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Abstract

The focus of this thesis is the hydrodynamic limit of the Brownian Energy Process (BEP) and the
Asymmetric Brownian Energy Process (ABEP) in infinite volume. The thesis starts by introducing
some general theory about Markov processes, after which the topic of Markov duality is introduced.
A number of relevant interacting particle systems (IPS) will be introduced, and we will show
how the BEP and the ABEP can be related to the simpler Symmetric Inclusion Process (SIP)
through Markov duality. Using these tools, the first main result is proven, which states that the
hydrodynamic limit of the BEP is a weak solution to the heat equation. As a consequence of this,
in the second main result we use the relation between the BEP and the ABEP to prove that the
hydrodynamic limit of the ABEP is a weak solution to the viscous Burgers’ equation. We then
attempt to show a similar result for a newly developed IPS, the Dynamic ABEP. Finally, we prove
propagation of chaos for the BEP and the ABEP, where for the latter we argue that this is only
possible in a finite volume. As a part of the proof of this we argue that the SIP in infinite volume
is very ’similar’ to Independent Random Walkers (IRW) when we look at a long enough time-scale,
where we give a rough sketch of a proof that significantly improves upon a quantification of this
’similarity’ established in the literature.
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1 Introduction

The main goal of this thesis is to prove the hydrodynamic limits of two models for transport of en-
ergy, the symmetric Brownian Energy Process (BEP) and its asymmetric version, the Asymmetric
Brownian Energy Process (ABEP). The idea behind hydrodynamic limits is that a problem is ana-
lyzed on two different levels, a microscopic scale and a macroscopic scale, where we can think of the
macroscopic scale as ’infinitely larger’ than the microscopic scale. The approach is that we create
on a microscopic scale a stochastic transport model of particles or energy, here the BEP/ABEP,
and then investigate what behavior emerges on macroscopic scale. Typically we investigate the
macroscopic behavior by looking at the density field, and its evolution takes the form of a (stochas-
tic) partial differential equation. This approach of describing the microscopic world (of atoms and
molecules) in order to derive macroscopic properties of materials and systems, is one of the core
ideas is statistical mechanics. This field of physics emerged in the late 19th - early 20th century
with pioneering work by physicists such as Maxwell, Boltzmann, Gibbs and Einstein. Today this
field is a cornerstone of modern physics, with notable applications in thermodynamics and quantum
field theory.
The BEP and the ABEP, the models of energy transport of interest in this thesis, are examples of
interacting particle systems. Interacting particle systems are a class of stochastic models used ex-
tensively in statistical physics and probability theory and are designed to capture complex behavior
dynamics that emerge from simple, local interactions among particles. Interacting particle systems
were first introduced in [19], and have been studied extensively since, with some notable books
on the topic being [14], [8] and [6]. There are a number of different types of interacting particle
system. Some examples of these are the following: spin systems, where each particle represents a
“spin” that can take discrete states, representing for example the magnetic dipole moment of atoms
or molecules, voter models / contact processes, where the spread of an opinion or disease through
a population over time is modeled, and finally transport models, where particles or a continuous
quantity, often representing energy, move through space, interacting with each other along the way.
As is evident from these examples, interacting particle systems are often discrete systems, with
particles representing binary states (e.g. a particle represent an infection, dipole moment or a unit
of energy). The BEP and the ABEP are an exception to this rule, being continuous transport
processes with values in R+, representing energy levels at each site. As we will see, these processes
arise as scaling limits of the Symmetric Inclusion Process (SIP), which is an example of a discrete
moving particle system. Its characteristic property is that particles attract each other and because
of this, the SIP can interpreted in physics as a bosonic system, in contrast to the better known
Symmetric Exclusion Process (SEP), which through its repellent nature is interpreted as a fermionic
system. In this thesis we will only focus on the mathematical properties of the SIP and not on its
physical interpretation. For a more explicitly physical interpretation to the SIP we refer to e.g. [9].
Interacting particle systems (IPS) are used in many different areas of study. The field originates
from statistical mechanics, where in the late 1960’s it emerged in an attempt to better understand
the phenomenon of phase transitions. Nowadays IPS are used in modern physics in different appli-
cations, such as thermodynamics, magnetism, quantum systems and superconduction. As it turned
out, models with a very similar mathematical structure were derived in other areas of study, and
now IPS are used in many different contexts. Some examples of applications are the following:
Neural networks, epidemiology, tumor growth, network theory, queuing theroy, and many others.
There are certain mathematical approaches to the study of IPS which allow us to derive conclusions
about different aspects of them. For instance, one may be interested in equilibrium systems, where
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the system is in a stationary state, which does not change as it evolves over time. This is in contrast
with a non-equilibrium system, where one may expect there always to be some evolution of the state
of the IPS. For instance, in the case of transport models, one may find that a net current of parti-
cles/energy will always be present in these systems. In this thesis we will mostly be interested in
transient non-equilibrium systems. These are models that start out in a non-equilibrium state, but
will eventually settle into an equilibrium. Lastly, another interested mathematical approach is the
topic of this thesis, hydrodynamic limits. This involved taking certain scaling limits, e.g. having
an infinite number of particles each carrying an infinitesimal amount of energy, and evaluating the
resulting dynamics, not of individual particles/sites, but of resulting particle/energy density profiles
at macroscopic scale.
There are interesting mathematical properties of IPS which allows us to analyze them. Notably, an
IPS as a whole is a Markov process, meaning that the future evolution of the system only depends
on its current state. This allows one studying IPS to leverage theory about this widely studied class
of stochastic processes. Since the full IPS can be very complicated due to the different interactions
of particles, one may be interested in studying individual particles instead of the system as a whole.
In this case, the Markovian property is lost, so that often some simplifications have to be made.
Mean field theory arises here through the assumption that the interaction between a particle and
its surrounding can be approximated through the average interacting in the whole system. In this
thesis however, we will always focus our studies on the system as a whole.
Another mathematically interesting decision in creating IPS of moving particles is the space on
which the IPS is defined. When dealing with an IPS in a finite ‘volume’, we have to worry about
different kinds of boundary interactions. Notably we can have closed boundaries, where particles
are not allowed to cross a point, and open boundaries, where particles can cross from the ‘bulk’ of
the particles into a ‘reservoir’ at the boundary, and vice versa. Interesting properties emerge as a
result of this choice, where for instance the total number of particles is preserved in the former case
of closed boundaries, but not in the latter ‘reservoir driven’ process. When taking hydrodynamic
limits, these choices become apparent in the boundary conditions of the resulting PDE (Neumann
vs Dirichlet). Another option that is chosen for most of this thesis is to define the IPS on infinite
volume, in which case other questions arise, such as whether we know that the IPS can even exist.
In this this thesis most processes will be defined in infinite volume, where, like with closed bound-
aries, we have conservation of energy. This conservation of energy role plays a role in causing the
fact that the systems of focus in this thesis will be in transient nonequilibrium state, i.e. initially in
a non-equilibrium state but eventually settling to an equilibrium. Without conservation of energy,
e.g. reservoirs on the boundaries, we can have a situation where the system never settles into a
steady state, and a net current will persist. Finally, although in most of the literature a moving
particle system is defined in one dimension, i.e. all particles lie on a line, it is also possible to define
the problem in multidimensional space. [20] is an example of a masters thesis in which the hydro-
dynamic limit is proven for the Symmetric Inclusion Process defined on a d-dimensional lattice, in a
very similar approach to this thesis. The possibility of defining particle systems on other structures
than a lattice is apparent when dealing with an IPS such as the contact process, where we can think
of people being spread out over an arbitrary graph, with their edges representing contacts.
A tool that is central to the study of IPS is Markov duality. Duality allows us to link two differ-
ent Markov processes via a so-called ‘duality function’. This duality function allows us to answer
certain questions we may have about one of the processes by investigating its dual process. Often
this means we can reduce a difficult problem to a more tractable one involving an easier process.
For instance, we can reduce a problem involving infinitely many particles into one involving finitely
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many particles, or we can turn a problem with a continuous IPS into one involving a discrete IPS.
Both of these examples will appear in this thesis. As mentioned, Markov duality is central to the
study of interacting particle systems, first introduced to the field in [19]. Nowadays it appears in
many applications such as quantum spin chains, population dynamics, and equilibrium analysis.
Some patterns emerge when using Markov duality in the study of IPS. In the study of reservoir
driven processes, for example, we see that a current in a non-equilibrium process corresponds to
absorption at the boundary of its dual process. Mathematically, the study of Markov duality greatly
benefits from the notion of algebraic symmetry, a property of invariance of mathematical structures
under certain operations. In a physical interpretation, symmetries correspond to conservation laws.
This focus on symmetry sparked a great interest in studying the algebraic structure of interacting
particle systems and duality. As a result, a body of literature has emerged in which a general (Lie)
algebra approach to duality is being developed. Notably a book on the topic is currently being
written [4]. Although not the main focus of this thesis, because of the centrality of duality to the
field of IPS and the usefulness of duality in this thesis, we will explain some aspects of this approach
throughout this thesis.
The thesis is structured in the following way; In Chapter 2, background information will be given
about Markov processes, semigroups and infinitesimal generators. Chapter 3 will explain the con-
cept and usefulness of duality and briefly touch on the underlying theory about the relation between
duality and algebras. Chapter 4 will introduce several relevant IPS and their relation to each other,
and similarly, Chapter 5 will do the same for the ABEP specifically. Chapter 6 will then give a brief
introduction to hydrodynamic limits, and prove the hydrodynamic limit of the BEP, after which in
Chapter 7 this will be done for the ABEP and a newly developed generalization of the ABEP, the
Dynamic ABEP. After this, in Chapter 8, propagation of chaos under a local equilibrium measure
with slowly varying shape parameter will be proven for the BEP and the ABEP. Finally, Chapter
9 provides a conclusion to this thesis and suggests further research questions. Since there is a lot
of different notation in this thesis, Appendix A contains a table of relevant symbols.
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2 Markov Processes, Semigroups, Generators

2.1 Definition

A Markov process is a stochastic process which satisfies the “Markov property”, sometimes referred
to as ’memorylessness’. In words, it means that the only information about the process that is
relevant to predicting future behavior, is its current state. More formally, we have the following
definition.

Definition 2.1 (Markov Process). Let {Xt}t≥0 be a stochastic process on probability space (Ω,F ,P)
with associated natural filtration Ft = σ(Xs : s ≤ t), which is the σ-algebra induced by (Xs)0≤s≤t.
(Xt)t≥0 is a Markov process if for any bounded, measurable function f : Ω → R and any t > s ≥ 0
we have

E[f(Xt)|Fs] = E[f(Xt)|Xs],

i.e. conditioning on all information of X up to time s is the same as conditioning on the value of
X at time s.

For the rest of the Chapter, let (Xt)t≥0 denote an arbitrary Markov process with state space Ω.

2.2 Semigroups and Generators

2.2.1 Semigroups

Two important and related concepts in the study of Markov processes are semigroups and gen-
erators. Both of them describe the time evolution of a Markov process through the effect this
evolution has on an arbitrary function. In order to avoid some complications that arise with un-
restricted state spaces, we assume for this chapter that Ω is metric compact (or locally compact)
so that the Markov process (Xt)t≥0 is a Feller Process. When dealing with functions, we will as-
sume these to be bounded continuous functions f : Ω → R, and we will denote with C(Ω) the
space of these functions. In later Chapters we will deviate from this (e.g. we will see functions on
non-compact state spaces with infinite support), but in those cases we will be dealing with specific
Markov processes and functions for which it is known that the theory introduced in this chapter
applies.

Definition 2.2 (Markov Semigroup). A (Markov) semigroup (St)t≥0 is a family of operators acting
on f ∈ C(Ω). For every t > 0, St : C(Ω) → C(Ω) is defined through

(Stf)(x) = E[f(Xt)|X0 = x] = Ex[f(Xt)], (1)

where Ex denotes the expectation in Markov process (Xt)t≥0 starting at x ∈ Ω.

Proposition 2.1. For any semigroup (St)t≥0 we have the following properties:

1. Semigroup property: For all s, t ≥ 0, we have St+s = StSs and S0 is the identity operator,

2. Strong right-continuity: For every function f : Ω → R we have lim
t→0

Stf = f , where

convergence is in C(Ω) with the supremum norm,

3. Positivity: If f ≥ 0, then Stf ≥ 0,
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4. Normalization: St1 = 1,

5. Contraction: ||Stf ||∞ ≤ ||f ||∞.

Proof. See e.g. [2].

2.2.2 Generators

Closely related to semigroups are (infinitesimal) generators. What motivates the existence and use
of generators are particularly the strong continuity and semigroup property of semigroups. The
semigroup property implies that if we wish to know the effect of evolving the Markov process over
a time-interval of length t, then we can split the semigroup into multiple copies of itself with time
variables adding up to t. Strong continuity implies that we can take the limit case of this, so that
we find that if we wish to know the behavior of a Markov process, we only need to know the effect
of its semigroup over an infinitesimal time-interval. This effect can be described by a generator,
which we could think of as a sort of time-derivative of a semigroup.

Definition 2.3 (Generator). Let the domain of a generator L be given through

D(L) =

{
f ∈ C(Ω) such that lim

t→0

Stf − f

t
exists

}
.

Then L is defined as

Lf = lim
t↓0

Stf − f

t
. (2)

In this definition and throughout the rest of this Chapter, this convergence of function should
be read as convergence in C(Ω), i.e. fn → f if and only if sup

x∈Ω
|fn(x) − f(x)| → 0. We note that

the limit in (2) does not necessarily exist for every function f ∈ C(Ω). This means that for all
t > 0 : D(L) ⊆ D(St).

2.2.3 Finite state spaces (Markov Chains)

For readers unfamiliar with the subject, semigroups and generators are easier to think of in the
special case where Ω is finite. In this case the Markov process is a continuous-time Markov chain
(CTMC). In this setting, (1), which gives the definition of a semigroup, then becomes

(Stf)(x) = Ex[f(Xt)] =
∑
y∈Ω

P(Xt = y|X0 = x)f(y).

From this expression we can see that in this setting with finite state space we can think of a function
f ∈ C(Ω) as a (column) vector with values representing f(x) for all x ∈ Ω. Operator St can be
thought of as a matrix (St)x,y∈Ω with (St)x,y = Px[Xt = y], which is a transition probability.
CTMCs jump from one state to another randomly, with jumps occurring according to an exponential
random variable, whereby the process changes its state to one accessible from the current state. The
rate at which a jump occurs from a given state to another state depends on the specific combination
of states, which means that we can create a matrix with as elements the jumping rates between
states of the process. This matrix if often called the Q-matrix where Q = (qx,y)x,y∈Ω with elements
qx,y denoting the jumping rate from state x to y and qx,x = −

∑
y ̸=x

qx,y. We may recognize that
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the jumping rate qx,y between two states is closely related to the probability of being at the latter
state, starting out from the former.
In fact, this Q-matrix of jumping rates is exactly the generator L of the CTMC. In order to see
this, we may recognize that as we look at an infinitesimal time-frame, the probability of reaching y
from x is dominated by the possibility of jumping directly from x to y, which happens following an
exponential distribution at rate qx,y. Thus in the limit t ↓ 0, St becomes dominated by L, which
yields (2). In this setting, the semigroup and generator are also linked via the exponential function,

St = eLt,

where exponentiation of a matrix means taking the Taylor expansion of the exponential function,
i.e.

St = eLt =

∞∑
k=0

(Lt)k

k!
,

where this sum is absolutely convergent in matrix norm. We can check that this relation is consistent
with (2).

2.2.4 Hille-Yosida

In the general setting, where Ω may be infinite, the relation St = eLt via Taylor series isn’t always
workable due to the potentially unbounded nature of L. There is still a unique correspondence
between generators and semigroups, and it’s given through the theorem of Hille-Yosida. This
provides a more general relation between L and St through resolvents, which in the case of a finite
Ω is equivalent to the one above.

Theorem 2.1 (Hille-Yosida). There is a one-to-one correspondence between a Markov semigroup
(St)t≥0 and a Markov generator L, given through

a. D(L) := {f ∈ C(Ω) : lim
t→0

Stf−f
t exists} and for f ∈ D(L) we have Lf := lim

t→0

Stf−f
t ,

b. St = lim
n→∞

(I − t
nL)

−n,

c. Given a generator L and a function f ∈ D(L), if we have d
dtStf = StLf = LStf , then Stf is

the unique solution to dψt

dt = Lψt with initial value ψ0 = f.

Proof. See e.g. [14]

2.2.5 The Dynkin Martingale

A very useful tool in this thesis is the Dynkin martingale. The Dynkin martingale is related to the
Dynkin formula, which is seen as the stochastic analog to the fundamental theorem of calculus. It
allows us to express a stochastic problem expressed with generators into one involving a martingale.

Theorem 2.2 (Dynkin Martingale). If {Xt, t ≥ 0} is a Markov Process with generator L, then for
any function f ∈ D(L),

Mt := f(Xt)− f(X0)−
t∫

0

Lf(Xs)ds, (3)
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is an Ft−martingale which we call a Dynkin martingale.
If additionally f2 ∈ D(L), the (quadratic) variation process of (Mt)t≥0 is given by

[M ]t =

t∫
0

[
Lf2(Xs)− 2f(Xs)Lf(Xs)

]
ds.

Proof. Proof of Martingale property:

E[Mt −Ms|Fs] = E[f(Xt)− f(Xs)−
t∫
s

Lf(Xu)du|Fs]

= St−sf(Xs)− f(Xs)−
t∫
s

E[Lf(Xu)du|Fs]

= St−sf(Xs)− f(Xs)−
t∫
s

Su−sLf(Xs)du

= St−sf(Xs)− f(Xs)−
t∫
s

d

du
Su−sf(Xs)du = 0,

where we used c. from Theorem 2.1 in the second last step.
Proof of variation process
Recall that the (quadratic) variation process of a martingale ([Mt])t≥0 is the unique process such
that M2

· − [M ]· is a martingale. This means that our goal is to prove that

M2
t −

t∫
0

(
Lf2(Xs)− 2f(Xs)Lf(Xs)

)
ds,

is an Ft-martingale.
Since adding a constant to a martingale does not change its variation, we can without loss of

generality assume that Mt = f(Xt)−
t∫
0

Lf(Xs)ds, i.e. f(X0) = 0.

Furthermore, the martingale property together with an application of the monotone convergence
theorem imply that it suffices to prove that

E
[
M2
t −

∫ t

0

(
Lf2(Xs)− 2f(Xs)Lf(Xs)

)
ds

∣∣∣∣F0

]
= o(t), (4)

where o(t) means vanishing to 0 faster than t as we take the limit t ↓ 0.
Squaring (3) with f(X0) = 0 yields

M2
t = f2(Xt)− 2f(Xt)

∫ t

0

Lf(Xs)ds+

(∫ t

0

Lf(Xs)ds

)2

(5)

= f2(Xt)− 2f(Xt)

∫ t

0

Lf(Xs)ds+ o(t). (6)
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Since

E
[
f2(Xt)−

∫ t

0

Lf2(Xs)ds

∣∣∣∣F0

]
= 0,

because this is again a Dynkin martingale (note that f2(X0) = 0), we find

E
[
M2
t −

∫ t

0

Lf2(Xs)− 2f(Xs)Lf(Xs)ds

∣∣∣∣F0

]
= E

[
−2f(Xt)

∫ t

0

Lf(Xs)ds−
∫ t

0

2f(Xs)Lf(Xs)ds+ o(t)

∣∣∣∣F0

]
= E

[∫ t

0

(f(Xs)− f(Xt))Lf(Xs)ds|F0

]
+ o(t)

= o(t),

as f(Xs)− f(Xt) = o(1), and we integrate it over [0, t].

Equation (3) appears as well in the so-called “Martingale problem”, where it is used in a some-
what converse way as here.

Definition 2.4 (Martingale Problem). A triple ((Ω,F ,P), (Ft)t≥0, (X(t))t≥0), where
(Ω,F ,P), (Ft)t≥0 is a stochastic basis and X an Ft-adapted stochastic process, is the solution to the
martingale problem posed by operator A if for every f ∈ D(A),

Mt := f(Xt)− f(X0)−
t∫

0

Af(Xs)ds,

is an Ft-martingale.

We can use martingale problems to prove the unique relation between a Markov process and its
generator.

Theorem 2.3. The unique solution to the martingale problem posed by a Markov generator is its
associated Markov process.

Proof. From Theorem 2.2 follows directly that a Markov process solves the martingale problem
posed by its generator, so the only claim that needs to be proven is its uniqueness. This follows
from the one-to-one correspondence between a Markov generator and a Markov process.

We will use Theorem 2.3 in Theorem 5.2 to prove equivalence of two differently constructed
Markov processes.

2.3 Markov processes and measures

In this section so far we have seen Markov processes as they relate to the evolution of functions and
variables, starting out at some initial condition. This implicitly assumes that this initial condition
is known. Let us now change our focus to a situation where this initial condition is also random,
and decribed through some probability measure.
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Let µ : B(Ω) → [0, 1] be a probability measure and f ∈ C(Ω) a continuous function, and suppose
we are interested in ∫

Ω

Stfdµ,

i.e. we which to evaluate function f , starting out at a random configuration with its distribution
given through µ, and then evolved through semigroup St.
One approach to evaluating this integral is the following; first, we take the expected value of f(x)
evolved according to the Markov process associated with St, after which we integrate the resulting
expression of (Stf)(x) with respect to µ(x), i.e. we take the expectation with respect to the random
variable associated with µ. Alternatively though, we can reframe our problem in such a way both
these expectations are taken by integration with respect to one measure, which we call the evolved
measure.

Definition 2.5 (Evolved measure). For semigroup St and (probability) measure µ, the evolved
measure µSt is the unique measure such that∫

Ω

Stfdµ =

∫
Ω

fdµSt.

Although this definition is not restricted to probability measures, these are the only sort of
measures for which we will use this notion in this thesis. Therefore for the rest of the chapter let
µ ∈ P (Ω) be an arbitrary probability measure on Ω and P (Ω) the space of probability measures
on Ω. The notation µSt for the evolved measure comes from the setting with finite state spaces,
where measures can be seen as row vectors, similar to how functions can be seen as column vectors
and semigroups as matrices. In fact in this setting∫

Ω

fdµ = µf =
∑
x∈Ω

µ(x)f(x),

so that ∫
Ω

Stfdµ = µ(Stf) = (µSt)f =

∫
Ω

fdµSt.

This notion of an evolved measure allows us to move the two sources of randomness that are often
present in the systems we are working with, i.e. the random initial condition and the evolution of a
Markov process, into one measure. At times, this will be a useful tool for describing other objects
we are interested in (e.g. in Chapters 6 and 7 where we use an evolved measure to describe an
interacting particle system), and at other times deriving this evolved measure will be the goal of
our investigation (e.g. in Chapter 8 on propagation of chaos).
In looking at the interaction between the evolution of a Markov process and distribution of the
initial condition, two useful properties that the measure describing the initial distribution can have
(with respect to the Markov process) are invariance and reversibility. Both properties relate to the
measure being ‘unaffected’ by the evolution of the Markov process, where the exact meaning of this
is different between the two.

Definition 2.6 (Invariant measure). A measure µ ∈ P (Ω) is invariant (or ‘stationary’) if∫
Ω

Stfdµ =

∫
Ω

fdµ ∀f ∈ C(Ω). (7)
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For functions f in the domain of the generator of a Markov process, we can make a similar
statement using the generator instead of the semigroup.

Theorem 2.4. µ ∈ P (Ω) is an invariant measure if and only if∫
Ω

Lfdµ = 0 ∀f ∈ D(L).

Proof. From Chapter 2 of [14].

An invariant measure can be thought of as a measure that is unchanged under the evolution of the
Markov process. This property is easier to interpret in the finite setting of Markov chain. Although
before we talked about finite state spaces when we discussed interpreting functions, measures and
operators as vectors and matrices, our results will apply in countably infinite state spaces as well,
so we will focus on countable Markov processes. In this setting, the invariance condition is the
following.

For each t > 0 : µSt = µ or equivalently
∑
y∈Ω

µ(y)(St)(x, y) = µ(x) ∀x ∈ Ω, (8)

and Theorem 2.4 yields ∑
y∈Ω

µ(y)L(x, y) = 0 ∀x ∈ Ω, (9)

which can be interpreted as the probability flow in and out of any state being equal.
A stronger property of measures is that of reversibility. Its definition in general setting is the
following.

Definition 2.7 (Reversible measure for Markov processes). µ ∈ P (Ω) is reversible for a Markov
process with semigroup St if ∫

Ω

(Stf)gdµ =

∫
Ω

f(Stg)dµ ∀f, g ∈ C(Ω). (10)

In the countable setting reversibility can be interpreted as there being an equal probability flow
in both directions for each pair of states. For countable Ω, (10) can be shown to be equivalant to

for each t > 0 : µ(x)St(x, y) = µ(y)St(y, x) ∀x, y ∈ Ω,

or equivalently
µ(x)qx,y = qy,xµ(y) ∀x, y ∈ Ω, (11)

where qx,y = L(x, y) denotes the jumping rate between state x and y. (11) is often called the
“detailed balance equation”. Note that one recovers (8) by summing over j.

Proposition 2.2. Equation (10) is equivalent to the following two statements

1. St is self-adjoint on L2(µ),

2. L is self-adjoint on L2(µ).

Proof. See Chapter 2 of [14]
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3 Markov Duality

3.1 Definition and motivation

(Stochastic) duality is a powerful tool used in interacting particle systems, offering a way to connect
two different Markov processes through a so-called duality function. The formal definition of the
general form of duality, semigroup duality, is as follows.

Definition 3.1 (Semigroup Duality). Two Markov processes (ηt)t≥0 and (ξt)t≥0 taking values in Ω

and Ω̂ are said to be dual to each other with duality function D : Ω×Ω̂ → R if for every η ∈ Ω, ξ ∈ Ω̂
we have

EηD(ηt, ξ) = ÊξD(η, ξt).

If (ηt)t≥0 and (ξt)t≥0 are two copies of the same process, we say the process is self-dual and call
D : Ω× Ω → R the self-duality function.

We can also define duality between Markov processes in terms of their generators.

Definition 3.2 (Generator Duality). Let L be the generator of Markov process (xt)t≥0 and L̂ that

of (yt)t≥0, and let D : Ω× Ω̂ be such that D(·, y) is in the domain of L for each y ∈ Ω̂ and D(x, ·) is
in the domain of L̂ for each x ∈ Ω. Then we have generator duality between xt and yt if for every
x ∈ Ω and y ∈ Ω̂ we have

(LD(·, y))(x) = (L̂D(x, ·))(y). (12)

Reminiscent of Theorem 2.4 we have here that semigroup duality implies generator duality when
the duality function is in the domain of the generators. Furthermore we have the convenient finding
that if one of the two processes is finite, then semigroup duality implies generator duality. Since
in this thesis and practically in every application of interacting particle systems one of the two
processes connected via duality is finite, we can treat semigroup duality and generator duality as
equivalent. The usefulness of duality depends on which Markov processes we connect via a duality
function. Often the power of duality comes from the fact that a complex process can be shown to
be dual to a simpler one, allowing us to reduce a difficult problem to an easier problem. This can
take many forms. Following the lines of [4], we offer some examples of ways to use duality, many
of which are used in this thesis.

1. Continuous → discrete. We can connect a continuous and a discrete process with each other
using duality, which often means that we go from a process with an uncountable state space
to one with a finite or countably infinite state space. In this thesis we will see that the many
forms of Brownian Energy Process, which are continuous, are dual to the Symmetric Inclusion
Process, which is discrete.

2. Many → few. We can connect a process with an infinite total number of particles or total
amount of energy with a process with a finite number of particles. This is also what happens
when we connect the BEP and the SIP via duality in this thesis.

3. Non-equilibrium → absorbing state. This does not appear in this thesis, due to the absence
of (open) boundaries. In reservoir driven processes, where particles or energy may flow into
or out of the system at the boundaries, a persistent current may arise when the rate at which
this happens differs at different boundaries. This is what gives the system its non-equilibrium
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property. It has been found that such systems are dual to systems of random walkers where
the boundaries are absorbing sites, which are easier systems to analyze.

4. Micro → macro (hydrodynamic limits). This is the main topic of this thesis. We use duality
between different interacting particle systems at micro-scale in order to learn something about
the density profile at macro-scale.

5. Structure of measures of infinite interacting systems. In a context with interacting particle
systems in infinite volume, it is often difficult to make general statements about infinite-
dimensional measures. Here we can use duality in order to reduce a statement about an
infinite configuration to one involving finite many dual particles. In this thesis this will be
used when we discuss reversible and “local equilibrium” measure of the different versions of
the Brownian Energy Process.

6. Proving existence of processes in infinite volume. When working with an infinite volume, it
is not always clear that an interacting particle system is well-defined. In such a case, we can
prove the existing via the martingale problem, as we saw in Theorem 2.3. In such a proof,
duality with an interacting particle system that we know exists in infinite volume can be useful
in solving the martingale problem. This application of duality will be briefly mentioned in
this thesis in Section 5.3, when we argue why it is not clear whether the ABEP exists in
infinite volume with infinite total energy.

3.2 Duality in finite state spaces

At this point duality may still seem somewhat arbitrary, as we don’t have a method of arriving at a
duality relation, and since we don’t yet know anything about the specific duality functions, it is not
clear that these are useful for anything. The remainder of this section addresses this first issue by
giving a method for how duality relations between Markov processes can be found and expanded.
First this will be done for the relatively simply case of Markov processes with finite state spaces,
after which we will shift to the more general algebraic approach to duality. The duality relations
that are used throughout this thesis have already been established, so this section is mostly to
provide background information on how these were derived. For this reason this section will be
relatively brief and only cover a small portion of the existing literature.
First let us look at the definition of duality in this finite setting, again taking the approach of
treating functions like vectors and operators as matrices. When in the setting of Definition 3.2 with
finite Ω, (12) then becomes

(LD(·, y))(x) = (L̃D(x, ·))(y),(∑
z∈Ω

L(·, z)D(z, y)

)
(x) =

(∑
z∈Ω

L̃(·, z)D(x, z)

)
(y)∑

z∈Ω

L(x, z)D(z, y) =
∑
z∈Ω

D(x, z)L̃T (z, y)

(LD)(x, y) = (DL̃T )(x, y).

Thus in matrix formulation we write as duality condition

LD = DL̃T . (13)
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A usual approach to duality is to start out by showing that a process is self-dual. We can find self-
duality using the reversible measure introduced in the previous section. This self-duality function is
often called a “cheap” self-duality function, because it can be found relatively easy via the following
theorem.

Theorem 3.1. If µ is a reversible measure for Markov process with finite state space (Xt)t≥0 with
generator L, then

D(x, x′) =
1

µ(x)
δx,x′ ,

is a self-duality function for L, i.e. we have

LD = DLT .

Proof. Will simultaneously be proven with Theorem 3.2.

In similar fashion we can find a “cheap” duality function in the case where we don’t have
a reversible measure, but instead a stationary measure. In this case we don’t have self-duality
anymore, but duality between the process and its time-reversal.

Theorem 3.2. Suppose M is a stationary measure of (Xt)t≥0 with generator L and we define L̃
as the generator of the time-reversed process via

L̃(x, x′) =
M(x′)L(x′, x)

M(x)
.

Then

D(x, x′) =
1

M(x)
δx,x′ ,

is a duality function between Xt and the time reversed version, i.e. LD = DL̃T .

Proof.

(LD)(x, x′)− (DL̃T )(x, x′) =
∑
z∈Ω

L(x, z)D(z, x′)−
∑
z∈Ω

D(x, z)L̃T (z, x′)

=
∑
z∈Ω

L(x, z)D(z, x′)−
∑
z∈Ω

D(x, z)L̃(x′, z)

= L(x, x′)
1

M(x′)
− 1

M(x)
L̃(x′, x)

=
L(x, x′)

M(x′)
− L(x, x′)M(x)

M(x)M(x′)

= L(x, x′)− L(x, x′) = 0,

which proves Theorem 3.2. Theorem 3.1 then follows as a special case where L = L̃.

The existence of these so-called cheap (self-)duality functions is useful, because it hands us
a starting point in exploring duality relations. Next we will show that from an existing duality
function between two (possibly identical) processes we can find more duality functions. To do this
we first need the notion of symmetry.
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Definition 3.3 (Symmetry). A matrix S is a symmetry of operator L if S commutes with L, i.e.
LS − SL = 0.

This is a general definition of a symmetry. When L is the generator of a Markov chain and
we treat it as a matrix, S also takes the form of a matrix. When L is an arbitrary operator,
S : D(L) → D(L) is an operator such that

(LS)f = (SL)f for all f ∈ D(L).

Applying symmetries to duality functions allows us to find new duality functions.

Theorem 3.3.

1. If D is a self-duality function for L and S is a symmetry of L, then SD and DST are also
self-duality functions.

2. Suppose D is a duality function for L and L̂.
Then if S is a symmetry of L, then SD is a duality function between L and L̃ as well.
Similarly if S̃ is a symmetry of L̃, then DS̃T is a duality function between L and L̃.

Proof. Suppose LD = DL̃T and LS = SL, then

L(SD) = (LS)D = (SL)D = S(LD) = S(DL̃T ) = (SD)L̃T ,

which proves that (SD) is a duality function between L and L̃.
The proof for DS̃T is analogous, which proves 2., and 1. is again the special case where L = L̃.

These findings allow us to discover new duality functions of the same pair of processes. If we
then put certain restrictions on one of the processes we have connected with duality or take certain
scaling limits, we can change it to another process, often while retaining the duality relation.

3.3 Duality in uncountable state spaces

On top of being useful themselves, these duality results for finite state spaces are good at offering
an intuitive idea of the power and usefulness of duality. Furthermore, the duality results in con-
text of finite state spacs easily translate to countably infinite state spacs. Next, we will focus on
uncountable state spacs.
Following the lines of [5] we increase the level of generalization by considering generators which are

bounded operators on L2-spaces. Let H = L2(Ω,F ,P) and Ĥ = L2(Ω̂, F̂ , P̂) be two Hilbert spaces

with tensor product Hilbert space H ⊗ Ĥ = L2(Ω ⊗ Ω̂,P ⊗ P̂), and let L and L̂ be two Markov
generators on these respective spaces.
First, let us write the definition of duality in (12) purely in terms of operators and functions, similar
to (13) in the finite setting. In our context here we have that D ∈ H ⊗ Ĥ is a duality function
between L and L̂ if

(L⊗ I)D = (I ⊗ L̂)D. (14)

In this context, we do not have a straightforward approach for finding a ‘cheap’ (self-)duality
function, as we did in the finite setting in Theorem 3.2. Furthermore, even if we did, finding a
stationary or reversible measure is not straightforward either, as we do not have a useful analogue
to the detailed balance equation in this setting.
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In this setting, we do not have an exact analogue to Theorem 3.3, as the different operators involved
may have different domains, and it is not clear that the duality function in question lies in the
relevant operator domains. We do have the following theorem, which relates the notion of symmetry
to duality.

Theorem 3.4. The following are equivalent.

1. Let L be a generator on H and assume it has a symmetry, i.e. an operator S : H → H such
that [L, S] = 0. Then if S can be written in ‘kernel operator form’, i.e.

Sf(x) =

∫
Ω

D(x, y)f(y)dµ(y), (15)

then D is a self-duality function for L.

2. If D is a self-duality function, then S defined via (15) is a symmetry of L.

Proof. Assume 1. Then

LSf(x) =

∫
Ω

D(·, y)f(y)dµ(y)

 =

∫
Ω

(L⊗ I)D(x, y)f(y)dµ(y), and

SLf(y) =

∫
Ω

(D(x, y)Lf(y)dµ(y) =

∫
Ω

(I ⊗ L∗)D(x, y)f(y)dµ(y),

where L∗ denotes the adjoint of L in H, which is equal to L. Thus we find

(L⊗ I)D = (I ⊗ L)D.

Conversely we can go in the other direction to show 2. =⇒ 1.

This finding shows that still duality and symmetry are deeply interwoven. However, this theorem
does not provide a clear path towards finding duality functions, as it is not evident how to arrive at
such a symmetry in kernel operator form. This is where the difficulty of deriving duality functions
in uncountable state spaces lies. In fact, when we generalize further by considering unbounded
generators, which generally apply for interacting particle systems in infinite volume, even more
problems arise regarding domains of operators. For this reason, no general theorems exist for
deriving duality functions in an uncountable state space with unbounded operators. Our approach
in this thesis will therefore be start with duality in a finite setting, and then translate the findings
to another setting with (uncountably) infinite state spaces.
This can be achieved in two different ways. One of these is to take scaling limits of Markov processes
defined on countable state spaces, in a way such that duality is preserved for the resulting process
on an uncountable state space. In Theorem 4.4 this will yield a duality function between the BEP
and the SIP. The second approach requires us to analyze the algebraic properties of the generators
that we work with. We then continue our approach of increasing the level of generalization, such
that our exploration of duality between Markov generators turns into an exploration of different
representations of an algebra. This is the topic of the next section.
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3.4 Lie algebraic approach to duality via su(1,1)

In the previous sections we have explored how duality functions are found for one or two given
Markov generators. Turning this investigation around, we note that the duality relation between L
and L̂ with duality function D in the setting of Section 3.3

(L⊗ I)D = (I ⊗ L̂)D,

in general does not just hold for L and L̂, but for a family of operators on H and Ĥ respectively,
both of which can be shown to be an algebra. In this section we give a brief overview of the field
of study which provides a method for the construction of Markov generators, which satisfy certain
duality relations that we want. Sections 3.2 and 3.3 have made clear the importance of symmetries
in the study of duality. As we saw in Theorem 3.3 and Theorem 3.4, symmetries can be used in
order to derive new duality functions from existing ones. These symmetries of generators have a
natural algebraic structure. These algebraic structures provide guidelines for the construction of
new generators with many useful symmetries.
This has led to the emergence of a Lie algebraic approach to duality. It has been found that in
many practical cases, duality between two algebras (i.e. families of operators) is actually a duality
between two “intertwined” representations of the same Lie algebra. Furthermore a symmetry of
a generator is a manifestation of the symmetries that characterize the Lie algebra to which the
generator is associated. Because of this, when new generators are now constructed in the study of
interacting particle systems, they are often constructed via Lie-algebraic considerations that ensure
that they have useful symmetries and duality relations to other processes of interest. The details of
much of this lies outside of the scope of this thesis, requiring representation theory and other topics
from Lie algebras and Lie groups. For more about the background of the emerging Lie algebraic
approach to duality we refer to [4].
The takeaway for this thesis in practice is that each process that will be discussed can be written
via a representation of the su(1,1) Lie algebra. This algebra is defined in the following way:

Definition 3.4 (su(1,1)). The su(1,1) Lie algebra is defined through commutation relations

[K+,K−] = −2K0 [K0,K±] = ±K±. (16)

The su(1,1) algebra is an important Lie algebra in the study of theoretical physics, especially
quantum physics, and (more relevant here) stochastic processes and interacting particle systems.
By focusing our study on generators which can be written via a representation of this Lie algebra, we
ensure that they are dual to the other processes of this thesis, and that they have useful symmetries
from which duality functions are derived. When we introduce generators throughout this thesis, we
will show the connection to su(1,1) by writing them as a combination of operators which satisfy the
commutation relations in (16). We will then see that if we create a new generator via a systematic
transformation of these operators, duality is preserved. In this way duality can be interpreted as a
‘change of representation’ of the su(1,1) Lie algebra. All of the processes that are used in this thesis
have been (or will be) introduced in other studies, so while we allocate some portion of this thesis
on the creation of new generators, this just serves as background knowledge about the processes in
question.
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4 Interacting Particle Systems

4.1 Introduction

The interacting particle systems of interest in this thesis are Markov processes that describe the
transport of particles or a continuous quantity which is often interpreted as energy or momentum
(‘transport models’). They are uniquely defined by their generator via the theory laid out in Chapter
2, in particular the theorem of Hille-Yosida (Theorem 2.1).
We distinguish two main types of interacting particle systems, continuous and discrete. Discrete
interacting particle systems are continuous-time Markov jump processes describing the stochastic
behavior of particles moving on a lattice, which can be one- or multi-dimensional, and interacting
with each other locally. Continuous interacting particle systems are Markov diffusion processes
describing the diffusion of a continuous quantity, usually interpreted as energy, over a similar
lattice, where again there usually is interdependence between the amount of energy at sites and the
stochastic energy flow between them.
Interacting particle systems are often defined on a finite lattice. In this thesis however, most
processes are defined on the full integer line Z. We say they are processes in ”infinite volume”.
Since the generators of the processes are often defined as the sum of single-edge generators, each
acting on a specific edge in the lattice, these can easily be extended to Z by increasing the number
of single-edge generators to infinity with the number of sites. An advantage of this is that we don’t
have to deal with conditions at the boundary of the lattice. Problems may arise however when
we’re dealing with a net flow of energy due to asymmetry, or when we use nonlocal functions (i.e.
which ’look’ at the whole lattice). Both of these issues will come up in the next chapter about the
ABEP. For this chapter we will assume that any function on the space of configurations is local,
i.e. only depending on a finite subset of sites, and similarly we will focus on local measures. In the
next chapter we will be forced to look at nonlocal functions and measures, and we will discuss the
problems that arise as a result.
One of the simplest examples of an interacting particle system is that of Independent Random
Walkers (IRW). Calling this an interacting particle system may be a bit misleading, because its
main characteristic is that particles don’t interact with each other. We define n-IRW(k) as the
Markov process where n different particles jump independently from each other from their current
site on the integer line towards one of the two neighboring sites at a fixed rate of k.

Definition 4.1 (n-IRW(k)). Let |ξ| :=
∞∑

i=−∞
ξi denote the number of particles in configuration ξ

and let
Ωn := {ξ ∈ NZ

0 : |ξ| = n},

be the space of configurations on Z with n particles in total. The n-IRW(k) in infinite volume is
defined as the Markov process on Ωn with generator defined on local functions f : Ωn → R through

(
LIRWf

)
(ξ) =

∞∑
i=−∞

kξi(f(ξ
i,i−1)− 2f(ξ) + f(ξi,i+1)),

where ξi,j denotes the SIP-configuration ξ with one particles moved from site i to site j.
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4.2 Path-space measures

Interacting particle systems are defined on some state space Ω. In the trivial example of n-IRW(k)
we saw that Ω = Ωn. Elements of this state space are often called configurations and will be called
this in the rest of this thesis to distinguish them from other kinds of states. An IPS can be in a
deterministic or random state, where in the latter case we usually define some measure to signify
its distribution.
As the IPS evolves, the evolution of its configuration will create a trajectory, or path through Ω
through time. We write D([0, T ],Ω) to denote the space of càdlàg trajectories through Ω on time-
interval [0, T ]. Starting out with the easier deterministic case, we say that “path-space measure” Px

η

on D([0, T ],Ω) is the probability measure on D([0, T ],Ω) for the IPS (denoted with superscript ’x’),
starting at initial configuration η. As an example PIRW

η (ηs ∈ B ∀s ∈ [0, t]) denotes the probability
that as we evolve the IRW(k) with initial configuration η, its evolved configuration is in B the whole
trajectory up to time t. A similar notation is used for other operators associated with the IPS.
When the initial state is random, we will call the probability measures that quantify its distribution
‘configuration measures’, and they typically take the form µ : B(Ω) → [0, 1]. As described in
Definition 2.5, we can define an evolved measure to combine the evolution of the IPS with the
distribution of the initial state. The operator of such a path-space measure on D([0, T ],Ω) typically
looks like Px

µ, where subscript µ denotes the initial distribution. At times however, we want to
investigate both sources of randomness (i.e. initial distribution and evolution) separately, and
therefore we will write them out separately. To continue the example from before to showcase the
two different notations, we may write either the left or right-hand side in the following equation
to denote the probability of the IRW(k) being in B on the whole interval [0, t], starting out at a
random configuration with distribution µ:

PIRW
µ (ηs ∈ B ∀s ∈ [0, t]) =

∫
Ω

PIRW
η (ηs ∈ B ∀s ∈ [0, t])dµ(η).

4.3 The Symmetric Inclusion Process (SIP)

4.3.1 Definition

The Symmetric Inclusion Process (SIP) is an IPS that is an essential tool in this thesis. It is a
relatively simple process of jumping particles, where although in infinite volume its state space
is infinite, the number of configurations that can be directly reached from a given configuration
is finite. In the SIP a fixed number of particles move randomly on a lattice and attract each
other. Particles jump to the sites neighboring their current site at a fixed rate, with additional
jumps between neighboring particles towards each other at a rate proportional to the product of
the number of particles at both sites. Since jumps only occur between neighboring sites, and this
jumping rate only depends on the number of particles on either side, we can write the generator of
the SIP as a sum of so-called “single-edge generators”, each corresponding to a pair of neighboring
sites. The generator of the SIP(k), where parameter k denotes the fixed jumping rate of 2k, is given
through:

Definition 4.2 (SIP(k)). The SIP(k) in infinite volume is defined as the Markov process on NZ
0
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with generator defined on local functions f : NZ
0 → R

(
LSIPf

)
(η) =

∞∑
i=−∞

(
LSIP
i,i+1f

)
(η), (17)

with single-edge generators LSIP
i,i+1 given through(

LSIP
i,i+1f

)
(η) = ηi(2k + ηi+1)(f(η

i,i+1)− f(η)) + ηi+1(2k + ηi)(f(η
i+1,i)− f(η)). (18)

Notably the SIP(k) has as fixed jumping rate parameter of 2k, which means that if we were to
take away the attraction between particles, the SIP(k) would become the IRW(2k). This param-
eterization with a fixed rate of 2k is common practice, motivated by applications to spin models,
where spin k is a half-integer. For the SIP(k) there is no maximum on the amount of particles at
a given site and in total, which we see from its state space being NZ

0 . This means the total number
of particles may be either finite or grow to infinity, where in the finite case we have conservation
of the number of particles over time. The ability for the number of particles to grow indefinitely is
one of the two main reasons for our interest in the SIP in this thesis. As we will see later, when
we increase the amount of particles in the SIP, we will recover in the limit the Brownian Energy
Process (BEP), a finding which will help us to interpret that process.
At times however, the usefulness of working with the SIP comes from it having a finite number of
particles. In fact, the second and main reason for our interest in the SIP is its duality to the BEP
and the ABEP. When the point of using duality is to reduce a problem involving a difficult process
to one involving the SIP, the effectiveness of this is further amplified when the number of particles
is explicitly kept fixed at a finite constant. For this reason, we also consider the n-SIP(k), which
is the SIP(k) with n particles. Essentially the n-SIP and SIP are the same, but we like to have an
explicit name for when the number of particles is finite and fixed under scaling.

Definition 4.3 (n-SIP(k)). The n-SIP(k) in infinite volume is the Markov process on
Ωn = {ξ ∈ {0, . . . , n}Z : |ξ| = n} with generator LSIP defined on local functions with compact
support f : Ωn → R via (17) and (18).

Closely related to the SIP is the Asymmetric Inclusion Process (ASIP), which as the name
suggests is an asymmetric version of the SIP, where particles have a tendency to drift to the
right. The ASIP is constructed as a q-analog of the SIP, meaning the SIP is transformed in a way
parameterized by an asymmetry parameter q. Since this process is not very important to this thesis,
and some of the subtleties of this q-transformation require some work and notation to explain, we
refer to Appendix B for more about this process.

4.3.2 Duality

Next, we will use the theory laid out in Chapter 3 in order to find a self-duality function of the
SIP. Although we will not use this self-duality in answering the main questions of the thesis (i.e.
in proving the hydrodynamic limits of the BEP and ABEP), this helps us to better understand
our findings about the BEP and ABEP, which are closely related to the SIP. It will also be a
useful showcase for many of the concepts and techniques of the previous Chapter about duality in
a relatively simple setting.
We have already established that a configuration of the SIP in infinite volume can only jump to
countably many other configurations, but the division of LSIP into single-edge generators LSIP

i,i+1 we
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saw in (17) and (18), together with the finding that the reversible measure of the SIP is a product
measure (as we will see in Theorem 4.1), means that we end up in a setting similar to one with
finite state spaces. This means that we can use the theory from Chapter 3.2 concerning duality in
finite state spaces.
Before proving self-duality we will motivate our interest in the SIP we start by showing that the
generator of SIP can be written via a representation of the su(1,1) algebra.

Proposition 4.1. LSIP, given in (17) and (18), can be written via a representation of the su(1,1)
Lie algebra.

Proof. For i ∈ Z define discrete operators K+
i , K

−
i and K0

i , acting on local functions f : NZ
0 → R

as follows

K+
i f(η) = (2k + ηi)f(η + δi),

K−
i f(η) = ηif(η − δi), (19)

K0
i f(η) = (k + ηi)f(η).

Then one can check that these operators satisfy the su(1,1) commutation relations and

LSIP
i,i+1 = K+

i K
−
i+1 +K−

i K
+
i+1 − 2K0

iK
0
i+1 + 2k2. (20)

See [4] for explicit computations.

Next, we will show how to find a self-duality function for the SIP. As described in Chapter
3, the explorations of duality within an algebra often start with a ’cheap’ (self-)duality function,
found with the help of a stationary or reversible measure of the process. For the SIP we have the
following family of measures that are reversible (and stationary):

Theorem 4.1. The SIP(k) has a family of reversible and stationary measures with free parameter
θ given through

M2k,∞
θ (η) =

∞∏
i=−∞

θηiΓ(ηi + 2k)

ηi!Γ(2k)
, (21)

where Γ is the gamma function defined on a superset of R+ via

Γ(z) :=

∫ ∞

0

tz−1e−tdt.

Proof. Since M2k,∞
θ is a product measure, we can prove reversibility by looking at each of its

marginals seperately. Since we can also note that SIP-particles can only jump to a nearest neighbor,
this allows us for each marginal to ignore all but two sites, bringing us to a situation equivalent to
one in which the state space is finite. We can therefore interpret L as a matrix of transition rates and

use the detailed balance equation. Thus in order to prove reversibility of M2k,∞
θ (η) =

∞∏
i=−∞

mi(η)

it suffices to show for every i ∈ Z

mi(η)mi+1(η)L(η, η
i,i+1) = mi(η

i,i+1)mi+1(η
i,i+1)L(ηi,i+1, η),
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since mj(η
i,i+1) = mj(η) for j /∈ {i, i + 1}. Taking marginals mi from (21) and using the known

relation of the gamma function Γ(z + 1) = zΓ(z), we find

mi(η)mi+1(η)L(η, η
i,i+1)

mi(ηi,i+1)mi+1(ηi,i+1)L(ηi,i+1, η)
=

mi(η)

mi(ηi,i+1)

mi+1(η)

mi+1(ηi,i+1)

L(η, ηi,i+1)

L(ηi,i+1, η)

=
θ(ηi − 1 + 2k)

ηi

ηi+1 + 1

θ(ηi+1 + 2k)

ηi(2k + ηi+1)

(ηi+1 + 1)(2k + ηi − 1)

= 1.

This family of reversible measures, like the families of reversible measure for the other interacting
particle systems that we will see, benefits from the fact that the SIP has conservation of the total
number of particles. This fact makes it such that the SIP(k) has a family of reversible measures
(instead of a single or no reversible measure), where the parameter θ relates to the expected amount

of energy at a site, and thereby (since M2k,∞
θ is a product measure) quantifies the expected total

amount of energy if we were on a finite lattice. This latter point does not hold in this setting in
infinite volume, as for θ > 0 the total amount of energy is almost surely infinite.
We can use this family of reversible measures to find a useful self-duality function for the SIP.

Theorem 4.2. The SIP(k) is self-dual with self-duality function

DSIP(η, ξ) =

∞∏
i=−∞

dSIP(ηi, ξi), (22)

where self-duality polynomials dSIP are given trough

dSIP(m,n) =
n!

(n−m)!

Γ(2k)

Γ(2k +m)
1{m≤n}. (23)

Here the dual SIP(k) configuration ξ has a finite number of particles, so calling this number n,
(ξt)t≥0 is the n-SIP(k).

Proof. This was proven in [4]. Since the reversible measure in (21) is a product measure, we can
again treat each marginal separately and apply Theorem 3.1 to find cheap self-duality function

∞∏
i=∞

ηi!Γ(2k)

θηiΓ(ηi + 2k)
.

Noting that
∞∏

i=−∞
θηi = θ

∞∑
i=−∞

ηi
= θ|η|,

stays constant due to the preservation of the number of particles, we divide out this constant and
define cheap self-duality function Dch and polynomials dch for i ∈ Z via

Dch(η, ξ) :=

∞∏
i=−∞

dch(ηi, ξi) :=

∞∏
i=∞

ηi!Γ(2k)

Γ(ηi + 2k)
.
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The next step involves noting that eS
+
i = eK

+
i +K+

i+1 , with K+
j defined in (20), is a symmetry of

LSIP
i,i+1. Theorem 3.3 then tells us that if we apply eS

+
i to a self-duality function of the SIP(k), the

resulting function is a self-duality function as well. The proof is concluded by noting that

eS
+
i dch(ηi, ξi) = dSIP(ηi, ξi).

See [4] for more of the technicalities and computations.

The separation of duality-function DSIP into duality-polynomials dSIP that only take as input
the values of η and ξ at a single site, that we see in (22) and (23), is a useful simplification that we
will also see when we discuss duality between the BEP and the SIP. It allows us, when evaluating
the duality function integrated with respect to a product measure, to simplify this to a product of
duality-polynomials, each integrated with respect to a marginal measure.
One application of the self-duality of Theorem 4.2 is that we can connect two different versions of
the SIP via duality, where we let the number of particles for one of the two depend on some scaling
parameter and take a limit of this parameter, where for the other we keep the number of particles
fixed. In e.g. [20] this scaling is done in such a way that is useful in proving hydrodynamic limit
of the SIP. Alternatively, we can take a limit in such a way that the scaled SIP becomes the BEP,
which we will see in Theorem 4.3.
For a self-duality function of the ASIP we refer to Proposition B.1 in Appendix B.

4.4 The Brownian Energy Process (BEP)

4.4.1 Definition

Central in this thesis is the Brownian Energy Process (BEP), first introduced in [11]. This is a
continuous process modeling the stochastic transport of energy between sites on a lattice. It is
defined in the following way.

Definition 4.4 (BEP(k)). The BEP(k) in infinite volume is the Markov process on RZ
+ with gen-

erator

LBEP =

∞∑
i=−∞

LBEP
i,i+1, (24)

where single-edge generators LBEP
i,i+1 are defined on local f ∈ C∞

c (RZ
+) through

[
LBEP
i,i+1f

]
(y) = 2k(yi+1 − yi)

(
∂

∂yi
− ∂

∂yi+1

)
f(y) + yiyi+1

(
∂

∂yi
− ∂

∂yi+1

)2

f(y). (25)

Let us try to interpret this process. In the first term of the right-hand side of (25) we recognize
a deterministic flow from the site with more energy to its neighbor with less energy, at a constant
rate of 2k. In the second term we recognize a diffusion term, with energy flowing along edge (i, i+1)
in a way that is reminiscent of Brownian Motion.
This process makes more sense when we interpret it as a scaling limit of SIP.

Theorem 4.3. Let
{
(ηNt )t≥0

}
N∈N denote a sequence of realizations of the SIP(k) such that

lim
N→∞

1

N
ηN0 = y0 ∈ RZ

+.
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Then yt := lim
N→∞

1
N η

N
t is the BEP(k) starting from y0, where convergence is weak on path space,

i.e. for each local f ∈ C∞
c (RZ

+)

lim
N→∞

PSIP
η0

(
f

(
1

N
ηNt ∈ B

))
= PBEP

y0 (f(yt) ∈ B).

Proof. We follow the lines of [5], which proved a similar statement for the ASIP and the ABEP.
The Trotter-Kurtz theorem tells us that it suffices to show that for any such (ηN0 )N∈N, y0 and f we
have for every i ∈ Z,

lim
N→∞

(
LSIP
i,i+1fN

)
(ηN0 ) =

(
LBEP
i,i+1f

)
(y0),

where fN (η0) = f( 1
N η0). Omitting the subscript 0, we do this by taking the Taylor expansion of

LSIP
i,i+1fN (ηN ) and showing that the terms that don’t vanish with N → ∞ form the same expression

as LBEP
i,i+1f(y). Recall that the generator of the SIP is given through

(LSIP
i,i+1fN )(ηN ) = ηNi (2k+ηNi+1)

(
fN ((ηN )i,i+1)− f(ηN )

)
+ηNi+1(2k+η

N
i )
(
fN ((ηN )i+1,i)− fN (ηN )

)
.

The second-order Taylor approximations of these discrete gradients are given through

fN

((
ηN
)i,i+1

)
− fN (ηN ) ≈ − 1

N

(
∂

∂yi
− ∂

∂yi+1

)
f

(
1

N
ηN
)
+

1

2N2

(
∂

∂yi
− ∂

∂yi+1

)2

f

(
1

N
ηN
)
,

and

fN

((
ηN
)i+1,i

)
− fN (ηN ) ≈ 1

N

(
∂

∂yi
− ∂

∂yi+1

)
f

(
1

N
ηN
)
+

1

2N2

(
∂

∂yi
− ∂

∂yi+1

)2

f

(
1

N
ηN
)
,

where the difference between the left-hand and right-hand sites is O(N−3). We therefore find

(LSIP
i,i+1fN )(ηN ) =

1

N

(
2k(ηNi+1 − ηNi ) + ηNi η

N
i+1 − ηNi η

N
i+1

)( ∂

∂yi
− ∂

∂yi+1

)
f

(
1

N
ηN
)

(26)

+
1

2N2

(
2k(ηNi + ηNi+1) + 2ηNi η

N
i+1

)( ∂

∂yi
− ∂

∂yi+1

)2

f

(
1

N
ηN
)
+O(N−3). (27)

Taking the limit N → ∞ then yields (LBEP
i,i+1f)(y).

This finding makes it easier to interpret the BEP. The first term of the single-edge BEP generator

2k(yi − yi−1)
(

∂
∂yi

− ∂
∂yi+1

)
, corresponding to a linear drift in the direction of the site with lower

energy, follows from taking the limit N → ∞ of (26). We see that the jumps resulting from
attraction of SIP-particles cancel out (we have both ±ηNi ηNi+1), so this drift is the result of a
difference in the number of particles jumping symmetrically to their neighbor at fixed rate of 2k.

The second term yiyi+1

(
∂
∂yi

− ∂
∂yi+1

)2
, corresponding to diffusion, follows from taking the limit of

(27). Since 1
2N2 (2k(η

N
i + ηNi+1)) → 0 as N → ∞, this diffusion term is entirely the result of the

attraction between particles.
Notably in the BEP the total amount of energy is conserved. This makes sense when we view it as
a scaling limit of the SIP, where the total number of particles in conserved.
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4.4.2 Duality

In this subsection we will establish duality between the BEP and the SIP, by building upon the self-
duality for the SIP established in Theorem 4.2. Furthermore, we will give the family of reversible
measures for the BEP. These reversible measures will not be used for duality with the SIP or in
the hydrodynamic limit of the BEP in general, but a modification of them will appear in Chapter
8, where we prove propagation of chaos for the BEP and the ABEP.
Before giving the duality function between the BEP and SIP, we will first show the relation of the
BEP to the su(1,1) Lie algebra.

Proposition 4.2. LBEP can be written via a representation of the su(1,1) Lie algebra.

Proof. For i ∈ Z we define continuous operators K+
i , K

−
i and K0

i as follows

K+
i f(y) = yif(y),

K−
i f(y) = yi

∂2f(y)

∂y2i
+ 2k

∂f(y)

∂yi
, (28)

K0
i f(y) = yi

∂f(y)

∂yi
+ kf(y).

Then these operators satisfy the su(1,1) commutation relations and

LBEP
i,i+1 = K+

i K
−
i+1 +K−

i K
+
i+1 − 2K0

iK0
i+1 + 2k2. (29)

See [4] for calculations.

Next, we have duality between the BEP(k) and the n-SIP(k).

Theorem 4.4. The BEP(k) is dual to the n-SIP(k) with duality function

Db(y, ξ) =

∞∏
i=−∞

db(y, ξi) with d
b(yi, ξi) =

Γ(2k)

Γ(2k + ξi)
yξii . (30)

Proof. There are different ways to prove this theorem. In [11] the construction of LBEP
i,i+1 via algebraic

representation of su(1,1), given here in (28) and (29), is compared to that of LSIP
i,i+1 in (19) and (20).

Functions Ci(yi, ξi) are constructed that satisfy

Ka
i Ci = CiKai for a ∈ {−,+, 0},

so that these functions correspond to a change in representation. Then the duality function is
contructed via these Ci.
A second approach to proving this theorem is to explicitly calculate

(
LBEP
i,i+1D

b(·, ξ)
)
(y) and(

LSIP
i,i+1D

b(y, ·)
)
(ξ) and show that these are equal. This may be the most straightforward approach,

but it does not offer any explanation about how the duality function was found and how to extend
our findings in the future.
Here we will work out a third approach, which aligns most with the theory discussed so far. This
approach is to start with self-duality between two SIP-configurations, and then for one of these take
the scaling limit of Theorem 4.3, turning it into the BEP.
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We construct the configurations in similar manner to Theorem 4.3 and let (ηN )N∈N and (yN )N∈N
be sequences of SIP(k) and BEP(k)-configurations respectively such that

lim
N→∞

(
yN − 1

N
ηN
)

= 0 and lim
N→∞

yN = y ∈ RZ
+.

Then we will show that

lim
N→∞

DSIP
(
ηN , ξ

)
Db(NyN , ξ)

= 1,

where we take the fraction (and not the difference) to avoid problems that may arise as a result of
these duality functions growing to infinity as N grows to infinity.
We note that as N → ∞, ηNi → ∞ for every i ∈ Z, with the trivial exception of yNi = 0. As a result

ηNi !

(ηNi −ξi)!
, which we see in DSIP(ηN , ξ) becomes indistinguishable from (ηNi )ξi ≈ (NyN )ξi , which we

see in Db(NyN , ξ). Furthermore this means that lim
N→∞

ηNi > ξi for every i. Thus we find

lim
N→∞

DSIP
(
ηN , ξ

)
Db(NyN , ξ)

= lim
N→∞

∞∏
i=−∞

ηNi !

(ηNi − ξi)!(NyNi )ξi
1{ξi≤ηNi } = 1.

The fact that ξ, being the n-SIP, only has a finite number of particles, is crucial for using
Db(y, ξ). Had this not been the case, then the infinite product in (30) could potentially result in
Db either converging to 0 or not converging at all. Since db(yi, 0) = 1, Db(y, ξ) now reduces to a
finite product of polynomials, so that we do not have to worry about convergence. Furthermore,
when we wish to integrate Db(y, ξ) over a product measure ν = ⊗i∈Zνi, then this reduces to∫

Db(y, ξ)dν =
∏
i:ξi ̸=0

∫
db(yi, ξi)dνi.

This duality result will be essential throughout this thesis.
Unrelated to this duality between the BEP and the SIP, but important for Chapter 8 on the
propagation of chaos, we also have a family of reversible measures of the BEP(k).

Theorem 4.5. The BEP(k) has reversible and stationary measures in the form of products of
Gamma distributions with shape parameter 2k and constant scale parameter θ, which may be chosen
freely, i.e.

ν2k,∞θ (dy) =

∞∏
i=−∞

ν2kθ (dyi) =

∞∏
i=−∞

1

θ2k
y2k−1
i

Γ(2k)
e−yi/θdyi. (31)

Proof. We start by showing that ν2k,∞θ is an invariant measure for the BEP. The key to this is the
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following finding about the duality-polynomial between the BEP and the SIP from (30),∫
d(n, yi)ν

2k
θ (dyi) =

∫
R

1

θ2k
y2k−1
i

Γ(2k)
e−yi/θ

yni Γ(2k)

Γ(2k + n)
dyi

=

∫
R

θ2k−1+n

θ2k
(yi/θ)

2k−1+n

Γ(2k + n)
e−yi/θdyi

=
θn

Γ(2k + n)

∫
R
(yi/θ)

2k−1+ne−yi/θd(yi/θ)

=
θn

Γ(2k + n)
Γ(2k + n),

so that we find ∫
d(n, yi)ν

2k
θ (dyi) = θn. (32)

This finding allows us to use duality between the BEP and the n-SIP in order to show that∫
EBEP
y [Db(yt, ξ)]ν

2k,∞
θ (dy) =

∫
Db(y, ξ)ν2k,∞θ (dy),

for any BEP-configuration y and n-SIP-configuration ξ. Since through our choice of ξ we can create
any polynomial, and the set of all polynomials is dense in the set of local smooth functions on RZ

+,
this means the condition for invariance (7) is satisfied. Indeed we have∫

Db(y, ξ)ν2k,∞θ (dy) =

∞∏
i=−∞

∫
db(yi, ξi)ν

2k
θ (dyi)

=
∏
i=−∞

θξi

= θ|ξ|,

and ∫
EBEP
y [Db(yt, ξ)]ν

2k,∞
θ (dy) =

∫
EBEP
y [Db(yt, ξ)]ν

2k,∞
θ (dy)

=

∫
ESIP
ξ [Db(y, ξt)]ν

2k,∞
θ (dy)

= ESIP
ξ

[∫
θ|ξt|ν2k,∞θ (dy)

]
= ESIP

ξ

[
θ|ξt|

]
= θ|ξ|,

where in the last step we used the conservation of the number of particles. Via similar arguments
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we find reversibility of ν2k,∞θ ,∫
Db(y, ξ)EBEP

y [Db(yt, η)]dν
2k,∞
θ (y) = ESIP

η

[∫
Db(y, ξ)Db(y, ηt)dν

2k,∞
θ (y)

]
= ESIP

η

[∫
Db(y, ξ + ηt)dν

2k,∞
θ (y)

]
= ESIP

η

[
θ|ξ|+|ηt|

]
= ESIP

ξ

[
θ|ξt|+|η|

]
=

∫
EBEP
ξ

[
Db(yt, ξ)

]
Db(y, η)dν2k,∞θ (y).

Like the reversible measure for the SIP(k) M2k,∞
θ , ν2k,∞θ is parameterized by θ, which relates

to the expected amount of energy under this measure. In fact from (32) we find that the profile of

ν2k,∞θ is given trough ∫
yiν

2k,∞
θ (dy) =

∫
d(y, 1)ν2kθ (dyi) = θ,

so that θ is exactly equal to the expected energy at each site under ν2k,∞θ .

One may note that ν2k,∞θ (dy), being an infinite product measure, is not a local measure. However,
each of its marginals ν2kθ (dyi) is a local measure, as it only depends on y through yi. Therefore
when we work with local function, i.e. functions only depending on yi for finitely many sites i, we
only need to concern ourselves with finitely many marginal measures, and the marginals working
on yi which do not appear in the function will simply integrate to 1. When we speak of convergence
of measures in this infinite setting, this is usually refers to convergence of an arbitrary local test
function integrated with respect to these measures. This will come up in Section 6.2, when weak
convergence is discussed.
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5 The (Dynamic) Asymmetric Brownian Energy Process (ABEP
/ DABEP)

5.1 Definition

The ABEP is the asymmetric version of the BEP, and the topic of much of the new research in
this thesis. It was first introduced in [5], a paper that is of central importance in this thesis. The
ABEP(σ, k) with asymmetry parameter σ is defined as follows.

Definition 5.1 (ABEP(σ,k)). Let Ωf :=

{
x ∈ RZ

+ :
∞∑

i=−∞
xi <∞

}
be the subspace of configuration

space RZ
+ consisting of the configurations with finite energy. Then the ABEP(σ, k) is the Markov

process on Ωf with generator

LABEP =

∞∑
i=−∞

LABEP
i,i+1 with for local f ∈ C∞

c (Ωf )

[
LABEP
i,i+1 f

]
(x) =

1

4σ2
(1− e−2σxi)(e2σxi+1 − 1)

(
∂

∂xi
− ∂

∂xi+1

)2

f(x)

− 1

2σ

{
(1− e−2σxi)(e2σxi+1 − 1) + 2k(2− e−2σxi − e2σxi+1)

}( ∂

∂xi
− ∂

∂xi+1

)
f(x).

Similar to how the BEP arises as a scaling limit of the SIP, we can show that the ABEP arises as
an analogous scaling limit of the ASIP. For this, we refer to Proposition B.2 in Appendix B. We can
think of the ABEP as a version of the BEP where there will be a tendency for a current of energy
to arise to the right side due to the asymmetry. In fact, one can prove the following proposition.

Proposition 5.1. Let xt be the ABEP starting out at x ∈ Ωf and denote by Ji(t) = Ei(xt)−Ei(x)
the net current through site i. Then

EABEP
x

[
e−2σJi(t)

]
=

∞∑
n=−∞

e−2σ(En(x)−Ei(x))PIRW (l(t) = n|l(0) = i) ,

where l(t) denotes the location of a single random walker at time t.

Proof. See [5].

This current is consequential to the space on which we can define the ABEP. Notably in Defi-
nition 5.1 we defined the ABEP on Ωf , a subspace of RZ

+ with the additional constraint the total
energy of an ABEP-configuration x is finite. The reason for this is that it has not been proven
that the ABEP in infinite volume exists without this constraint. As we can see from Proposition
5.1, with an infinite amount of energy there may arise an infinitely big current spread out over the
integer line. It is conceivable that an infinitely big part of this current will accumulate to an increas-
ingly small interval, eventually creating a singularity where there is an infinite amount of energy
on a single site, making the process ill-defined. Until the existence of the ABEP in infinite volume
with infinite energy is proven, likely via duality with well-defined processes on infinite volume such
as the SIP, the exploration of the ABEP will focus on configurations with finite energy. One can
easily see that if we let asymmetry parameter σ decrease to 0, the generator of the ABEP(σ, k)
reduces to that of the BEP(k).
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5.2 Mapping from the ABEP to the BEP

We ended the last paragraph by making the claim that if we let the asymmetry disappear by taking
the limit σ ↓ 0, the ABEP turns into the BEP. There is another, interesting way in which the
ABEP can be reduced to the more workable BEP. Given that x is a configuration of ABEP(σ, k),
we introduce transformation g given through

g(x) = (gi(x), i ∈ Z) with gi(x) =
e−2σEi+1(x) − e2σEi(x)

2σ
, (33)

where the function

Ei : RZ
+ → (R+ ∪ {∞}) , given through Ei(x) :=

∞∑
l=i

xl,

denotes the partial energy to the right of site i. Note that for each i, gi is a nonlocal function, as it
depends on the value of x at infinitely many sites. We then claim that if (xt)t≥0 is the ABEP(σ, k)
starting out from x, then (g(xt))t≥0 is the BEP(k) starting out from g(x). This finding is similar
to the approach in [10], where the author applied a similar transformation to the Asymmetric
Symmetric Exclusion Process (ASEP), which produced the symmetric version (SEP). The type
of transformation in (33) can be seen as a microscopic version of the Cole-Hopf transformation,
introduced in [13], a transformation that was used in order to solve the viscous Burgers equation.
In the proof of the hydrodynamic limit of the ABEP in Chapter 7, we will see that this microscopic
version (i.e. looking at energy levels at individual sites) of the Cole-Hopf transformation will lead
to the classic Cole-Hopf transformation of the emerging density field at macroscopic scale, which
we then use in order to derive the PDE for the density field.
The main part of the proof of the claim that (g(xt))t≥0 is the BEP consists of showing that applying
the ABEP-generator on a nested function (f ◦ g)(x) is the same as applying the BEP-generator
directly on f(g(x)). Then, by using this equality to show that g(xt) solves the martingale problem
associated with the generator of BEP(k), we find that g(xt) is the BEP(k).

Lemma 5.1. for every local f ∈ C∞
c (RZ

+) we have[
LABEPf ◦ g

]
(x) =

[
LBEPf

]
(g(x)). (34)

Proof. Straightforward calculation on gi(x) =
e−2σEi+1(x)−e−2σEi(x)

2σ yields

∂

∂xi
gj(x) =


e−2σEi(x) − e−2σEi+1(x) for j < i,

e−2σEi(x) for j = i,

0 for j > i,

(35)

so that (
∂

∂xi
− ∂

∂xi+1

)
gj(x) =


e−2σEi+1(x) for j = i,

−e−2σEi+1(x) for j = i+ 1,

0 otherwise.

Similarly, the second derivative is:

(
∂

∂xi
− ∂

∂xi+1

)2

gj(x) =


2σe−2σEi+1(x) for j = i,

−2σe−2σEi+1(x) for j = i+ 1,

0 otherwise.
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Denote ∂i :=
∂
∂xi

. Then

(∂i − ∂i+1)(f ◦ g)(x) =
∑
j

∂f(g)

∂gj
(∂i − ∂i+1)gj(x) =

∂f(g)

∂gi
e−2σEi+1(x) − ∂f(g)

∂gi+1
e−2σEi+1(x).

If we split the ABEP generator into two via LABEP
i,i+1 = L1

i,i+1 + L2
i,i+1 with

L1
i,i+1g(x) := −k

σ
(2− e−2σxi − e2σxi+1)(∂i − ∂i+1)g(x),

then we get

[L1
i,i+1(f ◦ g)](x) = −k

σ
(2− e−2σxi − e2σxi+1)e−2σEi+1(x)

[(
∂

∂gi
− ∂

∂gi+1

)
f

]
◦ g(x)

= 2k(−e−2σEi(x) + 2e−2σEi+1(x) − e−2σEi+2(x))

(
∂

∂gi
− ∂

∂gi+1

)
f(g(x))

= 2k(gi(x)− gi+1(x))

(
∂

∂gi(x)
− ∂

∂gi+1(x)

)
f(g(x)), (36)

where we recognize part of the BEP generator.
Similarly

(∂i − ∂i+1)
2(f ◦ g)(x) = (∂i − ∂i+1)

∑
j

∂f

∂gj
(∂i − ∂i+1)gj(x)


=
∑
j

∑
k

∂2f

∂gj∂gk
[(∂i − ∂i+1)gj ] [(∂i − ∂i+1)gk] +

∑
j

∂f

∂gj
(∂i − ∂i+1)

2gj(x)

=
∂2f

∂g2i
[(∂i − ∂i+1)gi]

2 + 2
∂2f

∂gi∂gi+1
[(∂i − ∂i+1)gi][(∂i − ∂i+1)gi+1]

+
∂2f

∂g2i+1

[(∂i − ∂i+1)gi+1]
2 +

∂f

∂gi
(∂i − ∂i+1)

2gi +
∂f

∂i+1
(∂i − ∂i+1)gi+1.

This means that the second part of the generator, given by

[L2
i,i+1f ](x) : =

1

4σ2
(1− e−2σxi)(e2σxi+1 − 1)(∂i − ∂i+1)

2f(x)

− 1

2σ
(1− e−2σxi)(e2σxi+1 − 1)(1− e−2σxi)(∂i − ∂i+1)f(x),
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yields

[
L2
i,i+1(f ◦ g)

]
(x) =

1

4σ2
(1− e−2σxi)(e2σxi+1 − 1)

[
(e−2σEi+1(x))2

∂2f

∂g2i

+2(e−2σEi+1)(−e−2σEi+1(x))
∂2f

∂gi∂gi+1
+ (e−2σEi+1(x)(x))2

∂2f

∂g2i+1

]
+

1

4σ2
(1− e−2σxi)(e2σxi+1 − 1)

[
2σe−2σEi+1(x)

∂f

∂gi
− 2σe−2σEi+1(x)

∂f

∂gi+1

]
− 1

2σ
(e−2σxi+1 − 1)e−2σEi+1(x)

(
∂f

∂gi
− ∂f

∂gi+1

)
=

1

4σ2
(e−2σEi+1(x) − e−2σEi(x))(e−2σEi+2(x) − e−2σEi+1(x))

(
∂

∂gi
− ∂

∂gi+1

)2

f(g(x))

= gigi+1

(
∂

∂gi
− ∂

∂gi+1

)2

f(g(x)). (37)

Combining (36) and (37) gives us

[LABEP
i,i+1 (f ◦ g)](x) = [L1

i,i+1(f ◦ g)](x) + [L2
i,i+1(f ◦ g)](x)

= 2k(gi − gi+1)

(
∂

∂gi
− ∂

∂gi+1

)
f(g(x)) + gigi+1

(
∂

∂gi
− ∂

∂gi+1

)2

f(g(x))

= [LBEP
i,i+1f ](g(x)).

This holds for all i ∈ Z so that we can conclude the proof of Lemma 5.1 via

[LABEPf ◦ g](x) =
∞∑

i=−∞
[LABEP
i,i+1 f ◦ g](x) =

∞∑
i=−∞

[LBEP
i,i+1f ](g(x)) = [LBEPf ](g(x)).

In the use of map g we see again a need for the requirement of finite energy (
∑
i xi < ∞). If

this requirement is relaxed, then we can end up with a configuration x such that for a pair of sites
we have Ei(x) = Ei+1(x) = ∞, and as a result gi(x) = 0. Although strictly speaking Lemma 5.1
still holds, this is trivially because both sides of (34) are equal to 0. Using map g would mean
mapping the ABEP-configuration to a BEP-configuration consisting of just zero’s, which loses all
information about the process. We continue by concluding from Lemma 5.1 that g(xt) is the ABEP.

Theorem 5.2. If (xt)t≥0 is the ABEP(σ, k) starting out at x, then (g(xt))t≥0 is the BEP(k)
starting out at g(x).

Proof. We prove Theorem 5.2 by showing that showing that g(xt) solves the martingale problem
associated with LABEP. We know that since xt is the ABEP(σ, k), it must solve the martingale
problem associated to LABEP, which means that

Mt := ϕ(xt)− ϕ(x0)−
t∫

0

(LABEPϕ)(xs)ds,
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is a martingale for any suitable function ϕ. Taking ϕ := f ◦ g for any suitable f tells us

Mt = (f ◦ g)(xt)− (f ◦ g)(x0)−
t∫

0

(LABEPf ◦ g)(xs)ds

= f(g(xt))− f(g(x0))−
t∫

0

(LBEPf)(g(xs))ds

= f(gt)− f(g0)−
t∫

0

(LBEPf)(gs)ds.

This means that gt := g(xt) is the solution to the martingale problem associated to LBEP. By
uniqueness of this solution (Theorem 2.3), g(xt) is the BEP.

We can similarly map in the other direction, transforming the BEP(k) into the ABEP(σ,k).

Corollary 5.1. The inverse of map g from (33) exists and maps a BEP(k) to an ABEP(σ, k). It
is given through

g−1(y) =
1

2σ
ln

{
1− 2σEi+1(y)

1− 2σEi(y)

}
. (38)

Proof. Let

yi = gi(x) =
e−2σEi+1(x) − e−2σEi(x)

2σ
.

Then
2σyi = e−2σEi+1(x) − e−2σEi(x),

so that summing terms of yi yields

2σ

∞∑
j=i

yj =

∞∑
j=i

e−2σEj+1(x) − e−2σEj(x) = 1− e−2σEi(x),

which means
1− 2σEi(y) = e−2σEi(x),

and

− ln(1− 2σEi(y))

2σ
= Ei(x).

Similarly

Ei+1(x) = − ln(1− 2σEi+1(y)

2σ
,

so that

xi = Ei(x)− Ei+1(x) =
1

2σ
ln

{
1− 2σEi+1(y)

1− 2σEi(y)

}
.
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One may note that the method of this proof breaks down when Ei(y) ≥ 1
2σ , which tells us

g−1 does not have full domain, meaning we can’t map every BEP-configuration to a corresponding
ABEP-configuration using this map. This is not a problem for our purposes in this thesis, as
we only wish to convert the ABEP into the more workable BEP using g, which is defined for all
ABEP configurations. Thus whenever we need the inverse map g−1, we are in a situation where the
BEP-configuration we are working with was created from an ABEP-configuration, ensuring that
the BEP-configuration is in D(g−1).

5.3 Duality

The maps g and g−1 between the BEP and ABEP provide the key to duality and reversibility for
the ABEP. Applying these maps will allow us to derive results for the ABEP directly from those
of the BEP. In this section we will explain how g and g−1 allow us to derive a duality function
between the ABEP and the SIP from the duality function of the BEP and the SIP.
Before we give the duality function between the ABEP and the SIP, we will first show that with
these maps we can construct operators Cg and Cg−1 corresponding to a change of representation of
the su(1,1) Lie algebra, allowing us to write LABEP via a representation of su(1,1).

Proposition 5.2. LABEP can be written via a representation of the su(1,1) Lie algebra.

Proof. We use the fact that the ABEP and BEP can be related to each other via transformation g
to write LABEP via a representation of su(1,1). Let K+

i , K
−
i and K0

i be the operators from (28) to
define LBEP via (29). Then

K̃ai = Cg ◦ Kai ◦ Cg−1 ,

with a ∈ {+,−, 0} and

(Cg−1f)(y) = (f ◦ g−1)(y),

(Cgf)(x) = (f ◦ g)(x),

satisfy the su(1,1) commutation relations and

LABEP =

∞∑
i=−∞

(
K̃+
i K̃

−
i+1 + K̃−

i K̃
+
i+1 − 2K̃0

i K̃0
i+1 + 2k2

)
.

See [5] for further elaboration.

Similarly we use g in order to derive a duality function of the ABEP and the SIP from Db.

Theorem 5.3. The ABEP(σ, k) is dual to the n-SIP(k) with duality function

Da(x, ξ) =

∞∏
i=−∞

Γ(2k)

Γ(2k + ξi)

(
e−2σEi+1(x) − e2σEi(x)

2σ

)ξi
.

Proof. We recognize that Da(x, ξ) = Db(g(x), ξ). Then duality follows from the duality of BEP
and SIP through [

LABEPDa(·, ξ)
]
(x) =

[
LABEPDb(g(·), ξ)

]
(x)

=
[
LBEPDb(·, ξ)

]
(g(x))

=
[
LSIPDb(g(x), ·)

]
(ξ)

=
[
LSIPDa(x, ·)

]
(ξ).
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Again we can split duality-function D into an infinite product of duality polynomials, but this
time this takes a different form. We have

Da(x, ξ) =

∞∏
i=−∞

dai (x, ξi) with d
a
i (x, ξi) =

Γ(2k)

Γ(2k + ξi)

(
e−2σEi+1(x) − e−2σEi(x)

2σ

)ξi
,

where the nonlocal nature of Da is clear from the presence of Ei(x) and Ei+1(x) in this expression.
As a result of this nonlocality, we have for configurations x with an infinite amount of energy to
the right side, i.e. for any i ∈ Z

Ei(x) = Ei+1(x) = ∞,

that any duality polynomial is equal to 0, i.e.

dai (x, ξi) = 0.

As a results for any ξ ∈ Ωn, D
a(x, ξ) = 0 no matter how this infinite amount of energy in x is

distributed along the sites, making the duality function meaningless. Thus in practice we can only
use this duality function when the total amount of energy is finite. This makes sense in light of our
claim in Section 5.1 that it is not clear that the ABEP exists in infinite volume with infinite energy.
Had we not had the issue that g(x) = 0 for x ∈ RZ

+ such that |x| = ∞, then the existence of the
ABEP with infinite energy may be proven via the martingale problem (Theorem 2.3) facilitated by
this duality function.

5.4 Pushforward and reversible measure

In this section we will show how the distribution of an ABEP(σ,k) configuration xt relates to
a BEP(k) configuration yt, constructed via this map g from (33) by introducing the so-called
’pushforward measure’. This pushforward measure is derived from a measure on a finite state space
and a function with that maps from and to finite-dimensional state spaces. We will therefore start
in this context, and only later investigate whether we can generalize our results to the infinitely-
dimensional, nonlocal setting.

Theorem 5.4. If X ∈ Rn is a random vector distributed according to measure µ, then for a function
f : Rn → Rm whose inverse f−1 exists, f(X) is distributed according to

ν :=
(
µ · det(J (f−1))

)
◦ f−1,

where J (·) denotes the Jacobian matrix. ν is called the pushforward measure of µ by f .

Proof. Let Y = f(X). Our goal is to show that

ν(Y ∈ B) = µ(f(X) ∈ B) = µ(X ∈ f−1(B)).
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Let the density of µ be given by ψ(x)dx = µ(dx). We find by change of variable x = f−1(y),

µ(X ∈ f−1(B)) =

∫
f−1(B)

ψ(x)dx

=

∫
B

ψ(f−1(y))
∣∣J (f−1(y))

∣∣ dy
=
((
µ ·
∣∣J (f−1)

∣∣) ◦ f−1
)
(Y ∈ B)

= ν(Y ∈ B).

With this pushforward measure we can find a family of reversible measures for the
ABEP(σ, k) in finite volume. We do this by defining x = (xi, i ∈ [−L,L]∩Z) to be the ABEP(σ, k)
on [−L,L], with closed boundaries, meaning sites −L and L are only connected to −L+1 and L−1
respectively. This choice of closed boundaries has been made because this produces a situation most
similar to that of infinite volume, in the sense that the process is only driven by energy transport
between neighboring sites and we have conservation of total energy. For more about the ABEP
defined on an interval with closed boundaries we again refer to [5], where this approach was taken.
The following theorem gives the family of reversible measures for the ABEP on finite volume with
closed boundaries. The proof follows the lines of [3], where the same was proven, except in a setting
with open boundaries, i.e. reservoirs at the boundaries with equal fixed energy level (‘temperature’).
The existence of these reservoirs in general leads to much different dynamics, but for the reversible
measure the proof works out in almost exactly the same way. The only difference is that in our
setting we end up with a parameter θ, which we can freely choose, representing the expected mean
temperature of the measure of the BEP from which the measure of the ABEP is constructed, where
in the setting of [3] this value is determined by the temperature of the reservoirs.

Theorem 5.5. Let Ẽi(x) :=
L∑
j=i

xj denote the partial energy in finite volume. Then

µ2k,L
θ (dx) =

L∏
i=−L

(
e2σxi − 1

)2k−1
e−4kσxi(i+L+1)

θ2k2σΓ(2k)
exp

(
e−2σẼi(x) − e−2σẼi+1(x)

2σθ

)
dxi, (39)

is a reversible measure for the ABEP in finite volume.

Proof. Let g̃ denote the finite-volume analogue to map g in (33) with Ẽi instead of Ei, and let

ν2k,Lθ be the reversible measure of the BEP with the same marginals as ν2k,∞θ in (31), but defined

on [−L,L]. Taking the pushforward measure of ν2k,Lθ by g̃ yields

µ2k,L
θ =

(
ν2k,Lθ · |J |

)
◦ g̃.

From (35) we see that the Jacobian is an upper triangular matrix, which means that its determinant
is equal to the product of the values on the diagonal, i.e.

|J (g̃(·))| (x) =
∏
i∈S

e−2σEi(x).
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Denoting fY (y)dy := ν2k,Lθ (dy) and fX(x)dx := µ2k,L
θ (dx) we find

fX(x) = ((fY (·) |J (·)|) ◦ g̃) (x)
= fY (g̃(x)) |J (g̃(·))| (x)

=
∏
i∈S

1

θ2k
gi(x)

2k−1

Γ(2k)
e−gi(x)/θe−2σẼi(x)

=
∏
i∈S

(
e−2σEi+1(x) − e−2σẼi(x)

)2k−1

e−2σẼi(x)

θ2k2σΓ(2k)
exp

(
e−2σẼi(x) − e−2σẼi+1(x)

2σθ

)

=
∏
i∈S

(
e2σxi − 1

)2k−1
e−4kσẼi(x)

θ2k2σΓ(2k)
exp

(
e−2σẼi(x) − e−2σẼi+1(x)

2σθ

)
.

Noting that

L∏
i=−L

exp
(
−4kσẼi(x)

)
= exp

−4kσ

L∑
i=−L

L∑
j=i

xj

 = exp

(
−4kσ

L∑
i=−L

xi(L+ i+ 1)

)
,

we arrive at (39).

Next, we want to show that µ2k,L
θ is a reversible measure for the ABEP(σ, k) on [−L,L]. Following

the lines of [3] we find the following. For every f ∈ D(LBEP),∫ (
LABEP(f ◦ g̃)

)
(x)(h ◦ g̃)(x)µ2k,L

θ (dx) =

∫ (
(LBEPf) ◦ g̃

)
(x)(h ◦ g̃)(x)µ2k,L

θ (dx)

=

∫ (
LBEPf

)
(g̃(x))h(g̃(x)) |J (g̃(x))| (ν2k,Lθ ◦ g̃)(dx)

=

∫ (
LBEPf

)
(y)h(y)ν2k,Lθ (dy). (40)

If we interchange f and h, we find∫
(f ◦ g̃)(x)

(
LABEP(h ◦ g̃)

)
(x)µ2k,L

θ (dx) =

∫
f(y)(LBEPh)(y)ν2k,Lθ (dy). (41)

By reversibility of ν2k,Lθ for the BEP, (40) and (41) are equal, hence µ2k,L
θ (dx) is reversible for the

ABEP.

µ2k,L
θ is not a product measure due to the nonlocal nature of the factors

exp

(
e−2σẼi(x) − e−2σẼi+1(x)

2σθ

)
,

which for every i depend on every xj with j ≥ i. Due to the structure of these factors, with
an exponential function with nested exponential arguments, we are unable to split them into the
product of two functions, with one of them only depending on xi and one only depending on
xi+1, . . . , xL. Because of this, we are not able to turn this measure into a product measure.
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As a result, whenever we integrate a function with respect to µ2k,L
θ (dx), we need to evaluate the

integral with respect to each marginal µ2k
θ (dxj) for j which is greater than the lowest value of i for

which xi appears in the function. This seems to makes it impossible to find a closed-form formula for

the profile of the measure, i.e. the expected amounts of energy at each site Eµ
2k,L
θ [xi]. Furthermore,

the fact that µ2k,L
θ can not be turned into a product measure prevents us from bringing this measure

into a setting with infinite volume.
In [3] the authors note that

L∏
i=−L

exp

(
e−2σẼi(x) − e−2σẼi+1(x)

2σθ

)
= exp


L∑

i=−L
e−2σẼi(x) − e−2σẼi+1(x)

2σθ


= exp

(
e−2σẼ−L(x) − e−2σẼL(x)

2σθ

)
, (42)

so that we find

µ2k,L
θ (dx) = exp

(
e−2σẼ−L(x) − e−2σẼL(x)

2σθ

)
L∏

i=−L

(
e2σxi − 1

)2k−1
e−4kσx(i+L+1)

θ2k2σΓ(2k)
dxi. (43)

This may seem to solve the nonlocality problem, because we have a product measure on the right,
and on the left a prefactor only depending on the total amount of energy and the energy at the
rightmost site (which is 0 in infinite volume). However, both in infinite and finite volume, this total
amount of energy E−L(x) or E−∞(x) := lim

i→−∞
Ei(x) is random with its distribution depending on

every marginal µ2k,L
θ (dxi), so we still have the same nonlocality issues.

5.5 The Dynamic ABEP

The dynamic ABEP (DABEP) is a new process, not yet introduced in a publication. It was
constructed as part of the exploration of the su(1,1) Lie algebra, as a more general version of the
ABEP. The construction of this ‘dynamic’ version of the ABEP is analogous to the construction
of the dynamic ASEP from the ASEP as described in [12]. Not much research has yet been done
on the DABEP, but this is no problem for our purposes here, because a map from the DABEP to
the BEP is known, similar to (33) for the ABEP. We start by giving the generator of the process,
although we will not use this generator directly anywhere in the thesis.

Definition 5.2 (DABEP(σ, k, λ)). The DABEP(σ, k, λ) is the Markov process with generator LDABEP

acting on functions f ∈ C∞
c (Ωf ) via

LDABEP =

∞∑
i=−∞

LDABEP
i,i+1 ,

with single-edge generators given through

(LDABEP
i,i+1 f)(x) = A(x, σ, k, λ)

(
∂

∂xi
− ∂

∂xi+1

)2

f(x) +B(x, σ, k, λ)

(
∂

∂xi
− ∂

∂xi+1

)
f(x),
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where

A =
1

4σ2

(
1− e2σxi+1

)(
e−2σxi − 1

)(1− e2σ(λ+2Ei+1−xi+1)
)(
1− e2σ(λ+2Ei+1+xi)

)(
1− e2σ(λ+2Ei+1)

)2 ,

B =
1

2σ

[
2k
(
1− e−2σxi

)(1− e2σ(λ+2Ei+1+xi)

1− e2σ(λ+2Ei+1)

)
+ 2k

(
1− e2σxi+1

)(1− e2σ(λ+2Ei+1−xi+1)

1− e2σ(λ+2Ei+1)

)
+
(
1− e2σxi+1

)(
e−2σxi − 1

)(1 + e2σ(λ+2Ei+1)
)(
1− e2σ(λ+2Ei+1−xi+1)

)(
1− e2σ(λ+2Ei+1+xi)

)(
1− e2σ(λ+2Ei+1)

)3 ]
.

Interpreting this generator directly is difficult so instead we will give the map from the DABEP
to the BEP, and then interpret the process from that.

Theorem 5.6. If λ ≤ −2σE−∞(x) or λ ≥ 0, the map ĝ = (ĝi, i ∈ Z) maps from the DABEP(σ, k, λ)
to the BEP(k), i.e. if (xt)t≥0 is the DABEP(σ, k, λ) starting out at x ∈ Ωf , then (ĝ(x))t≥0 is the
BEP(k) starting out at ĝ(x) ∈ RZ

+. Functions ĝi : Ωf → RZ
+ are given through

ĝi(x) = α
cosh(σλ+ 2σEi+1(x))− cosh(σλ+ 2σEi(x))

σ
, (44)

where α is an R-valued parameter, which can be freely chosen under the constraint that{
α < 0 if λ ≥ 0,

α > 0 if λ ≤ −2σE−∞(x),

in order to ensure that ĝi(x) ≥ 0.

Proof. The proof of this will be given in a future publication to formally introduce the DABEP. This
can be done e.g. via direct calculation similar to Lemma 5.1. Since we will not use the generator of
the DABEP as introduced in Definition 5.2 anywhere directly, we can for our purposes define the
DABEP as the process for which Theorem 5.6 holds.

Note that in Theorem 5.6 we require λ not to be in (−2σE−∞(x), 0). This is because for
λ ∈ (−2σE−∞(x), 0), there will be values of j for which σλ + 2σEj(x) is positive and values for
which it is negative. As a result, ĝi(x) will be positive for some values of i and negative for others
for any choice of α, leading to an invalid BEP-configuration with negative energy levels.
We see from (44) that the DABEP relates to the BEP in a similar way to the ABEP, except that the
expression contains hyperbolic cosines instead of exponentials. Futhermore we have an additional
constant σλ. This constant can be thought of as representing a sort of reservoir of energy at the
right boundary in a finite setting (in our case at x = ∞). Because of this, this version of the
DABEP is referred to as the right-DABEP (ABEPR), in constrast to the left-DABEP (ABEPL).
Since we will only focus on the right-DABEP here, as it is consistent with our definition of the
ABEP (where for the partial energy we look to the right of a site), we will simply refer to it as
the DABEP. Furthermore we have free constant α which is not very important, but ensures that
ĝi(x) ∈ R through our choices of parameters, where we may take certain limits. For instance it can
be shown that if we take α = 1

2 exp(σλ) and then λ → −∞, we recover the ABEP(σ, k). From
Theorem 5.6 immediately follows a duality function between the DABEP and the SIP.
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Corollary 5.2. The DABEP(σ, k, λ) and the n-SIP(k) are dual with duality function

Dd(x, ξ) =

∞∏
i=−∞

Γ(2k)

Γ(2k + ξi)
ĝi(x)

ξi . (45)

Proof. Analogously to the proof of Theorem 5.3 we can use Theorem 5.6, so that we have the
following. [

LDABEPDd(·, ξ)
]
(x) =

[
LDABEPDb(ĝ(·), ξ)

]
(x)

=
[
LBEPDb(·, ξ)

]
(ĝ(x))

=
[
LSIPDb(ĝ(x), ·)

]
(ξ)

=
[
LSIPDd(x, ·)

]
(ξ).

One can see that if we take again α = 1
2 exp(σλ) and let λ → −∞, the duality function Da

between the ABEP(σ, k) and the BEP(k) is recovered. Note that in Theorem 5.6 we had to choose
α in such a way that ĝi(x) ≥ 0, and when the specific combinations of λ and x were such that this
was not possible, we could not map the DABEP to the BEP. In Corollary 5.2 we are under no such
restrictions, as the duality function in (45) is allowed to have a negative value.
We will end this section by providing an overview of the different interacting particle systems in-
troduced throughout this and previous section, and how they relate to each other. This ends the
first part of the thesis, which aimed to provide background information about the topic. The next
chapters will provide the results of this thesis, which consist of the hydrodynamic limit of the BEP
in Chapter 6, the hydrodynamic limit of the ABEP in Chapter 7 and propagation of chaos for the
BEP and the ABEP in Chapter 8.

SIP

ASIP

BEP

ABEP

DABEP

Scaling limit

q-Transformation

Scaling limit

Parameter limit

Transformation ĝ

Transformation g

Figure 5.1. Overview of relevant interacting particle systems.
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6 Hydrodynamic limit of the BEP

6.1 Introduction to Hydrodynamic limits

The idea behind hydrodynamic limits is that we describe the stochastic transport of particles/energy
on microscopic level, in order to learn something about the emergent behavior of the density of
particles/energy at a macroscopic scale. They are a claim about the evolution of the distribution of
energy over time, motivated by the conservation of the total amount of energy. This conservation
of energy allows us to draw meaningful conclusions about the behaviour of average energy levels at
the macroscopic scale, despite random deviations at the microscopic scale. In order to distinguish
between micro- and macro-scale, we define a scaling parameter N . As we then move from micro
to macro, we rescale the space-dimension with factor N (i.e. macroscopic x corresponds to micro-
scopic ⌊xN⌋) and the time-dimension with factor N2 (macro t corresponds to micro N2t). The
idea behind this is that a random walk in time N2 typically ends up at a distance of order N away
from its starting location, a scaling law closely related to the central limit theorem. For asymmetric
processes, this scaling law doesn’t apply in this way (due to an expected linear drift), so we need
to be more thoughtful in our transition from micro to macro.
This thesis follows in broad terms the lines of argument presented in [10]. This is a seminal paper
written in 1987 by Gärtner, proving the hydrodynamic limit of another IPS, the so-called Asym-
metric Exclusion Process (ASEP). The resulting density turns out to solve a version of Burgers’
equation with a nonlinear term. As we will see in our hydrodynamic limit of ABEP, a nonlinear
term is a typical result for an asymmetric interacting particle system.
An important observation in this proof by Gärtner is that we can find a transformation of the PDE
into a simpler, linear PDE. The crucial idea is then that we can perform a similar transformation to
the particle system, so that the hydrodynamic limit of this transformed particle system corresponds
to the transformed PDE. Because this PDE is simpler, and most importantly, linear, we are able
to prove this hydrodynamic limit, where we may not have been able to do this directly on the
non-transformed system.
This approach provides a nice framework for the upcoming proofs. The structure here is different
from how it is presented in [10] however. In this chapter, we will prove that the hydrodynamic limit
density of the BEP is the solution to the heat equation. This finding does not come as a surprise,
as it was already suggested in [17], but not rigorously proven.
Though this is a new result in of itself, we can also think of this as a prerequisite for the more
challenging task of finding the hydrodynamic limit of the ABEP. In fact, finding the hydrodynamic
limit of the BEP neatly corresponds to the second part of the proof of Gärtner, namely finding
the hydrodynamic limit of a relatively simple problem, with a linear corresponding PDE. In the
Chapter 7, we will use this finding to prove the hydrodynamic limit of the ABEP. We will use
the fact that the BEP arises as a transformation of the ABEP, and as in the case of the paper of
Gärtner, we will work out the PDE that results from carrying this transformation into macroscopic
scale.

6.2 Weak topology and empirical (trajectory) measure

When making the transition from micro- to macro-level we stop looking at energy at individual
sites, but instead look at the distribution of energy along the lattice. We define a so-called empirical
measure as a way of quantifying the amount of energy in a given region of the lattice on which the
process is defined. Formally we have the following.
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Definition 6.1 (Empirical measure ΛN ). Let M+ be the space of non-negative locally finite mea-
sures on R. The empirical measure of a configuration y ∈ RZ

+ is then given by the function
ΛN : RZ

+ →M+, which is defined through

ΛN (y) =
1

N

∞∑
i=−∞

yiδi/N , (46)

where δx denotes the Diraq measure at point x ∈ R.

In this definition we have defined the state space of the configurations on which ΛN acts to
be RZ

+, implicitly assuming we are dealing with continuous processes in infinite volume. If we
were interested in other discrete processes or processes in finite volume, we would still use ΛN as
expressed in (46) but define its input space differently.
These empirical measures lie in M+, which endowed with the weak topology. One way this can be
achieved is by equipping the measure space with the Prokhorov metric, given by

r(µ, ν) = inf{ϵ > 0 : ν(F ) ≤ µ(F (ϵ)) + ϵ and µ(F ) ≤ ν(F (ϵ)) + ϵ for every F ∈ B(R)},

where F (ϵ) is th ϵ-neighborhood of F. One can show that under this metricM+ is completely metriz-
able, making it a Polish space. Convergence under this metric is equivalent to weak convergence
[18], which is defined in the following way.

Definition 6.2 (Weak convergence). We say a sequence (µn)n∈N of measures on R (with standard
metric) convergences weakly to µ if for all smooth test functions with compact support ϕ taking
values in R (i.e. ϕ ∈ C∞

c (R)), we have

⟨µn, ϕ⟩ :=
∫
ϕ(x)µn(dx) →

∫
ϕ(x)µ(dx) = ⟨µ, ϕ⟩ . (47)

The empirical measures that we will encounter in this thesis will always be random and as a
result we will focus on weak convergence in probability and the convergence ⟨µn, ϕ⟩ → ⟨µ, ϕ⟩ in
(47) will mean convergence in probability.
This shift in focus from configuration to empirical measure trajectories results in our interest now
being in trajectories throughM+. Such a trajectory will typically be denoted (βt)t≥0 with βt ∈M+

for each fixed t or α : [0, T ] → M+ and lies in D([0, T ],M+), the space of right-continuous path
measures.
Convergence in this space is quite subtle. What follows is a short summary of some of the challenges
of proving the hydrodynamic limits, which amounts to proving convergence of the trajectories of
the empirical measures of the IPS of interest.
Again we are interested in weak convergence in probability, only now for the whole trajectory, which
means the weak convergence in probability is uniform in t ∈ [0, T ]. What this means is that for a
sequence of empirical measure trajectories (αn)n∈N with for each n ∈ N, αn ∈ D([0, T ],M+), we
have convergence in probability

sup
t∈[0,T ]

∣∣∣∣∫ ϕdαn(t)−
∫
ϕdα(t)

∣∣∣∣→ 0, (48)

towards some limiting trajectory α ∈ D([0, T ],M+). Not only do we need to find what this limit
trajectory α would look like, but we need to establish the existence of the limit in the first place.
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The approach of choice for the latter question of existence of this limit, is to show that the sequence
of probability measures with respect to which the trajectories (αn)n∈N are defined, is “tight”, mean-
ing that for every n the vast majority of αn concentrates on a compact subspace of D([0, T ],M+)
under the relevant probability measure.
Tightness can be proven via Aldous’ tightness criterion [1], a two-part criterion where one of these
is showing convergence of the so-called ‘modulus of continuity’. This modulus of continuity is a
function we construct, representing the difference between measures corresponding to the trajec-
tory evaluated at different times, in order to give meaning to the notion of continuity when dealing
with trajectories of measures. Mitoma’s theorem [15] shows us how we can create this modulus of
continuity by pairing the measures with a test function and constructing a metric consistent with
the weak topology.
Once tightness is established, Prokhorov’s Theorem tells us that this sequence of probability mea-
sures is sequentially compact, meaning it has convergent subsequences. Then by showing that the
limits of these subsequences are concurrent, we can conclude the proof of (48). Finally, in order
for this line of reasoning to work, we note that since M+ endowed with the weak topology is a
Polish space, D([0, T ],M+) endowed with the Skorokhod topology must be a Polish space as well
(See appendix A.2.2 of [18]). D([0, T ],M+) being a Polish space is required for e.g. Prokhorov’s
theorem.
Many of the steps in this section are quite technical, and not really the focus of this thesis. Further-
more, in many parts they are exactly or almost equivalent to the steps used in the hydrodynamic
limits of other processes presented in different papers. For this reason only the proof of tightness
via Aldous’ tightness criterion and Mitoma’s theorem will be worked out in detail, both for the
BEP and the ABEP. For the other parts of the proof we will refer to the book by Timo Seppäläinen
about the hydrodynamic limit of the SEP [18].

6.3 Setting and main result

We start out with random configurations of the BEP which depend on some scaling parameter
N . These configurations are chosen in such a way that their empirical measures as defined in (46)
(i.e. how they appear on macroscopic scale) converge as we pass N to infinity. Let (y(N))N∈N be
a sequence of BEP(k)-configuration in infinite volume, i.e. for N ∈ N : y(N) ∈ RZ

+. In a setting
where N remains constant we will often omit superscript (N) from notation. Let for each N the
measure νN : B(RZ

+) → [0, 1] denote the distribution of y(N) and EνN the expectation with respect
to this measure.
To prevent explosive behavior we put a bound on the amount of energy at a single site. Since y(N)

are random it suffices bound yi in expectation.

Assumption 6.1.

sup
i∈Z,N∈N

EνN
[(
y
(N)
i

)2]
≤ C for some C > 0. (49)

Initially we have convergence of the empirical measure of (y(N))N∈N to a measure with a known
density.

Assumption 6.2. ΛN (y(N)) converges weakly in probability to a measure with density ρ : R → R+
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(meaning lim
N→∞

(
ΛN (y(N))

)
(dx) = ρ(x)dx), i.e. for every ϕ ∈ C∞

c (R) and ϵ > 0

νN

∣∣∣∣∣∣
〈
ΛN (y(N))δi/N , ϕ

〉
−
∫
R

ρ(x)ϕ(x)dx

∣∣∣∣∣∣ > ϵ

→ 0.

In this setting, the central claim is that as we evolve y(N) over time t ∈ [0, T ] as the BEP(k),
then uniformly in t we still have weak convergence in probability of the empirical density to a new
limit measure with density function ρt, where ρt is the unique solution to the heat equation with
initial condition ρ.

Theorem 6.1. Let PBEPN
νN denote the path-space measure of the accelerated BEP(k) with generator

LBEPN := N2LBEP, with evolved configuration y
(N)
t starting out at y(N) with initial distribution

νN .
For any smooth test function with compact support ϕ ∈ C∞

c (R), we have for every ϵ > 0

lim
N→∞

PBEPN
νN

 sup
t∈[0,T ]

∣∣∣∣∣∣
〈
ΛN (y

(N)
t ), ϕ

〉
−
∫
R

ρt(x)ϕ(x)dx

∣∣∣∣∣∣ > ϵ

 = 0

where ρt is the solution to the heat equation,

∂ρt(x)

∂t
= 2k

∂2ρt(x)

∂x2
, (50)

with initial condition ρ0 = ρ.

For the rest of the section, assume that when unspecified, y
(N)
t refers to configuration y(N)

evolved with respect to PBEPN
νN for time t.

6.4 Proof

As explained near the end of Section 6.2, there are two main challenges in proving the convergence
of a sequence of trajectory measures in D([0, T ],M+); showing that the limit exists, and finding an
expression for it. In this proof of Theorem 6.1 we will do this second part first. In Section 6.4.1
we will first introduce a Dynkin martingale that will be central in this proof. After this in Section
6.4.2 and 6.4.3 we will find the expression (50) for the hydrodynamic limit of the BEP, assuming
that this limit exists. In Section 6.4.4 we will use the tools introduced throughout the proof to show
that this hydrodynamic exists, using tightness of sequences of measures. Then in Section 6.4.5 we
will finish the proof and conclude that Theorem 6.1 holds.

6.4.1 Dynkin Martingale representation of empirical density

We define a Dynkin Martingale to capture the deviation of the empirical measure from its expected
evolution under LBEPN . For every N ∈ N let (MN

t )t≥0 be the Dynkin martingale with respect to
PBEPN
νN created through function ⟨ΛN (·), ϕ⟩, i.e.

MN
t :=

〈
ΛN (y

(N)
t ), ϕ

〉
−
〈
ΛN (y(N)), ϕ

〉
−

t∫
0

[
LBEPN ⟨ΛN (·), ϕ⟩

]
(y(N)
s )ds. (51)
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The proof of the theorem consists of three parts. First we show that

lim
N→∞

[
LBEPN ⟨ΛN (·), ϕ⟩

]
(y(N)
s ) = lim

N→∞

〈
ΛN (y(N)

s ), ϕ′′
〉
,

i.e. applying the BEP(k) generator to the empirical measure is the same as taking the second
space-derivative of the test function that is integrated over that measure.
Second we will show that MN

t → 0 uniformly in t in probability as N → ∞.

Third, we will show that for a subsequence {Nj}j∈N of the natural numbers the limit

lim
j→∞

(
ΛN (y

(Nj)
t )

)
t≥0

exists in D([0, T ],M+) using tightness of trajectories.

Together these two findings and the concurrence of limit points between different subsequences

{Nj}j∈N will allow us to conclude that the density of lim
N→∞

(
ΛN (y

(N)
t )

)
t≥0

is deterministically a

weak solution to the heat equation, and by uniqueness of the weak solution of the heat equation,
the strong solution as well.

6.4.2 The effect of microscopic BEP-dynamics on the macroscopic density field

Definition 6.3. We define the hydrodynamic limit density ρt as the density of the limit in N of

the empirical measures of the evolved configuration y
(N)
t under PBEPN

νN , i.e. for every ϕ ∈ C∞
c (R)

and ϵ > 0,

PBEPN
νN

 sup
t∈[0,T ]

∣∣∣∣∣∣
〈
ΛN (y

(N)
t ), ϕ

〉
−
∫
R

ρt(x)ϕ(x)dx

∣∣∣∣∣∣ > ϵ

→ 0,

as N goes to infinity. For now we assume that this limit exists. In Chapter 6.4.4 on tightness we
will show existence of this limit using the tools that will be introduced throughout the proof.

The central claim of this subsection concerns the effect of applying the generator to the coupling

⟨ΛN (·), ϕ⟩ (y(N)
s ). We will first do this for initial configuration y(N) instead of evolved configuration

y
(N)
s , and after this we will lay the necessary groundwork to apply this result to y

(N)
s .

This groundwork consists of boundedness of EBEPN
νN [(y

(N)
s )i], which we will show in Proposition 6.1

follows from boundedness of EνN [yi], and convergence of ΛN (y
(N)
t ) to some limit measure, which

we will prove in Section 6.4.4.

Lemma 6.2. For each ϕ ∈ C∞
c (R) we have the following convergence in probability.

[
LBEPN ⟨ΛN (·), ϕ⟩

]
(y(N)) → 2k

∫
ρ(x)

d2ϕ

dx2
(x)dx.
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Proof. For ease of notation we write ϕi := ϕ( iN ), L := LBEP and y := y(N).

[
LBEPN ⟨ΛN (·), ϕ⟩

]
(y) = N2L

〈
1

N

∞∑
i=−∞

(·)iδi/N , ϕ

〉
(y)

= N

∞∑
j=−∞

Lj,j+1

[ ∞∑
i=−∞

(·)iϕi

]
(y)

= N

∞∑
i=−∞

ϕi

∞∑
j=−∞

[Lj,j+1(·)i](y).

Applying LBEP
j,j+1 to f(y) = yi yields Lj,j+1yi =


2k(yi+1 − yi) if j = i,

2k(yi−1 − yi) if j = i− 1,

0 otherwise,

so that

∞∑
j=−∞

LBEP
j,j+1yi = 2k(yi+1 − 2yi + yi−1).

Thus we get

N

∞∑
i=−∞

ϕi

∞∑
j=−∞

[Lj,j+1(·)i](y) = N

∞∑
i=−∞

2kϕi(yi+1 − 2yi + yi−1)

= N

∞∑
i=−∞

2kyi(ϕi+1 − 2ϕi + ϕi−1)

= N

∞∑
i=−∞

2kyi

[
1

N2
ϕ′′i +

1

N4
(ϕ(4)(xi1) + ϕ(4)(xi2))

]

=
2k

N

∞∑
i=−∞

yiϕ
′′
i +

2k

N3

∞∑
i=−∞

yi

[
ϕ(4)(xi1) + ϕ(4)(xi2)

]
. (52)

Here we used Taylor approximations with Lagrange remainders evaluated at xi1 ∈ [ iN ,
i+1
N ] and

xi2 ∈ [ i−1
N , iN ] in the third step.

To see that the second term in (52) we note that ϕi and its derivatives are nonzero for O(N)
values of i. More precisely, since supp(ϕ) is compact, there must exist M1,M2 ∈ R such that
supp(ϕ) ⊆ [M1,M2]. Define M :=M1 −M2 as the length of this interval, then for any N there can
be at most (M + 1)N values of i for which i

N ∈ [M1,M2] ⊇ supp(ϕ).
Denote

aN :=
[
LBEPN ⟨ΛN , ϕ⟩

]
(y)− 2k

∫
ρ(x)ϕ′′(x)dx.
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νN (|aN | > 2ϵ)

≤ νN

(∣∣∣∣∣2kN
∞∑

i=−∞
yiϕ

′′
i − 2k

∫
ρ(x)ϕ′′(x)dx

∣∣∣∣∣ > ϵ

)
+ νN

(∣∣∣∣∣ 2kN3

∞∑
i=−∞

yi

(
ϕ(4)(xi1) + ϕ(4)(xi2)

)∣∣∣∣∣ > ϵ

)

≤ νN

(
2k

∣∣∣∣⟨ΛN (y), ϕ′′⟩ −
∫
ρ(x)ϕ′′(x)dx

∣∣∣∣ > ϵ

)
+

1

ϵ
EνN

∣∣∣∣∣ 2kN3

∞∑
i=−∞

yi

(
ϕ(4)(xi1) + ϕ(4)(xi2)

)∣∣∣∣∣
≤ νN

(
2k

∣∣∣∣⟨ΛN (y), ϕ′′⟩ −
∫
ρ(x)ϕ′′(x)dx

∣∣∣∣ > ϵ

)
+

2k

N3

⌈NM2⌉∑
i=⌊M1N⌋

(
ϕ(4)(xi1) + ϕ(4)(xi2)

)
EνN |yi| .

Assumption 6.2 of initial convergence of ΛN (y(N)) tells us that the first term converges to 0. Note

that for t > 0, convergence of ΛN (y
(N)
t ) has yet to be proven.

For the latter term we note that from assumption 6.1 follows that EνN |yi| ≤
√
C , so that the sum

over i has at most (M + 1)N nonzero terms which are all bounded, so that we can conclude that

2k
1

N3

∑
i: i

N ∈[M1,M2]

(
ϕ(4)(xi1) + ϕ(4)(xi2)

)
EνN |yi| ≤

2k(M + 1)2
∣∣∣∣ϕ(4)∣∣∣∣∞ √

C

N2
.

Thus we finish the proof of the Lemma by concluding that

νN
(∣∣aN ∣∣ > ϵ

)
→ 0 as N → ∞.

Proposition 6.1. For every t > 0, i, j ∈ Z, N ∈ N, EBEPN
νN [(yt)i] and EBEPN

νN [(yt)i(yt)j ] are
bounded.

Proof. We start by proving boundedness of EBEPN
νN [(yt)i(yt)j ]. To show this boundedness, we note

that (yt)i(yt)j corresponds to the duality function Db (30) between BEP(k) configuration yt and
2-SIP(k) configuration ξ = δi + δj .

(yt)i(yt)i+1 = ck
∏

v∈{i,j}

Γ(2k)

Γ(2k + ξv)
(yt)

ξv
j

= ckD
b(yt, ξ),

where

ck =

{
(2k)2 if i ̸= j,

2k(2k + 1) if i = j,

so ck is finite and only depending on k.
This means that we can use duality between BEP(k) and n-SIP(k) to interchange the expectation in
y evolved through BEP(k) dynamics, with the expectation in ξ evolved through SIP(k) dynamics.
This is useful, because then our problem can be expressed through initial configuration y, which
we know is bounded in expectation. For this, let X(t) and Y (t) denote the location of evolved
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SIP(k)-particles, starting out from sites i and j respectively, and let ESIP
i,j denote the expectation

with respect to this process.

EBEPN
νN [(yt)i(yt)j ] = ckEBEP

νN

[
Db(ytN2 , δi + δj)

]
= ckEνN

[
EBEP
y

[
Db(ytN2 , δi + δj)

]]
= ckEνN

[
ESIP
i,j

[
Db(y, δX(tN2) + δY (tN2))

]]
≤ 2k + 1

2k
EνN

[
ESIP
i,j [yX(tN2)yY (tN2)]

]
=

2k + 1

2k
ESIP
i,j

[
EνN [yX(tN2)yY (tN2)]

]
≤ 2k + 1

2k
sup
i,j∈Z

EνN [yiyj ]

≤ 2k + 1

2k
sup
i,j∈Z

√
EνN [y2i ]EνN [y2j ]

≤ 2k + 1

2k
C =: C̃.

Here C is the bound from (49) and ĉk is a constant similar to ck depending on whether X(tN2) is
equal to Y (tN2).
Boundedness of EBEPN

νN [(yt)i] follows then from Jensen’s inequality by taking j = i, i.e.

EBEPN
νN [(yt)i] ≤

√
EBEPN
νN [(yt)2i ] ≤ Ĉ2.

Corollary 6.1. If assumption 6.2 holds for evolved BEP-configuration y
(N)
t and evolved density

ρt : R → R+, i.e. for every ϕ ∈ C∞
c (R), t > 0 and ϵ > 0,

PBEPN
νN

∣∣∣∣∣∣
〈
ΛN (y

(N)
t )δi/N , ϕ

〉
−
∫
R

ρt(x)ϕ(x)dx

∣∣∣∣∣∣ > ϵ

→ 0,

then [
LBEPN ⟨ΛN (·), ϕ⟩

]
(y

(N)
t ) → 2k

∫
ρt(x)

d2ϕ

dx2
(x)dx, (53)

in probability for t ∈ [0, T ].

Proof. Proposition 6.1 and the assumption of the corollary imply that we can apply Lemma 6.2 to
find (53).

6.4.3 Vanishing of quadratic variation at macroscopic scale

In this section we will prove that MN
t converges to 0 in probability uniformly in t. The proof

resolves around showing that the quadratic variation process of MN
t converges in expectation to

0. Since from the definition of MN
t it’s clear that MN

0 = 0 for each N , we can then use Doob’s
inequality we can show that lim

N→∞
MN
t = 0 in probability uniformly in t.

We start by giving an expression of [MN ]t.
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Corollary 6.2. The quadratic variation process of (MN
t )t≥0 is given through

[MN ]t =

t∫
0

[
LBEPN ⟨ΛN (·), ϕ⟩2

]
(y(N)
s )− 2

〈
ΛN (y(N)

s ), ϕ
〉
LBEPN ⟨ΛN (·), ϕ⟩ (y(N)

s )ds.

Proof. Direct application of Theorem 2.2.

Next we will show that this expression converges in expectation to 0.

Lemma 6.3. We have the following convergence,

lim
N→∞

EBEPN
νN

[
[MN ]t

]
= 0.

Proof. For ease of notation we omit superscript BEP(k) and (N) from notation so that we write

L instead of LBEP and ys instead of y
(N)
s , and we write Lyi to denote Lf(y) with f(y) = yi, and

Lyiyj to denote Lf(y) with f(y) = yiyj . By applying the accelerated BEP(k) generator we find
the following,

[MN ]t =

∫ t

0

[
LBEPN ⟨ΛN (·), ϕ⟩2

]
(ys)− 2 ⟨ΛN (ys), ϕ⟩ [LN ⟨ΛN (·), ϕ⟩] (ys)ds

=

∫ t

0

LBEPN

(
1

N

∞∑
i=−∞

(·)iϕi

)2
 (ys)−

2

N

∞∑
i=−∞

(ys)iϕi

LBEPN
1

N

∞∑
j=−∞

(·)iϕi

 (ys)ds

=

∫ t

0

∞∑
i=−∞

∞∑
j=−∞

ϕiϕj (L(ys)i(ys)j − 2(ys)iLyj) ds

=

∫ t

0

∞∑
i=−∞

∞∑
j=−∞

ϕiϕj

( ∑
p=−∞

Lp,p+1(ys)i(ys)j − 2(ys)iLp,p+1(ys)j

)
ds

=

∫ t

0

∞∑
i=−∞

∞∑
j=−∞

ϕiϕj

∞∑
p=−∞

(Lp,p+1(ys)i(ys)j − (ys)iLp,p+1(ys)j − (ys)jLp,p+1(ys)i) ds.

We proceed by straightforwardly applying the BEP single-edge generators Lk,k+1 to these functions
y 7→ yi, y 7→ yj and y 7→ yiyj . We do this by first considering the case where k ∈ {i − 1, i} and
j ∈ {k, k + 1} and then showing that every other combination of indices yields 0.
Recall that BEP generator Li,i+1 is given through

(Li,i+1f)(z) = 2k(yi − yi+1)(∂i − ∂i+1) + yiyi+1(∂i − ∂i+1)
2.

We find the following.
Li,i+1y

2
i = 4k(yi − yi+1)yi + 2yiyi+1

2yiLi,i+1yi = 4k(yi − yi+1)yi,

so that
Li,i+1y

2
i − 2yiLi,i+1yi = 2yiyi+1,

53



and
Li,i+1yiyi+1 = 2k(yi − yi+1)(yi+1 − yi)− 2yiyi+1,

yiLi,i+1yi+1 = −2k(yi − yi+1)yi,

yi+1Li,i+1yi = 2k(yi − yi+1)yi+1,

so that
Li,i+1yiyi+1 − yiLi,i+1yi+1 − yi+1Li,i+1yi = −2yiyi+1.

In similar manner we can find

Li−1,iy
2
i − 2yiLi−1,iyi = 2yi−1yi,

and
Li−1,iyi−1yi − yi−1Li−1,iyi − yiLi−1,iyi−1 = −2yi−1yi.

So that summing these terms, corresponding to k ∈ {i− 1, i}, j ∈ {k, k + 1}, yields

∞∑
i=−∞

∑
k∈{i−1,i}

∑
j∈{k,k+1}

ϕiϕj (Lk,k+1yiyj − yiLk,k+1yj − yjLk,k+1yi)

=

∞∑
i=−∞

ϕ2i (2yiyi+1 + 2yi−1yi)− 2ϕiϕi+1yiyi+1 − 2ϕi−1ϕiyiyi−1

=

∞∑
i=−∞

2yiyi+1(ϕ
2
i + ϕ2i+1 − 2ϕiϕi+1),

where we used the fact that i is summed from −∞ to ∞ to shift the indices of the latter terms in
the second line.
By smoothness of g we can approximate gi+1 using Taylor series with Lagrange remainders at some
ai1, a

i
2 ∈ [ iN ,

i+1
N ],

ϕi+1 = ϕi +
1

N
ϕ′i +

1

2N2
ϕ′′i +

1

3!N3
ϕ′′′(ai1),

ϕi+1ϕi = ϕ2i +
1

N
ϕ′iϕi +

1

2N2
ϕ′′i ϕi +

1

3!N3
ϕiϕ

′′′(ai1),

ϕ2i+1 = ϕ2i +
2

N
ϕ′iϕi +

2

2N2
ϕiϕ

′′
i +

1

N2
(ϕ′i)

2 +
1

3!N3
(ϕ2)′′′(ai2),

so that

ϕ2i + ϕ2i+1 − 2ϕiϕi+1 =
1

N2
(ϕ′i)

2 +
bi
N3

.

Here bi =
1
3!

[
(ϕ2)′′′(ai2)− 2ϕiϕ

′′′(ai1)
]
is bounded by smoothness of ϕ (boundedness of ϕ and its

derivatives), and equal to 0 for i such that i
N and i+1

N are outside of supp(ϕ).
For the other pairs of j and k we make the following claim:

Claim 6.1. for k /∈ {i− 1, i} or j /∈ {k, k + 1} we have

Lk,k+1yiyj − yiLk,k+1yj − yjLk,k+1yi = 0.
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For these combinations of j and k we note that for k /∈ {i− 1, i}, we have

(∂k − ∂k+1)yi = (∂k − ∂k+1)
2yi = 0,

so that
Lk,k+1yi = 0,

i.e. both Lk,k+1 as a whole and the derivatives that compose it produce zero when applied to yi.
This means that applying these operators to yiyj yields the following equations.

(∂k − ∂k+1)yiyj = yi(∂k − ∂k+1)yi,

(∂k − ∂k+1)
2yiyj = yi(∂k − ∂k+1)

2yj ,

Lk,k+1yiyj = yiLk,k+1yj ,

from which we conclude

Lk,k+1yiyj − yiLk,k+1yj − yjLk,k+1yi = yiLk,k+1yj − yiLk,k+1yj − 0 = 0.

For j /∈ {k, k + 1} we note (∂k − ∂k+1)yj = 0 and the proof is similar.
We can now finish the proof of the Lemma. Bringing back the dependency on time, we find

[MN ]t =

t∫
0

[
LBEPN ⟨ΛN (·), ϕ⟩

]
(ys)− 2

〈
νNs , ϕ

〉 [
LBEPN ⟨ΛN (·), ϕ⟩

]
(ys)ds

=

t∫
0

∞∑
i=−∞

∞∑
j=−∞

ϕiϕj(LBEP(ys)i(ys)j − (ys)iLBEP(ys)j − (ys)jLBEP(ys)i)

=

t∫
0

1

N2

⌈M2N⌉+1∑
i=⌊M1N⌋

2(ys)i(ys)i+1

(
(ϕ′i)

2 +
bi
N

)
ds.

Where again we can use the fact that this sum has (M + 2)N terms. By combining boundedness
of
(
(ϕ′i)

2 + bi
N

)
and EBEPN

νN [(ys)i(ys)i+1] (see Prop. 6.1), we can now finish the proof of the Lemma
6.3.

EBEPN
νN

[
MN

]
t
=

t∫
0

1

N2

⌈M2N⌉+1∑
i=⌊M1N⌋

2

(
(ϕ′i)

2 +
bi
N

)
EBEPN
νN [(ys)i(ys)i+1] ds

≤
t∫

0

1

N2

⌈M2N⌉+1∑
i=⌊M1N⌋

2C̃

(
(ϕ′i)

2 +
bi
N

)
ds

≤
2t(M + 2)C̃ supi

∣∣(ϕ′i)2 + bi
N

∣∣
N

→ 0 as N → ∞.

This concludes the proof of the Lemma

Corollary 6.3. Dynkin martingale (MN
t )t≥0 converges in probability to 0 uniformly in t ∈ [0, T ].
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Proof. We have found in Lemma 6.3 that EBEPN
νN [(MN

t )2] = EBEPN
νN [MN ]t → 0 as N → ∞.

Via Doob’s martingale inequality, which states that for a submartingale (Xt)t≥0 with probability
measure P, we have

P
(

sup
0≤s≤t

Xs ≥ C

)
≤ E[X+

s ]

C
,

we find that for each ϵ > 0 inserting Xs = (MN
s )2 and C = ϵ2 yields

PBEPN
µN

(
sup

0≤s≤t
|MN

t | ≥ ϵ

)
≤

EBEPN
νN [MN ]t

ϵ2
→ 0 as N → ∞.

6.4.4 Tightness

The main goal of this section is to prove that the sequence of path-space measures (PBEPN
νN )N∈N

is tight in D([0, T ], P (Ω)). Mitoma’s theorem tells us that in order to prove this, it suffices to
prove tightness of the sequence of empirical measure trajectories αN ∈ D([0, T ],M+) paired with
appropriate test functions, under PBEPN

νN [15]. Tightness of these pairings in D([0, T ],R) can be
proven with Aldous’ tightness criterion [1]. Combining these two important findings we find the
following two criteria for tightness of {PBEPN

νN }N∈N, in line with the literature (see lemma 8.5, page
121 of [18]).
After showing tightness of {PBEPN

νN }N∈N, we will be able to conclude that ΛN (y(N)) converges.

Lemma 6.4. The sequence of path-space measures {PBEPN
νN }N∈N satisfies the following two criteria,

making it tight on D([0, T ],M+):

1. Compact Containment: there exists a compact set of measures B such that for every t > 0
and ϵ > 0,

lim
N→∞

PBEPN
νN

(
ΛN (y

(N)
t ) ∈ B

)
> 1− ϵ.

2. Modulus of Continuity: We define metric dM , which is consistent with the weak topology,
to quantify the distance between metrics via

dM (µ, ν) :=

∞∑
j=0

∣∣∫ ϕjdµ−
∫
ϕjdν

∣∣
1 +

∣∣∫ ϕjdµ−
∫
ϕjdν

∣∣2−j , (54)

where ϕj ∈ C∞
c (R). Then for every ϵ > 0 and 0 < T <∞ there is a δ > 0 such that

lim sup
N→∞

PBEPN
νN

 sup
|s−t|≤δ
s,t∈[0,T ]

dM (ΛN (y
(N)
t ),ΛN (y(N)

s )) ≥ ϵ

 ≤ ϵ.

Proof.
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1. Compact Containment: Let

B := {µ ∈M : µ ([−b, b]) < (2b+ 1)b ∀b ∈ R+}.

Then we know K̄ is compact because for every compact S ⊂ RZ we have sup
µ∈K̄

(µ(S)) <∞.

Furthermore, using Proposition 6.1, we find for every t > 0 and ϵ > 0 the following.

PBEPN
νN (ΛN (yt) /∈ B) = PBEPN

νN (ΛN (yt)([−b, b]) ≥ (2b+ 1)b ∀b ∈ R+)

≤ inf
b∈R+

PBEPN
νN

 1

N

⌈bN⌉∑
i=⌊bN⌋

(yt)i ≥ (2b+ 1)b


≤ inf
b∈R+

1

(2b+ 1)b
EBEP
νN

 1

N

⌈bN⌉∑
i=⌊bN⌋

(ytN2)i


≤ inf
b∈R+

C

b

≤ ϵ.

2. Modulus of continuity: We have

sup
t,s∈[0,T ]

|t−s|≤δ

dM (ΛN (yt),ΛN (ys)) =

∞∑
j=0

sup
t,s∈[0,T ]

|t−s|≤δ

2−j
∣∣〈ΛN (yt)− ΛN (ys), ϕ

j
〉∣∣

1 + |⟨ΛN (yt)− ΛN (ys), ϕj⟩|

≤ 2−m +

m∑
j=0

sup
t,s∈[0,T ]

|t−s|≤δ

2−j
∣∣〈ΛN (yt)− ΛN (ys), ϕ

j
〉∣∣

1 + |⟨ΛN (yt)− ΛN (ys), ϕj⟩|

≤ 2−m +

m∑
j=0

sup
t,s∈[0,T ]

|t−s|≤δ

2−j
∣∣〈ΛN (yt)− ΛN (ys), ϕ

j
〉∣∣

≤ 2−m +

m∑
j=0

sup
t,s∈[0,T ]

|t−s|≤δ

∣∣〈ΛN (yt)− ΛN (ys), ϕ
j
〉∣∣ .

By using the Dynkin Martingale from (51) we can bound the terms in this sum. From the
definition of MN

t given in (51) it follows that

〈
ΛN (yt)− ΛN (ys), ϕ

j
〉
=MN

t −MN
s −

t∫
s

[
LBEPN

〈
ΛN (·), ϕj

〉]
(yu)du.

Therefore taking the absolute value, supremum with respect to s and t, and then expectation
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yields the following.

EBEPN
νN

 sup
t,s∈[0,T ]

|t−s|≤δ

∣∣〈ΛN (yt)− ΛN (ys), ϕ
j
〉∣∣
 ≤ EBEPN

νN

 sup
t,s∈[0,T ]

|t−s|≤δ

∣∣MN
t −MN

s

∣∣


+ EBEPN
νN

 sup
t,s∈[0,T ]

|t−s|≤δ

t∫
s

[
LBEPN

〈
ΛN (·), ϕj

〉]
(yu)

 .
This expression is potentially confusing because this expectation is with respect to the ac-
celerated (macroscopic) measure with subscript N . If we would take the expectation with
respect to this measure of e.g. (yt)i, which is defined in microscopic scale, we would have to
first apply the transformation to macroscopic scale via EBEPN

νN [(yt)i] = EBEP
νN [(ytN2)i].

However, the expression we have here follows from our definition of Dynkin Martingale MN
t ,

which is defined with respect to the accelerated measure and should be interpreted on macro-
scopic level. Most notably, this mans that when taking the expectation of the second term
of the RHS of the previous equation, we should not rescale the bounds of the integral to
microscopic scale.
To make our calculations relatively short we denote

Ξϕji := ∂xxϕ
j
i +

1

N2

(
ϕ(4)(xi1) + ϕ(4)(xi2)

)
.

By smoothness of ϕj there must be a constant K > 0 such that Ξϕji < K for every i ∈ Z and
j ∈ N. Using the fact ϕj has compact support to assume supp(ϕj) ⊆ [−MN,MN ], we find

EBEPN
νN

 sup
t,s∈[0,T ]

|t−s|≤δ

∣∣∣∣∣∣
t∫
s

LBEPN
〈
ΛN (·), ϕj

〉
(yu)du

∣∣∣∣∣∣


= EBEPN
νN

 sup
t,s∈[0,T ]

|t−s|≤δ

∣∣∣∣∣∣
t∫
s

2k
〈
ΛN (·), ∂xxϕj

〉
(yu) + aNu du

∣∣∣∣∣∣


≤ EBEPN
νN

 sup
t,s∈[0,T ]

|t−s|≤δ

t∫
s

2k
1

N

⌈MN⌉∑
i=−⌊MN⌋

∣∣∣(yu)iΞϕji ∣∣∣ du


= EBEPN
νN

2k sup
t,s∈[0,T ]

|t−s|≤δ

1

N

⌈MN⌉∑
i=−⌊MN⌋

t∫
s

∣∣∣(yu)iΞϕji ∣∣∣ du
 ,

Where we used the Fubini-Tonelli theorem to interchange summation and integration between
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lines 3 and 4. Continuing by applying Cauchy-Swarz, we find

EBEPN
νN

2k sup
t,s∈[0,T ]

|t−s|≤δ

1

N

⌈MN⌉∑
i=−⌊MN⌋

t∫
s

∣∣∣(yu)iΞϕji ∣∣∣ du


≤ EBEPN
νN

2k sup
t,s∈[0,T ]

|t−s|≤δ

1

N

⌈MN⌉∑
i=−⌊MN⌋

 t∫
s

(yu)
2
i du

1/2 t∫
s

(Ξϕji )
2du

1/2


≤ EBEPN
νN

2k sup
t,s∈[0,T ]

|t−s|≤δ

1

N

⌈MN⌉∑
i=−⌊MN⌋

 t∫
s

(yu)
2
i du

1/2

√
δK2



≤ 2kK
√
δ
1

N

⌈MN⌉∑
i=−⌊MN⌋

EBEPN
νN

 sup
t,s∈[0,T ]

|t−s|≤δ

t∫
s

(yu)
2
i du




1/2

≤ 2kK
√
δ
1

N

⌈MN⌉∑
i=−⌊MN⌋

EBEPN
νN

 T∫
0

(yu)
2
i du

1/2

≤ 2kK
√
δ
1

N

⌈MN⌉∑
i=−⌊MN⌋

 T∫
0

EBEPN
νN

[
(yu)

2
i

]
du

1/2

≤ 2kK
√
δ
1

N

⌈MN⌉∑
i=−⌊MN⌋

√
TC2

≤ 2kKC(2M + 1)
√
δT ,

where we used boundedness of Ξϕji by K (see proof of Lemma 6.2) between lines 5 and 6,
Jensen’s inequality on the concave square-root function between lines 6 and 7 and bounded-
ness of EBEPN

νN [(yu)
2
i ] by C from Proposition 6.1 in the last step.

Furthermore we can use the fact that a variation process is nondecreasing to bound

EBEPN
νN

 sup
t,s∈[0,T ]

|t−s|≤δ

|MN
t −MN

s |

 ≤ EBEPN
νN [(MN

T )2],

which we have seen converges to 0 as we increase N for finite T . This means that we can
conclude the proof via

PBEPN
νN

 sup
|s−t|≤δ
s,t∈[0,T ]

dM (ΛN (yt),ΛN (ys)) ≥ ϵ

 ≤ EBEPN
νN

 sup
|s−t|≤δ
s,t∈[0,T ]

dM (ΛN (yt),ΛN (ys))

 ϵ−1

≤
2−m + 2kKC

√
δT + EBEPN

νN [(MN
T )2]

ϵ
,
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which can be made smaller than ϵ as we take N → ∞ and let arbitrary variables m and δ
go however far needed in the directions m→ ∞ and δ ↓ 0.

As described in Section 6.2, Lemma 6.4 tells via Prokhorov’s theorem [7] that
{
PBEPN
νN

}
N∈N

has convergent subsequences. This means that
{
ΛN (y

(N)
t )

}
N∈N

has subsequences that converge in

probability, to possibly different limits. Since from the earlier sections of this chapter we know such
limiting trajectories α : [0, T ] →M+ satisfy

⟨α(t), ϕ⟩ − ⟨α(0), ϕ⟩ =
t∫

0

⟨αs, ∂xxϕ⟩ ds,

we find convergence of
{
ΛN (y

(N)
t )

}
N∈N

by uniqueness of the solution to the heat equation. This

result is formalized in the next Lemma. Since the details of the proof of this Lemma are quite
technical and very similar to an established proof for a different IPS, we leave the full proof outside
the scope of this thesis and refer to the relevant literature instead.

Lemma 6.5. lim
N→∞

(
ΛN (y

(N)
t )

)
t≥0

exists in D([0, T ],M+) equipped with Skorokhod topology in

probability with respect to PBEPN
νN .

Proof. The proof of this is analogous to the proof for the Symmetric Exclusion Process, presented
in section 8.1 of [18]. The main idea is that because of tightness of

{
PBEPN
νN

}
N∈N, which we have

proven in Lemma 6.4, we only need to show that the limit points of

{(
ΛN (y

(N)
t )

)
t≥0

}
N∈N

are

concurrent. Since the details of this are quite technical and very similar to pages 123-126 of [18],
we refer to this book for further elaboration.

6.4.5 Conclusion

The findings in previous paragraphs in combination with the definition of (MN )t≥0 tell us that

〈
ΛN (y

(N)
t ), ϕ

〉
−
〈
ΛN (y(N)), ϕ

〉
−

T∫
0

〈
ΛN (y(N)

s ), ∂xxϕ
〉
ds→ 0,

in probability, uniform in t ∈ [0, T ].
Since per definition of ρs 〈

ΛN (y(N)
s ), ϕ

〉
→
∫
R

ρs(x)ϕ(x)dx,
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in probability, this means that

〈
ΛN (y

(N)
t ), ϕ

〉
−
〈
ΛN (y(N)), ϕ

〉
−

t∫
0

〈
ΛN (y(N)

s ), ∂xxϕ
〉
ds

→
∫
R

ρt(x)ϕ(x)− ρ0(x)ϕ(x)dx−
t∫

0

∫
R

ρs(x)∂xxϕ(x)dxds

=

∫
R

t∫
0

∂sρs(x)ϕ(x)dsdx−
∫
R

t∫
0

ϕ(x)∂xxρs(x)dsdx

=

∫
R

t∫
0

ϕ(x) (∂s − 2k∂xx) ρs(x)dxds.

From these two findings we can conclude that ρt is a weak solution to the heat equation with initial
condition ρ0 = ρ. By uniqueness of the solution to the heat equation ρt must therefore also be the

strong solution to the heat equation. Thus

{(
ΛN (y

(N)
t )

)
t≥0

}
N∈N

converges weakly in probability

to the trajectory solving the heat equation (ρt(dx))t≥0 in D([0, T ],M+) with the Skorokhod toplogy.

Since the paths
(
ΛN (y

(N)
t )

)
t≥0

can be shown to be continuous through the modulus of continuity

from Lemma 6.4, convergence in the Skorokhod topology is equivalent to the uniform convergence
in Theorem 6.1.
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7 Hydrodynamic Limit of ABEP in infinite Volume with
Finite Energy

7.1 Setting and main result

The setting of the hydrodynamic limit op the ABEP is very similar to that of the BEP from the
previous Chapter. We start with random initial configurations of ABEP(σ,k) dependent on scale-
parameter N , with initial convergence of their empirical measures.
As described in Chapter 6.1, the desired rescaling of space by N and time by N2 becomes problem-
atic in the presence of asymmetry. This is because as we scale time by a factor N2, the expected
net current will increase with a factor N2 as well. Because of this, we let asymmetry parameter
σ = σ(N) depend on N in such a way that it is O(N−1), so that the expected flow resulting from
asymmetry remains of the same order as we move from micro- to macro-scale. As σ(N) is vanishing
in N , we cal this process ABEP(σ(N), k) weakly asymmetric.
Let x(N) be a sequence of ABEP(σ(N),k) configurations in infinite volume, i.e. for every N ∈ N,
x(N) ∈ Ωf .
The assymmetry parameter σ = σ(N) is given through σ(N) = γ

2N where γ > 0 is a constant.

For each N let measure µN : B(Ωf ) → [0, 1] denote the distribution of y(N) and EµN the expectation
with respect to this measure.
In this setting we put the same assumptions about the initial configurations as in the case for BEP,
i.e. boundedness of energy at a given site and convergence of the empirical measure.

Assumption 7.1. The amount of energy at each site initially is bounded in expectation via

sup
i∈Z,N∈N

EµN

[(
x
(N)
i

)2]
≤ C for some C > 0.

Assumption 7.2. ΛN (x(N)) converges weakly in probability to a measure with with density
χ : R → R+, i.e. for every ϕ ∈ C∞

c (R) and ϵ > 0,

µN

(∣∣∣∣〈ΛN (x
(N)
i ), ϕ

〉
−
∫

χ(x)ϕ(x)dx

∣∣∣∣ > ϵ

)
→ 0. (55)

Furthermore we have convergence of the total measure

µN

∣∣∣∣∣∣ΛN (x(N))(R)−
∞∫

−∞

χ(x)dx

∣∣∣∣∣∣ > ϵ

→ 0. (56)

(56) seems to follow roughly from (55), but is required to be explicitly assumed due to the
constraint of ϕ in (55) to functions with compact support, which prevents us from taking ϕ ≡ 1 in
order to arrive at (56). As discussed when we first defined the ABEP in Definition 5.1, for fixed
σ > 0 we have to limit the state space of the ABEP to Ωf due to problems resulting from the
current that arises. Here we are not dealing with a single configuration and σ, but with a sequence
of both. Since the asymmetry parameter σ(N) is decreasing in N , the problematic nature of this
current becomes smaller as N increases, which results in the following assumption being sufficient
for the ABEP(σ(N), k) to be well-defined as we increase N indefinitely.
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Assumption 7.3. for every N ∈ N the total amount of energy is bounded, i.e.

1

N

∞∑
i=−∞

x
(N)
i ≤ E <∞.

Assumption 7.3 ensures that for every fixed N , x(N) ∈ Ωf , but as we take the limit N → ∞,
∞∑

i=−∞
x
(N)
i does not necessarily remain bounded. In fact, we can see from upcoming Proposition

7.1 that Assumption 7.2 implies that lim
N→∞

∞∑
i=−∞

x
(N)
i = ∞ for every χ except χ ≡ 0.

In this setting, we apply the same rescaling of the space- and time-dimension as we did for BEP in
order to find the hydrodynamic limit. We claim that as a result of the asymmetry, as described by
asymmetry parameter σ(N) = γ

2N , we gain an additional nonlinear term in the resulting PDE. We
thus end up with a hydrodynamic limit density, which solves the viscous Burgers’ equation.

Theorem 7.1. For each N let PABEPN
µN

denote the path-space measure of the accelerated

ABEP(σ(N), k) with generator LABEPN = N2LABEP, with evolved configuration x
(N)
t starting out

at x(N) with initial distribution µN .
We have for every ϕ ∈ C∞

c (R) and δ > 0 :

lim
N→∞

PABEPN
µN

(
sup
t∈[0,T ]

∣∣∣∣〈ΛN (x
(N)
t ), ϕ

〉
−
∫
χ(x)ϕ(x)dx

∣∣∣∣ > δ

)
= 0,

where χt is the unique solution to the viscous Burgers’ equation, i.e.

∂χt(x)

∂t
= 2k

∂2χt(x)

∂x2
+ 2kγ

∂χt(x)
2

∂x
, (57)

with initial condition χ0 = χ.

7.2 Proof

7.2.1 Transformation from the ABEP to the BEP

A challenge for this proof is the nonlinearity that arises as a result of the asymmetry. If we were
to proceed in the same way as we did for BEP, then we would find that our expression of[
LABEP ⟨ΛN (·), ϕ⟩

]
(x) would contain quadratic terms of xi, which would prevent us from finding

results analogous to Lemma 6.2.
A tool that is therefore essential to this proof is the transformation from the ABEP to the BEP
via map g in (33). This map allows us to transform the ABEP xt into the BEP, allowing us to
use the result from the previous Chapter to find the hydrodynamic limit of the ABEP. The main
challenges will then be to show that the hydrodynamic limit of the non-transformed ABEP exists,
and to figure out what the hydrodynamic limit of the transformed ABEP tells us about it.

Let y(N)(x(N)) := (y
(N)
i (x(N)), i ∈ Z) be a tranformation of ABEP-configuration x(N) with

yi : RZ
+ → RZ

+ defined through map g from (33), i.e.

y
(N)
i (x) :=

e−2σ(N)Ei+1(x) − e−2σ(N)Ei(x)

2σ(N)
. (58)
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Corollary 7.1. For each N ∈ N we have that if xt is the ABEP(σ(N), k) starting out at x, then
y(N)(xt) is the BEP(k) starting out from y(N)(x).

Proof. Follows from Theorem 5.2.

Using the fact that y(xt) is the BEP(k) allows us to use the hydrodynamic limit that we found
in Theorem 6.1 for the BEP here, in order to find the hydrodynamic limit of the ABEP. The proof
is structured in the following way.
In Section 7.2.2, we will show how the convergence of the initial empirical measure ΛN (x(N)) to a
limiting measure in Assumption 7.2 implies convergence of ΛN (y(x(N)), and we will show how the
densities of these respective measures relate to each other. In Section 7.2.3 we will apply Theorem

6.1 to y(x
(N)
t ) in order to show that as xt is evolved as the ABEP, the trajectory (ΛN (y(x

(N)
t )))t≥0

converges to the solution to the heat equation. Then in Section 7.2.4 we will use tightness to prove

the existence of a similar limit of the trajectory (ΛN (x
(N)
t ))t≥0. Then finally in Section 7.2.5 we

will use the relation between the densities of the limiting measures in order to derive (57).

7.2.2 Relation between macroscopic density of y and x

In this section we will show how from the convergence of the initial empirical measure of the ABEP,
ΛN (x(N)) (Assumption 7.2), we find that the initial empirical measure of the BEP we constructed
via (58) converges. Furthermore, we will give the relation between the densities of the respective
limiting measures. The central claim of this section is that there exists a limiting measure with
density ρ : R → R+ such that

ΛN (x(N))(dx) → ρ(x)dx,

where convergence is weak convergence in probability, and the relation between ρ and χ is given
through

ρ(x) = χ(x)e
−γ

∞∫
x

χ(y)dy
. (59)

We will prove this is in two parts. First we show convergence of σ(N)Ei(N) as N → ∞, where
i = i(N) is chosen in such a way that the site of interest is dependent on N in such a way that it

corresponds to the same macro-coordinate as we take N → ∞. Next we express y
(N)
i in x(N) in

such a way that taking the limit of
〈
ΛN (y(x(N)), ϕ

〉
yields (59).

Proposition 7.1. We let i = i(N) depend on N in such a way that lim
N→∞

i(N)
N exists and set this

limit equal to w, so that microscopic site i(N) ∈ Z corresponds to macroscopic coordinate w ∈ R.
Then

lim
N→∞

σ(N)Ei(N)(x) =

∞∫
w

2γχ(x)dx,

where the convergence is in probability.

Proof. The statement in the proposition is equivalent to

lim
N→∞

ΛN (x(N))

([
i(N)

N
,∞
))

=

∞∫
w

χ(x)dx. (60)
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This may seem like a trivial statement, as we have by assumption convergence of ΛN (x(N)) to a
measure with density χ. This is however weak convergence in probability, which means that we
only have the following convergence for any ϕ ∈ C∞

c (R),〈
ΛN (x(N)), ϕ

〉
→
∫
χ(x)ϕ(x)dx.

In order to prove the Proposition we would need ϕ to be the step function at i(N)
N , which does not

lie in C∞
c (R).

Luckily the discontinuity only occurs at the left boundary of interval B = [w,∞), and we have∫
∂B

χ(x)dx = 0 (where ∂B denotes the boundary of B). We have not defined ΛN (x(N)) and its limit

in N as probability measures, but since ΛN (x(N))(R) is finite for all N and so is lim
N→∞

ΛN (x(N))(R)
as a result of Assumption 7.3 of finite energy and Assumption 7.2 of convergence of the total
measure, we can turn them into probability measures by rescaling them so that these values are 1.
To this end, let

CN = ΛN (x(N))(R),

denote the total measure of ΛN (x(N)), and note that Assumption 7.2 implies that CN converges in
probability to

C =

∞∫
−∞

χ(x)dx.

We then derive probability measures from the measures we are working with through

mN =
ΛN (x(N))

CN
m =

χ(x)dx

C

Via the continuous mapping theorem we know that weak convergence in probability of ΛN (x(N))
to χ(x)dx and convergence in probability of CN to C imply that mN → m weakly in probability,
where now mN and m are probability measures. The Portmanteau theorem (See e.g. [21]) then
states that in this setting for any Borel set A with m(∂A) = 0 we have mN (A) → m(A), i.e. weak
convergence has implies convergence in distribution.
This allows us to finish the proof. One more thing we need to be careful about is the fact that in
the left-hand side of (60) we have i(N) as microscopic location of evaluation and on the right-hand
side we have w as macroscopic location. For this we note that i(N)/N → w implies that for every
δ > 0 we have for N large enough

mN ([w + δ,∞)) ≤ mN

([
i(N)

N
,∞
))

≤ mN ([w − δ,∞)).

Applying the Portmanteau then yields

m([w + δ,∞)) ≤ mN

([
i(N)

N
,∞
))

≤ m([w − δ,∞)),

which after taking the limits N → ∞ and δ ↓ 0 yields the convergence

mN

([
i(N)

N
,∞
))

→ m([w,∞]). (61)
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Finally we return from probability measures mN and m to the original measures by multiplying
the left and right-hand side of (61) with CN and C respectively, which results in (60)

Next we will rewrite our map x 7→ y(x) in such a way that we can use the initial convergence of
ΛN (x(N)) from assumption 7.2 in order to find ρ as a function of χ.

Lemma 7.2. The empirical measure of y(x(N)) converges to a limiting measure with density equal
to the right-hand side of (59), i.e. for each ϕ ∈ C∞

c and ϵ > 0 we have

µN

∣∣∣∣∣∣
〈
ΛN

(
y(x(N))

)
, ϕ
〉
−
∫
R

χ(x)e
−γ

∞∫
x

χ(y)dy
ϕ(x)dx

∣∣∣∣∣∣ > ϵ

→ 0.

Proof.

yi(x)e
2σEi+1(x) =

1− e−2σ(Ei(x)−Ei+1(x))

2σ

=
1− e−2σxi

2σ

= xi +

∞∑
p=1

(−2σ)p
xp+1
i

(p+ 1)!
,

which implies
yi(x) = xie

−2σEi+1(x) + ai,N ,

where clearly the absolute value of

ai,N := −e−2σEi+1(x)
∞∑
p=1

(−2σ)p
xp+1
i

(p+ 1)!
,

converges to 0 in expectation due to the (−2σ)p factor, where we recall that σ = γ
2N vanishes as

N → ∞. Using this expression of yi(xt) and with

d := ⟨ΛN (y(x(N)), g⟩ −
∫
χ(x)e

−γ
∞∫
x

χ(y)dy
ϕ(x)dx,

we find

|d| =

∣∣∣∣∣ 1N
∞∑

i=−∞

(
xie

− γ
NEi+1(x) + ai,N

)
ϕi −

∫
χ(x)e

−γ
∞∫
x

χ(y)dy
ϕ(x)dx

∣∣∣∣∣
≤

∣∣∣∣∣ 1N
∞∑

i=−∞

(
xie

− γ
NEi+1(x) + ai,N

)
ϕi −

1

N

∞∑
i=−∞

xie
− γ

NEi(x)ϕi

∣∣∣∣∣
+

∣∣∣∣∣∣ 1N
∞∑

i=−∞
xie

−γ
∞∫

i/N

χ(y)dy

ϕi −
1

N

∞∑
i=−∞

xie
− γ

NEi(x)ϕi

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1N
∞∑

i=−∞
xie

−γ
∞∫

i/N

χ(y)dy

ϕi −
∫
χ(x)e

−γ
∞∫
x

χ(y)dy
ϕ(x)dx

∣∣∣∣∣∣
:=|d1|+ |d2|+ |d3|.
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We finish the proof of the lemma by showing that each of these 3 terms converges in probability to
0. The expectation of the first term is

EµN |d1| = EµN

∣∣∣∣∣ 1N
∞∑

i=−∞

(
ai,N + xie

− γ
NEi+1(x) − xie

− γ
NEi(x)

)
ϕi

∣∣∣∣∣
≤ 1

N
||ϕ||∞

⌊NM2⌋∑
i=⌈NM1⌉

EµN

∣∣∣∣ai,N +
x2i γ

N

∣∣∣∣ ,
which converges to 0, where we used the observation that for x, y < 0 we have |ex − ey| ≤ |x− y|.
Via Markov’s inequality we then find convergence in probability.
For the second term we find

EµN |d2| ≤
1

N

∞∑
i=−∞

ϕiEµN

∣∣∣∣∣∣xi
e−γ ∞∫

i/N

χ(y)dy

− e−
γ
NEi(x)

∣∣∣∣∣∣
≤ 1

N

⌊NM2⌋∑
i=⌈NM1⌉

giEµN

xi
∣∣∣∣∣∣∣−γ

∞∫
i/N

χ(y)dy +
γ

N
Ei(x)

∣∣∣∣∣∣∣
 .

Convergence of this expectation to 0 clearly follows from boundedness of EµN [xi] and convergence

in probability to 0 of −γ
∞∫
i/N

χ(y)dy + γ
NEi(x), but since xi and

γ
NEi(x) are not independent, this

requires some work to prove. We do this by truncating JN (x) := −γ
∞∫
i/N

χ(y)dy + γ
NEi(x) into

JN (x) = JϵN (x) + J tail
N (x),

with
JϵN (x) = JN (x)1{|JN (x)|≤ϵ} and J tail

N (x) = JN (x)1{|JN (x)|>ϵ}.

Then for every i ∈ Z and N ∈ N,

EµN [xi|JϵN (x)|] ≤ EµN [xi sup
x

|JϵN (x)|] = EµN [xiϵ] ≤
√
Cϵ,

and
EµN [xi|J tail

N |] ≤ EµN
[
xi|J tail

N |
∣∣ JN > ϵ

]
µN (JN > ϵ) ≤ EµN [xi2E]µN (JN > ϵ),

where we used boundedness of both terms in JN (x) by total energy E (assumption 7.3). Thus

lim
N→∞

[xi|JN (x)|] ≤ lim
N→∞

√
Cϵ+ 2E

√
CµN (JN > ϵ) =

√
Cϵ,

by convergence in probability of J(x) to 0. Letting ϵ ↓ 0 we find that EµN |d2|→0, where again we
use Markov’s inequality to conclude that we have convergence in probability.
Convergence of the third term to 0 follows from weak convergence in probability of ΛN (x(N)) by

taking e
−γ

∞∫
x

χ(y)dy
ϕ(x) as test function.
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7.2.3 Application of the hydrodynamic limit of the BEP

Now that we have established weak convergence of ΛN (y(x(N))) to a limiting measure with density

ρ(x) = χ(x)e
−γ

∞∫
x

χ(y)dy
,

we wish to know whether convergence of the empirical measure remains as we evolve x(N) as the
ABEP, and how the limiting measure evolves accordingly. Since we have constructed y(x(N)) to
be the BEP when x(N) is evolved as the ABEP, we can apply Theorem 6.1 to y(x(N)). Before
we can do this, we must ensure that each of the assumptions that we had on y(N) in the setting
of Theorem 6.1 is satisfied for y(x(N)) in this setting. This means we have to prove boundedness

of initial configuration EµN [(y
(N)
i (x))2]. Proving this requires us to relate boundedness of xi and

yi(x) to each other in such a way that also allows us to show that for every t > 0, EABEP
µN

[(xt)i] is
bounded, which we will need later.

Lemma 7.3. The following two bounds hold:

1.

sup
N∈N,i∈Z

EµN

[(
y
(N)
i (x)

)2]
≤ C.

2. There is a constant V > 0 such that

sup
N∈N,i∈Z

EABEPµN
[(xt)i] ≤ V.

Proof. Note that for each i

yi(x) =

∫ Ei(x)

Ei+1(x)

e−2σzdz. (62)

This means yi(x) ≤
∫ Ei(x)

Ei+1(x)
dz ≤ xi, so that for 1. we find

EµN

[(
y
(N)
i (x)

)2]
≤ EµN

[(
x
(N)
i

)2]
≤ C.

For 2. we note that (62) implies

yi(x) ≥ (Ei − Ei+1)e
−2σEi

= xie
− γ

NEi

≥ xie
−γE ,

so that applying Proposition 6.1 to the BEP y(xt) yields

EABEP
µN

[(xt)i] ≤ eγEEABEP
µN

[yi(xt)] = eγEEBEP
νN [(yt)i] ≤ eγE

√
C,

where νN is the pushforward measure of µN by g.

Next we use the results from the previous Chapter to find an expression of the hydrodynamic
limit of the BEP we created by transforming the ABEP in (58).
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Corollary 7.2. The sequence of trajectories

{(
ΛN (y(x

(N)
t ))

)
t≥0

}
N∈N

converges in D([0, T ],M+)

with respect to PABEPN
µN

to a trajectory that we denote (ρt)t≥0, i.e. for each ϕ ∈ C∞
c (R) and ϵ > 0,

we have

lim
N→∞

PABEPN
µN

 sup
t∈[0,T ]

∣∣∣∣∣∣
〈
ΛN (yi(x

(N)
t ))δi/N , ϕ

〉
−
∫
R

ρt(x)ϕ(x)dx

∣∣∣∣∣∣ > ϵ

 = 0. (63)

This trajectory (ρt)t≥0 the unique solution to the heat equation

∂ρt(x)

∂t
= 2k

∂2ρt(x)

∂x2
,

with initial condition ρ0 = ρ = χ(x)e
−γ

∞∫
x

χ(y)dy
.

Proof. Corollary 7.1, Lemma 7.2 and Lemma 7.3 imply that we are in the same situation as in the
setting of the hydrodynamic limit of the BEP. Thus this result follows from Theorem 6.1.

7.2.4 Tightness

Now that we have shown that for the BEP y(x
(N)
t ) the hydrodynamic limit is the solution to the

heat equation, we want to find the hydrodynamic limit of the ABEP x
(N)
t . In this section we will

prove that such a limit exists, by showing that

{(
ΛN (x

(N)
t )

)
t≥0

}
N∈N

is tight. This will be done

in a similar manner to Lemma 6.4 for the BEP.

Lemma 7.4. For ϕ ∈ C∞
c (R) an arbitrary test function, the following two criteria hold, making

the sequence {PABEPN
µN

}N∈N tight.

1. Compact Containment: For every t > 0 and ϵ > 0 there exists a compact set of measures
B such that

lim
N→∞

PABEPN
µN

(
ΛN (x

(N)
t ) ∈ B

)
> 1− ϵ.

2. Modulus of Continuity: Let dM be the metric from (54). Then for each ϵ > 0 and T <∞
there is a δ > 0 such that

lim sup
N→∞

PABEPN
µN

 sup
|s−t|≤δ
s,t∈[0,T ]

dM (ΛN (x
(N)
t ),ΛN (x(N)

s )) ≥ ϵ

 ≤ ϵ.

Proof.

1. Compact Containment: We can use the same set of measures as for BEP, and since
EABEPN
µN

[(xt)i] has been shown to be bounded in Lemma 7.3, the proof works in the same
way. Let

B := {µ ∈M : µ ([−b, b]) < (2b+ 1)b ∀b ∈ R+.
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Then B̄ is compact and for every t > 0 and ϵ > 0, we have

PABEPN
µN

(
ΛN (x

(N)
t ) /∈ B

)
≤ inf
b∈R+

PABEPN
µN

 1

N

⌈bN⌉∑
i=⌊bN⌋

(xt)i ≥ (2b+ 1)b


≤ inf
b∈R+

1

(2b+ 1)b
EABEPN
µN

 1

N

⌈bN⌉∑
i=⌊bN⌋

(xtN2)i


≤ inf
b∈R+

C

b

≤ ϵ.

2. Modulus of Continuity: For this part of the proof we also follow the same line of arguments
as for BEP, but this requires us to define a new Dynkin Martingale to capture the deviation
from expected under ABEP dynamics.

Definition 7.1. Let
(
M̂N
t

)
t≥0

be the Dynkin martingale with respect to PABEPN
µN

and function

⟨ΛN (·), ϕ⟩, i.e.

M̂N
t =

〈
ΛN (x

(N)
t ), ϕ

〉
−
〈
ΛN (x(N)), ϕ

〉
−

t∫
0

LABEPN ⟨ΛN (·), ϕ⟩2 (x(N)
s )−

〈
ΛN (x(N)

s , ϕ
〉
LABEPN ⟨ΛN (·), ϕ⟩ (x(N)

s )ds.

Note that

EABEPN
µN

 sup
0≤s,t≤T

|s−t|≤δ

∣∣∣〈ΛN (x
(N)
t )− ΛN (x(N)

s ), ϕj
〉∣∣∣


≤ EABEPN
µN

 sup
0≤s,t≤T

|s−t|≤δ

∣∣∣M̂N
t − M̂N

s

∣∣∣
+ EABEPN

µN

 sup
0≤s,t≤T

|s−t|≤δ

∣∣∣∣∣∣
t∫
s

LABEPN
〈
ΛN (·), gj

〉
(xu)du

∣∣∣∣∣∣
 .

We now have to show that these terms can be made arbitrarily small through our choice of
δ. We find the following:

[M̂N ]t =

t∫
0

LABEPN
〈
ΛN (·), ϕj

〉2
(xs)−

〈
ΛN (x(N)

s ), ϕj
〉
LABEPN

〈
ΛN (·), ϕj

〉
(xs)ds

=

t∫
0

∞∑
i=−∞

1

4σ2
(1− e−2σ(xs)i)(e2σ(xs)i+1 − 1)(ϕ2i + ϕ2i+1 − 2ϕiϕi+1)du

=

t∫
0

1

N2

∞∑
i=−∞

(
(xs)i(xs)i+1∂xxϕi +O(N−2)

)
du.
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Which converges to 0 in expectation and

t∫
s

LABEPN
〈
ΛN (·), ϕj

〉
(xu)du

=

t∫
0

N

∞∑
i=−∞

1

2σ

[
−(1− e−2σxi)(e2σxi+1 − 1) + (1− e−2σxi−1)(e2σxi − 1)

]
ϕi

+
2k

2σ
(e−2σxi + e2σxi+1 − e−2σxi−1 − e2σxi)ϕids

=

t∫
s

∞∑
i=−∞

N [2σxi(xi−1 − xi+1)ϕi + 2kϕi(xi+1 − 2xi + xi−1)+

+ 2kσ(−x2i+1 − x2i−1) + hi]ϕidu

=

t∫
s

∞∑
i=−∞

(
4γ

N
xixi+1∂xϕi −

2kγ

N
x2i ∂xϕi +

2k

N
xi∂xxϕi + ĥiϕi

)
du,

where hi and ĥi contain the lower-order terms from the Taylor expansions we used to sim-
plify LN

〈
ΛN (·), ϕj

〉
(xu) to its highest-order terms. Since ĥi is O(N−2) clearly the integral

resulting from the last term converges to 0 as N → ∞.
By defining u1i = xixi+1, u

2
i = x2i , u

3
i = xi and Ψ1

i = 2∂x,Ψ
2
i = 2kγ∂x,Ψ

3
i = 2k∂xx we can

use again the fact that EABEPN
µN

[
uji

]
< C by assumption 7.1 and Ψjϕi < 2k(γ + 1)K by

smoothness assumption of ϕ (where we say K := supα∈N0
{||(∂x)αϕ||∞}) to find

EABEPN
µN

 sup
t,s∈[0,T ]

|t−s|≤δ

∣∣∣∣∣∣
t∫
s

LABEPN
〈
ΛN (·), ϕj

〉
(xu)

∣∣∣∣∣∣


≤ EABEPN
µN

 sup
t,s∈[0,T ]

|t−s|≤δ

∣∣∣∣∣∣
t∫
s

∞∑
i=−∞

 1

N

3∑
j=1

∣∣∣ujiΨjiϕi∣∣∣
+ |hiϕi|ds

∣∣∣∣∣∣


≤
3∑
j=1

EABEPN
µN

 sup
t,s∈[0,T ]

|t−s|≤δ

1

N

⌈MN⌉∑
i=⌊−MN⌋

 t∫
s

ujidu

1/2 t∫
s

Ψjidu

1/2
+ o(1)

≤ 2k(γ + 1)K
√
δ

3∑
j=1

EABEPN
µN

 T∫
0

1

N

∞∑
i=−∞

|uji |du

+ o(1)

≤ 6kCT (γ + 1)K
√
δ + o(1).

By taking N → ∞ and decreasing δ we can make this expectation arbitrarily small and conclude
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that
{
PABEPN
µN

}
N∈N is tight via Markov’s inequality,

PABEPN
µN

 sup
|s−t|≤δ
s,t∈[0,T ]

dM (ΛN (x
(N)
t ),ΛN (x(N)

s )) ≥ ϵ

 ≤ EABEPN
µN

 sup
|s−t|≤δ
s,t∈[0,T ]

dM (ΛN (x
(N)
t ),ΛN (x(N)

s ))

 ϵ−1.

Corollary 7.3. The limit lim
N→∞

(
ΛN (x

(N)
t )

)
t≥0

in D([0, T ],M+) endowed with the Skorokhod topol-

ogy exists and has associated density that we call (χt)t≥0 with for every t : χt : B(R) → R+.
The relation between (χt)t≥0 and (ρt)t≥0 is given for each t > 0 through

ρt(x) = χt(x)e
−γ

∞∫
x

χt(y)dy
. (64)

Proof. The existence of this limit follows from Lemma 7.4. See again pages 123-126 of [18] for
details. The relation (64) follows from the fact that we can apply Lemma 7.2 to any configuration

x
(N)
t , as from the first part of the corollary we know that ΛN (x

(N)
t ) converges weakly in probability

to χt(x)dx, so that the assumptions for Lemma 7.2 are satisfied.

7.2.5 Derivation of the viscous Burgers’ equation

We now have everything in place to prove Theorem 7.1. From Corollary 7.3 we know that a limit
trajectory (χt)t≥0 for the ABEP exists and is related to (ρt)t≥0 via (64), and from Corollary 7.2 we
know that ρt solves the heat equation. In order to find that χt solves the viscous Burgers’ equation,
we note that (64) corresponds to the Cole-Hopf transformation. This is a useful tool, introduced
by E. Hopf in [13], in order to solve the viscous Burgers’ equation.

Theorem 7.5 (Cole-Hopf Transformation). Suppose we want to solve the viscous Burgers’ equation

ut + uux = µuxx with u(0, x) = g(x), (65)

then the transformation

v = exp

{
− 1

2µ

∫
udx

}
, (66)

yields the following PDE with C(t) only depending on t,

vt = µvxx + C(t)v with for v = v(t, x) v(0, x) = exp

{
− 1

2µ

∫
gdx

}
.

Then through

w = v exp

{
−
∫
C(t)dt

}
, (67)

we end up with the linear heat equation

wt = µwxx with for w = w(t, x) w(0, x) = exp

{
− 1

2µ

∫
gdx

}
(68)
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Then by solving (68) we can find the solution to (65) through tranformations (66) and (67). Under
the restriction that for large |x| we have

x∫
0

u(0, y)dy = o(x2),

this solution is given through

u(x, t) =

∞∫
−∞

x−y
t exp

{
− 1

2µF (x, y, t)
}
dy

∞∫
−∞

exp
{
− 1

2µF (x, y, t)
}
dy

,

with

F (x, y, t) =
(x− y)2

2t
+

t∫
0

u(0, z)dz.

Proof. See [13].

This theorem shows us the relation between the Cole-Hopf transformation given in (66) to the
solution to the viscous Burgers’ equation. Our approach differs from Theorem 7.5, as we go in
opposite direction, starting out with a transformed variable ρt that solves the heat equation and
looking for the PDE that is satisfied by un-transformed χt. However, the main idea is the same,
namely to introduce a variable that solves the heat equation, and using it to prove that a related
variable solves the viscous Burgers’ equation.

Definition 7.2. We define functions Ft : R → R+ and Vt : R → R+ as follows

Ft(x) =

∫ ∞

x

χt(x)dx Vt(x) := e−γFt . (69)

These functions will provide intermediate steps in deriving Burgers’ equation for χt(x). Ft(x) is
the cumulative energy to the right of x at macro-scale, analogous to Ei(x) for site i at micro-scale,
and Vt(x) is its Cole-Hopf transformation. We note that ρt = 1

γ ∂xVt, and that from Corollary
7.2 we know that ρt solves the heat equation. The next step is then to prove that Vt also solves
the heat equation. An important step before we can do this is showing that if we apply both the
second-order space-derivative ∂xx and integration to ∂xVt(x), the order in which we do this does
not matter.

Proposition 7.2. For every x ∈ R we have

∞∫
x

∂3

∂y3
Vt(y)dy =

∂2

∂x2

∞∫
x

∂

∂y
Vt(y)dy.
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Proof. Straightforward calculation yields

∂tVt = −γ ∂Ft(x)
∂t

e−γFt(x),

∂xVt = −γ ∂Ft(x)
∂x

e−γFt(x),

∂xxVt =

(
−γ ∂

2Ft(x)

∂x2
+

(
γ
∂Ft(x)

∂x

)2
)
e−γFt(x),

with

∂tFt(x) =

∫ ∞

x

∂tχt(x)dy, (70)

∂xFt(x) = −χt(x), (71)

∂xxFt(x) = −∂xχt(x). (72)

This means

∞∫
x

∂yy∂yVt(y) = (∂y∂yVt(y))|∞y=x (73)

= (γ∂yχt(y) + γ2χ2
t (y))Vt(y)|∞y=x

= −(γ∂xχt(x) + γ2χ2
t (x))Vt(x), (74)

where in the last step we used the fact that χt(x) and its derivatives are 0 at x = ∞ and that V is
bounded (V (x) ≤ V (∞) = 1). Similarly we find

∂xx

∞∫
x

∂yVt(y)dy = ∂xxVt(y)|∞y=x

= ∂xx(1− Vt(x))

= −(γ∂xχt(x) + γ2χ2
t (x))Vt(x),

which proves
∞∫
x

∂yy∂yVt(y)dy = ∂xx
∞∫
x

∂yVt(y)dy.

Lemma 7.6. Vt solves the heat equation, i.e.(
∂

∂t
− 2k

∂2

∂x2

)
Vt(x) = 0. (75)

Proof. ρt solving the heat equation together with relation ∂xρt(x) = Vt(x) means

∂x(∂t − 2k∂xx)Vt = 0.
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This means that Proposition 7.2 yields

0 =

∞∫
x

∂x(∂t − 2k∂yy)Vt(y)dy

= (∂t − 2k∂xx)

∞∫
x

∂yVt(y)dy

= (∂t − 2k∂xx)Vt(y)|∞y=x
= (∂t − 2k∂xx)(1− Vt(x)).

Since clearly (∂t − 2k∂xx)1 = 0, we have (∂t − 2k∂xx)Vt(x) = 0.

This allows us to finish the proof of Theorem 7.1. Plugging in our expressions of ∂tVt and ∂xxVt
from (73) and (74) we get(

−∂tγFt(x)− 2k∂xxγFt(x) + 2k(∂xγFt(x))
2
)
e−γFt(x) = 0.

Since Ft(x) < ∞ ∀x ∈ R, we have e−γFt(x) > 0, which means that we can divide it out of this
differential equation, so that we find

0 = −γ∂tFt(x)− 2kγ∂xxFt(x) + γ22k(∂xFt(x))
2 (76)

= −γ
∞∫
x

∂tχt(y)dy + 2kγ∂xχt(x) + γ22kχ2
t (x) ∀x ∈ R.

Thus taking the derivative with respect to x and dividing by −γ yields Burgers’ equation

∂tχt(x)− 2k∂xxχt(x)− 2kγ∂xχ
2
t (x) = 0. (77)

7.3 Hydrodynamic limit of the Dynamic ABEP

7.3.1 Introduction and main result

Chapter 7.2 provides a nice framework for proving hydrodynamic limits of particle systems that
can be reduced to the BEP via a (non-local) transformation. For this reason, it seems natural
to continue along the same lines in order to find the hydrodynamic limit of the DABEP. In this
section we will show that a large part of the proof works out in the same way for the DABEP as
for the ABEP, but that in the final step the added complexity prevents us from finding a PDE for
the hydrodynamic limit density of the DABEP, as we did for the ABEP in (77). We will first start
by explaining the setting in which we take the limit, after which we will give the main result in
Theorem 7.7.
We saw in (45) that a duality function between the DABEP and the SIP is given through

Dd(x, η) =

∞∏
i=−∞

Γ(k)

Γ(k + ηi)
αηi

(
cosh(σλ+ 2σEi+1(x))− cosh(σλ+ 2σEi(x))

σ

)ηi
,
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where the factor

ĝi(x) = α
cosh(σλ+ 2σEi+1(x))− cosh(σλ+ 2σEi(x))

σ
,

forms a transformation from the DABEP to the BEP.
This means that, as was the case for the ABEP, it can be expected that this transformation allows
us to express the hydrodynamic limit density of the DABEP through the known density of the BEP
that we can create from it. In order to accommodate this, let again the asymmetry parameter be
given through

σ = σ(N) =
γ

2N
. (78)

Furthermore, let
λ = λ(N) = 2Nβ (79)

so that the effect of the reservoir-like variable λ doesn’t vanish as we increase N . Continuing with
reusing the notation of the ABEP, we then define {x(N)}N∈N with for every N ∈ N, x(N) ∈ Ωf
a sequence of DABEP(σ(N), k, λ(N), α) configurations with distribution µN . We make the same
assumptions about {x(N)}N∈N and {µN}N∈N as before.

Assumption 7.4.

sup
i∈Z,N∈N

EµN

[(
x
(N)
i

)2]
≤ C for some C > 0.

Assumption 7.5. ΛN (x(N)) converges weakly in probability to a measure with density
χ : R → R+, i.e. for every ϕ ∈ C∞

c (R) and ϵ > 0 we have

µN

(∣∣∣∣〈ΛN (x
(N)
i ), ϕ

〉
−
∫

χ(x)ϕ(x)dx

∣∣∣∣ > ϵ

)
→ 0.

Assumption 7.6. For each N ∈ N the total amount of energy is bounded, i.e.

1

N

∞∑
i=−∞

x
(N)
i ≤ E <∞.

Let PDABEPN
µN

denote the probability measure of the accelerated DABEP(σ(N), k, λ(N), α). We
now aim to find the hydrodynamic limit of the DABEP, i.e. a trajectory (χt(x)dx)t≥0 inD([0, T ],M+)
such that for each ϕ ∈ C∞

c (R) and ϵ > 0 we have

PDABEPN
µN

(
sup
t∈[0,T ]

∣∣∣∣〈ΛN (x(N)), ϕ
〉
−
∫
χt(x)ϕ(x)dx

∣∣∣∣ > ϵ

)
→ 0. (80)

As we will find, altough we will be able to replicate much of the proof on the ABEP, our approach
will not be able to derive a PDE for this (χt)t≥0. Instead we have the following PIDE.

Theorem 7.7. Let (χt)t≥0, with for t > 0, χt : R → R+, satisfy the following PIDE,

∞∫
x

∂χt(y)

∂t
dy + 2k

∂χt(x)

∂x
− 2kγχ2

t (x)tanh

γβ + γ

∞∫
x

χt(y)dy

 = 0, (81)

with χ0 = χ. Then χt is the density of the hydrodynamic limit of the DABEP, i.e. (80) holds.
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7.3.2 Relation BEP and DABEP

Under the parameterization of (78) and (79), we start the proof by creating the transformed process

zi

(
x
(N)
t

)
= α

cosh
(
2σ(N)βN + 2σ(N)Ei+1(x

(N)
t )

)
− cosh

(
2σ(N)βN + 2σ(N)Ei(x

(N)
t )

)
σ(N)

, (82)

which is the BEP(k) (see Theorem 5.6). Leaving aside the question of convergence and assuming

that both ΛN (x(N)) and
(
ΛN (x

(N)
t )

)
t≥0

converge in same sense as for the ABEP and the BEP,

we want to find the relation between the limiting densities of the DABEP and the BEP that we
created with (82). In line with our approach for the ABEP, we do this for the initial state of the
problem, and the then the relation will hold as we evolve the process.
Let ρ : R → R+ denote the density of the limiting measure towards which {ΛN (z(x(N))}N∈N
converges, i.e.

lim
N→∞

µN

∣∣∣∣∣∣
〈
ΛN (zi(x

(N)), ϕ
〉
−
∫
R

ρ(x)ϕ(x)dx

∣∣∣∣∣∣ > ϵ

 = 0.

We then have the following relation between ρ and χ.

Lemma 7.8. The relation between ρ and χ is given through

ρ(x) = 2αχ(x)cosh

γβ + γ

∞∫
x

χ(y)dy

 .

Proof.

zi(x) =
α

2σ

(
e2σβN+2σEi+1(x) + e−2σβN−2σEi+1(x) − e2σβN+2σEi+1(x) − e−2σβN−2σEi+1(x)

)
=

α

2σ

∞∑
k=0

1

k!

[
(γβ + 2σEi+1(x))

k − (γβ + 2σEi(x))
k
+ (−γβ − 2σEi+1(x))

k − (−γβ − 2σEi(x))
k
]
.

We have

1

k!

(
(γβ + 2σEi+1(x))

k − (γβ + 2σEi(x))
k
)
=

1

k!

(
k∑
p=0

(γβ + 2σEi)
k−p(2σxj)

p

(
k

p

))
− γβ + 2σEi

k!

=

k∑
p=1

(γβ + 2σEi)
k−p(2σxj)

p 1

p!(k − p)!
.

Since γβ is constant in N and σEi is bounded in N , terms become lower order as we increase p.
Only keeping the highest order terms with p = 1 yields

α

2σ

∞∑
k=0

1

k!

(
(γβ + 2σEi+1(x))

k − (γβ + 2σEi(x))
k
)

=
α

2σ

∞∑
k=1

(γβ + 2σEi)
k−12σxi

1

(k − 1)!
+O(N−1)

= αxie
γβ+2σEi +O(N−1).
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Similarly we find

α

2σ

∞∑
k=0

1

k!

(
(−γβ − 2σEi+1(x))

k − (−γβ − 2σEi(x))
k
)
= αxie

−γβ−2σEi +O(N−1).

Thus
zi(x) = 2αxicosh (γβ + 2σEi(x)) +O(N−1).

From this we can use a similar approach to that of Prop. 7.3. in order to show that this relation
between x and z on microscopic level leads to the relation between ρ(x) and χ(x) from the Lemma,

ρ(x) = 2αχ(x)cosh

γβ + γ

∞∫
x

χ(y)dy

 .

7.3.3 Derivation of PDE

Next we will try to use this result from Lemma 7.8 in order to derive a PDE for χt. Analogously
to (69) we define functions Ft and Vt to facilitate the proof.

Definition 7.3.

Ft(x) := β +

∞∫
x

χt(y)dy Vt(x) :=
2α

γ
sinh (γFt(x)) .

As before, Ft(x) represents the cumulative energy, only this time with additional term β. Note
that again we have

∂xVt(x) = ρt(x).

We proceed with the analogue to Proposition 7.2.

Proposition 7.3.
∞∫
x

∂3

∂y3
Vt(y)dy =

∂2

∂x2

∞∫
x

∂

∂y
Vt(y)dy.

Proof. Explicit computation yields

∂xVt(x) =
2α

γ
(∂xFt(x))cosh(γFt(x)),

∂xxVt(x) =
2α

γ
(∂xFt(x))

2sinh (γFt(x)) +
2α

γ
(∂xxFt(x))cosh (γFt(x)) , (83)

∂tVt(x) =
2α

γ
(∂tFt(x))cosh (γFt(x)) , (84)
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where Ft(x) is the same as before up to a constant term, so that equations (70), (71), (72) of its
derivatives are still correct. We thus find

∞∫
x

∂yy∂yVt(y)dy = (∂yyVt(y))|∞y=x

= 2αγχ2
t (y)sinh

σβ + γ

∞∫
y

χt(z)dz

+ 2α(∂yχt(y))cosh

σβ + γ

∞∫
y

χt(z)dz

∣∣∣∣∣∣
∞

y=x

= −2αγχ2
t (x)sinh

σβ + γ

∞∫
x

χt(y)dy

− 2α(∂xχt(x))cosh

σβ + γ

∞∫
x

χt(y)dy


= −∂xxVt(x),

and similarly

∂xx

∞∫
x

∂yVt(y)dy = ∂xx

(
Vt(y)|∞y=x

)
= ∂xx(Vt(∞)− Vt(x))

= −∂xxVt(x).

This finding allows us to interchange
∞∫
x

·dy and ∂xx, which means in similar fashion to ABEP

we find that Vt(x) solves the heat equation

Corollary 7.4. Vt solves the heat equation, i.e.(
∂

∂t
− 2k

∂2

∂x2

)
Vt(y) = 0.

Proof. Works in the same way as the proof of Lemma 7.6, using Proposition 7.3.

This finding allows us to derive a PDE for Ft.

Lemma 7.9. Ft is the unique solution to

∂Ft(x)

∂t
− 2k

∂2Ft(x)

∂x2
− 2kγ

(
∂Ft(x)

∂x

)2

tanh(γFt(x)) = 0, (85)

with initial condition

F0(x) = β +

∞∫
x

χ(y)dy.
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Proof. Follows from Corollary 7.4. Filling in the derivatives of Vt given in (83) and (84) yields(
∂tγFt(x)− 2k(∂xγFt(x))

2
)
cosh(γFt(x))− 2k(∂xxγFt(x))sinh(γFt(x)) = 0. (86)

Since cosh(x) > 0 for every x ∈ R, we can divide (86) by γcosh(γFt(x)). Doing this and rearanging
the terms yields (85).

This PDE for Ft(x) is very similar to the one in (76) for the ABEP, with the main difference
being the factor

tanh(γFt(x)) = tanh

γβ + γ

∞∫
x

χt(y)dy

 ,

in the quadratic term. Here we see the difference between the dynamics that the ABEP and the
DABEP generate. Because this factor cannot be divided out or otherwise made easier (as far as
we have found), we cannot derive a PDE for χt(x) such as (77) for the ABEP. Still this is a useful
PDE for the cumulative energy function Ft(x). Finally then inserting the derivatives of Ft(x) as
given in (70), (71) and (72) into (85) yields (81), which concludes the proof of Theorem 7.7.

One final thing we can do is show that when we take the scaling limits that reduce the DABEP
to the ABEP and the BEP, then (85) reduces to the PDEs of the limit density profiles of these
processes.

Proposition 7.4.

1. When we take the limit β → −∞, (85) reduces to Burgers’ equation (77).

2. When we take the limit γ ↓ 0, (85) reduces to the heat equation (50).

Proof. For 1, we recognize that as lim
x→∞

tanh(x) = 1, so that

lim
β→∞

2kγ(∂xFt(x))
2tanh

γβ + γ

∞∫
x

χt(x)dy

 = 2kγ(∂xFt(x))
2,

which yields (76), which then gives us (77). Note that α has been divided out, so that we don’t
need to take α = exp(γβ). Had we taken the limit β → −∞ at an earlier stage, this would have
been required in order to prevent explosion of terms like exp(−σβ − 2σEj(x)).
For 2, we note that the nonlinear term of (85) vanishes as γ ↓ 0.

7.3.4 Conclusion

We have shown that the hydrodynamic limit of the DABEP is the solution to the PIDE given in
(81). In the proof we made the assumption of existence of the limit of the trajectory, leaving aside
a proof involving tightness, such as in Chapter 6.4.4 for the BEP and 7.2.2 for the ABEP. It seems
that such a proof would work out very similarly to the proofs for the BEP and the ABEP, so decided
not to do this in this thesis. In order to make the proof of 7.7 rigorous however, this would still
need to be proven.
Through this proof of Theorem 7.7 we see that our proof of Theorem 7.1 for the hydrodynamic
limit of the ABEP provides a relatively easy method for deriving hydrodynamic limits of similar
processes. If future processes are derived which are related to the BEP in a similar way, this proof
may provide a framework for proving their hydrodynamic limits.
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8 Propagation of Chaos

8.1 Introduction

The hydrodynamic limits of Theorem 6.1 and Theorem 7.1 are interesting findings, and because of
that the main topic of this thesis. In this section, however, we go in a slightly different direction,
and prove the propagation of chaos for the BEP and ABEP.
Propagation of chaos was proven for the ASEP in the pivotal paper of Gärtner [10]. What ‘prop-
agation of chaos’ means in the context of this paper is the following: Suppose we have a random
configuration of the IPS of our choice (BEP/ABEP), distributed according to a “local equilibrium”
measure. This is a measure with marginals similar to the stationary and reversible product mea-
sure, except that its parameterization is allowed to weakly depend on location. Then, under certain
choices in the creation of this local equilibrium measure, we will find that as we evolve the IPS, the
evolved measure of the distribution of its configuration will remain in local equilibrium form, i.e.
like the reversible measure, but with marginals depending on location.
In fact, what we will see is that if we choose the reversible measures of the BEP and ABEP, given
in Theorem 4.5 and 5.5 except with the scale parameter of the marginals determined by the value
of ρ : R → R+ at the location corresponding to each marginal, then we can use duality of the
BEP and ABEP with the n-SIP in order to prove that evolving the configuration under accelerated
dynamics becomes the same as evolving ρ through the heat equation as we take the same scaling
limit N → ∞ as in Chapter 6 and 7.
Propagation of chaos is an interesting property, because while the hydrodynamic limit only tells us
how the density profile evolves as it appears at macroscopic scale, propagation of chaos tells us that
the local distribution of energy (at microscopic scale) evolves following the known evolution of a lo-
cal equilibrium measure. For this reason, this property is also regularly referred to as “propagation
of local equilibrium” in the literature.

8.2 BEP

8.2.1 Main result

We define ν2k,∞ρ,(N) as the inhomogeneous infinite product of Gamma distributions with shape param-

eter 2k and scale parameters ρ( iN ) for i ∈ Z with ρ : R → R+, i.e.

ν2k,∞ρ,(N) = ⊗i∈Zν
2k
ρ( i

N ), (87)

where ν2k
ρ( i

N )
is given in (39). We call ν2k,∞ρ,(N) a “local equilibrium” measure as it is derived from

(reversible) equilibrium measure ν2k,∞θ with constant parameter θ, where the slowly varying nature

of ρ
(
i
N

)
makes it so that ν2k,∞ρ,(N) behaves like its counterpart with fixed parameter locally as we

take N → ∞. Similar to how the expected value of the BEP at each site is given by θ under ν2k,∞θ ,

under ν2k,∞ρ,(N) the profile is given through the function ρ, i.e. at site i the expected amount of energy

is ρ
(
i
N

)
.

Roughly speaking, the goal of this section is to prove that as N increases, we get the following
‘equality’.

ν2k,∞ρ,(N)S
BEP
N2t ≈ ν2k,∞ρt,(N), (88)
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Where in the right-hand site the function from which the scale parameters are derived is ρt, the
solution to the heat equation with initial condition ρ. Thus (88) claims that the evolved measure

which combines the evolution as the BEP with product measure ν2k,∞ρ,(N) is ‘roughly equal’ to a similar

product measure ν2k,∞ρt,(N), where the parameters are given through the same function evolved through

the heat equation. The reason for this ‘rough equality’ is that the measures we are dealing with
are infinite product measures which do not clearly converge when we integrate arbitrary functions.
Therefore we mean by (88) that if we integrate a duality function Db(ξ, ·) with an arbitrary ξ ∈ Ωn
with respect to the measures on both sides of the equation, their difference converges to zero as
N → ∞.
This is formalized in the following theorem.

Theorem 8.1. Suppose {ξ(N)}N∈N is a sequence of configurations with n particles (i.e. ξ(N) ∈ Ωn)
in such a way that under the usual rescaling of the space-dimension the locations of their n particles
at macroscopic scale converge, i.e.

ξ(N) =

n∑
i=1

δ
X

(N)
i

with for each i,
X

(N)
i

N
→ zi. (89)

Then we have

lim
N→∞

∫
EBEPN
y Db(ξ(N), yt)ν

2k,∞
ρ,(N)(dy)−

∫
Db(ξ(N), y)ν2k,∞ρt,(N)(dy) = 0, (90)

where ρt is the solution to the heat equation with initial condition ρ.

Note that we take a limit N → ∞ that is very similar to the Chapters about the hydrodynamic
limits, where function ρ corresponds to the appearance at macroscopic scale and the values yi
correspond to energy level at individual sites at microscopic sites. The fact the initial location of
the particles in dual configurations ξ(N) are chosen so that they converge at macro-scale, is also
very similar to the previous chapter. A key difference, as mentioned in the introduction, is that
our focus here will remain on the microscopic level, where we investigate the distribution of energy
levels at individual sites.

8.2.2 Proof

Our goal is to use duality between BEP and n-SIP to prove propagation of chaos of BEP as stated
in (90). In [16] something very similar was done, where self-duality of the SIP was used to prove
the propagation of chaos of the SIP. A lot of the work in that proof was on the behavior of the dual
SIP, which means it is directly applicable here.
We start by elaborating a bit further on the relationship between the reversible measure ν2k,∞θ

and the duality function Db. As we have seen in Chapter 4 we can split duality function Db into
single-edge duality polynomials (see (30))

Db(ξ, y) =

∞∏
j=−∞

y
ξj
j Γ(2k)

Γ(2k + ξj)
=

∞∏
j=−∞

db(ξj , yj).

Here ξ and y are arbitrary configurations of the n-SIP and ABEP respectively. Then the charac-
terizing property of reversible measure ν2k,∞θ is the following (see the proof of Theorem 4.5)∫

db(n, yi)ν
2k,∞
θ (dy) = θn.
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We can similarly split the (non-reversible) product measure ν2k,∞ρ,(N) into a product of marginal

measures ⊗iν2kρ( i
N )

so that we find the following:∫
EBEPN
y

[
Db(ξ(N), yt)

]
ν2k,∞ρ,(N)(dy) =

∫
EBEP
y

[
Db
(
ξ(N), ytN2

)](
⊗iν2kρ( i

N )

)
(dy)

=

∫
ESIP
ξ(N)

[
Db
(
ξ
(N)
N2t, y

)](
⊗iν2kρ( i

N )

)
(dy)

= ESIP
ξ(N)

[ ∞∏
i=−∞

∫
db((ξ

(N)
N2t)i, yi)ν

2k
ρ( i

N )(dyi)

]

= ESIP
ξ(N)

 ∞∏
i=−∞

ρ

(
i

N

)(
ξ
(N)

N2t

)
i


= ESIP

X1(0),...,Xn(0)

[
n∏
i=1

ρ

(
X

(N)
i (tN2)

N

)]
where in the last step we rewrote

ξ
(N)
N2t =

n∑
i=1

δ
X

(N)
i (tN2)

.

If we then define V as the so-called “correlation function” of the BEP

V(ν, x1, . . . , xn; t) : =
∫

EBEP
y D

(
n∑
i=1

δxi
, yt

)
ν(dy)−

n∏
i=1

∫
EBEP
y D(δxi

, yt)ν(dy)

then our goal is to show convergence to 0 of

V(ν2k,∞ρ , X
(N)
1 (0), . . . , X(N)

n (0);N2t)

=

∫
EBEP
y Db(ξ(N), yt)ν

2k,∞
ρ( i

N )
(dy)−

∫
Db(ξ(N), y)ν2k,∞

ρt(
i
N )

(dy)

= ESIP
X1(0),...,Xn(0)

[
n∏
i=1

ρ

(
X

(N)
i (N2t)

N

)]
−

n∏
i=1

ρt

(
X

(N)
i (0)

N

)

= ESIP
X1(0),...,Xn(0)

[
n∏
i=1

ρ

(
X

(N)
i (N2t)

N

)]
− EIRW

X1(0),...,Xn(0)

[
n∏
i=1

ρ

(
X̂

(N)
i (N2t)

N

)]
+ o(1), (91)

where in the last step we used the fact that at macroscopic scale the accelerated evolution of a
random walker is indistinguishable from Brownian motion, which has the Laplacian as generator.
An interesting thing to note is that one may have thought that the reason for seeing the solution
to the heat equation ρt in the right-hand side of (90) was because it is the hydrodynamic limit of
the BEP, but this last step shows that it originates from the evolution of the input of ρ as IRW(2k)
in the right term of (91).

Since ρ is continuous we thus need to prove that n SIP particles X
(N)
1 , . . . , X

(N)
n behave similarly

enough to n independent random walkers X̂
(N)
1 , . . . , X̂

(N)
n that

E

[
X

(N)
i (N2t)− X̂

(N)
i (N2t)

N

]
→ 0.

83



This means we have to show E
[
X

(N)
i (t)− X̂

(N)
i (t)

]
is o(

√
t).

This was proven in [16]. Later we will try to improve the bound that was found in that paper, but
for now we will take this result and use it to conclude the proof of Theorem 8.1.

Lemma 8.2. Let (X
(N)
1 , . . . , X

(N)
n , X̂

(N)
1 , . . . , X̂

(N)
n ) be a coupling with respect to probability mea-

sure P, where X(N)
1 , . . . , X

(N)
n are jointly defined particles of the n-SIP(k) where for X

(N)
i : R+ → Z,

X
(N)
i (t) denotes the location of particle i at time t. Similarly X̂

(N)
1 , . . . , X̂

(N)
n are particles of the

n-IRW(2k), in such a way that for every i = 1, . . . , n we have X
(N)
i (0) = X̂

(N)
i (0).

In this setting for each i = 1, . . . , n and t > 0,

E

∣∣∣∣∣X(N)
i (N2t)− X̂

(N)
i (N2t)

N

∣∣∣∣∣→ 0.

Proof. See [16]

We can now finish the proof of Theorem 8.1. Framing (91) via the coupling defined in Lemma
8.2 yields

|V| =

∣∣∣∣∣ESIP
x1,...,xn

[
n∏
i=1

ρ

(
X

(N)
i (N2t)

N

)]
− EIRW

x1,...,xn

[
n∏
i=1

ρ

(
X̂

(N)
i (N2t)

N

)]∣∣∣∣∣
=

∣∣∣∣∣E
[(

n∏
i=1

ρ

(
X

(N)
i (N2t)

N

))
−

(
n∏
i=1

ρ

(
X̂

(N)
i (N2t)

N

))]∣∣∣∣∣
≤ E

 n∑
i=1

∣∣∣∣∣ρ
(
X

(N)
i (N2t)

N

)
− ρ

(
X̂

(N)
i (N2t)

N

)∣∣∣∣∣
n∏

j=1

j ̸=i

2||ρ||∞


≤ E

[
n∑
i=1

∣∣∣∣∣X(N)
i (N2t)− X̂

(N)
i (N2t)

N

∣∣∣∣∣ ||ρ||∞ (2||ρ||∞)
n−1

]

≤ n2n−1||ρ||n∞E

∣∣∣∣∣X(N)
i (N2t)− X̂

(N)
i (N2t)

N

∣∣∣∣∣ .
Thus by Lemma 8.2, |V| converges to 0, which concludes the proof of Theorem 8.1.

8.3 ABEP

8.3.1 Main result

As we saw in Theorem 5.5, we can find a reversible measure for the ABEP in finite volume via
the pushforward measure µ2k,L

θ := (ν2k,Lθ det(J )) ◦ g, where g is the map from the ABEP to the
BEP given in (33). To be more precise, we used map g̃, which is a version of map g defined for
ABEP-configurations on [−L,L]. Since the lattice on which we define the ABEP in this section
changes with N , we simply let g denote the appropriate version of the map. In this section we will
use this finding in order to find an analogous result to Theorem 8.1 for the propagation of chaos
of the ABEP, by pushing forward the slowly varying measure ν2k,∞ρ,(N) from (31) through g−1. As we
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saw in Chapter 5.5, the pushforward measure of ν2k,∞θ by g−1 does not allow to be generalized to

infinite volume, and we will see that the same holds for the pushforward of ν2k,∞ρ,(N).

Because of this, the propagation of chaos for the ABEP will be proven for the ABEP(σ(N),k)

defined on a finite interval, corresponding to [−L,L] at macro-scale. Let ν2k,Lθ denote the reversible
measure in this finite setting, which is the product measure with marginals ν2k

ρ( i
N )

where i goes from

−NL to NL. One point we should pay attention to before we do this is the function ρ determining
the scale parameter of ν2k,Lρ,(N). In finite volume, the evolution of independent random walkers still

converges to the heat equation, but we now have boundaries. As in Chapter 5.5, we will take the
simplest case of closed boundaries of the IPS, which corresponds at macroscopic scale to a PDE
with Neumann boundary conditions. Thus we define ρt as the the solution to heat equation

∂tρt = ∂xxρt,

with Neumann boundary conditions

∂xρt(−L) = ∂xρt(L) = 0.

We continue by defining the pushforward measure of ν2k,Lρ,(N) through

µ2k,L
ρ,(N) := (ν2k,Lρ,(N)det(J )) ◦ g.

Again this is not a reversible or even stationary measure anymore, but the slowly varying nature
of ρ( iN ) allows for propagation of chaos. We find that µ2k,L

ρ,(N) is given through

µ2k,L
ρ,(N)(dx) =

NL∏
i=−NL

exp

{
e−2σEi+1(x) − e−2σEi(x)

2σρ( iN )

}
(1− e−2σxi)(2k−1)e−(4σk(i+L+1))xi

(2σρ
(
i
N

)
)2kΓ(2k)

. (92)

From (92) the nonlocal nature of µ2k
ρ( i

N )
becomes clear through the presence of the Ei(x) and

Ei+1(x) terms. In this setting we make a similar claim to Theorem 8.1 about the propagation of
chaos through the evolution of the ABEP under this measure.

Theorem 8.3. Let {ξ(N)}N∈N be a sequence of configurations with n particles defined on increas-
ingly large intervals [−NL,NL] such that at macroscopic scale the locations of their particles con-

verge, i.e. we have (89) with the additional constraint that

∣∣∣∣X(N)
i

N

∣∣∣∣ ≤ L for each i. Then

lim
N→∞

∫
EABEPN
x Da(xt, ξ)µ

2k,L

ρ( i
N )

(dx)−
∫
Da(x, ξ)µ2k,L

ρt(
i
N )

(dx) = 0. (93)

8.3.2 Proof

Since ∫
Da(x, ξ)µ2k,L

ρ( i
N )

(dx) =

∫
(Db(·, ξ) ◦ g)(x)µ2k,L

ρ( i
N )

(dx) =

∫
Db(y, ξ)ν2k,L

ρ( i
N )

(dy),
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we have ∫
EABEP
x Da(xN2t, ξ)µ

2k,L

ρ( i
N )

(dx) =

∫
ESIP
ξ Da(x, ξN2t)µ

2k,L

ρ( i
N )

(dx)

= ESIP
ξ

∫
Db(y, ξN2t)ν

2k,L

ρ( i
N )

(dy)

= ESIP
X1,...,Xn

[
n∏
i=1

ρ

(
Xi(N

2t)

N

)]
. (94)

Furthermore we have ∫
Da(x, ξ)dµ2k,L

ρt( i
N )

=

∫
Db(y, ξ)dν2k,L

ρt( i
N )
. (95)

This brings us back to the setting from Theorem 8.1, which tells us that (94) and the right-hand
side of (95) are equal. This concludes the proof of Theorem 8.3.

8.4 Conjecture: An improved bound on the distance between coupled
SIP and IRW particles

8.4.1 Introduction

As we saw, we could complete the proof of Theorem 8.1 and subsequently Theorem 8.3 via the proof
of Lemma 8.2 from [16]. The approach in this paper was to create a coupling of n SIP-particles
with n independent random walkers, and showing that the distance between a SIP-particle and
a corresponding random walker is o(

√
t), i.e. of lower order than

√
t. In this thesis however, we

propose a way to improve upon the results from that paper, by not only showing that that difference
is o(

√
t), but that it is O( 4

√
t), i.e. of the same order as 4

√
t. We make the following conjecture.

Conjecture 8.1. Let us be in the setting of 8.2, then for each i = 1, . . . , n and t > 0,

lim
N→∞

E

∣∣∣∣∣Xi(N
4t)− X̂i(N

4t)

N

∣∣∣∣∣ < C for some C > 0. (96)

The next paragraph outlines the first part of the approach of [16], which we will use in the same
manner, after which we will deviate from this paper and improve upon their results.

8.4.2 Approach of previous work: 2 particles

The paper starts by proving the result in the special case where n = 2. As we will see later, the
result for a general finite n ∈ N will then follow immediately. We start by defining a coupling
(X(t), Y (t), X̂(t), Ŷ (t)) where X(t) and Y (t) denote the location of two jointly defined SIP(k)-
particles and and X̂, Ŷ are two IRW(2k)-particles. The generator of the coupling is given for
continuous f : Z4 → R through

Lf(x) = 1

2

∑
ϵ=±1

(f(x+ ϵe13)− f(x)) + (f(x+ ϵe24)− f(x))

+ I(|x− y| = 1) (f(x, x, x̂, ŷ) + f(y, y, x̂, ŷ)− 2f(x, y, x̂, ŷ)) .

86



where e13 = (1, 0, 1, 0) and e24 = (0, 1, 0, 1). Here the first term containing e13 and e24 corresponds
to simultaneous jumps of the pair x and x̂ and pair y and ŷ, while the second term containing
I(|x− y| = 1) corresponds to the additional attraction between 2-SIP particles x and y.
We are interested in ϕ(x) = x− x̂. Defining z = y − x we can express the evolution of ϕ(x(t)) in z
via the Dynkin Martingale

Mt = ϕ(x(t))− ϕ(x(0))−
t∫

0

I(|z(s)| = 1)z(s)ds, (97)

⟨M⟩t =
t∫

0

(L(ϕ2)(x(s))− 2ϕ(x(s))L(ϕ(x(s))))ds =
t∫

0

I(|z(s)| = 1)ds. (98)

Here z is a Markov Process with generator

Lf(z) = I(|z| = 1)(f(0)− f(z)) + 2k(f(z + 1) + f(z − 1)− 2f(z)).

We can see z as a random walker (at rate 2k) with an additional jumping rate from ±1 to 0 (at
rate 1).
z spends as most as much time at ±1 as a regular symmetric random walk ẑ which jumps to its
neighbors at rate 2k and misses the additional pull to 0. Following the lines of the paper, such a
random walker ẑ(s) has the following bound on time spend at ±1 in expectation,

t∫
0

Eẑ(I(|ẑ(s)| = 1)ds ≤ C
√
t for some constant C > 0. (99)

(99) must then also hold for z, which means that from (98) we get

E
[
⟨M⟩t√

t

]
≤ C.

This brings us half the way of our prove, as we can conclude that

E

[(
Mt
4
√
t

)2
]
≤ C.

Looking at (97), we see that what’s left is to show that H :=
t∫
0

I(|z(s)| = 1)z(s)ds is O( 4
√
t).

In order to do this, we deviate from [16]. Our first step is breaking down time-interval [0,t] into
distinct intervals between arrival times of z(s) at 0. To warm us up to the full proof, we start out
by assuming that we know exactly how many such arrivals there are.

8.4.3 Simpler problem: Deterministic number of arrival times

The holding times at |z(s)| = 1 are exponentially distributed with rate 1+4k, which makes holding
times larger than O(1) extremely unlikely. This means that if |z(s)| spends O(

√
t) time at 1, then
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there must be O(
√
t) instances of it arriving at 1.

This in turn means there are O(
√
t) instances of it arriving at 0 (as t → ∞ the probability of at

least half of the jumps from 1 going to 0 converges to one).
For now we assume for simplicity that the number of arrival times at 0 is exactly equal to n = ⌊m

√
t⌋

for some m > 0.
We define (τj)j=1,..,n as the arrival times of z(s) at 0, i.e.

τj := inf{s > τj−1 : z(s) = 0, z(s−) ̸= 0} ∧ t with τ0 = 0.

Then we define Hj as the signed time that z(s) spends at ±1 between two times of arrival at 0,

Hj :=

τj∫
τj−1

(I(|z(s)| = 1)z(s)ds.

Note that these arrival times are integrable due to their boundedness by t, and that
n∑
j=1

Hj = H.

For every j (except the last) we have that Hj is distributed as a random sum of independent holding
times, where the amount of terms (i.e. amount of times z(s) = ±1 is visited before z(s) = 0) follows
a geometric distribution and the terms are the holding times at z(s) = ±1, which are exponential.

Hj
D
=

Vj∑
i=1

hi,jZj , (100)

where

Vj ∼ Geo

(
1 + 2k

1 + 4k

)
denotes the number of visits to z(s) = ±1 before returning to 0,

hi,j ∼ Exp(1 + 4k) the holding times at ± 1,

Zj ∼ Ber(1/2), where Zj =

{
1 if z(s) ≥ 0 on [τj−1, τj ],

−1 if z(s) ≤ 0 on [τj−1, τj ].

Vj , hi,j and Zj are all nearly independent from each other, so for now we will treat them as such.
Later will be argued why this is okay.
This means that EHj = 0 and σ2 := V ar(Hj) is finite and can be explicitly calculated (under
independence assumption) via

V ar(Hj) = E

V ar
 Vj∑

i=1

hi,jZj

∣∣∣∣∣∣Vj
+ V ar

E

 Vj∑
i=1

hi,jZj

∣∣∣∣∣∣Vj


= E[Vj ]V ar(hi,j) + 0

=
1 + 4k

1 + 2k

1

1 + 4k

=
1

1 + 2k
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by applying the total law of variation and noting that E[hi,jZj |Vj ] = 0 ∀Vj , as Zj is independent
from Zj and hi,j .
We then apply the CLT to these Hj (or simply add their variances).
If Hj ∼ N(0, σ2) for j = 1, ..., n then since we have assumed that n = ⌊m

√
t⌋, we have

t∫
0

(I(|z(s)| = 1)z(s)ds√
⌊m

√
t⌋

=
√
nH̄n ∼ N(0, σ2)

which shows that
t∫
0

(I(|z(s)| = 1)z(s)ds is O( 4
√
t), more specifically, its standard deviation is

σ
√

⌊m
√
t⌋ and expectation is 0.

8.4.4 Random number of arrival times

The problem is that the number of arrival times at z(s) = 0 is not deterministically equal to some
constant multiplied with

√
t. Let’s call the number of arrivals at 0 on [0, t] N0

t . We then only know
from point 3 that E[N0

t ] ≤ C
√
t for some constant C. Intuitively, not knowing N0

t shouldn’t be
a problem. H is the sum of practically independent values of Hj , which means that the variance
of H is approximately the sum of the variances of Hj . If this sum has a random number of terms
that we assume to be independent from the values that are summed, we can use the Law of Total
Variance. This is what we will do next.
Simplification: Treat N0

t and (Hj) as independent.
First let’s investigate why this is a reasonable thing to do. The dependency between Hj and both
Hk (for k > j) and N0

t comes from the following line of reasoning: Suppose Hj is large, i.e. z(s)
stayed at ±1 for a long time on interval j. Then there is less time left until t for z(s) to be at ±1
in the future, making Hk smaller, and for z(s) to revisit 0, making N t

0 smaller. There are 2 things
to note in this reasoning:
One, the vast majority of time is spend at |z(s)| ≥ 2, so even if Hj is relatively big, it will still
be of order o(

√
t) and therefore not affect the total amount of time left, which is O(t) for the vast

majority of time.
Two, it’s clear that Hj is actually negatively correlated both with Hk and N0

t . The effect of this
covariance on the variance of H will be negative, so not taking this covariance into account will
lead to an overestimation of the variance. This is no problem, because we upper bound we create
does not have to be tight, it just needs to prove H to be O( 4

√
t).

Motivated by this line of reasoning we assume for the last step that for every i, j ∈ {1, . . . , N0
t } :

Cov(Hi, Hj) < 0 and similarly there is a negative covariance between Hj and N0
t . Under this
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assumption the Law of total variance tells us

V ar(H) = V ar

N0
t∑

j=1

Hj

 (101)

= E

V ar
 N0

t∑
j=1

Hj

∣∣∣∣∣∣N0
t

+ V ar

E
 N0

t∑
j=1

Hj

∣∣∣∣∣∣N0
t


= E

E
 N0

t∑
j=1

V ar(Hj |N0
t )

∣∣∣∣∣∣N0
t

+ E

E
 N0

t∑
i=1

N0
t∑

j=1

Cov(Hi, Hj)

∣∣∣∣∣∣N0
t

+ 0

≤ E

E
 N0

t∑
j=1

V ar(Hj)

∣∣∣∣∣∣N0
t


≤ E[N0

t σ
2]

≤ Cσ2
√
t,

where from line 3 to 4 our assumptions about negative covariance were used. This means

V ar

(
H

t1/4

)
≤ Cσ2.

Which concludes the proof. To summarize, we have

ϕ(x(t)) := x(t)− x̂(t) =Mt +

t∫
0

I(|z(s)| = 1z(s)ds =Mt +H,

with

⟨Mt⟩√
t

≤ C and V ar

(
H

t1/4

)
≤ Cσ2 with σ2 = E

[
Geo

(
1 + 2k

1 + 4k

)]
E [Exp(1 + 4k)] ,

and of course the same for y(t)− ŷ(t).
The simplification we made, that we can treat the values of N0

t and of Hj for j ∈ {1, . . . , N0
t }, and

similarly Hj and Hk for j ̸= k, as independent, is what prevents us from making the proof rigorous.
We have argued that this simplification is not a problem, because as a result we overestimate the
variance of H, which only means that the bound we find for ( H4√t ) could have been tighter.

In order to make the proof rigorous, we would have to find an expression of ( H4√t ) involving the

covariances between N0
t and Hj from {Hj}j≤N0

t
, and prove that these covariances are nonpositive.

Another approach may be to define Ĥ, which is constructed via (100) and (101) but with indepen-
dence of each of the random variables by construction. We may then argue that |Ĥ| stochastically
dominates |H|, and thus boundedness of E

∣∣∣ H4√t ∣∣∣ follows from boundedness of E
∣∣∣ Ĥ4√t ∣∣∣.

8.4.5 n-particle SIP/IRW coupling

Finally in order to finish this (informal) proof, we need to prove that this results does not just hold
for a coupling between the 2-SIP and two independent random walkers, but holds for configurations
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with an arbitrary n ∈ N particles as well. This follows from the following two observations, which
can again be taken directly from the [16].

1. The effect of binary collisions, i.e. interactions between exactly 2 neighboring particles, is
the same in the setting with n-particle configuration as in 2-particle configurations. Such an
effect can occur for every pair of particles, which means we have to sum this effect over each
possible pair of particles. This means that we end up summing

(
n
2

)
many O( 4

√
t) terms, which

remains O( 4
√
t).

2. The probability of more than 2 particles interacting with each other at the same time (i.e. 3
or more particles being spread of two neighboring sites) converges to 0 very fast. According
to [16], the time that at least 3 independent SIP particles are at nearest neighbor positions is
dominated by C + Cnln(t), which means that this effect is negligible for our bound of order
O( 4

√
t).

From these two observations we conclude that

∀i = 1, . . . , n, ∀t > 0 : lim
N→∞

E

∣∣∣∣∣Xi(t)− X̂i(t)
4
√
t

∣∣∣∣∣ < C̃ for some finite C̃ > 0,

which yields (96).
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9 Conclusion

In this thesis, we proved the hydrodynamic limit of the Brownian Energy Process in infinite volume.
We showed the density field of this limit, representing the distribution of energy over the macro-
scopic space-dimension, evolves following dynamics described by the heat equation. This is in line
with expectations brought forward in [17], where this finding was suggested, but not rigorously
proven. Two useful tools were the Dynkin martingale, which allowed us to relate the evolution
of the Brownian Energy Process to the Laplacian, and tightness, which allowed to prove that a
hydrodynamic limit exists.
After this we proved the hydrodynamic limit of the Asymmetric Brownian Energy Process in infi-
nite volume. We used the fact that this process can be transformed into its symmetric counterpart
using the Cole-Hopf transformation, which we first proved, in order to express the density field of
the Brownian Energy Process as a transformation of the density field of the Asymmetric Brownian
Energy Process. This then allowed us to derive a PDE for the density field of the latter from the
PDE of that of the former. Again via tightness the existence of such a limit density field was proven.
After this, we recreated this proof for the hydrodynamic limit of Dynamic Asymmetric Brownian
Energy Process. We found that the method of proof relatively easily translated to this process,
although for the resulting density field we found a PIDE that was not reducible to a PDE.
Lastly, propagation of chaos was proven for the Brownian Energy Process in infinite volume and
for the Asymmetric Brownian Energy Process in finite volume. This result followed from the com-
bination of findings in [16] and [3], where we proposed an informal proof of an improvement to a
bound stated in [16].
This thesis leaves three questions unanswered that could be the focus of future studies. The first
being whether conjecture 8.1 can be rigorously proven. This would require a more formal presen-
tation of the arguments, and possibly an argument involving stochastic dominance, as suggested
at the end of Chapter 8.4.4. Secondly, in our proof of the hydrodynamic limit of the DABEP from
Theorem 7.7, we assumed the existence of a hydrodynamic limit, without proving this. We did this,
because we expected that for this process the tightness arguments would work out in a very similar
way to the BEP and the ABEP, however in order to make the proof rigorous, this should still be
proven. Last, we may wonder whether it is possible to relax assumption 7.3 of finite total energy in
the hydrodynamic limit of the Asymmetric Brownian Energy Process. This was left outside of the
scope of this thesis, because relaxing this assumption makes the approach of the proof of hydrody-
namic limit impossible, and introduces many other questions, among which the question whether
the Asymmetric Brownian Energy Process in infinite volume with infinite energy even exists.
Apart from answering these three questions, the research of this thesis may be continued by proving
the hydrodynamic limits of more general transport models with the property of attraction. The
generalization from the ABEP to the DABEP is a good example of this. Another generalization for
future work may be to focus on processes with location-dependent jumping rates. In recent years
the trend in the study of interacting particles systems has been to move away from the fixed rate of
2k and instead have a vector α = {αi, i ∈ V }, where V is the set of sites, determining the jumping
rate from each site. It can be shown that duality holds for particle systems with corresponding
arbitrary positive α in similar manner to those with a fixed parameter of 2k (see e.g. [4]). In
future work one could investigate under what conditions one can find a hydrodynamic limit for
such particle systems.
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Appendix A. Overview of notation

BEP (D)ABEP SIP n-SIP n-IRW

Reversible measure ν2k,∞θ µ2k,L
θ M2k,∞

θ - -
Initial distribution νN µN - - -
(Accelerated) Generator LBEPN LABEPN LSIP LSIP -
(Accelerated) Path-space measure PBEPN

νN PABEPN
µN

PSIP
η PSIP

ξ PIRW
x1,...,xn

Hydrodynamic limit density ρt χt - - -

Evolved configuration yt xt ηt ξt or Xi(t) X̂i(t)
State space RZ

+ Ωf NZ
0 Ωn Ωn

Duality function with SIP Db Da DSIP DSIP -

Algebraic operators Kαi K̃αi Kα
i Kα

i -

Appendix B. The Asymmetric Inclusion Process (ASIP)

A discrete IPS of interest in the asymmetric version of the SIP, the Asymmetric Inclusion Process
(ASIP), introduced in [5]. How the asymmetry was achieved had to be carefully thought of, as
adding asymmetry could mean the process generator is not longer associated to useful algebras,
which means duality relations may be lost. Because of this, the ASIP(q,k) was constructed as the
q-analog of the SIP(k). The following is the definition of the ASIP(q,k), where 2k is again the fixed
jumping rate and q is a parameter representing the asymmetry:

Definition B.1 (The ASIP(q,k)). For q ∈ (0, 1), let [·]q denote a q-number, meaning for n ≥ 0

[n]q =
qn − q−n

q − q−1

Then the ASIP(q,k) is the Markov process on NZ
0 with generator defined on functions f : NZ

0 → R

(
LASIPf

)
(η) =

∞∑
i=−∞

(
LASIP
i,i+1f

)
(η), with

(
LASIP
i,i+1f

)
(η) =q

ηi−ηi+1+(2k−1)
i [ηi]q[2k + ηi+1]q(f(η

i,i+1)− f(η))

+ qηi−ηi+1−(2k−1)[2k + ηi]q[ηi+1]q(f(η
i+1,i)− f(η))

This generator can be difficult to interpret, but one should think of q ∈ (0, 1] as a parameter
quantifying the tendency for particles to preferentially jump to the right, where lower values of
q correspond to a stronger asymmmetric. One can check that as we take q → 1, the asymmetry
dissapears and the SIP(k) is recovered.
The ASIP is an exception to the processes introduced in Chapter 4, in that its generator cannot be
written via a representation of the su(1,1) Lie algebra. Instead we can write it a respresentation
of the suq(1,1) quantum Lie algebra, the q-analog of su(1,1). Discussing this algebra would require
introducing quantum algebra’s, which is not very relevant to this thesis, so instead we proceed by
providing the self-duality function of the ASIP that can be found.
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Proposition B.1. The ASIP(q,k) is self-dual with self-duality function

DASIP(η, ξ) =

∞∏
i=−∞

 (
ηi
ξi

)
q(

ξi+2k−1
ξi

)
q

· q(ηi−ξi)[2
∑i−1

m=1 ξm+ξi−4k] · 1{ξi≤ηi}


with q-binomial

(
n

m

)
q

=
[n]q!

[m]q![m− n]q!
and q-factorial [n]q! = [n]q[n− 1]q . . . [1]q.

Proof. See theorem 5.1 of [5].

Here we can use the fact that the ASIP(q,k) reduces to the SIP(k) as we let q → 1. When we
apply this limit to DASIP, we can see that DSIP is recovered.
Another finding is that we can take a scaling limit of the ASIP in order to arrive at the ABEP, in
similar fashion to how we showing that a scaling limit of the SIP produces the BEP in Theorem
4.3.

Proposition B.2. Let (ηNt )N∈N denote a sequence of evolved ASIP(1− σ
N , k)-configurations where

lim
N→∞

1
N η

N
0 = x0 ∈ Ωf . Then xt := lim

N→∞
1
N η

N
t is the ABEP(σ, k) started form x0, where conver-

gence is weak in path space, i.e. for every local f ∈ C∞
c (Ωf ), we have

lim
N→∞

PASIP
η0

(
f

(
1

N
ηNt

)
∈ B

)
= PABEP

y0 (f(yt) ∈ B).

Proof. See [5].

Analogously to how one can derive the dynamic version of the ASEP (see [12]) and the ABEP
(Definition 5.2), a dynamic version of the ASIP can be derived. Then in similar manner to Propo-
sition B.2, it can be shown that the DABEP arises as a scaling limit of the dynamic ASIP. A
publication including this finding is forthcoming.
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