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ABSTRACT

The aerospace engineering industry is continuously striving for faster methods to solve and opti-
mize problems with a higher degree of accuracy. It is therefore of relevance to investigate possibil-
ities to further increase the computational speed at which engineering and research problems are
solved. Quantum computing is expected to further increase the computational speed. Therefore,
the research objective of this MSc thesis is to investigate the feasibility of optimizing a 2D determi-
nate truss structure with a quantum algorithm run on a Gate-Based Quantum Computer (GBQC).

An extensive literature review concerning several quantum computing algorithms was performed.
After carefully trading-off all the examined algorithms, it became apparent that the Quantum Ap-
proximate Optimization Algorithm (QAOA), capable of approximating combinatorial optimization
problems, is currently one of the more suitable near-term quantum algorithm candidate for this
problem, because of its simplicity and robustness.

The most important take-away from this thesis is that it is possible to map a truss structure to QAOA
format so that it can be discretely optimized on a GBQC. The program proves to be working on quan-
tum virtual machines. Currently, however it is not possible to obtain correct results when running
on real quantum hardware. The reason is that the total noise levels of the real quantum hardware is
currently too high for the required gate volume. Hopefully in the future the noise levels for quantum
machines will decrease, which will enable people to run more interesting programs.
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1
INTRODUCTION

1.1. MOTIVATION
With quantum computers being in an early stage of development, they exhibit enormous poten-
tial. It is expected that quantum computers eventually will solve real-life engineering and research
problems that classical computers cannot solve, this is named quantum supremacy or quantum ad-
vantage [1]. The Noisy Intermediate-Scale Quantum (NISQ) era, that started in 2017, when the first
50-qubit quantum computers became available, could be considered as the stepping stone for the
future, where quantum computers (QC) may be able to have a significant effect on society. Quantum
computing might become an extra tool in the toolbox of engineers, one day. However, it is uncertain
how many years it will take, maybe it will take decades [2] or perhaps it will never have a significant
effect on society [3]. In quantum computing nothing is taken for granted which makes it a risky field
of research, however it provides also opportunities worth the effort to explore, especially because of
the enormous expected potential.

One of the priorities of the aerospace industry is the reduction of aircraft weight to reduce the us-
age of kerosene and thus costs, whilst complying with the regulations of aviation authorities. This
weight reduction can be achieved by different methods, such as exploring different materials and
optimizing the design of a structural part (e.g. a wingbox structure).

1.2. RESEARCH QUESTION, AIM/OBJECTIVES
In this thesis work, 2D determinate truss structures are optimized, where the objective is to min-
imize weight, and the design variables are the discrete cross-sectional area choices, of which the
best combination will result in the optimal configuration. The optimization problem is subject to
a strength constraint, where the stress in the truss should equal or at least be extremely close to
the maximum allowed stress. The truss structures optimized in this work are simple structures, of
which the solutions can be easily obtained by classical methods, where various reference solutions
can be found in Appendix D. By no means this thesis work tries to show a quantum advantage or
quantum supremacy. The objective is rather a proof-of-concept to investigate the feasibility of opti-
mizing a 2D truss structure with a Gate-Based Quantum Computer (GBQC). Wils [4] has investigated
the feasibility of optimizing indeterminate structural 2D structures with a Quantum Annealing (QA)
computer. QA computers are not considered in this thesis work, since it is yet unknown if they are
scalable [2]. It would, however be interesting to see if the work of Wils [4] in its QA format can be
mapped to a GBQC format.

1



2 1. INTRODUCTION

Quantum computing may fundamentally change the way scientists, engineers and others solve or
optimize problems, as discussed later in the literature review in Chapter 2. This research is con-
ducted as part of the effort to connect the fields of aerospace structural engineering and quantum
computing. A 2D truss structure will be optimized. Therefore, the main research objective of this
thesis is formulated as:

Investigate the feasibility of minimizing the weight of a 2D truss structure with a quantum
algorithm on a GBQC, with discrete cross-sectional areas as design variables subject
to a strength constraint.

In order to achieve the research objective, the research question of this thesis is formulated as:
Is it feasible to minimize the weight of a 2D truss structure by varying the cross-sectional areas,
subjected to a strength constraint with a quantum algorithm on a GBQC?

The following sub-questions and sub-sub-questions are asked:

1. How can GBQC be utilized to optimize truss structures?

(a) How to cast the truss problem to GBQC quantum-suitable format?
(b) How to map a QA problem truss optimization problem from Wils [4] to a GBQC quantum-

suitable format?

2. What is the influence on the results when varying some of the parameters of a quantum com-
puter?

(a) What will be the effect on quantum performance when the noise in quantum computers
and quantum gates will be decreased?

(b) What will be the effect on quantum performance when the number of qubits in quantum
computers will be increased?

3. How can the results of the quantum computer best be interpreted?

(a) How does the probabilistic nature of quantum computers influence the results?
(b) How can the results from the quantum computer be verified?

1.3. THESIS OUTLINE
This thesis work is composed in five chapters. In this chapter a motivation is given as well as the
research objectives and research questions. In Chapter 2 a summary of the literature review can
be found which describes various reviewed quantum algorithms. In addition to that, Chapter 2 ex-
plains in more detail the two algorithms used in this thesis, the Variational Quantum Eigensolver
(VQE) and the Quantum Approximate Optimization Algorithm (QAOA). In Chapter 3 the methodol-
ogy of describing a truss structure discretely is shown. The results of this thesis are presented and
discussed in Chapter 4. Finally, in Chapter 5 conclusions and recommendations for future work are
given.



2
LITERATURE REVIEW

In Section 2.1 an introduction to quantum terms and symbols are described. A general introduc-
tion on quantum computing is given in Section 2.2. A short summary of all the quantum algorithms
reviewed in the literature review is shown in Section 2.3. In this thesis the Variation Quantum Eigen-
solver (VQE) is used as a subroutine of the Quantum Approximate Optimization Algorithm (QAOA)
and for this reason both algorithms are explained in more detail in Section 2.4 and Section 2.5 re-
spectively.

2.1. A BRIEF EXPLANATION ON QUANTUM TERMS
A short introduction on the notation used to compare algorithms is shown in the paragraph below.
Furthermore, commonly used terms in this literature review are shown in Table 2.1, it can be used
as an extremely short quantum dictionary. For more information about quantum computation and
quantum information, the reader is referred to Nielsen and Chuang [5].

SYMBOLS AND LETTERS USED TO COMPARE ALGORITHMS

In order to be able to evaluate the performance of different algorithms, several parameters have to
be compared. The letters and symbols N, s, κ, λ and ε described below are used in order to compare
runtimes of algorithms. The parameter N defines the number of entries in an arbitrary matrix A (N
x N entries), where λ represents the eigenvalues of the matrix A, s is the maximum number of non-
zero entries in a row in a N x N matrix. If a matrix is symmetric and positive-definite, the condition
number κ is then defined by κ= λmax

λmi n
and describes the conditioning of the matrix, (i.e. a large κ is

associated with an ill-conditioned matrix) and finally ε is the desired precision [6].

Table 2.1: Quantum words with explanation

quantum word explanation
ancillary or ancilla quantum bit Auxiliary or extra quantum bit to facilitate the computation, however the

output of this ancilla quantum bit is not required for the rest of the circuits
computation.

ansatz Educated guess or initial estimate.
circuit depth The maximum length of time steps or gates of a single qubits path, when

considering all qubits, from its circuits input to output.
circuit size Total number of quantum gates, excluding the identity gates (for more

information about gates refer to Table A.1), in a quantum circuit [7].
circuit width The number of quantum bits used in a circuit.

3



4 2. LITERATURE REVIEW

complex conjugate Has equal real part as the original function and the imaginary part is equal in
magnitude, however opposite in sign. For example, the complex conjugate of
3 + 2i is 3 - 2i.

Hilbert space Finite dimensional complex vector space & inner product space.
eigenstate Eigenvector in a quantum state in Hilbert space.
expectation value Average value. In literature the expectation value is referred to as

the average value [5, 8]. It is not the most expected or probable value.
Hadamard gate Quantum gate that puts qubits in superposition, named after Jacques

Hadamard, refer to Appendix A for more information.
Hamiltonian Energy of the system, an operator consisting of kinetic and potential energies.
Hermitian matrix1 A complex square matrix equivalent to its conjugate transpose A† = (AT )∗.

A =
[

a b +1i .
b −1i . c

]
= A† =

[
a b +1i .
b −1i . c

]
hybrid algorithm Algorithm that makes use of both classical and quantum computing.

The words variational and hybrid are used interchangeably.
Pauli gates Quantum gates that consist of a unitary matrix originally discovered by

Wolfgang Pauli. For more information, refer to Appendix A.
Decision problem Problem that can either result in a no or yes answer. It can be represented

alternatively as a boolean problem that can either be zero or one.
determinism Certainty, no randomness involved. A deterministic algorithm will for a given

initial input always produce the same output.
nondeterminism Uncertainty, randomness involved. A nondeterministic algorithm can for a

given initial input produce different outputs.
P problems Problems that are solvable in polynomial time.
NP problems Decision (boolean) problems that are solvable in nondeterministic polynomial

time, where the solution yes or one is verifiable in polynomial time.
NP complete problems NP complete problems are problems that are intersecting the hardest

problem(s) in the NP set and the easiest problem(s) in the NP-hard
set, so: X ∈ NP and X ∈ NP-hard.

NP hard problems Problems that are at least as hard as the hardest problem(s) in NP, where every
problem Y ∈ NP reduces to X. If a problem Y reduces to problem X, it means
that X is at least as hard as Y. So, if X ∈ NP then Y ∈ NP and if X ∈ P then Y ∈ P.
Alternatively, one could say that if an algorithm for solving X can solve
any NP-problem Y then X is NP-hard.

quantum bit or qubit n qubits can simultaneously encode 2n states of information
quantum gates Gates used in quantum circuits.
quantum circuit The major difference between an electrical circuit and a quantum circuit is,

that with a logical circuit it is often impossible to retrieve the inputs
after applying the gates. It is possible to reverse the quantum circuit
and retrieve the initial states of the qubits, if no measurement has taken
place, because the information is still encoded in the
quantum state.

unitary matrix1 A matrix is unitary if and only if B †B = I and B−1B = I, meaning that the
determinant has to be equal to ±1. For example:

B =
[

0 −i
i 0

]
= B † =

[
0 −i
i 0

]
, B−1 = 1

−1

[
0 i
−i 0

]
B †B = I and B−1B = 1

−1

[
0 i
−i 0

] [
0 −i
i 0

]
= -1

[
i 2 0
0 i 2

]
= I

2.2. A GENERAL INTRODUCTION TO QUANTUM COMPUTING
In this section the quantum computing topic is introduced in a concise manner. If the reader would
like to learn more about quantum computing and quantum information in general, the reader is

1For more information review: https://www.math.purdue.edu/~eremenko/dvi/lect3.26.pdf.

https://www.math.purdue.edu/~eremenko/dvi/lect3.26.pdf


2.3. REVIEW OF QUANTUM ALGORITHMS 5

referred to Nielsen and Chuang [5].

With quantum computers being in an early stage of development, they exhibit a lot of potential. It is
expected that quantum computers eventually will solve real-life engineering and research problems
that classical computers cannot solve, which is called quantum supremacy [1]. Google researchers
claimed to have achieved quantum supremacy [9]. This claim was immediately opposed by IBM re-
searchers [10] and others [11], whom stated it should be named quantum advantage instead. Nev-
ertheless, to be able to use quantum computers for real-life applications, controllability issues and
decoherence of qubits [3] should be solved. Controllability issues occur by increasing the number
of qubits or degrees of freedom (DoF) in a quantum computer. It can be compared to controllability
issues experienced when increasing the number of wheels of a bicycle from 2 to 21000 [3]. Quantum
decoherence is, as the name implies, the decoherence or collapse of the superposition of the qubit
state in quantum computers (QC), incurred by interaction with the environment, into its 0 or 1 state
[12].

To counteract the effect of quantum decoherence, Shor [13] and Steane [14] independently came
up with a scheme for quantum error correction. Thereafter, Preskill [15] developed the concept
for a fault-tolerant quantum computer, that proves that if quantum decoherence is weak, it can be
corrected. Eventually, it is expected that quantum systems and many-qubit QC are able to pro-
tect qubits from decoherence [16] by quantum error correction, however this requires a significant
amount of additional physical qubits [2].

In theory, quantum annealers (QA) can exhibit equivalent properties as a Gate-Based Quantum
Computer (GBQC), when additional physical qubits are considered to enforce robustness by di-
minishing noise [17]. Currently, however research does not provide good arguments to expect that
quantum annealers are scalable, opposite to GBQC [2]. Furthermore, it is unknown if QA are able to
function properly as the problem size increases [2]. For these reasons, quantum annealing comput-
ers are not considered in this thesis. It would, however be interesting to investigate the possibility
of mapping Wils [4] his QA work to GBQC format.

The Noisy Intermediate-Scale Quantum (NISQ) era, which is the era where GBQC consist of fifty to
a few hundred qubits [2]. GBQC are quantum computers that run quantum circuits, consisting of
quantum gates. Currently, 50-qubit QC and more cannot be simulated by classical super computers,
because the computational cost doubles with every added qubit and thus increases exponentially
[1]. This minimum of 50-qubit QC is not a set in stone theoretical limit, it also depends on: the depth
of the circuit; number of qubits; new algorithms and the increase in classical computational power
in the coming years [1, 18, 19]. Classical computers cannot simulate the dynamics of many-qubit
quantum computers, therefore quantum computers might unveil a new field of research [2].

2.3. REVIEW OF QUANTUM ALGORITHMS
In this section a summary of the reviewed quantum algorithms of the literature review are shown.

The Quantum Fourier Transform (QFT) is used to transform data from one domain to the frequency
domain. Quantum Phase Estimation (QPE) is used to calculate eigenvalues of a certain matrix A as
explained in Nielsen and Chuang [5]. A quantum algorithm that is used to determine the lowest
eigenvalue of an arbitrary matrix A is named Variational Quantum Eigensolver (VQE) [20]. The
Quantum Approximate Optimization Algorithm (QAOA) is a quantum algorithm similar to VQE,
only applied to a different type of problem, namely an optimization problem [21]. QAOA is a shal-
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low quantum algorithm, meaning that it has low circuit depth and therefore will exhibit less noise.
Alpha-VQE [22] is an algorithm used to operate in-between the regimes of QPE and VQE to take
the best parts of both methods preventing unmanageable circuit depth when using QPE and pre-
venting the potential of unmanageable runtimes when using VQE. A quantum algorithm named
after Harrow, Hassidim and Lloyd (HHL) [23], could in theory exponentially increase the speed at
which linear systems of equations are ’solved’. A versatile quantum algorithm, similar to HHL, able
to ’solve’ linear systems of equations on NISQ computers is named Variational Quantum Linear
Solver (VQLS)[24]. Both VQLS and HHL have a major caveat, which is that the algorithm could
only solve one entry of the solution vector x, meaning that if N entries are required to be solved,
the algorithm has to be rerun N times. Adiabatic QC evolves in time described by the Schrödinger
equation used in quantum annealing computers Farhi et al. [25]. The evolution randomization al-
gorithms proposed by Subaşl et al. [26] are simple variants of adiabatic quantum computing. They
have an almost linear time complexity in κ and low circuit depth, meaning that it is an efficient al-
gorithm. Both these algorithms proposed by Subaşl et al. [26] can be implemented on a GBQC via
Hamiltonian simulation. Quantum Semi-Definite Programming (qSDP) [27] is an optimization al-
gorithm that generalizes linear and quadratic programming problems and combinatorial optimiza-
tion problems by optimizing objective functions. A quantum algorithm capable of analyzing the
principal components (eigenvalues) of matrices quantum mechanically, enabling the potential of
solving bigger matrices is named Quantum Principal Component Analysis (qPCA) [28, 29]. Classify-
ing data in data sets can be achieved by Quantum Support Vector Machines (qSVM) [30]. Quantum
Neural Networks (QNN) are able to minimize cost functions and will be most powerful when suf-
ficient training data is available and utilized, further explained in Murphy [31]. Quantum Natural
Gradient Descent (QNGD) minimizes a cost function and progresses along direction of steepest de-
scent or with Newton’s method, for more information see Rebentrost et al. [32].

In order to optimize the 2D truss structure it should be expressed in an objective function so that
it can be minimized. Therefore, the algorithms: QFT; QPE; α-VQE; qPCA and qSVM are dropped
from the list of possible quantum algorithms to solve this truss problem, since these algorithms are
utilized for different purposes. HHL cannot be run without error correction on NISQ computers,
therefore it has been dropped as well. Considering the fact that VQLS (and HHL) have a major caveat
which is that both algorithms could only solve one entry, thereby it has been dropped as a feasible
algorithm. Due to the lack of quantum resources to encode sufficient training data for various truss
structures the potential of QNN’s cannot be fully utilized and therefore QNN is dropped as a feasible
algorithm. This leaves QAOA, the evolution randomization algorithms, qSDP and QNGD as possible
algorithms. These four quantum algorithms have been carefully considered. The simplest and most
robust (least noisy) algorithm was chosen, namely QAOA, to optimize the truss structure, where VQE
was used as a subroutine to calculate the expectation.

2.4. VARIATIONAL QUANTUM EIGENSOLVER ( VQE)
In this section the Variational Quantum Eigensolver (VQE) algorithm is explained in more detail,
since it has been used as a subroutine of QAOA in this thesis.

The quantum algorithm able to determine the lowest eigenvalue with a small quantum circuit was
found in 2013 by Peruzzo et al. [20] is named Variational Quantum Eigensolver (VQE). A short sum-
mary is described in this section. It is particularly useful in chemistry, material science, pharmaceu-
tical industry and for internet search engines. It is an algorithm that uses the variational method or
variational principle [8] to solve eigenvalues. It consists of two algorithms first ran on a quantum
processing unit, calculating the expectation value of a Hamiltonian (H ) and then ran on a classical
processing unit with an optimization algorithm to compute the eigenvalues and eigenvectors of H .
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The first part of the algorithm ran on the QC is named Quantum Expectation Estimation (QEE). It
starts with a given Hamiltonian H , polynomially scaling with the size of the system, for an ansatz
input state |ψ(θ)〉, where θ is a changing parameter. H can be written for real h constants, where
the superscripts describe the subspace spanned by the eigenvectors on which the Pauli operators
act and the subscripts describe the different Pauli operators used:

H =∑
iα

hi
ασ

i
α+

∑
i jαβ

hi j
αβ
σi
ασ

j
β
+ . . . (2.1)

Subsequently, by using the linearity of quantum observables it can be shown that[20]:

〈H 〉 =∑
iα

hi
α〈σi

α〉+
∑

i jαβ
hi j
αβ

〈σi
ασ

j
β
〉+ . . . (2.2)

where the 〈 〉 stands for the expectation value. Rewriting Equation (2.2) results in the ground state
wave function [8]:

Eg r ound ≤ 〈ψ(θ)|H |ψ(θ)〉 =∑
iα

hi
α〈ψ(θ)|σi

α|ψ(θ)〉+ ∑
i jαβ

hi j
αβ

〈ψ(θ)|σi
ασ

j
β
|ψ(θ)〉+ . . . (2.3)

In the first part of the algorithm the ground state wave function is efficiently well approximated [20].
The second part of the algorithm, is a variational method that exists to compute the ground state
eigenvalue. This is achieved by using the Rayleigh-Ritz quotient to normalize the ground state wave
function, known as the variational principle [8]:

E0 ≤ Eθ =
〈ψ(θ)|H |ψ(θ)〉
〈ψ(θ) |ψ(θ)〉 (2.4)

by varying θ to iteratively optimize for Eθ, which minimizes the right-hand side of the equation with
the following condition E0 ≤ Eθ, where E0 is the smallest eigenvalue of H .

VQE provides an exponential speedup compared to classical methods [20]. Classical methods have
a restricted polynomially scaled ansatz, due to memory limitations, whereas quantum circuits can
(theoretically) consist of an exponential number of (entangled) states [33]. QPE uses a number of it-
erations of O (1) and a circuit depth of O ( 1

ε ). VQE uses a number of iterations of O ( 1
ε2 ) with εbeing the

precision parameter and a circuit depth of O (1) experimentally first demonstrated by O’Malley et al.
[33] and later by Kandala et al. [34] for a larger molecule up to BeH2. VQE is an iterative algorithm
able to compute minimal eigenvalues of larger molecules [34], than what is currently experimen-
tally demonstrated with QPE [35–38]. Furthermore, VQE is robust against systematic device errors,
because VQE requires only short state preparation and measurement sequences [33]. A potential
downside for VQE is that a large number of samples is required by the quantum expectation estima-
tion algorithm subroutine of the VQE algorithm, which may lead to unmanageable runtimes [22]. A
similar method to VQE using the same approach however, using different Hamiltonians and applied
to a different type of problem [2, 39], is the Quantum Approximate Optimization Algorithm (QAOA),
explained in the next section.

2.5. QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM (QAOA)
A quantum algorithm for combinatorial optimization problems to find the extremum, that starts
with an ansatz, is named Quantum Approximate Optimization Algorithm (QAOA) and was initially
proposed by Farhi et al. [21]. The QAOA is essentially an algorithm to approximate the solution of a
combinatorial optimization problem.
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The QAOA is seen as a leading heuristic candidate [40] in quantum computing, because of its sim-
plicity and robustness2. In 2018 there was also criticism by Guerreschi and Matsuura [41] that quan-
tum speedups will not be achieved for a real-life combinatorial problem with less than a few hun-
dred of qubits. Contrary to this criticism by Guerreschi and Matsuura [41] the regime to challenge
the best classical algorithm was met by Zhou et al. [42] in the year 2019. Also, Zhou et al. [42] pro-
posed two heuristic strategies, INTERP and FOURIER, to let the algorithm choose improved initial
guesses for varying parameters. The QAOA is already implemented as an algorithm applied to a
simplified real world aircraft assignment problem known as the tail assignment problem [43]. The
QAOA is also explored for other (NP-)hard linear algebra problems [44]. An advantage of the QAOA
is that it is a shallow quantum algorithm, meaning that the circuit depth is small compared to other
quantum algorithms. For this reason QAOA is more robust against noise and decoherence. Further-
more, the QAOA is robust against certain systematic errors [41].

It is mentioned by Verdon et al. [45] that the QAOA can be a discretized alternative of quantum an-
nealing process, however it is not a requirement. The QAOA is able to find the approximate solution
in a shorter time/depth than annealing [44]. Another interesting development is a proposed gener-
alization of the work of Farhi et al. [21] by Hadfield et al. [40], renaming it to Quantum Alternating
Operator Ansatz (QAOA) with the same acronym. In Bravo-Prieto et al. [24] it is suggested that the
QAOA can be utilized as an ansatz of the Variational Quantum Linear Solver (VQLS) algorithm.

After reading these articles it became apparent that almost all authors propose for more research to
be done in the research field of the QAOA to solve combinatorial optimization problems. The ques-
tion remains if the QAOA will provide quantum advantage over classical algorithms. The answer is
currently unknown.

A short summary of the QAOA in its original form by Farhi et al. [21] is described below:
The algorithm consists of two Hamiltonians C and B with 2p parameters γ1, . . . ,γp ,β1, . . . ,βp acting
as time operators, where p ∈N.

The objective or cost function C(z), defined with n bit strings and m clauses, also often written as
cost Hamiltonian HC , is shown here:

C (z) =
m∑
α=1

Cα(z), (2.5)

where z = z1z2...zn−1zn and Cα(z) =
{

1, if bit string z satisfies clause α

0, otherwise.

Alternatively C(z) can be represented as:

C (z) =

Cα(0, . . . ,0)
. . .

Cα(1, . . . ,1)

 (2.6)

It is combined with angle γ ∈ R, restricted to the domain [0, 2π], because of integer eigenvalues. All
terms commute [Cα(0, . . . ,0),Cα(1, . . . ,1)] = 0, meaning that there is independence of order, because
of diagonality in the computational |0〉 and |1〉 basis. Cost function C is written as a unitary operator
U(C, γ):

U (C ,γ) = e−iγC =
m∏
α=1

e−iγCa . (2.7)

2Peter Shor, Quantum Approximate Optimization Algorithms, ISCA 2018 Tutorial: Grand Challenges and Research Tools
for Quantum Computing, University of Chicago, https://www.epiqc.cs.uchicago.edu/s/QAOA-talk.pdf

https://www.epiqc.cs.uchicago.edu/s/QAOA-talk.pdf
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The operator B or often referred to as mixer Hamiltonian HB is shown here:

B =
n∑

j=1
σx

j , (2.8)

where σx
j is the Pauli X operator acting on the j’th qubit. Combined with angle β ∈ R, restricted to

the domain [0, π], operator B is written as a unitary operator U(B, β):

U (B ,β) = e−iβB =
n∏

j=1
e−iβσx

j (2.9)

The initial state |s〉 is a uniform superposition of the computational basis states:

|s〉 = 1p
2n

∑
z
|z〉 (2.10)

A quantum state is made and parameterized by alternating βp and γp for 1 to p rounds, obtainable
with quantum circuit with maximum depth of mp + p, where B and C should not commute [B, C] 6=
0:

|ψp (γ,β)〉 =U
(
B ,βp

)
U

(
C ,γp

) · · ·U (
B ,β1

)
U

(
C ,γ1

) |s〉 (2.11)

or represented alternatively:

|ψp (γ,β)〉 = e−iβp HB e−iγp HC · · ·e−iβ1 HB e−iγ1 HC |s〉 (2.12)

The expectation state can be obtained after repeating the above steps:

Fp (γ,β) = 〈ψp (γ,β)|C |ψp (γ,β)〉 (2.13)

Where Mp is the maximum of Fp over all the angles, where Mp ≥ Mp−1:

Mp = max
γ,β

Fp (γ,β) (2.14)

Finally, it can be proven that the maximum of C(z) is found when the limit of p to infinity is taken
over Mp :

lim
p→∞Mp = max

z
C (z) (2.15)

The approximation ratio r is:

r = C (z)

Cmax
(2.16)

In general QAOA is symmetric, and thus reversible in time, Fp (γ,β) = Fp (−γ,−β), due to the mixer
and cost Hamiltonian being real-valued [42].

The Quantum Alternating Operator Ansatz (QAOA) was proposed to generalize the Quantum Ap-
proximate Optimization Algorithm [40]. It allows for different mixer Hamiltonians then the initially
proposed mixing operator B = σx

j by Farhi et al. [21], where the the full search space was explored. It
is possible to restrict this full search space to a feasible subspace, where only feasible/valid solutions
are allowed. Therefore, other mixer Hamiltonians are introduced such as H j ,k = 1

2 (X j Xk +Y j Yk ),
where this mixer restricts the algorithm to only allow swapping of qubits j and k, further explained
in Appendix B.3. This generalized version of QAOA can be useful for optimization problems that
have to satisfy hard constraints [40].
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2.5.1. GRAPHICAL EXPLANATION OF QAOA
The theory of the Quantum Approximate Optimization Algorithm (QAOA) has been explained in
Section 2.5. For illustrative purposes the algorithm is shown in Figure 2.1 in its initial form by Farhi
et al. [21]. In this subsection the QAOA is explained in a graphical way to provide the reader with an
extra alternative explanation.

Figure 2.1: General overview of the QAOA algorithm. Figure retrieved from Alam et al. [46].

Figure 2.1 is explained from left to right in this paragraph: at first the initial state |s〉 is prepared in
superposition by applying one Hadamard gate to each qubit, which are initially all in the |0〉 state.
After which the cost unitary operator UC = e−iγ1 HC is applied, where HC is the cost Hamiltonian en-
coding the objective function and γ is a parameter to be optimized. Subsequently, the mixer unitary
operator UM = e−iβp HB is applied, where HB is the mixer Hamiltonian, which mixes the states, and β
is a parameter to be optimized. This is done with p-steps until level-p in order to amplify the prob-
ability of measuring the correct outcome. Finally, the quantum state is measured into a classical bit
string register. This whole identical process is run with n shots pre-defined by the user, to obtain
a distribution of n counts (bit strings). The classical computer then checks the expectation value
with Equation (2.18). If the optimization objective is not met, then the expectation value is fed into
the classical optimizer, after which β1, γ1, ..., βp , γp are updated and fed back into the quantum
processer until convergence is met. In equation form Figure 2.1 is summarized in Equation (2.17)
and Equation (2.18).

|ψp (γ,β)〉 = e−iβp HB e−iγp HC · · ·e−iβ1 HB e−iγ1 HC |s〉 (2.17)

The expectation state can be obtained after repeating the above steps with n shots:

Fp (γ,β) = 〈ψp (γ,β)|C |ψp (γ,β)〉 (2.18)

The goal is to optimize for the angles that maximize the expectation state Fp . A practical example
problem, the Max-Cut problem, to show the theory above in practice, can be found in Appendix C.



3
METHODOLOGY

In this chapter the methodology of optimizing a determinate 2D truss structure is explained. Firstly,
a general introduction to the approach of optimizing a truss structure is given in Section 3.1. The
2D truss problem is then casted into Quantum Alternating Operator Ansatz (QAOA) format for the
three-member truss structure in Section 3.2. Subsequently, an explanation on how the expectation
is calculated is described in Section 3.3. A detailed explanation about the hardware, including the
connectivity of qubits, noise and computational speed of the quantum algorithm is given in Sec-
tion 3.4. Finally, Section 3.5 will elaborate on translating a Quantum Annealing problem to QAOA
format. Finally, the influence of the step parameter p on the gate volume is described in Section 3.6.

3.1. A GENERAL INTRODUCTION TO THE TRUSS PROBLEMS

One of the objectives in aerospace engineering is to minimize weight and thus kerosene and costs.
The objective of this thesis is to investigate the feasibility of optimizing a truss structure with a quan-
tum algorithm on a GBQC. To the best of the author’s knowledge, quantum optimization for trusses
has only been done once before with parameterized FEM by using Quadratic Unconstrained Binary
Optimization (QUBO) for Quantum Annealing (QA) computers by Wils [4]. In this thesis the focus
will be on describing determinate truss structures with a parameterized internal force method and
subsequently optimize them with a quantum-suitable algorithm on a GBQC.

In classical computing it is rather easy to represent a number in binary form, since the number
of bits generally is not a limiting factor. In quantum computing this quickly becomes unfeasible,
because there is a limited number of quantum bits, named qubits hereafter, in quantum comput-
ers. There are 32 or 64 (qu)bits required to represent only a number with the floating point number
scheme with single or double precision respectively. To avoid the use of many qubits to represent
numbers, the qubits are assigned more efficiently to a discrete set of cross-sectional area choices.

In this thesis three determinate structural truss problems were analyzed, a two-member, three-
member and four-member truss structure, as can be observed in Figure 3.1a, Figure 3.1b and Fig-
ure 3.1c respectively.

11
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N2
N1

N0

(a) Two-member truss problem

N0 N1

N2

(b) Three-member truss problem

(c) Four-member truss problem

Figure 3.1: 2D determinate truss structures to be solved

Three different area options are assigned to each truss member as can be observed in Figure 3.2. To
be clear here, the blue curved truss member A2 does not represent a curved truss member, how-
ever it represents A0 +d A. Indexing in this thesis starts from zero instead of one for programming
reasons. In between node N1 and N2, three discrete area options can be chosen for (A0 −d A, A0

and A0 +d A), where A0 represents the area for truss member one with index zero and dA is a pre-
defined constant increment of A. It is convenient to relabel A0 −d A, A0 and A0 +d A to A0, A1 and
A2 respectively. For the truss structures with three options per truss member, all choices of cross-
sectional areas A can be captured with Equation (3.1):

A =
{

Aq

∣∣∣∣ A3i+ j q3i+ j

}
, (3.1)

where i cycles through 0 to # trusses - 1, and j cycles through 0 to # options - 1, q∈ {0, 1} and
opt−1∑

j=0
q j =

1, where opt represents the number of options per truss member. As an example the set A for the
three-member truss structure is shown:

A3−tr uss =
{

Aq

∣∣∣∣A3i+ j q3i+ j

}
= {A0q0, A1q1, . . . , A8q8} (3.2)

It is possible to include more or less cross-sectional area choices per truss member. Having two
choices per truss member would result in a cross-sectional area A and either a A+dA choice or a A-
dA choice, which would have to be alternated, which is impractical. Furthermore, having more than
three choices per truss member would result in a larger circuit depth and circuit width, increasing
the noise levels. Considering the above, it has been deemed most reasonable to have three choices
per truss member and not less or more.

In this simple truss structure the weight of the structure is minimized by varying the area options
discretely to find a local minimum. As an example, the optimal cross-sectional area of truss member
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zero is 9.0·10−4m2, however only options 1.0·10−3m2, 1.1·10−3m2 and 1.2·10−3m2 for truss member
zero are given. The algorithm will then (most probably) choose the truss member with an area of
1.0 ·10−3m2 as the local minimum. In order to find the optimum 9.0 ·10−4m2 for truss member zero,
the areas have to get updated and iterated. The other truss members have to get minimized as well
until the global optimum is found, meaning that the residual ≈ 0.

A8

A6

A5
A3

A0

A2

A4 A7

A1N0 N1

N2

Figure 3.2: Three options per truss member for three-member truss structure.

If all options would be considered in this three-member truss structure there would be a total of
O (2(#tr usses · #opti ons)) = 29 = 512 many options. Feasible/valid solutions are solutions that only

choose one cross-sectional area per truss member (
opt−1∑

j=0
q j = 1), where opt is the number of options

per truss member. When only the valid bit string states would be considered in this three-member
truss structure, it results in a total of O (#trusses#options) = 33 = 27 valid options, shown in Table 3.1.

As the number of trusses and options grow, the difficulty of optimizing the truss structure increases
exponentially in time or resources. That is where quantum comes into play. Quantum computers
can investigate all choices simultaneously, however noise requires to repeat the experiment with n
shots, leading to a distribution of counts.

The configuration values used for the two, three and four-member truss structures are shown in Ta-
ble 3.2. Initially the internal forces are assumed to be in tension. In this work it is assumed that the
material has equal maximum tensile and compressive stress, i.e. σc = σt = σ{c,t }. In the configura-
tion table it can be observed that there is a sign bit 1 or -1, where 1 indicates tension and -1 indicates
compression. The four-member truss structure was an example problem in a textbook that used En-
glish Engineering units and these units were converted to SI units. For this reason "odd" numbers
for the forces Fx and Fy can be observed in the configuration table for the four-member truss sys-
tem. Two classical ways of obtaining the areas for the 3-member truss that minimize the weight are
shown in Appendix D. The areas found by the reference solutions that minimize the weight for the
2-truss, 3-truss and 4-truss structures are shown in Table 3.3.
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Table 3.1: Valid bit string states for three-member truss system

Option q0 q1 q2 q3 q4 q5 q6 q7 q8

1 0 0 1 0 0 1 0 0 1
2 0 0 1 0 0 1 0 1 0
3 0 0 1 0 0 1 1 0 0
4 0 0 1 0 1 0 0 0 1
5 0 0 1 0 1 0 0 1 0
6 0 0 1 0 1 0 1 0 0
7 0 0 1 1 0 0 0 0 1
8 0 0 1 1 0 0 0 1 0
9 0 0 1 1 0 0 1 0 0

10 0 1 0 0 0 1 0 0 1
11 0 1 0 0 0 1 0 1 0
12 0 1 0 0 0 1 1 0 0
13 0 1 0 0 1 0 0 0 1
14 0 1 0 0 1 0 0 1 0
15 0 1 0 0 1 0 1 0 0
16 0 1 0 1 0 0 0 0 1
17 0 1 0 1 0 0 0 1 0
18 0 1 0 1 0 0 1 0 0
19 1 0 0 0 0 1 0 0 1
20 1 0 0 0 0 1 0 1 0
21 1 0 0 0 0 1 1 0 0
22 1 0 0 0 1 0 0 0 1
23 1 0 0 0 1 0 0 1 0
24 1 0 0 0 1 0 1 0 0
25 1 0 0 1 0 0 0 0 1
26 1 0 0 1 0 0 0 1 0
27 1 0 0 1 0 0 1 0 0

Table 3.2: Configuration values for the two, three and four-member truss structures, including material, nodal coordi-
nates, force and boundary conditions with dA = 100 ·10−6m2.

2-member truss structure 3-member truss structure 4-member truss structure
Item Coordinates Force BC Coordinates Force BC Coordinates Force BC

Nodes x[m] y[m] Fx[N] Fy[N] dx[m] dy[m] x[m] y[m] Fx[N] Fy[N] dx[m] dy[m] x[m] y[m] Fx[N] Fy[N] dx[m] dy[m]
N0 0 0 0 0 0 0 0 0 0 0
N1 1 -1 0 -70000 3 0 0 -2000 0 0 1.219 272.16
N2 0 -1 0 0 0 -1 0 0 0.914 1.219 181.44 314
N3 0.914 0 0 0

Item Connected Material Areas Connected Material Areas Connected Material Areas
Elements Start End σ{c,t }[Pa] sign A[m2] Start End σ{c,t }[Pa] sign A[m2] Start End σ{c,t }[Pa] sign A[m2]

E0 N0 N1 100 ·106 1 900 ·10−6 N0 N1 5 ·106 -1 510 ·10−6 N0 N1 5 ·106 -1 400 ·10−6

E1 N1 N2 100 ·106 -1 600 ·10−6 N0 N2 5 ·106 1 1500 ·10−6 N1 N2 5 ·106 -1 236.29 ·10−6

E2 N1 N2 5 ·106 1 260 ·10−6 N1 N3 5 ·106 1 260.48 ·10−6

E3 N2 N3 5 ·106 -1 62.851 ·10−6
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Table 3.3: Optimized areas for two, three and 4-member truss structure

2-member truss structure 3-member truss structure 4-member truss structure
Areas Areas Areas

Elements sign A[m2] sign A[m2] sign A[m2]
E0 1 989.95·10−6 -1 400 ·10−6 -1 102.8 ·10−6

E1 -1 700·10−6 -1 1649 ·10−6 -1 36.29 ·10−6

E2 1 565.7 ·10−6 1 60.48 ·10−6

E3 -1 62.85 ·10−6

3.1.1. CLASSICALLY OPTIMIZING THE TRUSS STRUCTURE CONTINUOUSLY

There are several ways of obtaining the minimal weight configuration of truss structures. Two ap-
proaches can be found in Appendix D as reference solutions. Another approach of optimizing the
truss members, described in this subsection, would be to assume that all truss members experience
the maximum allowable stress. Furthermore, the equilibrium equations are enforced as outcomes
of an optimization in order to avoid the fractional part of the equation, since it is not possible to
evaluate fractions in GBQC. In this thesis it is assumed for simplicity that both maximum tensile
stress σt and compressive stress σc equal each other, σt = σc = σmax . Setting the sum of forces in x
and y equal to the residual equations results in Equation (3.3).

Res1,x =ΣF1,x Res1,x =ΣF2,x Res2,y =ΣF2,y (3.3)

Then by minimizing the squared residuals to zero or to a value extremely close to zero, it is possible
to reach the maximum stress state for all truss members, while enforcing the equilibrium equations,
meaning the structure is optimized for weight:

Objective J = mi n((Res1,x )2 + (Res2,x )2 + (Res2,y )2) (3.4)

Minimizing the residuals of the equations in matrix form, which is the equivalent of what was shown
in Equation (3.4):

M × ~Fi nt = ~Fext → mi n||(M × ~Fi nt − ~Fext )||2 (3.5)

Using the same matrix as obtained in Equation (D.1):

 1 −.243 0
−1 0 −.707
0 0 −.707

 ×
Fi nt0

Fi nt1

Fi nt2

 =

 0
0

2000


Filling in M, ~Fi nt and ~Fext in Equation (3.5) results in:

mi n||
( 1 −.243 0

−1 0 −.707
0 0 −.707

×
Fi nt0

Fi nt1

Fi nt2

−
 0

0
2000

)
||2 (3.6)

Finally, resulting in:

mi n
((
σ0Fi nt0 −0.243σ0Fi nt1

)2 +
(
−σ0Fi nt0 −0.707σ0Fi nt2 +−2000

)2

+
(
−0.707σ0Fi nt2 −2000

)2) (3.7)

It is observed after classically optimizing with the scipy.optimize.minimize Python package to ob-
tain the values for A0 = 4.0 ·10−4m2, A1 = 1.649 ·10−3m2 and A2 = 5.657 ·10−4m2 with σmax = 5 ·106

Pa.
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3.2. CAST THE THREE-MEMBER TRUSS PROBLEM TO HAMILTONIANS
In this subsection the three-member truss problem is casted into Hamiltonians. The Hamiltonians
have to be Hermitian to ensure that the operator U is unitary, where U = e i H t . In order to obtain
unitary operators U the Hamiltonians consist of Pauli gates only. In the next subsubsections the
initial state, the mixer Hamiltonian HB and the cost Hamiltonian HC are treated one-by-one.

INITIAL STATE

The initial state is analyzed first. The quantum computer prepares the qubits to be in the |0〉 state.
Instead of putting qubits in superposition state, the middlest area options are put in the |1〉 state by
applying X-gates to qubits one, four and seven, X1, X4, X7. This will initialize the qubits to be in bit
string 010010010, which is option 14 in Table 3.1.

MIXER HAMILTONIAN

The mixer Hamiltonian is simply obtained by applying the SWAP gate to all feasible qubit states.
A SWAP gate is implemented by applying the double Pauli-X gate with double Pauli-Y gate as ex-
plained in Appendix B.3. The mixer Hamiltonian HB for the three-member truss system is:

HB = (0.5+0 j )∗X 1∗X 0+ (0.5+0 j )∗Y 1∗Y 0+ (0.5+0 j )∗X 0∗X 2+ (0.5+0 j )∗Y 0∗Y 2+
(0.5+0 j )∗X 2∗X 1+ (0.5+0 j )∗Y 2∗Y 1+ (0.5+0 j )∗X 4∗X 3+ (0.5+0 j )∗Y 4∗Y 3+
(0.5+0 j )∗X 3∗X 5+ (0.5+0 j )∗Y 3∗Y 5+ (0.5+0 j )∗X 5∗X 4+ (0.5+0 j )∗Y 5∗Y 4+
(0.5+0 j )∗X 7∗X 6+ (0.5+0 j )∗Y 7∗Y 6+ (0.5+0 j )∗X 6∗X 8+ (0.5+0 j )∗Y 6∗Y 8+
(0.5+0 j )∗X 8∗X 7+ (0.5+0 j )∗Y 8∗Y 7,

(3.8)

where X =

[
0 1
1 0

]
and Y =

[
0 −i
i 0

]
So, applying this sequence of gates: (0.5+0j)*X1*X0 + (0.5+0j)*Y1*Y0, will swap the initial state from
bit string 010010010 to bit string 100010010, which is option 23 of Table 3.1.

COST HAMILTONIAN

Finally, the cost Hamiltonian HC is analyzed, starting with:

M × ~Fi nt = ~Fext (3.9)

Starting with the same matrix as in Equation (D.1): 1 −.243 0
−1 0 −.707
0 0 −.707

×
Fi nt0

Fi nt1

Fi nt2

=
 0

0
2000

 (3.10)

Assume that every truss experiences σ0: 1 −.243 0
−1 0 −.707
0 0 −.707

×
σ0 A0

σ0 A1

σ0 A2

=
 0

0
2000

 (3.11)

Replace continuous A j to three discrete options per truss member: 1 −.243 0
−1 0 −.707
0 0 −.707

×
σ0((A0 −d A)q0 + A0q1 + (A0 +d A)q2)
σ0((A1 −d A)q3 + A1q4 + (A1 +d A)q5)
σ0((A2 −d A)q6 + A2q7 + (A2 +d A)q8)

=
 0

0
2000

 (3.12)

Where Ax represents the area choices and σ0 is specified by the material and q acts as a switch (0 or
1), only one q per truss member can be one. As can be seen from the matrix, the first option has an
area A0 - dA, the second option is the area A0 and the third option is A0 + dA. Numbering the areas
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in this way is inconvenient and therefore A0 −d A, A0 and A0 +d A are relabeled to A0, A1 and A2

respectively:

M × ~Fi nt = ~Fext =
 1 −.243 0
−1 0 −.707
0 0 −.707

×
σ0(A0q0 + A1q1 + A2q2)
σ0(A3q3 + A4q4 + A5q5)
σ0(A6q6 + A7q7 + A8q8)

=
 0

0
2000

 (3.13)

The norm of the vector is simply squared in order to connect the costs of the trusses with one an-
other, similar to Equation (3.4). The q-symbols are highlighted in blue to show that these discrete
variables contribute to finding the minimum when the best combination is chosen:

||(M × ~Fi nt − ~Fext )||2 = ||
( 1 −.243 0

−1 0 −.707
0 0 −.707

×
σ0(A0q0 + A1q1 + A2q2)
σ0(A3q3 + A4q4 + A5q5)
σ0(A6q6 + A7q7 + A8q8)

−
 0

0
2000

)
||2 (3.14)

Multiplying Equation (3.14) to obtain the objective function, results in:

||(M × ~Fi nt − ~Fext )||2 =
((
σ0(A0q0 + A1q1 + A2q2)−0.243σ0(A3q3 + A4q4 + A5q5)

)2

(
−σ0(A0q0 + A1q1 + A2q2)−0.707σ0(A6q6 + A7q7 + A8q8)

−2000
)2 −

(
0.707σ0(A6q6 + A7q7 + A8q8)−2000

)2) (3.15)

Now expanding Equation (3.15):

||(M × ~Fi nt − ~Fext )||2 =
(
2A2

0q0
2σ2

0 +4A0 A1q0q1σ
2
0 +4A0 A2q0q2σ

2
0 −0.486A0 A3q0q3σ

2
0−

0.486A0 A4q0q4σ
2
0 −0.486A0 A5q0q5σ

2
0 +1.414A0 A6q0q6σ

2
0 +1.414A0 A7q0q7σ

2
0+

1.414A0 A8q0q8σ
2
0 +4000A0q0σ0 +2A2

1q1
2σ2

0 +4A1 A2q1q2σ
2
0−

0.486A1 A3q1q3σ
2
0 −0.486A1 A4q1q4σ

2
0 −0.486A1 A5q1q5σ

2
0 +1.414A1 A6q1q6σ

2
0+

1.414A1 A7q1q7σ
2
0 +1.414A1 A8q1q8σ

2
0 +4000A1q1σ0 +2A2

2q2
2σ2

0−
0.486A2 A3q2q3σ

2
0 −0.486A2 A4q2q4σ

2
0 −0.486A2 A5q2q5σ

2
0 +1.414A2 A6q2q6σ

2
0+

1.414A2 A7q2q7σ
2
0 +1.414A2 A8q2q8σ

2
0 +4000A2q2σ0 +0.05905A2

3q3
2σ2

0+
0.1181A3 A4q3q4σ

2
0 +0.1181A3 A5q3q5σ

2
0 +0.05905A2

4q4
2σ2

0 +0.1181A4 A5q4q5σ
2
0+

0.05905A2
5q5

2σ2
0 +0.9997A2

6q6
2σ2

0 +1.999A6 A7q6q7σ
2
0 +1.999A6 A8q6q8σ

2
0+

5656.0A6q6σ0 +0.9997A2
7q7

2σ2
0 +1.999A7 A8q7q8σ

2
0 +5656.0A7q7σ0+

0.9997A2
8q8

2σ2
0 +5656.0A8q8σ0 +8000000I

)

(3.16)

Qubits q0 and q1 cannot be in |1〉 at the same time, since it is not allowed to select more than one
area per truss member. Therefore, costs that contribute to invalid solutions are nullified, which
results in the following equation:
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∑
(M × ~Fi nt − ~Fext )2 =
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(3.17)

To obtain the cost Hamiltonian HC , that encodes the objective function, it is required to substitute
qx with the measurement operator 1

2 (I − Zx ). In order for the quantum computer to measure in
the computational basis (i.e. |0〉 and |1〉) the Z operator is applied. The discrete binary variable
qx ∈ {0,1} has to get mapped to the measurement operator, because Z has eigenvalues {−1,1}. For
more details, refer to Appendix B.1 and Hadfield et al. [40]. After substitution:

HC =
(
2A2

0
1

4
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(3.18)

Applying a double Pauli-Z gate acting on a single qubit results in the identity gate, which will not be
comparable with the classical solution. For this reason, double Pauli-Z gates are reduced to a single
Pauli-Z gate in the final equation. Further expansion and reordering results in:
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HC = ((0.5A2
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(3.19)

The cost Hamiltonian is obtained by filling in the known values for Ax and σ0 in Equation (3.19). It
can be seen from the cost Hamiltonian that it does not include the density ρ and the length of the
trusses L. Thereby, the cost Hamiltonian minimizes the areas rather than the weight. If one would
like to obtain the weight, then simply multiply the minimized areas, i.e. when the cost is 0, with the
constant density ρ and the length of the truss L.

3.3. CALCULATING THE EXPECTATION WITH VQE
The expectation is calculated as it will be used as the objective function to minimize with the scipy.optimize.minimize
package. In order to calculate this a Python package was used, named quantum-grove, written by
Rigetti. It is currently not maintained and has a number of open issues1. For this reason the author
of this thesis has modified the source code to make it compatible with the Python package "pyquil",
which is written and actively maintained by Rigetti.

Initially, the entire quantum circuit was created where only one or two qubits were actually mea-
sured, depending on the Pauli Z-gate(s) of which the expectation had to be evaluated. For example,
if the expectation of Z0 and Z3 had to be evaluated, only qubits 0 and 3 were measured in the quan-
tum circuit. It becomes clear that, when the cost Hamiltonian consists of many Pauli Z-gates the
quantum circuit has to be run many times to evaluate the total expectation. Thereby, it was too slow
for the Aspen-9 quantum computer to run within 15 minutes, which is the minimum time that a
user of Rigetti’s services is required to reserve. To reduce the computational time all qubits are mea-
sured simultaneously.

1https://github.com/rigetti/grove/issues

https://github.com/rigetti/grove/issues
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The expectation is then calculated by taking the following steps. Firstly, the quantum circuit was
run, where all Pauli terms are simultaneously measured into a set of bit strings. Thereafter, the ex-
pectation is calculated with the VQE method explained in Section 2.4 and further explained below.

Imagine a cost Hamiltonian:

HC = aI +
P−1∑
i=0

bi Zi +
P−1∑
i=0

∑
i 6= j

(ci j )Zi Z j , (3.20)

where a, bi and ci j ∈ R, Zi is the Pauli-Z gate operator acting on qubit i, P is the number of Pauli-Z
gates. Calculating the expectation of the cost Hamiltonian for all measured bit strings up to n bit
strings is done in the following way:

Fp =


a ·1−m ·

P−1∑
i

bi −m ·
P−1∑
i=0

∑
i 6= j

(ci j ), if
P−1∑
i=0

Zi |1〉,
P−1∑
i=0

∑
i 6= j

Zi Z j |10〉 and
P−1∑
i=0

∑
i 6= j

Zi Z j |01〉

a ·1+m ·
P−1∑

i
bi +m ·

P−1∑
i=0

∑
i 6= j

(ci j ), otherwise
(3.21)

where m =
n−1∑
i=0

countsi
# valid counts and stands for measurement from bit string zero up to n bit strings.

Initially, invalid entries were also used to calculate the expectation value. This caused severe noise
in the expectation value, which made it impossible for the optimizer to converge. To prevent this
from happening, those invalid bit strings were deleted.

3.4. HARDWARE
In this section hardware specific subjects such as connectivity of qubits, reduction of computational
time and reduction of noise are treated in Subsection 3.4.1, Subsection 3.4.2 and Subsection 3.4.3
respectively.

3.4.1. CONNECTIVITY OF QUBITS

Quantum computers are not fully or densely connected, instead quantum computers currently are
sparsely connected and do not consist of all-to-all connected qubits. In order to map the qubits
specified by the quantum circuit with the physical qubits, it is required to introduce extra swap
gates, which produces extra noise. Future prospects show possibilities of fully connecting all qubits
by using similar techniques as done in conventional microprocessors with the Complementary
Metal-Oxide-Semiconductor (CMOS) technology by solving the wire bottleneck [47]. In Figure 3.3,
the lattice from quantum computing company Rigetti of the Aspen-9 is shown. As can be seen qubit
5 is connected to qubits 4 and 6 and not to all qubits. For more information on the lattice structure
of quantum virtual machines refer to Rigetti Computing [48].

Figure 3.3: Figure retrieved from Rigetti2.

2https://qcs.rigetti.com/lattices at 15 June 2021.

https://qcs.rigetti.com/lattices
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Rigetti has various ways to simulate a quantum computer with quantum virtual machines. A quan-
tum virtual machine that has full connectivity between qubits, is for example the 12q-qvm, which
consists of twelve fully connected qubits. The Aspen-9-qvm is the most realistic quantum virtual
machine, because it is a one-to-one mapping to the real quantum hardware of Rigetti. For more
information about quantum virtual machines, refer to Rigetti Computing [48].

There is also a way to calculate the expectation value of quantum observables (e.g. a sum of Pauli
gates) directly and exactly without having to simulate the quantum circuit. The WavefunctionSimu-
lator of Rigetti has access to the full wavefunction and therefore it can exactly calculate the expecta-
tion value of quantum observables. For more information about the WavefunctionSimulator, refer
to Rigetti Computing [48].

3.4.2. REDUCTION OF COMPUTATIONAL TIME

In total four runs of fifteen minutes on real quantum hardware were available. At first, the author of
this report reserved a fifteen minute time slot to run the obtained quantum circuit. It was noticed
that it was not possible to obtain results within this fifteen minute time slot. Therefore, a number of
methods have been tried on a quantum simulator to reduce the computational time.

Firstly, it was tried to reduce the number of shots to evaluate one Pauli term from 1024 to 64. The
number of shots defines the number of times a quantum circuit with the same input is rerun in or-
der to produce a probability distribution of counts. Decreasing the number of shots, will therefore
decrease the computational time. At the same time it reduces the probability of finding correct re-
sults to unacceptable levels, which was to be expected. It was not possible for the expectation value
to converge and for this reason this method did not help to reduce the computational time.

Secondly, the used python package quantum-grove, measured qubits corresponding to certain Pauli-
Z gate(s) one-by-one. This was computationally expensive, so instead the code from the Python
package quantum-grove was modified to measure all qubits at once, such that the expectation value
could be simultaneously calculated for all Pauli-Z gates. This reduced the time to run the quantum
circuit by P times, where P is the number of Pauli terms in the cost Hamiltonian as earlier explained
in Section 3.3.

Thirdly, different global and local optimizers to optimize for the expectation value by varying β and
γ parameters were investigated. All optimizers started with a random starting angle for both β and
γ, except for the Simplicial Homology Global Optimizer (SHGO) optimization routine. The Python
package scipy.optimize.minimize3 was used as a classical minimizer. All standard minimization
routines, that do not require a Jacobian or Hessian function as inputs were compared. It is, namely
not possible to calculate a Jacobian or Hessian from the objective function, because the objec-
tive function, the expectation, is just a number. The used optimizers include Nelder-Mead, Pow-
ell, Conjugate Gradient (CG), Broyden–Fletcher–Goldfarb–Shanno (BFGS), Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno Bounded (L-BFGS-B), Truncated Newton (TNC), Constrained Bi-
nary Optimization By Linear Approximation (COBYLA), Sequential Least Squares Programming (SLSQP),
Trust region method (trust-constr) and the more recent SHGO[49]. For more information about how
these algorithms work refer to the documentation provided in Scipy4.

In Figure 3.4 the time and minimized cost is shown for all used optimizers for the two-member truss

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
4https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html


22 3. METHODOLOGY

structure with step parameter p set to two. It can be seen that some minimizers, such as CG, BFGS,
L-BFGS-B, TNC increase the cost rather than minimizing it. It is hard for these minimization rou-
tines to find the minimum due to the low p number.

Figure 3.4: Global optimization of the three-member truss structure to show the difference in time and cost for the
different local and global optimizers.

It can be seen in Figure 3.4 that the only minimization routine able to minimize the cost to a value
close to zero after two iterations is SHGO. Therefore, it can be concluded that the SHGO minimiza-
tion routine was most effective when considering computational speed and final cost value.

Furthermore, the use of different stopping criteria was investigated by setting the tolerance to dif-
ferent levels by trial-and-error. When optimizing with the minimization package from scipy, the
tolerance has to be predefined as an input. One option that was considered was to put a tolerance
on the expectation value. For example, the tolerance could have been set to an expectation value
reaching an increment of 0.1% when compared to the previously obtained expectation value. It was
hard to estimate this figure, since generally the user does not know in advance what the expectation
value will be. It was hard to find generalizing stopping criteria for various truss structures, therefore
the stopping criteria that was considered most effective was one with a cap on the number of iter-
ations, determined by trial-and-error, in this case 250. Convergence cannot be guaranteed when
capping the number of iterations. For this reason the user has the responsibility of capping the
number of iterations to a reasonable number, such that the minimum is obtained.

The quantum circuit that was constructed by the QAOA can be parameterized, such that the quan-
tum circuit does not have to recompile at every iteration. Parameterizing the compilation, is sup-
posed to reduce the computational time. However, by parameterizing the compilation, an increase
was observed in the total number of gates used. The reason for it being is that instead of having one
value for the RZ gate, for example RZ(2.525), two values are assigned to the RZ gate, e.g. RZ(π+2γ).
To take the extra information in the RZ gate into account, the quantum circuit required extra RX
gates. Introducing more gates when using real quantum hardware results in longer execution time
and introduces more noise. All in all, parameterizing the compilation did not help to reduce the
computational time and was not used for this reason.
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Finally, the RESET gate was used to actively reset the qubits prior to running the quantum circuit.
Actively resetting the qubits entails that qubits are actively reset to their |0〉 state, instead of waiting
several times the coherence length for the qubits to decay to their |0〉 state. Actively resetting is
faster, however it introduces ~1% of error per qubit. Naturally waiting until the qubits decay to |0〉
has the same order of magnitude of noise levels, due to thermal noise [48]. This strategy to reduce
the computational time was considered helpful.

3.4.3. NOISE

The Rigetti compiler has three strategies (naive, partial and greedy) to map virtual qubits to phys-
ical qubits on the quantum lattice. If no instruction is given the compiler will choose between the
strategies naive and partial. Choosing the naive rewiring strategy means that the logical qubits are
mapped to physical qubits without thinking if these qubits have optimal fidelity (quality of qubits).
If qubits have to be rewired, because they cannot be directly mapped from logical qubits to physical
qubits, the partial strategy will be used as the default method. This partial strategy will take more
time to compile, while it optimizes for fidelity. The greedy approach favors compilation time over
fidelity by a simple optimization heuristic that optimizes for distances between virtual qubits and
physical qubits. The author of this report has explicitly chosen for the highest fidelity partial strat-
egy, so that noise is reduced. For more information refer to Rigetti Computing [48].

A python package named mitiq was tried, which is a Python package for error mitigation on NISQ
computers, to find the standard repeatable error of the quantum computer and account for that
in a smart way. Error mitigation is, as the name indicates, mitigating the error, as opposed to error
correction, which completely eliminates errors [50]. There are several error mitigation techniques to
mitigate errors, such as Zero-Noise Extrapolation (ZNE), Probabilistic Error Cancellation (PEC) and
Clifford Data Regression Module described in the following subsubsections as summary of LaRose
et al. [50].

ZERO-NOISE EXTRAPOLATION (ZNE)

The ZNE technique was tried to explore techniques to mitigate noise. ZNE scales noise by artificially
increasing the number of gates by unitary folding of gates: GG†G, where a circuit G is multiplied by
its inverse and by the circuit G again. This artificially increases the noise by keeping the circuit
equivalent, after which the noise can be extrapolated back to a zero-noise limit.

For illustrative purposes this is shown in Figure 3.5, where on the horizontal axes the noise is in-
creased by λ by applying the unitary folding technique. The noise is increased up to a certain num-
ber of times λ, after which the noise can be extrapolated back to a zero-noise limit with different
extrapolation methods, such as linear, Richardson, quadratic and exponential.
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Figure 3.5: Figure retrieved from LaRose et al. [50].

PROBABILISTIC ERROR CANCELLATION (PEC)

Another technique used to mitigate the noise is called Probabilistic Error Cancellation, described
here as a summary of LaRose et al. [50]. The technique describes a perfectly noiseless unitary chan-
nel U by a linear combination of noisy channels to be implemented with multiple unitary channels
constructing a quantum circuit, shown graphically in Figure 3.6a, by a quantum computer:

G =∑
α
η(α)Oα, (3.22)

where
∑
αη(α) = 1 to preserve the trace and η ∈ R, G and O are density operators, describing the

quantum state of a physical system. When each ideal unitary is known with sufficiently high ac-
curacy, PEC can converge to the ideal expectation value when taking the limit of the number of
sampled circuits. Where the expectation value is estimated by taking the Monte Carlo average over
the total number of sampled circuits.

(a) Pool of 3x3 different noisy unitary channels. From left
to right, on the left-hand side of the figure, three 3-qubit

gates are shown, in the middle another three 3-qubit gate
and finally on the right-hand side three 2-qubit gates are

shown. Random selection from this pool of unitary
channels results in the orange colored circuit.

(b) Circuit randomly created from different unitary
channels

Figure 3.6: Sampled circuits created with PEC. Figure adapted from LaRose et al. [50].

CONCLUSION

All in all, ZNE was considered unhelpful, because the circuit size was already too large to give a zero-
noise limit, as was described in Casares et al. [51]. Furthermore, Sopena et al. [52] stated that the
ZNE technique assumes low hardware noise, which is not valid for large quantum circuit sizes and
depth. Using ZNE or other different error mitigation techniques, such as Probabilistic Error Can-
cellation, will increase the computational time, because extra iterations are required. After careful
consideration the above described noise mitigation techniques were deemed unhelpful, because
the computational time will increase.
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3.5. FROM QUBO TO QAOA
Quantum optimization for (in)determinate truss structures has been done before by parameterized
FEM by using Quadratic Unconstrained Binary Optimization (QUBO) suitable for Quantum Anneal-
ing (QA) computers by Wils [4]. QUBO problems are as the name suggests optimization problems
that are quadratic, unconstrained and binary. The objective function is obtained by manipulating,
scaling, truncating and applying Ajagekar’s iterative method to arrive to the final Quadratic Uncon-
strained Binary Optimization (QUBO) format.

The work of Wils [4] is mapped from QUBO to QAOA. This can be done by mapping the cost Hamilto-
nian of the QUBO function from Equation (3.23)[53] to the QAOA format shown in Equation (3.24)[53,
54]. As can be observed this is simply a mapping of the discrete binary variable x ∈ {0,1} to 1

2 (I −Z ),
where I is the Identity gate and Z represents the Pauli-Z gate ∈ {−1,1} as described earlier in Sec-
tion 3.2.

f (x) = a +
n∑

j=1
c j x j +

∑
j<k

d j k x j xk (3.23)

Hc = (a + c +d)I − 1

2

n∑
j=1

(
c j +d j

)
Z j + 1

4

∑
j<k

d j k Z j Zk , (3.24)

where c = 1
2

∑n
j=1 c j ,d = 1

4

∑
j<k d j k , and d j = 1

2

∑
k 6= j d j k with d j k = dk j

Furthermore, the initial state |s〉 = |+〉⊗n and the mixer Hamiltonian is simply HB =
∑n

j=1 X j . It has
been shown by Hen and Spedalieri [55] in 2016 that the full search space can be restricted to a fea-
sible subspace by the mixer Hamiltonian in quantum annealing computers. This method could be
used instead of using penalty terms in the cost Hamiltonian of QUBO problems to favor valid solu-
tions over invalid ones.

The mixer Hamiltonian can be used to constrain the search space by using for example Equa-
tion (3.25)[55], where σx

i is the Pauli-X gate and σ
y
i is the Pauli-Y gate. This would significantly

reduce the number of required qubits in quantum annealers[55]. Current quantum annealers5,
however have a fixed/non-constraining mixer Hamiltonian and this constraining technique cannot
be utilized.

Hd =−
n∑

i=1

(
σx

i σ
x
i+1 +σ

y
i σ

y
i+1

)
(3.25)

When mapping from QUBO to QAOA, it is possible to use the initial mixer Hamiltonian HB =
∑n

j=1 X j

and initial state |s〉 = |+〉⊗n . At the same time, it is possible to utilize the constraining mixer Hamil-
tonian, since it can be easily implemented on a GBQC. Both methods will be explored in Chapter 4.

3.6. INFLUENCE OF STEP PARAMETER P ON GATE VOLUME
In this work quantum software and quantum hardware from Rigetti is used and therefore their cor-
responding quantum virtual machines and quantum computers. The influence of step parameter
p on the gate volume is displayed in Figure 3.7 for the Aspen-9-qvm, to illustrate how the program
scales with an increasing number of trusses. The Aspen-9-qvm is a one-to-one virtual copy of the
real quantum hardware. After trial-and-error it was found that the step parameter p should be set to
two, three and four for the two-member, three-member and four-member truss structures respec-
tively. In the legend it is shown that the orange line represents the QUBO problem when mapped to

5https://docs.dwavesys.com/docs/latest/c_gs_2.html#the-hamiltonian-and-the-eigenspectrum

https://docs.dwavesys.com/docs/latest/c_gs_2.html#the-hamiltonian-and-the-eigenspectrum
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QAOA from Wils [4] and the blue line represents the QAOA objective worked out in this thesis. The
relation between the number of trusses and the gate volume seems to indicate exponential growth
for both problems. Higher member truss structures have to be analyzed to review the actual rela-
tion between the number of trusses and the gate volume. The relation will certainly change when
the number of options would be increased. The gate volume for the two-member, three-member
and four-member truss structure for the internal force method is 688, 1962 and 4495 respectively.
For the two-member, three-member and four-member truss structure QUBO to QAOA problem the
gate volume is 1461, 16540 and 105675.

Figure 3.7: Influence of step parameter p on the gate volume before program compilation with Aspen-9-qvm.



4
RESULTS AND DISCUSSION

In this chapter results will be presented and discussed. Firstly, the QAOA results are discussed in
Section 4.1. Secondly, the QUBO to QAOA results are presented in Section 4.2.

4.1. RESULTS OF TRUSS STRUCTURES IN QAOA FORMAT

In this section the two-truss, three-truss and four-truss structures will be analyzed one-by-one in
Subsection 4.1.1, Subsection 4.1.2 and Subsection 4.1.3 respectively.

4.1.1. RESULTS AND DISCUSSION OF TWO-MEMBER TRUSS STRUCTURE

In this subsection the two-member truss structure is analyzed. The results after optimization are
displayed in Figure 4.1. The brute-force solution is plotted with the dotted orange line and the cost
is given in blue. It can be observed that the brute-force solution and the cost Hamiltonian com-
pletely overlap each other. The minimum and maximum energy are shown with an orange and
green plus symbol respectively, as indicated on the legend on the left-hand side. On the right-hand
side of the figure the probabilities of finding the minimum are shown. The valid bit strings are plot-
ted on the x-axis. In order to simulate this quantum circuit the Aspen-9-qvm was used. The classical
minimization routine SHGO was used as an optimizer method, since it is fast and provides good re-
sults as was shown in Subsection 3.4.2.

It is clear from Figure 4.1 that QAOA finds the local minimum of the two-member truss structure,
ran with step parameter p is two steps. The same simulation has been run ten times in order to in-
vestigate the dependence on the probabilistic nature of quantum. Ten simulations out of ten found
the minimum with bit string [1,0,0,1,0,0].

It is important to remember that this minimum does not resemble the optimized area subjected to
the strength constraint. To ensure that the residual is equal to a value extremely close to zero the ini-
tial areas A have to get updated to the selected values A0 and A3 (bit string: [1,0,0,1,0,0]). To obtain
the areas that do satisfy the strength constraint, the program has to be iterated as was explained in
Section 3.1.
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Figure 4.1: QAOA results of the two-member truss structure, simulated on Rigetti’s most realistic quantum virtual
machine, named Aspen-9-qvm

Running the quantum circuit on real quantum hardware with 10,000 shots, named the Aspen-9,
does not provide correct results as shown in Figure 4.2. Due to the noise, the probability of valid so-
lutions significantly decreases and introduces invalid solutions, which are not shown in the figure.
Since, it is not possible to obtain correct results when using real quantum hardware for the smallest
2-member truss structure, it is considered not useful to try for the three-truss and four-truss struc-
tures. The reason for it being that the number of gates only increases for higher number of trusses
as was shown in Section 3.6. It was tried to run the quantum circuit with predefined optimal angles
obtained from simulation in order to circumvent the need for VQE, to directly try to obtain the opti-
mum. The result, however is still polluted with noise. When decreasing the number of gates further
to 325 by decreasing the step parameter p to one, it results in a similar polluted solution. This result
shows the limits of NISQ computers.

Figure 4.2: QAOA results from real quantum computer, named Aspen-9. The quantum computer did not find a
minimum, due to noise caused by high gate volume.



4.1. RESULTS OF TRUSS STRUCTURES IN QAOA FORMAT 29

4.1.2. RESULTS AND DISCUSSION OF THREE-MEMBER TRUSS STRUCTURE

In this subsection the simulation results of the three-member truss structure can be observed. After
trial-and-error it was found that the step parameter p should be three to find the minimum with a
high probability. It can be seen in Figure 4.3 that five out of ten simulations found the minimum that
the correct result is found (bit string: [0,0,1,1,0,0,0,0,1]) when simulating on the Aspen-9-qvm. Due
to the probabilistic nature of the quantum computers the minimum is not always found, since three
out of the ten simulations found the bit string: [0,0,1,0,0,1,0,0,1] and two out of the ten simulations
found the bit string: [0,0,1,0,1,0,0,0,1]. It is of no surprise that these other found bit strings resemble
values very close to the actual minimum.

Figure 4.3: QAOA results for the three-member truss structure, simulated on Rigetti’s most realistic quantum virtual
machine, named Aspen-9-qvm.

4.1.3. RESULTS AND DISCUSSION OF FOUR-MEMBER TRUSS STRUCTURE

In this subsection the simulation results for the four-member truss structure are presented and dis-
cussed. The four-member truss structure is only simulated on the 12q-qvm without noise with step
parameter p set to four. It was deemed impractical to run it on the Aspen-9-qvm, because it took
more than 5,000 seconds to construct and run the circuit just once with 1024 samples. Neverthe-
less, the algorithm proves to work on the Aspen-9-qvm for the two-member truss and three-member
truss structure, it is therefore assumed that it will also work for the four-member truss structure.

As can be seen from Figure 4.4 the probability of finding the minimum is five out of the ten runs.
What cannot be seen from the figure is that the difference between the sampled bit strings is not
large. Meaning that the found minimum is only barely found, for example the bit string [0,0,1,0,0,1,0,1,0,0,1,0]
is sampled 245 times and the bit string [0,0,1,0,0,1,0,0,1,0,0,1] is sampled 235 times out of 1024 sam-
ples. Simulating the circuit on the Aspen-9-qvm or simulating with noise will most likely not yield
the minimum. This is partly due to the increased feasible subspace, however the main contributing
factor to barely finding the minimum is, because the minimum cost value has a value close to the
other valid solutions. For this reason, it is harder for the algorithm to find the minimum. A solution
could be to distance the minimum from other valid solutions by adding extra Pauli terms to penalize
valid solutions, that are not the minimum.
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Figure 4.4: QAOA results for the four-member truss structure, simulated on the fully connected quantum virtual
machine, named 12q-qvm.

4.2. QUBO TO QAOA
In this section the (in)determinate two-member, three-member and four-member truss structures
from Wils [4] will be analyzed one-by-one in Subsection 4.2.1, Subsection 4.2.2 and Subsection 4.2.3
respectively. The truss structures treated in this section are completely different from the ones
treated in the previous section, for more details refer to Wils [4]. The QUBO results were used as
input in order to map it to QAOA format using the steps provided in Section 3.5. The two-member,
three-member and four-member truss structures are not simulated ten times as was done in Sec-
tion 4.1, because of time and simulation resource constraints. In addition to that, since previous
results in Section 4.1 have shown the viability of the chosen approach, the author of this report
believes that the use of one simulation result is justified, with the requirement that the found mini-
mum has a high probability.

Due to time and resource constraints, the four-member truss structure is simulated without noise
on the fully connected quantum virtual machines, named 12q-qvm. For more information on the
connectivity of qubits refer to Subsection 3.4.1.

4.2.1. RESULTS AND DISCUSSION OF TWO-MEMBER TRUSS STRUCTURE

In this subsection the results for the two-member truss structure are presented and discussed. The
results for the non-constraining mixer Hamiltonian are shown in Figure 4.5 and the results for the
constraining mixer Hamiltonian are shown in Figure 4.6. On the left-hand side of Figure 4.5 a legend
is displayed, wherein Ajagekar stands for the iterative method of Ajagekar et al. [56] used by Wils [4].
It is not an energy, because energies cannot be negative. It is rather the objective function used re-
quired to be able to run it on the Quantum Annealing computer of D-Wave. It can be observed from
Figure 4.5 that the QAOA cost and Ajagekar completely overlap, which means that the transforma-
tion was successful.

In Figure 4.5 the results are shown with a non-constraining mixer Hamiltonian as earlier described
in Section 3.5. The Aspen-9-qvm is a noiseless quantum virtual machine. The probabilities of the
valid solutions only add up to 23.6%. Due to the non-constraining mixer Hamiltonian, the full
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search space was explored. Thereby, the probabilities of the valid bit strings do not add up to 100%.
The minimum was found with a probability of only 20.2%. It is concluded that this approach that
penalizes invalid solutions in the cost Hamiltonian does not provide a convincing result with QAOA.

Figure 4.5: QAOA results for the two-member truss structure, simulated on Rigetti’s most realistic quantum virtual
machine, named Aspen-9-qvm with step parameter p is 3.

In Figure 4.6 the results are shown when using the constrained mixer Hamiltonian as explained in
Section 3.5. It can be observed that the exact same result was found as in Wils [4], the minimum is
found with a probability of >40% with bit string [0,0,1,1,0,0]. This high probability shows that this
approach with constraining mixer Hamiltonian works better with QAOA than the approach where
invalid solutions are penalized in the cost Hamiltonian.

Figure 4.6: QAOA results for the two-member truss structure, simulated on Rigetti’s most realistic quantum virtual
machine, named Aspen-9-qvm with step parameter p is 3.

4.2.2. RESULTS AND DISCUSSION OF THREE-MEMBER TRUSS STRUCTURE

In this subsection the results for the three-member truss structure are presented and discussed.
The results for the non-constraining mixer Hamiltonian are shown in Figure 4.7 and the results for
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the constraining mixer Hamiltonian are shown in Figure 4.8. The QAOA algorithm is simulated on
the Aspen-9-qvm with step parameter p equal to three. It can be observed that the search space
is so large that none of the valid solutions are sampled with the highest probability. This non-
constraining mixer Hamiltonian approach clearly does not work for the three-member truss struc-
ture. Since, the four-member truss structure involves more gates and a larger search space, the
chances of success are significantly lower and will therefore not be tried.

Figure 4.7: QAOA results for the three-member truss structure, simulated on Rigetti’s most realistic quantum virtual
machine, named Aspen-9-qvm.

In Figure 4.8 the constrained mixer Hamiltonian results are shown. The results for bit strings: [0,0,1,1,0,0,0,0,1],
[0,0,1,1,0,0,0,1,0] and [0,0,1,1,0,0,1,0,0] have values that are extremely close to each other. For this
reason, the QAOA algorithm does not find the minimum, which is in this case bit string: [0,0,1,1,0,0,0,0,1].
Wils [4] already recognized that it did not matter too much which of these three bit strings is chosen
as minimum, as long as the choices for the first two trusses are correct. It can be concluded that
finding the minimum with QAOA when other valid solutions are extremely close to this minimum is
hard. The reason for that is that the expectation value obtained with the VQE method sums all the
counts of the bit strings into one expectation value. The SHGO optimizer will then still find a low
expectation value even though it is not the minimum.
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Figure 4.8: QAOA results for the three-member truss structure, simulated on Rigetti’s most realistic quantum virtual
machine, named Aspen-9-qvm.

4.2.3. RESULTS AND DISCUSSION OF FOUR-MEMBER TRUSS STRUCTURE

In this subsection the results for the four-member truss structure are presented and discussed. The
four-member truss structure is simulated with the 12q-qvm, of which the results are presented in
Figure 4.9. The computational time to simulate the four-member truss structure is so large that the
author of this report is unable to estimate a time figure. Therefore, the WavefunctionSimulator was
used to directly obtain the expectation value. It can be observed that the minimum cost value is far
distanced from the other valid bit string values. QAOA is, therefore able to find it with a probability
of 34.2% when setting step parameter p to four. It should be stressed that, it is not known if it will also
provide correct results when simulating with the Aspen-9-qvm. Thereby, Figure 4.9 should rather
be interpreted as illustrative rather than definite.

Figure 4.9: QAOA results for the four-member truss structure, simulated on the fully connected quantum virtual
machine, named 12q-qvm.





5
CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

In this last chapter conclusions will be drawn in Section 5.1. Then the main research question is
answered in Section 5.2 by answering the supportive subquestions, which were initially asked in
Section 1.2. Finally, recommendations for future work are given in Section 5.3.

5.1. CONCLUSION
For the analyzed two-member, three-member and four-member truss structures, three discrete op-
tions per truss member were defined to be utilized by the Quantum Alternating Operator Ansatz
(QAOA). When the optimization is finished, then a local minimum is found. The residual has to be
equal to or at least be extremely close to zero to satisfy the equilibrium equations. The program
should be iterated until the global minimum (residual ≈ 0) is found.

It can be concluded that it is possible to map truss structures to a Quantum Alternating Operator
Ansatz (QAOA) objective function and optimize it. The program proves to be working on quantum
virtual machines. Currently, however it is not possible to obtain correct results when running on real
quantum hardware. The reason for it being that the total noise levels of the real quantum hardware
is currently too high for the required gate volume.

Also, mapping Quadratic Unconstrained Binary Optimization (QUBO) from Wils [4] to QAOA format
has been shown to be working perfectly. A non-constraining mixer Hamiltonian only shows to be
working for the two-member truss structure. It is more effective to make use of a constraining mixer
Hamiltonian, since that also proves to be working for the three-member and four-member truss
structures.

5.2. ANSWERING THE RESEARCH QUESTION
In this section the main research question is answered by answering the supporting subquestions
first.

ANSWERING QUESTION 1
The following sub-questions and sub-sub-questions were asked:

1. How can Gate-Based Quantum Computers (GBQC) be utilized to optimize truss structures?

(a) How to cast the truss problem to GBQC quantum-suitable format?
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(b) How to map a QA problem truss optimization problem from Wils [4] to a QBQC quantum-
suitable format?

QAOA can optimize combinatorial optimization problems. In scientific literature the most opti-
mized problem by QAOA is the Maximum Cut problem, which is a graph theory problem treated in
Appendix C. To the best of the author’s knowledge, QAOA has not been used before to optimize a
truss structure.

In order to cast the truss problem into QAOA form, it is required to introduce discrete options for
the areas by parameterization. In this thesis, the internal force method is used, where the residuals
are squared in order to obtain an objective function. Subsequently, discrete binary variables have to
be mapped from discrete variable q ∈ {0,1} to measurement operator 1

2 (I −Z ), where Z is the Pauli-Z
gate ∈ {−1,1} and I is the identity gate. Then the objective function is supposed to be minimized to
a value extremely close to zero in order to satisfy the equilibrium equations.

QUBO function from Wils [4] is mapped by the same transformation with discrete variable q ∈ {0,1}
to measurement operator 1

2 (I − Z ), where Z is the Pauli-Z gate ∈ {−1,1} and I is the identity gate.
Subsequently, the mixer Hamiltonian is set to constrain the full search space to a feasible subspace.
The initial state is simply an ansatz where all qubits are in |0〉 state, except the qubits that comprise
of the middle area options. As an example, the initial state for the two-member truss structure is
|010010〉.

To conclude, GBQC can be utilized to optimize truss structures by using a quantum algorithm such
as QAOA.

ANSWERING QUESTION 2
2. What is the influence on the results when varying some of the parameters of a GBQC?

(a) What will be the effect on quantum performance when the noise in quantum computers
and quantum gates will be decreased?

(b) What will be the effect on quantum performance when the number of qubits in quantum
computers will be increased?

The effect of reducing the noise levels in quantum computers and quantum gates, would result in a
couple of things. First and foremost, it would result in better quality solutions. The noise levels in
quantum computers nowadays are one of the factors that limit the capacity of GBQC to solve larger
problems. The smallest problem, which is the two-member truss structure was not able to be solved
on real quantum hardware due to the noise levels. This shows the limits of NISQ computers.

When the number of qubits in quantum computers would be increased, it would open up the way
for quantum error correction, which is currently not possible. Furthermore, by introducing more
qubits larger optimization problems could be analyzed or more options per truss member could be
introduced in the truss structure. Quantum error mitigation techniques were tried in this report,
however due to an increase in computational time and gate volume, it was considered unhelpful.

To conclude this subsubsection, the influence on the results when varying some of the parameters
are significant. Noise levels hopefully will be decreased in the future in order to be able to optimize
different combinatorial optimization problems, such as truss structures.

ANSWERING QUESTION 3
3. How can the results of the quantum computer best be interpreted?
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(a) How does the probabilistic nature of quantum computers influence the results?
(b) How can the results from the quantum computer be verified?

Due to the probabilistic nondeterministic nature of quantum computers the QAOA algorithm pro-
duces different solutions for the same input. It does, however oftentimes sample the correct results
with the highest probability. It becomes harder to find the minimum when the value of the mini-
mum is close to other values. It is not only the nondeterministic nature of quantum computers that
influences the results, also all minimization methods (except SHGO) used a random starting angle
β ∈ [0,π] and γ ∈ [0,2π], providing different solutions. Not to forget that real quantum hardware
does exhibit noise and will introduce invalid unfeasible solutions even though the QAOA tries to
restrict that.

The results of the quantum computer can best be verified by comparing the quantum result with
the result obtained after brute-force analysis on the classical computer.

It is not evident to determine if the solution found by the quantum computer or the quantum virtual
machine is found by the appropriate Hamiltonians or found by luck due to the probabilistic non-
deterministic nature of quantum computers. Initially, the author of this report found the correct
solution after simulating, however later came to realize that the solution was correct, however the
used cost Hamiltonian was incorrect. It is, therefore important to review the found solutions with
scrutiny. The person who constructed the quantum circuit should ask the following questions: is the
solution found consecutively after multiple simulations? Is the solution found with different mini-
mization routines? Is this solution found while increasing step parameter p (in order to increase the
likelihood of a better approximation of the optimum)?

ANSWERING THE MAIN RESEARCH QUESTION

The research question and its sub-questions are repeated and answered below. The research ques-
tion of this thesis was formulated as:

Is it feasible to optimize for the cross-sectional areas of a 2D truss stucture with a quantum
algorithm on a GBQC?

After providing the answers to the subquestions, it can be concluded that the main research ques-
tion has been sufficiently answered. It is feasible to optimize for the cross-sectionial areas of a 2D
truss structure with a quantum algorithm on a GBQC. Simplifications were made along the way,
such as that the tensile stress and compressive stress would equal each other and that the algorithm
only solves determinate truss structures. To generalize the truss structure more research has to be
done.

5.3. RECOMMENDATIONS AND GENERAL THOUGHTS
In this section, recommendations and general thoughts for future work are given.

The noise levels could potentially be further reduced by giving the compiler hints about commuting
gates to reduce the gate depth or by using a python package called pytket to compile the circuit in an
optimized format or by using Quil-T from Rigetti to manually optimize the gates. Another approach
would be to run the quantum algorithm on different hardware vendors. Possibly the whole program
can be implemented in LibKet[57] to provide an easy way to run the quantum circuit on different
platforms. To reduce the computational time to simulate higher truss-member structures, the au-
thor of this report proposes to parallellize the Python program in order to increase the number of
CPU cores utilized to run the simulations on.
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Recommendations for future research include improving the program so that it can include inde-
terminate truss structures. Possibly this can be implemented by using Maxwell-Betti’s theorem. The
fraction that will subsequently arise can be solved with Agajekar’s iterative method. That would de-
feat part of the purpose of optimizing it with the parameterized internal force method in the first
place, which was to avoid the fractional part. An advantage of the parameterized internal force
method is, however that the classical processing time to obtain the expressions is low when com-
pared to the QUBO method. Another approach would be to use parameterized FEM as Wils [4]
did, however without penalizing the invalid solutions and instead use a constraining mixer Hamil-
tonian. The fractions that arise can again be solved with Agajekar’s iterative method. This would
significantly reduce the number of gates required. A potential way of decreasing the step parameter
p is by penalizing valid solutions, that do not resemble the minimum, by adding Pauli-Z gates to
higher cost. This might be difficult to implement without increasing the gate volume by such an
amount that the decrease of gate volume by reducing p exceeds the initial gate volume.

Iterations are required to reach a global minimum of zero or a value extremely close to zero, such
that the equilibrium equations are satisfied. Perhaps there is a smart way of adjusting the dA param-
eter, used to calculate A-dA and A+dA, while iterating, such that the global optimum is found faster.
Another way of decreasing the number of iterations is by increasing the number of options per truss
member. A disadvantage of this method is that the gate volume and subsequently the noise will
increase, which will decrease the possibility of success.

With this work to prove feasibility the Technology Readiness Level (TRL) is estimated to be around
three. Further research has to be performed to validate the experiment on a real quantum computer
to increase the TRL to four.

It would be interesting to investigate other types of problems. For example, to expand the cho-
sen approach to beam structures modeled with beam elements or plate structures modeled with
shell elements. These problems can be tackled with two different approaches, the internal force
method and displacement based FEM. Regardless of the chosen approach, the author of this report
expects that the number of gates will approximately double for every added unconstrained Degree-
of-Freedom, based on the observation that the relation between gate volume and truss member
seemed to double for every added truss member.
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A
INTRO TO QC

A.1. GATE-BASED QUANTUM COMPUTING (GBQC)
A quantum state |ψ〉 can be described as a linear combination, often named superposition, of two
computational basis states, |0〉 and |1〉, consisting of complex amplitudes α0 and α1:

|ψ〉 =α0

[
1
0

]
+α1

[
0
1

]
=α0|0〉+α1|1〉. (A.1)

Because P=|α0|2 +|α1|2 =
1∑

n=0
|αn |2 = 1, Equation (A.1) can be rewritten as:

|ψ〉 = e iγ(cos
θ

2
|0〉+e iϕ sin

θ

2
|1〉) (A.2)

Global phases cannot be measured on a quantum computer and for this reason, Equation (A.2)[5]
can be also represented as:

|ψ〉 = cos
θ

2
|0〉+e iϕ sin

θ

2
|1〉 (A.3)

In Figure A.1a a representation of this quantum state |ψ〉 from Equation (A.3)[5] is shown in the so-
called Bloch sphere. In Figure A.1b [5] the influence of applying quantum gates to a qubits state ψ
is represented in the Bloch sphere.

In layman terms, the potential beauty of quantum computing is that 2n states are encoded into this
superposition state ψ, n being the number of quantum bits. So, the computational power doubles
by adding one bit only! By applying gates the quantum state ψ can be altered as shown in Fig-
ure A.1b, such that the probability of measuring certain bitstrings is either increased or decreased,
where favourable states should be increased. Measurement of qubits are performed at the end of
the quantum circuit, since the superposition state collapses to a classical state upon measurement.
The promise of quantum computing is that it can obtain solutions to NP-hard and NP-complete
problems much faster than classical computing. Since, GBQC currently exhibits noisy effects it is
required to repeat the experiment with a number of n shots.

A quantum X-gate shown in Equation (A.4) acting on a qubit in |0〉 state and its effect is shown in
Equation (A.5). Often the X-gate is compared with the logical NOT-gate. Other commonly used
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(a) Bloch sphere representation of quantum state |ψ〉. Figure
retrieved from Mathsisfun1.

(b) Influence of gates on quantum state |ψ〉. Figure retrieved
from Nielsen and Chuang [5]

Figure A.1

gates are shown in Table A.1.

|0〉 X |1〉 (A.4)

X |0〉 =
[

0 1
1 0

][
1
0

]
=

[
0
1

]
= |1〉 (A.5)

In Figure A.2a a logical gate sequence is compared with its quantum counterpart in Figure A.2b.
Logical gates are irreversible, since it is not possible to retrieve the initial state AB state after applying
for example an OR-gate. Quantum gates are reversible, since the initial state is not destroyed, all the
information is still in the quantum state and so by appling the inverse of the earlier applied gates, it
is possible to retrieve the initial state.

(a) Logical gates - irreversible (b) Quantum gates - reversible

Figure A.2: Figures retrieved from Qiskit2.

1https://www.mathsisfun.com/physics/bra-ket-notation.html at 19 April 2021.
2https://qiskit.org/textbook/ch-states/atoms-computation.html at 19 April 2021.

https://www.mathsisfun.com/physics/bra-ket-notation.html
https://qiskit.org/textbook/ch-states/atoms-computation.html
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Table A.1: Commonly used gates

Name Matrix Circuit

Identity I =
[

1 0
0 1

]
I

Hadamard H = 1p
2

[
1 1
1 −1

]
H

Pauli X X =
[

0 1
1 0

]
X

Pauli Y Y =
[

0 −i
i 0

]
Y

Pauli Z Z =
[

1 0
0 −1

]
Z

Phase P (θ) =
[

1 0
0 e iθ

]
P (θ)

Rotation X Rx (θ) =
[

cos θ2 −i sin θ
2

−i sin θ
2 cos θ2

]
R X (θ)

Rotation Y Ry (θ) =
[

cos θ2 −sin θ
2

sin θ
2 cos θ2

]
RY (θ)

Rotation Z Rz (θ) =
[

e−iθ/2 0
0 e iθ/2

]
R Z (θ)

Controlled NOT (Pauli X) C X (0,1) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 •

Controlled (Pauli Z) C Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 •
Z

Controlled phase C P (θ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e iθ

 •
P

SWAP SW AP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ××

ISWAP X Y =


1 0 0 0

0 cos φ2 1 j ∗ si n φ
2 0

0 1 j ∗ si n φ
2 cos φ2 0

0 0 0 1


−⊗−

|
−⊗−





B
MATHEMATICAL REFERENCE WORK

B.1. MAPPING BINARY VARIABLE Q TO QUANTUM MEASURABLE FORMAT
Quantum computers measure in the computational basis (|0〉 and |1〉) by applying the Pauli-Z gate,
with eigenvalues 1 and -1. Some discrete binary variable q acts as a switch, so q ∈ {0,1}. In order to
map this to a measurement operator that is suitable to a quantum computer, the following mapping
is applied: q ↔ 1

2 (I −Z ), where I is the identity gate. It is simple to show that the above substitution
is valid as q = 1

2 (1−1) = 0 and q = 1
2 (1−−1) = 1. Alternatively one could verify it with this mapping: Z

= 1-2q, so that Z = 1−2 ·0 = 1 and Z = 1−2 ·1 = -1.

B.2. COST HAMILTONIAN FOR THE MAX-CUT PROBLEM
To obtain the cost Hamiltonian HC the following procedure is used:
Cost operator C consists of C〈 j k〉, where every C〈 j k〉 entails the predicate z j ⊕ zk , where ⊕ represents
the exclusive or (xor) gate
Performing some algebra:

z j zk + z j zk = (B.1)

(1− z j )zk + z j (1− zk ) = (B.2)

z j + zk −2z j zk (B.3)

Substituting 1
2 (I −Z ) for binary variable z results in:

1

2
(I −Z j )+ 1

2
(I −Zk )−2 · 1

2
(I −Z j )

1

2
(I −Zk ) = (B.4)

1

2
(I −Z j )+ 1

2
(I −Zk )−2(

1

4
I − Z j

4
− Zk

4
+ Z j Zk

4
) = (B.5)

1

2
(I −Z j Zk ) or equivalently

1

2
(I −σz

jσ
z
k ), (B.6)

where Zi and σz
i correspond to the earlier described Pauli-Z gates (B.7)

B.3. SWAP GATE
An alternative way to describe the swap gate is by:
1
2 (I +X X +Y Y +Z Z ) according to Hen and Spedalieri [55] and Hadfield et al. [53]

Verifying:
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I I = I ⊗ I =

[
1 0
0 1

]
⊗

[
1 0
0 1

]
=


1×

[
1 0
0 1

]
0×

[
1 0
0 1

]
0×

[
1 0
0 1

]
1×

[
1 0
0 1

]
 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



X0X1 = X0 ⊗ X1 =

[
0 1
1 0

]
⊗

[
0 1
1 0

]
=


0×

[
0 1
1 0

]
1×

[
0 1
1 0

]
1×

[
0 1
1 0

]
0×

[
0 1
1 0

]
 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



Y0Y1 = Y0 ⊗ Y1 =

[
0 −i
i 0

]
⊗

[
0 −i
i 0

]
=


0×

[
0 −i
i 0

]
−i ×

[
0 −i
i 0

]
i ×

[
0 −i
i 0

]
0×

[
0 −i
i 0

]
 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0



Z0Z1 =Z0 ⊗ Z1 =

[
1 0
0 −1

]
⊗

[
1 0
0 −1

]
=


1×

[
1 0
0 −1

]
0×

[
1 0
0 −1

]
0×

[
1 0
0 −1

]
−1×

[
1 0
0 −1

]
 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



Adding 1
2 (I +X X +Y Y +Z Z ), the following matrix is obtained:


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

,

which is equivalent to the SWAP gate.

Since I and ZZ commute with the cost Hamiltonian, only XX and YY are required to cycle through
the states.



C
MAX-CUT EXAMPLE

QAOA solves combinatorial optimization problems. It was first illustrated to solve the Maximum
Cut or Max-Cut problem by Farhi et al. [21]. The problem is defined as a Graph G consisting of ver-
tices |V | of size n and an edge set |E | (or {〈 j k〉}) of size m, so G = (V, E). The goal is to maximize the
number of edges with one vertex in the set V and the other in V \ V’, where V is partitioned in V and V
\ V’ as described by Hadfield et al. [40]. An example (butterfly) graph to be cut is shown in Figure C.1.

Figure C.1: Butterfly graph. To produce this figure code was used from Qiskit1.

Two ways of cutting the butterfly graph are shown in Figure C.2a and in Figure C.2b. Bit string 00100
entails a four edge cut (cost of 4) and bit string 01000 entails an associated cost of 2. The cost Hamil-
tonian (HC ) is defined as follows, which was verified in Appendix B.2: C = ∑

〈 j k〉
C〈 j k〉, with C〈 j k〉 =

1
2 (I −σz

jσ
z
k ), where the unitary cost operator is: U (C ,γ) = e−iγC =

∏
〈 j k〉

e−iγ 1
2 (I−σz

jσ
z
k ). In Figure C.3 the

cost is plotted as a function of bit string i.

Figure C.4 illustrates the superposition state |s〉, see Equation (C.1), of the different bit strings when
applying one Hadamard gates to each qubit. As can be seen every state has equal number of counts,
or in other words, equal probability.

|s〉 = |+〉⊗n = 1p
2n

∑
z∈{0,1}n

|z〉 (C.1)

1https://qiskit.org/textbook/ch-applications/qaoa.html
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(a) Max-Cut with bit string 00100. (b) Max-Cut with bit string 01000.

Figure C.2

Figure C.3: Cost plotted as function of bit string i

Figure C.4: Superposition

Since all states are feasible, the problem is unconstrained and for this reason, the mixer Hamilto-

nian HB = B =
n∑

i=1
σx

i , where σx
i is the Pauli-X gate. The unitary operator is: U(B, β) =

∏
i∈|V |

e−iβσx
i . It is

important to know that for the Max-Cut problem other mixing and initial states are possible.

A different distribution of counts is shown, where non-optimized β and γ angles for favoring low
cost states are shown in Figure C.5a and optimized β and γ angles for maximum expectation value
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favoring high cost states are shown in Figure C.5b. After simulating with 10000 shots for the opti-
mized β and γ angles, there is a distribution of counts, for example:

Counts = {’11000’: 103, ’01010’: 231, ’00100’: 751, ’01101’: 228, ’11111’: 635, ’01011’: 244, ’10011’:
224, ’00101’: 222, ’01111’: 363, ’10001’: 238, ’10010’: 220, ’00011’: 127, ’10000’: 376, ’11101’: 363,
’10101’: 215, ’10111’: 392, ’00010’: 415, ’11011’: 778, ’01000’: 383, ’00000’: 632, ’11110’: 381, ’11001’:
227, ’10100’: 217, ’00110’: 225, ’00111’: 129, ’11010’: 233, ’01100’: 224, ’00001’: 399, ’10110’: 240,
’01001’: 222, ’01110’: 237, ’11100’: 126}
With Equation (C.2) the expectation associated with this distribution of count bit strings can be
calculated. Ranging γ from 0 to 2π and β from 0 to πwith 100 discretized steps results in Figure C.6.

Expectation =
n−1∑
i=0

Counts[i ]∗HC [i ] (C.2)

(a) Non-optimized β and γ angles for maximum expectation value
favoring low cost states.

(b) Optimized β and γ angles for maximum expectation value
favoring high cost states.

Figure C.5: Count distribution as a function of bit strings i

Figure C.6: 3D plot of expectation F for parameters β and γ. To produce this figure, code was adapted from Bus [58].





D
REFERENCE SOLUTIONS TO THE 2D TRUSS

PROBLEM

There are different methods to solve a determinate truss problem, namely solve it by: hand, Finite
Element Method (FEM) and matrix inversion (solve ~Fi nt from M ~Fi nt = ~Fext ). The solutions can be
obtained trivially when using the classical methods described above in continuous form. These
classical methods are used as a reference to provide a solution to compare the quantum result with.

SOLVING TRUSS PROBLEM BY HAND

The three-member truss problem, shown in Figure 3.1b, serves as an example to show the reference
solution for this thesis. Firstly, a Free-Body Diagram (FBD) was made and shown in Figure D.1.

Figure D.1: Free-body diagram of the three truss problem.

After which the sum of the forces in x and y are taken for each node/joint, where C stands for com-
pression and T for tension:
Joint 0:
+→ΣFx = 0; −F1 sin14.036◦+F0 = 0 F1 = 8246.2N(C)
+ ↑ΣFy = 0; F1 cos14.036◦−R0y = 0 R0y = 8000N(T)
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Joint 1:
+→ΣFx = 0; −F0 −F2 cos45◦ = 0 F0 = 2000N(C)
+ ↑ΣFy = 0; F2 sin45◦−2000N = 0 F2 = 2828.4N(T)
Joint 2:
+→ΣFx = 0; −R2x +F1 sin14.036◦+F2 cos45◦ = 0 R2x = 0N
+ ↑ΣFy = 0; R2y −F1 cos14.036◦−F2 sin45◦ = 0 R2y = 6000N(C)

The stress state is then obtained by dividing the internal force by the area of the truss-member:
σ= F

A . Subsequently, it is compared with the maximum stress that the truss can experience in com-
pression or tension. The Reserve Factor (RF) = σmax

σ can be calculated to verify if the stress is higher,
equal or lower than the maximum allowable stress or not. When the RF factor is higher than, equal
to or lower than one it indicates that it is overdesigned, properly designed or underdesigned (mean-
ing structural failure) respectively.

The equilibrium equations are systematically described in matrix form to make sure the equilibrium
equations can be easily described by a computer, shown in Figure D.2. Systematic description is
performed by enumerating from node to node, where the horizontal coefficient is determined by
taking the cosine of φ and the vertical coefficient with the sine of φ. Plugging the obtained values
from the geometry by enumerating node by node would result in an example matrix shown below,
where M is the matrix based on the shape of the structure, F is a vector with forces (and reactions)
and E stands for the external forces.

(a) Step 1: Systematically describing the
geometry by enumerating from node to

node.

(b) Step 2: Plugging the obtained values
from step 1 results in the above example

matrix.
(c) The matrix from step 2 can be
summarized by the figure above.

Figure D.2: Systematically describing truss structure with matrices. Figures retrieved from1.

SOLVING TRUSS STRUCTURE CONTINOUSLY BY MATRIX INVERSION

After systematically describing the truss in matrix form, without taking the unnecessary reaction
forces into account, the following matrix is obtained: 1 −.243 0

−1 0 −.707
0 0 −.707

×
Fi nt0

Fi nt1

Fi nt2

=
 0

0
2000

 (D.1)

Simply inverting the matrix results in:Fi nt0

Fi nt1

Fi nt2

 =

 1 −.243 0
−1 0 −.707
0 0 −.707

−1

×
 0

0
2000


Thereafter it is easy to obtain the area’s withσmax = 5 MPa, then A0, A1 and A2 are 4.0 ·10−4m2, 1.649
·10−3m2 and 5.657 ·10−4m2 respectively.

1https://www.unm.edu/~bgreen/ME360/Statics%20-%20Truss%20Problem.pdf at 19 April 2021.

https://www.unm.edu/~bgreen/ME360/Statics%20-%20Truss%20Problem.pdf
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