture the effect of dynamics (as it focuses on t = 100), it shows that all frequen-
cies above λc = 0.5 have been attenuated and the interference contribution in the band
is reduced.

To illustrate the filtering of the temporal frequencies of the signal, in Figure. 6.3 we
show the average spectrum over all nodes of the input and output signal. To increase vis-
ibility, the values in the figure are normalized with respect to the maximum. We note that
the content relative to the interfering frequency 9π/10 of the output signal is attenuated
around 13 dB with respect to the main temporal frequency content of π/10.

ii) Uncorrelated signal interference. Let us now consider a more involved scenario,

6.2. ARMA GRAPH FILTERS AND THEIR INHERENT TEMPORAL PROCESSING

6

101

10
1

10
2

10
-1

10
0

t

total
interf

e t

Figure 6.4: Error of the ARMA recursion when the time-vaying input signal is affected by uncorrelated
interference.

in which the interfering graph signal satisfies

uH
n it = e 9πt/10e−λn , (6.18)

i.e., it is a signal having a heat kernel-like graph spectrum oscillating in time with a pul-
sation ω = 9π/10. We will examine two types of errors: i) The first compares for each
time t the ARMA5 output GFT ŷt to that of the signal of interest

e(total)
t = ‖ŷt − x̂∗t ‖

‖x̂∗t ‖
. (6.19)

Achieving a small error e(total)
t is a very challenging problem since an algorithm has to

simultaneously overcome the addition of noise and the interference, while operating in
a time-varying setting (see Figure. 6.4. ii) The second error focuses on interference and
compares yt to the output y∗t of the same ARMA5 operating on x∗t +wt (but not x∗t +it+wt)

e(interf)
t = ‖ŷt − ŷ∗t ‖

‖ŷ∗t ‖
, (6.20)

where ŷ∗t is the GFT of y∗t .
We can see from Figure. 6.4 that after a few iterations this error becomes relatively

small, meaning that the ARMA output spectrum when the signal is affected by inter-
ference is similar to when the interference-less signal is used. This gives a first insight,
that using the ARMA recursion we can manage multiple signals on a graph by making
them orthogonal in the temporal frequency domain. By a specific design of the filter co-
efficients, one can distributively operate on the graph signal of interest and ignore the
others. Such a result cannot be achieved with FIR filters for two reasons: i) they suf-
fer from handling time-varying input signals, and ii) the shown FIR filters do not act on
the temporal frequency content of the graph signals, thus such a distinction between
overlapping signals is difficult to achieve. Next, in Section 6.3.1 we will introduce two-
dimensional FIR graph-temporal filters capable to perform this task.

The above results illustrate the conclusions of Section 6.2.1, and also quantify how
much we can attenuate the signal at a specific graph/temporal frequency.

6.2.5. VARIATIONS ON THE GRAPH TOPOLOGY

We examine the influence of graph variations for two filtering objectives. The first, which
corresponds to Tikhonov denoising, can be computed exactly using ARMA. In the second

6

102 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-15

10
-10

10
-5

10
0

t

t

∥z
t
−

ũ
∥/

∥ũ
∥

ARMA1
FIR1
FIR5
FIR25

N
M
SE

Figure 6.5: Normalized error related to the solution of the denoising problem in a distributed way with graph
filters. Results relative to random time-varying graph (top) and static graph (bottom). We compare the results

of ARMA1 with different FIR graph filters. The FIRK output at time t is calculated as
yt =∑K

k=0 hkΦS(t , t −k +1)x and is not arrested after K time instants.

objective, the graph filter is designed to approximate an ideal low-pass graph filter, i.e., a
filter that eliminates all graph frequency components higher than some specific λc . In
addition, we consider two different graph dynamics: random edge failures, where the
edges of a graph disappear at each iteration with a fixed probability, and the standard
model of random waypoint mobility [10]. The above setup allows us to test and compare
universal ARMA and FIR graph filters (designed using the least-squares method) over a
range of scenarios, each having different characteristics.

Exact design (denoising). We simulate the denoising problem (as defined by (4.15),
with w = 0.5 and K = 1) over the same graph topology of Section 6.2.4, where the proba-
bility of an edge going down at each time instant is p = 0.05. The input signal x = x0 +w
is given by a linear combination of a smooth signal x0 and noise w. To ensure that the
graph signal is smooth, we set its spectrum, w.r.t. the first graph, as uH

n x0 = e−5λn . The
noise w is i.i.d. Gaussian distributed with zero mean and unit variance.

To compare the results, we calculate the normalized error between the graph filter
output and the analytical solution of the optimization problem (4.15) solved w.r.t. the
initial graph. In Figure. 6.5, we plot the normalized error of solving the denoising prob-
lem via distributed graph filtering. We consider an ARMA1 graph filter (designed accord-
ing to Section 4.2.4 with y0 = x0) and we compare its performance with FIR graph filters
of different orders.

As expected, we can see that in the static case the ARMA graph after K iterations has
the same performance as the FIRK filter and they both match the optimal solution. In
the random time-varying graph the ARMA filter outperforms all the FIRs. This is mainly
due to its implementation strategy, which allows the ARMAs to handle the graph varia-
tions better. Also, note that the result got from the ARMA1 in the time-varying scenario

6.2. ARMA GRAPH FILTERS AND THEIR INHERENT TEMPORAL PROCESSING

6

103

quantifies the theoretical derivations in (6.13) and Theorem 6.2. Indeed, we notice that
the output is close (up to an order 10−3) to the desired frequency response and the con-
vergence is linear.

We can see that, for both the random time-varying and static graph the ARMA graph
filter gives a lower error with respect to the solution of the optimization problem. As we
have seen before, for static graphs the ARMA filter matches correctly the analytical solu-
tion. Meanwhile, when the graph is generated randomly it approximates quite well the
latter. On the other hand, the FIR filters performance is limited because they only ap-
proximate the optimal solution. Notice that the FIR output is given after K time instants
and then the filter is reset, hence the spikes in the figure.

Approximate design (ideal low pass). We use graph filters of increasing orders, K =
2,4 and 6, to universally approximate a low-pass graph filter with frequency response
h∗(λ) = 1 if λ < 0.5, and zero otherwise. The graph has 100 nodes living in a square of
1000 × 1000 meters, with a communication range of 180 meters. We simulated node
mobility according to the random waypoint model [10] with a constant speed selected
in [0,3] m/s.

We start with a scenario where only the graph topology changes in time while the
graph signal remains invariant. Later, we simulate a more general case, where both the
graph topology and the graph signal are time-varying. For both scenarios, we do 20 dis-
tinct runs, each lasting 10 minutes and comprising 600 iterations (one iteration per sec-
ond). We compare the response error ‖h−h∗‖2/‖h∗‖2 of the ARMA filters with that of
the analogous FIR filters while accounting for the initialization phase (we ignore the first
100 iterations). At each time instant, we compute h(λn) = ŷn/x̂n , where the points x̂n ≈ 0
are not considered. Then, it is compared with the desired frequency response at the par-
ticular graph frequency λn , i.e., h∗(λn). The statistical significance of our results stems
not only by the 20 distinct repetitions, but also by the large number of graph topologies
experienced in each run.

Time-varying graph, constant graph signal. For this scenario, x is a random vector
with entries selected uniformly distributed in [0, 1]. In Figure. 6.6 (top) we show the re-
sponse error for increasingly higher node speeds. As expected, the error increases with
speed. The ARMA filters show a better performance compared to their analogous FIR
filters. This indicates that the proposed approach handles better time-varying settings
than the FIR filters. Further, we can see that higher order ARMA filters approximate bet-
ter the desired frequency response (smaller error) when the graph is static. On the other
hand, when mobility is present, higher order ARMA recursions lead to a rough approxi-
mation due to their slower convergence and the fact that the poles go closer to the unit
circle (larger coefficients).

Time-varying graph and graph signal. To conclude, we simulate the more general
case where both the graph structure and the graph signal change. Simulating a target
tracking scenario, we let the signal at each node take a value of zero, unless a node was
within 100 meters from a target point, residing at the middle of the 1000× 1000 meter
simulation area, in which case the node’s value was set to one. In Figure. 6.6 (bottom)
we show the response error as a function of the node’s speed. It is not surprising that
letting the graph signal change over time makes the graph filtering problem harder and
the corresponding errors of all graph filters larger. As expected, the error increases with

6

104 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

0 0.5 1 1.5 2 2.5 3

10
0

10
1

ARMA
2

ARMA
4

ARMA
6

FIR
2

FIR
4

FIR
6

re
sp

on
se

er
ro

r

speed (m/s)

0 0.5 1 1.5 2 2.5 3

10
0

10
1

ARMA
2

ARMA
4

ARMA
6

FIR
2

FIR
4

FIR
6

re
sp

on
se

er
ro

r

speed (m/s)

Figure 6.6: The effects of the variations only on the graph topology (top) and on both graph and graph signal
(bottom). The response error is calculated as ‖h(λ)−h∗(λ)‖2/‖h∗(λ)‖2. Each error bar shows the standard
deviation of the approximation error over 20 runs. A small horizontal offset is included to improve visibility.

speed. The ARMA filters show a better performance compared to their analogous FIR
filters for all cases other than when K = 2 and speed is zero (the latter is an artifact of the
Shank’s method).

6.3. DISTRIBUTED TWO-DIMENSIONAL GRAPH-TIME FILTERS

So far, we treated graph signal variations as perturbations in the input signal and we
wanted to characterize the filter robustness in such conditions. However, we saw that
to some extent the graph-based designed ARMA filter showed some filtering behavior
also in the temporal domain. To properly process the joint graph-time spectrum of
time-varying graph signals, in this section we extend our analysis to more involved two-
dimensional FIR and ARMA filters. The proposed filters can process a time-varying
graph signal in a distributed manner, and by tuning the filter coefficients they can ap-
proximate any desired two-dimensional graph frequency response.

6.3. DISTRIBUTED TWO-DIMENSIONAL GRAPH-TIME FILTERS

6

105

6.3.1. FIR GRAPH-TEMPORAL FILTERS

In this section, we present the recursions that implement a two-dimensional FIR (FIR2D)
filter.

FIR2D (intuitive extension). Temporal variations of the input signal can be captured
by the FIR filter considering its temporal history. Let us consider extending (3.6) to the
recursion

yt =
K∑

k=0
φk Sk xt−k , (6.21)

where now the output at time t ≥ K , i.e., yt , depends on the past K realizations of the
input signal, where xt−k is graph-shifted with Sk (this favors a distributed implementa-
tion). Recursion (6.21) provides the intuition it is an FIRK filter in both the graph and
temporal frequency domain. To see this, we calculate the joint transfer function of the
filter (6.21). Applying first the GFT and then the Z -transform to (6.21), the joint graph-
temporal transfer function can be written as

h(z,λ) =
K∑

k=0
φkλ

k z−k . (6.22)

We can now formally see that, the joint transfer function (6.22) implements an FIR fil-
ter of order K in the graph domain and an FIR filter of the same order in the temporal
domain. In a distributed computation, for computing yt we need access to the terms
Sxt−1,S2xt−2, . . . ,SK xt−K . To reduce the computation effort, we can consider that each
node memorizes the terms xt−1,Sxt−2, . . . ,SK xt−K−1 while computing yt−1. In this way,
each node can compute Sk xt−k from Sk−1xt−k , which leads to the same computational
effort as computing (3.6). From (6.22), we note that the zeros of the polynomial in λ and
in z are correlated to each other2. This affects the joint design, and we can expect the
same behavior as the ARMA filter, i.e., there is a tradeoff between the filter approxima-
tion in each domain.

We further illustrate this in Figure 6.7, where we approximate with an FIR3 filter an
ideal step function in the graph frequency domain with cut-off frequency λc = 0.5. We
can see that for a high normalized temporal frequency the filter response differs from the
case of f = 0, for which the filter has been designed. This behavior is attributed to the
fact that the joint transfer function (6.22) is not a complete two-dimensional polynomial
of order K . All the cross term monomials of the formλαz−β withα 6=β are missing. How-
ever, even considering all these challenges, this approach can still approximate specific
two-dimensional filter masks or to characterize the FIR filter robustness to perturbations
of the input signal as we did for the ARMA filter in Section 6.2.

General FIR2D. The approximation accuracy of the FIR2D filter can be improved if we
incorporate also the missing cross term monomials in (6.21). This is achieved by consid-
ering all K graph-shifts for every past input of the graph signal. This approach considers
more data exchanges and computational power to implement a filter of the same order

2In the before introduced ARMA filter this is observed for the poles (cf. eq. (6.6)), which affects both the filter
design and stability.

6

106 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

2

1

λ00

1/2

10
1

10
0

10
-1

10
-2

1

h
(e

j
2
π
f
,λ

)

f

total

Figure 6.7: The joint graph and temporal frequency response of the FIR3 graph filter, designed to approximate
an ideal low pass (step) response with cut-off frequency λc = 0.5. A normalized Laplacian has been used,

λ ∈ [0,2] and the temporal normalized frequency f ∈ [0,1].

in both the graph and temporal domain. More formally, consider the recursion

yt =
Kg∑

k=0

Kt∑
l=0

φk,l Sk xt−l , (6.23)

with Kg and Kt the memory of the filter in the graph and temporal domain, respectively.
We can now calculate the joint transfer function of (6.23) in the same way as we did for
(6.21). By applying the GFT and the Z -transform we get

h(z,λ) =
Kg∑

k=0

Kt∑
l=0

φk,lλ
k z−l , (6.24)

which is now an FIR of order Kg in the graph domain and of order Kt, not necessarily
equal to Kg, in the temporal domain. From the joint frequency response (6.24), we can
see that now we have a full polynomial in the variables z and λ. Thus with this expres-
sion we can act on all the KgKt coefficients φk,l , instead of the K offered by (6.21), to
approximate a two-dimensional frequency response. Further, regarding (6.21), recur-
sion (6.23) has the potential to achieve filters of different orders in each domain. Similar
to the distribution implementation of (6.21), the computational efforts of computing the
output yt can be reduced by allowing the nodes to keep in memory the terms Sk xt−l for
k ∈ [0,Kg] and l ∈ [1,Kt] obtained while computing yt−1. Thus, for the computation of
yt only the terms Sxt , . . . ,SKg xt have to be computed. For a FIR2D filter of the form (6.23)
with order K in both graph and time, this means we need only K times more computa-
tional efforts compared to (3.6).

6.3. DISTRIBUTED TWO-DIMENSIONAL GRAPH-TIME FILTERS

6

107

Graph restricted causal FIR2D. Given the general form (6.23) and its particular ver-
sion (6.21) there is room to use an intermediary approach, which can be implemented
in a causal way with relaxed implementation costs. The causal FIR2D with most degrees
of freedom can be implemented as

yt =
Kt∑

l=0

l∑
k=0

φk,l Sk xt−l . (6.25)

Being a restricted causal implementation, the terms Sxt , . . . ,SKg xt are not anymore nec-
essary to be computed in (6.25), thus the distributed implementation costs are the same
as (3.6).

Separable FIR2D. A particular subclass of interest of (6.23), are two-dimensional fil-
ters that achieve a separable two-dimensional frequency response in graph and time. By
setting φk,l =φk bl we can express (6.23) as

yt =
(

Kg∑
k=0

φk Sk

)(
Kt∑

l=0
bl xt−l

)
, (6.26)

whereφk are the filter coefficients relative to the graph part and bl to time. Similar to the
derivation of (6.23), the transfer function of (6.26) can be written as h(z,λ) = ht(z)hg(λ)

where ht(z) = ∑Kt
l=0 bl z−l and hg(λ) = ∑Kg

k=0φkλ
k . This separable approach offers us the

freedom to handle the filter specifications independently in the graph and temporal do-
main. We can also see (6.26) as first computing locally at each node the temporal filter-
ing, i.e., y′t =

∑Kt
l=0 bl xt−l and then performing the overall output yt by filtering y′t on the

graph, i.e., yt =∑Kg

k=0φk Sk y′t . In contrast to the latter, (6.26) allows for an online process-
ing of the time-varying graph signal. In the sense that, when xt+1 becomes available,
(6.26) requires processing only this signal among the graph and not calculating locally
y′t+1 and then perform a graph filter. This means we can track the time variations of
the graph signal. However, notice that the separable filters have only Kg +Kt degrees of
freedom instead of KgKt of the general case (6.23). Thus it can address a limited class of
two-dimensional frequency responses, but a practical class.

Filter design. We now discuss the task in designing the filter coefficients give a two-
dimensional frequency mask h∗(e ω,λ). We consider the following cases:

General design. By using the general two-dimensional frequency response (6.24), the
filter coefficients can be designed with a two-dimensional polynomial fitting of h(z,λ)
(for z = e ω) to h∗(e ω,λ).3

Design by signal modeling. When we are interested to model a temporal stream of
graph signals {x0, . . . ,xT } with few coefficients, we might consider fitting one of the FIR2D

implementations to the data and the filter coefficients can be found by solving

min
φk,l

T∑
τ=0

∥∥∥∥∥xτ+1 −
Kg∑

k=0

Kt∑
l=0

φk,l Sk xτ−l

∥∥∥∥∥
2

2

, (6.27)

3In practice, we have observed that a direct two-dimensional fit does not lead to good approximations. As a
deeper analysis is needed, we consider this aspect as future research in Section 9.2.2.

6

108 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

where in (6.28) we consider the most general FIR2D (6.23). As used in [11] for graph topol-
ogy inference from streaming data, and as as we will see in Section 6.3.2, the approach
in (6.28) can also be interpreted as a graph-temporal autoregressive modeling as yt is
substituted with xt+1.

An alternative to the design (6.28) is to inject unitary white noise wt into the filter
and exploit statistics of the streaming data to design the filter coefficients as the solution
of

min
φk,l

E

∥∥∥∥∥xt −
Kg∑

k=0

Kt∑
l=0

φk,l Sk wt−l

∥∥∥∥∥
2

2

, (6.28)

with xt abiding to some known distribution on the graph.
Separable design. When the desired frequency response is separable, i.e., h∗(e ω,λ) =

h∗
t (e ω)h∗

g (λ) we have the advantage to separate the filter design as well. Thus, we can
use any desired method to find the coefficientsφk that approximate h∗

g (λ) and any of the
well-known techniques to find the coefficients bl for approximating h∗

t (e ω). The latter
renders the separable approach practical since we can give our specifications indepen-
dently in the graph and temporal domain.

6.3.2. ARMA GRAPH-TEMPORAL FILTERS

We can extend the general FIR2D (6.23) by adding a feedback loop on the filter to obtain
the general two-dimensional ARMA (ARMA2D) graph-temporal recursion defined as

P∑
p=0

Lp∑
l=0

ψl ,p Sl yt−p =
Q∑

q=0

Kq∑
k=0

ϕk,q Sk xt−q , (6.29)

for some autoregressive coefficients ψl ,p and moving average coefficients ϕk,q . Scalars
P , Lp , Q and Kq denote the filter orders. Recursion (6.29) extends the ARMA graph filters
in Chapter 4, as now the computation of the output yt involves shifts of different orders
in the graph domain (indicated by the powers of S), and in the time domain (indicated by
the temporal memory of the past output and input signal). These joint shifts once again
show that we can jointly capture signal variations over the graph and time. On the neg-
ative side, ARMA2D introduces stability issues which once again relate filter instabilities
in both the graph and temporal domain.

The following proposition asserts the above intuition.

Proposition 6.1. Given a set of stable coefficientsψl ,p , ϕk,q (see proof for the exact condi-
tions), the joint transfer function of (6.29) is

h(z,λ) =
∑Q

q=0

∑Kq

k=0ϕk,qλ
k z−q∑P

p=0
∑Lp

l=0ψl ,pλl z−p
. (6.30)

(The proof can be found in Appendix 6.C.)
Recursion (6.29) implements ARMA(P , Q) in the time domain and an ARMALp ,Kq in

the graph domain for different temporal shifts p and q . The ARMA2D filters thus have
the potential to achieve a better approximation quality of a two-dimensional desired

6.3. DISTRIBUTED TWO-DIMENSIONAL GRAPH-TIME FILTERS

6

109

response, as compared to the ARMA graph filters in Section 6.2. Notice that (6.29) is a
special form of implementing two-dimensional filters, thus it will not collapse to a pure
ARMA graph filter when the graph signal is time-invariant. This is because yt will appear
on both sides of (6.29).

By tuning the coefficients ψl ,p , ϕk,q and the shift orders (P,Q), (Lp ,Kq), (6.29) spe-
cializes to the following forms:

• For P0 =∑L0
l=0ψl ,0Sl being non singular, we get the causal ARMA2D form

P0yt =−
P∑

p=1

Lp∑
l=0

ψl ,p Sl yt−p +
Q∑

q=0

Kq∑
k=0

ϕk,q Sk xt−q , (6.31)

which is a predictor recursion on graph, since yt depends only on the past filter
input and output signals. To avoid singularity issues of P0, we can set P0 = IN .

• For Lp = p and Kq = q , we get the graph restricted causal ARMA2D form

ψ0,0yt =−
P∑

p=1

p∑
l=0

ψl ,p Sl yt−p +
Q∑

q=0

q∑
k=0

ϕk,q Sk xt−q , (6.32)

which considers the output at time t as a linear combination of the neighbors dis-
tant at most as the temporal history of the input-output signals (i.e., like (6.25)).

• For Q = Kq = 0, (6.29) reduces to a two-dimensional AR filter on graphs.

• For P0 = IN and Pτ =∑Lτ
l=0ψl ,0Sl = 0N 0T

N for all τ= 1, . . . ,P , the ARMA2D reduces to

the FIR2D filter on graphs.

• Forψl ,p =ψl ap andϕk,q =ϕk bq , recursion (6.29) implements a separable ARMA2D

with frequency response h(z,λ) = ht (z)hg (λ), where ht (z) and hg (λ) are respec-
tively the rational frequency responses in each domain.

• Finally, (6.29) allows us to achieve hybrid forms, i.e., FIR in one domain, say graph,
and IIR in the other domain, say time. The latter example can be achieved by
setting Lp = 0 for all p = 0, . . . ,P and ψ0,0 = 1, which leads to the recursion

yt =−
P∑

p=1
yt−p +

Q∑
q=0

q∑
k=0

ϕk,q Sk xt−q . (6.33)

Then, under the conditions of Proposition 6.1, (6.33) achieves the two-dimensional
frequency response

h(z,λ) =
∑Q

q=0

∑Kq

k=0ϕk,qλ
k z−q∑P

p=0ψl ,0z−p
. (6.34)

The main advantage of (6.34) is that it achieves a two-dimensional graph-time fre-
quency response with an alleviated stability that depends only on the temporal
domain (i.e., poles within the unit circle).

6

110 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

Distributed computation. We consider the standard message-passing model [12]
where the input graph is the same as the network over which the computation is per-
formed. The message exchange is assumed to take much short than the sampling period
of the signal. We quantify the efficiency of the filtering in terms of the per-timestep com-
munication complexity, defined as the number of bits the network needs to exchange to
compute yt given yt−1, . . . ,y0. Let us focus on the special case that P0 = IN , for which
recursion (6.29) is efficiently computable. Additionally, consider Lp = L and Kq = K for
all p, q . The recursion involves the terms Sl yt−p and Sk xt−q for all k, l , p, q > 0, but, only
the terms S1yt−1, . . . ,Sl yt−1 and S1xt , . . . ,Sk xt have not been computed during a previ-
ous timestep. Since in both cases we are dealing with successive powers of S, we can
reduce the computation effort by obtaining Sl yt−1 from Sl−1yt−1 and so on (the same
holds for Sk xt). Thus, we will need K + L multiplications with matrix S. Since S is a
local matrix, the network can perform the multiplication of S with any graph signal dis-
tributedly, by exchanging 2M values. The per-timestep communication complexity is
2M(K + L) × cr = O(MK) bits, where cr is the architecture-dependent representation
length of each scalar and, w.l.o.g., we assume that K ≥ L. The per-timestep compu-
tational complexity of ARMA2D is less than twice that of ARMAK graph filter (which is
2MK × cr bits per-timestep) in the general case, and equivalent when L = 0.

Filter design. We now discuss the challenges that ARMA2D introduces in the design
phase in meeting given filtering specifications.

General design. As in the FIR2D, we would like to approximate a desired two-dimensional
desired response h∗(e ω,λ) with the two-dimensional frequency response (6.30) for z =
e ω. We remark that finding the filter coefficients ψl ,p and ϕk,q that minimize the ap-
proximation error results in a challenging task since the fractional nature of (6.30) leads
to a set of non-linear equations. The added convergence/stability issues that the ARMA2D

brings into the play make this aspect more challenging. While we leave a detailed analy-
sis of this aspect for future research, the hybrid form (6.33) is also a valid candidate with
alleviated convergence/stability issues.

Design by signal modeling. By following the same approach as the FIR2D modeling,
the ARMA2D coefficients that model a stream of time-varying graph signals {x0, . . . ,xT }
can be found by minimizing

min
ψl ,p ,ϕk,q

T∑
τ=0

∥∥∥∥∥xτ+1 +
P∑

p=1

Lp∑
l=0

ψl ,p Sl xτ−p −
Q∑

q=0

Kq∑
k=0

ϕk,q Skδτ−q

∥∥∥∥∥
2

2

, (6.35)

with δτ being a know deterministic driving graph signal (not necessarily Dirac impulse).
For known statistics of xt the ARMA2D filter can be driven by white noise and the filter
coefficients, similarly to (6.28), can be found as the solution of

min
ψl ,p ,ϕk,q

E

∥∥∥∥∥xτ+1 +
P∑

p=1

Lp∑
l=0

ψl ,p Sl xτ−p −
Q∑

q=0

Kq∑
k=0

ϕk,q Sk wτ−q

∥∥∥∥∥
2

2

, (6.36)

for some unitary zero-mean white noise wt . In (6.35) and(6.36), we implicitly consid-
ered the causal form (6.31) with P0 = IN due to its simplistic implementation, but other
alternatives are also possible.

6.3. DISTRIBUTED TWO-DIMENSIONAL GRAPH-TIME FILTERS

6

111

Separable design. For a desired filter frequency response of the form h∗(e ω,λ) =
h∗

t (e ω)h∗
g (λ). The design problem can then be reformulated as finding the respective

filters taps that approximate each frequency response independently, i.e., by minimizing∫
ω

∣∣∣ht (e ω)−h∗
t (e ω)

∣∣∣2
dω and

∫
µ

∣∣∣hg (λ)−h∗
g (λ)

∣∣∣2
dλ (6.37)

for the temporal and graph approximations, respectively. In this way, we can use any of
the techniques shown in the previous chapters to approximate a desired graph frequency
response and any of the well-established techniques for temporal filter design [13].

6.3.3. NUMERICAL RESULTS

This section tests the FIR2D and ARMA2D filters with some preliminary numerical re-
sults. For both architectures, we evaluate the approximation accuracy of the separable
approaches and their ability to achieve jointly graph signal denoising and interference
suppression. We start our evaluation with the FIR2D and then we focus on the ARMA2D

filter. For our simulations we consider a network of N =100 nodes randomly placed in
a squared area, with two nodes being neighbors if they are physically closer than 15% of
the largest distance in the area.

FIR2D. We consider FIR filter with orders Kg = Kt = 10. For the design in the graph
domain, we use the polynomial approximation [9] and the windowing method for the
time domain.

Filter approximation. With reference to Figure 6.8, we note that the proposed ap-
proach can approximate different desired two-dimensional separable frequency responses.
For this case, the cut-off frequencies in both domains are the half of the respective bands.
We remark that these results extend those of the ARMAK in Figure 6.6 to suppress desired
temporal frequencies.

Denoising and interference suppression. Consider a graph signal of the form xt =
x∗t + it +wt , where

uH
n x∗t =

{
e jπt/4 if λn < 0.5
0 otherwise,

(6.38)

is the signal of interest, uH
n it = e 3πt/4, for allλn , is the interfering signal and wt is a zero

mean additive Gaussian noise with Σw = σ2
w IN and σ2

w = 0.1. Our goal is to recover the
graph signal of interest x∗t using the two-dimensional FIR graph filtering approach. In
this way, we aim to use the FIR filter to suppress the out-of-band noise in the graph and
time domain and to suppress the interferer in the temporal domain. Similarly to the
ARMAK we consider the errors (6.19) and (6.20) to measure the filtering performance.
For our simulations, the coefficientsφk approximate an ideal low pass step function with
λc = 0.5, meanwhile the coefficients bl are found by approximating a low pass temporal
filter with cut-off frequency ωc =π/2.

In Fig. 6.9, we can see that after some initial assessment time of the filter, both errors
reduce. Specifically, e(interf)

t is reduced by an order of two4. This shows the robustness

4To further reduce the error the filter can be designed as a band-pass around the oscillating frequency of x∗t .

6

112 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

2

1

λ00

1/2

0

0.5

1

1

h
(e

2
π
f
,λ

)

f

total

2

1

λ00

1/2

1

0.5

0

1

h
(e

2
π
f
,λ

)

f

total

"LP-LP” "HP-HP”

Figure 6.8: Different two-dimensional FIR approximations. From left to right, we have a low-pass (LP) filter in
both graph and temporal frequency domain and a high-pass (HP) filter in both domains. A normalized

Laplacian has been used and also the temporal frequencies are normalized (×π rad/sample).

10
1

10
2

10
-2

10
-1

10
0

10
1

t

er
ro

r

interf
total

Figure 6.9: Errors as a function of time for the two-dimensional FIR graph-temporal filter (solid line) and for
the classical FIR graph filter (dashed line).

of the two-dimensional FIR filter (6.26) to interference, where the interfering signal is
attenuated by the filter. An FIR graph filter that considers the input signal only once
when starts filtering, it produces errors that are much higher due to their impossibil-
ity to operate on the temporal frequencies. These results suggest that the network can
process jointly different time-invariant graph signals by modulating them in orthogonal
temporal frequencies. Then, we can process them with different two-dimensional filters
to separate the mixed signals in the temporal domain.

ARMA2D. For these simulations we consider a hybrid ARMA2D consisting of an FIR10

in the graph domain and a 6th order Butterworth filter for the temporal domain.

Filter approximation. With reference to Figure. 6.10, we can see that the proposed
approach can approximate different desired separable two-dimensional frequency re-
sponses. Also in this instance, the cut-off frequencies in both domains are the half of
the respective bands. In comparison with the FIR2D we remark a higher accuracy in the
temporal domain due to the Butterworth approach.

6.3. DISTRIBUTED TWO-DIMENSIONAL GRAPH-TIME FILTERS

6

113

1

0.5

-0.5

-1

1/2

1

0.5

1

0

0

0

f
λ

h
(e

2
π

f
,λ

)

1

0.5

-0.5

-1

1/2

0.5

1

1

0

0

0

f
λ

h
(e

2
π

f
,λ

)

"LP-LP” "HP-HP”

Figure 6.10: Different two-dimensional filter approximations. From left to right, we go from a low-pass (LP)
filter in both graph and temporal frequency domain to a high-pass (HP) filter in both domains. The joint filter
is an FIR10 in the graph domain and a Butterworth of order 6 in time. The depicted results are w.r.t. the shift

operator S = Ln − IN .

Signal recovery. We now consider only the task of time-varying signal recovery in
noise. For this purpose, we assume a graph signal of the form xt = x∗t +wt , where x∗t
is characterized by uH

n x∗t = e πt/4 if λn < λmax/2 and zero otherwise. We consider zero-
mean white Gaussian noise with different noise powers. To recover our signal x∗t we
adopt the double LP filter of Figure. 6.10 with graph cut-off graph frequency λmax/2 and
temporal cut-off frequency fc = 1/2. Considering that not only the signal but also the
noise is time-varying, we expect the two-dimensional filter to cancel the noise spectral
part outside the band of interest not only in the graph domain but also in the temporal
domain. To quantify the performance, we define a new measure of quality, named the
signal-to-error ratio (SER) as

SERt =
‖x̂∗t ‖2

‖ŷt − x̂∗t ‖2 , (6.39)

which quantifies how well we cancel the out-of-band noise and approximate the filter
(notice that our desired response in the graph frequency domain is x̂∗0).

In Figure 6.11 we show the SER (in dB) for different input signal-to-noise ratios (SNRs),
for both hybrid approaches and the universal FIR filter which operates only on the graph
spectral domain. The pure FIR graph filter assumes that x∗t does not oscillates in time
(i.e., x∗t = x∗0) and only the noise is time-varying. For a time-varying x∗t , the FIR per-
formance degrades since it does not consider the temporal spectrum of the input sig-
nal. As seen in the figure, ARMA2D outperforms the FIR graph filter for all noise lev-
els. When the noise level decreases, i.e., the input SNR is higher, the SER is lower than
the input SNR due to the filter approximation accuracy. We conclude that the proposed
two-dimensional filters, as expected, better suit time-varying environments.

6

114 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

SE
R

(d
B

)

Input SNR (dB)

ARMA2D

-30
-30

-20

-20

-10

-10

0

0

10

10

20

20 30

FIR10

Figure 6.11: SER (dB) vs. input SNR (dB) for our presented ARMA2D approach (FIR10 in graph and
Butterworth 6 in time) and for the classical universal FIR10 graph filters. The results are averaged over 10

iterations.

6.4. CONCLUDING REMARKS

This chapter concerned the analysis of graph filters under deterministic variations in the
graph topology and/or graph signal. We first showed that the ARMAK graph filters ex-
tend naturally to joint graph-temporal filters when the input signal is time-varying. We
characterized the filter robustness to temporal variations of the input signal and show
that a purely graph-based design can cope well with slow variations of the filter input.
Next, we analyzed the robustness of the parallel ARMAK graph filter to variations in the
graph topology. We provided closed-form expressions for the ARMAK output when the
graph structure and the graph signal change over time. To process time-varying graph
signals we introduced two architectures that allow distributed implementation for the
joint graph-temporal (FIR and ARMA) filters. Different implementation strategies such
as causal and separable are shown, along with their design challenges. The filters’ per-
formance is assessed with numerical results to quantify their ability in dealing with de-
terministic dynamics in the graph topology and/or graph signal.

APPENDICES

6.A. PROOF OF THE JOINT ARMAK GRAPH AND TEMPORAL FREQUENCY RE-
SPONSE THEOREM

The recursion of a parallel ARMAK with time-varying input is

y(k)
t+1 =ψ(k)Sy(k)

t +ϕ(k)xt (6.40a)

yt+1 =
K∑

k=1
y(k)

t+1, (6.40b)

where y(k)
t is the state of the kth ARMA1, whereas xt and yt are the input and output

graph signals, respectively. Using the Kronecker product the above takes the more com-

6.4. CONCLUDING REMARKS

6

115

pact form

y(1:K)
t+1 = (Ψ⊗S)y(1:K)

t +ϕ⊗xt (6.41a)

yt+1 = (1T
K ⊗ IN)y(1:K)

t , (6.41b)

with y(1:K)
t = [

y(1)>
t ,y(2)>

t , · · · ,y(K)>
t

]> the N K×1 stacked state vector,Ψ= diag(ψ(1),ψ(2), · · · ,ψ(K))
a diagonal K ×K coefficient matrix, ϕ = (ϕ(1),ϕ(2), · · · ,ϕ(K))> a K ×1 coefficient vector,
and 1K the K ×1 one-vector.

We therefore have

y(1:K)
t+1 = (Ψ⊗S)t y(1:K)

0 +
t∑

τ=0
(Ψ⊗S)τ

(
ϕ⊗xt−τ

)
= (
Ψt ⊗St)y(1:K)

0 +
t∑

τ=0

(
Ψτϕ

)⊗ (
Sτxt−τ

)
.

(6.42)

Notice that, when the convergence condition ‖ψ(k)S‖ < 1 is met, limt→∞ ‖(Ψt ⊗St
)

y0‖2 =
0. Hence, for sufficiently large t , the ARMAK output is

lim
t→∞yt+1 = lim

t→∞

t∑
τ=0

(1T ⊗ IN)
(
Ψτϕ

)⊗ (
Sτxt−τ

)
= lim

t→∞

t∑
τ=0

(
1T

KΨ
τϕ

)
⊗ (

Sτxt−τ
)

= lim
t→∞

t∑
τ=0

K∑
k=1

ϕ(k)
(
ψ(k)S

)τ
xt−τ+ c xt ,

(6.43)

where we have used the Kronecker product property (A⊗B)(C⊗D) = (AC)⊗ (BD) and
expressed the Kronecker product as the sum of K terms. The transfer matrix H(z) is
obtained by taking the Z-transform in both sides and re-arranging the terms

H(z) = z−1
K∑

k=1
ϕ(k)

∞∑
τ=0

(
ψ(k)S

)τ
z−τ. (6.44)

Finally, applying the GFT and using the properties of geometric series we obtain the joint
transfer function in the closed-form expression

H(z,λ) = z−1
K∑

k=1
ϕ(k)

∞∑
τ=0

(
ψ(k)λ

)τ
z−τ

=
K∑

k=1

ϕ(k)z−1

1−ψ(k)λz−1

(6.45)

and our claim follows.

6

116 6. DETERMINISTIC ANALYSIS OF GRAPH-TIME FILTERING

6.B. PROOF OF ARMA OUTPUT DISTANCE IN TIME-VARYING SCENARIOS THE-
OREM

We start the proof by substituting the expression (6.8) for t1 and t2 into the numerator of
(6.14). Then, we can write

‖yt1+1 −yt2+1‖2 = ‖ψt1+1ΦS(t1,0)y0 −ψt2+1ΦS(t2,0)y0

+ϕ
t1∑
τ=0

ψτΦS(t1, t1 −τ+1)xt1−τ

−ϕ
t2∑
τ=0

ψτΦS(t2, t2 −τ+1)xt2−τ‖2. (6.46)

Rearranging the terms, we have

‖yt1+1 −yt2+1‖2 = ‖ψt1+1ΦS(t1,0)y0 −ψt2+1ΦS(t2,0)y0

+ϕ
t1∑

τ=t2+1
ψτΦS(t1, t1 −τ+1)xt1−τ‖2

(6.47)

By using the Cauchy-Schwarz property, the triangle inequality of the spectral norm, and
a uniform bound % on the eigenvalues of matrices St , the above expression simplifies

‖yt1+1 −yt2+1‖2 ≤
(|ψ%|t1+1 +|ψ%|t2+1)‖y0‖2

+|ϕ|
t1∑

τ=t2+1
|ψ%|τ‖xt1−τ‖2.

(6.48)

Leveraging the fact that |ψ%| < 1, as well as that ‖xt‖2 ≤ xmax for every t , we can
express the sum in a closed form

t1∑
τ=t2+1

|ψ%|τ‖xt1−τ‖2 ≤ xmax

(|ψ%|t2+1 −|ψ%|t1+1

1−|ψ%|
)

. (6.49)

We obtain the desired bound on εt1,t2 by dividing the above expressions with xmax and
adjusting the indices.

6.C. PROOF OF THE TWO-DIMENSIONAL ARMA FREQUENCY RESPONSE PROPO-
SITION

Assume that the filter is stable and consider a reduced dimension problem for (6.29).
This can be done by setting xt = xt u, with xt the scalar magnitude of xt in the eigenspace
of u. By considering the orthogonality of the shift operator eigenbasis, we can then
rewrite (6.29) as

P∑
p=0

Lp∑
l=0

ψl ,pλ
l yt−p =

Q∑
q=0

Kq∑
k=0

ϕk,qλ
k xt−q , (6.50)

where yt ∈C is the magnitude of yt ∈CN in the eigenspace of u. Taking the Z-transform
on both sides and by rearranging the terms we obtain the joint transfer function (6.30).

FURTHER READING

6

117

Let us analyze the stability condition for which recursion (6.29) converges. For sim-
plicity, we focus on the dimensionality reduced equivalent problem (6.50), but the result
also holds for (6.29). We start by rewriting (6.50) as

L0∑
l=0

ψl ,0λ
l yt +

P∑
p=1

Lp∑
l=0

ψl ,pλ
l yt−p =

Q∑
q=0

Kq∑
k=0

ϕk,qλ
k xt−q . (6.51)

We then define the P ×1 vector yP,t = [yt−P+1, yt−P+2, . . . , yt−1, yt]>, the (Q +1)×1 vector

xQ,t = [xt−Q , xt−Q+1, . . . , xt−1, xt]>, Ψp = ∑Lp

l=0ψl ,pλ
l and Φq = ∑Kq

k=0ϕk,qλ
k . With these

definitions in place, we rewrite (6.51) as

a0Ψ0yP,t = PyP,t−1 +QxQ,t , (6.52)

with P and Q the P ×P and (Q +1)× (Q +1) matrices, respectively, defined as

P =

0 Ψ0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . Ψ0

−ΨP −ΨP−1 . . . −Ψ1

 , Q =

0 . . . 0
0 . . . 0
...

. . .
...

0 . . . 0
ΦQ . . . Φ0

.

We can rewrite (6.52) as
yP,t = P′yP,t−1 +Q′xQ,t , (6.53)

with P′ = (Ψ0)−1P and Q′ = (Ψ0)−1Q. It is then clear that (6.53) and thus (6.29) converges
if the eigenvalues of P′ are lower than one in magnitude, i.e., ‖P‖ < |Ψ0|, and if (Ψ0)−1 is
different from zero for all eigenvalues λ of S.

FURTHER READING

[1] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Autoregressive moving average graph
filtering, IEEE Transactions on Signal Processing 65, 274 (2017).

[2] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Separable autoregressive moving av-
erage graph-temporal filters, in Signal Processing Conference (EUSIPCO), 2016 24th
European (IEEE, 2016) pp. 200–204.

[3] E. Isufi, G. Leus, and P. Banelli, 2-dimensional finite impulse response graph-
temporal filters, in Signal and Information Processing (GlobalSIP), 2016 IEEE Global
Conference on (IEEE, 2016) pp. 405–409.

[4] A. Loukas, Distributed graph filters, (2015).

[5] A. Loukas, A. Simonetto, and G. Leus, Distributed autoregressive moving average
graph filters, IEEE Signal Processing Letters 22, 1931 (2015).

[6] A. Loukas and N. Perraudin, Stationary time-vertex signal processing, arXiv preprint
arXiv:1611.00255 (2016).

6

118 FURTHER READING

[7] E. Isufi, A. Loukas, N. Perraudin, and G. Leus, Forecasting time series with varma
recursions on graphs, arXiv preprint arXiv:1810.08581 (2018).

[8] B. Touri, Product of random stochastic matrices and distributed averaging (Springer
Science & Business Media, 2012).

[9] D. I. Shuman, P. Vandergheynst, and P. Frossard, Distributed signal processing via
chebyshev polynomial approximation, arXiv preprint arXiv:1111.5239 (2011).

[10] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn, Bonnmo-
tion: a mobility scenario generation and analysis tool, in Proceedings of the 3rd In-
ternational ICST Conference on Simulation Tools and Techniques (ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering),
2010) p. 51.

[11] J. Mei and J. M. Moura, Signal processing on graphs: Causal modeling of unstruc-
tured data, IEEE Transactions on Signal Processing 65, 2077 (2017).

[12] E. Ghadimi, Accelerating convergence of large-scale optimization algorithms, Ph.D.
thesis, KTH Royal Institute of Technology (2015).

[13] A. V. Oppenheim and R. W. Schafer, Digital signal processing. 1975, Englewood
Cliffs, New York .

7
STATISTICAL ANALYSIS OF

GRAPH-TIME FILTERING

If your experiment needs statistics,
you ought to have done a better experiment.

Ernest Rutherford

We now depart from the deterministic analysis of graph-time filtering in which the graph
topology and the graph signal were assumed to change. Instead, in this chapter, we as-
sume the graph topology and the graph signal to vary stochastically with known statisti-
cal properties. The motivation to embrace this approach is twofold. First, the graph can
be affected by edge losses, e.g., link failures in sensor networks, which can be modeled
better as a stochastic process. Second, the graph signal can have a stochastic nature as
well, e.g., affected by noise. We then would like to characterize the filter output from a
statistical viewpoint and express its relation to the statistics of the graph and graph sig-
nal. By assigning a statistical distribution to the filter output, we can, therefore, argue in
terms of filtering output in the mean and filtering output deviation from the mean value.
To the best of our knowledge, this is the first attempt that approaches GSP and graph
filtering from this perspective.

The organization of this chapter is a follows. Section 7.1 motivates the research and
provides a list of contributions. The considered stochastic model and the assumptions
the developed theory relies on are shown in Section 7.2. The statistical analysis of the
filter’s output is carried out in Section 7.3. Section 7.4 exploits the stochasticity in the
graph signal to perform joint graph-temporal signal denoising, while in Section 7.5 we
leverage stochasticity to implement distributed graph filtering in a sparsified way. Sec-
tion 7.6 wraps up the chapter with a summary of the results.

Parts of this chapter have been published in the IEEE Transactions on Signal Processing [1] (2017), in the IEEE
CAMSAP [2] (2015), and in the IEEE ICASSP [3] (2017).

119

7

120 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

7.1. INTRODUCTION

Stochasticity is encountered in applications like communication networks, social net-
works, smart grids, and road networks. It occurs, for instance, when the graph signal
is corrupted with random additive noise, when it obeys a certain distribution, or when
–owing to random link and node failures– the graph topology becomes random. Char-
acterizing the impact of random graph perturbations has been considered for example
in distributed optimization [4–7], but not in graph filters.

In the sequel, we analyze the graph filters’ behavior when the input signal on the
graph and the graph topology are random processes over time with given statistical prop-
erties, yet with independent realizations. We remark that when we talk about a random
graph topology; we mean the signal graph, i.e., the graph that explains the signal struc-
ture, which also corresponds to the graph used for processing the graph signals. For in-
stance, in a road network, the signal graph can be random due to accidents. The actual
graph used for data exchange named the communication graph (e.g., between sensor
nodes placed on the crossroads of a road network) could be similar to the signal graph
or not, but we will not discuss this issue in this chapter. Hence, the term graph will
always refer to the signal graph. We believe that computing the filter output by incorpo-
rating the stochasticity of the graph is more meaningful since they are an integral part of
the graph signal realizations. Coming back to the road network example, the traffic at a
particular time instant is a consequence of the past realizations of the graph.

Finally, we view stochasticity as a tool to ease the computational and communication
costs in distributed graph filtering over a deterministic graph. We show that the intro-
duced framework can serve as a standing platform to perform the distributed filtering
operations in Chapters 3 and 4 with lower costs.

7.1.1. CONTRIBUTIONS

This chapter brings the following contributions to the field of GSP.

Contribution 7.1. Statistical analysis of the filter output. We provide closed-form ex-
pression and upper bounds for the first and second order moments of the filter output,
respectively. Our expressions show that state-of-the-art graph filters are equipped to
handle stochastic settings (for graphs and signals).

• 1−a) For a random time-varying graph signal characterized by temporal stationar-
ity with independent realizations, living on a random time-varying graph, we show
that the expected filter output is equal to the output of the same filter operating on
the expected signal living on the expected graph.

• 1−b) For a random time-varying, yet non-stationary graph signal with indepen-
dent realizations, (i.e., a time-varying mean and covariance) over a random time-
varying graph, we show that the expected output signal is equal to the output of a
deterministic two-dimensional filter, operating on the time-varying expected sig-
nal over the expected graph. In the latter case, the filter jointly captures the varia-
tions in the mean of the graph signal over the graph and temporal domains.

7.2. STOCHASTIC MODELING

7

121

• 1−c) We show that the average node variance of the filter output is upper bounded.
Further, we introduce a recursive way to track the variance of the ARMA output
iteratively based only on statistical knowledge of the previous time instant.

Contribution 7.2. Graph signal denoising in the mean. We propose to use stochastic-
ity for improving graph signal denoising tasks under smoothness priors, a.k.a. Tikhonov
denoising, when multiple realizations of the graph signal are available. The proposed
approach performs an online joint denoising over the graph and time domains exploit-
ing the new realizations of the input signal.

Contribution 7.3. Sparsified implementation of graph filters. By leveraging tools from
sparsification [8] and gossiping [9], we make use of stochasticity to do classical graph
filtering with lower communication and complexity costs. The proposed approach con-
siders filtering the signal over a sparsified graph where the information is exchanged only
with some randomly chosen neighbors.

7.1.2. APPLICATIONS

Besides characterizing the graph filters behavior when involved in the distributed tasks
detailed in Section 3.1.2, the proposed statistical analysis may result effective in the fol-
lowing applications.

• Signal diffusion on graphs affected by edge losses. The graph filter statistical view-
point can be useful to address graph signal diffusion over networks affected by
edge losses. This includes, but not limited to: i) gossip propagation in social net-
works, where friendships are lost and restored randomly; i i) energy diffusion over
smart grids, where link losses may occur due to random grid problems; and i i i)
traffic propagation in road networks, where a street (edge) can be closed over time
due to accidents. Since the steady-state diffused signal has an ARMA1 (cf. Chap-
ter 4) interpretation1, we are interested to analyze how the random fluctuations in
the graph topology affect the steady state diffused signal.

• Sparser implementation of distributed graph filters. With the goal to increase the
network lifetime, we consider solving the distributed graph filtering tasks (e.g., sig-
nal denoising, interpolation, and network coding) with random communications
with neighbors. In this scenario, each node, for each iteration, decides randomly
the neighbors with whom to exchange information with. As a results, the number
of the communications drops, but the output has a stochastic nature. Through the
statistical analysis of graph filters, we aim designing the communication probabil-
ities such that a target performance guaranteed.

7.2. STOCHASTIC MODELING

We here formalize the stochastic model used in the rest of this chapter. Our definitions
consider the stochasticity of the graph and the graph signal.

1This aspect is covered in more detail in Section 8.2.

7

122 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

7.2.1. GRAPH MODEL

We consider a random time-varying graph Gt as a random edge sampling of an arbitrary,
but time-invariant underlying graph G . More formally:

Definition 7.1. (Random edge sampling (RES) graph model.) The probability that a link
(i , j) in the edge set E is activated at time t is pi , j , with 0 < pi , j ≤ 1. The edges are activated
independently across time and the graph realizations are considered mutually indepen-
dent with the random graph process.

Thus, at each time step t , we draw a graph realization Gt = (V ,Et) from the under-
lying graph G = (V ,E), where the edge set Et ⊆ E is generated via an i.i.d. Bernoulli
process; this is a standard way of studying link failures in the literature on network al-
gorithms [10, 11]. In a graph signal processing perspective, the RES model suits better
cases where the graph has physical meaning, e.g., smart grids, which will have stochastic
repercussions on the filtering output.

Within the context of this chapter, let us refer to L as the Laplacian relative to the
underlying graph G = (V ,E), from which the graph realizations at different time instants
are drawn, and to Lt as the Laplacian of the graph realization at time instant t . Note that
each node locally derives the application of the instantaneous Laplacian matrix Lt on
the graph signal x by communicating with its neighbors. For convenience, denote the
expected Laplacian E[Lt] as L̄ related to the expected graph Ḡ .

For Laplacians L belonging to a set L and Et ⊆ E , the instantaneous graph Laplacian
Lt of Gt belongs also to L , meaning that all Lt have bounded eigenvalues. Further, due
to the interlacing property [12], the spectral radius bound % satisfies2 the property ‖Lt‖ ≤
‖L‖ ≤ % for all t . In general, we will say S = L (or S = Ln), St = Lt (or St = Ln,t) and S̄ = L̄
(or S̄ = L̄n,t).

7.2.2. SIGNAL MODEL

We consider random time-varying graph signals which can be correlated among the
nodes for a fixed time instant, but have independent realizations at different time in-
stants. More formally:

Definition 7.2. (Random graph process model.) The graph signal xt ∈ RN , at time in-
stant t , is a realization of a random process, with time-invariant mean x̄ and an N ×N
covariance matrix Σx . Signal xt has independent realizations over time.

The random graph process model presented above is a subclass of stationary tem-
poral signals, while not being restricted to stationary graph signals (cf. Section 2.4). In
this chapter, we work with a broader model, where we do not need the expected graph
signal x to be a constant vector, or the covariance matrix Σx to be jointly diagonalizable
with the graph shift operator. Further, the considered signal model has a fundamental
difference with the work of [13], where the authors assume that the covariance matrix
of the graph process is related to the underlying graph Laplacian L. This approach can
be seen as a particular case of the stochastic model presented here, assuming that the

2For the normalized Laplacian we can set %= 2.

7.3. GRAPH FILTERS IN THE MEAN

7

123

covariance matrix of the graph signal is only related to the main graph G and not to its
instantaneous realizations Gt .

Besides the assumed random graph process model, in Section 7.3.2 we extend some
of our results to the case where only the second-order moment of the signal is time-
invariant, while the mean is time-varying. This model encompasses time-varying deter-
ministic signals corrupted with node-correlated noise, such as sensor noise.

7.3. GRAPH FILTERS IN THE MEAN

In this section, we analyze the first and second order statistics of graph filters when the
graph topology and graph signal are of stochastic nature. We start by considering our
random graph process model and then extend our results to the more general case when
the random graph process has a time-varying mean, yet a time-invariant covariance ma-
trix.

7.3.1. RANDOM GRAPH PROCESSES

We start with the simpler FIR graph filters. The more involved case of ARMA graph filters
is discussed next.

FIR. With the definition of the transition matrixΦS(t ′, t) :=∏t ′
τ=t Sτ if t ′ ≥ t andΦS(t ′, t) :=

IN if t ′ < t , the output yt+1 of a K -th order FIR graph filter is

yt+1 =
K∑

k=0
φkΦS(t , t −k +1)xt−k+1. (7.1)

Notice that, in contrast to the time-invariant setting, the output which is computed at
time t +1 is a function of all graph realizations in the time interval [t −K +1, t] and graph
signals starting from time t−K+1 up to time t+1. According to the following proposition,
the above graph filter is well behaved when examined in expectation.

Proposition 7.1. Consider the FIRK graph filter (7.1), the RES graph model and the ran-
dom graph process model. Then, the expected output of the graph filter after K time steps
is

ȳt+1 =
K∑

k=0
φk S̄k x̄. (7.2)

(The proof can be found in Appendix 7.A.)
Proposition 7.1 confirms that, in the mean, an FIRK filter has the same behavior as if

this filter was applied to the expected graph, having the expected graph signal as input.
ARMA. The output yt of the parallel ARMAK filter at time instant t operating on a

time-varying graph signal xt over a time-varying graph Gt can be expressed as

y(k)
t+1 =ψ(k)St y(k)

t +ϕ(k)xt (7.3a)

yt+1 =
K∑

k=1
y(k)

t+1, (7.3b)

7

124 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

where y(k)
0 is arbitrary. Assuming time-varying stochasticity, the subscript t indicates the

random time-variations of the graph (captured by the shift operator St) and input signal
xt . Theorem 7.1 in the sequel describes the expected behavior of an ARMAK graph filter.

Theorem 7.1. Under the RES graph model, the random graph process model and the sta-
bility of the parallel ARMAK filter, i.e., |ψ(k)| < 1/% for all k = 1, . . . ,K , the steady state of
the expected value of the ARMAK recursion (7.3) is

ȳ = lim
t→∞E[yt+1] =

K∑
k=1

ϕ(k)
(
IN −ψ(k)S̄

)−1
x̄. (7.4)

Recursion (7.3) converges in the mean to (7.4) linearly, irrespective of the initial condition
y(k)

0 and graph realizations St .

(The proof can be found in Appendix 7.B.)
We can see that (7.4) is a parallel ARMAK filter having as input x over the graph Ḡ .

Theorem 7.1 asserts that the expected value of the steady state of the filter output is
only influenced by the expected value of the signal and by the expected graph, but is
independent of any changes in the graph topology.

7.3.2. RANDOM GRAPH PROCESSES WITH TIME-VARYING STATISTICS

In the sequel, we characterize the expected filter output in a more general context, i.e., when
xt is characterized by a time-varying mean and covariance. The generalized signal model
is:

Definition 7.3. (Random graph process with time-varying statistics.) The input signal
xt ∈ CN , at time instant t , is a realization of a random process, with time-dependent first
order moment x̄t and time-dependent covariance matrixΣx [t]. Signal xt has independent
realizations over time.

To extend our results to the case of random graph processes with time-varying statis-
tics, we have to perform our analysis in a two-dimensional frequency domain: the graph-
frequency domain using the GFT, and the temporal-frequency domain using the Z-transform.
Such an analysis is similar to the previously presented for the deterministic setting in
Chapter 6.

FIR. The following proposition is a generalization of Proposition 7.1.

Proposition 7.2. Consider the FIRK graph filter (7.1), and let the graph be RES and the
graph process be random with a time-varying statistics. Then, the expected output of the
graph filter is

ȳt+1 =
K∑

k=0
φk S̄k x̄t−k+1, (7.5)

which describes a filter on the deterministic time-varying mean signal over the expected
graph with the two-dimensional filter transfer function

h(z,λ) =
K∑

k=0
φk

(
λ

z

)k

, (7.6)

where z stems from the Z-transform and λ from the GFT.

7.3. GRAPH FILTERS IN THE MEAN

7

125

(The proof can be found in Appendix 7.C.)
From Proposition 7.2, we can see that the result of Proposition 7.1 extends to the two-

dimensional case, capturing jointly the mean signal variations over the expected graph
and time. As we will see next, the same result holds also for ARMA graph filters.

ARMA. We can now prove the following claim.

Theorem 7.2. Consider the RES graph model and the random graph process model with
time-varying statistics. The relation between the expected filter output and the expected
graph signal over the expected graph is given by a two-dimensional ARMAK transfer func-
tion

h(z,λ) =
K∑

k=1

ϕ(k)z−1

1−ψ(k)λz−1
, (7.7)

subject to the stability conditions of Theorem 7.1.

(The proof can be found in Appendix 7.D.)
As for the FIRK , Theorem 7.2 claims that, in expectation, we achieve a two-dimensional

filter operating jointly on the mean variations over the expected graph and time signal.
The following remarks conclude this section.

Remark 7.1. Throughout our analysis, we have assumed that the graph realizations Gt

(and thus St) are independent at different times t . This assumption is crucial for our
derivations: since yt is a function of all S0, . . . ,St−1, when the graphs at different times
are dependent E[(Ψ⊗St)yt] 6= (Ψ⊗S)yt , due to E[St1St2] 6= E[St1]E[St2]. It is therefore a
fact that our results do not generalize to many stochastic graph processes (e.g., human
mobility, failure cascade). Our findings, however, do suggest that graph filters are robust
to some stochastic phenomena common in networks such as noise and edge fluctuations.
Nonetheless, the graph signal xt might still be a function of the graph topology, e.g., i)
the underlying graph G could be related to Σx or Σ−1

x by construction, including also the
case where Σx shares the graph Laplacian eigenvectors; and i i) as shown above the graph
signal mean and covariance can depend arbitrarily (though deterministic) on the graph
topology changes. As a side note, the considered approach with mutual independence be-
tween the graph signal and graph topology is also a way to jointly handle the particular
cases where only one of them is stochastic.

Remark 7.2. Our second remark is based on the parallelism between stochastic graph
filtering and linear system theory [14]. Other works have exploited this analogy to pro-
pose graph signal control [15, 16], or graph signal estimation [17, 18]. Differently from
linear system theory, the GSP perspective not only gives more insights into what is evolv-
ing over the network but also introduces new strategies related to the characteristics (e.g.,
smoothness prior, stationarity and bandlimitedness) of the graph signal w.r.t. the under-
lying graph. More specifically, we can view the ARMA graph filter as a linear state-space

model with xt , y(1:K)
t = [

y(1)>
t ,y(2)>

t , · · · ,y(K)>
t

]> and yt being the stochastic input signal,
the N K ×1 stacked state vector of the system, and the system output at time t , respectively.
The stochastic matrix St , which now captures the stochastic graph topology at time in-
stant t , is the stochastic transfer operator of the system. Thus, we say that the expected

7

126 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

behavior of the graph filter is related to the expected behavior of the system and the same
holds for the output signal. While in deterministic [19, 20] and stochastic control [21–
23] of linear systems the focus is on designing the optimal controller, this work considers
the analysis/design of the filter transfer function under stochastic variations in the graph
topology and/or graph signal.

7.3.3. VARIANCE ANALYSIS

As we saw in the previous section, when examined in expectation, graph filters are im-
pervious to stochasticity of the graph topology and/or graph signal. To quantify how far
from the mean a realization can be, in the following, we characterize the covariance of
the filter output Σy as a function of that of the input signal Σx . We derive the limiting
average variance of the filter output over all nodes, defined as

lim
t→∞var[yt] = lim

t→∞
tr

(
Σy [t]

)
N

= lim
t→∞

tr
(
E[yt yH

t]−yyH)
N

. (7.8)

For the FIR graph filters, the limit can be omitted. Expression (7.8), often used for statis-
tical characterizations in signal processing, presents a simple way to quantify the expe-
rienced variance of the filter output at each node.

FIR. The following proposition formally states an upper bound on the average vari-
ance of the output signal of the FIRK filter.

Proposition 7.3. Consider the FIRK graph filter (7.1) with a random graph process living
on a RES graph. The average variance among all nodes of the FIRK filter output is bounded
by

var[yt+1] ≤ (%Tφ)2

(
var[xt]+ ‖x‖2

2

N

)
, (7.9)

with vectors% andϕ respectively, defined as%= [1,%,%2, . . . ,%K]T andφ= [φ0,φ1, . . . ,φK]T.

(The proof can be found in Appendix 7.E.)
The result of Proposition 7.3 suggests that despite the drastic variation of the graph

topology, the average variance of the output signal over the nodes is finite and thus also
the variance of the output signal at a given node. We can notice that the filter order K
has indeed an impact on the bound.

ARMA. As for the FIR, the following theorem gives an expression on how to upper
bound the average variance across all nodes of the ARMA graph filter output.

Theorem 7.3. Consider the ARMAK graph filter (7.3) with a random graph process living
on a RES graph and additionally assume that the initial filter state y(1:K)

0 is independent

of xt with zero mean E[y(1:K)
0] = 0K N . The limiting average variance among all nodes of

the ARMAK filter output is bounded by

lim
t→∞var[yt+1] ≤ K ‖ϕ‖2

2

(1−%|ψmax|)2

(
var[xt]+ ‖x̄‖2

2

N

)
(7.10)

where ψmax = max{ψ(1), ...,ψ(K)}.

7.3. GRAPH FILTERS IN THE MEAN

7

127

(The proof can be found in Appendix 7.F.)
According to Theorem 7.3, the bound depends linearly on the filter order K and on

the sum of the squared coefficientsϕ.
We now continue with the recursive approach to calculate exactly the variance of

the filter output. We consider the case of graph process with time-varying statistics,
since, differently from the bounds (7.9)-(7.10), the recursive variance is less challenging
to compute. Recalling that the graph shift operator at time t , i.e., St , is a random real-
ization with mean S, it can be written as St = S+ S̃t , with S̃t being the related zero-mean
process. We then define the matrices

A =Ψ⊗S and Ãt =Ψ⊗ S̃t (7.11)

and rewrite the ARMAK filter (7.3) as

y(1:K)
t+1 = Ay(1:K)

t + Ãt y(1:K)
t +ϕ⊗xt (7.12a)

yt+1 = Cyt+1, (7.12b)

with Ψ = diag(ψ(1),ψ(2), · · · ,ψ(K)) a diagonal K ×K coefficient matrix and C = 1T
K ⊗ IN .

The instantaneous expected value of the output signal of (7.12) is calculated as

y(1:K)
t+1 = Ayt +ϕ⊗xt (7.13a)

yt+1 = Cy(1:K)
t+1 , (7.13b)

which suggests a way to track recursively the expected value of the output signal at the
time instant t +1 based on the knowledge of the first order statistics at the previous time
instant t . With this in place, we state the following

Proposition 7.4. Given the ARMAK graph filter (7.12) operating on a random graph pro-
cess with time-varying statistics over a RES graph model and given first and second order
moments of the filter output at time instant t . Then, the covariance matrix of the output
signal at time instant t +1 can be calculated as

Σy [t +1] = C
(
AΣy (1:K) [t]AT +ϕϕT ⊗Σx [t]+EÃ

[
Ãt Ry (1:K) [t]ÃT

t

])
CT (7.14)

where Ry (1:K) [t] = Ey(1:K)

[
y(1:K)

t y(1:K),T
t

]
with EÃ[·] the expected value only regarding the

random variable Ã.
The entry (i , j) of EÃ[Ãt Ry(1:K) [t]ÃT

t] can be calculated as

EÃ

[
Ãt Ry(1:K) [t]ÃT

t

]
i , j

=
N∑

n=1
C A j 1,Ai n

[
Ry(1:K) [t]

]
n,1

+
N∑

n=1
C A j 2,Ai n

[
Ry(1:K) [t]

]
n,2

+·· ·+
N∑

n=1
C A j N ,Ai n

[
Ry(1:K) [t]

]
n,N

,

(7.15)

with C Aoq ,Ar s = cov(Aoq [t], Ar s [t]) the covariance between the (o, q)-th and (r, s)-th en-
tries of the matrix Ãt , which can be expressed as a function of the link activation proba-
bility and filter coefficients.

7

128 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

(The proof can be found in Appendix 7.G.)
The result of Proposition 7.4 gives a way to track the variance of the filter output

signal, and thus to characterize stochastically how far a realization may be at each node.
We conclude this section with the following remarks.

Remark 7.3. We see from both bounds and the recursive variance that the order of the
filter and the sum of the squared coefficients have an influence on the average variance.
Thus, our handle on getting a small variance is the filter order and the coefficient values.
The latter can be a problem for the FIR filter where the magnitude of the coefficients is
much greater than for the ARMA filter. Further, their value increases with the filter order.
One way to reduce the filter coefficients value and therefore the variance is to work with the
shift operators that are translated Laplacians, i.e., S = L−λmax(L)/2IN , or S = Ln − IN , in-
stead of using the discrete Laplacian L, or normalized Laplacian Ln. Also, considering that
the spectral norm of S (i.e., %) impacts the bounds (7.9) - (7.10), the use of shift operator
matrices with small spectral norms, such as the ones mentioned above, is recommended
to achieve a small variance in the output signal.

Remark 7.4. While the above derivations concern the graph filter behavior in a stochastic
environment, one could extend the analysis in the properties of random graph signals
over random graphs. Thus, for a deterministic graph signal x living on a random graph
Gt , the 2-Dirichlet form (S2(x) = xTLx) defined in Section 2.3.1 will be a random variable,
with mean E[S2(x)] = xTL̄x and variance var(S2(x)) = E[(xT(L − L̄)x)2]. In this setting,
smooth graph signals over random graphs are characterized by being smooth in the mean
and by having var(S2(x)) as small as possible. Similarly, when x is a random process, the
reasoning extends by incorporating also the statistics of x in the S2(x) analysis.

7.3.4. NUMERICAL RESULTS

We consider the scenario with N = 100 nodes randomly placed in a square area and two
nodes are neighbors if they are closer than 15% of the maximum distance of this area.
The comparison of the filter output is done at steady-state, i.e., after K time instants for
the FIR and 20 ×K iterations. The ARMA filter is initialized as y(1:K)

0 = 0K N . The empirical
results are averaged over 2000 simulation runs. We run the filters w.r.t. the translated
normalized Laplacian S = Ln − IN . Such a choice has the benefit to improve the ARMA
stability region and produces FIR coefficients of lower magnitude.

We aim to show that graph filters can handle stochastic variations of the graph topol-
ogy and graph signal. This scenario can be considered as the case when we want to
perform the filtering on a deterministic graph with a deterministic signal, but we have
only random realizations of the latter. We also aim to quantify the variance of the output
signal, both empirically and with upper-bounds. We analyze both FIR and ARMA filters
for K = 1,5,10 applied to an input signal of the form xt = x̄+wt , with

uH
n x̄ =

{
1 if λn < 1
0 if λn ∈ [1,2]

(7.16)

being low pass, and noise wt which follows a zero mean normal distribution with co-
variance matrix Σw = σ2

w IN . All graph filters (FIR and ARMA) approximate a frequency

7.3. GRAPH FILTERS IN THE MEAN

7

129

response identical to the one of the graph signal x̄. We analyze the filtering performance
for different link-activation probabilities p and noise powers σ2

w . We compare the fil-
tered signal under the stochastic model y(s) with the deterministic output signal y(d)

of the same filters operating on the expected graph with graph signal x̄. The expected
(translated) normalized Laplacian is estimated over 1000 runs.

To quantify the performance we define the error

e = y(s) −y(d). (7.17)

Given then the zero mean-error (7.17), our conclusions will be based on the empirical
average standard deviation among all nodes and realizations

σ̄e =
[

tr
(
E[eeH]

)
/N

] 1
2 =

[
tr

(
Σy (s)

)
/N

] 1
2

, (7.18)

which for a sufficiently large number of realizations approaches the square root of the

average variance used in our bounds, i.e., σ̄e ≈
√

var[y(s)].

Figure 7.1 depicts the empirical average standard deviation for different values of p
and σ2

w . We observe the following:

First, ARMA graph filters yield smaller variance for low filter orders (K = 1 and 5),
as compared to FIR. The order under which ARMA filters are preferable to FIR is K = 8.
The increased variance of high order ARMA filters examined here is mostly related to
their higher convergence time, thus a higher error is introduced in the filter memory
through y(1:K)

t while computing the "steady state" output. The effect could be improved
by imposing a stricter stability constraint in the design problem, asking now that |pk | ≥
c > 1 for some constant c, which is translated in a faster convergence at the expense of a
worse filter approximation.

Second, there is an exponential dependence between the output and input vari-
ance. This phenomenon becomes clear when the noise is the only source of variance
(p = 1). The results in Figure 7.1 suggest that graph filters can attain a reasonable per-
formance with stochastically time-varying signals as long as the noise variance is lower
thanσ2

w < 10−1. However, as we show in Section 7.4, filtering a stochastic signal can have
a beneficial outcome, for example, with denoising, if compared not to the deterministic
filter output y(d) but to the denoising solution. For σ2

w ≥ 10−3, p has a smaller influence
on σ̄e .

Last, lower-order filters (especially ARMA) tolerate a significant amount of edge fluc-
tuations when the noise variance is small. This finding motivates the use of graph filters
in stochastic time-varying scenarios, as occurring in distributed systems with message
loss. A more comprehensive analysis is presented in stochastic sparsification in Section
7.5.

Table 8.1 depicts the square roots of the upper bounds (7.9) and (7.10) for the FIR
and ARMA filters, respectively. Despite the difference between the variance guaranteed
by the upper bounds and the empirical variance, the results in Table I and Figure 7.1
suggest that (i) the filter order mpacts the actual variance as well and (ii) in practice the
actual variance is much lower.

7

130 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

0.25 0.5 0.75 0.85 0.95 0.99 0.999 1

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

10
-4

10
-3

10
-2

10
-1

10
0

σ
n

2 = 10-6
σ

n

2 = 10-5
σ

n

2 = 10-4
σ

n

2 = 10-3
σ

n

2 = 10-2
σ

n

2 = 10-1

p

FIR1
ARMA1

0.25 0.5 0.75 0.85 0.95 0.99 0.999 1

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

10
-4

10
-3

10
-2

10
-1

10
0

p

FIR5
ARMA5

0.25 0.5 0.75 0.85 0.95 0.99 0.999 1

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

10
-2

10
-1

10
0

10
1

p

FIR10
ARMA10

Figure 7.1: Empirical average standard deviation among all nodes and all realizations vs. the link activation
probability p and for different noise levels σ2

w . From top to bottom, we have K = 1, 5, and 10, respectively.
ARMA filters handle stochasticity better for low orders while FIR filters perform better for K = 10.

7.4. GRAPH SIGNAL DENOISING IN THE MEAN

7

131

Table 7.1: Square roots of (7.9) / (7.10) for the FIR / ARMA filters.

order σ2
w = 10−6 σ2

w = 10−3 σ2
w = 10−1

K=1 0.88 / 0.58 0.88 / 0.58 0.93 / 0.6
K=3 0.58 / 6.9 0.58 / 6.9 0.66 / 7.2
K=5 0.82 / 22.8 0.82 / 22.8 0.88 / 23.9

7.4. GRAPH SIGNAL DENOISING IN THE MEAN

Consider a noisy graph signal of the form x = x0 +w, with x0 the signal of interest and
w the zero mean additive noise. The goal is to recover x0 using the a priori knowledge
on its behavior w.r.t. the underlying graph. From the results in Section 4.2.4, Tikhonov
denoising recovers x0 through an ARMA1 graph filter. Here, the task can be solved with-
out knowing the full graph topology since i) the filter coefficients can be found avoiding
the eigendecomposition, i.e., only the value of w is necessary; and i i) in a distributed
implementation nodes need to know who are their neighbors to run the filter.

7.4.1. TIKHONOV GRAPH SIGNAL DENOISING IN THE MEAN

When multiple realizations of x are available (e.g., in a sensor network) one may con-
sider generalizing the Tikhonov solution to improve the accuracy of signal denoising. In
this case, we have for every realization xt = x0 +wt with x0 equal to the desired signal.
The graph signal denoising problem can then be performed in the mean. The related
optimization problem becomes

x?0 = argmin
x0∈RN

E
[‖x0 −xt‖2

2

]+w xT
0 Sx0, (7.19)

where we aim to solve it in the MSE sense over different time realizations. Analogous to
(4.15), the optimal solution of (7.19) can still be written as an ARMA1 filter of the form

x?0 =
N∑

n=1

1

1+wλn
E[xt]Hun un , (7.20)

which has two interpretations: (i) it can be considered the output of an ARMA1 graph
filter applied to the mean x̄t or (ii) the mean output of an ARMA1 applied to xt .

i) Disjoint average and denoise (DAD). One approach for solving (7.20) is first to do
a running average up to time t , independently at each node x̄t ,i = 1

t ((t −1)x̄t−1,i + xt ,i),

and then run a recursive ARMA1 on the average signal x̄t = [x̄t ,1, . . . , x̄t ,N]T. Hence, the
recursions are not in time, but carried out for every t separately. This procedure is sum-
marized in Algorithm 7.1 for S = L. Since the noise is zero-mean, the local average [cf.
line 3 of Algorithm 7.1] reduces the noise level proportionally to the number of collected
samples, effectively facilitating the work of graph denoising. However, this algorithm
needs to run the graph filter till convergence for each available sample of the input sig-
nal xt . We refer to this approach as disjoint average and denoise.

7

132 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

Algorithm 7.1. Disjoint average and denoise

1: Given w , initialize ψ, ϕ, y0 = 0N and the ARMA1 iterations I
2: for each t > 0
3: compute local average x̄t ,i = 1

t ((t −1)x̄t−1,i +xt ,i)
4: procedure COMPUTE THE ESTIMATE OF [x?0]t ,i

5: for ι= 1 to I
6: collect y j [ι−1] from all neighbors j ∈Ni

7: compute yi [ι] =ψ∑
j∈Ni

Wi , j
(
yi [ι−1]− y j [ι−1]

)+ϕx̄t ,i

8: send yi [ι] to all neighbors Ni

9: end for
10: set [x?0]t ,i = yi [I]

11: end for

ii) Joint denoise in the mean. The complexity of denoising in the mean can be re-
duced by performing the local averaging and the denoising jointly, an approach which
we refer to as joint denoising in the mean. In virtue of the results in Section 7.3, we dis-
tinguish between three different cases to do the local averaging.

i i − a) The more general case of joint denoising in the mean with input-output av-
eraging (JDMIOA), where a regular ARMA filter3 is run in time with an input signal at
time t the local running average of the history of xt and as the final solution of (7.20) at
node i the local running average of the filter output up to time t , i.e., [x?0]t ,i = 1/t ((t −
1)[x?0]t−1,i + yt ,i). This procedure is summarized in Algorithm 7.2 for S = L.

i i −b) The particular case of joint denoising in the mean with input averaging (JD-
MIA), which differently from JDMIOA sets the final solution of (7.20) at node i as the
filter output at time t , i.e., in Algorithm 2 this differs only in line 8 which should be "set
[x?0]t ,i = yt ,i ". Note that this procedure is a direct online implementation of the DAD
algorithm.

i i − c) The particular case of joint denoising in the mean with output averaging (JD-
MOA), which differently from the JDMIOA has as input signal at time t the collected
samples, xt = x0 +wt . Referring again to Algorithm 7.2, this differs only in line 3 which
should be "collect the local sample xt ,i = [x0]i +wt ,i ".

Despite being particular cases of JDMIOA, the JDMIA and JDMOA perform differ-
ently depending on the scenario. Note that the joint denoising in the mean approaches
follow the same filtering strategy as a classical graph signal denoising filter, and thus do
not need extra memory, computations or communication efforts. Again, the noise be-
ing zero mean, averaging the filter input and/or output reduces the noise power that
will be introduced by the filter in every successive iteration while performing the online
denoising in the mean.

i i i) Local averaging (LA). As a benchmark we consider the local averaging, i.e., the
nodes ignore the graph and set [x?0]t = 1/t ((t −1)[x?0]t−1 +xt).

We conclude this section stressing that the above ideas are not restricted to denoising
or simple ARMA1 filtering. They can be used for any filter, ARMAK or FIRK , as long as

3From Section 4.2.4, the ARMA1 enjoys a stable implementation for all w > 0.

7.4. GRAPH SIGNAL DENOISING IN THE MEAN

7

133

Algorithm 7.2. Joint denoise in the mean with input-output averaging (JDMIOA)

1: Given w , initialize ψ, ϕ and y0 = 0N

2: for each t > 0
3: compute local average x̄t ,i = 1

t ((t −1)x̄t−1,i +xt ,i)
4: procedure COMPUTE THE ESTIMATE OF [x?0]t ,i

5: collect yt−1, j from all neighbors j ∈Ni

6: compute yt ,i =ψ∑
∈Ni

Wi , j
(
yt−1,i − yt−1, j

)+ϕx̄t ,i

7: send yt ,i to all neighbors Ni

8: set [x?0]t ,i = 1
t ((t −1)[x?0]t−1,i + yt ,i)

9: end for

multiple noisy observations of the signal are available.

7.4.2. NUMERICAL RESULTS

Under the same scenario of Section 7.3.4, consider a graph signal xt = x0 +wt , where x0

varies smoothly over the graph. One way to generate these signals is by an exponentially
decaying spectrum, i.e., xH

0 un = exp(−25λn). The noise follows a normal distribution
with i.i.d. realizations and variance σ2

w = 1.
We illustrate the denoising in the mean problem and compare all joint approaches

with both the DAD and the LA approach. To quantify the performance, we calculate the
error between the filter output and the signal x0 at each node as in (7.18).

There is a subtle yet crucial difference between the inner-workings of the three com-
pared algorithms: LA and joint denoising in the mean are online algorithms, meaning
that the algorithmic output is obtained in real-time4. The error depicted in the figures
at time t is therefore computed w.r.t. the denoising output at t . The DAD algorithm per-
forms the averaging and denoising steps in sequence and solves one filtering problem
for each computed local average (i.e., at each iteration t). Since each disjoint filtering
requires enough iterations to converge, the error depicted in the figure at t is in this case
is w.r.t. the filter output at convergence, occurring much later than t (we took t +100 in
the experiments, but also t +10 can be considered as a choice).

In Figure 7.2(a) we compare the LA (solid black line), the DAD and all three joint
denoising in the mean algorithms as a function of time for Tikhonov denoising. Here
w is 0.5. The first thing to notice is that incorporating the graph knowledge via the
smoothness outperforms the LA. The role of the graph is more important when fewer
samples are available, i.e., small values of t . Second, while the JDMIA immediately ap-
proaches the DAD (being it an online implementation of the latter), the JDMIOA and
JDMOA for t ≤ 10 perform better. Then, when more samples become available, the JD-
MOA matches the DAD. The JDMIOA, on the other hand, prioritizes the noise reduction
over the smoothness prior due to the double averaging of the filter input and output
(lines 3 and 8 in Algorithm 7.2, respectively). Thus, when more samples are available the
related σ̄e decays as that of the LA algorithm. To avoid overcrowded plots, in the sequel,

4In the experiments, the signal changes with the same rate as the iteration rate. We use the term iteration or
more simply time to refer to both concepts.

7

134 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

we do not illustrate show the JDMIA, since it consistently matches the DAD algorithm.

Figure 7.2(b) compares the JDMIOA, the JDMOA, and the DAD algorithm when the
weight given to the smoothness prior is twice that of the denoising, i.e., w = 2. As we can
see, considering the graph structure (i.e., w is higher w.r.t. Figure 7.2(a)) improves the
performance as it exploits the smoothness prior to remove the noise. Once again, when
t increases the JDMOA approaches the DAD algorithm, while the JDMIOA performs be-
tween the latter and the LA.

Figure 7.2(c) compares the algorithms for w = 20. In this case, when numerous sam-
ples are available, a large w may overly prioritize the graph smoothness resulting in a
performance degradation. Since the noise becomes negligible, the smoothness prior is
only useful when the number of samples is limited (t < 100). This is not only an issue of
the joint approach but of graph signal denoising in general.

This effect is further illustrated in Figure 7.2(d) for σ2
w = 10−4 and w = 0.5. Here, also

w = 0.5 gives more weight than necessary to the smoothness thus resulting in a lower
performance than the pure LA. This includes also the JDMIOA, which suggests that a
Tikhonov prior should be considered in high noise regimes.

As a general observation w.r.t. the DAD algorithm, we say that even though we com-
pute the joint denoising in the mean online, i.e., the graph filter output is averaged for
every collected sample, our approach gives a better performance than the offline alter-
native when the number of samples is limited. The initial transient behavior is because
the filters are initialized to zero. On the other hand, both approaches perform the same
when the number of samples increases.

Solving the joint Tikhonov denoising in the mean leads to a reduced computational
and communication complexity as compared to the disjoint approach. This is because
the joint approach does not require many iterations between the nodes to reach a rea-
sonable performance. For the same reason, the joint denoising is more efficient also in
terms of latency.

As a particular case, the pure Tikhonov denoising error can be seen for t = 1, when
only one signal realization is available, in the DAD algorithm. We see that taking multiple
realizations into account can improve the performance up to one order of magnitude in
only 10 iterations (Figure 7.2 (b), w = 2). To conclude, notice that the proposed approach
even with a node variance of σ2

w = 1 and with 10 samples, can achieve an error of 10−2

for the signal of interest in only 10 iterations.

7.5. STOCHASTICALLY SPARSIFIED GRAPH FILTERING

To decrease the communication and computational complexity of graph filtering, we
propose, instead of filtering a deterministic signal x on the deterministic graph G , to
filter x using realizations of a sparser random graph Gt obtained as a random edge sam-
pling of G . This means that the filtering will be performed on a sequence of time-varying
graphs which abide to the RES graph model with a uniform probability p ∈ (0,1] for all
links. What we prove in the following is that, when the filter coefficients are changed ac-
cordingly, the filter output in Gt will be statistically close (the first and second moments
of the error are zero and bounded, respectively) to the original filter in G . Our results im-

7.5. STOCHASTICALLY SPARSIFIED GRAPH FILTERING

7

135

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

t

σ̄
e LA

DAD, w = 0.5

JDMIA, w = 0.5
JDMIOA, w = 0.5

JDMOA, w = 0.5

.5

(a)

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

LA

t

σ̄
e

DAD, w = 2

JDMIOA, w = 2
JDMOA, w = 2

20

(b)

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

LA

t

σ̄
e

DAD, w = 20

JDMIOA, w = 20
JDMOA, w = 20

(c)

10
0

10
1

10
2

10
3

10
-8

10
-6

10
-4

10
-2

10
0

t

σ̄
e

LA
DAD, w = 0.5

JDMIOA, w = 0.5
JDMOA, w = 0.5

(d)

Figure 7.2: Standard deviation of the denoising algorithms for different time instances. (a)
compares the joint denoising in the mean algorithms with the DAD and LA algorithms for w = 0.5

and σ2
w = 1. (b) shows the performance for w = 2 (i.e., where smoothness is prioritised over

denoising) and σ2
w = 1. (c) compares the algorithms for w = 20 and σ2

w = 1. Finally, in (d) is
shown the error standard deviation for w = 0.5 and σ2

w = 10−4.

7

136 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

ply a reduction in the communication and computational complexity of graph filtering
that is linear in p.

Denote by S the shift operator of the deterministic graph G , where (for now) S is
chosen as the discrete Laplacian L.

7.5.1. SPARSIFIED FIR GRAPH FILTERS

With a slight modification of the results in Section 7.3 (since the graph signal is now
deterministic), we find that in expectation the filter output will be

ȳ(s)
t+1 = E

[
y(s)

t+1

]
= E

[
K∑

k=0
φ(s)

k ΦS(t , t −k +1)x

]

=
K∑

k=0
φ(s)

k S̄k x =
K∑

k=0
φ(s)

k (pS)k x, (7.21)

where y(s)
t+1 is the stochastic sparsification output andφ(s)

k are the new coefficients. There-

fore, if each coefficient φ(s)
k is φk scaled by p−k , the expected output will be identical to

what would have been obtained if the original FIR filter was used in G

E
[

y(s)
t+1

]
= yt+1 for φ(s)

k =φk p−k , (7.22)

or equivalently, the expected sparsification error is zero

E
[

y(s)
t+1 −yt+1

]
= 0N . (7.23)

The above expression implies that we can linearly reduce the communication and com-
putational complexity of FIR graph filters from O(MK) to O(pMK). To see how p in-
fluences how far the error can lie from the mean, in the following, we derive an upper
bound on the average variance of the output signal. From Proposition 7.3, we have

var[y(s)
t+1] ≤ (%Tφ(s))2

(
var[x]+ ‖x̄‖2

2

N

)
= (rTφ)2 ‖x‖2

2

N
, (7.24)

with r = [(%/p)0, (%/p)1, . . . , (%/p)K]T. Though the provided bound is not tight (as is wit-
nessed by the fact that for p = 1 the variance is not zero), it illustrates the impact of 1/p
on the error variance.

7.5.2. SPARSIFIED ARMA GRAPH FILTERS

The expected sparsified output ȳ(s)
t+1 of the parallel ARMAK filter is

ȳ(s,k)
t+1 =ψ(s,k)(pS)ȳ(s,k)

t +ϕ(k)x

ȳ(s)
t+1 =

K∑
k=1

ȳ(s,k)
t+1 ,

(7.25)

7.5. STOCHASTICALLY SPARSIFIED GRAPH FILTERING

7

137

where again the superscript (s) refers to the sparsified filtering. Notice that as long as
ψ(s,k) = ψ(k)/p the expected output of (7.25) is identical to the same ARMA filter oper-
ating on the complete graph. This sparsification will reduce the communication and
computational complexity by the same order as for the FIR. Further, from Theorem 7.3,
the average variance of the sparsified filter is upper bounded by

lim
t→∞var[y(s)

t+1] ≤ K ‖ϕ‖2
2‖x‖2

2

N (1−% |ψmax
p |)2

(7.26)

As for the FIR, the bound (7.26) does not reach zero for p = 1, but it shows that the vari-
ance is upper bounded by a quadratic rate of 1/p.

We conclude this section with the following observations.

Remark 7.5. Our numerical simulations show that even though in practice the sparsifi-
cation error variance is much smaller than (7.24) and (7.26), p has indeed the claimed
impact on the output variance.

Remark 7.6. The above theoretical derivations provide a useful way to change the filter
coefficients, to avoid a bias in the sparsified approach. These derivations stand only for
the discrete Laplacian S = L (or its translated version S = L−λmax(L)/2IN), meaning that
the expected graph Laplacian can be expressed as a scaled version of the Laplacian of the
underlying graph G . This is not the case for the normalized Laplacian Ln (or its translated
version S = Ln − IN). Finding a closed form expression of the mean normalized Laplacian
is a challenging task. Even if it can be found, its (i , j)th entry will depend on the node
degrees in G , which renders formulating L̄n as a scaled version of the normalized Lapla-
cian Ln difficult. However, the (translated) normalized Laplacian is useful to improve the
stability region of the ARMA filter and in some cases it provides FIR coefficients with lower
magnitude (and as a result leads to a lower error variance). As we will see in the simula-
tion results, S = Ln − IN , even without changing the filter coefficients, will lead to an error
with a small mean and variance.

7.5.3. NUMERICAL RESULTS

We considered the same settings of Section 7.3.4 with a graph signal characterized by
a white unitary graph spectrum on the graph G . We derived the results for both the
FIR and ARMA graph filters for K = 1, 3, 5, 7 designed as ideal low-pass filters with the
cut-off frequency equal to half the signal bandwidth. Further, the same error measuring
criterion as in (7.17) is used, where y(s) indicates the filter output of the sparsified filter.

Since choices of S with a low spectral norm are preferred to have a lower variance of
the filter output and a larger stability region for the ARMA filters (and as a result higher
approximation accuracy), we perform the results for two different scaled shift operators,
i.e., S = Ln − IN and S = 1

λmax(L) L− 0.5IN . In case the latter Laplacian is used, the filter
coefficients can be changed according to the above results. Meanwhile, for S = Ln − IN

this cannot be done since we do not have a closed form expression of the expected value.
In this instance, we run the filters with the same filter coefficients as used in calculating
the deterministic output, i.e., they do not change. As a consequence, the zero mean error
is not guaranteed.

7

138 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

0.25 0.5 0.75 0.85 0.95 0.99
10

-5

10
-4

10
-3

10
-2

10
-1

FIR7

p

M
ea

n
er

ro
r

FIR1 FIR3 FIR5 ARMA3ARMA1 ARMA5 ARMA7

Figure 7.3: Mean error over all nodes and realizations between sparsified and deterministic output for
different values of p when S = Ln − IN .

0.25 0.5 0.75 0.85 0.95 0.99
10

-2

10
-1

10
0

10
1

FIR7

p

FIR1 FIR3 FIR5

σ̄
e

L = Ln − I
L = 1/λmaxLd − 0.5I

Figure 7.4: Average empirical standard deviation among all nodes of the error between the sparsified FIR filter
output and the original graph output for different values of p. The results are shown for two different

Laplacians. For S = Ln − IN , the filter coefficients are not changed.

Our aim is to show simulation results when the desired operation is not carried out
over the given deterministic graph G , but on its sparsified version. In Figure 7.3, we
illustrate the mean error for different values of p and for S = Ln − IN . We see that the
introduced bias is negligible, and it reduces furthermore when the filter order is lower.
Fori p ≥ 0.5, the mean error is smaller than 10−2.

Figures 7.4 and 7.5 show the empirical standard deviation of the considered error
for different values of p. As a common phenomenon for all filters, the standard devi-
ation of the error reduces with higher values of p. Further, for all filters, a lower filter
order yields a lower standard deviation. A notable result is observed for the ARMA1 filter,
where we can solve tasks like Tikhonov denoising, signal interpolation under smooth-
ness assumptions, some Wiener based denoising, and graph diffusion processes, with
communication and computational costs reduced by 75% with little or no error. Indeed,
for p = 0.25, the average standard deviation is σ̄e ≈ 0.035 and a mean error smaller than
0.004. The latter shows that the signal output got in the sparsified graph is closer to the
same output obtained operating on underlying graph deterministically. For higher filter

7.6. CONCLUDING REMARKS

7

139

0.25 0.5 0.75 0.85 0.95 0.99
10

-3

10
-2

10
-1

10
0

10
1

p

ARMA3ARMA3ARMA1ARMA1 ARMA5ARMA5 ARMA7ARMA7

σ̄
e

L = Ln − I
L = 1/λmaxLd − 0.5I

Figure 7.5: Average empirical standard deviation among all nodes of the error between the sparsified ARMA
filter output and the original graph output for different values of p. The results are shown for two different

Laplacians. For S = Ln − IN the filter coefficients are not changed. Notice that for the ARMA1 filter (useful for
diffusion, interpolation, and denoising) we can save up to 75% of communication and computational costs.

orders, we suggest p should be around 0.75 to achieve a reasonable performance.
Similar to Figure 7.1, the ARMA filters give a lower σ̄e than the FIR filters for the pre-

sented orders, while for higher values of K the FIR filters perform better. To conclude,
note that S = Ln − IN without changing the filter coefficients yields a favorable perfor-
mance which suggests that the normalized Laplacian is a good choice to be robust to
link fluctuations.

7.6. CONCLUDING REMARKS

In this chapter, we introduced a statistical analysis of graph-time filtering. Due to the
practical necessity to deal with randomness in the graph topology (e.g., edge fluctua-
tion) and graph signal (e.g., noise), we first performed a stochastic characterization for
both FIR and ARMA graph filters. Under the assumption that the graph randomness is
independent of the graph signal, both the FIR and the ARMA graph filters behaved in the
mean as the same deterministic filter, having as input the mean signal, operating on a
deterministic graph being the expected graph. We further showed that when the graph
signal is a stochastic process with a time-varying mean and covariance, the graph filters
operated as a two-dimensional filter and they captured the variations in the mean of the
graph signal on the expected graph and time jointly. For both FIR and ARMA graph fil-
ters, we proved the variance of the filter output is upper bounded and numerical results
showed that the empirical variance in different simulated scenarios is small. Thus the
signal realizations stayed close to the expected value.

The chapter is concluded by leveraging stochasticity for the tasks of graph signal de-
noising in the mean and stochastically sparsified graph filtering. Through an ARMA1

graph filter, we showed an online recursive approach to clean signal by exchanging time-
varying signals with the neighbors. In addition, both graph filters (FIR and ARMA) can
be performed in a stochastic way leading to amenable savings in terms of distributed
communication and computation costs, with very little difference from the determinis-

7

140 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

tic setting.

APPENDICES

7.A. PROOF OF THE FIRK EXPECTED OUTPUT PROPOSITION

By applying the expectation operator to (7.1) and considering that the realizations of the
graph topology and graph signal are independent we have

ȳt+1 = E
[

K∑
k=0

φkΦS(t , t −k +1)xt−k+1

]
(7.27)

=
K∑

k=0
φk

(
t−k+1∏
τ=t

E [Sτ]

)
E [xt−k+1] =

K∑
k=0

φk S̄k x̄, (7.28)

where ȳt+1 is the constant expected value of yt+1 after K time steps. In (7.27) we substi-
tute the back going productΦS(t , t −k +1) and apply the linearity of the expectation.

7.B. PROOF OF THE PARALLEL ARMAK EXPECTED OUTPUT THEOREM

Recursion (7.3) can be differently written as

y(1:K)
t+1 = (Ψ⊗St)y(1:K)

t +ϕ⊗xt (7.29a)

yt+1 = (1T ⊗ IN)y1:K
t+1, (7.29b)

with y(1:K)
t = [

y(1)T
t ,y(2)T

t , · · · ,y(K)T
t

]T the N K×1 stacked state vector,Ψ= diag(ψ(1),ψ(2), · · · ,ψ(K))
a diagonal K ×K coefficient matrix, ϕ = [ϕ(1),ϕ(2), · · · ,ϕ(K)]T a K ×1 coefficient vector,
and 1K the K ×1 one-vector. Then, in the following we consider that all the branches of
the parallel filter bank are stable, i.e., |ψ(k)| = ‖Ψ‖∞ < 1/% imposed in the filter design
phase. Then, by using the linearity of the expectation, and the independency among
time between the realizations of the random variables we rewrite (7.29) as

ȳ(1:K)
t+1 = E [(Ψ⊗St)] ȳ(1:K)

t +E[
ϕ⊗xt

]
(7.30a)

ȳt+1 = (1T ⊗ IN)ȳ(1:K)
t+1 , (7.30b)

where ȳt+1 and ȳ(1:K)
t+1 denote the expected values of yt+1 and y(1:K)

t+1 , respectively. Then by
using once again the independency of the graph realizations and graph signal together
with the properties of the Kronecker product we rewrite (7.30) as

ȳ(1:K)
t+1 = (Ψ⊗ S̄)ȳ(1:K)

t +ϕ⊗ x̄ (7.31a)

ȳt+1 = (1T
K ⊗ IN)ȳ(1:K)

t+1 , (7.31b)

7.6. CONCLUDING REMARKS

7

141

with x̄ being the expected values of xt . Then we expand (7.31) to express it as a function
of the initial condition y(1:K)

0 and the inputs as

ȳ(1:K)
t+1 = (

Ψ⊗ S̄
)t+1 y(1:K)

0 +
t∑

τ=0

(
Ψ⊗ S̄

)τ (
ϕ⊗ x̄

)
= (
Ψt+1 ⊗ S̄t+1)y(1:K)

0 +
t∑

τ=0

(
Ψτϕ

)⊗ (
S̄τx̄

)
,

(7.32)

where we have used the Kronecker product property

(A⊗B)(C⊗D) = (AC)⊗ (BD). (7.33)

By using once again the stability condition for all the branches, we have

lim
t→∞‖(Ψt+1 ⊗ S̄t+1)y(1:K)

0 ‖2 = 0. (7.34)

Hence, the limiting steady state of the expected value can be written as

ȳ = lim
t→∞

t∑
τ=0

(1T
K ⊗ IN)

(
Ψτϕ

)⊗ (
S̄τx̄

)
= lim

t→∞

t∑
τ=0

(
1TΨτϕ

)
⊗ (

S̄τx̄
)

= lim
t→∞

t∑
τ=0

K∑
k=1

ϕ(k)
(
ψ(k)S̄

)τ
x̄

(7.35)

where once again we made use of (7.33) and expressed the Kronecker product as the sum
of K terms. By leveraging once again the fact that all the branches of the filter bank are
stable (|ψ(k)| < 1/%), we rewrite (7.35) as

ȳ =
K∑

k=1
ϕ(k)

(
IN −ψ(k)S̄

)−1
x̄ (7.36)

which proves the first part (7.4). Then from (7.32) we can see that the dependency on the
initial state y(1:K)

0 decreases exponentially with t , thus we can say that (7.3) converges
linearly to the limiting steady state value of the expected value (7.4).

7.C. PROOF OF THE FIRK EXPECTED OUTPUT WITH NON-STATIOIONARY IN-
PUT PROPOSITION

By using the same arguments as in the proof of Proposition 7.1, one finds that the output
of an FIRK is in expectation

ȳt+1 =
K∑

k=0
φk S̄k x̄t−k+1. (7.37)

7

142 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

Then, by projecting the signal using the GFT into the subspace spanned by an eigenvec-
tor un of S̄ with associated eigenvalue λn (7.37) is reduced to

ȳt+1 =
K∑

k=0
φkλ

k
n x̄t−k+1, (7.38)

where x̄t = uH
n x̄t and ȳt+1 = uH

n ȳt+1 are respectively the magnitude of the projections
of the filter input and output on the chosen subspace. By taking the Z-transform and
dividing both sides by z t+1 the claim (7.6) follows.

7.D. PROOF OF THE ARMAK EXPECTED OUTPUT WITH NON-STATIOIONARY

INPUT THEOREM

By rewriting the parallel ARMAK in the form (7.29) and by following the same procedure
as in the derivation of (7.31), we have that the expected ARMA output at time instant t+1
is

ȳ(1:K)
t+1 = E

[
(Ψ⊗St)y(1:K)

t +ϕ⊗xt

]
= (Ψ⊗ S̄)ȳ(1:K)

t +ϕ⊗ x̄t

ȳt+1 = E
[

(1T
K ⊗ IN)y(1:K)

t+1

]
= (1T

K ⊗ IN)ȳ(1:K)
t+1 .

(7.39)

In analogy to Theorem 6.1 in Chapter 6, (7.39) represents a deterministic two-dimensional
ARMAK filter with deterministic time-varying input signal x̄t , filter memory ȳ(1:K)

t and
output ȳt operating over the deterministic time-invariant graph S̄. With these analogies
(7.7) can be proven from Theorem 6.1 in Chapter 6.

7.E. PROOF OF THE FIRK VARIANCE BOUND PROPOSITION

We start by computing the trace of the covariance matrix of the filter output at time in-
stant t +1 as

tr(Σy [t +1]) = tr(E[yt+1yH
t+1])− tr(E[yt+1]E[yt+1]H). (7.40)

Using the linearity of the expectation, the first term on the right hand side of (7.40) can
be expanded as

tr
(
E[yt+1yH

t+1]
)
=

K∑
k=0,l=0

φkφ`T (k,`), (7.41)

where

T (k,`) = tr
(
EΦS(t , t −k +1)xt−k+1xH

t−`+1ΦS(t , t − l +1)H]
)

. (7.42)

To proceed, note that by the commutativity of the trace with respect to the expectation
and using the cyclic property of the trace, we can write

T (k,`) = E
[

tr
(
(ΦS(t , t − l +1)HΦS(t , t −k +1)xt−k+1xH

t−`+1

)]
= tr

(
E
[
ΦS(t , t − l +1)HΦS(t , t −k +1)

]
E
[

xt−k+1xH
t−`+1

])
, (7.43)

7.6. CONCLUDING REMARKS

7

143

with matrix

E
[

xt−k+1xH
t−`+1

]
=

{
Σx + x̄x̄H, if k = `,
x̄x̄H, otherwise,

(7.44)

being positive semi-definite. We can therefore use inequality

tr(AB) ≤ ‖A+AH‖
2

tr(B) ≤ ‖A‖tr(B) (7.45)

valid for any square matrix A and positive semi-definite matrix B (B º 0) of appropriate
dimensions [24], together with the triangle inequality and the fact that the realizations
of the graph Laplacian are upper bounded as ‖St‖ ≤ % to bound T (k,`)

T (k,`) ≤ tr
(
E
[

xt−k+1xH
t−`+1

])
‖E

[
(

t−`+1∏
τ=t

Sτ)(
t−k+1∏
τ=t

Sτ)

]
‖

≤ tr
(
Σx + x̄x̄H

)
%k+`, (7.46)

where in (7.46) we have also applied the Jensen’s inequality for the spectral norm (‖E[A]‖ ≤
E[‖A‖]). We now can notice that the second term in the right-hand side of (7.40) is always
positive. Thus it can be lower bounded as5

tr(E[yt+1]E[yH
t+1] ≥ 0. (7.47)

Then, combining the results (7.46), (7.47) and (7.41) we can upper bound (7.40) as

tr(Σy [t +1]) ≤
K∑

k=0,l=0
φkφ`tr

(
Σx + x̄x̄H

)
%k+`, (7.48)

which then can be reformulated as (7.9) dividing both sides by N and with simple alge-
bra.

7.F. PROOF OF THE ARMAK VARIANCE BOUND THEOREM

Let us set C = 1T
K ⊗ IN for brevity. For the parallel ARMAK (7.29), we can express

lim
t→∞ tr(var(yt+1)) = lim

t→∞ tr(var(Cy(1:K)
t+1)) (7.49)

Then, applying the definition and using the linearity of expectation, we have

var(Cy(1:K)
t+1) = Cvar(y(1:K)

t+1)CT

= CE[y(1:K)
t+1 y(1:K),H

t+1]CT −CE[y(1:K)
t+1]E[y(1:K)

t+1]HCT. (7.50)

5Notice that the goal is to present a bound. A tighter bound can be obtained using the results of Proposition 7.1
and writing tr(ȳt+1ȳH

t+1) =∑K
k=0,`=0φkφ`x̄HS̄k+`x̄.

7

144 7. STATISTICAL ANALYSIS OF GRAPH-TIME FILTERING

To proceed, we use inequality (7.45) and exploit the fact that var(y(1:K)
t+1) º 0 is positive

semidefinite matrix being the covariance matrix of yt+1. We can therefore apply (7.45) to
(7.50) as

lim
t→∞ tr(var(Cy(1:K)

t+1)) = lim
t→∞ tr(CTCvar(y(1:K)

t+1))

≤ lim
t→∞‖CTC‖2

(
tr(E[y(1:K)

t+1 y(1:K),H
t+1])− tr(E[y(1:K)

t+1]E[y(1:K)
t+1]H)

)
= lim

t→∞K tr(E[y(1:K)
t+1 y(1:K),H

t+1])−K tr(E[y(1:K)
t+1]E[y(1:K)

t+1]H)

(7.51)

where, in the last step, we made the substitution ‖CTC‖2 = ‖(1T
K ⊗ IN

)T (
1T

K ⊗ IN
)‖2 =

K and we used the linearity of the expectation and trace: E[tr(A)] = tr(E[A]). To ease
notation, define Φ(t ′, t) := ∏t ′

γ=t Ψ⊗ Sγ for t ′ ≥ t , and Φ(t ′, t) := IK N if t ′ < t and x̌t =
ϕ⊗xt , after which the parallel ARMAK recursion (7.29a) becomes

y(1:K)
t+1 =Φ(t ,0)y(1:K)

0 +
t∑

τ=0
Φ(t , t −τ+1) x̌t−τ. (7.52)

After some algebraic manipulation and using the properties of the trace, we can write

E
[

tr(y(1:K)
t+1 y(1:K),H

t+1

]
)) = E

[
tr(Φ (t ,0)HΦ (t ,0)y(1:K)

0 y(1:K),H
0)

]
+

t∑
τ=0

E
[

tr(Φ (t , t −τ+1)HΦ (t ,0)y(1:K)
0 x̌H

t−τ)
]

+
t∑

τ=0
E
[

tr(Φ (t ,0)HΦ (t , t −τ+1) x̌t−τy(1:K),H
0)

]
+

t∑
τ1,τ2=0

E
[

tr(Φ (t , t −τ2 +1)HΦ (t , t −τ1 +1) x̌t−τ1 x̌H
t−τ2

)
]

. (7.53)

Due to the independence of signal and graph, as well as since E[y(1:K)
0] = 0K N , the sec-

ond and third terms above are equal to zero. Notice however that y(1:K)
0 y(1:K),H

0 º 0 and

x̌t−τ1 x̌H
t−τ2

º 0: y(1:K)
0 y(1:K),H

0 º 0 is symmetric with one non-zero eigenvalue equal to

‖y(1:K)
0 ‖2

2, whereas E
[

x̌t−τ1 x̌H
t−τ2

]
º 0 is a Kronecker product of positive semi-definite ma-

trices6

E
[

x̌t−τ1 x̌H
t−τ2

]
= E

[(
ϕ⊗xt−τ1

)(
ϕ⊗xt−τ2

)H
]

=ϕϕH ⊗E
[

xt−τ1 xH
t−τ2

]
=

{
ϕϕH ⊗ (Σx + x̄x̄H), if τ1 = τ2,
ϕϕH ⊗ x̄x̄H, otherwise.

(7.54)

6If A º 0 and B º 0, then A⊗B º 0.

7.6. CONCLUDING REMARKS

7

145

We can therefore use again inequality (7.45), as well as Jensen’s inequality for the spectral
norm (‖E[A]‖ ≤ E[‖A‖]), and the linearity of the expectation and the trace, to write

E
[

tr(y(1:K)
t+1 y(1:K),H

t+1)
]
≤ E

[
‖Φ (t ,0)H‖‖Φ (t ,0)‖

]
tr

(
E
[

y(1:K)
0 y(1:K),H

0

])
(7.55)

+
t∑

τ1,τ2=0
E
[
‖Φ (t , t −τ2 +1)H‖‖Φ (t , t −τ1 +1)‖

]
× tr

(
E
[

x̌t−τ1 x̌H
t−τ2

])
.

Next, we examine E [‖Φ(t1, t2)‖]. Considering that, for all p-norms and for any matrix A
and B ‖A⊗B‖p = ‖A‖p‖B‖p , the expected spectral norm ofΦ(t1, t2) is bounded by

E [‖Φ(t1, t2)‖] ≤ E
[

t1∏
γ=t2

‖Ψ⊗Sγ‖
]
= E

[
t1∏

γ=t2

‖Ψ‖‖Sγ‖
]

=
t1∏

γ=t2

‖Ψ‖E[‖Sγ‖
]= t1∏

γ=t2

|ψmax|‖E
[
Sγ

]‖
≤ (%|ψmax|)t1−t2+1. (7.56)

Therefore, in the limit, the first term of (7.55) vanishes

lim
t→∞E

[
‖Φ (t ,0)H‖‖Φ (t ,0)‖

]
tr

(
E
[

y(1:K)
0 y(1:K),H

0

])
≤ lim

t→∞(%|ψmax|)2t+2tr
(
E
[

y(1:K)
0 y(1:K),H

0

])
= 0. (7.57)

The last step above is because the filter is stable |%ψmax| ≤ 1. Putting (7.55) and (7.56)
together, while eliminating all terms that vanish, we obtain a bound for the first term of
(7.51)

lim
t→∞K E

[
tr(y(1:K)

t+1 y(1:K),H)
t+1

]
≤ lim

t→∞K
t∑

τ1,τ2=0
(% |ψmax|)τ1+τ2 tr(E

[
x̌t−τ1 x̌H

t−τ2

]
)

≤ lim
t→∞K

t∑
τ1,τ2=0

(% |ψmax|)τ1+τ2 tr
(
ϕϕH ⊗

(
Σx + x̄x̄H

))
= K tr

(
ϕϕH ⊗ (

Σx + x̄x̄H)
(1−% |ψmax|)2

)
, (7.58)

whereas for the remaining term from (7.50) we can see that it cannot be negative. Thus,
we can lower bound7 (notice that this term has to be subtracted) it as

lim
t→∞K tr(E[y(1:K)

t+1]E[y(1:K)
t+1]H) ≥ 0. (7.59)

Putting together (7.49), (7.58)-(7.59) and after some algebraic manipulation, we reach
the bound

lim
t→∞var[yt+1] ≤ (K /N) tr

(
ϕϕH ⊗ (

Σx + x̄x̄H)
(1−% |ψmax|)2

)
. (7.60)

7As for the FIR upper bound, also here one can exploit the structure of limt→∞ K tr(E[y(1:K)
t+1]E[y(1:K)

t+1]H) to
achieve a tighter bound.

7

146 FURTHER READING

We now use the property of the trace and Kronecker product, tr(A⊗B) = tr(A)tr(B) with
tr(ϕϕH) = ‖ϕ‖2, sinceϕ is a diagonal matrix. With the latter consideration (7.60) can be
then reformulated as (7.10) with simple algebra.

7.G. PROOF OF THE RECURSIVE ARMAK VARIANCE COMPUTATION

The covariance matrix Σy [t +1] of the filter output yt+1 in (7.12) can be expressed as

Σy [t +1] = CΣy (1:K) [t +1]CT

= CE
[

y(1:K)
t+1 y(1:K),T

t+1

]
CT −Cy(1:K)

t+1 y(1:K),T
t+1 CT,

(7.61)

where in the above derivation we made use of the fact that y(1:K)
t is independent from xt .

Then, we can notice that only the autocorrelation matrix of the system memory Ry (1:K) [t+
1] = E

[
y(1:K)

t+1 y(1:K),T
t+1

]
at time instant t +1 is unknown in (7.61). The term Cy(1:K)

t+1 y(1:K),T
t+1 CT

can be recursively calculated using the statistical knowledge of time instant t . Substitut-
ing the expression of y(1:K)

t+1 in (7.13a) into Ry (1:K) [t +1] we have

Ry (1:K) [t +1] = ĀRy (1:K) [t]ĀT + Āȳ(1:K)
t (ϕT ⊗ x̄T

t)+ (ϕ⊗ x̄t)ȳ(1:K),T
t ĀT

+EÃ

[
Ãt Ry (1:K) [t]ÃT

t

]
+ϕϕT ⊗

(
Σx [t]+ x̄t x̄T

t

) (7.62)

where once again we used the Kronecker properties (A⊗B)T = AT ⊗BT and (7.33). In

(7.62), E
[

Ãt y(1:K)
t y(1:K),T

t ÃT
t

]
= EÃ

[
ÃtEy (1:K)

[
y(1:K)

t y(1:K),T
t

]
ÃT

t

]
due to the independency

between the graph realization at time instant t +1 and system memory at time instant t
and linearity of the expecation. Then, we can see that each entry of the matrix EÃ[Ãt Ry [t]ÃT

t]
is derived from the standard three matrix multiplication which can be expressed as (7.15).
Let us now focus on the term Cy(1:K)

t+1 y(1:K),T
t+1 CT. Using (7.13a) we can expand it as

Cȳ(1:K)
t+1 ȳ(1:K),T

t+1 CT = CĀȳ(1:K)
t ȳ(1:K),T

t ĀTCT +CĀȳ(1:K)
t (ϕT ⊗ x̄T

t)CT

+C(ϕ⊗ x̄t)ȳ(1:K),T
t ĀTCT +C(ϕϕT ⊗ x̄t x̄T

t)CT.
(7.63)

Then, by substituting (7.62), (7.63) and EÃ[Ãt Ry[t]ÃT
t] into (7.61) the claim (7.14) follows.

FURTHER READING

[1] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, Filtering random graph processes over
random time-varying graphs, IEEE Transactions on Signal Processing (2017).

[2] E. Isufi, A. Simonetto, A. Loukas, and G. Leus, Stochastic graph filtering on time-
varying graphs, in Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), 2015 IEEE 6th International Workshop on (IEEE, 2015) pp. 89–92.

[3] E. Isufi and G. Leus, Distributed sparsified graph filters for denoising and diffusion
tasks, in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International
Conference on (IEEE, 2017) pp. 5865–5869.

FURTHER READING

7

147

[4] I. D. Schizas, G. B. Giannakis, S. I. Roumeliotis, and A. Ribeiro, Consensus in ad
hoc wsns with noisy linksópart ii: Distributed estimation and smoothing of random
signals, IEEE Transactions on Signal Processing 56, 1650 (2008).

[5] H. Zhu, G. B. Giannakis, and A. Cano, Distributed in-network channel decoding,
IEEE Transactions on Signal Processing 57, 3970 (2009).

[6] J. Tsitsiklis, D. Bertsekas, and M. Athans, Distributed asynchronous deterministic
and stochastic gradient optimization algorithms, IEEE transactions on automatic
control 31, 803 (1986).

[7] K. Srivastava and A. Nedic, Distributed asynchronous constrained stochastic opti-
mization, IEEE Journal of Selected Topics in Signal Processing 5, 772 (2011).

[8] D. A. Spielman and S.-H. Teng, Spectral sparsification of graphs, SIAM Journal on
Computing 40, 981 (2011).

[9] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms,
IEEE/ACM Transactions on Networking (TON) 14, 2508 (2006).

[10] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, Asynchronous distributed optimiza-
tion using a randomized alternating direction method of multipliers, in Decision and
Control (CDC), 2013 IEEE 52nd Annual Conference on (IEEE, 2013) pp. 3671–3676.

[11] E. Wei and A. Ozdaglar, On the o (1= k) convergence of asynchronous distributed al-
ternating direction method of multipliers, in Global conference on signal and infor-
mation processing (GlobalSIP), 2013 IEEE (IEEE, 2013) pp. 551–554.

[12] G. Chen, G. Davis, F. Hall, Z. Li, K. Patel, and M. Stewart, An interlacing result on
normalized laplacians, SIAM Journal on Discrete Mathematics 18, 353 (2004).

[13] C. Zhang, D. Florêncio, and P. A. Chou, Graph signal processing–a probabilis-
tic framework, Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-TR-2015-31
(2015).

[14] T. Kailath, Linear systems, Vol. 156 (Prentice-Hall Englewood Cliffs, NJ, 1980).

[15] S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, Reconstruction of graph signals
through percolation from seeding nodes, IEEE Transactions on Signal Processing 64,
4363 (2016).

[16] S. Barbarossa, S. Sardellitti, and A. Farina, On sparse controllability of graph sig-
nals, in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on (IEEE, 2016) pp. 4104–4108.

[17] P. Di Lorenzo, S. Barbarossa, P. Banelli, and S. Sardellitti, Adaptive least mean
squares estimation of graph signals, IEEE Transactions on Signal and Information
Processing over Networks 2, 555 (2016).

[18] D. Romero, M. Ma, and G. B. Giannakis, Kernel-based reconstruction of graph sig-
nals, IEEE Transactions on Signal Processing 65, 764 (2017).

7

148 FURTHER READING

[19] J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle for-
mations, IEEE transactions on automatic control 49, 1465 (2004).

[20] P. Massioni and M. Verhaegen, Distributed control for identical dynamically coupled
systems: A decomposition approach, IEEE Transactions on Automatic Control 54,
124 (2009).

[21] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Dynamic pro-
gramming and optimal control, Vol. 1 (Athena scientific Belmont, MA, 1995).

[22] W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal control, Vol. 1
(Springer Science & Business Media, 2012).

[23] M. L. Puterman, Markov decision processes: discrete stochastic dynamic program-
ming (John Wiley & Sons, 2014).

[24] S.-D. Wang, T.-S. Kuo, and C.-F. Hsu, Trace bounds on the solution of the algebraic
matrix riccati and lyapunov equation, IEEE Transactions on Automatic Control 31,
654 (1986).

IV
GRAPH-TIME SAMPLING

149

8
OBSERVING AND TRACKING GRAPH

PROCESSES

Accuracy of observation is the equivalent of accuracy of thinking.

Wallace Stevens

In the previous three chapters we saw how the extension of GSP to the temporal di-
mension could bring substantial benefits to filtering. In this chapter, we show that time
can also be exploited to observe and track a time-varying graph signal from a few nodes.
To these graph signals, we will refer in short as graph processes. Since we are interested
to observe a track a graph process by not collecting all the measurements, we would like
to derive conditions when this is possible. To the best of our knowledge, this is the first
contribution in this direction, and the following sections are based on our works [1, 2].

This chapter begins with an introduction to the tasks of observability and tracking
for graph processes in Section 8.1. The state-space models on graphs are described in
Section 8.2. The observability of graph processes is treated in Section 8.3, while the
derivations for the graph process tracking are performed in Section 8.4. The chapter
is concluded in Section 8.5 with a summary.

8.1. INTRODUCTION

An important branch in GSP is the sampling theory for signals on graphs. This theory
mainly relies on the observation that graph signals are often sparse (i.e., bandlimited) in
the graph frequency domain. Practical examples of bandlimited graph signals include
temperature measurements, where adjacent sensors measure similar values, fMRI data
of brain networks [3], ratings in recommendation systems [4], protein networks [5], and

Part of this chapter is submitted in the IEEE Transactions on Signal Processing [1] (2017) and is presented in
[2] (2018).

151

8

152 8. OBSERVING AND TRACKING GRAPH PROCESSES

networks that exhibit a clustering behavior such as opinion networks. A substantial con-
tribution to sampling of bandlimited graph signals is provided by [6], which is then ex-
tended in a number works including [7–13] to propose signal reconstruction strategies
from a few measurements.

The aforementioned works propose sampling and reconstruction strategies only for
a single snapshot of the graph signal ignoring its time-varying nature. However, time-
varying graph signals, named here graph processes, are encountered in consecutive sen-
sor measurements, biological signal evolution prone to stimuli, financial networks, and
information diffusion over networks. The latter has gave rise to a couple of recent works
that propose sampling and reconstruction strategies for graph processes [12, 14–18]. In
this chapter, we continue on this path to propose a graph-time sampling theory for the
tasks of observing and tracking a bandlimited graph process, i.e., a graph process that
has a sparse graph frequency content over time.

Observability of network processes has been considered in [19, 20] for sensor place-
ment and in [21] for designing observable topologies. While these findings are of partic-
ular importance, these works do not consider sampling strategies for observing the net-
work process. Differently, we exploit GSP tools and in particular the bandlimited prior to
bring the graph sampling theory into the temporal dimension. This allows us to derive
by theoretical guarantees when a bandlimited network process is observable from a few
measurements and to propose effective graph-time sampling schemes.

The bandlimited assumption has also been exploited in [14, 17] for tracking slowly
time-varying graph signals from a few nodes. However, since the main goal in these
works is to develop sampling strategies for adaptive signal reconstruction, signal track-
ing comes as a byproduct and, therefore, without theoretical guarantees. Here, we tackle
this challenge and we propose sampling strategies directly to track the process by means
of Kalman filtering (KF), which is known to achieve the optimal performance.

The works in [22–24] exploited the graph structure to improve the prediction accu-
racy of AR and ARMA models. However, the findings in these works need all the data to
stand. As we show later, this is not the case for the proposed KF. The work in [12] casts
the tracking of a graph process from limited measurements as a regularized-based inter-
polation problem on a larger graph. Subsequently, KF-like methods are used to alleviate
the computational burden. We identify three main differences with the proposed frame-
work. First, no conditions on the minimum number of required samples are provided
in [12]. Second, the sampling is performed uniformly at random, which is well-known
to be a suboptimal choice. Finally, since our framework is not a regularized interpola-
tion problem, we avoid the task of designing the regularizer and its weight to track the
process.

Differently from the above, KF has also been used to track network dynamics [25, 26].
However, in these cases, the graph embeds the communication links between the sen-
sors. To the best of our knowledge, this is the first attempt that conciliates process track-
ing with a designed sampling strategy and with the nature of the graph process itself, i.e.,
its bandlimitedness.

8.1.1. CONTRIBUTIONS

We can divide the chapter contributions into two parts.

8.1. INTRODUCTION

8

153

Contribution 8.1. Observability of graph processes. We extend the sampling theory for
graph signals to the observability of graph processes.

• We derive necessary and sufficient conditions for observing a bandlimited graph
process from a subset of nodes.

• We propose two approaches for observability: i) observability with deterministic
sampling (cf. Section 8.3.1), i.e., when the selected subset of nodes is chosen de-
terministically; and i i) observability with random sampling (cf. Section 8.3.2), i.e.,
when a subset of nodes is sampled with a given probability. We perform a mean-
square error (MSE) analysis of the state estimation performance to show the con-
nection between the graph topology, the process bandwidth, and the sampling set.

• We propose sampling techniques based on sparse sensing to pick the minimum
number of samples such that a target MSE estimation performance is guaranteed.

Contribution 8.2. Kalman filtering for graph processes. We propose KF to track ban-
dlimited graph processes that follow a predefined model. We first consider KF for time-
varying models (cf. Section 8.4.1) and then extend our derivations to steady-state KF (cf.
Section 8.4.2), i.e., when the model is time-invariant.

• We derive necessary conditions on the minimum required number of nodes for
tracking the graph process and conciliate these conditions with those derived for
observability. The MSE analysis, given by the posterior (or steady-state) error co-
variance matrix highlights the role played by the graph topology, the graph process
bandwidth, and the sampling set in the tracking (steady-state) performance.

• We propose a sparse sensing strategy to sample the graph, which ensures a prede-
fined MSE tracking cost.

8.1.2. APPLICATIONS

Within the context of observability of a graph process we consider the following applica-
tions.

• Gossip propagation in social networks. As nowadays social networks are one of
the fastest platforms to spread information in large scale, the identification of in-
formation sources has an important role in classifying these sources as relevant,
trustable, or threaten. Since most of the users do not render their data public
(e.g., privacy concerns), we consider observing the gossip source by collecting the
data only from the available users. Then, the proposed framework can be exploited
to carefully pick the information from the right users and to localize the source.

• Chemical agent diffusion in air. After the Chernobyl nuclear disaster in 19861, in-
ternational concern about the diffusion of chemical agents, such as radioactive
materials, increased and several efforts were put to understand the dynamics of

1According to studies summarized in the Wikipedia article [27], radioactive material was revealed in a large
area spanning from Russia to Italy.

8

154 8. OBSERVING AND TRACKING GRAPH PROCESSES

such diffusion. One example is the ETEX experiment [28], where two tracers are
released in the atmosphere and sampled over a period of three days over different
stations in Europe. In this experiment, we may consider the different stations on
the vertices of a graph and exploit the GSP theory to observe the place from where
the chemical agent was released. This information can be then used to isolate the
chemical agent spread and to take further controlling actions. A main challenge,
faced also in the ETEX experiment, was that not all stations could detect the re-
leased tracer, thus the proposed graph-time sampling theory can be explored to
reconstruct the original signal from the few available measurements.

As observability is applicable to the above applications in identifying the graph signal
diffusion source, we believe that KF on graphs applies as well to the above cases for the
tasks of tracking the graph signal evolution. Let us briefly illustrate this with the gossip
application.

• Gossip tracking in social networks. We consider that information about a partic-
ular topic is being shared over a social network, and that a set of selected users
inject new related information to orient the network opinion at a particular direc-
tion. Through the use of KF on graphs, we aim collecting subsampled measure-
ments such that we can optimally track the gossip trend, and as such to design
more efficient controlling actions. In this way, the graph signal subsampling must
be performed per each time instant to collect measurements recursively from the
most relevant users.

8.2. STATE-SPACE MODELS ON GRAPHS

In this section we introduce the state-space models on graphs that will be used through-
out the chapter. We start our discussion by reformulating in mathematical terms the
system on graphs. Then, we define the bandlimited graph process and reformulate the
system on graphs as a sparse representation in the GFT domain.

8.2.1. SYSTEMS ON GRAPHS

Consider the N−state discrete linear time-varying system

xt = At−1xt−1 +Bt−1ut−1 (8.1a)

yt = CSt (xt +vt), (8.1b)

where xt is the state vector containing the graph signal at time t , ut is the input signal,
and At and Bt are the time-varying state-transition and input matrices, respectively. yt ∈
CN is the measurement vector and CSt = diag(ct ,1, . . . ,ct ,N) is the sampling matrix with
ct ,n = 1 if the nth node belongs to the instantaneous sampling set St defined as St =
{n ∈ {1, . . . , N }|ct ,n = 1}. vt is white zero-mean noise with covariance matrix Σv =σ2

v IN .
Model (8.1) comprises the following network processes.
Signal diffusion. For x0 being the initial signal state on the graph, its instantaneous

diffused [29] realization is expressed through the exponential matrix product

xt = e−wLdt x0 = e−wLd e−wLd(t−1)x0 ,Axt−1 (8.2)

8.2. STATE-SPACE MODELS ON GRAPHS

8

155

where w > 0 is the diffusion rate and A = e−wLd is the time-invariant state-transition
matrix. In (8.2) we can also incorporate an input ut−1 which may represent additional
sources that become available at t −1 > 0. The diffusion model has found several practi-
cal applications including temperature diffusion, chemical substances dispersion, opin-
ion propagation over networks [30], and brain signal analysis [31].

Wave propagation. The discretised wave equation on graphs [32] follows the two-
step recursion

wt = (2IN − c2Ld)wt−1 −wt−2, (8.3)

with initial state w0 and wave speed c. Recursion (8.3) can be reformulated as (8.1a) by
defining xt = [wt−1,wt]T with A = [

[IN , (2IN −c2Ld)]T, [0N 0N T,IN]T
]

and w−1 = 0N . The
latter is of practical interest for instance in seismic data [33].

ARMA graph processes. We denote an ARMA graph process as

xt = f (S)xt−1 + g (S)ut−1, (8.4)

where f (S) and g (S) are matrix functions of S that share the eigenvectors with S, such as
polynomials of a given power.

A particular form of (8.4) is the first-order recursion

xt =−wSxt−1 +u0 with x0 = 0N , (8.5)

which for 0 < w < 1/λmax(S) reaches the steady-state

x = lim
t→∞xt = (IN +wS)−1u0. (8.6)

Expression (8.6) is the solution of the so-called aggregate diffusion model which plays an
important role in image smoothing [34], Tikhonov denoising [35], and recommendation
systems [36].

8.2.2. BANDLIMITED SYSTEMS ON GRAPHS

To proceed with the graph Fourier analysis of (8.1), we define the following.

Definition 8.1. A graph process xt with instantaneous GFT x̂t =UHxt is F−bandlimited
if x̂t has non-zero frequency content only on a subset of graph frequency indices F .

The set F = {n ∈ {1, . . . , N }|x̂t ,n 6= 0, t ≥ 0} is considered to be a common time-invariant
set for all realizations of xt . Said differently, F is the union of all instantaneous sets
Ft = {n ∈ {1, . . . , N }|x̂t ,n 6= 0}. We then write

xt = UF x̃t , (8.7)

where x̃t ∈C|F | is the vector containing the entries of x̂t indicated by F .
We further assume the following.

Assumption 8.1. The system evolution matrices At and Bt share the eigenvectors with the
graph shift operator S.

Assumption 8.2. The input ut is an F−bandlimited graph process.

8

156 8. OBSERVING AND TRACKING GRAPH PROCESSES

Assumption 8.1 focuses our attention to linear time-varying systems on graphs that
are a function of the graph shift operator. In fact, for all network processes in Sec-
tion 8.2.1 this assumption holds. Assupmtion 8.2 requires the input signal to have a
sparse GFT over time. That is, ut should be a (piece-wise) smooth input signal on the
graph, or have properties similar to the signals studied in [3–5, 7–11, 14–17, 22, 23, 37, 38].
From Definition 8.1, we should note that the bandlimitedness of xt considers the sparsity
in the GFT domain of all past realizations including those of u0, . . . ,ut−1. Furthermore,
we will not consider Assumption 8.2 for the task of observability and will leverage it only
for tracking.

The subsequent proposition formalizes the above.

Proposition 8.1. Let xt be a graph process that follows model (8.1) and let Assumptions 8.1
and 8.2 hold. Then, xt is an F−bandlimited graph process if and only if x0 is an F −
bandl i mi ted graph signal.

(The proof follows from simple algebra.)

With this in place, we can write the evolution of xt as

x̃t = Ãt−1x̃t−1 + B̃t−1ũt−1 (8.8a)

ySt = CSt (UF x̃t +vt), (8.8b)

where Ãt = UH
F

At UF and B̃t = UH
F

Bt UF are diagonal matrices containing the in-band
spectrum of At and Bt , respectively.

Hereinafter, we will refer to systems of the form (8.1) that can be written in the form
(8.8) as F−bandlimited systems on graphs. The F−bandlimited graph processes con-
sidered in this paper follow the evolutions (8.1a) and (8.8a) in the vertex and graph spec-
tral domain, respectively. In the next section, we provide conditions for the observation
of an F−bandlimited graph process.

8.3. OBSERVING GRAPH PROCESSES

We start this section by adapting the definition of observability to our context [39].

Definition 8.2. An F−bandlimited system on graph is observable over the set S0:T =⋃T
t=0 St = {n ∈ {1, . . . , N }; t ∈ {0, . . . ,T }| ct ,n = 1} if for any F−bandlimited initial state x0

and some final time T , the initial state x0 can be uniquely determined in the absence of
noise by the knowledge of the input ut and measurement yt for all t ∈ {0, . . . ,T }.

The set S0:T specifies all graph-time locations where and when the nodes are sampled in
the interval {0, . . . ,T }. Since for observability we need the knowledge of the input signal,
Assumption 8.2 is not necessary here.

With the above formulation in place, we can answer the questions: Under which con-
ditions is an F−bandlimited graph process observable from a few measurements? When
and where should we collect noisy measurements to estimate x0 up to a desired accuracy?

8.3. OBSERVING GRAPH PROCESSES

8

157

To provide an answer, we write the relation between the measurement yt and the
initial F−bandlimited signal x̃0 as

yt = CSt UF Ãt ,0x̃0 +CSt UF

t−1∑
τ=0

Ãt ,τ+1B̃τũτ+CSt vt , (8.9)

with

Ãt ,τ =

Ãt−1Ãt−2 . . . Ãτ, t > τ
I|F |, t = τ
0|F |0T

|F |, t < τ.
(8.10)

Let y0:T = [yT
0 ,yT

1 , . . . ,yT
T]T be the vector of measurements collected in the interval {0, . . . ,T }.

Then, from (8.9) we have

y0:T = O0:T x̃0 + J0:T u0:T−1 +CS0:T v0:t , (8.11)

where

O0:T = [(CS0 UF Ã0,0)T, (CS1 UF Ã1,0)T, . . . , (CST UF ÃT,0)T]T

= CS0:T (IT+1 ⊗UF)Ã0:T ,
(8.12)

CS0:T = blkdiag(CS0 , . . . ,CST) Ã0:T =
[

I|F |, ÃT
1,0, . . . , ÃT

T,0

]T
, u0:T−1 = [uT

0 ,uT
1 , . . . ,uT

T−1]T,

and v0:T = [vT
0 ,vT

1 , . . . ,vT
T]T. J0:T is the input evolution matrix in the interval {0, . . . ,T }

whose expression is not required for our derivations, but can be obtained from (8.9).
In the next section, we answer the above questions for Ct being a deterministic sam-

pler, while in Section 8.3.2 we consider the case where the entries of Ct follow a Bernoulli
distribution.

8.3.1. OBSERVABILITY WITH DETERMINISTIC SAMPLING

In this section, we consider the task of observability when the sampled nodes are chosen
deterministically. Recall in this context that CS0:T plays the role of the set projection
matrix over the set S0:T . Given then CS0:T , system (8.8) is observable over S0:T iff the
observability matrix O0:T in (8.12) is full rank [39], i.e., rank(O0:T) = |F |. Then, we have

x̃o
0 = O†

0:T

(
y0:T − J0:T u0:T−1

)
, (8.13)

which is also the least squares (LS) estimate of x̃0 in the presence of noise vt 6= 0. From
the structure of O0:T , a sufficient condition for observability is that at least one of the
block matrices CSt UF F̃t ,0 is of rank |F |, which requires at least |F | nodes to be active
for the specific t (i.e., |St | ≥ |F |). This condition is similar to that of graph signal recovery
via LMS [14], or RLS [17] on graphs. However, while in adaptive graph signal recovery the
goal is to reconstruct x̃0 from multiple noisy realizations of the latter, here, we extend the
recovery such that it encompasses also the model evolution (i.e., Ãt ,0) into the analysis.
The latter allows to take measurements in a graph-time fashion, resulting in so-called
graph-time samples. In this context, we claim the following.

8

158 8. OBSERVING AND TRACKING GRAPH PROCESSES

Proposition 8.2. An F−bandlimited system on graph is observable over the set S0:T only
if at least |F | graph-time samples are taken in the time interval {0, . . . ,T }. These samples
can be taken by |F | nodes at a fixed time instant, by one node in |F | time instants, or a
combination of the two.

Put simply, the condition in Proposition 8.2 is equivalent to

|S0:T | ≥ |F |, (8.14)

i.e., the cardinality of the sampling set must be greater than or equal to the process band-
width. However, (8.14) is only a necessary condition for observability. In fact, O0:T may
be easily ill-conditioned depending on the particular location of these samples and the
spectral support of x̃0.

It is then paramount to carefully pick the samples in a graph-time fashion such that
O0:T is of full rank |F |, and in the presence of noise vt 6= 0, possibly also well-conditioned.
Put differently, the sampling set should satisfy

rank
(T∑

t=0
ÃH

t ,0UH
F CSt UF Ãt ,0

)
= |F |, (8.15)

where the single shot graph signal reconstruction [11] is the special case T = 0. The fol-
lowing theorem generalizes the reconstruction of graph signals to a necessary and suffi-
cient condition for the observability of an F -bandlimited graph process over a sampling
set.

Theorem 8.1. An F−bandlimited system on graph is observable over the set S0:T if and
only if

‖CS c
0:T

(IT+1 ⊗UF)‖ < s2
min(Ã0:T)

s2
max(Ã0:T)

, (8.16)

where CS c
0:T

= IN (T+1) − CS0:T is the operator that projects onto the complementary set

S c
0:T = {n ∈ {1, . . . , N }; t ∈ {0, . . . ,T } | ct ,n = 0} and smin(Ã0:T), smax(Ã0:T) indicate the mini-

mum and maximum singular values of Ã0:T , respectively.

Condition (8.16) is related to the localization properties of graph signals involving
also the evolution model of the latter. It implies that in their evolution there are no F -
bandlimited graph processes perfectly localized on the complementary set S c

0:T . The
single shot condition [11] is obtained for T = 0.

We conclude this part with the following observation.

Remark 8.1. While (8.13) is an option to estimate x0 in the LS sense, one can also rely on
the time-invariant results by considering only one realization yt . In this case, the presence
of Ãt ,0 should also be considered. Thus, when rank(Ãt ,0) < |F |, the recovery over singular
observations is not possible. In a time-varying fashion, we exploit the successive realiza-
tions for estimating x0. Furthermore, since we must deal with noise, operating in a graph-
time fashion makes the recovery more robust to bad noise realizations for a particular t .

MSE analysis. We here quantify how the sampling set S0:T affects the MSE of the
LS estimate (8.13). The latter will be then used as a criterion to collect the graph-time
samples. The main result is given by the following proposition.

8.3. OBSERVING GRAPH PROCESSES

8

159

Proposition 8.3. Given an F−bandlimited graph process following the model (8.8) and
assuming the result of Theorem 8.1 holds. Then, the MSE of the LS observed signal x̃o

0 is

MSE = E{‖x̃o
0 − x̃0‖2}= E{

tr
[

(x̃o
0 − x̃0)(x̃o

0 − x̃0)H
]}

=σ2
v tr

{[
ÃH

0:T (IT+1 ⊗UF)HCS0:T (IT+1 ⊗UF)Ã0:T

]−1
}

.
(8.17)

(The claim follows from the covariance matrix of the LS estimator [40].)
Besides characterizing the impact of the graph-time samples on the MSE2, expres-

sion (8.17) shows that not only the number of selected samples plays a role, but also
their location in graph and time. In the sequel, we show how to select these samples
such that a target MSE (8.17) is guaranteed.

Sampling strategy. Given (8.17), we follow a sparse sensing approach [41, 42] to de-
sign the sampling set S0:T such that a target MSE estimation performance is guaranteed.
The latter is achieved as the solution of the convex problem

minimize
c0:T

1T
N×(T+1)c0:T

subject to tr

[(
ΨH

0:T CS0:TΨ0:T

)−1
]
≤ γ

σ2
v

,

CS0:T = diag(c0:T),

Ψ0:T = (IT+1 ⊗UF)Ã0:T ,

0 ≤ c0:T,i ≤ 1, i = 1, . . . , N (T +1),

(8.18)

where the objective function is the l1-surrogate of the l0-norm and imposes sparsity in
S0:T ; the constant γ > 0 imposes a target MSE performance; and the last constraint is
the relaxation of the Boolean constraint c0:T,i ∈ {0,1} to the box one3. Alternatively, one
can adopt a greedy approach similar to [13] for building S0:T . Obviously, we can also
consider the opposite problem where the aim is to minimize the MSE, while imposing
a fixed budget on the selected number of samples. The latter translates as well into a
convex problem.

8.3.2. OBSERVABILITY WITH RANDOM SAMPLING

In this section, we consider the case where the entries of CSt in (8.1b) are i.i.d. in time
Bernoulli random variables with expected value C̄ = diag(c̄). Let then S̄ = {n ∈ {1, . . . , N }|c̄n >
0} be the expected sampling set, i.e., the set of nodes that are sampled with a probability
greater than zero. The task here is to above questions w.r.t. S̄ . As we show at the end
of this section, one major benefit of this approach is that the sparse sensing design of S̄

avoids the relaxation techniques used in (8.18).
Given the measurements in the interval {0, . . . ,T } (8.11), for a realization of CS0:T , we

define
z0:T = y0:T − J0:T u0:T = O0:T x̃0 +CS0:T v0:T , (8.19)

2The absence of model noise in (8.1a) allows us to find a closed-form expression for the MSE, rather than an
upper bound. Moreover, it matches perfectly models (8.2)-(8.6).

3In a second step, randomized rounding or thresholding can be used to project the optimal solution c∗0:T of

(8.18) to the {0,1}N (T+1) space [41].

8

160 8. OBSERVING AND TRACKING GRAPH PROCESSES

i.e., we subtract each realization4 of the input signal before analyzing the observability
properties. From (8.14), a necessary condition for the instantaneous observability ma-
trix O0:T to be full rank is that the instantaneous sampling set S0:T in {0, . . . ,T } has a
cardinality greater than, or equal to, the signal bandwidth. Given the structure of O0:T

(CS0:T) in (8.12), it is obvious that rank(O0:T)
(
rank(CS0:T)

)
depends on the rank(C̄), i.e.,

on the cardinality of the nodes that are sampled with a probability strictly greater than
zero. The subsequent proposition formalizes the above as a necessary condition.

Proposition 8.4. Consider an F−bandlimited system on graph and given the diagonal
sampling matrix CSt with i.i.d. in time Bernoulli entries and expected value C̄. A nec-
essary condition for the observability of the system from samples taken randomly in the
interval {0, . . . ,T } is that at least d|F |/(T +1)e nodes are sampled with a probability greater
than zero.

That is, differently from the deterministic node sampling, the observability of a graph
process is now related to the expected sampling set S̄ . Put simply, the constraint in
Proposition 8.4 is equivalent to

|S̄ | ≥ d|F |/(T +1)e. (8.20)

It must be noted that for T ≥ |F | there is the potential to observe an F−bandlimited
graph process by allowing only one node to randomly take measurements. The above
result, though novel from the random sampling viewpoint, is not entirely surprising. In
fact, in [10] it has been seen that a graph signal can be reconstructed also by sampling
successive aggregations of a single node. Hence, by bringing the time into the play, one
node can collect different linearly independent measurements in time and will be able
to observe the process.

However, since the node sampling is random in a finite interval {0, . . . ,T }, there is
always a possibility that the instantaneous sampling set S0:T has a cardinality smaller
than |F |. The following corollary quantifies the latter.

Corollary 8.1. Given the sampling matrix CSt in (8.1) with i.i.d. in time Bernoulli entries
and expected value C̄. The probability that the cardinality of the instantaneous sampling
set S0:T is smaller than the process bandwidth |F | is

Pr
(|S0:T | < |F |)= |F |−1∑

k=0

αk e−α

k !
, (8.21)

where α= (T +1)1N Tc̄ is the mean of the Poisson distribution.

This probability drops to zero even for moderate values c̄ as long as N is of the order
of 100 nodes and T is relatively large. In Section ??, we show with real data that this
probability drops below machine precision. To further quantify the impact of C̄ = diag(c̄)
on the process observability, we perform next an MSE analysis of the LS estimated state.

4This is analogous to our graph deterministic observability, or observability in linear systems, where the real-
izations of the input signal should be known. This is not a problem since the realization of CS0:T

is known.

8.3. OBSERVING GRAPH PROCESSES

8

161

MSE analysis. To render a MSE analysis tractable, we follow a similar procedure as
used for the Cramér-Rao lower bound5 (CRLB) [40], which quantifies the lowest MSE
estimate x̃o

0 = O†
0:T z0:T . The following proposition quantifies this finding.

Proposition 8.5. Given an F−bandlimited graph process following model (8.8) and given
CSt a diagonal sampling matrix with i.i.d. in time Bernoulli entries and expected value

C̄. The MSE of the LS observed signal x̃o
0 = O†

0:T z0:T is then lower-bounded by

MSE ≥σ2
vtr

{[
ÃH

0:T

(
IT+1 ⊗UH

F C̄UF

)
Ã0:T

]−1
}

. (8.22)

Besides providing a statistical measure of the lowest achievable MSE for a particular
C̄, the lower bound (8.22) can also be used as a design criterion to find these sampling
probabilities. This aspect is covered in more detail next.

Sampling strategy. Following the same principle as in [42], we design the expected
sampling set S̄ in a sparse sensing fashion, where instead of using the CRLB as a design
criterion, we consider the lower bound (8.22). Then, c̄ and therefore S̄ are found as the
solution of the convex problem

minimize
c̄,γ∈R|F |

1T
N c̄

subject to tr

{[
ÃH

0:T

(
IT+1 ⊗UH

F C̄UF

)
Ã0:T

]−1
}
≤ γ

σ2
v

,

C̄ = diag(c̄),

cmin ≤ c̄n ≤ cmax, n = 1,2, . . . , N ,

0 ≤ cmin ≤ cmax ≤ 1.

(8.23)

Even though conceptually equivalent to (8.18), problem (8.23) differs in two main as-
pects, which preserve the optimality of the solution. First, the objective function is not
a surrogate anymore of the l0-norm. Rather, it is the true function (i.e., the overall sam-
pling rate) that we want to minimize. Second, the convex box constraint cmin ≤ c̄n ≤ cmax

is not a relaxation anymore, since now we directly optimize over the sampling probabil-
ities for some rate allocation bounds cmin and cmax. In (8.23), one can add also a con-
straint on the probability criterion (8.21). However, the latter should be upper-bounded
since it is not a convex function. As we show in the next section with the ETEX dataset,
the latter is not necessary since a small enough γ on the MSE will trade well the sampling
probabilities with the performance.

8.3.3. NUMERICAL RESULTS

We start our numerical analysis with the observability with deterministic sampling on
the Molene weather data set6 and then we analyze the observability with random sam-
pling on the European tracer experiment (ETEX) data set7 [28].

5Since the measurements are the product of a Bernoulli and a Gaussian random variable, the joint pdf does
not satisfy the CRLB regularity condition.

6Data publicly available at https://donneespubliques.
meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz.

7Data publicly available at https://rem.jrc.ec.europa.eu/RemWeb/etex/ .

8

162 8. OBSERVING AND TRACKING GRAPH PROCESSES

0 50 100 150 200 250 300

-20

-15

-10

-5

0

Proposed Sampling (19)
Uniformly Random Sampling

|S|0:T

N
M

SE
(d

B
)

3
Figure 8.1: NMSE versus the number of samples for the sampling algorithm (8.18) and uniformly random

sampling. The graph process has a perfectly localized spectrum on |F | = N = 32, i.e., the entire bandwidth.

Table 8.1: Theoretical, empirical NMSE, and the cardinality of the sampling set S0:T for different values of γ
in (8.18).

γ= 2.05 γ= 2.5 γ= 3 γ= 3.5

Theo. (8.17) −21.26dB −20.42dB −19.64dB −19.32dB
Emp. −21.22dB −20.37dB −19.57dB −19.28dB
|S0:T | 277 61 37 32

Obs. with deterministic sampling. The Molene weather data set consists of R =
744 hourly temperature recordings collected in January 2014 over 32 cities in the region
of Brest, France. The graph is a k-nearest neighbour (kNN) [43] graph with k = 3. We
consider a single recording8 and then diffuse it following model (8.2) with w = 1.5 and
T = 10.

First, we analyze the effect of the sampling set S0:T when the graph process is per-
fectly F−bandlimited. In this regard, we considered |F | = N = 32 (i.e., the entire band-
width) and corrupted the measurements with a zero-mean Gaussian noise with σ2

v =
10−1, which corresponds to an average signal-to-noise ratio (SNR) of 19.3dB computed
as

SNR = 10log10

[∑R
τ=1 ‖rτ‖2

2

N Rσ2
v

]
. (8.24)

Here, rτ stands for the τth recording. The |S0:T | samples are chosen by solving the oppo-
site of problem (8.18) as the ones that minimize the MSE (8.17) in a sparse sense fashion.
As a performance evaluation criterion, we use the normalized MSE (NMSE) between the
estimated (observed) τth recording ro

τ and the true one rτ, defined as

NMSE =
∑R
τ=1 ‖ro

τ − rτ‖2∑R
τ=1 ‖rτ‖2

. (8.25)

Fig. 8.1 shows the obtained NMSE as a function of |S0:T |. It can be seen that even with
60 samples (out of 320) an NMSE of −20dB is achieved. On the contrary, the uniformly

8The graph signal consists of the measured temperature after subtracting their average value.

8.3. OBSERVING GRAPH PROCESSES

8

163

0 50 100 150 200 250 300
-10

-8

-6

-4

-2

0
Proposed Sampling (19), σ2 = 10−1

Proposed Sampling (19), σ2
v = 5

Uniformly Random Sampling, σ2 = 10−1

Uniformly Random Sampling, σ2
v = 5

|S|0:T

N
M

SE
(d

B
)

3
Figure 8.2: NMSE versus the number of selected graph-time locations for the sampling algorithm (8.18) and a

uniformly random sampling. The state spectral evolution is considered localized on F with |F | = 8.

0 5 10 15 20 25 30 35
-15

-10

-5

0

5

10

15

20

25

30

35

SN
R
(λ

)
(d

B
)

λ

σ2 = 10−1

σ2
v = 5

3
Figure 8.3: Average SNR per graph frequency for the two different noise powers computed as

SNR(λn) =∑744
τ=1 r̂ 2

n /Tσ2
v . In the high noise regime, we observe that most frequencies experience a negative

SNR.

random sampling9 requires far more measurements to give a comparable performance.
This finding suggests that the sparse observability approach can also be implemented for
graph processes that have a contribution on the entire bandwidth.

To provide more insights, Table 8.1 shows the theoretical and empirical NMSE as a
function of the target value γ in (8.18). In addition, we show also the cardinality of S0:T .
We observe that a stricter NMSE requirement in (8.18) leads to a higher |S0:T | and, vice-
versa, a bigger γ leads to a sparser S0:T .

In the second scenario, we restrict the process bandwidth to the first |F | = 8 graph
frequencies and analyze two different noise variancesσ2

v = {10−1,5} (SNR = {19.3dB,2.3dB}).
The sampling set S0:T is built as in the previous scenario and is again compared with the
uniformly random sampling.

Fig. 8.2 depicts the average NMSE as a function of |S0:T |, where the proposed se-
lection strategy outperforms again the uniformly random sampling. We further observe
that the NMSE has a lower floor much higher than for the full bandwidth case and its
value does not reduce even by increasing |S0:T |. We attribute this limitation to the re-

9To account for the randomness in this sampling strategy the NMSE is further averaged over 100 iterations.

8

164 8. OBSERVING AND TRACKING GRAPH PROCESSES

0 5 10 15 20 25 30 35
0

2

4

6

8

10

D
eg

re
es

C
el

si
us

Nodes

True value
Observed value

3
Figure 8.4: True temperature values and the observed ones for a random recording; |F | = 8, |S0:T | = 60, and

σ2
v = 10−3. Further improvement can be obtained by increasing |F |.

0 5 10 15 20 25 30
-25

-20

-15

-10

-5

0

Proposed Sampling (19), σ2 = 10−1

Proposed Sampling (19), σ2
v = 5

|F|

N
M

SE
(d

B
)

3
Figure 8.5: NMSE versus the signal bandwidth |F | for different noise powers. The sampling set has cardinality
|S0:T | = 100 chosen by minimizing the MSE (8.17). Observe that a larger bandwidth is not favorable when the

measurement noise has high power.

stricted bandwidth, since the out-of-band signal contribution seems playing a role in
improving further the performance. In fact, w.r.t. Fig. 8.3, we observe that in low noise
regimes it is beneficial to consider a larger bandwidth since the average SNR per fre-
quency is high. On the contrary, this might not be the case for σ2

v = 5, since the SNR(λn)
is negative for high graph frequencies. In the sequel, we show that indeed the SNR(λn)
plays a crucial role in the observability performance. Fig. 8.4 concludes this scenario
by plotting the true signal and the corresponding observed signal with |S0:T | = 60 and
σ2

v = 10−1 for a random recording.

In this third scenario, we analyze the effects of the signal bandwidth on the observ-
ability performance. We fix |S0:T | = 60 samples (i.e., almost twice the full bandwidth)
and compute the NMSE for different values of |F | and σ2

v . These results are shown in
Fig. 8.5.

We observe an increasing trend of the NMSE in high noise regimes (i.e., σ2
v = 5). This

suggests that the meaningful information is concentrated in the first few frequencies
and, therefore, the graph process is bandlimited. As highlighted in Fig. 8.3, by increasing
|F | we only add more noise resulting in a performance degradation. This result suggests
that in the presence of noise the process bandwidth should not be determined solely by

8.3. OBSERVING GRAPH PROCESSES

8

165

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
M

C
H

 n
g
/m

3

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
M

C
H

 n
g
/m

3

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
M

C
H

 n
g
/m

3

(c)

Figure 8.6: Tracer (PMCH) concentration in the 168 stations. The top three nodes with the highest PMCH
concentration are circled in red. (a) Ground truth concentration at t = 0. (b) Observed tracer concentration by
the intantaneous diffusion model with w = 3.5 on the 3NN graph with all nodes collecting samples. (c) Mean
observed tracer concentration following the observability with random sampling and overall sampling rate

1T
N c̄ = 60 (out of 168) by solving the opposite of problem (8.23). The NMSE between the observed signal with

random sampling (right) and the reconstructed ground truth (center) is −16.2 dB with a variance of −48.1dB
around this value.

the signal energy, but by the signal-to-noise ratio (SNR). Indeed, a larger bandwidth (al-
though the signal has energy content) degrades the overall SNR. This finding is further
reinforced in the low noise regime, where a larger bandwidth is preferred to exploit the
SNR on the high frequencies for better observing the graph process.

Obs. with random sampling. The ETEX experiment [28] contains measurements of
an identifiable perfluorocarbon concentration, released near Rennes, France, and then
diffused over Europe. Thirty concentration measurements were collected over a period
of 72 hours at N = 168 ground-level stations. These stations will serve as the nodes of
a kNN graph and the 30 collected measurements in time will be the graph process. For
several reasons, the measurements are not always available and in these cases, the tracer

8

166 8. OBSERVING AND TRACKING GRAPH PROCESSES

0 20 40 60 80 100 120 140 160 180
0

0.5

1

N

Sa
m

pl
in

g
pr

ob
ab

ili
ty

3
Figure 8.7: Optimal sampling probabilities over the nodes obtained from solving the opposite of

problem (8.23). We observe that several nodes are sampled with probability one and that the overall solution
is highly sparse.

concentration is set to zero.
We considered model (8.2) to capture the signal evolution over time. The set F con-

tains the frequency indices where 30% of the process energy is concentrated (|F | = 6).
Since diffused graph signals are often bandlimited, our intuition is that also in this ex-
periment most of the frequencies will not have useful information. With this setup, we
found heuristically that k = 3 and w = 3.5 lead to the smallest observability error by us-
ing all (168×72) recordings. We then use this result to test the observability with random
sampling. To account for the measurement noise, the signal is corrupted with a zero-
mean Gaussian noise of variance σ2

v = 10−4 (SNR = 29.2dB). The obtained results are
averaged over 2000 iterations.

In Fig. ?? (a), we plot the original signal at t = 0, wherein red circles highlight the
top three nodes with the highest concentration. Then, in Fig. ?? (b) we plot the initial
signal reconstructed by using model (8.2) when all nodes collect data. For this instance,
the fitted graph and the used model are capable to identify the region (specifically the
top two highest concentrations) where the tracer was released, but at the same time a
tracer concentration around 0.04ng/m3 is also observed over all nodes10. However, for
this work, we will use this fully observed signal (Fig. ?? (b)) as a benchmark since it is the
best that we can reconstruct with the fitted model. In Fig. ?? (c), we show the average
observed signal with a sampling rate of 60. The sampling probabilities are obtained by
solving the opposite of problem (8.23) and are illustrated in Fig. 8.7. We achieved an
average NMSE between the observed signal and the reconstructed ground truth (Fig. ??
(b)) of −16.2dB with a variance around this performance of −48.1dB.

The above results lead to the following conclusions: i) the deviation of a particular re-
alization from the averaged observed signal is in general negligible, yielding a good prac-
tical result; and i i) similarly to the approaches that use the CRLB to perform sparse sam-
pling, the lower bound (8.22) is a suitable cost function to design a sparse sampler.

Finally, in Table 8.2 we address the impact of γ in (8.23) on the lower bound (8.22),
the empirical NMSE, the overall sampling rate, and the value of α in (8.21). We observe

10We attribute this concentration leakage to the missing values that are set to zero and to the absence of wind
information on the specific days.

8.4. TRACKING GRAPH PROCESSES

8

167

Table 8.2: Theoretical, empirical NMSE, overall sampling rate, and α in (8.21) for different values of γ (×10−4)
in (8.18).

γ= 3.12 γ= 3.15 γ= 3.18 γ= 3.21

Theo. Lower Bound (8.22) −36.47dB −36.42dB −36.38dB −36.34dB
Emp. −24.52dB −18.77dB −16.48dB −16.13dB
1T

N c̄ 130.4 83.9 62.7 50.2
α 3910 2515 1881 1505

that despite the gap between the theoretical lower bound and the empirical NMSE, a
looser requirement on (8.22) induces a lower sampling rate. Moreover, all the reported
values of α lead to a probability (8.21) below machine precision. This demonstrates the
use of (8.22) for sparse sampling design and that a reasonable NMSE is achieved even by
collecting 1/3 of the measurements.

8.4. TRACKING GRAPH PROCESSES

We now consider the task of tracking a bandlimited graph process from a subset of nodes
chosen deterministically. We make use of the Kalman filter, which matches perfectly the
system (8.8). First, we introduce the KF algorithm for time-varying scenarios and provide
conditions on the sampling set to optimally track the graph process. Then, we show how
the proposed KF specializes for time-invariant models (as the ones in Section 8.2.1) and
provide conditions for the sampling set to ensure a steady-state performance. For both
cases, we provide sampling strategies for designing the sampling set with given tracking
guarantees.

8.4.1. KALMAN FILTERING FOR TIME-VARYING MODELS

Following [39], for the F−bandlimited system (8.8), the KF on graphs evolves as de-
scribed in Algorithm 8.1. It initializes the a posteriori state estimate x̃+0 to a random vec-
tor and the a posteriori error covariance matrix P+

0 to a scaled identity. The update of
P−

t in step i i) accounts also for the state model noise w̃t = UF wt , which is considered
zero-mean with covariance matrix Σ̃w = UH

F
Σw UF and independent from vt .

The Kalman gain matrix Kt computed in step i i i) leads to the minimum average
a posteriori MSE, i.e., tr(P+

t). From its expression, it is clear that Kt (and thus P+
t) is

highly correlated with the sampling set at time t , i.e., CSt . In fact, for rank(CSt) = R <
|F | and assuming rank(P−

t) = |F |, then rank(CSt UF P−
t UH

F
CSt +CStΣv CSt) = R. As a

consequence rank(Kt) ≤ R < |F |. Thus, the |F | ×N Kalman gain matrix Kt can be full
rank only if

|St | ≥ |F |. (8.26)

That is, KF on graphs will fully exploit its Kalman gain (and thus track better) only if the
number of sampled nodes for each t is greater than or equal to the signal bandwidth.

8

168 8. OBSERVING AND TRACKING GRAPH PROCESSES

Algorithm 8.1. : Kalman filtering on graphs

Initialize x̃+0 and P+
0 . For t > 0 repeat:

i) Update the a priori state estimate x̃−t as:

x̃−t = Ãt−1x̃+t−1 + B̃t−1ũt−1;

ii) Update the a priori error covariance matrix P−
t as:

P−
t = F̃t−1P+

t−1F̃H
t−1 + Σ̃w ;

iii) Compute the Kalman gain matrix Kt as:

Kt = P−
t UH

F CSt

(
CSt UF P−

t UH
F CSt +CStΣv CSt

)†
;

iv) Update the a posteriori state estimate x̃+t as:

x̃+t = x̃−t +Kt
(
yt −CSt UF x̃−t

)
;

v) Update the a posteriori error covariance matrix P+
t as:

P+
t = P−

t −P−
t UH

F CSt KH
t −Kt CSt UF P−

t

+Kt CStΣv KH
t +Kt CSt UF P−

t UH
F CSt KH

t .

The necessary condition (8.26) extends condition (8.14) from the observability of a ban-
dlimited graph process in an interval to the tracking task.

The impact of the sampled nodes CSt in KF is highlighted in P+
t (e.g., step v) in Al-

gorithm 8.1). In the sequel, we will exploit this benefit to design St such that a target a
posteriori MSE estimation accuracy is guaranteed.

Sampling strategy. Condition (8.26) suggests that there is a minimum number of
nodes, tightly related to the signal bandwidth, that must be sampled to fully exploit the
Kalman gain matrix. However, from the expression of P+

t , it is once again clear that their
location in the graph is as important as |St | to achieve a good tracking performance.

To optimally select the sampled nodes, we adopt a sparse sensing approach that in-
volves the posterior CRB (PCRB) for the state estimation x̃t [42, 44, 45]. Given the log-
likelihood of the measurements satisfies the regularity condition E[∂lnp(yt ; x̃t)/∂x̃t] =
0N , for allt , the PCRB satisfies

P+
t = E

[(
x̃+t − x̃t

)(
x̃+t − x̃t

)H
]
≥ F−1

t (x̃t), (8.27)

where Ft (x̃t) is the posterior Fisher information matrix.
For linear systems in additive Gaussian noise, as the one considered in this work,

relation (8.27) holds with equality (i.e., the Kalman filter is optimal) and is independent
of x̃t . This suggests that designing the sampling set w.r.t. Ft (x̃t) leads to the same result
as working with the a posteriori error covariance matrix P+

t . For the KF in Algorithm 8.1

8.4. TRACKING GRAPH PROCESSES

8

169

the posterior FIM is [45]:

Ft (x̃t) =
(
Ãt F−1

t−1(x̃t)ÃT
t +Σw̃

)−1 +
N∑

n=1
ct ,n Fo

t ,n(x̃t), (8.28)

where ct ,n is the nth diagonal entry of CSt , and Fo
t ,n(x̃t) = σ−2

v ct ,n uF ,n uT
F ,n is the FIM

related to the nth node observation at time t . The first term in (8.28) denotes the prior
FIM related to the tracking history up to t −1.

By substituting the expression for Fo
t ,n(x̃t) and rearranging the sum, we obtain the a

posteriori FIM

Ft (x̃t) =
(
Ãt F−1

t−1(x̃t)ÃT
t +Σw̃

)−1 +UH
F CStΣ

−1
v UF . (8.29)

Following once again the sparse sensing idea, the instantaneous sampling set St can be
built by solving

minimize
ct

1Tct

subject to Ft (x̃t) ≥ γI|F |,
CSt = diag(ct),

0N ≤ ct ≤ 1N .

(8.30)

Problem (8.30) generalizes (8.18) to the time-varying case, where all the remarks about
the optimallity of the solution extend also here.

Remark 8.2. From a practical viewpoint, the presented KF approach presents two main
challenges in large graphs. First, the computation Kt involves the pseudo-inverse of an
|F |×N matrix with at most |St |2 (by construction) non zero elements. The latter may re-
sult computationally prohibitive for |St |→ N . This issue can be easily addressed with the
sequential implementation of the Kalman filter [39]. Second, the node selection strategy
involves solving for each time instant t an SDP problem, which for large N may result in
prohibited costs [46]. The latter issue can be addressed with greedy solutions such as [47].

8.4.2. STEADY-STATE KALMAN FILTERING ON GRAPHS

We focus here on a time-invariant F−bandlimited system on graphs, which specializes
the above derivations to models (8.2)-(8.6). These systems often lead to a convergent
state, which can be exploited to design a fixed sampling set for all t , i.e., CSt = CS for allt
with given steady-state performance guarantees.

From [39], the a priori error covariance matrix P−
t will converge to the unique limit

P∞ if:
i) the pair (Ã, B̃) is stabilizable;
i i) the pair (Ã,CS UF) is detectable.

The first condition is a characteristic of the graph process and is application specific.
However, for stable time-invariant graph processes (as the one of interest in this section)
this condition is satisfied. The second condition restricts the sampled nodes and their
location in the graph to guarantee the steady-state convergence. From linear systems
theory, a useful result is that an observable system is also detectable. Thus, by exploiting

8

170 8. OBSERVING AND TRACKING GRAPH PROCESSES

the findings in Section 8.3.1, the KF on graphs is convergent if the limiting observability
matrix

O∞ = lim
T→∞

O0:T = lim
T→∞

(IT+1 ⊗CS UF)Ã0,T (8.31)

is full rank, or with similar arguments as in Theorem 8.1 if

lim
T→∞

‖IT+1 ⊗UT
F DS c UF ‖ ≤ lim

T→∞
s2

min(Ã0:T)

s2
max(Ã0:T)

, (8.32)

where S c = V /S denotes again the complementary sampling set. Conditions (8.31),
once again relates the complementary sampling set with the localization properties of
the graph process throughout its temporal evolution (though in practice it is sufficient
to hold for T À 0).

For a fixed S , the a priori error covariance matrix satisfies the discrete algebraic Ric-
catti equation (DARE)

P∞ = ÃP∞ÃT + Σ̃w − ÃP∞UT
F CS ×(

CS UF P∞UT
F CS +CS Σv CS

)†
CS UF P∞ÃT.

(8.33)

Consequently, the steady-state Kalman gain matrix11 is

K∞ = P∞UT
F CS

(
CS UF P∞UT

F CS +CS Σv CS

)†
, (8.34)

with posterior state estimate

x̃+t = (
I|F |−K∞CS UF

)
Ãx̃+t−1 +K∞yt . (8.35)

Differently from the time-varying scenario, the above steady-state KF is only asymp-
totically optimal. To avoid the matrix inversion in (8.34), we can rely once again on the
sequential implementation [39]. From the expression of K∞, a necessary condition to
fully exploit the steady-state Kalman gain matrix is that the cardinality of the sampling
set should satisfy |S | > |F |. That is, the graph structure, the process bandwidth, and
the cardinality of the sampling set are once again tightly related to fully exploit the KF
benefits in ensuring a predefined performance.

Sampling strategy. Similar to the previous selection strategies, the optimal sampling
set that minimizes the steady-state performance for a fixed number of available nodes is
found as

minimize
c

tr(P∞)

subject to CS = diag(c),

‖c‖0 = |S |,
c ∈ {0,1}N .

(8.36)

Problem (8.36) provides the optimal solution for the sampling set that guarantees the
best steady-state estimation accuracy. However, even by relaxing the non convex con-
straint as in (8.18) and (8.30), the impossibility of having a closed form solution for the

11Despite not having a closed form solution, the DARE equation (8.33) admits a numerical solution [39].

8.4. TRACKING GRAPH PROCESSES

8

171

Algorithm 8.2. : Greedy node sampling algorithm from [49] for problem (8.36)

Start with an empty sampling set S =;, a fixed cardinality |S | and counter c = 0
i) FOR c ≤ |S |
ii) WHILE n ∈S c

iii) Compute tr(P∞(S ∪ {n})) in (8.33);
iv) END FOR
v) Select n as argminntr(P∞(S ∪ {n}));
vi) Update the sampling set S =S ∪ {n};
vii) Update the counter c = c +1;
viii)END WHILE

DARE (8.33) renders (8.36) intractable. This result is not entirely surprizing, since the
latter issue is commonly present in the sensor selection literature [48–50].

A common way to tackle problem (8.36) is by greedy algorithms [49, 51, 52]. For our
specific case, we adopt the strategy from [49], where the node sampling proceeds as de-
scribed in Algorithm 8.2. The sampling strategy considers starting with an empty sam-
pling set and greedily adding the nodes that give the smallest increment in the steady-
state estimation error (e.g., step v)). The solution of DARE P∞(S ∪ {n}) in step iii) con-
siders solving numerically (8.33) for S = S ∪ {n}. Finally the algorithm stops when the
desired cardinality of S is achieved.

For the steady-state KF on graphs (8.33)-(8.35), the greedy Algorithm 8.2 is optimal
with respect to problem (8.36) if [49]:

i) the measurement noise vt is uncorrelated;
i i) the set of sensor information matrices {F1, . . . ,FN } with Fn = σ−2

v uF ,n uT
F ,n is to-

tally ordered w.r.t. the order relation of positive semidefiniteness.
The first condition is easily met in practice. The second condition relates the graph
topology and the graph signal bandwidth with the optimal sampling set. It implies that
for two different sets S ′ and S ′′ with F(S) = ∑|S |

n=1σ
−2
v uF ,n uT

F ,n = UT
F

CS Σ
−1
v UF , if

F(S ′) º F(S ′′) it holds that tr(P∞(S ′)) ≤ tr(P∞(S ′′)). Thus the node sampled in the set
S ′ is a better choice than the node sampled in the set S ′′ [49].

As we illustrate next, the proposed KF on graph optimally tracks graph processes and
outperforms other alternatives in terms of estimation accuracy.

8.4.3. NUMERICAL RESULTS

We now analyze the tracking performance of the KF approaches. We first consider KF
for time-varying models and then focus on steady-state KF. The results are averaged over
500 different realizations.

KF for time-varying models. We consider tracking instantaneous graph signal dif-
fusion on the Molene data set. The graph is a 3NN, F consists of the first 16 graph
frequencies, and w = 1 in equation (8.2). The state x0 is initialized as zero and ut for
t ∈ {1,101, . . . ,401} consists of five temperature recordings from the data set with Bt = IN .
In a nutshell, the state evolution considers the temperature diffusion for 100 iterations
and then a new input is introduced. We consider a zero-mean model and measurement

8

172 8. OBSERVING AND TRACKING GRAPH PROCESSES

0 50 100 150 200 250 300 350 400 450 500
-50

-40

-30

-20

-10

0

Full bandwidth |F| = 32, All nodes |St| = 32

Proposed Sampling (29), |St| = 6

Proposed Sampling (29), |St| = 16
Uniformly Random Sampling, |St| = 6

Uniformly Random Sampling, |St| = 16

Iteration index

N
M

SE
(d

B
)

3
Figure 8.8: Tracking performance of KF. Estimated NMSE versus iteration index for different numbers of

sampled nodes. The results are analyzed for the sampling approach (8.30), uniformly random sampling, and
when all the nodes are sampled.

noises with respective covariance matrixes Σw = 10−4IN and Σv = 10−1IN . We initial-
ize the Kalman filter with x̃+0 = 1|F | and P+

0 = Σw̃ . We compare the sparse sensing ap-
proach (i.e., the opposite problem of (8.30) that selects |S | nodes with minimum MSE)
and uniformly random sampling whose performance is averaged over 500 additional re-
alizations.

Fig. 8.8 illustrates the tracking performance as a function of the iteration index for
different values of |St |. We observe that an increment of |St | leads to a smaller NMSE,
especially in the first iterations. However, compared to the case of full bandwidth and
|S |t = 32, these results show that 50% of the samples can be saved by the proposed ap-
proach with a little tradeoff on the NMSE. Further, as in [42], uniformly random sampling
can be an option for tracking the process for large t . We additionally remark that (8.30)
may not always give a sparse solution for higher t and since it is an SDP relaxation, it
might often lead to solutions that are far from the possible minimum MSE. Finally, note
that the spikes in the estimated NMSE are related to the presence of the input signal and
are common for both sampling approaches.

Next, we compare the tracking performance of KF with that of LMS [14] and RLS [17]
on graphs. For the KF approach St consists of one node, sampled at random for each t .
The RLS sampling probabilities are found with βRLS = 0.95 and γRLS = 7×10−2 following
the optimal design of [17]. The latter results in an average sampling rate of 16.08 (greater
than |F | = 16) for each t , with five nodes sampled with probability one. With the same
sampling probabilities, the LMS step size is µLMS = 0.0875 such that it meets the RLS
steady-state MSE. Both algorithms are initialized as the KF.

The results of Fig. 8.9 show that the KF suffers only in the first iterations, but as the
system evolution is learned better it outperforms both the LMS and RLS and, as a con-
sequence, other state-of-the-art tracking algorithms [14, 15, 17] with which LMS and
RLS compare. This result highlights the potential of the proposed approach to optimally
track the signal by sampling only one node per time instant, while exploiting its dynam-
ics.

Steady-state KF. We now track a heat diffusion process evolving on a binary weighted

8.4. TRACKING GRAPH PROCESSES

8

173

0 50 100 150 200 250 300 350 400 450 500
-50

-40

-30

-20

-10

0

KF, Uniformly Random Sampling, |St| = 1
LMS on graphs [25]
RLS on graphs [28]

Iteration index

N
M

SE
(d

B
)

3
Figure 8.9: Estimated NMSE versus iteration index for KF, LMS (µ= 0.125) [14] and RLS (β= 0.95) [17]. For KF,

one node is sampled for each iteration, while LMS and RLS have an average sampling rate of 16.08 (greater
than |F | = 16) with five nodes sampling with probability one.

0 100 200 300 400 500

-15

-10

-5

0

Iteration index

N
M

SE
(d

B
)

Uniformly Random Sampling, |S| = 1

Uniformly Random Sampling, |S| = 6

Uniformly Random Sampling, |S| = 18

Greedy Sampling, Algorithm 2, |S| = 1

Greedy Sampling, Algorithm 2, |S| = 6

Greedy Sampling, Algorithm 2, |S| = 18
All Nodes Sampling, |S| = 75

Figure 8.10: Estimated NMSE versus iteration index for steady-state KF with different numbers of sampled
nodes. The results are analyzed for the sampling approach in Algorithm 8.2, uniformly random sampling, and

when all the nodes are sampled.

two-dimensional rectangular grid of N = 75 nodes (5×15) by making use of the steady-
state KF approach. Here, we aim at providing insights into how GSP can be exploited
in temperature monitoring systems. The initial signal x0 is set to one at the five nodes
of the leftmost column of the grid and zero elsewhere. This signal is diffused following
the heat propagating model (8.2) with w = 10 for T = 500 instances. F consists of the
frequency indices where 99% of the energy of x0 is concentrated, resulting in |F | = 18
active frequencies (not necessarily adjacent). The model and measurement noises have
covariance matrices Σw = 10−4IN and Σv = 10−1IN , respectively.

Fig. 8.10 shows the NMSE as a function of the diffusion time for different cardinalities
of the sampling set. We observe that a larger |S | improves the steady-state NMSE and
the convergence rate. Additionally, the sampling strategy in Algorithm 8.2 is beneficial
for low values of |S |, while the uniformly random sampling can only be adopted for
larger |S |.

Finally, we compare the tracking performance of the steady-state KF with LMS and

8

174 8. OBSERVING AND TRACKING GRAPH PROCESSES

0 100 200 300 400 500
-15

-10

-5

0

Iteration index

N
M

SE
(d

B
)

Steady-state KF, |S| = 6
Time-varying KF Algorithm 1, |St| = 6
LMS on graphs [25]
RLS on graphs [28]

Figure 8.11: Estimated NMSE versus iteration index for steady-state KF (|S | = 6 chosen with Algorithm 8.2),
time-varying KF (|St | = |S | = 6 chosen randomly for each iteration), as well as RLS (βRLS = 0.99) and LMS

(µLMS = 0.041) with maximum sampling rate |St | = |F | = 18.

RLS on graphs. The LMS and RLS parameters are chosen as before yielding µLMS = 0.041
(LMS), βRLS = 0.99 (RLS), and an overall sampling rate of 18 samples per iteration (i.e.,
the same as |F | to guarantee asymptotic MSE reconstruction) [17]. Additionally, KF with
random time-varying sampling from Algorithm 8.1 is considered as a benchmark. The
instantaneous sampling set St is chosen uniformly at random for each t with |St | =
|S | = 6.

The results in Fig. 8.11 show that the KF strategies outperform the adaptive algo-
rithms in both steady-state performance and convergence speed. We also remark that
the steady-state performance of both KF approaches is identical with a sampling rate
that is three times lower than the other alternatives. The additional improvement in
convergence speed of the time-varying KF comes at the expense of complexity, i.e., up-
dating the Kalman gain matrix and the a priori and a posteriori error covariance matrices
in each iteration.

8.5. CONCLUDING REMARKS

In this chapter, we saw how two basic and well studied concepts, such as observability
and Kalman filtering can be extended to a process that evolve on top of a graph. We
exploited the bandlimitedness of the time-varying graph process to perform the above
tasks from few relevant nodes.

For the task of observability, we extend the graph sampling theory to a graph-time
fashion and derived necessary and sufficient conditions for the observability of a graph
process. In addition, two graph-time sampling schemes, namely deterministic and stochas-
tic sampling were proposed. An MSE analysis on the observed signal is carried out, and
sparse sensing-based sampling strategies are used to collect samples.

Similarly, for the KF on graphs we derived necessary conditions on the minimum
number of nodes that should collect samples and conciliate these conditions with those
of observability. When the system matrices are time-varying we proposed a sparse sens-
ing sampling strategy to select, for each time instant, the minimum number of nodes

8.5. CONCLUDING REMARKS

8

175

such that a desired tracking performance is guaranteed. For the cases, where the system
matrices are time-invariant a steady state KF on graph approach is used. In the latter
case, we showed how state-of-the-art greedy sampling can be used to carefully pick a
predefined number of nodes to optimally track the steady state.

APPENDICES

8.A. PROOF OF THE NECCESSARY NUMBER OF NODES REQUIRED FOR DE-
TERMINISTIC OBSERVABILITY

By applying the rank inequality

rank(AB) ≤ min{rank(A), rank(B)} (8.37)

to O0:T = CS0:T (IT+1 ⊗UF)Ã0:T in (8.12), we have that O0:T can be full column rank |F |
only if

rank
(
CS0:T

)≥ |F |, (8.38)

which from the structure of CS0:T is always true when the claimed conditions are satis-
fied.

8.B. PROOF OF THE CONDITIONS FOR OBSERVABILITY THEOREM

By substituting CS0:T = IN (T+1) −Cc
S0:T

into the rank argument of (8.15) we can write the
vector form expression

ÃH
0:T (IT+1 ⊗UH

F)CS0:T (IT+1 ⊗UF)Ã0:T = ÃH
0:T Ã0:T

− ÃH
0:T (I(T+1) ⊗UH

F)CS c
0:T

(IT+1 ⊗UF)Ã0:T ,
(8.39)

which is invertible if

‖ÃH
0:T (IT+1 ⊗UH

F)CS c
0:T

(IT+1 ⊗UF)Ã0:T ‖ <λmin(ÃT
0:T Ã0:T), (8.40)

where λmin(A) is the minimum eigenvalue of A. Here, we are exploiting that both ma-
trices on the right-hand side of (8.39) are positive semidefinite. Then, from the Cauchy-
Schwarz inequality we have

‖ÃH
0:T (IT+1 ⊗UH

F)CS c
0:T

(IT+1 ⊗UF)Ã0:T ‖ ≤
‖(IT+1 ⊗UH

F)‖‖CS c
0:T

(IT+1 ⊗UF)‖‖Ã0:T ‖2 <λmin(ÃH
0:T Ã0:T),

which then leads to (‖(IT+1 ⊗UT
F

)‖ = 1)

‖CS c
0:T

(IT+1 ⊗UF)‖ < λmin(ÃT
0:T Ã0:T)

‖Ã0:T ‖2
= s2

min(Ã0:T)

s2
max(Ã0:T)

. (8.41)

The equality in (8.41) derives from the definition of the spectral norm and the rela-
tion between the singular and the eigenvalues of a matrix. To prove that (8.16) is a

8

176 8. OBSERVING AND TRACKING GRAPH PROCESSES

neccessary and sufficient condition we follow similar arguments as in [11, 14]. From
(8.40), O0:T is full rank if the sufficient condition (8.16) holds. Conversely, if ‖CS c

0:T
(IT+1⊗

UF)‖ = λmin(ÃH
0:T Ã0:T)/‖Ã0:T ‖2 for T = 0 and thus Ã0:0 = IN we have ‖CS c

0
(I1 ⊗UF)‖ = 1

which goes in contradiction with the conventional observability (recovery) of bandlim-
ited graph signals. This proves that (8.16) is also necessary.

8.C. PROOF OF THE NECCESSARY NUMBER OF NODES REQUIRED FOR STOCHAS-
TIC OBSERVABILITY

From the structure of CS0:T , we have

rank(CS0:T) ≤ rank(E[CS0:T]) = rank(IT+1 ⊗ C̄). (8.42)

A necessary condition then for rank(CS0:T) to be |F | is that

rank(IT+1 ⊗ C̄) ≥ |F |. (8.43)

From rank(A⊗B) = rank(A)rank(B), (8.43) writes as

rank(C̄) ≥ |F |/(T +1). (8.44)

Then, since C̄ is diagonal means that at least d|F |/(t +1)e nodes must be sampled with a
probability different from zero. The latter concludes the proof.

8.D. PROOF OF THE RANDOM SAMPLING COROLLARY

Denote by ct = diag(CSt) the random sampling vector with expectation c̄ for t ∈ {0, . . . ,T }.
Let also d = |S0:T | = ∑T

t=0
∑N

n=1 ct ,n be an auxiliary variable that characterises the cardi-
nality of the instantaneous sampling set S0:T . Then, d is a Poisson random variable
being it the sum of N (T +1) independent Bernoulli random variables. The claim (8.21)
follows by simple statistical properties.

8.E. PROOF OF THE MSE PERFORMANCE FOR THE DETERMINISTIC OBSERV-
ABILITY THEOREM

By rewriting the MSE as

MSE = EC

{
Ev

[
tr

[
(x̃o

0 − x̃0)(x̃o
0 − x̃0)H

]]}
, (8.45)

from (8.17) we have that

MSE =σ2
vEC

{
tr

[(
ÃH

0:T(IT+1 ⊗UF)HCS0:T (IT+1 ⊗UF)Ã0:T

)−1
]}

. (8.46)

Then, since the functionϕ : X → tr[X−1] is convex, we apply the Jensen inequalityϕ(E[X]) ≤
E[ϕ(X)] to lower bound (8.46) as in (8.22).

FURTHER READING

8

177

FURTHER READING

[1] E. Isufi, P. Banelli, P. Di Lorenzo, and G. Leus, Observing and tracking bandlimited
graph processes, submitted to IEEE Transactions on Signal Processing (2017).

[2] E. Isufi, P. Banelli, P. Di Lorenzo, and G. Leus, Observing bandlimited graph processes
from subsampled measurements, in IEEE Asilomar Conference on Signals, Systems
and Computations (IEEE, 2018) pp. 405–409.

[3] C. Hu, J. Sepulcre, K. A. Johnson, G. E. Fakhri, Y. M. Lu, and Q. Li, Matched signal
detection on graphs: Theory and application to brain imaging data classification,
NeuroImage 125, 587 (2016).

[4] C. A. Gomez-Uribe and N. Hunt, The netflix recommender system: Algorithms, busi-
ness value, and innovation, ACM Transactions on Management Information Sys-
tems (TMIS) 6, 13 (2016).

[5] Y. Yamanishi, J.-P. Vert, and M. Kanehisa, Protein network inference from multiple
genomic data: a supervised approach, Bioinformatics 20, i363 (2004).

[6] I. Pesenson, Sampling in Paley-Wiener spaces on combinatorial graphs, Transac-
tions of the American Mathematical Society 360, 5603 (2008).

[7] S. K. Narang, A. Gadde, E. Sanou, and A. Ortega, Localized iterative methods for
interpolation in graph structured data, in Global Conference on Signal and Informa-
tion Processing (GlobalSIP), 2013 IEEE (IEEE, 2013) pp. 491–494.

[8] S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, Discrete signal processing on
graphs: Sampling theory, IEEE Transactions on Signal Processing 63, 6510 (2015).

[9] X. Wang, P. Liu, and Y. Gu, Local-set-based graph signal reconstruction, IEEE trans-
actions on signal processing 63, 2432 (2015).

[10] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, Sampling of graph signals
with successive local aggregations, IEEE Transactions on Signal Processing 64, 1832
(2016).

[11] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, Signals on graphs: Uncertainty prin-
ciple and sampling, IEEE Transactions on Signal Processing 64, 4845 (2016).

[12] D. Romero, V. N. Ioannidis, and G. B. Giannakis, Kernel-based reconstruction of
space-time functions on dynamic graphs, IEEE Journal of Selected Topics in Signal
Processing 11, 856 (2017).

[13] L. F. Chamon and A. Ribeiro, Greedy sampling of graph signals, IEEE Transactions
on Signal Processing 66, 34 (2018).

[14] P. Di Lorenzo, S. Barbarossa, P. Banelli, and S. Sardellitti, Adaptive least mean
squares estimation of graph signals, IEEE Transactions on Signal and Information
Processing over Networks 2, 555 (2016).

8

178 FURTHER READING

[15] P. Di Lorenzo, P. Banelli, S. Barbarossa, and S. Sardellitti, Distributed adaptive learn-
ing of graph signals, IEEE Transactions on Signal Processing (2017).

[16] P. Di Lorenzo, E. Isufi, P. Banelli, S. Barbarossa, and G. Leus, Distributed Recursive
Least Squares Strategies for Adaptive Reconstruction of Graph Signals, in EURASIP
European Signal Processing Conference (EUSIPCO), Kos, Greece, Aug.-Sept. 2017
(2017).

[17] P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, Adaptive graph
signal processing: Algorithms and optimal sampling strategies, arXiv preprint
arXiv:1709.03726 (2017).

[18] K. Qiu, X. Mao, X. Shen, X. Wang, T. Li, and Y. Gu, Time-varying graph signal recon-
struction, IEEE Journal of Selected Topics in Signal Processing 11, 870 (2017).

[19] Y. Xue, S. Pequito, J. R. Coelho, P. Bogdan, and G. J. Pappas, Minimum number of
sensors to ensure observability of physiological systems: A case study, in Communica-
tion, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on
(IEEE, 2016) pp. 1181–1188.

[20] S. Pequito, P. Bogdan, and G. J. Pappas, Minimum number of probes for brain dy-
namics observability, in Decision and Control (CDC), 2015 IEEE 54th Annual Con-
ference on (IEEE, 2015) pp. 306–311.

[21] S. Pequito, F. Rego, S. Kar, A. P. Aguiar, A. Pascoal, and C. Jones, Optimal design of ob-
servable multi-agent networks: A structural system approach, in Control Conference
(ECC), 2014 European (IEEE, 2014) pp. 1536–1541.

[22] J. Mei and J. M. Moura, Signal processing on graphs: Causal modeling of unstruc-
tured data, IEEE Transactions on Signal Processing 65, 2077 (2017).

[23] A. Loukas, E. Isufi, and N. Perraudin, Predicting the evolution of stationary graph
signals, in Signals, Systems, and Computers, 2017 51st Asilomar Conference on (IEEE,
2017) pp. 60–64.

[24] E. Isufi, A. Loukas, N. Perraudin, and G. Leus, Forecasting time series with varma
recursions on graphs, arXiv preprint arXiv:1810.08581 (2018).

[25] A. Soule, K. Salamatian, A. Nucci, and N. Taft, Traffic matrix tracking using kalman
filters, ACM SIGMETRICS Performance Evaluation Review 33, 24 (2005).

[26] F. S. Cattivelli and A. H. Sayed, Diffusion strategies for distributed kalman filtering
and smoothing, IEEE Transactions on automatic control 55, 2069 (2010).

[27] Wikipedia, Chernobyl disaster, (2017).

[28] K. Nodop, R. Connolly, and F. Girardi, The field campaigns of the european tracer
experiment (etex): Overview and results, Atmospheric Environment 32, 4095 (1998).

[29] R. I. Kondor and J. Lafferty, Diffusion kernels on graphs and other discrete input
spaces, in ICML, Vol. 2 (2002) pp. 315–322.

https://en.wikipedia.org/wiki/Chernobyl_disaster#Environmental_effects

FURTHER READING

8

179

[30] J. C. Dittmer, Consensus formation under bounded confidence, Nonlinear Analysis:
Theory, Methods & Applications 47, 4615 (2001).

[31] A. Tarun and D. Van De Ville, Extrapolating functional mri data into white matter
via structurally-informed graph diffusion, in Organization for Human Brain Map-
ping (OHBM) meeting (2018).

[32] J. Friedman and J.-P. Tillich, Wave equations for graphs and the edge-based lapla-
cian, Pacific Journal of Mathematics 216, 229 (2004).

[33] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, A time-vertex signal processing
framework, arXiv preprint arXiv:1705.02307 (2017).

[34] F. Zhang and E. R. Hancock, Graph spectral image smoothing using the heat kernel,
Pattern Recognition 41, 3328 (2008).

[35] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerg-
ing field of signal processing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains, IEEE Signal Processing Magazine 30, 83
(2013).

[36] J. Ma, W. Huang, S. Segarra, and A. Ribeiro, Diffusion filtering of graph signals
and its use in recommendation systems, in Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on (IEEE, 2016) pp. 4563–4567.

[37] S. Barbarossa, S. Sardellitti, and A. Farina, On sparse controllability of graph sig-
nals, in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on (IEEE, 2016) pp. 4104–4108.

[38] F. Gamma, E. Isufi, G. Leus, and A. Ribeiro, Control of graph signals over random
time-varying graphs, in IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP) (2018).

[39] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches
(John Wiley & Sons, 2006).

[40] S. M. Kay, Fundamentals of statistical signal processing: Practical algorithm devel-
opment, Vol. 3 (Pearson Education, 2013).

[41] S. Joshi and S. Boyd, Sensor selection via convex optimization, IEEE Transactions on
Signal Processing 57, 451 (2009).

[42] S. P. Chepuri and G. Leus, Sparse sensing for statistical inference, Foundations and
Trends® in Signal Processing 9, 233 (2016).

[43] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst, and
D. K. Hammond, Gspbox: A toolbox for signal processing on graphs, arXiv preprint
arXiv:1408.5781 (2014).

8

180 FURTHER READING

[44] L. Zuo, R. Niu, and P. K. Varshney, Posterior crlb based sensor selection for target
tracking in sensor networks, in Acoustics, Speech and Signal Processing, 2007. ICASSP
2007. IEEE International Conference on, Vol. 2 (IEEE, 2007) pp. II–1041.

[45] P. Tichavsky, C. H. Muravchik, and A. Nehorai, Posterior cramér-rao bounds for
discrete-time nonlinear filtering, IEEE Transactions on signal processing 46, 1386
(1998).

[46] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM review 38, 49
(1996).

[47] A. Krause, Optimizing sensing: Theory and applications, Ph.D. thesis, Carnegie Mel-
lon University (2008).

[48] N. K. Dhingra, M. R. Jovanović, and Z.-Q. Luo, An admm algorithm for optimal
sensor and actuator selection, in Decision and Control (CDC), 2014 IEEE 53rd Annual
Conference on (IEEE, 2014) pp. 4039–4044.

[49] H. Zhang, R. Ayoub, and S. Sundaram, Sensor selection for kalman filtering of linear
dynamical systems: Complexity, limitations and greedy algorithms, Automatica 78,
202 (2017).

[50] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, On a stochastic sensor selection
algorithm with applications in sensor scheduling and sensor coverage, Automatica
42, 251 (2006).

[51] C. Yang, J. Wu, X. Ren, W. Yang, H. Shi, and L. Shi, Deterministic sensor selection for
centralized state estimation under limited communication resource, IEEE transac-
tions on signal processing 63, 2336 (2015).

[52] V. Tzoumas, A. Jadbabaie, and G. J. Pappas, Sensor placement for optimal kalman
filtering: Fundamental limits, submodularity, and algorithms, in American Control
Conference (ACC), 2016 (IEEE, 2016) pp. 191–196.

V
EPILOGUE

181

9
CONCLUDING REMARKS AND

FUTURE RESEARCH QUESTIONS

The general was happy. Very happy. He, himself, didn’t know
why this sudden wave of joy hit him. This was the joy of the

traveler who finds a shelter after a dangerous path in bad weather.

Ismail Kadare,
The general of the dead army (translated from)

In this chapter, we revisit the research questions in Chapter 1 to provide the the-
sis concluding remarks in Section 9.1 and to pose the future research questions in Sec-
tion 9.2.

9.1. CONCLUDING REMARKS

The definition of a Fourier transform for signals sitting on the vertices of a graph aided
us with a new processing tool for such signals. Similarly to the Fourier decomposition
of temporal signals, the graph Fourier transform expressed the graph signal as a linear
combination of the modes of the underlying support. These modes resulted to be the
eigenvectors of the graph Laplacian. This thesis built on this paradigm and provided
fundamental contributions to this rising field.

In Part I, we reformulated the research path in Chapter 1 and covered the preliminary
material in Chapter 2. The latter chapter included the notions of graph shift operator,
graph Fourier transform, graph filtering, and stationary graph signals.

Part II focused on graph filtering as the most basic block for processing the graph sig-
nal spectrum. In specific, Chapter 3 is dedicated to the FIR graph filters while Chapter 4
to the IIR graph filters. The FIR graph filters are filters that shape the graph signal spec-
trum with a finite recursion in the vertex domain. We first introduced two state-the-art
FIR implementations, namely the node-invariant and node-variant FIR graph filters and

183

9

184 9. CONCLUDING REMARKS AND FUTURE RESEARCH QUESTIONS

showed their distributed implementation. Afterward, we introduced a more involved
FIR implementation that we referred to as the edge-variant FIR graph filter. This filter
enjoyed a distributed implementation and achieved the same approximation accuracy
as the other alternatives with less communication and computational costs. Yet, a thor-
ough theoretical analysis of its frequency response is not covered in this thesis. Then, in
Chapter 4 we proposed the ARMA recursions to implement IIR graph filters. These filters
achieved a rational frequency response and could be implemented distributively in the
vertex domain in an IIR fashion, i.e., requiring in theory infinite iterations to converge
to their designed frequency response. However these filters are characterized by a linear
convergence requiring only a few exchanges between nodes.

In Part III, comprising Chapters 5, 6 and 7, we extended the filtering of graph signals
to the temporal dimension. Since most of the signals of interest are time-varying, we
proposed the idea to process jointly the variations over both the graph and the temporal
domain. After rephrasing the joint graph-time processing in GSP terminology in Chap-
ter 5, in Chapter 6 we performed a deterministic analysis of graph-time filtering. We
showed that the ARMA graph filters naturally inherent a joint temporal processing when
the graph signal is time-varying leading to the two-dimensional graph-temporal filters.
Then, strategies to implement two-dimensional FIR and ARMA graph-temporal filters
were introduced. In this chapter, we also characterized in closed-form the ARMA graph
filter output when the graph topology is time-varying. Chapter 7 introduced a statistical
analysis for graph filters when the graph topology and the graph signal change stochas-
tically over time. We provided expressions on the first and second order moments of the
filter output, which yielded different insights on the filter behavior in stochastic environ-
ments. Finally, this statistical analysis is explored to perform graph signal denoising in
the mean and to implement sparse graph filters.

Part IV extended the graph-temporal analysis to observability and tracking from sub-
sampled measurements in Chapter 8. We focused on analyzing linear state-space mod-
els on graphs from subsampled measurements. Here, we derived conditions to observe
the initial realization of the graph process and we introduced the Kalman filtering on
graphs to track the temporal evolution of the graph signal from few samples collected in
a graph-time fashion.

In the remainder of this section, we extend our concluding remarks to the specific
questions posed in Chapter 1.

9.1.1. ANSWER TO THE POSED RESEARCH QUESTIONS

(Q1) How can a sensor network perform more involved distributed filtering tasks than
simple averaging by considering the underlying data structure?

We showed in Chapters 3 and 4 that it is possible through the introduced edge-variant
FIR, or ARMA graph filters to approximate any desired filtering operations with recur-
sions that enjoy a distributed implementation over the graph. The distributed edge-
variant FIR, in fact, allowed us to approximate a wider class of operations which go be-
yond filtering. However, a graph spectral analysis of this operation is still an open ques-
tion. The ARMA recursions can implement distributed graph filters with a well defined
spectral response that is rational in the graph frequencies. Moreover, the ARMA filter

9.1. CONCLUDING REMARKS

9

185

gave an exact solution to two important problems, namely graph signal denoising and
data interpolation from missing values.

(Q2) What are the implications of dynamic changes in the graph topology and graph sig-
nal on the graph filter output?

We spread the answer to this questions among Chapters 6 and 7. Chapter 6 analyzed
the filter behavior in a deterministic environment. Here, we provided closed-form ex-
pressions of the distributed ARMA output operating over a known time-varying graph.
These results showed the influence of the graph variations on the filter output charac-
terizing completely its behavior. Compared to the FIR graph filter, the ARMA filters were
more robust to topological changes as their output performed on time-varying graphs
remained closer to the filter output obtained on the time-invariant topology. We addi-
tionally found that filters of higher orders suffer more the topological changes.

An important finding of the ARMA graph filters is their natural extension to capture
variations of the graph signal. When the signal on the graph is time-varying, the ARMA
graph filter behaved as a two-dimensional filter processing the signal over the graph fre-
quencies on one hand and on the temporal frequencies on the other hand. After this
observation, we developed more involved graph-temporal FIR and ARMA filters. These
filters could achieve two-dimensional frequency responses and shape the joint graph-
temporal spectrum to the desired frequency response. We provided several implemen-
tation strategies for these filters and provided design strategies for them. These filters
had a distributed implementation at the expenses of slightly increased costs w.r.t. the
pure graph filtering.

In Chapter 7 we performed a statistical analysis of the graph filters’ output when both
the graph topology and the graph signal change randomly in time. Under the assump-
tion that the graph and signal variations are independent, we showed that the graph
filters behave in the mean as the same deterministic filter, operating on a deterministic
graph being the expected graph. We derived upper-bounds on the filter output variance
which characterizes the impact of the graph stochasticity on the filtering output.

(Q3) Under which conditions of the graph topology and the graph process is the initial
network state observable from a subset of vertices?

We answered this question in Chapter 8 for a process evolving according to a defined lin-
ear model over the graph. Under the assumption that the model evolution is bandlim-
ited w.r.t. the underlying topology, we derived necessary and sufficient conditions when
the graph process is observable from subsampled measurements. We derived an MSE
analysis to quantify the effects of the process graph-bandwidth on the reconstruction
performance. The latter allowed us to design a sampling strategy for collecting samples
in a graph-time fashion such that a predefined MSE performance on the observed signal
is met.

(Q4) Which are the conditions that the graph topology and the graph process must satisfy
such that Kalman filtering can be employed to track network dynamics from a subset
of nodes?

9

186 9. CONCLUDING REMARKS AND FUTURE RESEARCH QUESTIONS

Following on the graph process dynamics considered in (Q4), in Chapter 8 we derived
necessary conditions to track bandlimited graph processes from subsampled measure-
ments. Our main finding suggested that the number of collected measurement in each
time instant must be greater than, or equal to the process bandwidth. This condition
resulted useful in tracking graph-processes with time-varying models, and, thus, the
sampling set had to be updated in each time instant. For time-invariant models, we
considered a steady-state KF approach and selected the sampling set such that a target
steady-state tracking performance was achieved.

9.2. FUTURE RESEARCH QUESTIONS

This thesis introduced new research directions that fall under the umbrella of graph sig-
nal processing. As such, several new research questions arise. In the sequel, we conclude
the thesis with some recommendations for future research.

9.2.1. GRAPH FILTERING

In Chapters 3-4, we focused on different distributed strategies to perform graph filtering.
Our first open question regards the extension of the edge-variant philosophy to an ARMA
implementation. In specific:

(FQ1) How to implement and design node- and edge-variant ARMA graph filters?

From the parallelism between the ARMA1 and the FIRK graph filter in Chapter 4, a
node-variant ARMA1 graph filter can be implemented as

yt+1 = diag(ψnv)Syt +diag(ϕnv)x, (9.1)

with ψnv = [ψ1, . . . ,ψN]T and ϕnv = [ϕ1, . . . ,ϕN] being the node-varying coefficients.
While the filtering output and the convergence properties of (9.2) can be derived from
Theorem 4.1, the more challenging aspect of the NV-ARMA1 is the filter design. A higher
order NV-ARMA filter can be obtained by either extending (9.2) with a parallel bank as in
(4.7), or with a feedback implementation as in (4.26).

By extending (9.2), an EV-ARMA1 recursion has the form

yt+1 = (Ψev ¯S)yt +diag(ϕev)x, (9.2)

where the coefficients matrix Ψev shares the support with S and ϕev is a vector of co-
efficients. Compared to the FIR counterparts, we believe the node/edge-variant ARMA
filters might lead to a more robust implementation in dynamic environments (similarly
to the results in Chapters 6 and 7 for the node-invariant case). Further, by having more
DoFs w.r.t. the FIR counterpart, these filters can implement distributively a larger set
of operations on graphs. Check the follow-up work [1] for some initial answers to this
question.

Within the context of edge-variant filtering on graphs, we pose our second question:

9.2. FUTURE RESEARCH QUESTIONS

9

187

(FQ2) How do graph filter banks behave with an edge-variant implementation?

A thorough answer to the above question will shed light on the potential of the edge-
variant filters to improve the performance of graph filter banks [2–4]. The perfect recov-
ery required by graph filter banks is often affected by the limited DOFs that FIR graph fil-
ters have. Therefore, an edge-variant graph filter bank can be a suitable choice to tackle
this issue.

Our next research question regards the recursive implementation of ARMA graph fil-
ters.

(FQ3) What other recursions implement distributively an ARMA graph filter?

Following the general implementation (4.3), the above question asks if the recursion

[yt]i =
∑

j∈N (i ,P)
a(1)

i , j [yt−1] j+
∑

j∈N (i ,P)
a(2)

i , j [yt−2] j+. . .+ ∑
j∈N (i ,P)

a(P)
i , j [yt−P] j+

∑
j∈N (i ,Q)

bi , j x j+bi ,i xi ,

(9.3)
can be a choice for implementing ARMA graph filers. Though (9.3) is an IIR recursion
on graphs, it is unclear what frequency response it achieves. The relation between (9.3)
and the ARMA1 (4.4), ARMAK (4.7), and ARMAP,Q (4.26) is another interesting direction
to take.

Our last research suggestion on graph filters regards the effects of quantization in
sensor networks.

(FQ4) How to use subtractive dithering for ameliorating the effects of data quantization
in distributed graph filters?

The graph filter analysis carried in this thesis has not dealt with finite precision effect
when filtering a signal. However, in distributed sensor networks the transmitted data
are often quantized with few bits. To cope well with these quantization effects, the graph
filters should be designed to account for the finite precision. A first attempt is considered
for the FIR filter in [5, 6]. We believe more benefits might be achieved by introducing the
subtractive dithering idea [7] into the filter recursions. The latter has shown benefits in
distributed signal processing algorithms [8] and can be applied to ARMA filters. Being
the distributed ARMA graph filters an iterative algorithm, it will require only a few bits
for the successive iterations yielding a low implementation cost.

9.2.2. DETERMINISTIC GRAPH-TIME FILTERING

The focus of Chapter 6 was on analyzing the filtering output when the graph topology
and(or) the graph signal change(s) deterministically over time. In the following, we pose
three potential future directions.

(FQ5) How graph filters behave when the graph topology changes over time with a specific
model?

9

188 9. CONCLUDING REMARKS AND FUTURE RESEARCH QUESTIONS

This questions follows the analysis carried out in Section 6.2.2 by asking a detailed fre-
quency analysis for the graph filters when the underlying topology changes over time
following a pre-defined model. An example of the latter is a fixed sensor movement pat-
tern (e.g., the graph changes cyclically from G1 to Gτ).

(FQ6) How to account for the effects of asynchronous communications in designing graph
filters?

Along with the signal quantization, asynchronous communication is another challenge
to face in distributed sensor networks. Some initial results were carried out for the po-
tential kernel in [9]. However, a filter design strategy that accounts for the amount of
asynchrony in the distributed implementation is still unsolved. A filter design performed
in this way will lead to more robust and practical filters. If this effect is ignored, serious
repercussions might be present on the filter output.

(FQ7) How to design the more general graph-temporal filters?

In Section 6.3, we introduced the two-dimensional FIR and ARMA graph filters with the
aim to process time-varying graph signals. Though the design problem and some pre-
liminary design approaches were presented, it was not conducted a thorough analysis
for the more general form. As a future recommendation, we propose a filter design strat-
egy for a complete two-dimensional graph-time filter to approximatet an arbitrary two-
dimensional frequency mask.

9.2.3. STATISTICAL GRAPH-TIME FILTERING

In Chapter 7, we introduced a new perspective on graph filtering that considered the
stochasticity in the topology and in the graph signal. Even though this is an unexplored
area with many open questions, in the sequel we pose two potential research directions.

(FQ8) What are the statistical properties of the filter output when the graph topology and
the signal are correlated with each-other?

This question extends the filter statistical analysis performed in this thesis and we be-
lieve it is an important, yet challenging, direction to take. It will address several real-
world phenomena, such as airline delay diffusion affected by random flight cancelations.

(FQ9) What is the sparsest graph filter that guarantees a target output performance?

In Section 7.5, we proposed a way to implement distributed graph filtering in a sparsi-
fied way. Yet, we did not present any strategy to impose a desired sparsity level. Within
the framework of node/edge-variant graph filters, further savings can be achieved by se-
lecting the sparsest communication probabilities that guarantee a given variance on the
filtering output.

9.2. FUTURE RESEARCH QUESTIONS

9

189

9.2.4. OBSERVING AND TRACKING GRAPH PROCESSES

In Chapter 8, we derived conditions for observing and tracking a time-varying graph
process from few noisy measurements. Then, our next research question conciliates this
theory with the statistical analysis of graph filtering.

(FQ10) Which are the conditions to observe and track a graph signal on a random time-
varying graph?

As the graph topology is random over time (e.g., following the RES model of Chapter 7),
we can exploit its statistical moments to formulate a statistical observability theory where
the estimated realization will be a random variable. Then, by characterizing the first and
second order moments of the observed signal, we can draw conclusions without know-
ing the specific graph realizations.

9.2.5. GENERAL GRAPH SIGNAL PROCESSING

Besides the above questions, which yielded from the thesis arguments, there is a number
of other research question to be considered for future works. In the sequel, we list a
couple of more high-level questions that might be of the reader interest.

(FQ11) How signal value decomposition can be exploited in graph signal processing?

Singular value decomposition (SVD) is a handle tool in classical signal processing. How-
ever, this is not yet the case for signals on graphs. As many GSP tools extend intuitively
from the structured temporal and spatial domains, we feel that SVD has the potential to
be useful in GSP as well. This might be a valid surrogate of the numerical unstable Jordan
decomposition in directed graphs, but a series of properties need to be addressed. If we
follow the developed GSP theory, these properties include the notion of frequency in the
graph setting through SVD, for instance. However, if we stay at a broader level, it might
be interesting to analyze the usefulness of SVD in improving GSP tasks such as sampling
with no particular graph-graph frequency dualism.

(FQ12) What is a local stationary graph signal?

The analysis of stationary for graph signals is an interesting direction to consider as it
gives rise to several benefits among which the Wiener graph filter. However, so far, real
data do not present a high degree of WSS [10, 11]. The latter leaded us with the intuition
that graph-based data might present local WSS rather than a global one. An example
of the latter is a two connected opinion communities graph, where the first and second
order moments of the signal satisfy the WSS on graphs conditions in each community
separately but not on the full graph. In that case, it is reasonable to perform the Wiener
filtering locally only on each community. It is then necessary to define the notion of local
stationary for graph signals and to provide a tool for quantifying it.

We finally remark that the treated arguments along with the future research sugges-
tions are only a small slice of the GSP area. We hope that this thesis triggered the reader
interest to provide innovative solutions and novel research directions within this context.

9

190 FURTHER READING

FURTHER READING

[1] M. Coutino, E. Isufi, and G. Leus, Advances in distributed graph filtering, arXiv
preprint arXiv:1808.03004 (2018).

[2] S. K. Narang and A. Ortega, Perfect reconstruction two-channel wavelet filter banks
for graph structured data, IEEE Transactions on Signal Processing 60, 2786 (2012).

[3] Y. Tanaka and A. Sakiyama, m-channel oversampled graph filter banks, IEEE Trans-
actions on Signal Processing 62, 3578 (2014).

[4] D. B. Tay and Z. Lin, Design of near orthogonal graph filter banks, IEEE Signal Pro-
cessing Letters 22, 701 (2015).

[5] L. F. Chamon and A. Ribeiro, Finite-precision effects on graph filters, in 5th IEEE
Global Conference on Signal and Information Processing (GlobalSIP) (2917).

[6] N. Thanou, Graph signal processing: Sparse representation and applications, Ph.D.
thesis, Ecole Polytechnique Fédérale de Lausanne (2016).

[7] R. M. Gray and T. G. Stockham, Dithered quantizers, IEEE Transactions on Informa-
tion Theory 39, 805 (1993).

[8] S. Zhu and B. Chen, Quantized consensus by the admm: probabilistic versus deter-
ministic quantizers, IEEE Transactions on Signal Processing 64, 1700 (2016).

[9] A. Loukas, Distributed graph filters, (2015).

[10] N. Perraudin and P. Vandergheynst, Stationary signal processing on graphs, IEEE
Transactions on Signal Processing 65, 3462 (2017).

[11] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, Stationary graph processes and
spectral estimation, IEEE Transactions on Signal Processing (2017).

LIST OF ABBREVIATIONS

ARMA AutoRegressive Moving Average
C-EV Constrained Edge Variant
CRB Cramér-Rao Bound
DAD Disjoint Average and Denoise
DARE Discrete Algebric Riccatti Equation
DFT Discrete Fourier Transform
DoFs Degrees of Freedom
EV Edge Variant
FIM Fisher Information Matrix
FIR Finite Impulse Response
GFT Graph Fourier Transform
GSP Graph Signal Processing
GPSD Graph Power Spectral Density
GWSS Graph Wide Sense Stationary
HP High Pass
IIR Infinite Impulse Response
JDMIA Joint Denoising in the Mean with Input Averaging
JDMIOA Joint Denoising in the Mean with Input-Output Averaging
JDMOA Joint Denoising in the Mean with Output Averaging
JFT Joint Fourier Transform
KF Kalman Filtering
LMS Least Mean Squares
LP Low Pass
MSE Mean Square Error
NMSE Normalized Mean Square Error
NV NodeVariant
pdf probabilitydensity function
PCRB PosteriorCramér-Rao Bound
RES RandomEdge Sampling
RLS RecursiveLeast Squares
ROC RegionOf Convergence
SDP Semi-Definite-Programming
SIS Susceptible-Infected-Susceptible
sKF sequential Kalman Filtering
SVD Singular Value Decomposition

191

NOTATION

a scalar variable
a vector variable
A matrix variable
ai , [a]i indicate the i th element of a
Ai , j , [A]i , j indicate the (i , j)th element of A
0N the N ×1 vector of all zeros
1N the N ×1 vector of all ones
IN N ×N identity matrix
ei N ×1 canonical vector
S set variable
1S set vector operator, [1S]s = 1 if s ∈S , and zero otherwise

Mathematical Operations

A∗ element-wise conjugate of A
AT transpose of A
AH Hermitian (conjugate transpose) of A
A† Moore-Penrose pseudo-inverse of A
rank(A) rank of the matrix A
‖a‖p p-norm of vector a
‖A‖ spectral norm of matrix A
A = diag(a) builds a diagonal matrix A with a in the main diagonal
a = diag(A) stores the main diagonal of A in a
a = vec(A) stores the columns of matrix A in the vector a
A = vec−1(a) the inverse vectorized operator
nnz(A) counts the number of non-zero elements of A
E(a) expected value of the random vector a
A¯B Hadamard, element-wise product to matrices A and B
c× Cartesian product
|S | cardinality of set S

d·e ceiling operator

193

SUMMARY

The necessity to process signals living in non-Euclidean domains, such as signals de-
fined on the top of a graph, has led to the extension of signal processing techniques to
the graph setting. Among different approaches, graph signal processing distinguishes it-
self by providing a Fourier analysis of these signals. Analogously to the Fourier transform
for time and image signals, the graph Fourier transform decomposes the graph signals in
terms of the harmonics provided by the underlying topology. For instance, a graph signal
characterized by a slow variation between adjacent nodes has a low frequency content.

Along with the graph Fourier transform, graph filters are the key tool to alter the
graph frequency content of a graph signal. This thesis focuses on graph filters that are
performed distributively in the node domain–that is, each node needs to exchange in-
formation only within its neighbor to perform a given filtering operation. Similarly to
the classical filters, we propose ways to design and implement distributed finite impulse
response and infinite impulse response graph filters.

One of the key contributions of this thesis is to bring the temporal dimension to
graph signal processing and build upon a graph-time signal processing framework. This
is done in different ways. First, we analyze the effects that the temporal variations on
the graph signal and graph topology have on the filtering output. Second, we introduce
the notion of joint graph-time filtering. Third, we present a statistical analysis of the dis-
tributed graph filtering when the graph signal and the graph topology change randomly
in time. Finally, we extend the sampling framework from the reconstruction of graph
signals to the observation and tracking of time-varying graph processes.

We characterize the behavior of the distributed autoregressive moving average (ARMA)
graph filters when the graph signal and the graph topology are time-varying. The lat-
ter analysis is exploited in two ways: i) to quantify the limitations of graph filters in a
dynamic environment, such as a moving sensors processing a time-varying signal in a
sensor network; and i i) to provide ways for filtering with low computation and commu-
nication complexity time-varying graph signals.

We develop the notion of distributed graph-time filtering, which is an operation that
jointly processes the graph frequencies of a time-varying graph signal on one hand and
its temporal frequencies on the other hand. We propose distributed finite impulse re-
sponse and infinite impulse response recursions to implement a two-dimensional graph-
time filtering operation. Finally, we propose design strategies to find the filter coeffi-
cients that approximate a desired two-dimensional frequency response.

We extend the analysis of graph filters to a stochastic environment, i.e., when the
graph topology and the graph signal change randomly over time. By characterizing the
first and second order moments of the filter output, we quantify the impact of the graph
signal and the graph topology randomness into the distributed filtering operation. The
latter allows us to develop the notion of graph filtering in the mean, which is also used
to ease the computational burden of classical graph filters.

195

196 SUMMARY

Finally, we propose a sampling framework for time-varying graph signals. Particu-
larly, when the graph signal changes over time following a state-space model, we extend
the graph signal sampling theory to the tasks of observing and tracking the time-varying
graph signal from a few relevant nodes. The latter theory considers the graph signal sam-
pling as a particular case and shows that tools from sparse sensing and sensor selection
can be used for sampling.

SAMENVATTING

De noodzaak om signalen in niet-Euclidische domeinen, zoals grafen, te kunnen ver-
werken heeft geleid tot een uitbreiding van de klassieke signaalverwerking naar grafen.
Verschillende technieken zijn hiervoor ontwikkeld, maar de zogenaamde graaf signaal-
verwerking is interessant omdat het een Fourier analyse toelaat van deze graaf signalen.
Zoals de klassieke Fourier transformatie voor audio en beelden ontbindt de graaf Fourier
transformatie een graaf signaal in verschillende harmonische componenten die gerela-
teerd zijn aan de onderliggende graaf. Een graaf signaal dat slechts een kleine variatie
vertoont tussen aangrenzende knopen heeft bijvoorbeeld een lage frequentie-inhoud.

Samen met de graaf Fourier transformatie spelen graaf filters een belangrijke rol om
de frequentie-inhoud van graaf signalen te veranderen. Deze thesis richt zich op graaf fil-
ters waarvan de implementatie kan gedistribueerd worden over de knopen van de graaf
? dit wil zeggen dat iedere knoop enkel informatie uitwisselt met zijn buren om een fil-
teroperatie uit te voeren. Meer specifiek stellen wij verschillende technieken voor om
zowel eindige als oneindige impulsresponsie filters te ontwerpen en gedistribueerd te
implementeren.

Een van de sleutelbijdragen van deze thesis is het toevoegen van de tijdsdimensie
aan graaf signaalverwerking en het opbouwen van een graaf-tijd signaalverwerkingsom-
geving. Dit wordt gedaan op verschillende manieren. Eerst analyseren we het effect van
tijdsvariaties in het signaal en de graaf op de filteruitgang. Daarna ontwikkelen we het
begrip graaf-tijd filter. Ten derde presenteren we een statistische analyse van de gedis-
tribueerde filteroperatie wanneer zowel het signaal als de graaf op een arbitraire manier
variëren in de tijd. En tenslotte breiden we de bemonstering en reconstructie van laag-
frequente graaf signalen uit naar de observatie en het volgen van graaf-tijd signalen.

197

ACKNOWLEDGEMENTS

It amazes me how many things have changed in my personal and professional life in
just four years– and how fast all this happened. Undoubtedly, this has been my most
interesting, challenging, and inspiring experience. Such experience would have not been
the same without the contribution of the following people to whom I want to express my
gratitude.

First, I would like to thank my supervisor Geert Leus for his mentorship during this
journey. Geert, thank you for believing in me in the first place, for your guidance, advice,
and feedback. If today I am a better researcher than four years ago, a big part of this
merit is yours and for this, I will always be thankful. Geert was more a colleague and
friend figure to me and this rendered his supervision great. I always enjoyed our talks
about the Giro and Tour, the beers (always Belgian), and the cycling routes. You even
had the patience to teach me how to climb the Ardennes, a challenge that resulted to be
tougher than writing a paper. These are only a few of the great memories that made this
experience unique.

I am thankful to two friends, Andrea Simonetto and Andreas Loukas, who had the
patience to advise me during the first steps of this journey. Andrea, thank you for be-
ing an excellent teacher, colleague, and friend. Thanks also for the great memories in
Mexico, particularly the one related to the food in Ticul :). Andreas, thanks for all our
discussions, brainstormings, and for wisely listening to all my crazy ideas about graph-
time signal processing. Your Ph. D. defense, almost four years ago, was the starting point
of my research in graph signal processing and I am happy you participated in it.

A special thank goes to all my other collaborators during these four years I had the
pleasure to work with and solve challenging problems. Particularly, I would like to men-
tion Mario Coutino, Paolo Di Lorenzo, Fernando Gamma, Jiani Liu, and Alejandro Ribeiro
with whom relation went more than a joint work. Thank you for your feedback, thoughts,
ideas, and advice. They all help me improve both professionally and personally and I
hope our collaboration will continue in the near future with more interesting problems.

In addition to the above list, my sincere gratitude goes to Paolo Banelli, who, in the
last nine years, has spanned different roles in my career. Thanks Paolo for bringing me
into the world of signal processing back in the bachelor’s time. You have always been a
reference point in my undergraduate studies and a great colleague and supervisor in the
recent years.

It is funny how a random place assignment can transform the everyday office life
from boring to an adventure. I was lucky I ended up in the biggest and noisiest office in
the CAS group, where thanks to my terrific officemates Jamal Amini, Andreas Koutrou-
velis, Andrea Pizzo, Aydin Rajabzadeh, Thomas Sherson, Pim van der Meulen, Wangyang
Yu, Jie Zhang, and Jörn Zimmerling every day was special. Thank you guys for all our
discussions spanning from the imaginary Elvin’s cryptocurrency to matrix SVDs, for the
chess matches, Friday cakes, and for often being a better research engine than Google.

199

200 SAMENVATTING

I wish to thank all the past and current people in the CAS group I connected with
even with a simple good morning. An exhaustive list would require a thesis apart. Sym-
bolically, I would like to mention the group head Alle-Jan van der Veen for being always
available to listen about any topic, and Minaksie Ramsoekh and Irma Zomerdijk for their
help with the paperwork.

Mom and dad, thanks! Thanks for making me the person I am. Thanks for your
unconditional love and thanks for your wise words. The Ph.D. degree is the highest aca-
demic degree that one can aspire and it requires years of sacrifice get it. This thesis could
not have been possible without your sacrifice and it cannot be different than being ded-
icated to you.

Qendresa, these four years have been a challenge for you more than they have been
for me. Thank you for your patience, your love, and for being always present. Thanks
also for the great moments in this rainy, yet romantic place.

Elvin Isufi
Delft, September 2018

BIOGRAPHY

Elvin Isufi was born in Vlore, Albania, in 1989. He received his B.
Sc. degree in 2012 with full marks and his M. Sc. degree in 2014
cum laude both from University of Perugia, Italy, under the super-
vision of Prof. Paolo Banelli. In 2014, he was granted by the Erasmus
Placement program for mobility exchange to develop his master the-
sis at the Circuits and Systems group at TU Delft. Subsequently, in
Nov. 2014 he started his Ph. D. degree in the same group under the
supervision of Prof. Geert Leus. He received the Student of Excel-
lence Award from University of Perugia in 2013, the Erasmus+ mo-
bility grant in 2016, and in 2017 his coauthored paper got the Best
Student Paper in the IEEE CAMSAP workshop. His research interests

lie in the intersection of signal and data processing, mathematical modeling, machine
learning, and network theory.

201

	I Prologue
	Introduction
	Data Living on Top of Networks
	Filtering Graph Signals
	Filtering Graph Signals in Dynamic Environments
	Observing Time-Varying Graph Processes
	Tracking Time-Varying Graph Processes
	Thesis Outline and Contributions
	Thesis Outline
	List of Publications and Other Contributions

	titleFurther Reading

	Graph Signal Processing
	Introduction
	Graphs as a Tool to Capture Interconnections
	Comparisons: Physical graphs versus data graphs
	The graph signal
	The graph shift operator

	Spectral Analysis of Graph Signals
	Signal variation over the graph
	The graph Fourier transform
	Connection: Classical Fourier transform and graph Fourier transform
	Graph signal bandwidth
	Graph filtering
	Tikhonov regularization on graphs

	Stationary Graph Signals
	Wide sense stationarity on graphs
	Wiener regularization on graphs
	Connection: Karhunen-Loéve transform and stationary graph signals

	Concluding Remarks
	titleFurther Reading

	II Graph Filtering
	Finite Impulse Response Graph Filtering
	Introduction
	Contributions
	Applications

	Filtering in the Vertex Domain
	Node-invariant FIR filtering
	Node-variant FIR filtering
	Distributed costs

	Filter Design
	Frequency aware versus universal design
	Linear least squares-based design
	Chebyshev polynomial-based design
	Design in the vertex domain
	Discussions

	Distributed Edge-Variant FIR Graph Filters
	Edge-variant FIR Filtering
	Constrained edge-variant FIR Filtering
	Numerical results

	Concluding Remarks
	titleFurther Reading

	Infinite Impulse Response Graph Filtering
	Introduction
	Contributions

	ARMA Graph Filters
	ARMA1 graph filter
	ARMAK graph filter
	Filter design
	Exact graph filter designs
	Numerical results

	Feedback-looped ARMA Graph Filters
	Recursion analysis
	Filter design
	Numerical results

	Concluding Remarks
	Appendices
	Proof of the ARMA1 frequency response Theorem
	Proof of the periodic ARMAK frequency response Theorem
	Proof of the feedback-based ARMAP,Q frequency response Proposition
	Proof of the ARMAP,Q convergence time Proposition

	titleFurther Reading
	III Graph-Time Filtering
	Graph-Time Signal Processing
	Introduction
	Time-varying signals on graphs
	The joint graph
	The joint graph-time shift operator

	Graph-Time Frequency Analysis
	Graph and time Fourier transform
	Graph-time filtering

	Concluding remarks
	titleFurther Reading

	Deterministic Analysis of Graph-Time Filtering
	Introduction
	Contributions
	Applications

	ARMA Graph Filters and Their Inherent Temporal Processing
	Joint graph and temporal processing
	Time-varying graphs and signals
	Numerical results
	Variaitons on the graph signal
	Variations on the graph topology

	Distributed Two-Dimensional Graph-Time Filters
	FIR graph-temporal filters
	ARMA graph-temporal filters
	Numerical results

	Concluding Remarks
	Appendices
	Proof of the joint ARMAK graph and temporal frequency response Theorem
	Proof of ARMA output distance in time-varying scenarios Theorem
	Proof of the two-dimensional ARMA frequency response Proposition

	titleFurther Reading
	Statistical Analysis of Graph-Time Filtering
	Introduction
	Contributions
	Applications

	Stochastic Modeling
	Graph model
	Signal model

	Graph Filters in the Mean
	Random graph processes
	Random graph processes with time-varying statistics
	Variance analysis
	Numerical results

	Graph Signal Denoising in the Mean
	Tikhonov graph signal denoising in the mean
	Numerical results

	Stochastically Sparsified Graph Filtering
	Sparsified FIR graph filters
	Sparsified ARMA graph filters
	Numerical results

	Concluding Remarks
	Appendices
	Proof of the FIRK expected output Proposition
	Proof of the parallel ARMAK expected output Theorem
	Proof of the FIRK expected output with non-statioionary input Proposition
	Proof of the ARMAK expected output with non-statioionary input Theorem
	Proof of the FIRK variance bound Proposition
	Proof of the ARMAK variance bound Theorem
	Proof of the recursive ARMAK variance computation

	titleFurther Reading
	IV Graph-Time Sampling
	Observing and Tracking Graph Processes
	Introduction
	Contributions
	Applications

	State-Space Models on Graphs
	Systems on graphs
	Bandlimited systems on graphs

	Observing Graph Processes
	Observability with deterministic sampling
	Observability with random sampling
	Numerical results

	Tracking graph processes
	Kalman filtering for time-varying models
	Steady-state Kalman filtering on graphs
	Numerical results

	Concluding Remarks
	Appendices
	Proof of the neccessary number of nodes required for deterministic observability
	Proof of the conditions for observability Theorem
	Proof of the neccessary number of nodes required for stochastic observability
	Proof of the random sampling Corollary
	Proof of the MSE performance for the deterministic observability Theorem

	titleFurther Reading
	V Epilogue
	Concluding Remarks and Future Research Questions
	Concluding Remarks
	Answer to the posed research questions

	Future Research Questions
	Graph filtering
	Deterministic graph-time filtering
	Statistical graph-time filtering
	Observing and tracking graph processes
	General graph signal processing

	titleFurther Reading

	List of Abbreviations
	Notation
	Summary
	Samenvatting
	Acknowledgements
	Biography

