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Summary

Electrocardiography is the craft of producing electrocardiograms. These graphs give physicians

insight into the potential pathology of the heart. In order to come to a diagnosis, physicians use

electrocardiograms in combination with follow-up physical examinations. There has been extensive

research into automated methods that can differentiate healthy individuals from pathological individuals

when given only an electrocardiogram [10, 18, 14, 13]. Some of these methods make use of neural

networks that do feature extraction and classification in an end-to-end fashion [10, 14, 13]. [18] Perform

feature engineering on ECG data followed by clustering. The evaluation [18] shows that the resulting

clusters coincide with heart pathology annotations. This master thesis describes the search for a machine

learning pipeline, where a combination of input representation, autoencoder, and clustering algorithm

that produces clusters coinciding with heart pathology without being biased by either heart pathology

annotations or feature engineering that is already known to be predictive of heart pathology.

Although the preexisting methods yield state-of-the-art accuracies, they do not allow us to learn

about the structure and patterns in the data and the supervised methods are very costly to create. There

has been no research into feature extraction by autoencoder followed by unsupervised clustering. Doing

this could expose patterns in the data that could lead to improved diagnostics of heart pathology, and to

automatic methods that are cheaper to create by turning the problem of diagnosis into an unsupervised

or semi-unsupervised problem.

In order to find the combination of input representation, autoencoders, and clustering that is best

suited for predicting heart pathology from ECG signals, experiments are done that give insight into

how much the resulting clusters coincide with heart pathology. The experiments work by first feeding

some representation of one-second ECG objects into the autoencoder, after which the resulting low-

dimensional representations are fed into a clustering algorithm. The clustering algorithm gives every

low-dimensional ECG object a cluster label. The cluster labels are mapped to heart pathology labels by

making use of existing heart pathology labels. This heart pathology label can now be interpreted as a

class prediction in the context of classification. This setup is created to quantitatively answer to what

degree the resulting clusters coincide with heart pathology.

In the end, the concatenated image plot representation objects fed into a convolutional autoencoder

followed by SOM clustering is compared to the research by [18]. The classification accuracy achieved by

the autoencoder pipeline formed in this research is 0.76 ± 0.01. This means that the clusters formed by

[18] coincide much more with heart pathology labels than the clusters from this research. A qualitative

visualization from the low dimensional representations after the autoencoder, however, shows that the

setup from this research is better at identifying patient IDs than heart pathology. This means that the

features extracted by the autoencoder are salient for identifying persons, but not for identifying heart

pathology.
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1
Introduction

ECG scans are measurements of multiple vectors containing detailed three-dimensional information

of how the heart beats. This information is used by medical professionals to find heart pathology.

Unsupervised ECG clustering is the process of looking for similarity patterns in a population of ECG

objects, requiring no annotations. In this research feature extraction by artificial neural networks (ANNs)

without human bias (autoencoders) is combined with unsupervised clustering in order to find patterns

in the data that are not distorted by existing notions of heart pathology. The main research questions of

this thesis are:

• Can autoencoders improve ECG diagnostics?

• Can autoencoders at least distinguish healthy individuals from individuals suffering from heart

sicknesses?

Many automated methods exist that predict heart pathology based on ECG data. Most of these

methods are based on supervised machine learning. Supervised means that during the training of

machine learning, annotations are used. In the case of heart pathology annotations, they must be created

very carefully by medical experts, which for some hospitals is infeasible, and they are derived from

existing knowledge of heart pathology, which makes them biased.

[18] Do feature engineering, where they use existing knowledge to extract good features with

respect to heart pathology, making their research biased by existing notions of what are good features

with respect to the predictability of heart pathology. They follow this feature engineering up with

unsupervised clustering.

The results of automated ECG diagnostics based on supervised machine learning show that

supervised deep learning models can extract features from ECGs that allow these deep learning models

to achieve higher than 99% accuracy on the task of classifying heart pathology. Since autoencoders

are neural networks as well, they could be effective at extracting features that are salient with respect

to heart pathology. Potential benefits of autoencoder feature extraction followed by unsupervised

clustering are to train diagnostics algorithms without the need for (expensive) labeling of data and to

find structures in the ECG data that are not biased by existing human medical science. The latter could

lead to new insights, in the form of an improved system for the classification of heart diseases, or the

discovery of new features that are good predictors of heart pathology.

ECG signals can contain several hundred data points per second. A naive approach to cluster would

be to see every ECG object as a feature vector and cluster in a high-dimensional feature space. This

approach would suffer severely from the curse of dimensionality, which is explained in the next section.

In order to cluster effectively, the ECG objects must first be compressed into a number of dimensions that

do not suffer as much from the curse of dimensionality. The exact upper limit of this dimensionality is

not known and differs per use case. State-of-the-art feature extraction by autoencoder and unsupervised

clustering [21] achieve an accuracy of around 84% on the task of classification on the MNIST data set.

Very simple supervised models easily achieve around 98% accuracy on this same task. This indicates that

applying autoencoder feature extraction methods followed by unsupervised clustering requires much

thought and experimentation in order to even approach supervised classification methods. Another

1
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reason why this is difficult is that there is no easy way of recognizing a previously unknown clustering

with respect to heart pathology. This is why this research focuses on the second research question; we

can test whether this new clustering distinguishes at least healthy controls from pathological individuals.

Related research into unsupervised dimensionality reduction followed by unsupervised clustering

exists. [18] Do manual unsupervised feature extraction by approximating the shape of the QRS

complex part of the ECG heart wave by a polynomial function where the parameters found are the

lower-dimensional representation of the ECG object. The key difference between [18] and this research

is twofold; this research takes the entire ECG wave into account instead of only the QRS complex, and

secondly, this research does feature extraction by autoencoder instead of manual feature extraction.

Since feature extraction by neural network works so well for supervised neural network classifiers, the

expectation is that unsupervised neural networks will also extract salient features with respect to heart

pathology.

The key component of this research is that the methodology of finding new patterns in ECG data

involves no human knowledge; not in the shape of labels and neither in the shape of feature engineering.

The biggest assumption of this research is that unsupervised ANNs (autoencoders) extract salient

features because supervised neural networks have been shown to be able to extract salient features.

The results show that autoencoders are not able to distinguish healthy controls from pathological

individuals. This means that the features are not able to produce a superior clustering, which in turn

means that this research will not improve current ECG diagnostics.

The structure of this thesis is as follows; in the first section, all important concepts are explained.

The second section is on methodology, this section explains the general setup throughout the different

experiments. In the following sections, the setup differs in either the autoencoder part, the data

representation part, the clustering part, or the dataset part. Every time one part is changed, the others

are kept the same. These sections will all consist of a literature part, a methodology part, an experiment

part, and a discussion part. First, four naive setups will be examined. Following this is a section of

experiments focusing on data representation where a numerical input representation is compared to

different image representations of plotted signals, two 1-dimensional convolutional representations,

and one alternative way to map signals to the domain of computer vision. The next section will be

about deeper models where ResNet-inspired autoencoders will be evaluated. After the ResNet-inspired

models, recurrent models will be analyzed, followed by variational autoencoders. In the following

section, different clustering techniques will be looked into and various hyperparameters will be explored.

In the final section, the best parts found by the preceding experiments will be compared to an existing

similar method that does feature engineering. In this final section, the dataset will be different. The

thesis will end with a conclusion and suggestions for future research.



2
Important Concepts

This section outlines the concepts of artificial neural networks, the curse of dimensionality, clustering,

and electrocardiography. This forms the basis for the initial, and all consecutive research.

2.1. Artificial Neural Networks
2.1.1. Machine Learning
The essence of most machine learning (ML) methods are mathematical expressions called loss functions.

These loss functions are written so that their initial value is some positive number 𝑙𝑜𝑠𝑠 > 0. The goal

of ML models is to make predictions based on a certain input. These inputs are called feature vectors.

During training, the desired predictions are known for every feature vector. We refer to these desired

predictions as ground truths. The loss function is usually a distance function between the ground truths

and the predictions produced by the ML models. For example, if the goal of a neural network would be

to predict a single number for every feature vector, the loss function could be

𝑙𝑜𝑠𝑠 =

𝑥=𝑛∑
𝑥=1

|𝑝 − 𝑔𝑡𝑥 |

Where 𝑝 is the prediction produced by the ML model, 𝑥 is the feature vector and 𝑔𝑡𝑥 is the ground

truth associated with that prediction. To further clarify this model, the prediction is often written as a

function of the ML model on the input.

𝑙𝑜𝑠𝑠 =

𝑥=𝑛∑
𝑥=1

|𝑚𝑜𝑑𝑒𝑙(𝑥) − 𝑔𝑡𝑥 |

Here the prediction 𝑝 is substituted by 𝑚𝑜𝑑𝑒𝑙(𝑥). Initially, the value of the loss function is some positive

value. During training, this positive value decreases and approaches zero. The training mechanism that

achieves this convergence is called gradient descent.
The reasoning that this works is in the assumption that when the differences between the ground

truths and the predictions are very small, the model has learned to produce predictions approximating

the ground truths. This model can then be used to make predictions on unseen data given the assumption

that the unseen data is similar to the feature vectors trained on.

2.1.2. Gradient Descent
The learning mechanism through which machine learning models learn is called gradient descent.

It takes the loss function 𝑙𝑜𝑠𝑠 =
∑ |𝑚𝑜𝑑𝑒𝑙(𝑥) − 𝑔𝑡𝑥 | and iteratively adapts the parameters within the

𝑚𝑜𝑑𝑒𝑙(𝑥) part in such a way that the value of the entire loss function converges to some minimum value.

A more complete way to write the loss function would be as follows.

𝑙𝑜𝑠𝑠 =

𝑥=𝑛∑
𝑥=1

|𝑚𝑜𝑑𝑒𝑙(𝑥;𝜃) − 𝑔𝑡𝑥 |

3



2.1. Artificial Neural Networks 4

Here 𝜃 signifies the collection of parameters contained in the model function. The place where the

machine learning models store what they have learned is thus in the values of these parameters. On

an intuitive level, one could say that the learned parameters are the memory or the brain of machine

learning. Gradient descent can only be applied to mathematical expressions that are differentiable with

respect to their parameters. For example, the graph obtained after plotting 𝑚𝑜𝑑𝑒𝑙(𝑥;𝜃) on the y-axis

against 𝜃 on the x-axis can not contain vertical jumps or vertical asymptotes.

2.1.3. Artificial Neural Networks
Artificial neural networks belong to a special class of machine learning models. Here the 𝑚𝑜𝑑𝑒𝑙(𝑥;𝜃)
function consists of a combination of smaller functions that have the property of being differentiable

with respect to their input and their parameters. A very simple design is that of a univariate-multilayer-

perceptron depicted in Figure 2.1.

Figure 2.1: univariate-multilayer-perceptron

Here 𝑥 is the initial input, 𝑓 (𝑥) and 𝑔(𝑥) are linear functions as depicted, 𝜎 is the sigmoid function

defined as the logistic function 𝜎(𝑥) = 1/(1 + 𝑒−𝑥), and 𝑝 is the output prediction. In this model 𝜃 is the

collection of parameters 𝑎, 𝑏, 𝑐, and 𝑑.

When writing the above model in a single mathematical expression, one should first substitute the

functions with their outcomes.

ℎ1 = 𝑎 ∗ 𝑥 + 𝑏

ℎ2 =
1

1 + 𝑒−ℎ1

𝑝 = 𝑐 ∗ ℎ2 + 𝑑

Substituting ℎ2 in the expression of 𝑝 and substituting ℎ1 in the expression of ℎ2 we can rewrite the

three expressions above into the one below.

𝑝 = 𝑚𝑜𝑑𝑒𝑙(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) = 𝑐 ∗ 1

1 + 𝑒−𝑎∗𝑥−𝑏
+ 𝑑

For stochastic gradient descent to work on this model, one must produce the derivatives of the above

right-hand expression with respect to the parameters 𝑎, 𝑏, 𝑐, and 𝑑. It should be kept in mind that this is

a toy problem used for explanation. In practice, neural networks can be hundreds of layers deep. The

solution to the complexity of such a loss function lies in a powerful property of neural networks.

Derivatives of loss functions with respect to their parameters
𝛿𝑙𝑜𝑠𝑠
𝛿𝜃 in neural networks can be easily

produced by making use of the chain rule. For example
𝛿𝑙𝑜𝑠𝑠
𝛿𝑎 = 𝛿𝑙𝑜𝑠𝑠

𝛿𝑝 ∗ 𝛿𝑝
𝛿ℎ2

∗ 𝛿ℎ2

𝛿ℎ1

∗ 𝛿ℎ1

𝛿𝑎 . Notice that the last

three terms of the right-hand equation are the layers of our network of Figure 2.1 in reverse order. One

can split up the layers of the neural networks and produce simple partial differentials. Combining these

differentials by means of multiplication then solves the differentials of potentially extremely complex

loss functions. The advantage of extremely complex neural networks and their loss functions is that

they can model and predict very complex behavior, which other ML models can not.

2.1.4. Autoencoders
Autoencoders are neural networks with a specific loss function. This loss function is called the

reconstruction loss. Here the prediction is still the output of the network. The difference lies in the

ground truth part. For autoencoders, the input will be used as ground truth. This is likely confusing for

the reader. To clear up the confusion, the model will be extended to use multiple variables as input

instead of just a single value called 𝑥.
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Figure 2.2: Simple autoencoder

Figure 2.2 shows a simple autoencoder. Every arrow indicates that the value from the base of the

arrow will end up multiplied by a unique parameter as a term in a sum identified with the circle the

arrow is pointing to. To illustrate this, two mathematical definitions of values from Figure 2.2 will

follow.

ℎ1 = 𝑥1𝑎1 + 𝑥2𝑎2 + ... + 𝑥𝑖𝑎𝑖 + ... + 𝑥𝑛𝑎𝑛

𝑝1 = ℎ1𝑏1 + ℎ2𝑏2

Where 𝑎𝑖 and 𝑏𝑖 are unique parameters with indices 𝑖. The application of autoencoders in this

paper is called feature extraction, but many more applications exist. Feature extraction is the process

of deriving quantitative information from the objects of interest. For example in this research, to gain

insight, images are plotted in a two-dimensional plane. That means that for every image there should

be two values that represent the image in some meaningful way.

For the autoencoder above, one could imagine all the input variables 𝑥𝑖 are pixels of an image. The

information contained in the pixels is then transformed into the two values ℎ1 and ℎ2 according to

the equations explained. Initially, the parameters of the model are chosen randomly. This means that

the two values ℎ1 and ℎ2 are arbitrary values corresponding to an image. Then the two values are

transformed back into a number of values that match the number of input pixels. These values should

be interpreted as the reconstructed input.

In order to teach the model to match the model prediction to the input, one must formulate a loss

function that is zero when the reconstruction is perfect and a positive value when the reconstruction is

not perfect. For optimal convergence, the loss function should be lower as the reconstruction gets better.

To this end, the loss function from the toy example can be used 𝑙𝑜𝑠𝑠 =
∑𝑥=𝑛

𝑥=1
|𝑚𝑜𝑑𝑒𝑙(𝑥;𝜃) − 𝑔𝑡𝑥 |. Since

the desired prediction is now the same as the input, the loss function should be rewritten accordingly.

𝑙𝑜𝑠𝑠 =

𝑥=𝑛∑
𝑥=1

|𝑚𝑜𝑑𝑒𝑙(𝑥;𝜃) − 𝑥 |

In contrast to the toy example, x is now a collection of pixel intensity values instead of a single value.

The model is considered trained when the loss function is deemed low enough. Equivalently that

means that the reconstruction is deemed good enough. When that is the case the autoencoder will have

learned two things: the model has learned to generate a reconstructed image from two specific values,

and the model has learned to compress the input image in a representation that is only two values. The
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intuition behind this is that the two values now must contain most of the useful information in the

image because from these two values the model can reconstruct the associated unique image.

2.1.5. The Curse of Dimensionality
The curse of dimensionality is an important phenomenon in machine learning. Intuitively one would

think that having more data points per ECG object increases the knowledge we have of that ECG, which

would mean that we could perform ML tasks with a higher degree of accuracy. When clustering in

higher dimensions though, distances become less meaningful.

lim

𝑑→∞

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 − 𝑑𝑖𝑠𝑡𝑚𝑖𝑛

𝑑𝑖𝑠𝑡𝑚𝑖𝑛
= 0

Distance is a critical metric on which clustering is built. Distances between clusters are typically

greater than distances within clusters. As the dimensionality grows, this difference becomes less

pronounced. The result is that clustering in high-dimensional feature space performs poorly. The best

clustering is achieved when there is a limited number of dimensions in the feature space. What this

number is, differs per case and therefore requires experimentation.

2.1.6. Clustering
Most clustering variants fall under the category of unsupervised machine learning. This means that for

the objects of study, there are no target values available. In clustering, one can imagine a feature space

of two dimensions where the feature vectors consist of two values: an x value and a y value. Every

feature vector is plotted in the feature space resulting in a scatter plot.

Some examples are in Figure 2.3. This is a collection of scatter plots where every combination of

two out of four possible features is visualized. The features are quantitative descriptions of real-world

objects. In this case, researchers have looked at three types of Iris flowers. The red dots signify the Setosa

species, the green Versicolor, and the blue Virginica. When researching the flowers, the researchers have

come up with four features: sepal length, sepal width, petal length, and petal width. It is important to

note that the colors (species) are target values here, but to the machine learning algorithm the colors are

not visible and in all cases of unsupervised clustering, the machine learning algorithm does not get to

see the color categorization. For the purpose of explanation, however, it helps one understand the goals

of clustering.

One of the goals of clustering is to find structure (patterns) in the data. This is something that

supervised learning is incapable of. One possible goal is thus to learn something new for oneself instead

of teaching a machine to learn something.

A different goal of clustering is prediction. From Figure 2.3 it can be seen that the colored dots are

condensed into groups. This is a good sign for prediction. It means that the features of sepal length,

sepal width, petal length, and petal width are good for differentiating between species. An important

difference between some of the plots is that in some cases the blue and green dots overlap, this is

especially the case for sepal length vs. sepal width, and it means that if the targets (flower species)

would not be known in this overlapping area, one could not 100% accurately predict the flower species.

According to this clustering, the blue and green species seem to be very close, what does this mean?

In a more abstract way, this means that these flowers are similar when expressed in these four features.

The distance between two points of the scatter plot signifies a difference in feature quantity, for example,

the petal width of all the red species flowers is significantly smaller than those of the blue species, which

is why there is a large horizontal distance between the red dots and blue dots in all the right-most scatter

plots.

There is an additional important aspect to the distance between any two points. What does diagonal

distance mean? Visually the way humans perceive distance is called Euclidean distance 𝑑 =
√
Δ𝑥2 + Δ𝑦2

,

where Δ signifies a difference in the following feature. In general, one can cluster with different ways of

combining multiple dimensions. For example a simple alternative definition for distance 𝑑𝑎 = |Δ𝑥 | + |Δ𝑦 |
is called the Manhattan distance.

2.2. Electrocardiography
Electrocardiography is the creation of an electrocardiogram from data obtained by measuring voltages

of the human heart. A set of ten electrodes are placed on the human body. These ten electrodes are then
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Figure 2.3: Iris dataset scatter plot from [22].

combined into usually twelve signals called leads. These leads are then combined into a cardiograph,

which can be read by medical experts.

For a standard twelve-lead electrocardiogram, first, a set of ten electrodes are placed at specific

locations on the patient’s body (Figure 2.4). These electrodes can detect muscle contraction by the small

amount of voltage produced when muscles contract. The abbreviations mean: right arm (RA), left arm

(LA), right leg (RL), left leg (LL), and v1 up to and including v6 are called the precordial electrodes.

The electrodes record a patient’s heart’s behavior by taking a measurement of the voltage at a certain

frequency. This frequency differs per instrument. This creates a signal at every electrode. Next up the

electrode measurements are combined into something called leads. A lead is a linear combination of

the signals of two or three electrodes, that yields information about how the heart is beating and in

what direction.

The standard electrocardiograph consists of twelve leads. The first three leads (I, II, and III) are

called limb leads. They are composed of signals measured by the electrodes called after the limbs.

• I = LA - RA

• II = LL - RA
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Figure 2.4: Electrode placements as described by [15]

Figure 2.5: Planes in which the ECG leads point their measurements. Taken from [1].

• III = LL - LA

The next three leads are called augmented limb leads. They are formed by taking the same three

limb electrodes, but they are compared to an additional (virtual) electrode called the Goldberger’s central
terminal. They are known as the augmented vector right (aVR), the augmented vector left (aVL), and the

augmented vector foot (aVf), and they are derived as follows:

• aVR = RA -
1

2
( 𝐿𝐴 + 𝐿𝐿 )

• aVL = LA -
1

2
( 𝑅𝐴 + 𝐿𝐿 )

• aVF = LL -
1

2
( 𝑅𝐴 + 𝐿𝐴 )

The remaining six leads are formed by the precordial electrodes by using the precordial electrodes

as positive poles and a virtual electrode called Wilson’s central terminal as a negative pole.

As depicted in Figure 2.5, the first six leads called the limb leads all record voltages in directions

in the coronal plane, which is colored light blue. The last six leads called the chest leads, record their

voltages in directions in the transverse plane, which is colored purple.

An ECG lead signal is a periodic signal that follows a repeating sequence of depolarization and

repolarization. For trained medical experts, an ECG yields a lot of information. Among other things,

an ECG can help a medical expert determine the heart rate, size of the heart chambers, and damage

to the heart. In medical literature on heart pathology, a single ECG period contains three important

regions; the P-wave, the QRS-complex, and the T-wave. These and more can be seen in Figure 2.6. Heart

pathology often shows by means of anomalies in the described regions, however, sometimes additional

physical examinations are needed to ascertain or exclude a diagnosis. For example, a cardiac enzyme

test can help diagnose or exclude heart attacks.

Figure 2.7 shows how the 12 traditional lead signals are combined into one single format that is used

by medical experts. Leads that are given the same color in the first figure describe heart functioning in
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Figure 2.6: Marked parts of a single ECG lead period by [3].

contiguous heart regions. Explanations of how and why the leads are in this specific configuration is

complex and too profound for this thesis.
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Figure 2.7: Electrocardiograph, the human-readable combination of 12 lead signals.

(a) Diagram that combines the 12 lead signals into 3 signals parallel in time that each consist of 4 leads contiguous in time. Image

from [6].

(b) A practical example of an electrocardiograph, lead names are included. Image from [20].



3
Methodology

In this section, the machine learning pipeline, data representations, and the dataset will be introduced.

The aim of the methodology is to answer quantitatively; to what degree do the lower-dimensional

representations of the ECG objects contain information about heart pathology? The answer is found

in the resulting structure and patterns in the lower-dimensional data. In a perfect scenario, the

lower-dimensional data forms clusters where the data points within one cluster are all derived from

patients with the same heart pathology. In the machine learning pipeline as described below and visible

in Figure 3.1, this perfect scenario yields an accuracy of 1.0.

In order to find structures and patterns in the data, one could create a pipeline that directly clusters

the ECG objects in a feature space equal to the dimensionality of the ECG vectors. The problem is

that doing this will yield poor results since the curse of dimensionality will have severe effects in a

1000-dimensional feature space. To overcome this hurdle one should compress the ECG vectors in

such a fashion that most of the information of interest is retained. In this case, the lower-dimensional

counterparts of the ECG objects should retain as much information on heart pathology as possible.

In order to facilitate this compression, different kinds of neural networks called autoencoders are

experimented with. The general setup is as follows: the ECG objects in some representation will be fed

into some autoencoder for compression, after which the compressed ECG objects will be used in some

clustering algorithm. The cluster labels found will then be mapped to the heart pathology annotation

that is most abundant within that cluster. The set of resulting labels will be interpreted as the predicted

label in the machine learning context of classification. The performance metrics of this task are then

compared to [18] and [10] to answer the research questions. Many visualizations will be made and

discussed in order to gain insight into why the particular experiment setup is (not) working.

3.1. Pre-processing
Unless indicated otherwise the datasets are pre-processed into two different data representations. The

first representation is a single-channel image of a plot of the leads. The leads are combined into a single

Figure 3.1: ML Pipeline schematic

11
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Table 3.1: Diagnostic Classes.

𝑫𝒊𝒂𝒈𝒏𝒐𝒔𝒕𝒊𝒄𝒄𝒍𝒂𝒔𝒔 𝑵𝒖𝒎𝒃𝒆𝒓𝒐 𝒇 𝒔𝒖𝒃𝒋𝒆𝒄𝒕𝒔
Myocardial infarction 148

Cardiomyopathy/Heart failure 18

Bundle branch block 15

Dysrhythmia 14

Myocardial hypertrophy 7

Valvular heart disease 6

Myocarditis 4

Miscellaneous 4

Healthy controls 52

image in different ways depending on the experiment. These different ways will be discussed in the

sections of the experiments where they are used. The second representation is a matrix of voltages,

where the different rows of the matrix signify the different ECG leads and the columns signify the

moment in time where the voltage was measured. This means that the matrices have twelve to fifteen

rows depending on the number of ECG leads, and have 1000 columns, which is the result of the sample

rate of 1000 hertz and the length of the ECG recording of one second. All representations that directly

make use of these voltages, we call numerical representations in contrast to the image representations.

For both cases the data is stored in a Numpy Array that has four indices; object (N), channel (C),

height (H), and width (W). The NCHW format is an often used format in the world of computer vision

deep learning. Some neural network layers, for example, the convolutional layer, require the data to be

in this format.

The recordings are multiple minutes in length. In order to make every feature vector equal in length

and to have enough data, the recordings are cut into pieces of one second. From Figure 3.1, it can be

seen that the diagnostic class distribution over patients is not uniform. This could introduce unwanted

biases, which should be avoided. This is done by cutting up the ECG pieces with a sliding window. The

ECGs of patients with diagnostic classes that are abundant have a slight or non-existent overlap. For

rare diagnostic classes on the other hand, a sliding window with a large overlap is used. In this manner,

data augmentation and avoidance of a diagnostic class bias are achieved simultaneously.

During pre-processing, the feature vectors with miscellaneous and myocardial hypertrophy labels

are dropped.

3.2. Dataset
The dataset used in this thesis is called the Physikalisch-Technische Bundesanstalt dataset [4], [16]. This

is German for the physical-technical federal institute, it refers to the national metrology institute of

Germany in Berlin. The dataset was created in 1995 by multiple medical experts who in consultation with

each other and by taking into account multiple physical examinations per patient provided diagnostic

annotations. The resulting quality of the dataset is very high and [4] consequently has been cited 600

times according to google scholar.

The dataset contains 549 records from 290 subjects aged 17 to 87. 209 Of these subjects are male,

while the other 81 are female. Each subject appears in one to five records. Each record contains 15 leads;

the 12 conventional leads and 3 Frank leads. Each signal has a sampling rate of 1000 hertz with a 16-bit

resolution divided over ± 16.384 mV. Included in extra files for most of these ECG records are detailed

clinical summaries, including age, gender, diagnosis, and where applicable more information. The

distribution of diagnostic classes is depicted in Figure 3.1.
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Figure 3.2: Label distribution of the training set. Figure 3.3: Label distribution of the test set.



4
First Experiment

4.1. Introduction
In this experiment, the aim is to create a simple baseline model that already shows either a new clustering

that could lead to new insights or a clustering of the ECG data similar to existing medical classification

models. In later experiments, the aim is to improve the found clustering in a way that makes the

boundaries between clusters clearer.

4.2. Extra Literature
Existing research ([10], [14]) on ECG classification shows that supervised deep learning techniques

allow for the extraction of salient features with regard to the classification of heart pathology.

[18] found that using a feature engineering technique called Hermite basis functions, and a clustering

technique called self-organizing maps (SOM), a clustering can be obtained that wrongly classifies only

1.5% of the ECGs of the MIT ECG dataset. In their research [18] focus on fitting the QRS complex to

a sequence of polynomials. Feature engineering has the weakness of not extracting the features that

the high-performing deep-learning supervised models extract. Additionally, the feature engineering

technique in question ignores the parts of the ECG outside the QRS complex, ignoring additional

information. This additional information could not only improve classification performance but also

lead to new insights when using the model for data exploration.

A simple first approach to the problem of feature extraction followed by clustering is to use a

state-of-the-art feature extractor called an autoencoder followed by k-means clustering. [21] Created a

model called deep-k-means. This model does feature extraction and clustering at the same time. In

the first step of their model, they pre-train an arbitrary autoencoder, which in their research was a

simple stacked fully-connected autoencoder. After pre-training, they initialize k cluster centers using the

traditional k-means clustering. In the second phase of the training, the deep-k-means model performs

gradient descent on two loss objectives; the first objective is the traditional reconstruction objective

of the autoencoder. The second objective is a cluster loss that minimizes intra-cluster distance and

maximizes inter-cluster distances. The research shows superior performance on various tasks, each

Figure 4.1: Subject of experiments for this section.

14
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with a different dataset. One of which is (unsupervised) classification on the MNIST written digits

dataset. The deep-k-means model produces ten clusters, one cluster for every digit. The authors then

use a bipartite matching algorithm that matches every cluster label to their most likely ground truth

digit class. In this way, they do not train the deep learning model on the true labels, but the true labels

are used in the evaluation method.

[9] researched a similar model. This model is a combination of an autoencoder and k-means

clustering as well. The main differences are twofold; the autoencoder consists of convolutional layers

instead of fully connected layers, and the definition of cluster loss differs in the way the nearest cluster

is defined. [9] Defines the nearest cluster with an argmin operation, while [21] formulate an argmin

by means of an e-power. [21] Argue that an argmin constructed in this fashion optimizes the gradient

descent based learning because the gradient of this argmin definition is smoother than the traditional

discrete argmin.

In contrast to the previous two models discussed, [14] create a supervised model. In their research

[14] create a convolutional classifier that classifies ECGs into different classes of heart pathology. In

contrast to all other ECG machine learning, this research takes as input not vectors or matrices of signal

values, but images of plots of the ECG signals. In this way, the authors map the ECG classification

problem to a computer vision problem. The model scores above 99% average accuracy in a ten-fold

cross-validation experiment.

4.3. Methodology
In the experiments, two models are compared on two different input representations. Quantitative

comparisons will be made with respect to the performance metrics of accuracy, adjusted random score,

and normalized mean information. The first two metrics will be derived from a comparison between

the predicted labels and the actual labels, where the predicted labels will be obtained by using a simple

algorithm that maps the cluster labels to their most abundant ground truth label. Normalized mean

information will be derived from comparisons between the cluster labels and the patient id annotation.

The last metric will yield a measure of the degree to which ECG data from the same patient will be

grouped in the same cluster. Qualitatively reconstructions and clustering spaces will be visualized.

If the clusters yield high quantitative performance metrics, it means that the features extracted by the

algorithm are likely the features that existing medical science also considers to be good predictors for

heart pathology. If the quantitative metrics are bad, the clusters found will be different from the existing

medical perspective. Now the visualizations should give insight into whether this new clustering at

least discerns healthy individuals from sick ones.

The first input representation consists of the twelve ECG leads of length 1000 stacked on top of

each other to form a matrix of twelve rows and 1000 columns. Every matrix will be normalized by

dividing by the maximum value. This way normalization is achieved while differences between leads

are kept intact. This is important because differences in leads indicate abnormalities in the direction the

heart is beating. The second input representation will be a mapping of the ECG problem to the field of

computer vision after the model of [14]. This means that inputs are single-channel images of plots of

the ECG signals. The twelve signals are combined by means of concatenation. The resulting plot is thus

a plot of a single vector of length 12000.

The two autoencoders that are compared will be a fully-connected autoencoder against a convolutional

autoencoder. The fully-connected autoencoder will have fully connected layers followed by batch

normalization, ReLU non-linear activation layers, and dropout layers. The convolutional autoencoder

will use a pattern of convolutional layers alternated with ReLU non-linear activation layers. The layers

sizes of the fully-connected autoencoder will be d-500-500-2000-embedding-2000-500-500-d with d

signifying the input dimensionality. The encoder of the convolutional autoencoder will consist of three

convolutional layers; the first one has a kernel of size five by five, and 32 output channels. The second

layer has a kernel of size five by five as well, and 64 output channels. The last layer has a kernel of size

three by three and 128 output channels. In order to condense the number of features to the desired

embedding size, the last convolutional layer is followed by a flattening layer and a fully connected layer.

The decoder is the same as the encoder only in reversed order.

All networks are pre-trained for 50 epochs and fine-tuned for 20 epochs with a replication factor of

ten in order to get an uncertainty quantification. The reconstruction error used is the mean squared

error and the optimizer used is Adam with an initial learning rate 𝑙𝑟 = 1𝑒−3
. For the embedding size,
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Figure 4.2: Input and reconstruction of the convolutional autoencoder on the numeric data representation. Blue indicates the

input, red indicates the reconstruction.

Table 4.1

autoencoder input representation train accuracy train nmi test accuracy test nmi

fully connected numeric 0.23 ± 0.01 0.15 ± 0.01 0.32 ± 0.01 0.29 ± 0.01

fully connected plot 0.23 ± 0.03 0.12 ± 0.05 0.23 ± 0.02 0.14 ± 0.05

convolutional numeric 0.23 ± 0.01 0.09 ± 0.02 0.24 ± 0.02 0.12 ± 0.02

convolutional plot 0.30 ± 0.01 0.24 ± 0.01 0.30 ± 0.03 0.27 ± 0.02

the same embedding will be used as in [21]. They fixed their embedding size to 10. The experiments are

run on a desktop computer with 48 GB of main memory, an intel 9700k i7, and an Nvidia 2800 RTX

graphics card. The entire experiment takes four days, fourteen hours, and seven minutes.

4.4. Discussion
The results show that all outcomes perform far worse than the feature engineering model from [18].

The accuracy scores in Table 4.1 show that all configurations of the experiment score poorly. The scores

in Table 4.1 are accuracies after pre-training, but before fine-tuning. The fine-tuning process derived

from [21] does not seem to work on this data. This is why from this point on, future experiments will

not be using the fine-tuning deep-k-means algorithm.

The fully-connected autoencoder seems to score relatively good on the numeric representation

while the convolutional autoencoder scores better on the plot representation. This is expected since

convolutional models are known to perform better at computer vision problems.

The visualizations of the reconstructions of the numeric data representation Figures 4.2 and 4.3

show something unexpected; the convolutional model, which has significantly worse accuracy, is able

to reconstruct the data better than the fully-connected autoencoder. Results on the visualizations of the

plot data representation reconstructions are as expected, the convolutional model performs better.

In Figure 4.6, the distribution of different objects from the same patient is plotted. Here different

dots that have the same color signify different objects from the same patient. It can be seen that none

of the configurations are able to cluster objects from the same patient in the same location. During

preliminary experimentation, it was already clear that the capability of these models to cluster based on
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Figure 4.3: Input and reconstruction of the fully-connected autoencoder on the numeric data representation. Blue indicates the

input, red indicates the reconstruction.

heart pathology was insufficient. It was hypothesized that perhaps the models were able to recognize

the same patient because the preconception was that that would be easier for the model. Figure 4.6

indicates the opposite. It is important to note here that all three patients plotted, suffer from Myocardial

infarction. This heart pathology is by far the most abundant heart pathology with 148 out of the 268

patients used in this experiment. This means that during the data augmentation using a sliding window,

patients suffering from this pathology have had no sliding window applied to their ECG objects. During

the discussion of Figures 4.8 and 4.9 it will become clear whether some configurations are able to identify

the same patient in other circumstances.

The lower-dimensionality ECG representations are ten-dimensional, this means that the 1000 values

that an ECG object consists of are decreased to only ten values. If those values were to be plotted, a

ten-dimensional plotting space would be needed. This is impossible so the ten dimensions need to be

reduced further. In this case, the aim is to provide insight into the data in two dimensions. This means

that every ECG object will be represented by two values, one for the x-axis and one for the y-axis. A

well-known technique that achieves this is called principal component analysis (PCA). In Figure 4.7,

this two-dimensional space is visualized. The triangles signify the cluster centers obtained from the

deep-k-means clustering algorithm. The placement of the centers explains why the finetuning results

were so low. The deep-k-means algorithm uses the cluster centers as parameters in the same way deep

neural networks use parameters. They are tuned by means of a variant of stochastic gradient descent.

Figure 4.4: Input and reconstruction of the convolutional autoencoder on plot data representation. Left is the input, right is the

reconstruction.
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Figure 4.5: Input and reconstruction of the fully-connected autoencoder on plot data representation. Left is the input, right is the

reconstruction.

In the case of deep-k-means, the cluster center parameters are tuned at the same time as the parameters

from the autoencoders. A possible explanation for the location of the cluster centers could be that the

speed at which the cluster centers move through stochastic gradient descent is slower than the speed at

which the data points move through stochastic gradient descent.

PCA is only one out of many methods that are used to reduce dimensionality. A different well-known

dimensionality reduction algorithm is called t-SNE. This method is based on the assumption that the

underlying structure of the ten-dimensional data is of lower dimensionality. This assumption is called

the manifold assumption. T-SNE exploits this assumption resulting in a dimensionality reduction

technique that is radically different from PCA. The resulting two-dimensional data is plotted in Figures

4.8 and 4.9. From the figures, it becomes apparent that the two convolutional configurations yield better

discernible clusters than the fully-connected configurations with respect to heart pathology. This is in

line with the visualizations of the reconstructions but not with the accuracy metrics. Judging from this

visualization, the best low-dimensional representation is achieved with the convolutional model on the

plotted data.

Returning to the subject of clustering the same patient in the same cluster, in Figure 4.9a one can

roughly differentiate four blue clusters and six purple clusters. Table 4.1 states that the corresponding

heart pathology is represented by four and six patients respectively. This indicates that in these two

cases the model in question is able to recognize the same patient. The explanation here is that the

mechanism that provides data augmentation and a balanced label distribution (the sliding window) has

a very high degree of overlap as a direct result of the low number of patients that represent the heart

pathology in question.

The models currently perform near complete randomness, which is the worst possible result and

Figure 4.10 shows that training for more epochs is not going to result in better performance. In order to

differentiate better between two bad-performing models, the task should be made easier. In consultation

with the medical professionals from Erasmus Medisch Centrum (EMC), it is decided to focus only on

ECG data from patients that are either healthy or suffer from Bundle Branch Block (BBB). In order to

make this research reproducible in other data sets, the number of leads is reduced from fifteen down to

the conventional twelve.
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Figure 4.6

(a) Patient IDs from the convolutional autoencoder on the numeric data

representation.

(b) Patient IDs from the fully-connected autoencoder on the numeric

data representation.

(c) Patient IDs from the convolutional autoencoder on the plot data

representation.

(d) Patient IDs from the fully-connected autoencoder on the plot data

representation.
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Figure 4.7

(a) PCA reduction of the convolutional autoencoder on the numeric data

representation.

(b) PCA reduction of the fully-connected autoencoder on the numeric

data representation.

(c) PCA reduction of the convolutional autoencoder on the plot data

representation.

(d) PCA reduction of the fully-connected autoencoder on the plot data

representation.

Figure 4.8

(a) t-SNE reduction of the convolutional autoencoder on the numeric

data representation.

(b) t-SNE reduction of the fully-connected autoencoder on the numeric

data representation.
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Figure 4.9

(a) t-SNE reduction of the convolutional autoencoder on the plot data

representation.

(b) t-SNE reduction of the fully-connected autoencoder on the plot data

representation.

Figure 4.10

(a) accuracy of the convolutional autoencoder on the numeric data

representation.

(b) accuracy of the fully-connected autoencoder on the numeric data

representation.

(c) accuracy of the convolutional autoencoder on the plot data

representation.

(d) accuracy of the fully-connected autoencoder on the plot data

representation.



5
ECG Object Representations

5.1. Introduction
Different input representations highlight different attributes of the ECG signals. One possible explanation

for the bad performance metrics of the setups that have been experimented with up until now is that the

data representations highlight features of the ECG signals that are not correlated with heart pathological

outcomes. The autoencoders make use of these features for reconstruction, fulfilling their objective, but

the extracted features are not correlated with heart pathology, which is what this research is looking for.

The hypothesis is that other data representations enable the autoencoder to extract salient features with

respect to heart pathology, resulting in higher performance metrics from experimentation.

5.2. Extra Literature
In their research, [10] first decompose the ECG signals using empirical mode decomposition (EMD). The

resulting signals, called intrinsic mode functions (IMFs), are used to reconstruct the original signal. This

procedure is used as a method to denoise the data. The original signal is an element-wise summation

of the twelve traditional ECG leads. After the denoising step, the signal is fed into a one-dimensional

convolutional neural network that is designed for supervised classification. The model is trained on

different data sets; MIT-BIH, St. Petersburg, and the dataset used for this research up until now; PTB.

The resulting accuracies attained after testing are 97.7%, 99.71%, and 98.24% respectively. The code

published in this research was used in order to reproduce. Unfortunately, the EMD technique failed

for a significant number of objects. This was the reason to deem this research not reproducible. A

different novel contribution of this research is that the ECGs are processed in a one-dimensional data

representation.

[26] Were motivated by the recent advances in deep learning on computer vision, to propose a

framework for encoding time series as images. They encode the time series as an image of three channels;

the first channel is a Grammian angular summation field, the second a Grammian angular difference

field and the third channel is a Markov transition field. The Grammian angular fields have several

advantages according to the authors; the mapping from time series to Grammian angular fields is

bĳective, meaning there is one and only one unique Grammian angular field for any time series and the

Figure 5.1: Subject of experiments for this section.
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Figure 5.2: Relation between time series and complex networks from [5].

reverse is also true. Secondly, as an intermediate step, the Cartesian coordinates from the time series are

mapped to polar coordinates. According to the authors, this has the advantage of preserving absolute

temporal relations.

The process of converting a time series to a Markov transition field is illustrated in Figure 5.2. As a

first step, the time series is split into vertical bins as indicated by the colors in the left image. Data points

from each bin are assigned to a node in a network. A transition matrix is then constructed by looking at

the transitions of two consecutive points in the time series. For example, if a point in the blue bin is

followed by a point from the red bin, one transition from blue to red is then counted. In order to turn

these transition counts into a proper Markov transition matrix, the rows are normalized, to sum up to

one. In their evaluation, [26] compare the classification performance of this three-channel representation

to other techniques used to represent time series in different ways with consecutive classification. The

different techniques are evaluated on 20 data sets. Most of these techniques were state-of-the-art prior

to this research. From the 20 data sets, this research yields the lowest misclassification rate on nine,

making this the best-performing data representation that was tested.

5.3. Methodology
In this experimentation setup, different input representations are used while the rest of the experi-

mentation setup is kept the same. The dataset used is the PTB dataset. From this dataset only the

objects are used that are related to patients suffering from bundle branch block and the healthy controls.

The autoencoder used has an encoder that consists of three convolutional layers with same padding,

a stride of two, and kernel size 5x5, 3x3, and 3x3 respectively. All convolutional layers are followed

by ReLU activation layers, and the last ReLU layer is followed by a fully-connected layer that reduces

the input dimensionality to the desired low-dimensional autoencoder output of ten. The decoder is

a mirror image of the encoder that has its last ReLU activation layer before the reconstruction part

removed. After the autoencoder, the data is clustered using the traditional k-means clustering algorithm

as implemented by the scikit-learn python library. The number of clusters or hyperparameter k is fixed

at two, the same as the number of unique labels. As first input representation, the best-performing

input representation from the previous experiment is used, which is a plotted image of the twelve leads

concatenated after each other. Inspired by [10] the next two leads are a plotted image of the twelve

leads summed element-wise and a one-dimensional vector of data of that same summed-up vector. The

following five experiment setups are plotted images of signals that are fast-Fourier transformations

of the summed-up numeric data representation. All variants of this representation plot the first 40

frequencies and the intensities. The difference lies in the time interval over which the fast-Fourier is

done. This interval is fixed at 1 second, 2 seconds, 3 seconds, 4 seconds, and 30 seconds.
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Table 5.1: Performance metrics of the different data representations.

model name train acc test acc train loss test loss train nmi test nmi

plot FFT 1sec 0.55 ± 0.01 0.53 ± 0.01 1.24 ± 0.08 1.10 ± 0.05 0.09 ± 0.00 0.13 ± 0.01

plot FFT 2sec 0.53 ± 0.00 0.51 ± 0.00 1.49 ± 0.09 1.41 ± 0.05 0.09 ± 0.00 0.13 ± 0.00

plot FFT 3sec 0.54 ± 0.00 0.52 ± 0.00 1.41 ± 0.04 1.46 ± 0.02 0.09 ± 0.00 0.14 ± 0.00

plot FFT 4sec 0.54 ± 0.01 0.52 ± 0.00 1.30 ± 0.06 1.35 ± 0.03 0.09 ± 0.00 0.14 ± 0.00

plot FFT 30sec 0.55 ± 0.02 0.53 ± 0.01 0.35 ± 0.04 0.74 ± 0.01 0.14 ± 0.01 0.18 ± 0.01

plot concatenated 0.56 ± 0.05 0.55 ± 0.05 6.58 ± 0.34 8.49 ± 0.17 0.07 ± 0.08 0.08 ± 0.09

plot summed-up 0.55 ± 0.02 0.54 ± 0.02 3.98 ± 0.08 4.17 ± 0.06 0.20 ± 0.07 0.21 ± 0.07

matrix conv 1D 0.53 ± 0.01 0.55 ± 0.03 1.23 ± 0.10 2.35 ± 0.28 0.05 ± 0.02 0.08 ± 0.04

vector conv 1D 0.51 ± 0.00 0.51 ± 0.00 1.06 ± 0.06 1.39 ± 0.29 0.00 ± 0.00 0.01 ± 0.01

image fields 0.52 ± 0.01 0.52 ± 0.01 1.90 ± 0.11 1.93 ± 0.10 0.00 ± 0.00 0.00 ± 0.00

5.4. Discussion
The overall performance metrics are disappointing. The results will be discussed in four sections. The

first section will discuss all the FFT plot representations, the second all the other plot representations,

the third will discuss the 1-dimensional convolutional representations, and finally, the last section will

discuss the image fields.

5.4.1. Plotted FFT representations
The FFT representations are experimented on by taking FFTs of different time intervals. For all other

representations, the duration of each object is one second. This means that for the FFTs that have longer

intervals than one second, there is an increase in the overlap between the subsequent objects. This

invalidates the results from FFTs derived from longer intervals because potential good performance

could be caused by the overlap. To see if there is any potential at all, these FFTs are investigated

nonetheless. Intuitively the increase in overlap should result in clusters from the same patient being

clustered in the same cluster more often. The metric that reflects this type of phenomenon is NMI.

Apart from the remarkable NMI of the plot summed-up data representation, the NMIs from the FFT

representations reflect this intuition by having the highest NMIs. The increase in NMI versus the

increase in time interval, and with that, the increase in overlap is quite low. For example, the difference

between the test NMIs of the 1-second FFT and the 4-second FFT is only 0.01. Given the fact that the

consecutive 4-second FFTs from the same patient have more than 75% of underlying ECG signals in

common, this increase in NMI of only 0.01 is puzzling.

The reconstruction visualizations of the FFT representations can be found in Figures 5.3 and 5.4. The

quality of these reconstructions seems decent, but there is much empty space, which gets only worse in

FFT plots derived from longer intervals. Possible improvements could be made by changing the range

of the vertical axis, or changing the scale of the vertical axis, to a logarithmic scale for example.

The two-dimensional plots of the low-dimensional space can be found in Figures 5.5, 5.6, and 5.7. In

(a) Reconstruction of an FFT over a 1 second interval. (b) Reconstruction of an FFT over a 2 second interval.

(c) Reconstruction of an FFT over a 3 second interval. (d) Reconstruction of an FFT over a 4 second interval.

Figure 5.3
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Figure 5.4: FFT reconstruction of a 30 second interval.

(a) PCA of an FFT over a 1 second interval. (b) PCA of an FFT over a 2 second interval.

(c) PCA of an FFT over a 3 second interval. (d) PCA of an FFT over a 4 second interval.

Figure 5.5

Figure 5.6: PCA of an FFT over a 30 second interval.
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(a) t-SNE of an FFT over a 1 second interval. (b) t-SNE of an FFT over a 2 second interval.

(c) t-SNE of an FFT over a 3 second interval. (d) t-SNE of an FFT over a 4 second interval.

Figure 5.7

(a) Accuracies of an FFT over a 1 second interval. (b) Accuracies of an FFT over a 2 second interval.

(c) Accuracies of an FFT over a 3 second interval. (d) Accuracies of an FFT over a 4 second interval.

Figure 5.8
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Figure 5.9: Accuracies of an FFT over a 30 second interval.

(a) Reconstruction of the concatenated plot representation. (b) Reconstruction of the element-wise summed up plot representation.

Figure 5.10

(a) PCA of the concatenated plot representation. (b) PCA of the element-wise summed up plot representation.

Figure 5.11

(a) t-SNE of the concatenated plot representation. (b) t-SNE of the element-wise summed up plot representation.

Figure 5.12
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(a) Accuracies of the concatenated plot representation (b) Accuracies of the element-wise summed up plot representation.

Figure 5.13

(a) Reconstruction 1D convolution summed-up element-wise

representation.

(b) Reconstruction 1D convolutions 12-channel representation.

Figure 5.14

(a) PCA of the 1D convolution summed-up element-wise

representation.

(b) PCA of the 1D convolutions 12-channel representation.

Figure 5.15
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(a) t-SNE of the 1D convolution summed-up element-wise

representation.

(b) t-SNE of the 1D convolutions 12-channel representation.

Figure 5.16

(a) Accuracies of the 1D convolution summed-up

element-wise representation.

(b) Accuracies of the 1D convolutions 12-channel

representation.

Figure 5.17
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Figure 5.18: Reconstruction of the image fields.

Figure 5.19: PCA of the image fields.
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Figure 5.20: t-SNE of the image fields.

Figure 5.21: Accuracies of the image fields.
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Figure 5.5 the healthy and BBB patients seem to be somewhat discernible, making them already seem

better than expected. The t-SNE plots from Figure 5.7 give the impression that only FFTs from longer

time intervals have the healthy controls and BBB patients somewhat separated, and although it seems

decent, there are better discernible data representations in this same experiment.

An interesting phenomenon can be seen in Figure 5.6, the data points form long lines. A potential

explanation is that the sliding window from consecutive objects of the same patient, in the case of FFTs

from an interval of 30 seconds, share about 97% of the underlying ECG signals. This means that every

consecutive point is plotted very close to its predecessor, which in turn means that every line of points

seen in Figure 5.6 represents the objects derived from the same patient. The relatively large distances

that these lines make then indicate that there is very little information retained in the low-dimensional

representation of the patient’s identities.

Finally, from Figures 5.8 and 5.9 it can be seen that training the model for additional epochs will not

result in better performance metrics, in some cases this even results in worse metrics.

5.4.2. Plotted representations
The plotted representations consist of two representations; the concatenated plotted representation and

the element-wise summed-up plotted representation. The first representation is the representation

that is also used in the first experiment. Quantitatively, when comparing the ARIs between this

representation in this experiment against the previous experiment it shows that the performance has

degraded. This means that discerning healthy controls from BBB patients is harder than discerning all

diagnostic classes used in the first experiment.

Upon inspection of Figure 5.10 it looks like the reconstruction quality of both representations is

about equal. Quantitatively, Table 5.1 reads that the test losses of the concatenated representation are

about twice as high as the summed-up representation. This can be explained by arguing that from

the reconstruction visualizations, it looks like the concatenated representation is a more chaotic signal,

making it harder to reconstruct. The strength of the concatenated signal is that the model is able to

see the difference in the baseline of the different leads, this can be used to determine in what general

direction the heart is beating, which is an indication medical experts use to determine abnormal heart

functioning. In the summed-up representation, this information is lost. The summed-up representation

however, shows a much clearer image of the course of the heartbeat. From Table 5.1 it looks like both

models score about even on performance metrics, with the concatenated model having a larger range

of uncertainty. When inspecting the PCA embeddings in Figure 5.11, however, the low dimensional

representations of the concatenated signal are much better discernible. The cluster density seems to

have a radial shape with the BBB patients on the outside and the healthy controls on the inside. The

K-means clustering is at fault here, this algorithm is bad at clustering this type of distribution of clusters.

From both the PCA visualization Figure 5.11 and the t-SNE visualization Figure 5.12 it can be seen

that the quality of the low dimensional representation with respect to heart pathology is better for the

concatenated representation.

5.4.3. One-Dimensional convolutional representations
The one-dimensional convolutional representations consist of two representations; the element-wise

summed-up representation, which is a single signal consisting of the summed-up elements of all the

leads, and the other representation, which is one where the leads are fed into the one-dimensional

convolution layers as separate channels.

Table 5.1 shows that quantitatively, the 12-channel representation outperforms the summed-up

representation by a large margin. The reconstruction plots in Figure 5.14 show similar reconstructions,

which is confirmed by the losses noted in Table 5.1. The PCA plots of the low dimensional representation

however show that the clustering for the summed-up representation is again one of a radial shape. The

k-means algorithm is bad at clustering these types of clusters, skewing the quantitative results. The

t-SNE plots of the low dimensional representations underline this phenomenon, but they also show

that a very low number of BBB patients are discernible from the radial core of healthy controls mixed

with BBB patients. The accuracy over training epoch visualizations seen in Figure 5.17 show two things;

firstly these visualizations suffer from the same skewing that the quantitative accuracies from Table 5.1

suffer from, secondly, there is no trend visible that indicates better performance with longer training.
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5.4.4. Image fields representation
The image fields representation is a single representation. Visualizations of the reconstructions show

that the trends are properly reconstructed, but the overall images are a bit washed out compared to the

input. Both the PCA and t-SNE visualizations show again a radial structure in the low-dimensional

representation. This means that the performance metrics, again, are skewed by the bad combination of

the clustering algorithm and cluster structure. In this case, the t-SNE visualization reveals that the core

of the radial structure consists of only BBB patients, while the surroundings are a poorly discernible mix

of both classes.

Finally, an important note here is that the image fields are produced from an element-wise summed-

up lead. From previous data representations in this experiment, it is known that this transformation

removes the information needed to determine the general direction the heart is beating in, in three

dimensions. An image fields representation produced by concatenating all leads into one single lead

could produce better results.



6
Deep Vision Models

6.1. Introduction
The previous experiments show that even with the best-performing model and data input representation,

the low-dimensional ECG representations are not sufficiently discernible. The cluster plot indicates that

the degree of overlap is too high for any clustering algorithm to cluster different heart pathology in

different clusters consistently. It is hypothesized that this is because the feature extraction model can

not capture the complex non-linear properties that define heart pathology. This leads the search for an

unsupervised ML model to an autoencoder that is capable of capturing more complex properties. One

such model is the research by [11]. Their model called Resnet is truly a deep learning model because of

the large number of layers. Because of the deep nature of Resnet, it is hypothesized that features that

define heart pathology can be extracted, hypothetically leading to improved performance on the task of

unsupervised classification of heart pathology.

6.2. Extra Literature
The only problem is that ResNet[11] is not suited for the reconstruction objective. In order to use

it as an unsupervised neural network, an autoencoder needs to be constructed following the main

principles and findings as in [11]. [11] Found that when forming larger neural networks, a problem

occurs. The models are not capable of being trained. This is because of the vanishing and exploding

gradient problems. The intuition behind these problems is that if there are many layers, gradients get

multiplied many times. In the cases where individual gradients are larger than 1.0, this means that

gradients for parameters near the input part of the network explode. The consequence of this is that the

learning mechanism of gradient descent does not converge and the network will consequently not learn

to minimize its loss objective. In the cases where the individual layer gradients are smaller than 1.0, this

means that because of the many multiplications the gradients for the parameters at the input side of the

network will vanish, quickly stagnating the learning mechanism of gradient descent. The solution to

these problems was found to be so-called skip connections or residual connections. These connections

Figure 6.1: Subject of experiments for this section.
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Table 6.1: Quantitative results of deep autoencoders.

autoencoder model train accuracy test accuracy train loss test loss train NMI test NMI

ResNet50 0.51 0.51 0.32 0.8 0.00 0.00

InceptionResNetv2 0.53 0.52 0.08 0.09 0.17 0.18

allowed an identity mapping of the input features parallel to the main structure of the network. The

skip connections are recombined with the features flowing through the main structure of the network

every two or three convolution layers, depending on the type of block used. A basic block consists of

two convolution layers and is used in the shallower versions of ResNet, while a bottleneck block consists

of three convolution layers and is used in the deeper versions of ResNet.

In [24] are inspired by the work of [19] and [2]. In [19], network blocks are defined that do

dimensionality reduction within parts of the network in order to save computing resources. [19] Do

this by means of 1x1 convolutions. In [2] sparse structures in the convolutions are explored. [24]

Take the findings of both researches and come up with an architecture that makes use of the highly

optimized dense convolutional layers to approximate sparse structures. They do this by making use

of the 1x1 convolutional layers. In later research, [25] improve on this concept by constructing larger

networks with the same principles. The two best-performing architectures of [25] are Inceptionv4 and

InceptionResNetv2. The second network adds the residual layers from [11] to the Inception architecture.

Eventually, both networks reach the same performance, but InceptionResNetv2 does so earlier. In this

comparison, the residual connections seem to only speed up training, since Inception architectures in

general are able to deal with the exploding and vanishing gradient problems.

6.3. Methodology
Different autoencoders are built with designs of different lengths of ResNet and a single version of

InceptionResNetv2. They are constructed by using the ResNet and InceptionResNetv2 models as

encoders and using inverted versions of those encoders as decoders. The autoencoders are then used

and compared to the basic convolution autoencoders from the previous experiment on the concatenated

plotted image representation.

6.3.1. Hyper Parameters
The experiments are run with a replication factor of only one because a single training run takes about

three days to complete. The other hyperparameters consist of an Adam optimizer with an initial learning

rate of 1.0 × 10
−3

, 120 epochs training, and an embedding size of 10.

6.4. Discussion
Both the ResNet50 and the InceptionResNetv2 have excellent reconstructions, but also both models

produce very poorly discernible clusters. For autoencoders, it is known that the dimensionality of the

encoding is key for the bottleneck mechanism to produce salient features. A dimensionality that is

too high will turn the bottleneck into an identity mapping, causing it to not produce salient features

anymore.

It is hypothesized that complex decoders in autoencoders have the same effect as large encoding

dimensionalities. The reasoning is that more complex decoders are more flexible and can more easily

reconstruct the input from the low dimensional encoding. For example, when a simple decoder

would only just be able to reconstruct an input from an encoding with a certain dimensionality, a

complex encoder could do the same with a yet lower-dimensionality encoding. When the encoding

dimensionality would instead be kept the same, that difference in dimensionality needed for a good

reconstruction results in the complex decoder having redundant encoding values compared to the

simple decoder. These redundant values, in turn, negate the bottleneck mechanism.
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(a) ResNet reconstruction (b) Inception reconstruction

(c) ResNet PCA (d) Inception PCA

(e) ResNet t-SNE (f) Inception t-SNE

Figure 6.2: ResNet50 vs InceptionResNetv2
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Recurrent Numeric Models

7.1. Introduction
Recurrent neural networks (RNNs) are known to be able to better capture the underlying nature of

sequential processes. They are known to work well on natural language problems and time series. ECGs

are time series. The hypothesis is; autoencoders created by recurrent units are better able to extract

the underlying features of the ECG signals, resulting in the extracted low-dimensional representations

being more correlated to heart pathology.

7.2. Extra Literature
[7] Created a recurrent neural network (RNN) by first compressing an ECG vector of length 1024 to

a feature vector of length 32. This vector is fed into a long-short-time-memory (LSTM) unit of eight

stacked layers and 32 time steps. The output of the LSTM layer is interpreted as the encoding of the

autoencoder. In the decoder, only convolutional layers, upsampling layers, and one fully connected layer

are used. No LSTM is used in the decoder, making it different from the usual inversion of the encoder.

The network is trained in a way that it also does denoising. The purpose of the research is to create a

model for compression in order to alleviate transmission costs and eliminate some of the noise that

comes with the transmission of ECG data. The resulting compression ratio is 64 and the performance

evaluation of the decompressed ECG as a consequence of noise and compression is expressed in a

metric called quality score with a value of 15.61. This quality score is higher than the state-of-the-art at

the moment of publication, which is 2021.

7.2.1. LSTM-based arrhythmia classification
[13] Created a supervised LSTM-based autoencoder with a support vector machine (SVM) attached to

the encoding. In their research, the authors argue that the autoencoder is capable of extracting relevant

features. This is motivated by the high accuracy attained of 99.7%.

Figure 7.1: Subject of experiments for this section.
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Table 7.1: LSTM autoencoders with different sample rates of the input signals.

sample rate (hz) train accuracy test accuracy

100 0.53 ± 0.02 0.53 ± 0.02

40 0.54 ± 0.02 0.54 ± 0.01

20 0.55 ± 0.03 0.54 ± 0.03

10 0.53 ± 0.03 0.51 ± 0.01

Table 7.2: LSTM autoencoders with different teacher forcing probability.

teacher forcing probability (%) train accuracy test accuracy

0 0.51 ± 0.01 0.53 ± 0.02

20 0.52 ± 0.01 0.55 ± 0.01

40 0.51 ± 0.01 0.53 ± 0.02

60 0.52 ± 0.02 0.54 ± 0.01

80 0.52 ± 0.01 0.51 ± 0.01

100 0.53 ± 0.02 0.54 ± 0.02

7.2.2. LSTM unsupervised video representations
In their research [23] find a solution for feature extraction of videos. [23] came up with a convolutional

LSTM-based autoencoder where they experiment with different loss objectives. The authors experiment

with the reconstruction of the input sequence. They find that inverting the sequence of the reconstruction

improves performance as the model better learns to remember the end of the sequence. The authors

experiment with the loss objective of future prediction, which is a loss objective more natural to

sequential data and, has not been done on autoencoders that are not based on RNNs. The last loss

objective that [23] created was a combination of the preceding two objectives: the model has one decoder

reconstructing the reversed input, and one decoder predicting the future. The performance of their

research is qualitatively expressed by inspection of the reconstructed and future frames of the video.

The authors also quantitatively evaluate their model by means of supervised video classification. One

of their findings is that the best features are extracted when using the two decoders.

7.3. Methodology
There are multiple configurations to explore when evaluating RNN-based autoencoders. The objectives

of reconstruction, prediction, and the hybrid of both are explored.

Different types of input for the decoding part are experimented with as well. This consists of

inputting the output of the previous time step recursively, inputting the ground truth of the previous

time step, or a combination of both. The combination is made by drawing from a Bernoulli distribution

every time a next time step is performed. For this distribution one needs to define the chance for success

parameter 𝑝. On a successful draw from the Bernoulli distribution, the input for the next time step will

be the ground truth. On a failed draw from the Bernoulli distribution, the input for the next time step

will be the output of the previous time step.

For the last category of configurations, it is observed in both [23] and exploratory runs of this

research, that the maximum number of time steps that the decoder is able to produce somewhat relevant

predictions is 32. After this number of time steps the outcome of the decoder time steps is completely

arbitrary. In order to predict larger parts of the ECG, one can lower the sample rate of the input vector.

In the PTB database the sample rate is fixed at 1000 hertz. In this research, experiments are performed

with sample rates of 100 hertz, 40 hertz, 20 hertz, and 10 hertz.
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Table 7.3: LSTM autoencoders with different loss objectives.

loss objective train accuracy test accuracy

reconstruction 0.52 ± 0.01 0.54 ± 0.03

prediction 0.53 ± 0.01 0.53 ± 0.03

hybrid 0.51 ± 0.01 0.51 ± 0.00

Figure 7.2: Reconstruction of the entire ECG object.

Figure 7.3: Reconstruction of the last 15 steps of the ECG object.
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7.4. Discussion
In the first set of experiments, the effect of the sample rate of the signal on the accuracy performance of

the classification task is researched. Results show that varying this part of the signal has little effect on

the eventual accuracy reached, but the best-performing sample rate is 40 hertz. The reasoning is that

this sample rate results in the joint best test classification accuracy, but with a more narrow spread in

test accuracy, making it more reliable than its competitor of 20 hertz.

In the second set of experiments, the effect of the teacher forcing probability is researched. Similar

to the first set of experiments, the different options do not result in a dramatically different outcome of

evaluation metrics. The best performing teacher forcing probability from the available options here is

20%. Not only does this result in the highest test accuracy, but the same metric is also achieved with a

joint lowest standard deviation of 0.01%.

In the last set of experiments, the different loss objectives are researched similar to the research by

[23]. Similar to all preceding LSTM experiments, the different options make only a small difference in

outcome of the evaluation metrics. The best-performing loss objective seems to be reconstruction, with

prediction being a close runner-up. The hybrid reconstruction-prediction loss objective seems to be by

far the worst in this comparison, which is surprising since it is the exact opposite of what [23] found.

From the first and second rounds of experiments, Tables 7.1 and 7.2 were produced. For these

experiments, the entire ECG was used for input of the decoder. For the last set of experiments only 15

steps were used in the decoder part, this improves the decoder output as can be seen in Figures 7.2 and

7.3.
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Variational Numeric models

8.1. Introduction
Recent research [17] on variational autoencoders shows that the design of a variational autoencoder can

generate explainable features when applied to ECG data. Explainable features are generally regarded as

good features in the machine learning community. In this case what is meant with explainable features

is that when the authors fix 24 out of the 25 features of the encoded representation of an ECG and

vary the feature that is not fixed, a visible quantity of the ECG is changed, for example when changing

varying one feature, the height of the QRS complex varied in the same direction consistently.

It is hypothesized that features generated by the exact model from [17] are good in the sense they

can be used to discriminate ECG data based on underlying heart pathology.

The key quantitative result that [17] found was a metric called maximum mean discrepancy (MMD).

The MMD is a metric that describes dissimilarity between two populations of vectors. A lower value

means the two populations are more similar. In the research by [17], the value of this metric was

found to be 3.83 × 10
−3

. Generation of this metric requires one hyperparameter. The way [17] set this

hyperparameter is said to be the same as described in [8]. In [8], the generation of artificial ECGs is

done by adversarial neural networks. They achieve an MMD of 1.05 × 10
−3

.

8.2. Methodology
In order to find the answer to the aforementioned hypothesis, first, an attempt will be made to reproduce

the research [17]. Following the attempted reproduction is an evaluation that grants insight into the

quality of the extracted features with respect to the discernibility of heart pathology.

8.2.1. Data Set
The data set used in this experiment is the Lobachevsky university electrocardiogram database (LUDB).

In this database ECG signals are segmented. The segmentation marks part of the ECGs as P-wave, QRS

Figure 8.1: Subject of experiments for this section.
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complex, and T-wave. This allows the authors of experiments to center the QRS wave in every ECG

object, which is also the case for [17]. Instead of element-wise summing of corresponding leads, every

lead is used as an ECG object by itself. Compared to other data sets like the PTB data set that is used

for all preceding experiments, the LUDB data set contains more annotation information. The heart

pathology annotations are split into three different groups; the electrical axis of the heart, hypertrophy,

and heart rhythm. Plots are made for all these three different categories, and one for examining whether

the low dimensional features can discern male from female.

8.2.2. Hyperparameters
The model is trained and evaluated on 750 epochs of training, a low-dimensional representation size of

25, and the optimizer is chosen to be Adam just like the research by [17]. The initial learning rate for the

optimizer is not mentioned, which is why it is set to be a default value of 1.0 × 10
−3

. The batch size was

not specified by [17] and is set to 256 since that is often used in preceding experiments in this research.

The replication factor is three.

8.3. Discussion
The reconstruction and generation of the ECG vectors as seen in Figure 8.2 look good. The reconstruction

shows a low error and the generated ECG vector looks like a real ECG signal which is confirmed by

medical experts at the Erasmus medical center. The MMD value attained is 2.4 × 10
−3

, which is better

than [17], which is being reproduced by this experiment, and worse than [8], which is expected. Since

the batch size and the initial learning rate of the optimizer are not known, an exact reproduction was

never possible. The authors are of Russian nationality, meaning that current geopolitical circumstances

prevent additional communication about hyperparameters.

Plots of the low-dimensional representations of the ECGs, which are colored according to the

available annotations show that the hypothesis that the low-dimensional representations would be able

to discern heart pathology is not true. The additional plot showing discernibility of sex shows that sex

is not discernible either.
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(a) Reconstruction. (b) An artificial ECG signal constructed by the trained VAE.

(c) PCA visualization of different heart rhythm problems. (d) t-SNE visualization of different axes of the heart problems.

(e) t-SNE visualization of different hypertrophy problems. (f) t-SNE visualization of different heart rhythm problems.

Figure 8.2
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(a) t-SNE visualization of different sexes of the patients. (b) Test accuracy vs epoch trained.

Figure 8.3



9
Clustering Techniques

9.1. Introduction
Previous experiments yielded very poor results up until now. The hypothesis of this design space

is that the clustering algorithm with its parameters is not a good fit with the structure of the actual

clusters in the low-dimensional space. The low-dimensional data points produced by autoencoders

contain clusters that are not radial in shape, but much more complex. These oddly shaped clusters are

called manifolds. Three clustering strategies that are more adept at this type of clustering are DBSCAN,

OPTICS, and Hierarchical clustering. Clustering can be further improved by assuming a many-to-one

mapping from cluster labels to heart pathology labels. The best number of clusters could be inferred

from the hierarchical clustering.

9.2. Methodology
In the experiments, multiple clustering algorithms are examined, while varying their hyperparameters.

[18] argues that if there are more than 25 clusters, the entire pipeline will stop being meaningful. This

has to do with the way the pipeline is evaluated. Like before, the data is fed into an autoencoder, which

produces low-dimensional data. This low-dimensional data is used to cluster. This process yields

cluster labels, which are only numbers, data points from the same cluster get the same cluster label. The

aim of the evaluation is to see if the formed clusters are related to heart pathology. In order to get any

meaningful metric at all, the cluster labels are mapped to the heart pathology annotations based on the

heart pathology that is most abundant in each cluster. This means that the evaluation pipeline makes

use of the heart pathology annotations as labels, making it supervised. The emphasis is on the fact that

neither the clustering algorithm nor the autoencoder makes use of the heart pathology annotations

during training, in other words, the model is trained completely unsupervised, but the evaluation is

supervised. This is used in all similar research, where unsupervised feature extraction is evaluated [18,

21]. A direct consequence of the supervised nature of the evaluation is that if the clustering algorithm

produces many clusters, the accuracy will always converge to 1.0. In the extreme case that all data points

Figure 9.1: Subject of experiments for this section.
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are their own cluster, the data points will all get mapped to their most abundant heart disease, which

is the heart pathology annotation of their only data point, resulting in a perfect accuracy of 1.0. This

makes clusterings with high numbers of clusters yield only trivial information. With that in mind and

the fact that [18] uses 25 clusters as the upper limit, the experiments here will only look at clusterings

with less than 50 clusters. This is more than 25 because the objective of this experiment is to see if there

is any potential in the different clustering techniques at all.

The experiment will investigate five different clustering techniques while varying hyperparameters.

The first two techniques are k-means clustering and hierarchical clustering. For these two techniques,

the number of clusters will be varied from 2 to 50. Then the grid-based clustering algorithm of

self-organizing maps will be researched. The hyperparameters are the number of rows and columns

that make up the grid. These will be taken all square, so they will be 4, 9, 16, and 25 grid units. As last

group of clustering algorithms, 2 manifold clustering algorithms will be investigated. They are called

DBSCAN and OPTICS. Both algorithms have two hyperparameters, which are the maximum distance

between two data points and the minimum number of neighbors needed for a data point to become a

core point.

All these five clustering techniques will be performed on the low-dimensional data produced by two

of the best-performing data representations from the previous experiment. These are the concatenated

image plot format and the 12-channel 1-dimensional convolution format.

9.3. Discussion
For the one-dimensional convolutional format, it is clear that a larger number of clusters results only

in marginal gains of accuracy. The heat maps created for the hyperparameter searches of DBSCAN

and OPTICS show that even when hyperparameters are chosen by looking at the test labels, there is

no potential for high accuracy. In the case of the one-dimensional convolutional format, the legend

on the right of the heat maps shows that the maximum attainable accuracy is quite poor; there are no

hyperparameter combinations that result in an accuracy of even 0.6.

For the concatenated plotted format the results are very different. Between k-means, agglomerative

clustering, and self-organizing maps (SOM), agglomerative clustering performs best. This is in line

with the observation that the clusters are of complex shape. The DBSCAN seems to be doing best with

accuracy values of around 0.9 according to the legend on the right of the heat map. This is somewhat

misleading, because when hyperparameters are chosen accordingly; the number of clusters is higher

than 7000. This is not an interesting result since the focus here is on clusterings that have 25 clusters or

fewer.
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Figure 9.2: 12-channel 1-D convolutional format clustering
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Figure 9.3: concatenated plot format clustering
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MIT Dataset

10.1. Introduction
The research by [18] manages to run its model on the MIT BIH ECG beat data set and score an accuracy

of 98.5%. Their model uses unsupervised manual feature extraction followed by SOM with 5 rows

and 5 columns. The hypothesis of this research is that automatic unsupervised feature extraction by

autoencoder produces features that are at least as good as the manually extracted features by [18]

resulting in the same or better accuracy metrics in the classification task on the MIT data set.

10.2. Methodology
The MIT data set is an ECG data set where every heartbeat is annotated separately, in contrast to the

data set previously used in this research, where the heart pathology annotations are only available per

patient. The MIT data set contains 16 classes of heart pathology and one class that represents healthy

controls. [18] remove all beats annotated with the ’paced beat’ annotation, because this is visible in

the p wave, while their manual feature extraction method only uses the QRS complex. Contrary to

what is done in this research, [18] does not correct for the skewed class distribution in the MIT data set.

This means that about 70% of the beats in the MIT data set are annotated as healthy beats. The setup

used to compare this research to [18] consists of parts that are either the best according to previous

experiments of this research, or the same as in [18] for the best comparison. The input representation is

the concatenated plotted image representation, the autoencoder is the basic convolutional autoencoder,

and the clustering algorithm will be SOM with 5 rows and 5 columns as implemented by the SuSi

python package. Similar to preceding experiments the low dimensional representation will be of size 10

and the experiment reproduction factor will also be 10. The number of training epochs is fixed at 50 and

the optimizer is chosen to be ADAM with an initial learning rate of 0.001.

10.3. Discussion
The automatic unsupervised feature extraction described in the preceding methodology chapter scores

a disappointing 0.76 ± 0.01. From the t-SNE visualization in combination with the found NMI of

Figure 10.1: Subject of experiments for this section.
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Figure 10.2: Reconstruction of the concatenated plot representation on the MIT data set.

0.53 ± 0.01, it becomes clear this at least for the healthy beats, the model is able to recognize and cluster

together different beats from the same patient relatively well. The ARI is a performance metric which is

closely related to accuracy, but always on a scale from 0 to 1 regardless of the label distribution. The

ARI of this experiment comes down to a meagerly 0.29 ± 0.05. This means that this model is better at

recognizing the same patient than it is at recognizing the same heart pathology.
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Figure 10.3: MIT visualizations
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Conclusion

In this concluding section, the main contributions and findings are presented. Finally, suggestions will

be made for future research.

11.1. Contributions
In this research unsupervised automatic feature extraction of ECG signals is compared to both

supervised automatic feature extraction by classification neural networks and unsupervised manual

feature extraction followed by SOM clustering. The main finding is that unsupervised automatic feature

extraction performed by various types of autoencoders on various input representations followed by

various types of clustering does not perform as well on the task of classification as the aforementioned

machine learning pipelines. Before coming to this conclusion, extensive experimentation has been done

with the aforementioned parts of the machine learning pipeline.

Furthermore, there are two minor contributions. The first is a contribution in the context of

1-dimensional convolutional neural networks and ECG signals. The idea that different ECG leads can

be used as different channels for 1-dimensional neural networks is a novel idea that could also be used

in supervised deep learning on ECG data because in this research it yielded better results than the

alternative known from the literature [10], which does the element-wise summation of the different leads.

It is hypothesized that this alternative way to use different leads conserves the directional information.

Similar to the previous contribution, the idea of concatenating the ECG leads for the plotted image

representation, instead of element-wise summation before plotting has the advantage of keeping the

directional information intact. This is an additional contribution to the existing ([14]) idea of plotting

signals, mapping this signal classification task to the domain of computer vision.

11.2. Recommendation Future Research
In this section, three recommendations for future research are done. The first possibility for future

research originated from the idea that a combination of both manual feature extraction and automatic

feature extraction might be better than either of them in isolation. In their research [18] combine the

features extracted by fitting the polynomials to the QRS complex with two manual features. These are

two measures related to the RR interval. What these two measures are exactly is not known since this is

exactly how it is framed in [18], but including these features in the features found by the autoencoders

might yield much better performance on the task of heart pathology classification.

The second recommendation has to do with the question of what features are extracted from the

ECG by the autoencoders. In this research, attention is given to comparing the low-dimensional

features to heart pathology annotations and patient id annotations. The autoencoders work by first

extracting features into a low dimensional representation and from that low dimensional representation

reconstructing the input. The bottleneck mechanism is said to force the encoder to extract salient

features that uniquely encode information that allows the decoder to reconstruct unique inputs. This

research tried to find the degree to which these extracted features are correlated with heart pathology

of the patients, but those are found to be quite weak. The question now remains, what is this kind of
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information that the autoencoders extract from the ECGs from which it is able to reconstruct the input?

Some possible alternatives are patient sex and patient age.

The third and last recommendation is based on the research by [12]. The contributions here are

twofold; [12] come up with autoencoders that are asymmetrical, where the encoder is complex and

the decoder is relatively simple. The second contribution is that [12] mask 75% of the input while

keeping the reconstruction completely intact. [12] mention that transfer learning using this approach as

pretraining outperforms related supervised pretraining. Taking the very poor performance found by

this research, the models by [12] are not expected to perform better than supervised heart pathology

classification or manual feature extraction, but the possibility still exists.
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