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Surface Denoising Based on Normal
Filtering in a Robust Statistics
Framework

Sunil Kumar Yadav, Martin Skrodzki, Eric Zimmermann,
and Konrad Polthier

1 Introduction

Surface denoising—generally being part of the preprocessing stage in the geome-
try processing pipeline—is designed to remove high-frequency noise corrupting a
geometry. The noise generally arises from scanning or other acquisition processes.
In contrast to smoothing, we are interested in preserving attributes and features of
the geometry like edges and corners. Here, the difficulty lies in distinguishing these
from noise, depending on the intensity of noise and the level of the attributes’ details.

Denoising can therefore be considered as being part of the area of smoothing.
It is used in all applications asking for a cleaned, i.e., noise-free, surface with the
additional property of keeping features. But more importantly, it is recognized as
being a major tool in the preprocessing stage of geometry processing. The reason
is that—besides computer-designed models—the acquisition of real world models
via 3D scanning processes unfortunately adds noise and outliers to the data due
to mechanical limitations and sub-optimal surrounding conditions. These artifacts
influence meshes and point sets alike and have to be removed to obtain a clean model
for further use in different industry applications, e.g., scientific analysis, automotive,
medical diagnosis, rendering, and other geometry processing algorithms like surface
reconstruction, feature detection, computer-aided design, or 3D printing, see (Yadav
et al. 2018b) for applications in medical diagnoses and (Botsch et al. 2010) for a
variety of application scenarios.
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A typical challenge arising in the denoising process is the decoupling of noise and
features of a geometry. This is, because both are high-frequency components of the
geometry in terms of the spectral setting. Other problems arise as noisy geometries
include outliers, which are far away from the underlying ground truth. Furthermore,
the amplitude of noise can be significant when compared to the feature size. To
solve these problems, in both cases—for meshes and point sets—a variety of surface
denoising algorithms have been published. These state-of-the-art methods can be
categorized into:

1. One-stagemethods,where noise components are removedby adjusting the vertex
positions based on curvature information;

2. Two-stage methods, wherein the first stage, surface normals are filtered and
then in the second stage, vertex positions are adjusted according to the filtered
normals.

Two-stagemethods aremore effective in terms of feature preservation aswell as noise
removal and obtain minimum volume shrinkage compared to one-stage methods, see
(Centin and Signoroni 2018; Yadav et al. 2018c, 2019). In the two-stage methods,
surface normal filtering is the key part as it is responsible for both noise removal and
feature preservation. Therefore, several procedures have been published for normal
filtering. Each of these algorithms is effective in different aspects (like robustness
against noise, feature preservation, or detection of outliers). However, there is no
unified theoretical framework available in which we can discuss the benefits and
drawbacks of the normal filtering algorithms and in which we can derive relations
between these methods.

In this paper, we focus on this issue and introduce such a unified framework
making use of robust statistics to derive relations between (both linear and nonlinear)
state-of-the-art surface normal filtering methods. On the basis of these relations, we
discuss the robustness of each algorithm against noise and its respective feature
preservation capability. The presented framework can be used to provide pros and
cons of published methods for the development of new algorithms. Furthermore, it
can serve as a comparison possibility for such new procedures to state-of-the-art
methods on a theoretically sound basis.

1.1 Notation

Throughout the whole paper, we will use the following notation. Let I, J, K denote
index sets as subsets of N. We consider a mesh M = (P, E, F) consisting of a
set of points or vertices P = {pi }i∈I ⊂ R

3 (which will be used in the point set set-
ting as well), (undirected) edges E , and faces F . In general, we will assume that
the mesh M or the point set P is corrupted by noise. The set of normals is given
as N = {n j } j∈J ⊂ S

2, with S2 the two-dimensional unit sphere in R3 and neighbor-
hoods are labeledΩk for k ∈ K . Sometimes we only refer to the neighborhood byΩ

and to its representatives by p, q ∈ Ω without further labels, to simplify the notation
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where it is unambiguous. The used type of neighborhood will get specified when
necessary and receive a dedicated index set, as it further depends on the context, i.e.,
to which object (points, faces, . . .) we are going to relate it. Consequently, normals
and neighborhoods apply for faces and points depending on whether we discuss the
mesh or point set setting. Let |X | denotes the size of a set X and let ‖v‖ as well as vT

be the Euclidean norm and the transpose of a vector v ∈ R
3, respectively. A surface

area or a vertex, both of high curvature (in comparison with the other elements of the
geometry) will be referred to as a feature of the mesh or the point set, respectively.

1.2 Related Work

In the last two decades, many surface smoothing algorithms have been developed.
Due to the large number of availablemethods, for a comprehensive overviewwe refer
to (Botsch et al. 2010; Centin and Signoroni 2018). Here, we give a short overview
of methods highly related to the robust statistics setting and of the most important
state-of-the-art methods. As stated above, the removal of noise components is equiv-
alent to the removal of high-frequency components. Here, the Fourier transform is a
common tool, allowing efficient implementations of low-pass filters to cut off high
frequencies. It has been generalized to manifold harmonics to be applicable to 2-
manifold surfaces via the eigenfunctions of the Laplace–Beltrami operator of these
surfaces. Its matrix representation encodes the natural vibrations of a triangle mesh
in its eigenvectors and the natural frequencies in its eigenvalues, see (Taubin 1999,
2001a). One drawback is its cost for many applications as the eigenvector decompo-
sition of the Laplace matrix is numerically challenging to compute; see (Vallet and
Levy 2008).

A similar removal of high-frequency components can be achieved by utilizing
the diffusion flow, which dampens high frequencies (instead of cutting them off)
by a multiplication with a Gaussian kernel. It can be computed directly on the
mesh, making it cheaper and hence more practical than the Fourier transform. Let
f (p, t) : R3|P|+1 → R be a given signal with p = (p1, . . . , p|P|)T . The diffusion
equation:

∂ f (p, t)

∂t
= λΔ f (p, t) (1)

describes the change of f over time by a scalar diffusion coefficient λ ∈ Rmultiplied
with its spatial Laplacian Δ f , which can be replaced by the Laplace–Beltrami oper-
ator on manifolds. As the discretization asks for small time steps to be numerically
robust in the integration, the authors of (Desbrun et al. 2001) proposed an implicit
time integration providing unconditional robustness even for large time steps. A
smoothing procedure can be derived from this as update of the vertex positions pi
by a point-wise update scheme
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pi ← pi + hλΔpi ,

with Δpi = −2 Hni ,
(2)

because the Laplace–Beltrami operator on vertices corresponds to the mean cur-
vature. Hence, all vertices pi move in the corresponding normal direction ni by a
magnitude regulated by the mean curvature H . This is known as the mean curvature
flow, see (Desbrun et al. 2001).

The isotropic Laplacian has been extended by a data-dependent diffusion tensor
yielding the anisotropic flow equation:

∂ f

∂t
= div[gσ (‖∇ f ‖)∇ f ], (3)

where f is a signal as in Eq. (1) and gσ (·) is an edge stopping function (anisotropic
weighting function), which is responsible for feature preservation with a user input
parameter σ during denoising operations, see (Perona andMalik 1990; Clarenz et al.
2000). Further examples for the usage of the anisotropic diffusion equation can be
found in (Bajaj and Xu 2003; Hildebrandt and Polthier 2004). The same concept
is extended to the context of point set smoothing by Lange and Polthier (Lange and
Polthier 2005) and to face normal filtering by Tasdizen et al. (Tasdizen et al. 2002).

Another set of denoising techniques consists of two-stage mesh denoising algo-
rithms. Here, at the first stage, face normals are filtered and in the second stage vertex
positions are updated according to the newly computed face normals, see (Taubin
2001b). Face normal filtering is performed by using several linear and nonlinear
filters in order to preserve sharp features (Centin and Signoroni 2018; Yadav et al.
2018c; Yagou et al. 2002, 2003; Ohtake et al. 2002; Belyaev and Ohtake 2001) and
vertex updates are performed by using the edge-face orthogonality (Sun et al. 2007).

Finally, there are several denoising methods utilizing bilateral filtering. It arose
from image processing (Tomasi and Manduchi 1998) and uses a combination of two
different weighting functions: a spatial kernel and a range kernel to preserve fea-
tures and remove noise components. It got adapted to surface denoising for instance
in (Fleishman et al. 2003), where the information of spatial distances and the local
variation of vertex normal vectors are combined for denoising. Bilateral filters are
extended for face normal filtering,where a range kernel (Gaussian function) is defined
based on the normal differences in the neighborhood (Yadav et al. 2019; Zheng et al.
2011). A variation of bilateral filtering is also used extensively in mesh denoising in
order to remove noise and retain sharp features (Jones et al. 2003; Zhang et al. 2015).
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1.3 Face Normal Filtering Versus Vertex Position Filtering

Broadly, surface smoothing algorithms can be divided into two categories, direct ver-
tex position filtering, which is also known as one-stage smoothing and two-stage fil-
tering,which includes (face) normal filtering and vertex position updates as described
above.

Most of the one-stage denoising algorithms (vertex position filtering) follow the
concept of mean curvature flow, which is related to the Laplace–Beltrami operator
and the mean curvature on the surface as shown in Eq. (2) and as discussed above.
Basically, noise components are removed by minimizing the mean curvature on
the surface, where the mean curvature is computed using the area gradient on the
surface. Therefore, minimizing the curvature will result in minimizing the area,
which will lead to volume shrinkage. This applies to most of the anisotropic and
isotropic diffusion-based surface smoothing algorithms. These methods use vertex
position filtering in their minimization. To illustrate this problem, Fig. 1a shows a
noisy model and Fig. 1b shows the result obtained by using the mean curvature flow-
based method of (Hildebrandt and Polthier 2004). More precisely, Fig. 1b shows two
different surfaces, the original surface (green) and the denoised one (yellow). The
difference between these two surfaces is visible due to volume shrinkage during the
minimization.

On the other hand, in two-stage surface denoising, noise removal is performed
based on the face normals. Basically, face normals are treated as signals on the
vertices of the dual graph of the mesh with values in the unit sphere. The face normal
denoising is generally performed by rotating the face normals on the unit sphere
according to the weighted average of the corresponding neighbor face normals (see
Eq. (5) for a formalization). In other words, for noise removal, we operate in the
dual space of the mesh and minimize the variation of face normals. This operation
does not involve the curvature minimization on the vertex positions. Therefore, in
two-stage surface denoising algorithms, volume shrinkage is minimal, as shown in
Fig. 1c, d.

Furthermore, in two-stage surface denoising, noise removal can be performed
also on vertex normals (Fleishman et al. 2003) instead of face normals. However, in
terms of sharp feature preservation, vertex normal filtering will not be as effective as
face normal filtering because of the following reasons:

1. The vertex normals of a mesh are usually derived from face normals. Therefore,
processing face normals will avoid the ill-posedness and increase the robustness
of the algorithm.

2. At a sharp feature, the angle between vertex normals is smaller than the angle
between the face normals. Therefore, face normals are more robust in feature
preservation compared to vertex normals.

As shown in Fig. 1c, d, face normal filtering better preserves sharp features compared
to vertex normal filtering methods. However, in the context of point set surfaces, face
normals are not available and denoising has to be performed using vertex normals.
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(a) Noisy (b) Result [13] (c) Result [23] (d) Result [4]

Fig. 1 A visual comparison between vertex position, vertex normal, and face normal filtering
methods. a shows the noisy block model and b shows the denoised result of the method presented
in Hildebrandt and Polthier (2004), based on mean curvature flow. More precisely, it shows two
different surfaces, the original surface (green) and the denoised one (yellow). The difference between
these two surfaces is visible due to volume shrinkage during theminimization. In contrast, c, d show
the result of the face normal filtering methods (Fleishman et al. 2003) and (Yadav et al. 2018c),
respectively, which do not suffer from volume shrinkage

1.4 Scope

From our discussion in the last section, it is clear that the two-stage surface denoising
algorithms are robust and efficient in terms of noise removal and feature preservation.
Therefore, in this paper, we will cover surface normal filtering (face normal in the
context of mesh surfaces and vertex normals in the context of point set surfaces) in
a robust statistics framework.

In the context of surface denoising, the most challenging task is to decouple sharp
features from noise to treat them appropriately. Robust statistics is an efficient tool
to identify the deviating substructures (outliers) from the bulk data. Here, we will
treat features on the geometry as outliers because we want to deal with features
differently compared to the non-feature areas. Based on this assumption, we derive
relationships between different state-of-the-art methods for surface normal filtering
using the concept of the robust error norm and its corresponding influence functions;
see Sect. 2. We also discuss the robustness of these algorithms within the presented
framework, see Sects. 3 and 4.

2 Robust Statistical Estimation

This paper is concerned with robust statistics handling outliers during statistical data
modeling. The field of robust statistics has developed methods to handle outliers in
the data modeling process, see (Mrázek et al. 2006). These methods describe the
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structure of best fitting the bulk of the data and identifying deviating substructures
(outliers), see (Black and Rangarajan 1996). In this section, we translate the robust
statistics framework to the setting of surface denoising. As explained above, surface
denoising is a preprocessing operation in many geometry processing algorithms,
which removes noise components and retains sharp features. In the robust statistics
framework, surface features can be seen as outliers and methods from robust statics
can identify these, which in turn can be treated differently for feature-preserving
surface denoising, see (Yadav et al. 2019). As stated in the notation, we consider
both a face and a vertex of the surface mesh to be a feature, respectively, if the
corresponding normals of its neighbors have a high variation. Note that this is also
the case for noisy faces and vertices, but not for outliers as they will not have a close
neighborhood.

As reasoned in Sect. 1.4, we focus on two-stagemesh denoising algorithms. Recall
that—as it is mentioned in Sect. 1.1—the surfaceM is corrupted by noise. Therefore,
the vertices P and face normals N contain noise components, too. Let us first assume
that the noise-free surface is represented by M̂ with P̂ and N̂ its vertices and face
normals, respectively. The noisy and noise-free face normals can be related by:

n = n̂ + η, (4)

where η is a random variable representing the noise corrupting the surface. If η is a
zero-mean Gaussian random variable and the surface is flat, then the denoised face
normals can be computed byminimizing the following L2 error to compute themean:

E(n̂) =
∑

n∈Ω

∥∥n̂ − n
∥∥2

, n̂ = 1

|Ω|
∑

n∈Ω

n. (5)

However, in real-life scenarios, the noise η is not always normally distributed and
surfaces have sharp features,which canbe seen as outliers. Therefore, in the following
we will aim at computing an approximation ñ of n̂. To deal with this complicated
situation, we use robust error norms, which lead to the theory of M-estimators, see
Sect. 2.1 for details. An M-estimator of a face normal from noisy normals can be
obtained as the minimum of the following error functional:

Eσ (ñ) =
∑

n∈Ω

ρσ (‖ñ − n‖) , (6)

where ρσ (·) : R → R is a loss function and commonly called ρ-function or error
norm (Black and Rangarajan 1996; Black et al. 1998; Durand and Dorsey 2002) and
the quantity σ is a user input. See Table1 for different choices for ρσ . To minimize
the effect of outliers, the loss function should not grow rapidly. To see the growing
speed of the robust error norm ρσ (·), its derivative is computed, which is referred to
as influence function (ψσ (·)) in robust statics (Winkler et al. 1998). Thus, the loss
function and influence function are related as follows
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ρ ′
σ (x) =: ψσ (x), (7)

where for convenience, let us put x := ‖ñ − n‖.
During mesh denoising, at sharp features, the effect of the influence function

should be minimal. The input parameter x will be related to features, i.e., to the
variation of normals. Therefore, when x → ∞, the influence function should be
zero, that is

lim
x→∞ ψσ (x) = 0.

In our setting, feature values (x) are basically defined by the variation of normals,
which is measured by the differences between the neighboring normals n j and the
central normal ni . However, these differences cannot approach infinity practically
as ni , n j ∈ S

2 for all i, j ∈ I . Therefore, the above equation indicates that for bigger
values of x the influence function should be diminished.

Equation (6) can be extended to take into account spatial weights in local neigh-
borhoods using the following formulation:

Eσ,σd (ñ) =
∑

n∈Ω

ρσ (‖ñ − n‖) fσd (d), (8)

where the function fσd (d):R → R is an isotropic weighting factor, which takes the
spatial distance d between the considered geometry elements as the input argument
and is responsible for smoothing out high-frequency components of the geometry.
The term σd controls the width of the spatial kernel and generally depends on the
resolution (sampling density) of the given geometry. In case of mesh denoising, the
distance is computed between the centroid of neighboring faces and the processed
central face. For point set denoising, the term d is computed between neighboring
vertices and the processed central vertex.

Throughout the whole paper, concerning the error functionals, we are going
to ignore constant factors in the arguments for both the isotropic (σd ) and the
anisotropic (σ ) case. This is to focus on the qualitative differences between the
presented methods rather than on smaller variations.

2.1 M-estimators

M-estimators are collections of different robust error norms to handle outliers. Any
estimator defined by Eq. (6) is called an “M-estimator.” The name comes from the
generalized maximum likelihood concept, which can be deduced from Eq. (6), when
−ρσ (x) is the likelihood function. Then, minimizing the energy Eσ (·) of Eq. (6)
will be equivalent to the maximum likelihood estimate (Chu et al. 1998; Hampel
et al. 2005). As motivated above, in general, the robust estimators should have the
following two properties:
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1. The error norm ρσ (x) should not grow rapidly.
2. The influence function ψσ (x) = ρ ′

σ (x) should be bounded.

For an efficient mesh denoising procedure, the influence function should be a re-
descending function, i.e., ψσ (x) → 0 when x → ∞. In this case, the corresponding
error norm ρσ (x) is called re-descending influence error norm (Hampel et al. 2005).

In general, surface normal (i.e., face and vertex normal) filtering is performed by
computing weighted averages of neighboring normals; see Eq. (11). The weighting
functions are vital for feature-preserving normal filtering, and they can be either linear
or nonlinear. Here, we will formulate the relationship between weighting function,
robust error norm, and the corresponding influence function.

From Eq. (3), we know that the anisotropic diffusion is controlled by an edge
stopping function, which is represented by gσ (x). In this paper, we termed it as
anisotropicweighting function.Equation (6) canbeminimizedusinggradient descent
to update the surface normal:

nt+1 = nt + λ∇Eσ (x) = nt + λ
∑

n∈Ω

∇ρσ (‖ñ − n‖), (9)

where t is the iteration number and λ represents the step size. Here, ρσ is inter-
preted as a concatenation, taking the norm of a vector as argument, while the norm
receives (ñ) ∈ R

3 as argument. The complete function then maps from R
3 to R.

The differentiation let us consider the gradient of ρσ as a natural generalization of
the derivative in the one-dimensional case. Following the reasoning of Jones et al.
(2003), also adapted by Zheng et al. (2011), we adapt the procedure introduced in
Tomasi andManduchi (1998) for signal processing to the context of mesh processing
by feeding the normal distance x—as defined above—into the error norm ρσ and
a spatial distance into the spatial weighting function fσ . This analogy motivates us
to analyze the following well-established relation from signal processing [consider
for a specific derivation (Black and Rangarajan 1996, Sects. 4.1 and 5.3) and more
generally (Hampel et al. 2005; Huber 1981),

gσ (x) = ρ ′
σ (x)

x
=: ψσ (x)

x
. (10)

Applications of this relation in image and geometry processing can be found in Jones
et al. (2003), Black et al. (1998), Durand and Dorsey (2002).

Theweighting function gσ (x) should capture the anisotropic behavior of themesh
or the point set, respectively, and should be chosen based on the above relations in
the robust statistics framework. Table1 consists of several well-knownM-estimators
with their robust error norms, their influence functions, and their corresponding
anisotropic weighting functions.

Equation (5) shows an example of an estimator with a quadratic error norm
(ρσ (x) = x2). This norm grows rapidly, and its influence function (ψσ (x) = 2x) is
unbounded (non-re-descending) as shown inTable1. Therefore, the quadratic estima-
tor is very sensitive to outliers and not useful in feature-preserving mesh denoising.
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Table 1 M-estimators

Error norm ρσ (x) Error norm ρσ (x) Influence
function
ψσ (x) = ρ′

σ (x)

Weighting
function
gσ (x) = ψσ (x)

x


 L2-norm (Black et al. 1998),
independent of σ , ρσ (x) = x2


 Truncated L2-norm (Black and
Rangarajan 1996)

ρσ (x) =
{
x2 |x | <

√
σ

σ otrw.


 L1-norm (Hampel et al. 2005),
independent of σ , ρσ (x) = |x |


 Truncated L1-norm (Hampel et al.

2005) ρσ (x) =
{

|x | |x | < σ

σ otrw.


 Huber’s minimax (Huber 1981)

ρσ (x) =
{

x2
2σ + σ

2 |x | < σ

|x | otrw.


 Lorentzian-norm (Black et al.

1998) ρσ (x) = log
[
1 + 1

2

( x
σ

)2]


 Gaussian norm (Black and
Rangarajan 1996)

ρσ (x) = 1 − e

(
− x2

σ2

)


 Tukey’s norm (Beaton and Tukey
1974) ρσ (x) ={

x2

σ 2 − x4

σ 4 + x6

3σ 6 |x | < σ
1
3 otrw.

The quadratic error norm can be truncated in order to convert it into a re-
descending influence error norm. The second row of Table1 shows the truncated
quadratic error norm that has a re-descending influence function ψσ (x) with a
bounded error norm ρσ (x). However, the behavior of ψσ (x) is linearly increasing
within the range of the user input σ , which is not desired for feature preservation.

As shown in Table1, the L1 error norm (ρσ (x) = |x |, third row) and Huber’s
minimax error norm (fifth row) do not have re-descending influence functions even
though they are bounded by a nonzero constant value. These two perform better in
terms of separating outliers compared to the (truncated) quadratic error norm.

The other error norms listed in Table1, which include the truncated L1 error
norm as well as the Lorentzian, Gaussian, and Tukey’s norms have re-descending
influence functions. Among all re-descending influence error norms, the truncated L1
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and Tukey’s error norm cut off the influence function’s response strictly while the
other norms have a nonzero influence function on a larger interval.

3 Face Normal Filtering in the Robust Statistics
Framework

In this section, we will discuss state-of-the-art methods for face normal filtering
utilizing the robust statistics framework andM-estimators as described above. Based
on the relationship between the robust error norm, the influence function, and the
weighting function as established in Eq. (10), we will discuss the robustness and
effectiveness of state-of-the-art methods for removing noise and preserving features.

The face normals N of a triangulated meshM can be seen as graph signals on the
graph induced by the dual mesh ofMwith values in the unit sphere. The centroid of
each face fi is denoted by ci , which can be treated as the vertex position on the dual
mesh. In general, the filtered face normal ñi corresponding to a noisy face normal ni
can be computed using the following equation:

ñi = 1

ω

∑

j∈Ωi

gσ

(∥∥ni − n j

∥∥2
)
fσd (

∥∥ci − c j
∥∥2

)n j , (11)

where ω =
∥∥∥
∑

j∈Ωi
gσ (

∥∥ni − n j

∥∥2
) fσd (

∥∥ci − c j
∥∥2

)n j

∥∥∥ ensures ñi to be of unit

length. The termΩi represents the mesh neighborhood around the i th triangle, which
can be combinatorial or a geometrical disk of some (user-defined) radius. The above
equation represents a general formula for face normal filtering and follows the error
functional presented in Eq. (8). The efficiency of this approach heavily depends on
the choice of the weighting functions gσ (·) and fσd (·).

In the following, we will present several state-of-the-art approaches for these
choices. The listed algorithms use different input arguments for the robust error
functionals. Common choices are the Euclidean distance of normals

∥∥ni − n j

∥∥, the
angle between two normals ∠(ni , n j ), or the quantity arccos(ni · n j ). We will stick
to the notation used in the respective original paper in the following discussion.
However, note that these input arguments are related. In particular, we obtain

cos(∠(ni , n j )) = ni · n j

‖ni‖
∥∥n j

∥∥ = ni · n j ⇒ ∠(ni , n j ) = arccos(ni · n j ).

by the Euclidean scalar product because all normals considered are of unit length.
Furthermore, (by the law of cosines) it is
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∥∥ni − n j

∥∥2 = ‖ni‖2 + ∥∥n j

∥∥2 − 2 · ‖ni‖ · ∥∥n j

∥∥ · cos(∠(ni , n j ))

= 2 − 2 cos(∠(ni , n j ))

⇒ ∠(ni , n j ) = arccos

(
1 −

∥∥ni − n j

∥∥2

2

)
.

3.1 Unilateral Normal Filtering

Unilateral normal filtering performs noise removal from noisy normals using a single
anisotropic kernel function. From our setup in Eq. (8), it is clear that the unilateral
normal filtering algorithms are using gσ (x) as anisotropic weighting function while
the spatial filter will be equal to one, i.e., fσd (d) ≡ 1. These methods are effective
against low intensity of noise and enhance sharp features. However, they are not
robust against moderate or high levels of noise because of the unavailability of the
spatial filter fσd (d).

(a) Belyaev and Ohtake (2001) introduce nonlinear diffusion of face normals to
enhance the features of the geometry. Their algorithm uses the following weighting
function:

gσ (x) = exp

(
− x2

σ 2

)
. (12)

Thisweight is a nonlinear function, and the input argument is encoding the directional
curvature. It is given as

x = ∠(ni , n j )

d
,

where ∠(ni , n j ) denotes the angle between ni and n j , the term d = ∥∥ci − c j
∥∥ rep-

resents the distance between the centroids (as presented above) of the central face
and its neighboring face, and ni , n j ∈ N are faced normals of the central face and
its neighboring face, respectively. The term σ is a user input to better adapt the algo-
rithm to the given geometry. It is chosen based on the amount of noise, curvature, and
the resolution of the geometry. The directional curvature x measures the similarity
between neighboring normals. In the robust statistics framework, by using Eq. (10),
we can deduce the used error norm as

ρσ (x) =
x∫

0

x ′gσ (x ′)dx ′ = σ 2

2

(
1 − exp

(
− x2

σ 2

))
. (13)

Similarly, the influence function can be derived as
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ψσ (x) = xgσ (x) = x exp

(
− x2

σ 2

)
, lim

x→∞ ψσ (x) = 0. (14)

The above two equations indicate that this algorithm applies the Gaussian error norm
(second last row of Table1), which has a re-descending influence function andmakes
the algorithm robust against outliers. However, the spatial smoothing function fσd (·)
is not used in this algorithm, which reduces the robustness of the algorithm against
significant noise.
(b) Yagou et al. (2002) apply mean and median filtering to face normals. Mean fil-
tering of normals is performed by simply uniformly averaging neighboring normals.
Therefore, the anisotropic weighting function gσ (x) ≡ 1 leads to an error norm and
influence function of

ρσ (x) =
∫ x

0
x ′gσ (x ′)dx ′ = x2 and ψσ (x) = xgσ (x) = x, (15)

respectively. From the equation above, it is clear that mean filtering follows the
quadratic error norm (ρσ (x) = x2, gσ (x) = 1) (the first row in Table1) and it has
an unbounded influence function (limx→∞ ψσ (x) = ∞), whichmakes the algorithm
sensitive to outliers and produces feature blurring. This method uses the triangle area
as a weighting function, i.e., in the notation of Eq. (8), it computes fσd (d) for a given
face fi as area( fi ). However, this makes the algorithm only insensitive to irregular
sampling.

On the other hand, median filtering is estimated using the L1 error norm (Hampel
et al. 2005). Therefore, the corresponding error norm and influence function can be
derived as

ρσ (x) = |x | and ψσ (x) = ρ ′
σ (x) =

{
1 |x | �= 0

undefined x = 0.
(16)

By using the relation fromEq. (10), the anisotropic weighting function can bewritten
as

gσ (x) = ψσ (x)

x
=

{
1
|x | |x | �= 0

undefined x = 0.
(17)

In this algorithm, the input x is given by the Euclidean distance of the neighboring
normal n j ∈ N to the central normal ni , i.e., x = ∥∥ni − n j

∥∥. The L1-norm is better
compared to the quadratic error norm in terms of robustness to outliers. However,
the corresponding influence function is not re-descending (see Table1) and produces
a constant value for outliers.

Weighted median filtering is applying a spatial weighting function to provide
higher weights to closer points compared to distant points; see (Yagou et al. 2002).
This weighting function is truncating the effect of local neighboring faces. Therefore,
the weighted median follows a truncated L1-norm and its corresponding influence
function can be derived as
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ψσ (x) = ρ ′
σ (x) =

⎧
⎪⎨

⎪⎩

0 |x | < σ

sign(x) 0 < |x | ≤ σ

undefined x = 0

. (18)

By using the relation fromEq. (10), the anisotropic weighting function can bewritten
as

gσ (x) = ψσ (x)

x
=

⎧
⎪⎨

⎪⎩

0 |x | < σ
sign(x)

x 0 < |x | ≤ σ

undefined x = 0

. (19)

The truncated L1-norm has a re-descending influence function, which enhances the
feature preservation capability of the algorithm compared to mean and median fil-
tering.

From the influence functions of the L1-norm and the truncated L1-norm, it is clear
that these norms are capable of feature preservation during the process of face normal
filtering. However, these influence functions and their corresponding anisotropic
weighting functions are not well-defined at x = 0, which is not desirable.

(c) Huber (1981) proposes a slight modification of the weighting function before
mentioned to overcome the issue of not being well-defined at x = 0. He suggests

ρσ (x) =
{

x2

2σ + σ
2 |x | < σ

|x | otrw.
. (20)

This modified error norm is commonly known as Huber’s minimax norm (see fifth
row in Table1). The corresponding influence and anisotropic weighting functions
can be derived as

ψσ (x) =
{

x
σ

|x | < σ

sign(x) otrw.
, gσ (x) =

{
1
σ

|x | < σ
sign(x)

x otrw.
. (21)

The above equation indicates that Huber’s minimax norm has a re-descending
influence function and has a well-defined anisotropic weighting function. This
norm is widely used in image processing applications but has—to the best of our
knowledge—not been used for face normal filtering yet and is therefore not included
in Table2.

(d) Yadav et al. (2018c) introduced a face normal filtering technique using a box
filter as the anisotropic weighting function

gσ (x) =
{
1 |x | < σ

0.1 otrw.
, with x = ∠(ni , n j ), (22)



Surface Denoising Based on Normal Filtering in a Robust Statistics Framework 117

where ∠(ni , n j ) denotes the angle between the central normal ni and it neighboring
normal n j . The corresponding error norm and influence function can be derived as

ρσ (x) =
x∫

0

x ′gσ (x ′)dx ′ =
{
x2 |x | < σ

0.1(x2 + 9σ 2) otrw.
, (23)

ψσ (x) = xgσ (x) =
{
x |x | < σ

0.1x otrw.
. (24)

From the above error norm and influence function, we can see that this filtering is
using an error norm quite similar to the truncated quadratic error norm (see second
row in Table1) for the computation of the element-based normal voting tensor. The
corresponding influence function is neither bounded nor re-descending, but the out-
lier effect will be quite minimal. This is because of the downscaling of the argument
in the influence function for bigger x . Therefore, the algorithm is able to preserve
sharp features. However, it is less robust against high noise intensities because of the
non-re-descending and unbounded influence function.

(e) Shen et al. (2004) introduced the fuzzy vector median-based surface smoothing
algorithm, which is quite similar to the algorithm of (Belyaev and Ohtake 2001)
(explained in paragraph a) in the beginning of this section). The anisotropicweighting
function gσ (x) is a Gaussian function as given in Eq. (12) and the input x is given as

x = ∥∥n j − nvd

∥∥ ,

where n j represents neighboring normals to the processed central face fi and the
term nvd performs vector directionalmedian filtering on the normal vectors including
the central normal ni . Vector directional median filtering is an extension of median
filtering for multivariate data, see (Trahanias and Venetsanopoulos 1993), and can
be computed as

nvd = argmin
n

∑

j∈Ωvd

∠(n, n j ), (25)

where ∠(n, n j ) denotes the angle between n and n j and the set Ωvd = Ωi ∪ {i}
consists of indices of the neighbor normals n j together with the index i of the central
normal ni .

The corresponding influence function will be re-descending as shown in Eqs. (13)
and (14). The input argument of gσ (x) is the Euclidean difference between the
neighboring normals and their median. Thismethod performswell in terms of feature
preservation but is not robust during noise removal because of the unavailability of
the spatial filter. As it is clear from Eqs. (3), the anisotropic weighting function gσ (x)
is similar to the edge stopping function in the diffusion process.
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(f) Tasdizen et al. (2002) apply—based on the relationship between bilateral filtering
and nonlinear diffusion (Barash 2002)—the diffusion of face normals for filtering by
using theGaussian function as anisotropicweighting function.Curvature information
is used as input x in this algorithm. Similar to the method of (Belyaev and Ohtake
2001), from Eqs. (12), (13), and (14), it can be derived that this method also follows
the Gaussian error norm and has a bounded, re-descending influence function, which
helps preserving sharp features. However, due to the unavailability of the spatial filter,
this algorithm is not robust against significant noise.
(g) Centin et al. (2018) also introduce a face normal diffusion method using the
following anisotropic weighting function

gσ (x) =
{
1 |x | < σ

σ 2

(σ−x)2+σ 2 otrw.
, where x = κ · �avg. (26)

The term κ represents curvature information computed at each face by averaging the
curvature at the corresponding vertices and �avg represents the average edge length
computed over the entire geometry. The corresponding influence function can be
derived as

ψσ (x) = xgσ (x) =
{
x |x | < σ

xσ 2

(σ−x)2+σ 2 otrw.
. (27)

The above influence function is bounded and re-descending, which makes this algo-
rithmeffective in termsof feature preservation.Thismethod falls somewhere between
the Lorentzian error norm (decaying of gσ (x) for x ≥ σ ) and Huber’s minimax error
norm (constant gσ (x) for x < σ ). Due to the absence of a spatial filter, this algorithm
is not robust against high intensities of noise.

3.2 Bilateral Normal Filtering

Bilateral normal filtering is one of the most effective and robust approaches for
denoising of normals. In contrast to unilateral normal filtering, theweighting function
in bilateral normal filtering consists of two different Gaussian kernels. As above, one
kernel carries the anisotropic nature and is commonly known as range filter (we
termed it anisotropic weighting function gσ (x)) while the other kernel is known as
spatial kernel (given as fσd (d) in Eq. (8)) and is isotropic in nature.

(a) Zheng et al. (2011) define these kernels as:

gσ (x) = exp

(
− x2

2σ 2

)
and fσd (d) = exp

(
− d2

2σ 2
d

)
, (28)

where σd is the average distance between neighboring faces and the central face. The
input arguments x and d are defined as:
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x = ∥∥ni − n j

∥∥ and d = ∥∥ci − c j
∥∥ ,

where ci and c j are the centroids of the central face fi and the neighboring face f j ,
respectively.

In the robust statistics framework, our main focus is the anisotropic weighting
function gσ (x), its corresponding error norm, and the corresponding influence func-
tion because gσ (x) is responsible for feature preservation. From Eqs. (12), (13),
and (14), it is clear that the method of (Zheng et al. 2011) has a re-descending
influence function (second last row of Table1). Thereby, this algorithm is capable
of preserving sharp features effectively and removes noise better compared to the
algorithms mentioned above because of the utilized spatial filter fσd (d).

(b) Zhang et al. (2015) describe a procedure of guided mesh normal filtering follow-
ing the Gaussian error norm and uses the same spatial filter as the method of (Zheng
et al. 2011) presented above. The guided mesh normal is based on a joint bilateral
filter, where an anisotropic weighting function (range kernel) works on the guidance
signal. That is, the input variable x is defined as:

x = ∥∥Gi − G j

∥∥ , (29)

whereGi andG j are the guidance normals, which are computed by averaging similar
normals in the respective neighborhood.

(c) Yadav et al. (2019) introduce a bilateral normal filtering using the following
anisotropic weighting function:

gσ (x) =
{

1
2

[
1 − (

x
σ

)
2
]2 |x | ≤ σ

0 otrw.
, where x = ∥∥ni − n j

∥∥ . (30)

The above function is known as Tukey’s biweight function (Beaton and Tukey 1974).
The spatial filter fσd (d) is a Gaussian function similar to that used in the method
of (Zheng et al. 2011) as described above. In the robust statistics framework, the
corresponding influence function and error norm can be derived as

ψσ (x) = xgσ (x) =
{

x
2

[
1 − (

x
σ

)
2
]2 |x | < σ

0 otrw.
, (31)

ρσ (x) =
x∫

0

x ′gσ (x ′)dx ′ =
{

x2

σ 2 − x4

σ 4 + x6

3σ 6 |x | < σ
1
3 otrw.

. (32)

From the influence function and error norm, it is clear that Tukey’s biweight function
is more robust compared to the Gaussian function in terms of feature preservation
because it strictly cuts off outliers with respect to the user-chosen parameter σ . Also,
the Gaussian spatial filter helps to remove noise components effectively.
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4 Point Set Surface Denoising in the Robust Statistics
Framework

In this section, we will shift our focus slightly. Instead of an input meshM, we will
now consider a point set sample (PSS) of a surface as input. Thus, we are only given
vertices P = {pi }i∈I ⊆ R

3 with corresponding normals N = {ni }i∈I , i.e., compared
to the above we cannot use edges to induce connectivity between the vertices nor
can we use the area of faces as weighting terms in the filtering process.

Despite these challenges, a multitude of procedures and algorithms has been pro-
posed for the denoising of PSS. This is mostly due to two advantages of PSS over
meshes. First, point sets are often the raw output of 3D acquisition devices and pro-
cesses. Thus, if an algorithm is available toworkon aPSS, it canbedirectly—possibly
even on site—applied to the acquired data. Second, as there is no connectivity infor-
mation in the point set, no such data has to be stored, which amounts to significantly
lower storage costs compared to meshes. Furthermore, no topological problems—
like non-manifold edges or fold-overs—and no numerical problems—like slivers—
are introduced as the PSS only gives an implicit handle on the underlying surface
geometry.

In the following, we will focus on adaptations of face normal filtering algorithms
from meshes to point sets as well as on original methods proposed directly in the
PSS setting. Note that any method on point sets can easily be applied to the meshed
setting by simply disregarding the edge and face connectivity information.

4.1 Unilateral Normal Filtering

As for meshes, we will first focus on unilateral normal filtering procedures. These do
not use a specific spatial filter, i.e., fσd (d) ≡ 1. This makes them less robust against
moderate or high levels of noise.

(a)Öztireli et al. (2009) introduced amodification of themoving least squares (MLS)
procedure (Alexa et al. 2003) aiming at the integration of feature preservation into the
MLSpipeline. Their core objective is an iterativeminimization and can be understood
as iterative trilateral filtering, as it makes use of three types of weights. The first one
is isotropic in nature and appears as C3 continuous polynomial approximation of the
Gaussian, i.e.,

fi (p) =
(
1 − ‖p − pi‖

h2i

2)4

(33)

where the argument p is some point (not necessarily from P), as the objective is
an implicit, signed distance function. The value hi is a weight adapting the local
density, chosen within a range from 1.4 to 4 as experimentally evaluated by the
authors (Öztireli et al. 2009). For the second weighting term—using the height
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over an estimated hyperplane at p and thus capturing both isotropic and anisotropic
quantities—the authors discuss M-estimators and include the Gaussian error norm
and its respective Gaussian error weight, see Eq. (12), into their optimization prob-
lem. The arguments are

d = yi − η̃k−1(pi ) and σd = hi
2

,

with yi the heights of the samples pi taken over the local least-squared best fitting
hyperplane, and η̃k−1 the corresponding local approximation. The value for σd is set
fix throughout the whole paper by the authors. The third and final weighting terms
are anisotropic and make use of a Gaussian function with arguments

x = ∥∥∇ηk(p) − ni
∥∥ and σ ∈ R,

where η is an implicit, signed distance function as main objective, p some point at
which we want to evaluate the function η, ni the normal at sample point pi , and σ a
parameter that regulates the sharpnesswhere typical choices range from 0.5 up to 1.5.
This last weighting term penalizes the deviation of normals when we reach sharp
features. The influence function and error normare ofGaussian nature and are derived
in Eqs. (14) and (13). The assembled combination yields a robust implicit surface
definition via MLS, which can represent both smooth surface patches and sharp
features and was coined robust implicit MLS (RIMLS). Similar to Method (Belyaev
andOhtake 2001), this algorithm is capable of retaining and enhancing sharp features.
However, the unavailability of a spatial filter fσd (d)makes the algorithm less effective
against moderate and high levels of noise.

(b)Mattei andCastrodad (2016) start their paperwith the assertion that the principal
component analysis (PCA) operation for the estimation of local reference planes is
not robust. They proceed to construct a moving robust PCA (MRPCA). Their main
ingredient of interest in the given context is a minimization problem, which makes
use of anisotropic weights determined via the Gaussian weight function as given in
Eq. (12) with arguments

x = arccos(ni · n j ) and σ ∈ R,

where ni , n j are the unit normals at the considered point pi and at one of its neigh-
bors p j (with a k-nearest neighborhood utilized). Furthermore, σ is a bandwidth
parameter affecting the reconstruction of sharp features. The authors propose values
of σ ∈ (π/12, π/6). Using this anisotropic weight function yields the Gaussian error
norm along with its re-descending influence function as given in Eqs. (14) and (13).
Similar to (Belyaev and Ohtake 2001), this algorithm is capable of retaining and
enhancing sharp features. However, the unavailability of a spatial filter fσd (d)makes
the algorithm less effective against moderate and high levels of noise.
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4.2 Bilateral Normal Filtering

We will now turn to bilateral normal filtering procedures for PSS. These use two
different weighting kernels. As for meshes, one kernel carries the anisotropic nature
while the other one of isotropic behavior.

(a) Li et al. (2009) presented one of the first approaches applying bilateral filtering
to PSS. The authors first estimate the likelihood �i that a given sample point pi ∈ P
is close to the underlying surface geometry. They propose to compute �i based on
the MLS technique of (Alexa et al. 2003). The normal denoising utilizes the bilateral
filtering scheme, which includes a Gaussian weighting (following Eq. (12)) as a
spatial filter fσd (d) with the following input arguments in the isotropic setting

d = ∥∥pi − p j

∥∥ and σd = r

2
,

and another Gaussian weighting function gσ (x) in the anisotropic setting with fol-
lowing input arguments

x = arccos(ni · n j ) and σ ∈ R,

the latter chosen to be the standard deviation of the normal variation given in x . Here, r
is the radius of the enclosing sphere of the geometric neighborhoodΩi . Observe that
the values presented here differ from those given in (Li 2009), because we adjust
them to fit the Gaussian given in Eq. (12). Lastly, the closeness of the point pi to the
underlying surface, measured by �i , the feature intensity, and the bilateral filtering
for normals are used in a final sample point filtering step to remove noise from the
PSS. The mentioned method follows the Gaussian error norm similar to the bilateral
normal filtering of (Zheng et al. 2011). As shown in Eq. (14), the applied anisotropic
weighting function gσ (x) has a re-descending and bounded influence function, which
makes the algorithm robust in terms of feature preservation and also the availability
of the spatial filter fσd (d) ensures the effectiveness toward different levels of noise.

(b) Zheng et al. (2017) proposed a four-stage method for point set denoising. It
consists of sharp feature detection, multiple normals computation, guided normal
filtering, and point updating. Concerning the feature detection, the authors provide
a two-step procedure: feature candidate detection and feature point selection. The
former is to find the global feature structure and utilizes the framework of robust
statistics. Namely, after a first computation of normals using PCA, the normal simi-
larity is evaluated via the Gaussian weight function, see Eq. (12), with arguments

x = ∥∥ni − n j

∥∥ and σ ∈ R,

with a user-given angle-threshold σ , which ranges from 0.05 to 0.3 in the experi-
ments of the authors, ni the normal at the considered point and n j the normal at one
of its neighbors, while using the k-nearest neighbors as neighborhood notion. In con-
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trast to the single normal used in the normal similarity described above, the authors
of (Zheng et al. 2017) attach bundles—a multitude of normals—to every point. A
comparable approach is then chosen to estimate averaged normals utilizing spatial
weights evaluated once more via the Gaussian weight function (12) with arguments

d = ∥∥pi − p j

∥∥ and σd ∈ R,

with σd ranging from 0.1 to 0.5 in the authors’ experiments. Finally, both weightings
are combined in the actual bilateral normal filtering. This method is an extension
of guided mesh normal filtering (Zhang et al. 2015), which we have mentioned in
Eq. (29). From the explanation for guided mesh normal filtering in Sect. 3.2, it is
clear that this method also follows the Gaussian error norm along with a bounded
and re-descending influence function and has similar robustness in terms of feature
preservation and noise removal. The computation of guided normals makes this
algorithm slightly better compared to bilateral normal filtering.

(c) Park et al. (2013) proposed a three-staged point set filtering approach including
feature detection, normal re-calculation, and a point position update. Their feature
detection tensor, adaptive sub-neighborhood, and point update all use the Gaussian
weighting function given in Eq. (12), where for the first two, the arguments are of
anisotropic nature given as

x =
√
s2 + cκ2 and σ ∈ R,

with a prescribed constant c, σ set by the authors to the neighborhood range, which
is 4δwith δ the arithmeticmean of all distances of the points to their closest neighbors
respectively. The value s represents the arc-length on the tangent plane and κ the
curvature obtained by the circle, which goes through both the center point pi and its
considered neighbor p j and which is also tangent to the attached normals ni and n j .
These normals are calculated via an initial normal estimation following (Hoppe et al.
1992). To compute the feature detection tensor, the method uses a Gaussian function
as the anisotropic weighting, which has a re-descending influence function ψσ and a
derived Gaussian error norm ρσ as given in Eqs. (14) and (13), respectively. In terms
of feature sensitivity, it will be as effective as MRPCA. However, this algorithm is
not robust against moderate and high levels of noise.

(d) Digne and de Francis (2017) proposed an extension of the bilateral filtering
on meshes to points via a parallel implementation of (Fleishman et al. 2003) using
points. The whole procedure consists of a point update using non-oriented normals
and utilizes Gaussian weights, Equation (12), twice, with isotropic

d = ∥∥pi − p j

∥∥ and σd = 1

3
r,

and anisotropic arguments
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x = ∣∣ni · (p j − pi )
∣∣ and σ = 1

3
r ′,

with user-given radii r and r ′. If these are not given, the authors use a heuristic and
set r = �

√
20/|P|, where � denotes the size of the bounding box and |P| the number

of vertices. The values σd and σ are set to be equal in this case. The point pi is the one
considered to be updated and p j represents one of its neighbors within a geometrical
neighborhood Ωi . The weights determined by fσd measure the spatial distance, and
those by gσ evaluate the distance of neighbors to the plane spanned by the point pi
and its normal. As the weights are of Gaussian nature, we can derive the influence
function and Gaussian error norm given in Eqs. (14) and (13). In terms of feature
preservation and noise removal, this algorithmwill be as effective as bilateral normal
filtering (Zheng et al. 2011) as both of them are using same robust error norm with
a slightly different input argument.

(e) Zheng et al. (2018) propose an iterative two-staged denoising algorithmwhich—
in contrast to most methods—smooths out smaller features while preserving larger
ones. The iterative normal filtering (with initial normals obtained via (Hoppe et al.
1992) and the following point position update (solved iteratively via gradient descent)
make use of the Gaussian weighting, Equation (12), with the isotropic arguments

d = ∥∥pi − p j

∥∥ and σd ∈ R

and the anisotropic arguments

x = ∥∥ni − n j

∥∥ and σ ∈ R,

where σd ∈ [0.01, 0.5] and σ ∈ [0.1, 0.5] given in the authors’ experiments, pi
the considered point, p j representing its neighbor (k-nearest neighbors are used),
and ni , n j the respective normals. Consequently, the evaluation is similar and on the
one hand uses spatial distances of points while on the other hand using closeness
of normals. The used Gaussian weights yield the influence function and Gaussian
error norm given in Eqs. (14) and (13), which make this algorithm robust in terms
of feature preservation and noise removal. One of the key benefits of this algorithm
is that by adjusting the parameter σ , different levels of features can be smoothed
out effectively. An even more robust version, utilizing the same weighting terms as
given above, is discussed in (Yangxing et al. 2019).

(f) Yadav et al. (2018a) offer an extension of (Yadav et al. 2018c) to point sets. The
proposed iterative scheme consists of the following three stages: normal filtering,
feature detection, and vertex update. The first two make use of a similar box filter as
given in Eq. (22), here given as

gσ (x) =
{
1 x ≤ σ

0 otrw.
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with input arguments

x = arccos(ni · n j ) and σ ∈ R,

where ni , n j are unit-length normals and σ is an angle threshold for the neighbor
selection (chosen by the user). The deviation from the weighting defined in (Yadav
et al. 2018c) is because vertex normals are more sensitive to noise compared to
face normals. Similar to the influence function and error norm derived in Eqs. (24)
and (23), the anisotropic weights given above yield an influence function of

ψσ (x) = xgσ (x) =
{
x |x | < σ

0 otrw.

and an error norm of

ρσ (x) =
x∫

0

x ′gσ (x ′)dx ′ =
{
x2 |x | < σ

0 otrw.
.

The latter is a version of the truncated quadratic error norm, see the second row of
Table1. In contrast to (Yadav et al. 2018c), the influence function is both bounded and
re-descending (ψ → 0 when x → ∞). The impact of outliers is therefore kept small
as it scales down for larger arguments x and feature preservation is yielded. However,
the performance of this algorithm is not optimal in the presence of moderate and high
levels of noise due to the unavailability of a spatial filter fσd (d).

Discussion: Local versus Global Weighting Note that out of the methods for point
set surface denoising presented here, only (Öztireli et al. 2009) utilizes a local vertex-
basedweightσd . In contrast,methods (Li 2009; Zheng et al. 2017;Digne and de Fran-
chis 2017; Zheng et al. 2018) use global weighting terms σd . While localized terms
can capture features on a finer level, they are harder to calibrate than global parame-
ters. Furthermore, an implicit assumption ofmany algorithms is a noisy but uniformly
dense sampling as input. Handling non-uniform densities requires additional work,
see (Skrodzki et al. 2018). Finally, if the features of the input geometry are of com-
parable size, a global parameter is sufficient to capture them while still removing
noise. Hence, most algorithms reduce to simple global parameters.

5 Experiments and Results

In this section, we present experimental results regarding the state-of-the-art methods
as listed in the previous sections, which are using different robust error norms. We
have chosen two different models (CAD and CAGD) with different levels of noise.
Figure2 shows the Nicola model corrupted with a moderate level of Gaussian noise
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(standard deviation σn = 0.2�e, where �e is the average edge length). Using this
model, we show the capability of feature preservation with the usage of different
error norms. As shown in Fig. 2, the L2-norm is not effective in terms of feature
preservation (blurred eye region) because of the linear influence function and also as
it is not bounded. The truncated L2-norm preserves features in the eye region better
compared to the L2-norm as it has a truncated linear influence function. Figure2e,
f shows the outputs of using the Gaussian norm without and with spatial filter,
respectively. The Gaussian error norm has a re-descending influence function, which
makes the algorithm more effective compared to the L2 related norms. The spatial
filter is helping to remove noise effectively (eye and nose regions). Huber’s minimax
(Fig. 2e) and theGaussian error norm (Fig. 2g) have quite similar outputs as they have
re-descending influence functions and do not use spatial filters. Figure2h shows the
output of using Tukey’s error norm, which has a sharper cut-off in the influence
function compared to the Gaussian error norm. Therefore, feature preservation is
better compared to other norms mentioned and the spatial filter is helping to remove
noise components effectively.

Figure3 shows the robustness of the mentioned norm against high level of noise.
The Fandisk model is corrupted with a Gaussian noise (σn = 0.3�e) in random direc-
tion.As it is shown, L2 andHuber’sminimax norms are able to remove the noise com-
ponents effectively but feature preservation is not effective. In case of the Gaussian
error norm, the spatial filter removes different components of noise including low-
frequency ripples. However, the truncated L2-norm is able to remove low-frequency
components by introducing an additional processing step (binary optimization) in
the pipeline. The algorithm (Yadav et al. 2019) uses Tukey’s error norm, which helps
to preserve features effectively and the spatial filter removes the noise components.

6 Conclusion

In this paper, we unified state-of-the-art methods for normal filtering in surface
denoising using the robust statistics framework.Wediscussed differentM-estimators,
which are the main tools of robust statistics. These tools are defined by a robust error
norm and a corresponding influence function, respectively. Based on the properties of
the influence function (bounded and re-descending) and of the anisotropic weighting
function, we discussed the robustness of state-of-the-art methods in terms of feature
preservation and feature enhancement (see Table2). Furthermore, we have shown
that the introduction of spatial filters along with anisotropic filters will improve the
robustness of the algorithm in terms of noise removal. The robust statistics framework
not only provides a platform to bring new insight into the field of surface denoising
and clarify the relation between different methods in the field. It can also be used
for new methods to combine the advantages of the known filtering techniques. The
application of robust statistics is not limited to surface denoising, and it can be
used effectively in other areas of the field of geometry processing. Corresponding
applications of this powerful tool are left as further research.
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(a) Original (b) Noisy

(c) L2-norm (Yagou et al. 2002) (d) Truncated L2-norm (Yadav et al. 2018c)

(e) Gaussian-norm (Belyaev and Ohtake 2001) (f) Gaussian-norm with spatial fil-
ter (Zheng et al. 2011)

(g) Huber’s minimax (Centin and Signoroni 2018) (h) Tukey’s-norm (Yadav et al. 2019)

Fig. 2 Nicola model corrupted with a Gaussian noise (σn = 0.2le) in random direction. Images
c–h show the results produced by state-of-the-art methods, which are using different robust error
norms (see Table1)
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(a) Original (b) Noisy

(c) L2-norm (Yagou et al. 2002) (d) Truncated L2-norm (Yadav et al. 2018c)

(e) Gaussian-norm (Belyaev and Ohtake 2001) (f) Gaussian-norm with spatial fil-
ter (Zheng et al. 2011)

(g) Huber’s minimax (Centin and Signoroni 2018) (h) Tukey’s-norm (Yadav et al. 2019)

Fig. 3 Fandiskmodel corrupted with a Gaussian noise (σn = 0.3�e) in random direction. c –h show
the results produced by state-of-the-art methods, which are using different robust error norms (see
Table1). The black curve highlights sharp edge information in the geometries and is detected using
a dihedral angle threshold of θ = 70◦
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Table 2 Overview on the discussed methods. For each method, we present the authors, year,
citation, which input is processed (PSS or meshes), what error norm is used and whether a spatial
weighting is applied. Furthermore, we collect the assessments from the above sections how the
different methods perform in terms of feature preservation and noise removal
Method Section Input Error norm Spatial

weights
Feature
preservation

Noise removal

Belyaev and
Ohtake (2001)

3.1 a Mesh Gaussian No Good Ok

Yogou et al.
(2002)

3.1 b Mesh L1 and L2 No Ok Ok

Yadav et al.
(2018c)

3.1 d Mesh Truncated L2 No Good Ok

Shen and
Barner (2004)

3.1 e Mesh Gaussian No Good Ok

Tasdizen et al.
(2002)

3.1 f Mesh Gaussian No Good Ok

Centin and
Signoroni
(2018)

3.1 g Mesh Huber’s
minimax�

No Excellent Ok

Zheng et al.
(2011)

3.2 a Mesh Gaussian Gaussian Good Good

Zhang et al.
(2015)

3.2 b Mesh Gaussian Gaussian Good Good

Yadav et al.
(2019)

3.2 c Mesh Tukey’s Gaussian Excellent Good

Öztireli (2009) 4.1 a PSS Gaussian Gaussian Good Good

Mattei and
Castrodad
(2016)

4.1 b PSS Gaussian No Good Ok

Li et al. (2009) 4.2 a PSS Gaussian Gaussian Good Good

Zheng et al.
(2017)

4.2 b PSS Gaussian Gaussian Good Good

Park et al.
(2013)

4.2 c PSS Gaussian No Good Ok

Digne and
Franchis
(2017)

4.2 d PSS Gaussian Gaussian Good Good

Zheng et al.
(2018)

4.2 e PSS Gaussian Gaussian Good Good

Yadav et al.
(2018a)

4.2 f PSS Truncated L2 No Good Ok

� The error norm used in method (Centin and Signoroni 2018) is not equivalent to Huber’s minimax.
However, the utilized weighting term closely resembles the function gσ (x) of Huber’s minimax,
see Table 1 and the discussion in Sect. 3.1g
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