
Finding your digital sibling: which other GitHub projects are similar to yours?
Finding similar repositories based on the available documentation

Alexandru Catalin Turcu1

Supervisor(s): Dr. Ing. Sebastian Proksch1, Shujun Huang1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Alexandru Catalin Turcu
Final project course: CSE3000 Research Project
Thesis committee: Dr. Ing. Sebastian Proksch, Shujun Huang, Dr. Julia Olkhovskaya

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

This paper aims to study the importance of
considering the documentation side of GitHub
repositories when assessing the similarity between
two or more applications. Readme and Wiki files,
along with Comments from the source files are
the dimensions proposed to be analyzed through
our methodology and experiments. We propose a
pipeline that first extracts text fragments from these
dimensions and then applies Natural Language
Processing techniques to further prepare our data
for evaluation. To gather a similarity score, we
first vectorize our processed data with TF-IDF
and then use cosine distance to obtain the score.
Combinations of the three dimensions, ranging
from using only one dimension to using all of them,
are considered throughout our study. Moreover,
additional information has been extracted from the
plain text, such as referenced URLs and License
usage, the similarity of which was calculated
using Jaccard distance. Two experiments were
performed. The first one aims to observe the
behavioral tendencies of our methodology applied
to a small dataset, while the second one aims
to validate our results. By evaluating them, we
found sufficient data that supported our presented
conclusion: documentation represents a valuable
asset in gathering a pool of similar applications.

1 Introduction
During the year 2022, GitHub has reported the creation of
more than 52 million new open-source projects [1]. This
establishes GitHub as one of the most popular choices
for hosting and supporting projects throughout their entire
development cycle. These repositories can share valuable
insight through the available code and documentation, crucial
first-hand experience for an individual searching for a
role model project. However, this process can become
overwhelming due to the sheer number of available sources.

For this reason, an automated method for finding and
extracting similar repositories has been the focus of numerous
research experiments. In the past years, Zhang et al. [2]
firstly considered the usage of Readme files as one of the
dimensions for evaluating the similarity between repositories
in one of the baseline tools in the domain. For this dimension,
the text is preprocessed by using Natural Language
Processing (NLP) [3] procedures: removing the stopwords
and then applying tokenization, and then converting into a
vector of weights based on each word’s TF-IDF (a measure of
the importance of each word in a document from a collection
of documents [4]). As a different approach, Nguyen et
al. [5] proposed an automated tool, CrossSim, for mining
repositories and evaluating their similarity based on graph
representation that relates developers to their code. Auch et
al. [6] has recently completed a comprehensive overview and
analysis of various methodologies used to calculate similarity,
published before 2020. This analysis serves as a valuable

resource to understand these methodologies’ evolution and
relevance in modern times. However, most of these tools used
in the industry do not utilize valuable available data from the
documentation side (besides the Readme files) of the GitHub
repositories, such as the Wiki pages accompanying projects
and comments written by the developer teams in the source
code files.

Therefore, this paper aims to answer the following research
question:

”How similar are GitHub projects that share attributes
on the documentation side?”

In other words, the aim is to delve into the assessment
of the similarity between repositories based on their
documentation, with emphasis on their Readme files,
associated Wiki, and code comments. This question can be
further divided into the following sub-questions:

RQ 1 What segments of each documentation dimension are
the most relevant for finding similarities?

RQ 2 Which branch (dimension) or combination outputs the
best results?

RQ 3 Should the lack of documentation make two projects
similar or not?

In order to successfully answer the main research question,
we first need to define the meaning of similar repositories.
Later, a methodology to extract the required data will be
introduced: an algorithm that first extracts the raw text from
the Readme file, Wiki, and comments in three different files,
which is then processed using NLP techniques and, lastly, a
similarity score, which needs to be interpreted, is outputted
from the comparison of the data of each two different
repositories. In addition to the previously described method,
for each sub-question, a specific methodology will also be
defined to facilitate their evaluation, which will contribute to
the solution of the research problem. Another issue that will
be discussed further in this paper centers around selecting
a set of suitable test repositories that ideally would contain
both active and inactive projects, as well as personal and
professional ones. We believe that by splitting our research
question into these three concentrated sub-questions will help
us focus on the key aspects that can be used to justify our
conclusions more effectively.

This question is part of a larger research topic that aims to
analyze the impact of various dimensions when comparing
repositories. The common goal is to combine the studied
dimensions into a single tool. Therefore, the dimensions of
each research topic must be similar, and no dimension should
dominate the others.

To justify our study, two types of experiments were
considered for our process. The first one concentrated on
the optimization of our methodology as well as providing
the direction of our approach, and then the latter was used
to validate our findings. After that, we observed that
the accuracy of our experiments increased based on the
amount of available extracted data (the usage of two or
more dimensions involving text from Readmes, Wikis, and
Comments). Alongside this, we concluded that using a single
aspect of the documentation did not yield satisfactory results,



whereas mixing the extracted text from multiple sources is a
valuable asset in identifying similar repositories.

Continuing this paper, we propose the following structure,
divided into multiple chapters: Section 2 defines the
terminology and tools utilized. Section 3 will go into detail
regarding the literature. Section 4 will define the used
methodologies, and Section 5 explains the experiment setup.
Section 6 evaluates the results of the proposed experiments,
while the conclusion and future work can be found in Section
7. Finally, Section 8 shortly reiterates our findings, while
Section 9 presents the responsible research principles that
were followed.

2 Background
Before delving into the proposed methodology, we want to
provide additional context for the tools and technologies
used.

In general, to facilitate the procedure of text mining,
ordinary terms that bring little to no helpful information
are removed. As a starting point for our list of stopwords,
we considered the dictionary available through the NLTK1

package.
Tokenization represents a method of splitting a text into

distinct words and words into letters. In our paper, we always
considered the first use case of tokenization [7].

Lemmatization is a process of reducing words to their
original form, similar to how stemming works, but in addition
to this technique, it also considers the context in which a term
is used [8].

We constructed a dictionary of license names and
acronyms, sourced from the SPDX database2, that was used
to recognize them in the extracted but not yet processed text.

Regarding code comments, we referred to Javadoc3 on
several occasions during this paper. This represents the
addition of tags to comment chunks that facilitate the
automatic creation of documentation for a package.

3 Related Work
Currently, multiple tools such as Repopal [2], CrossSim [5],
or CLAN [9] are used to detect similar GitHub repositories
or software, each one proposing different methodology
concepts. CLAN has been considered since its release as
the state-of-the-art process of identifying similarities between
Java applications. It computes the index score based on
API calls, which are given weights inversely proportional to
their popularity. Moreover, the approach considers frequent
sets of APIs, which leads to a higher precision of clustering
applications.

On the other hand, Repopal investigates three completely
different heuristics: the content of Readme files, starred
projects by similar users, and repositories starred together
in a short period. This strategy was compared to the CLAN
approach and was concluded to outperform the older strategy
on crucial metrics such as precision. It is of utter importance

1https://www.nltk.org/
2https://spdx.org/licenses/
3https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html

for our research how Zhang et al. handled documentation
files, namely applying NLP procedures in eliminating stop
words and reducing remaining words to their root form.

CrossSim proposes a graph-based approach that has
validated its results using Repopal and CLAN. This tool
concentrates on the interaction and relationship between
the developer and the source code but does not cover the
documentation side. However, this tool represents a valuable
asset to consider for validating our results.

An important role in our paper is played by the process
of comparing text documents. Consequently, evaluating the
chosen methodology highly depends on the algorithm chosen
for comparing such documents. Usino et al. [10] proposed
text clustering by using K-Means on the calculated cosine
distance of vectorized text. Typical NLP techniques are
applied to remove undesired data. While this methodology is
used for detecting plagiarism, we believe a similar approach
could be used for our aim.

To complete our research, we had to establish a suitable
dataset of repositories for our studies, a factor that can
represent the difference between an accurate or inconclusive
set of results. The tool reaper [11] has been proposed to
identify maintained and reliable software based on multiple
practices that can be observed on their GitHub pages.
This includes extensive documentation, test coverage, and
management of issues.

4 Methodology
To answer our research question of finding similarities
between repositories, we propose the following heuristics:
one common methodology of extracting the data required to
perform the analysis and three distinct methodologies, one for
each of the derived research questions.

Similarity Definition
In order to manage the task of finding similar repositories
and clustering them based on shared topics, we had to set
up a definition for similar projects. Therefore, two or more
repositories were considered similar if one of the following
criteria is met:

1. Their goal is to complete the same task, with no
emphasis on the technology.

2. Their end goal differs, but they have a common
methodology to get there.

Experimental dataset
Even though GitHub offers a plethora of open-source
repositories, we had to manually identify suitable projects
for our study. We established a series of metrics that
needed to be respected by each project to be considered
in our experiments. We primarily selected repositories that
were actively maintained at the moment of extraction and
displayed at least a descriptive introduction in their Readme
file. We decided to involve projects with different levels
of process management, from projects that required pull
requests to be accepted by active software maintainers to
projects that did not even use an active issue table.

Our goal was to define a dataset covering a broad number
of different topics, in which we expected the similarity



distance between repositories that would represent the same
topic to be significantly lower than when compared to a
similarity distance to a project in a distinct cluster. Moreover,
language was used as an additional metric, which must be
English for the documentation side of each project.

Only the wikis directly available for a repository on their
GitHub page were considered for this research. While
this has limited the available data, extracting data from
external websites represented an impediment due to different
formats of displaying the information. Another issue we
considered was that an unknown amount of repositories did
not even offer a wiki page. We aimed to construct a dataset
that contained a sufficiently high percentage of repositories
implementing a wiki. Additionally, we limited ourselves to
proposing mostly projects written in Java to further restrict
the acceptance criteria.

To validate our results, we considered the usage of an
additional and broader dataset that has already been evaluated
by a state-of-the-art tool, namely CrossSim [12]. The two
datasets were not combined in any way to keep test and
evaluation data distinct. The defined heuristics were not
applied to this dataset.

Data extraction & processing
The documentation side of each repository is split into
Markdown for Readmes and Wikis and source code files, in
which comments are present. To extract the data, an iterative
approach is proposed, in which the text from each dimension
is extracted into locally saved files.

In Markdown files, there are two types of tags: HTML ones
and their basic syntax, from which we consider either the text
that is outside any type of tags, text from within tags used to
render it in a different format, or from captions of images
or other figures. We considered these tags unimportant
information and removed them from the resulting file.

To extract comments, we considered identifying the lines
containing them using regular expressions. For this, we
had to consider that developers use both in-line and multi-
line comments interchangeably. Additionally, constructs that
follow the Javadoc format present a multitude of additional
tags that, if they were to remain in the extracted data, would
alter the results.

In the case of wikis and comments, we expected to extract
the data from multiple input files that would generate an
abundance of output files. The text is merged into a single
plain text file for each dimension to fix this potential issue.

Data processing is completed by following multiple
NLP techniques that are required to remove any irrelevant
information from the extracted text. We filter it using our
enhanced stopwords dictionary, to which words from an ever-
growing list of common terms used by software developers in
descriptions are appended. Variable and function identifiers
referenced in comments are considered out of the scope of
our study and therefore removed if their format follows the
rules of camelCase. Finally, symbols are identified and
removed during the tokenization procedure, followed closely
by data lemmatization, to obtain the base form of the words
in context.

Similarity evaluation
To obtain a floating point number representing the similarity
score, we decided to transpose our text data in a frequency
vector that translates each word’s importance in the context
of all considered files containing processed text. This
represented for us an ideal scenario to apply the TF-IDF
algorithm, whose scope is precisely our need. We decided
to further adjust the weights of certain selected tokens that
can describe the purpose of an application. These words were
identified in the vector by converting the hashed values back
to their original form, and later, the adjusted weights were
added to the vector.

The outcome is a very high-dimensional vector.
Throughout our study, we decided to experiment with
using a lower dimensionality vector that can be obtained by
analyzing and keeping only the most significant values. We
identified that Singular Value Decomposition (SVD [13])
could help us in reducing the effect that noise would have on
our results, as well as representing a tested method to gather
and use only the most relevant values.

With the data vectorized, we then calculated the similarity
of every two repositories by using cosine similarity,
represented by the division between the dot product of
two frequency vectors and the multiplication between the
magnitude of the vectors. The output is represented by a
decimal number score between 0 - highly dissimilar and 1
- highly similar.

An overview of the extraction methodology can be
visualized in Figure 1, while a lower-level description of our
methodology is presented in Section 5, Experimental Setup.

RQ 1 methodology
The first research question aimed to determine the relevance
of each dimension fragment, and to achieve this, we first
analyzed a series of repositories to notice tendencies in
documentation writing.

Throughout the dataset elicitation process, we have
observed that besides the text used as a description in
documentation, there were present a couple of URLs mainly
used to acknowledge and cite sources, along with licenses
that are utilized to regulate the usage of a particular open-
source project in someone else’s work. To identify them in an
automated procedure, we had to rely on regular expressions
to gather website links from the text and on the usage of
a license dictionary between their names and acronyms to
identify them accurately. The licenses and URLs were always
considered from an unprocessed variation of the extracted
data.

To facilitate the experimentation of the three distinct
approaches, we decided to divide our data into three distinct
fragments. From the original defined files that contain the
text extracted from the Wikis, Readmes, and Comments, we
filtered out and saved the new features in two additional files,
one for each URLs and Licenses. These files combined the
extractions from all original dimensions.

We applied a filtering process to the newly extracted
features to ensure the uniqueness of each entry. To
gather a similarity score between two repositories based on
either URLs or Licenses we used Jaccard similarity, which



Figure 1: Flowchart of the proposed data extraction methodology

considers the cardinal number of the intersection of two sets
divided by the cardinal of their union.

RQ 2 methodology
By considering three distinct components of repository
documentation, we were free to explore the usage of seven
different scenarios that involved using either one, two, or all
three available dimensions. Our goal was to identify the best-
performing scenarios in terms of the accuracy in marking
pairs of repositories as similar. Therefore, we considered
all the data sets that can be generated and evaluated the
repositories’ similarity based on every option. If we were
to denote the three dimensions as R (Readme), W (Wiki), and
C (Comments), the final list of possible combinations would
be: R, W, C, RW, RC, CW, RCW.

RQ 3 methodology
By defining the previous methodology in which single
components of documentation were compared, it is essential
to detail the handling of cases when certain components
were missing and to establish a correlation between these
repositories. We want to emphasize that repositories that
did not supply any documentation were not considered
to take part in our dataset and, therefore, experiments.
However, missing a single dimension of the three represents
a common occurrence. We assigned an initialization value
for each similarity score to handle this case. Throughout
our experiments, we tried three different scores: 0 (highly
dissimilar), 0.5 (neither similar nor dissimilar), and 1 (highly
similar). We expected these scores to mainly influence

the evaluation process during the comparison of Wiki files,
which, based on our observations, represent the rarest
dimension of documentation.

5 Experimental Setup
The study described in this paper is supported by source code
written in Java 14 and Python 3.10. To successfully run
an experiment, firstly the data had to be extracted from the
selected repositories. The Readme is obtained through direct
usage of API calls to GitHub. The contents are usually saved
in a Markdown file containing both HTML and proprietary
tags to facilitate the usage of images, for example. For our
experiments, we extracted all the available plain text and the
paragraphs encapsulated in the caption of the aforementioned
tags.

Comments were extracted recursively from the folders of
each repository by searching for files that had programming
language extensions, with the better part of the experimental
dataset being assembled out of Java-focused projects. To
extract the text, we decided to use regular expressions
(Regex) to identify lines or multi-lines of comments based
on the designated symbols used to denote them. Initially,
we encountered multiple issues related to both inline and
blocks of comments. These issues resulted in chunks of code
commands being added to our extracted file. Part of these
issues were mitigated by refining our regular expressions
to not only identify lines that contain comments but also
accurately identify the type of comment that follows (i.e.,
independent comments or comments on the same line as
code content) and its start and end points. For this, we
had to increase the complexity of conditions by verifying
whether the extraction of a comment was finalized before
starting to extract a different one. Since we concentrated
our attention on Java repositories, we defined a methodology
that can directly identify and eliminate tags used in Javadoc
to generate documentation pages by keeping a list of the
available tags.

Lastly, Wiki pages cannot be accessed directly through
the available APIs and must be downloaded on the local
machine running the experiments. Since Wikis are mostly
considered for online usage and editing, many file names
contain symbols deemed illegal by the naming conventions on
a machine running Windows, a problem that can be mitigated
by running the experiment on a Unix-based operating system.
Moreover, on GitHub, they are considered part of different
repositories compared to the projects they are attached to.
Consequently, to access them, we were required to append
’.wiki.git’ to the original link of the repository. A Wiki
repository is often split into multiple Markdown files, from
which the same method of extracting text, as in the case of
Readmes, was used. Finally, the extracted text is merged into
a single file.

We would like to acknowledge our colleague Juul Crienen
for the development of a GitHub API wrapper4 that simplified
the process of handling files in the case of extracting
comments.

4https://github.com/jcrienen/github-api-wrapper



All the extracted text went through our processing pipeline.
URLs and Licenses have been extracted into different files
and removed from the original ones. URLs were identified
through the usage of regular expressions, while licenses were
identified by their presence in a database offered by SPDX.

The following steps involved the removal of stopwords
(both technical and English common words) from the
extracted text, which is then tokenized to facilitate the
removal of the punctuation symbols and the removal of
code identifiers (for languages using camelCase practices).
Finally, each word was stemmed into a nonarticulated form
according to its context.

During the experiments, seven scenarios of combining
our documentation dimensions are considered (combinations
of size 1, 2, or 3 that can be obtained from Readme,
Comments, and Wikis), and depending on the selected
scenario, the processed contents are merged. We obtained
a matrix containing similarity scores between each of the
two repositories, calculated using cosine similarity on the
vectorized data obtained through applying TF-IDF.

We proposed a more straightforward method to calculate
similarities between the URL and License dimensions, in
which unique entries are considered, and the scores are saved
in a similar matrix, but using Jaccard similarity this time.

Two types of experiments were run to evaluate the
proposed methodologies: The main objective of the first
experiment is to answer the three proposed research sub-
questions and collect valuable insights that can be visually
analyzed for correctness. For this experiment, a manually
selected and labeled dataset has been used to evaluate the
performance of our approach. Due to the proposed heuristic
of using K-means clustering for grouping similar repositories,
we had to resort to using the SciKit-Learn [14] package
provided function adjusted rand score5, which calculates the
accuracy of the labeling made by the clustering algorithm,
adjusted for randomness. For this reason, the accuracy of
each cluster might be misleading (and slightly different for
each run), and a manual evaluation of the results was done.

The second experiment was focused on validating our
methodology against the results outputted by the CrossSim
tool, using a similar dataset adjusted for possible unavailable
repositories. The study attached to the tool provides user
evaluation for software flagged as similar, which will be
considered for our validation. However, this scenario does
not consider the importance of features such as URLs or
Licenses. Moreover, no dimensionality reduction was applied
to the data in this experiment. For the remaining scenarios
considered in this experiment, we selected each of the first
ten pairs of repositories that were flagged as similar, in
decreasing order regarding their score.

A modular approach was preferred to ensure an efficient
environment that can be modified straightforwardly, in which
each of the three steps saved their results to external files. The
usage of different programming languages represents a trade-
off between the desired technology usage and the nature of
the data to be processed: repository extraction can be handled

5https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.adjusted rand score.html

by Java, while libraries such as SciKit Learn in Python are the
de facto standards when processing large text documents.

A detailed procedure for running the experiments locally,
in addition to the source code, can be found on the publicly
available personal GitHub repository [15].

6 Results
The results of the two proposed experiments provided
meaningful insights that contributed to formulating our
reasoning for the research questions. Even though the results
of the analysis experiment produced a slightly different
output at each run, we observed a tendency in the resulting
graphical representation. Figure 2 illustrates an example of
a calculated accuracy graph between the expected and the
empirical findings. This graph contains all the considered
initialization scores of similarity for a pair of repositories.

The validation experiment yielded results deemed most
precious for establishing a theory on the importance of each
scenario considered. Regarding the setup, we established the
initial similarity score between each pair of repositories as 0,
which is highly dissimilar.

Figure 2: Accuracy of clustering for each combination of
dimension: Readme, Wiki, Comments, along with URLs and

Licenses, with different initial similarity scores

RQ 1 results
The first proposed research question explores the relevancy of
different segments of each documentation dimension, which
were split into three distinct categories: URLs, Licenses,
and the remaining text. For each of the three categories,
the data has been extracted into separate files, filtered to
contain unique entries (in the case of URLs and Licenses),
and processed stemmed tokens for the remainder.

By referring to Figure 2, it can be observed that the URL
and License dimensions were outperformed drastically by the
remaining combination (excluding Wiki, an aspect that was
treated in a subsequent research question). These features
did not cluster the repositories in a manner that is at least



similar to the established ground truth in comparison with the
remaining scenarios.

We are confident that this bottleneck happened due to
our similarity calculation methodology. Nevertheless, URLs
and Licenses were not utilized in performing the validation
experiment since we concluded that we could obtain more
accurate results for our study by evaluating the remaining
scenarios.

Therefore, we believe that according to our methodology,
lemmatized sets of words represented the correct strategy for
comparing repositories.

RQ 2 results
The second research question represents an attempt to
identify the most accurate and complete set of documentation
dimensions that would best associate similar repositories.
For this purpose, we defined seven distinct scenarios that
involved the three proposed dimensions: Readmes, Wikis,
and Comments. The cases consisted of combinations of these
dimensions of sizes ranging from one to three.

The evaluation of this research question highly benefited
from the validation experiment. However, we would like to
begin by presenting the observations we gathered from the
first experiment’s results.

In Figure 2, we can observe that the lowest accuracy-wise
scenario happened during the clustering of repositories based
only on the content of their Wiki pages. Moreover, out of the
scenarios considering a single dimension, only the Readme
one performed comparably to the scenarios implementing
two or more sources for data.

The scenarios containing data from source code comments
tended to produce similar levels of accuracy scores. To
visualize the impact of this dimension over the remaining
parts of the documentation, we analyzed the size, in terms of
lemmatized words, of each. Figure 3 plots the distribution
of each category, and it can be observed that the size of
Comments dominated the others. Consequently, the extracted
comments would behave similarly to their singular scenario
when combining two dimensions due to the sheer amount.

Part of our dataset comprised repositories that are part
of the Spring Framework projects6 aimed at implementing
multiple database technologies in their tool. These industry-
based repositories are often sustained by a similar group
of authors. By manually analyzing the resulting clusters
from our experiments, we observed that this particular
group of repositories is highly correlated according to our
methodology, deemed neutral to other repositories that
implement a database, and most often dissimilar to non-
related repositories (such as open-sourced games). On the
remaining part of the dataset, the results were not that
straightforward, but a tendency to group similar repositories
still existed (for example, even though the repositories that
contained bots for Discord weren’t all clustered together,
there were pairs of at least two of them that ended in the same
cluster).

The validation experiment confirmed the initial results
regarding the only Wiki scenario: an unexpectedly high
number of repositories had 1 as a similarity score. When

6https://github.com/spring-projects

analyzing the Wiki pages of the highlighted projects, we
found the issue: all these Wiki pages had the placeholder text
”Welcome to the project wiki”.

For the other six scenarios, 39 unique pairs of similar
repositories were identified (out of the 60). Three of them
have been marked during the user evaluation of the CrossSim
tool (which only considered around 250 pairs) as highly
similar, and one as mostly dissimilar. Due to the low number
of user-evaluated pairs, we could not efficiently compare
the outputs of the two algorithms, so we manually analyzed
all resulting pairs by splitting repositories based on their
topics, for which we applied our definition of similarity to
the analysis.

The ’Readme only’ scenario represented the worst-
performing remaining dimension, where only two of the nine
unique pairs considered resembled a similar topic. As a
comparison, only three unique pairs were deemed highly
dissimilar for the remaining scenarios. The most common
topics shared by repositories marked by our heuristics as
similar were related to data management, big data analysis,
and mobile music players. Comparable with our previous
experiment, we observed that projects that were sharing
developer teams achieved a higher similarity score.

In the validation set, we observed that projects that have
been forged or represent updated versions of a tool tend to
achieve a high similarity score, according to our metrics. An
overview of the validation experiment’s manual evaluation
is available in our online appendix hosted on the Zenodo
OpenAIRE repository [16].

By analyzing the two experiment types, we can conclude
that the best performances were obtained by scenarios that
considered at least two different components. Specifically,
with our methodology, we would recommend the usage of
the Readme-Wiki scenario. The scenario that additionally
included comments represented a slightly less accurate
technique, and we would not recommend its usage yet. By
analyzing the files with extracted text from Java source files,
we identified specific key terms used in programming and
concluded that we did not handle correctly commented code
chunks, and as a consequence, they influenced the similarity
calculations.

RQ 3 results
The last research question aimed to identify a way to handle
the cases of missing documentation. We previously proposed
a methodology where we experiment with the initialization
of the similarity score between pairs of repositories: mark
them as either dissimilar (a score of 0), neither similar
nor dissimilar (0.5), or similar (1). For example, in the
’Wiki only’ scenario, this value would be updated only
when both repositories in a pair contained text extracted
from a Wiki page. We first evaluated all the options in the
analysis experiments, where we ran our methodology using
the proposed initial similarity scores.

In these experiments, the clustering accuracy did not
vary much throughout the cases, so the results were mostly
inconclusive. However, during the validation experiment,
where we ran our experiment only with an initial similarity
score of 0, we observed an unexpectedly high number of



Figure 3: Distribution by the number of tokenized words in each
considered main dimension of the documentation side. Comments

represent ∼ 58%, Readmes ∼ 19% and Wikis ∼ 22%.

pairs marked with a perfect similarity score in the Wiki-
only scenario. By manually analyzing the content of the
Wiki pages, we identified the issue: a large number still had
the original placeholder template. Moreover, only 74 out of
the 560 repositories in the validation dataset implemented a
Wiki page, from which we gathered high numbers of pairs of
unrelated projects with high similar scores and similar pairs
with a score of 0. However, by deeming repositories with
missing documentation similar, we would encounter more
false positive cases. So, as a middle ground, we believe using
a neutral initial similarity score of 0.5 is advised compared
to assigning scores that would entail an extreme relationship
status.

7 Discussion
By answering RQ 1, RQ 2 and RQ 3, we were able to
construct the basis of our primary research question: How
similar are GitHub projects that share attributes on the
documentation side?.

The findings of our study demonstrate the importance
of using data extracted from the documentation side of
GitHub projects. Our limited research exposed features not
used too frequently in the subject of highlighting similar
software. Scenarios in which Readme pages and Wiki files
are compared connected repositories in similarity clusters
the most accurately. Sufficiently effective outcomes were
achieved in the scenario where all the dimensions (Readme,
Wiki, and Comments) were combined, with a slight decrease
in performance. One of the identified potential issues was
related to the presence of commented chunks of code that
could negatively influence the outcomes of our experiments.

We believe that analyzing the similarities in the
documentation of different repositories can represent a
valuable asset in identifying similar applications or tools
in utility or implementation. This can further improve the
efficiency of finding repositories representing a role model

for a newly conceptualized project, considering that relevant
documentation is already present.

In addition, we want to reiterate the identified tools in
Section 3. The state-of-the-art tool Repopal proposed the
usage of Readme files, in cooperation with the tracking of
starred projects by users, to identify similar repositories [2].
In comparison, the tool CrossSim proposed a methodology
that relied on the interaction between the users and their code,
such as dependencies usage [5]. It can be observed that
these studies depended on multiple individual dimensions.
We believe that a concrete continuation of our research
would be to merge our studied dimensions with additional
external user activities that can be obtained through the
GitHub repositories. A separate research experiment that
can be performed would include the comparison between the
performance of the proposed Repopal implementation and an
adapted version that considers the additional documentation
dimensions discussed in this paper.

However, limitations in our study still need to be
considered. Our study relied on modern natural language
processing techniques to capture the semantic connotation
of words and phrases. A beneficial approach that was
considered but not developed and evaluated was using a
large language model to allow the usage of a deep learning
algorithm.

During experiments, we observed that our similarity scores
were affected by the default template text used in Wiki
pages. Besides extending our stopwords dictionary, an
additional idea would be identifying and removing such
sentences before processing the text. This technique could
also be used to remove auto-generated comments, while
identifying commented chunks of code would be possible
by appending additional key terms to the stopwords list.
The remaining terms dictionary defined in our heuristics
and used for vector weight adjustment did not significantly
alter our results. We concluded that its selection of words
was unsuitable and required massive improvements. As we
established our dataset, we only considered repositories with
documentation in English. Therefore, we did not create
stopwords dictionaries in foreign languages.

Two of our proposed dimensions, URLs and Licenses,
did not produce satisfying results. Nevertheless, we do
not consider these dimensions a deadlock but an interesting
opportunity to complement further and improve our study,
starting from our proposed methodology, which did not
perform at the expected level.

Technically, we encountered several issues with the
GitHub APIs related to verifying the existence of a Wiki
page for a project. Wikis on GitHub are handled as separate
repositories, therefore having independent privacy statuses
(private or public availability). Often, we encountered public
repositories that, in our opinion, implemented private Wikis,
while the API confirmed the existence of the Wiki. This
forces our algorithm to throw an error instead of skipping
this step. The second limitation encountered related to the
Wiki pages was concerning their naming conventions (which
often contain colons in their names) and the operating system
on which our algorithm was executed. This issue is caused
by our implementation of first downloading all the Wiki files



and then extracting the data, but it can be mitigated by using
a Unix-based operating system instead of Windows.

Moreover, data evaluation was one of our experiments’
most difficult processes throughout the study. For example,
during our clustering experiment, we could not get accurate
results, but rather a tendency of them, which was then
evaluated. We believe that more sophisticated evaluation
procedures could only benefit our study and improve its
credibility. Due to time limitations, a user evaluation
methodology was not feasible, but it would have been critical
in further validating our results in a longer time stamp.

Threats to validity
Due to the nature of our study, multiple points can be
raised as threats to external validity. Our dataset is
constituted mainly of Java-based projects. While support
to identify comments from different programming languages
has been implemented, no extensive practical testing has been
performed. However, the risk of completely changing the
results obtained is minimal since part of our dataset contained
repositories using more than one programming language
during our experiments.

A different setup and distribution of the dataset could
obtain different results from ours, and therefore, we limited
ourselves to evaluating the phenomena observed in the data.
We cannot guarantee that the results will completely coincide
unless our study is validated using a dataset including a more
extensive and diverse set of repositories. However, we believe
that by running our own validation experiment, we decreased
the potential occurrence risk of this threat.

The internal validity of our empirical study can be
represented by the possible bias during the evaluation
process, which was manual, during multiple sessions. We
tried to reduce the effect of this study by splitting the projects
based on their topics and only after directly comparing
their goals. Another internal threat could be caused by our
own dataset creation process, where we tried to filter out
substandard repositories through our selection heuristics, but
no code was examined.

The threats of internal validity can be diminished by
following two methodologies. Firstly, we can conduct
additional evaluation experiments with data extracted from
more diverse sources, such as a broader range of
programming languages used in repositories. Secondly,
we consider that an approach that could enhance the
trustworthiness of our observations would consist of a user
evaluation process, where a group of individuals asses the
repositories pairs marked as similar.

Finally, the research was performed assuming the
definition of similarity detailed in Section 4. While this
definition is in no way complete, a different perception of it
would nullify the experiment and, therefore, our findings.

8 Summary
This paper aimed to evaluate a novel approach to studying
the reference of publicly available software by relating them
using their available documentation. We gathered our data
by extracting text from Readme and Wiki files and developer
comments in the source code. The data available in these

three dimensions is cleaned of insignificant information
and standardized through the usage of natural language
processing techniques to retain only the nonderived form of
the words. This facilitates gathering each word’s importance
by using TF-IDF in a vector used to output a similarity score,
courtesy of cosine similarity.

Our results showed that connecting repositories based on
their documentation represents a valid approach that offers a
large window of opportunity to explore this domain further
and optimize our findings.

9 Responsible Research
Our study is committed to respecting responsible research
practices. All experiments can be replicated by following
the provided instructions, and we have sourced our datasets
from publicly available repositories. We have ensured that
no breach of GitHub’s usage terms has occurred while
mining these repositories. Additionally, all code used
in our study is open source and can be found on both
GitHub [15] and on the Zenodo open science repository [16].
During the study period, the algorithm used to extract data
and calculate similarity scores was developed to provide
unbiased results gathered through means that did not involve
learning processes. Throughout the studies, our sole goal
was to analyze repositories that deployed different amounts
of documentation and not to harm the author or team of
developers in any way. Even though all the data extracted
during our experiments was publicly available, we ensured
that we safely discarded all of it at the conclusion of the study.

By adhering to these practices, we strive to make our
findings publicly available and contribute to knowledge
advancement in the exploration of the relationship between
repositories.

References
[1] M. Woodward, “Octoverse 2022: 10 years of tracking

open source,” Nov 2022.
[2] Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li, and

J. Sun, “Detecting similar repositories on github,” in
2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER),
pp. 13–23, 2017.

[3] P. M. Nadkarni, L. Ohno-Machado, and W. W.
Chapman, “Natural language processing: an
introduction,” Journal of the American Medical
Informatics Association, vol. 18, pp. 544–551, 09 2011.

[4] S. Robertson, “Understanding inverse document
frequency: On theoretical arguments for idf,” Journal
of Documentation - J DOC, vol. 60, pp. 503–520, 10
2004.

[5] P. T. Nguyen, J. Di Rocco, R. Rubei, and D. Di Ruscio,
“An automated approach to assess the similarity of
github repositories,” Software Quality Journal, vol. 28,
pp. 595–631, Jun 2020.

[6] M. Auch, M. Weber, P. Mandl, and C. Wolff,
“Similarity-based analyses on software applications: A



systematic literature review,” Journal of Systems and
Software, vol. 168, p. 110669, 2020.

[7] A. A. Awan, “What is tokenization? types, use cases,
implementation,” Sep 2023.

[8] A. S. Gillis, “What is lemmatization?: Definition from
techtarget,” Mar 2023.

[9] C. McMillan, M. Grechanik, and D. Poshyvanyk,
“Detecting similar software applications,” Proceedings
- International Conference on Software Engineering,
pp. 364–374, 06 2012.

[10] W. Usino, A. S. Prabuwono, K. H. S. Allehaibi,
A. Bramantoro, H. A, and W. Amaldi, “Document
similarity detection using k-means and cosine distance,”
International Journal of Advanced Computer Science
and Applications, vol. 10, no. 2, 2019.

[11] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan,
“Curating GitHub for engineered software projects,”
Empirical Software Engineering, vol. 22, pp. 3219–
3253, Dec. 2017.

[12] P. T. Nguyen, J. D. Rocco, R. Rubei, and D. D.
Ruscio, “Crosssim: Exploiting mutual relationships to
detect similar oss projects,” in 2018 44th Euromicro
Conference on Software Engineering and Advanced
Applications (SEAA), pp. 388–395, Aug 2018.

[13] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, “Singular
value decomposition and principal component
analysis,” in A practical approach to microarray
data analysis, pp. 91–109, Springer, 2003.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine
learning in python,” the Journal of machine Learning
research, vol. 12, pp. 2825–2830, 2011.

[15] A. C. Turcu, “Research documentation
similarity.” Available at https://github.com/acturcu/
research-documentation-similarity.

[16] A. C. Turcu, “acturcu/research-documentation-
similarity: v1.0,” Jan. 2024. Available at
https://zenodo.org/records/10573230.

https://github.com/acturcu/research-documentation-similarity
https://github.com/acturcu/research-documentation-similarity
https://zenodo.org/records/10573230

	Introduction
	Background
	Related Work
	Methodology
	Experimental Setup
	Results
	Discussion
	Summary
	Responsible Research

